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Abstract—On stable non-oscillating GaAs/AlAs based res-
onant tunnelling diodes with thin barriers, small-signal in-
trinsic impedances were measured at 21◦C in the full
bias/frequency space (0-2V; 0.05-40.05 GHz). Equivalent-
network optimisations for CAD, show that the classical
Esaki model needs an extra degree of freedom for match-
ing the measured intrinsic impedance throughout the whole
active region. A very good impedance description in the en-
tire bias/frequency space is obtained with four, frequency-
independent intrinsic elements in the Quantum-Inductance
model. Quasibound-state lifetime information and resistive
cutoff-frequency, both against bias-voltage are shown.

Keywords— Resonant tunnelling diodes, equivalent-
network modelling, compound semiconductors

I. INTRODUCTION

With the accent on accuracy and full bias-voltage/micro-
wave frequency range coverage (0-2V; 0.05-40.05 GHz),
the classical Esaki and the Quantum Inductance (QI)
equivalent-network models [1,2,3] are used here to de-
scribe the measured small-signal intrinsic impedanceZd
of our Double Barrier Resonant Tunnelling diodes (RTDs)
for CAD purposes. The GaAs/AlAs based, MBE-grown
devices have a 5 nm quantum well and symmetric thin bar-
rier and spacer layers, each nominal 2.5 nm thick (Fig. 1).

The RTDs are of planar type, with coplanar microwave
probe access from the network analyser to the met-
allised signal (SIG) and ground (GND) pads on the semi-
insulating substrate (Fig. 2a). The DC I-V curve and the
microwave reflection coefficientS11 of the extrinsic RTD,
and S11 of an OPEN and a SHORT reference structure
are measured at the reference planes (pads) indicated. The

1 Permanent address: National Research Inst. for Material Physics,
P.O.Box Mg-7 Magurele, 76900 Bucharest, Romania.
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Fig. 1. RTD layer structure grown by molecular beam epitaxy
(MBE); mesa definition by wet chemical etching; metallisa-
tion by lift-off technique; ohmic contacts Ge/Ni/Au; inter-
connections Ti/Pt/Au; isolation mesa-edge by SiO2 or air-
bridge.

SHORT (Zd = 0) and OPEN (Zd ⇒ ∞) structures on the
wafer (Fig. 2b,c) enable us to model the bias-voltage inde-
pendent extrinsic elements of the equivalent-circuits:Cex ,
Rex andLex (Fig. 3), describing the microwave behaviour
of the Ti/Pt/Au pads-to-mesa interconnections [6,7]. Only
Rex is frequency-dependent due to skin losses in the met-
allisation.

II. STABILITY CONDITIONS AND MEASUREMENTS

Accurate determination of the actual intrinsic elements
Rd (dynamic device resistance),Cd (dynamic device ca-
pacitance),Lq (quantum inductance) andRs (series resis-
tance), makes a stable, non-oscillating RTD in the nega-
tive differential resistance (NDR) region a prerequisite. A
stable RTD has at least no chair-like plateaus in the NDR
region of its I-V curve, so the conductanceGd(= 1/Rd)
has only one negative peak there (Fig. 4a,b). By proper
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Fig. 2. (a) Planar RTD with coplanar probe access. (b) SHORT-
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Fig. 3. Equivalent-circuit models of extrinsic RTD, consist-
ing of interconnection elements Cex, Rex, Lex (pads-to-
mesa), and intrinsic RTD equivalent-circuits: Esaki-model
and Quantum Inductance (QI)-model. Also shown are the
SHORT and OPEN reference structures.

choice of the device area (20µm2; to makeRd+Rs+Rex
more negative than -50Ω at the steepest slope in the NDR
region, which gives a finiteS11) and a specially designed
bias circuit, the stability condition was met in our experi-
ments.
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Fig. 4. (a) DC I-V curve of extrinsic RTD, measured at 21◦C
(on-wafer reference plane). (b) Differential conductance Gd
[mS].

An array of S11-data was collected in the 0 to +2 V
range of the I-V curve (mesa top is +V), whereS11 of the
extrinsic RTD was measured at 75 bias points and from
0.05 - 40.05 GHz (401 points), after network analyser cali-
bration with on-wafer standards. Fig. 5 shows some of
theseS11’s in a compressed Smith chart, amongst them
S11 in the smallest-NDR point(Vd = 1.0060V ; |S11| ∼
3.9). The prober-chuck temperature was 21◦C.

III. E SAKI AND MODIFIED ESAKI MODELS

Note that in a substantial range of NDR-region bias-
voltages, theS11 curves show an inflection point, a fea-
ture that cannot be modeled by the Esaki equivalent-
circuit with three, frequency-independent intrinsic ele-
ments (Fig. 3). Optimisation of these intrinsic param-
eters to carefully match the measuredS11-data (at each
bias point), leads to the conclusion that the Esaki-model
needs an extra degree of freedom to fit the measured
S11 data array in the NDR region sufficiently accurate.
Fig. 6a displays the real and imaginary parts of the in-
trinsic impedanceZd at Vd = 1.0060 V (largest negative
Gd), and Fig. 6b shows the dynamic conductanceGd and
capacitanceCd, when these elements are taken frequency-
dependent (in accordance with [4]) to match the measured
S11. The mathematical equations that describeGd andCd
as a function of frequency in the modified Esaki-model are
also bias-dependent, which complicates CAD use.
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IV. QUANTUM INDUCTANCE MODEL

The same measured small-signalS11 datasets can be
described ’perfectly’ by the Quantum Inductance circuit
model (Fig. 3) over the full bias-voltage (0-2 V) and fre-
quency ranges (0.05-40.05 GHz) with four, frequency-
independent intrinsic elements (Fig. 7a-d). The measure-
ment ofS11 on the stable RTD throughout the entire NDR
region without hiatus, results in the correct determina-
tion of a time constantτ , here defined asτ = Lq/Rd(=
Lq ·Gd) which, according to several authors [1,2], should
be an indication of the quasibound-state lifetime in the
quantum well. The display of this parameterτ (Fig. 7e)
and ofLq continuously over the whole undistorted NDR
region is a novelty. Near the point whereGd has zero
conductance (at the peak and valley voltages), the values
of τ are less reliable.τ is not defined whereGd = 0.
The peak value ofτ corresponds with the negativeGd-
peak (same bias). The calculated quasibound ground-state
lifetime τ1 given in [5] of ∼ 50 ps for an AlAs barrier
thickness of 2.547 nm and∼ 18 ps for 2.264 nm (a de-
crease of 1 monolayer), compares well with the time con-
stantτ = 22 ps measured. Fig. 7f shows the resistive cut-
off frequencyfr against bias-voltage of the intrinsic RTD.
In the passive regions of the I-V curve, the QI-model re-
duces to the Esaki-model, since the element-optimisation
process finds there low values ofLq. For CAD purposes,
a very good RTD intrinsic impedance description in the
entire bias/frequency space (0-2V; 0.05-40.05 GHz) is ob-
tained with four frequency-independent intrinsic elements,
scalable with device area.
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