

Conservative adaption of workflow

Citation for published version (APA):
Voorhoeve, M., & Aalst, van der, W. M. P. (1996). Conservative adaption of workflow. In M. Wolf, & U. Reimer
(Eds.), Proceedings of the international conference on practical aspects of knowledge management, PAKM'96,
workshop on adaptive workflow, Basel (pp. 1-15)

Document status and date:
Published: 01/01/1996

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Feb. 2024

https://research.tue.nl/en/publications/514e3d92-73d8-4d30-8ac7-67e998e83df3

Eindhoven University of Technology
Department of Mathematics and Computing Science

ISSN 0926-4515

All rights reserved
editors: prof.dr. R.C. Backhouse

prof.dr. J.C.M. Baeten

Reports are available at:
http://www.win.tue.nl/win/cs

Conservative Adaption of Workflow

by

M. Voorhoeve and W. van der Aalst

Computing Science Reports 96/24
Eindhoven, December 1996

96/24

Conservative Adaptation of Workflow

Marc Voorhoeve
Wil van der Aalst

(email: (wsinmarc.wsinwa}@win.tue.nl)

Eindhoven University of Technology

Abstract

Business processes and, tberefore, workflow models are often adapted. Adaptations can
be caused eitber by procedural changes, affecting all future cases or on an ad-hoc basis for
individual cases. Eitber way, cases witb similar but different definitions will coexist in an
organization. One can conserve tbe Similarity of such cases by considering tbem as exten­
sions or reductions of one and tbe same common ancestor. The extension/reduction concept
is based on selectively blocking and skipping tasks, combined witb delay bisimilarity. Views
can be defined and used for monitoring tbe flow of cases on a high level. An example case
study is given, using Petri Nets as tbe modeling framework.

Keywords: Workflow, Bisimulation, Petri Nets

1 Introduction

Efficiency has become the key aspect that organizations are competing in. In order to get the
most work done with the least number of resources, computerized support is vital. Already most
tasks have adequate support from applications, so the attention has shifted towards supporting the
workflow (WF), i.e. the interplay of various tasks aimed at realizing an organization's goals.

WF management (WFM) systems can be used to define tasks with the resources involved therein
and the applications supporting them (cf. [WFM94], [Kou95], [HaL91]). These tasks are com­
bined to form processes. A process can be compared to a program, where the statements are tasks.
Constructs from programming, like sequencing, choice and iteration all have their counterpart in
WF process definitions.

A process can be monitored by observing its overall state. This state is composed of cases be­
longing to the process. Each case has its individual case state, which is determined by the pos­
sible tasks it can directly undergo and the case states that will result from executing these tasks.
Each case must have a final "completed" state. The ability to monitor the overall state of a WF
process and thus discover resource bottlenecks and slack is a major advantage of WFM systems.
With this information, resources can be reallocated.

A process never terminates (in principle). New cases enter the process, undergo a series of tasks
and leave completed. The "empty" overall state wherein no cases are being treated is unlikely to
occur. This aspect makes it hard to maintain a WF process. An application can be recompiled
while it is not being used. An operating system can be shut down, modified and rebooted. How­
ever, the ongoing work in the organization cannot be frozen for a process update. After a process

I

update, cases that were initially started by an earlier version of the process will still be present
and need to be handled properly in spite of the update, Similar problems are encountered e.g. in
the telecommunications industry.

A radical solution is to define a new process while retaining the old one. New cases enter the new
process. When the old process has reached the empty state it can be discarded. The drawback
of such a solution is that the connection between the old and new process is lost, and that they
must be monitored separately. Also, the old cases will not benefit from possible improvements in
the new process. A similar problem occurs for cases derived from a standard process by minor
ad-hoc modifications.

In this paper we indicate how similar processes can be treated and viewed as instances of one
and the same common extension. Cases disregard "new" tasks, either by skipping (moving to the
successor state immediately) or blocking (not executing them at all). The advantage of such an
approach is that the overall state of a process and its modifications can be monitored together.

Monitoring the overall state of a complex process will still be cumbersome. An answer to this
problem lies in the definition of views. By renaming and abstraction of tasks, the complexity of
a process can be considerably reduced, concentrating on the essential features in its overall state.
The underlying concept behind the extension, reduction and simplification of processes and their
views is delay bisimilarity (cf. [Gla93], [Weij89]).

In this paper we restrict ourselves to the process part of WFM. The resource part and the schedul­
ing problems involved there are at least of equal importance. However we believe that the resource
part also benefits from a better understanding of the process part.

2 Process Model

. For the modeling of a process we use the Petri net formalism [Rei8S], more specifically free choice
nets [DeE9S]. Petri nets are a good formalism to base WPM tools upon (cf. [EIN93], [AHH94]
and [Aal96]). On the one hand, Petri nets are graphical and easy to use. On the other hand, Petri
nets do have a formal semantics and analysis methods are abundant. In the remainder of this paper,
we assume a basic knowledge of Petri nets.

2.1 Notations and Conventions

We assume the usual facts and notations about sets and functions. The product A x B of two sets
A, B is the set of ordered pairs {(a, b) I a E A /\ b E B). A relation between A and B is a subset
of Ax B. This can be generalized to three or more sets, giving sets of ordered triples, ternary
relations, and so on.

We introduce bags to formalize the states of Petri nets. The set INA of bags over a given set A is
the set of functions with domain A and range IN. If A is finite, say A = {a, b, c) the elements
of INA are denoted by superscripting the domain element with the value, e.g. a 1b2cO If this does
not lead to confusion, 1 superscripts and domain elements with 0 superscripts may be omitted, so
the above bag can also be denoted as ab2

• To each subset S of A corresponds a bag bag(S) in INA

2

satisfying bag(S)(a) = I if a E Sand bag(S)(a) = 0 if artS. Equality on bags is defined as
follows: two bags are equal iff they have the same domain and the bag values are the same on that
domain. When introducing Petri nets, a net's state will correspond to a bag which has a domain
consisting of the places of the net.

Let B E INA and S <; A. Then B + S is the bag B' defined by B'(a) = B(a) if artS and
B'(a) = B(a) + I if a E S. We write S S B if there exists aB' E INA such thatB' + S = B;if
so, this (unique) B' is denoted by B ~ S.

2.2 Petri Nets

A Petri net N is a triple (S, T, F), where Sand T are finite disjoint sets (of places and transitions
respectively) and F <; (S x T) U (T x S) the flow relation. The elements of S U T are called
nodes of N. Given a node x of N, the preset • x of x is the set {y I (y, x) E Fl and the postset
x· of x is the set {y I (x, y) E Fl. A path between nodes x, y of N is a sequence of nodes
x = Xl, ... ,Xn = Y of N such that x; E ·x;+! for all lsi < n. A path between x and x
may consist of the singleton sequence. The length of such a path is the number of elements in the
sequence minus one.

The Petri net N is a free choice net (FC net) iff the presets of transitions are either disjoint or
coincide. So for any t, u E T, ·t = ·u or ·t n ·u = 0. An S-system is a net for which every
transition has one input and one output place. S-systems are FC nets.

A marking of N is a bag M E INs. A transition t E T is enabled by M iff·t s M. The enabling
relation between markings and transitions is denoted by M [t) . A transition t enabled by M can
fire, leading to a successor marking M' given by M' = (M ~ .t) + t·. This ternary relation
between markings and transitions is denoted by M [t) M'. A marking M' is reachable from M
(notation M [*) M') iff either M' = M or there existtl, ... , tn E T and MJ, ... , Mn E INs such
that M ltd Ml [t2) ... [In) Mn and Mn = M'.

M is called live iff for every M' with M [*) M' and every t E T there exists a marking Mil with
M' [*) Mil [t). M is called bounded iff the set {M' I M [*) M'l is finite. M is called a home
marking itf for every M' with M [*) M' one has M' [*) M. There exist efficient algorithms for
deciding these properties for FC nets (see [DeE95]).

We now introduce labeled Petri nets presupposing a set A of labels. Now a labeled Petri net is
a pair (N, L), where N = (S, T, F) is a Petri net and L is a function with domain T and range
AU {T}, where T rt A is a special "silent" label. Let M, M' be states of a labeled net (N, L). If
M [t) M' in Nand L(t) = a, we write M ~ M'. The ternary _ --=-+ _ relation between states
and tasks is called the successor relation.

Nets are drawn as bipartite directed graphs, with box-like transitions and circular places as nodes.
The flow relation is depicted by arrows. Labeled nets are depicted by inscribing the label inside
the transitions. The label T may be omitted.

3

2.3 Workflow Processes

WF processes can be easily modeled by Petri nets. Tasks are assigned to transitions and case states
correspond to markings. The execution of a task, leading to a successor state, corresponds to the
firing of a transition. An example WF process is given in Figure 1.

, rej :
,J',h r u :
", ~:- - --- - - - -- - - - - - - - - - - - - - - -- ---- - -- ---- --- - -- ---- ----- -- - - - - - - - - - - - - - ------- - ----

Figure 1: Claim handling net

The task labels are inscribed in the transitions. The transitions without label can fire without any
task being executed. The remaining labels have no formal meaning and are added for clarity only.
We describe the process associated to this net. Initially, a case is in the state hi. The place h is
drawn dashed for reasons indicated below, A new claim for car damage insurance can be started
by the claim reception (rei) task. After receiving the claim, the process forks and two tasks can
be executed independently, contacting the garage (cgar) and checking the insurance policy (chin).
After completion of both tasks, a join action takes place, after which a decision can be made either
to pay the damage (pay) or reject the claim (re}). Either way, the claim is filed (file) and the case
is closed.

Every WF process must have a "home" place h, corresponding to an initial or final case state.
Instead of drawing it and its connected edges (dashed in the figure), the transitions with h in their
preset or postset are barred at the left-hand, respectively right-hand side. These are the initial tasks
(receiving a call, letter or order form) and final tasks (e.g. filing) respectively.

It is not the case that cases, once finished, reenter the net. In fact, the "home" place construction
has been given for technical reasons. The essential feature to consider here is that there are initial
and final tasks.

For the sake of clarity, large nets can be divided into subnets. Subnets are depicted with rounded
comers and their labels have a different font (subnetlabels do not refer to tasks). Figure 2 indicates
a possible division of our earlier net into subnets.

...... '."""""""'" ,,,,,,,,,, .. ,,,,, .. , .. ,,,,," """''''''''''',,', '> ... "

Figure 2: Claim handling net subdivision

We now define WF processes formally as a subclass of labeled Petri nets. The set A of labels
represents the set of tasks to be executed. A WF process P is a labeled Petri net (N, L), where

4

N = (S, T, F) is an FC net. The transitions t with L(t) = , are transitions without task. The
net N must have a special "home" place h E S, and the marking hI must be a live and bounded
home marking. The net component N from a WF process (N, L) is called a WF net. When no
confusion is possible, "net" and "process" are used as synonyms. The markings reachable from hI
are called states of P. By the conditions imposed on N, the states of P are safe, i.e. each place can
contain at most one token. So the states of P can be described by sets instead of bags. Let M, MI
be states of P. If M = MI or M [tl) MI .. ' [tn) MI for certain states Mj, ... , Mn_1 different from
hI, we write M --"-* MI. A transition t with L(t) = ,is called silent. These transitions should be
used for synchronization purposes only. If M ~ MI, the task a may be executed in the state M
and its execution leads to the state MI. If M ~ MI, the state MI may evolve autonomously (i.e.
without any task being executed) from M.
The relation M --"-* M' signifies that M can evolve into MI without passing through the state hI. It
is the reachability relation in a net that is derived from N by splitting h into an initial and terminal
place.

A WF process can be modeled directly or indirectly by transforming a CCS [Mi189j or ACP [Ba V95j
term into a net. The transformation rules are indicated e.g. in [GIV87]. The ACP term correspond­
ing to the net in Figure 1 is rei. r.(chinll cgar).r.(pay + rej).file. This approach may be preferred
by modelers having a background in (concurrent) programming.

One must bear in mind that the above way of modeling WF processes abstracts from several im­
portant aspects. The first such aspect is the existence of case variables. A case usually possesses
variables that are both set and accessed by the tasks being executed. These variables may influ­
ence the WF process itself, disabling certain tasks within the process being modeled. A second
aspect is the attribution of tasks to resources. This aspect could prevent execution of certain tasks
in a certain state, because they lack the necessary resources. Taking either aspect into account
can easily lead to a net that lacks the FC property. However, it is our belief that one should re­
frain from modeling the workflow at a too detailed level initially. So these aspects are not taken
into account, which makes it acceptable to require the WF nets to be FC nets.

3 Process Equivalence and Reduction Relations

Different labeled nets may represent one and the same flow of work. For example the nets P, Q
and R in Figure 3 all three consist of an initial task a followed by a final task b. In order to make
this observation tangible, an equivalence relation is established between WF processes.

p II a f--O--j b II Q Iia 0 b II

R

Figure 3: Different nets representing the same process

There exist many equivalence relations that can be considered for this purpose (c.f. [Gla93]).

5

Here, we have chosen delay bisimilarity, which has the advantage of a rather simple definition,
whereas some essential distinctions between processes (like the difference between internal and
external choice described below) are preserved.

Figure 4: Equivalent claim handling net

The net in Figure 4 is delay bisimilar to our claim handling net. This is because to every case state
of the one net corresponds a case state of the other allowing the same tasks, possibly after firing
some silent transitions. Executing corresponding tasks in corresponding states of either net again
leads to corresponding states. The states and the successor relation for the nets in Fig I and Fig 4
respectively are given in Figure 5. The correspondence between states is given by dotted lines.
Note that the h states of both processes do correspond.

qu
chin cgar pay

h reI P q~ \ ~u v ~ h

~' \'t I r~ :'t:~
" .. egar , chI';' " reJ' ,',' " , ",

.. .. : ,: : " "I' ": f: ::' // !
.. ..:: " :: " : "

• • I " I, " •

.... \chini: cgal: /pay !/fil /
'.rcl":,b I ',Ie,.

~
' .:\ e:

h a ~ • h
cgar ' f file

c

Figure 5: A delay bisimulation between processes

We call two WF processes equivalent iff such a relation can be constructed between their states.
The relation is called a delay bisimulation (cf. [Gla93], [Weij89]). In the appendix the formal
definition can be found. When considering the processes in Figure I and 4 equivalent, it is tacitly
assumed that only one task can be executed at a time for a certain case.

An aspect that deserves attention in process equivalence is the treatment of silent transitions.

Figure 6: Choices with silent transitions

6

In Figure 6, four alternatives are given that involve a choice between tasks a and b. In all cases,
the dashed arrows are connected in one and the same way to some environment net. Of these four
alternatives, only the two in the right half are equivalent. The net in the top left quarter can evolve
autonomously from the state p (where the a and b tasks are both still possible) to either the state
q or r (where only a or only b is possible). A nondeterministic or internal choice has been made
before any a or b task is executed. In the net in the bottom left quarter, the state s (allowing both
tasks) can evolve autonomously into t (allowing only a).

In the nets in the right half, the choice between a and b is retained until either of them is started.
This can be regarded as a deterministic or external choice. States that are related by a delay bisim­
ulation essentially possess the same options for continuation.

WF processes are often adapted e.g. by adding extra tasks. We shall define a relation between
processes that embodies a structured way of adaptation. Informally, a WF process can be reduced
by retaining its net and adding variables and instructions to skip (or hide) certain transitions and
block (forbid) others. Here "skipping a transition" means firing it without executing the associated
task (thus autonomously moving to its successor state), while "blocking a transition" means not
firing it (at all or unless a certain event has taken place). Typically, blocking will occur in a choice
context and skipping in a sequential context.

) pay ~ file II
II rel ~ chin K)-1 cgar ~.----n

' . I rej II

Figure 7: Reduction of claim handling

In Figure 7 a reduction of the WF process in Figure 1 is depicted. In the reduced net, the cgar task
is blocked until chin has been executed. Furthermore, the file task is skipped in case of a rejection.
This 'example indicates that the skipping and blocking of tasks may be conditional; it may depend
on the history of a case whether certain tasks are skipped and/or blocked. Extension is the inverse
of reduction; P is an extension of Q iff Q is a reduction of P.

We formally define the concept of reduction. Let PI, P2 be WF processes. Then PI is a reduc­
tion of P2 iff a relation R can be constructed between the states of PI and P2 with the following
property. Let MI, M; be states of PI and M2 a state of P2 such that (M!, M2) E R. If M! ~ M;
there must exist a state Mf of P2 such that M2 ~ M2 and (M;, M2) E R. If MI::.. M;, there
must exist states M2, M~ of P2 such that M2 ~ M~::.. M2.
Figure 8 displays a reduction relation between the states of the processes in Figure 7 and 4. Re­
duction of processes is transitive: if A is a reduction of B and B a reduction of C then A is a
reduction of C. The third relation can be obtained by composing the first two.

A delay bisimulation is a reduction relation in both directions. So if A and B are equivalent WF
processes, then A is a reduction of B and vice versa. The converse is not true: WF processes can
be reductions of one another without being equivalent.

7

rej

h \ rel chin'cgar,. pay·.file \h

reI
0--------0

h ""- .
egar 'b chin eeJ

Figure 8: A reduction relation

4 Equivalence, Reduction and Extension Rules

Algorithms for establishing equivalence, reduction or extension of given WF processes are im­
portant for tools that support the definition and adaptation of workflow processes. Here we define
rules for transforming a process into an equivalent, extended or reduced one. In this way a pro­
cess designer equipped with a graphical editor can modify his processes interactively by selecting
parts of his model and invoking the rules he has in mind.

We start by informally defining rules for process equivalence. A formal definition can be found
in the appendix. Illustrative examples can be found in Figure 9. Each rule can be applied in two
directions, forward and backward. The backward direction (from right to left) often simplifies
a net. A description is given for one direction only. Some rules are applicable only to equiva­
lent places. An equivalence relation called place bisimulation [AuS92] exists for the places of
a Petri net. This equivalence can be efficiently decided for any Petri net. A formal definition of
place bisimulation can be found in the appendix. Informally, tokens in equivalent places can be
interchanged without affecting the behavior of a net.

interleave/factorize: By interleaving, a WF net can be transformed into an S-system. Every state
corresponds to a place in the interleaved net and for each possible state transformation a transition
is added. We call the inverse operation factorization.
unfold/fold: Equivalent places can be folded into a single place. The pre- and postset of the folded
place are the union of the pre-, respectively postsets of the folded places. The unfold transfor­
mation is allowed iff the resulting unfolded places are equivalent (which is not always the case).
addrplace/delrplace: A place p is called redundant iff for any (reachable) state M and transition
t with M + {p} [t) it holds that M [t) . Redundant places can be deleted at will and added if the
free choice property is conserved. This rule is a consequence of the interleave rule that can be
verified locally.
addtauldeltau: A silent transition can be added between sets of places that are equivalent in the
sense that a 1-1 correspondence can be given between the places in the preset and postset of the
silent transition, such that corresponding places are equivalent or equal.
addrtrans/delrtrans: If places p, q are connected via zero or more silent transitions followed by
some transition t, a duplicate of t can be added connecting p to q.
splittaulmertau: A place p can be split into places q, r, adding a silent transition between q and
r. The incoming edges of p can be distributed between q and r and all outgoing edges of p must

8

u

a

be attributed to r.

~ ... c(

-0-

inlerleave

d factorize

unfold

fold

addrplace

delrpiace

addtau

deltau

addrtrans

delrlrans

splittau

mertau

Figure 9: Equivalence rules

Next, we define extension and reduction rules, shown in Figure 10. In contrast to the equiva­
lence rules above, the processes on the left-hand and right-hand side will be different. Note the
phenomenon in the delplace/addplace rule that deleting a place results in extending the net. This
follows from the fact that each place represents a condition that may impede the occurrence of an
action.

unskip/skip: A WF process can be extended by attributing a task to a silent transition and reduced
by making a task transition silent.
addsublblock: A WF process can be extended by inserting a subnet between two places and re­
duced by removing such a subnet.
delplace/addplace: A WF process can be extended by deleting a place and reduced by adding
one. This is a consequence of the addsub and interleave rules.

The addsub/block and delplace/addplace rules are allowed only if the resulting process remains a

9

D
unskip
=====
~

skip

addsub
=====
~

block

delplace =====
~

addplace

0

Figure 10: Extension (=» and reduction (~) rules

WF process. The delplace/addplace rules can be considered to be generalizations of the "redun­
dant" place equivalence rules.

Linear insertion/removal: (Lin ins/Lin rem)

deltau

E-Q = E---Cr--O--Q
skip
~

=
unskip

addtau

Parallelization/Linearization: (ParallellLinear)

~ce

Parallel insertion/removal:

~ Lin rem
~

=
Lin ins

addplace
~

=
delplace

Linear
~

=
Parallel

Figure 11: Extension derivations

Figure II shows some extension (and reduction) rules that can be derived from the above rules.
They illustrate that the equivalence, extension and reduction rules allow for adaptations encoun­
tered in practice. The linear insertion rule indicates that a process can be extended by inserting
a new task between two old ones. The parallelization rule shows how a sequential ordering of
tasks can be converted into a parallel one. These two rules can be combined to yield the parallel
insertion rule. The claim handling net in Figure I can be shown to be an extension of the one in
Figure 7 by the addtau, parallelization, linear insertion and fold rules.

We prove in the appendix that WF processes are equivalent iff they can be transformed into one
another by means ofthe process equivalence rules. They are an extension/reduction of one another

10

iff they can be transfonned into one another by means of the extension/reduction and equivalence
rules.

11

5 Process Views

We will now treat the visualization of the combined state of a process, i.e. all cases currently being
treated. In doing so, one must maintain a balance between accuracy and amount of information
offered. A too accurate representation of the state (e.g. an overview of every case with its variables
and history) cannot be visualized. Instead, such information should be stored in a database and
queried.

Figure 12: Combined state

As indicated earlier, a Petri Net based WF model allows one to visualize the state. This is done by
depicting the state (marking) of each case as a distribution of tokens in the places and superposing
them, like in Figure 12. Note that some information is lost in the process: it looks as if the join
transition is enabled in the superposition, whereas the examination of the individual cases shows
this not to be the case. By adding extra information (e.g. the number of times each transition is
enabled), some of this lost information can be retrieved without overloading the picture.

We believe that a picture of the WF net where the number of tokens per place and the "enable
count" per transition is added gives an adequate overview of the state, allowing an early discovery
of bottlenecks and slack.

An advantage for defining extension and reduction relations for WF processes is that the cases
of all processes that are reductions of a single extension can still be viewed in combination. In
Figure 13 this is depicted for our running example. Note that information is lost again, since cases
can be depicted with options for continuation they lack.

Still, monitoring a complex WF process can become a burden, especially when there exist many
variants with ad-hoc tasks added to them. To reduce the complexity of such nets one can define
views. A view corresponds to a function that renames certain tasks and abstracts from other tasks.
A manager monitoring the car claim process might be interested in two groups of resources: the
"check" and "decide" workers. By renaming the "check" tasks to chk and "decide" tasks to dec
and removing the label of the other tasks, the top net in Figure 14 is constructed. This net can be

12

Figure 13: Combined state of process witb reduction

simplified by tbe interleave, delrtrans and mertau rules to the bottom net, showing in one glance
that the current workload consists of six "check" tasks (four of which are enabled) and five "de­
cide" tasks (one of which is enabled).

Figure 14: View of the claim process state

6 Example

The "WWWizz" agency offers support to companies for presenting themselves on the Internet.
The agency gives courses, develops company-specific style guidelines and develops and main­
tains web sites. Figure 15 gives the WF process (witb subnets) for clients tbat eventually want to
maintain their own site.

Figure 15 contains four subnets. The acquisition subnet (acq) creates cases (client) that enter tbe
construction subnet (cons). After the construction subnet a web site has been started and guide­
lines have been prepared. The site can be iteratively maintained for a while (maint), during which
the guidelines can be updated (gupd). The client can decide to initiate a guidelines release subnet
(grel), resulting in a company-specific guidelines manual. After releasing tbe guidelines, the site
itself can be released (srel), meaning that the maintenance responsibility shifts from WWWizz to
the client. The maintenance site then becomes a support site. The support action (supp) is pos­
sible in that state until tbe termination of the support phase (file). Of course, the normal flow in
Figure 15 can be aborted in earlier stages, but this has not been included in the figure.

13

gl

gupd

msite

maint file

Figure 15: WWWizz net

Figure 16: WWWizz acquisition subnets

Figure 16 gives the acquisition subnet in a standard form (at tbe top) and an extended form (bot­
tom). The start activity (start) generates prospects that enter a proposal writing subnet (wprop).
A meeting is then arranged (arrme), where the proposal is discussed with the prospective client.
The outcome of tbis discussion can be either acceptance (accept), rejection (reject) or a request
to modify the proposal (mreq). This modification then takes place in a subnet (modij).

In the extended net, tbe proposal is accompanied by a prototype, consisting of a few web pages
containing material specific to the prospect, which is prepared in the mprot subnet. The WWWizz
marketing people have found out tbat this approach gives a higher success rate, justifying tbe extra
costs. Prototypes are not modified. The new net is an extension by parallel insertion.

In Figure 17, the proposal subnet is depicted at the top. A session with tbe user is held to deter­
mine his requirements, which are then documented (ureq). From this document, tbe infrastructure
requirements (hardware and software) are extracted (isreq). In parallel, the available infrastruc­
ture at tbe client's site is assessed (avis). From tbese data, the costs of creating and maintaining
the required web site are computed (ccost).

14

prospect o---t avis

wur wir

wur wee

K)-(ureq}-()----1

wec1

prop

ccost ~

Figure 17: WWWizz proposal subnets

prop

ccost ~

The bottom net is a modification that has been made for a prospect that has no budget for new
infrastructure. So first his available infrastructure is determined and his requirements then have
to fit to what is available. This is a reduction by linearization and linear removal.

client-"' __ --'

o '-..r-----,

bel

gl

msite

Figure 18: WWWizzconstruction subnets

gl

msite

In Figure 18, the construction subnet is depicted. At the top is the old situation. First, provisional
guidelines are prepared (ppg/), after which web pages are produced and the guidelines updated if
necessary (ppag). At the bottom, an extension of this net is depicted. The preparation of guide­
lines is a substantial amount of independent work. The WWWizz employees that are capable of
doing this work have become a bottleneck resource. So the possibility has been added to out­
source this activity to free-lancers or advertising agencies. First, for every client a make-or-buy
decision is introduced. The "make" clients then follow the old path. For the "buy" clients, a new
subnet (bg/) is entered. It can be verified that the bottom net is an extension of the top one by
applying the addsub and linear insertion rules.

prospect pel

9 '-.......r Clien:) make ~ rdy II
'I accept 1--0~

lr--bu-y "II

Figure 19: WWWizzprovisional guidelines preparation view

15

In Figure 19, an overall state view is depicted for the manager of the provisional guidelines em­
ployees. He is largely responsible for the make-or-buy decision. He must be able to monitor the
work that his people are busy with and to estimate the amount of work needed in the near future.
His view abstracts from all tasks but the ones depicted in the figure. The reduction is then obtained
by invoking the fold, delrtrans and mertau rules.

In the state depicted, his people are busy with eight guidelines. Five clients await the make-or-buy
decision and nine prospects are negotiated with. Of course, it would be better to add more detail
to the ppgl activity, to see how near these eight guidelines are to completion. Also the 'enable
count' of each transition can be added.

7 Conclusions

The present paper gives several notions regarding workflow processes. Process equivalence can
be used to modify processes (making them simpler or clearer) while retaining the behavior that is
being modeled. Process extension (reduction) embodies the idea of adding (deleting) options. It
is possible to define the "least common extension" and "greatest common reduction" of a set of
processes derived from a single generic process.

To further elaborate the value of process extension and reduction in practice, we consider adaptive,
ad-hoc changes and structural, permanent ones. For the adaptive changes, one may imagine the
situation where an organization has several template processes that serve as a starting point for the
derivation of many actual processes. Every time a new case enters the organization, a template
process is selected and modified to fit the requirements of that specific case.

The notions of extension and reduction allow the organization to specify constraints upon the ways
that processes are modified. The organization may e.g. fix a greatest common reduction that just
possesses the necessary minimum actions, or, a least common extension that limits the actions
that can be added. It can be checked that such constraints are met.

For the structural part, we stress the fact that a case of process P in any state "fits" into some state
of an extension Q of P. This allows structural changes to be made with impunity to a process
while it is running and lots of cases being treated. Finally, the paper shows how processes can be
monitored and defines views of the current work in progress. These views can be used to monitor
cases being executed according to many variants of a common WF process.

There is still alot of work to do in orderto allow the above concepts to have any impact in practice.
One of the first efforts is incorporating the ideas sketched here into a workflow editing tool.

We conclude with a few technical remarks. The underlying equivalence notion is delay bisimilar­
ity. One could also consider to adopt branching or weak bisimilarity (cf. [Gla93]), resulting in a
slightly different set of "tau" rules. Weak bisimilarity can be obtained by adding an extra case to
the "rtrans" rules. However branching bisimilarity requires a different approach; the rtrans rules
must be weakened and the fold rules strengthened, requiring a new kind of place bisimulation.

Acknowledgement

The authors wish to thank Twan Basten for many fruitful discussions, during which the idea of

16

structured modification involving blocking and skipping of actions was born (cf. [BaA96]).

References

Aa196 W.M.P. van der Aalst: Petri-net-based Workflow Management Software, in: A. Sheth (ed.)
Proc. NFS Workshop on WF and Proc. Aut. Inf. Sys., pp. 114-118, 1996.

AHH94 W.M.P. van der Aalst, K.M. van Hee, G.J. Houben: Modelling Workflow Management
Systems with High-level Petri Nets, in: G. De Michelis, C. Ellis, G. Memmi: Proc. 2nd
Workshop Comp.-Supp. Coop. Work, pp. 31-50, 1994.

AuS92 C. Autant, Ph. Schnoebelen: Place bisimulations in Petri nets, in: K. Jensen (ed.) Proc.
Appl. Theor. Petri Nets, pp. 45-61, LNCS 616, Springer 1992.

BaA96 T. Basten, W.M.P. van der Aalst: A Process-Algebraic Approach to Life-Cycle Inheri­
tance, Inheritance = Encapsulation + Abstraction, Computing Science Report 96-05, Eind­
hoven Univ. Tech. 1996.

Ba V95 J.C.M. Baeten, C. Verhoef: Concrete Process Algebra, in: Abramsky, Gabbay, Maibaum
(eds.) Handb. Logic Compo Sci., Vol. 4, pp. 149-268, Oxford Univ. Press 1995.

DeE95 J. Desel, J. Esparza: Free Choice Petri Nets, Cambridge Univ. Press 1995.

EIN93 c.A. Ellis and GJ. Nutt: Modelling and Enactment of Workflow Systems, in: M. Ajmone
Marsan (ed.) Proc. Appl. Theor. Petri Nets, pp. 1-16, LNCS 691, Springer 1993.

GIVS7 R.I. van Glabbeek, EW. Vaandrager: Petri Net Modelsfor Algebraic Theories ofConcur­
rency, in: de Bakker et al. (eds.) Proc. PARLE, Vol. II: Parallel Longuages, pp. 224-242,
LNCS 259, Springer 1987.

Gla93 R.J. van Glabbeek: The Linear time - Branching time Spectrum II (extended abstract) in:
E. Best (ed.): Proc. CONCUR '93, pp. 66-81, LNCS 715, Springer 1993.

HaL91 K. Hayes and K. Lavery: Worliflow Management Software: the Business Opportunity,
Ovum 1991.

Kou95 T.M. Koulopoulos: The Worliflow Imperative, Van Nostrand 1995.

MilS9 R. Milner: Communication and Concurrency, Prentice-Hall 1989.

ReiS5 W Reisig: Petri Nets, Springer 1985.

WeijS9 WP. Weijland: Synchrony and Asynchrony in Process Algebra, Ph. D. Thesis, Univ. Am­
sterdam 1989.

WFM94 Workflow Management Coalition: Workflow Reference Model, 1994.

17

Appendix

In this appendix, formal definitions and proofs are added. We suppose the basic notions about sets,
functions and relations to be known with the standard notations for them. Throughout this section,
we suppose that PI = (NI, L I) and P2 = (N2 , L 2) are WF processes, where NI = (S], T], FI)
is a WF net with home place h I. and N z = (S2, T2, F2), with home place hz. With a, b, ... we
denote tasks and Ci is either a task or r.

The simplest equivalence notion between WF processes is isomorphism. PI and P2 are isomor­
phic iff there exists a bijection f between their places and transitions such that hz = f(hIl and
F2 = {(f(x), fey»~ I (x, y) E Fd·

We start with the definition of simulation and bisimulation relations. First, an auxiliary notation
is defined. Let P be a WF process and let M, M' be states of P. We write M ~ M' iff either
Ci = r /\ M = M' or M ~ M' or there exists a state Mil such that M ~ Mil ~ M'.

Definition 1 A strong simulation between PI and P2 is a relation R between the states of PI and
those of Pz such that if (MI, Mz) E Rand MI ~ M;, there exists an M~ such that M2 ~ M~.
A delay simulation between PI and Pz is a relation R between the states of PI and those of P2
such that if (MI , M2) E Rand MI ~ M;, there exists an M~ such that Mz ~ M~.

A (delay/strong) bisimulation is a (delay/strong) simulation R such that its inverse R- I is also a
(delay)istrong simulation.
PI and Pz are equivalent iff there exists a delay bisimulation between PI and P2 such that their
home states are related.

The relation composition of two (delay/strong) simulations is a (delay/strong) simulation, so equiv­
alence is indeed an equivalence relation. Note that PI and P2 may be one and the same process.
We now formally define place bisimulation.

Definition 2 A place bisimulation between the places of a WF process P is a symmetric and re­
flexive relation R between the places of P such that:
1ft is a transition of P with·t = {Sl, ... , sn}, t· = {s; •... • s~} and rl • rn are places of P
such that {(Sl. rl) •... . (sn. rn)} <; R
then there exists a transition u of P with L(u) = L(t),·u = {rl •... • rn}, u· = {r; r~} and
{(s;.r;) • (s~. r~)} <; R.
Places of a WF net that are related by a place bisimulation are called equivalent.

Note that a place bisimulation within an S-system is a strong bisimulation. We now define rules
for equivalence ofWF processes. Suppose PI given as before. The rules below tell us how to con­
struct an equivalent WF process P2. The· symbol used below always refers to PI. The interleave
construction is the the hardest one. Interleaving a sub net of a given net leads to the well-known
state explosion and cannot be obtained polynomially (in the size of the sUbnet). Its inverse (fac­
torization) is even harder: it is difficult to even identify subnets of a given net that can be factor­
ized. To apply interleaving, one must identify a subnet P3 of PI with certain properties. Define
T; = {t E T3 I ·t n S3 = 0}, To = {t E T3 I t· n S3 = 0}, n = (T3 \ T;) \ To. Now P3 must
satisfy

18

S3 c:: SI \ {hd, T3 c:: TI, F3 c:: FI, L3 = LI n h
'Is E S3 : eS USe c:: T3 ,

'It E T; U Tb : t e c:: S3,
'It E Tb U To : et c:: S3.

This subnet must have the property that its closure is a WF process. The closure P3 of P3 satisfies
83 = S3 U {hI}, t3 = T3, F3 = F3 U {(hI, t) I t E T;} U let, hI) I t E To}, L3 = L3 and h3 = hI.

The simplest way to satisfy these requirements is to set P3 to PI with h I deleted. In this case, P3 =

PI. Now we formulated the construction's precondition, we can define the interleave construction.
The other constructions are local and easy to implement. Their inverses have not been treated, but
are as simple to formulate.

i) Let:E be the set of states of P3. We write M [t) M' iff M, M' E :E and t E T3 and the state
transition takes place in P3. The interleave construction sets S2 = (SI \ S3) U (:E \ {hd),
T2 = (TI \T3)U{(t, M') I hl [t) M'}, {(M, t, M') I t E T& A M [t) M'}, {(M, t) I M [t) hj},
F2 = {«M, t, M'), M') I (M, t, M') E T2}U{(M, (M, t, M')) I (M, t, M') E T2}, h2 = hl
and L2(M, t, M') = LI (t).

ii) Let r, S E SI be equivalent. The fold construction sets S2 = SI \ {r}, T2 = Tlo F2 =

FI \ (T x {r} U{r} x T) U leu,s) I u E er}U {(s,u) I u E r e},h2 = hI andL2 = L I.

iii) Let rl, ... , rn, SI, ... , Sn E SI with ri equivalent to Si for i = I, ... , n. Choose t rj. TI.
The addtau construction sets S2 = Slo T2 = TI U it}, F2 = FI U {(rl, t), ... , (rn, t),
(t, SI), ... , (t, sn)}, h2 = hI and L2 = LI U let, r)}.

iv) Let M, M' be subsets of SI such that there exist tI, ... , tn in T such that M = el], tIe =
et2, ... , tn-Ie = etn, tn e = M' and L(tl) = ... = L(tn-I) = rand L(tn) = 01. Choose
t cj TI. The addrtrans construction sets S2 = Slo T2 = TI U {t}, F2 = F1 U {(s, t) I S E

M} U {(t, s) I sEM'}, h2 = hI and L2 = LI U {(t, OI)}.

v) Let r E SI be a redundant place of N I . The delrplace construction sets S2 = SI \ {r},
T2 = TI, F2 = (FI n S2 x T2) n T2 x S2, h2 = hI and L2 = L I. For WF nets, redun­
dant places can be found by computing place invariants. The place r is redundant in NI iff
NI initialized with a single token in h satisfies an invariant of the form Irl = :EsEs,gs.lsl
with Ip I denoting the number of tokens in a place p and the g, being nonnegative rational
weights. For the addrplace rule, one can concoct such an invariant and then connect the
new place r to transitions in a way to satisfy this invariant. The weights in the concocted
invariant must be chosen with care.

vi) Lett E TI with LI (t) = r such that all places in et have no other transitions in theirpostsets.
So formally, 'Is E et : se = it}. Moreover, if {hd = et, then t e must be a singleton, say
{IJ}. Choose Si,j rj. SI for i E et, jEte. The mertau construction sets T2 = TI \ it},
S2 = SI \ (et ute) U {Si,j liE et, jEte}, F2 = FI n (S2 x T2 U T2 x S2) U let, Si,j) I
(t, i) E Fd U {(Si,j, u) I (j, u) E Fd, h2 = hI if hI cj et, h2 = Sh\," otherwise and
L2 = L I·

19

We now state and prove our first main theorem.

Theorem 1 WF processes P, Q are equivalent iff they can be tramformed (up to isomorphism)
into one another by applying the above rules.

Proof: The "if" part (soundness) is proved by constructing a delay bisimulation in all the cases
above. For instance in the mertau case, the correspondence between the states of P and Q is given
by replacing a place 0 E et of a state of P by the combination of sa,} 's and a place 0 E t e by the
combination of Si,a 'So

The "only if" part (completeness) is proved as follows. Suppose P and Q are equivalent WF
processes. By applying the interleave rule, we may suppose that theirnets N and M are S-systems.
We shall modify P by the transformation rules to arrive at a process P' that is equivalent to Q in
such a way that there exists a delay bisimulation R' between P' and Q that is injective, i.e. no
two places of P are related to the same place of Q. By modifying Q in the same way, we obtain a
bijective delay bisimulation. By invoking the addrtrans and deltau rules, we then arrive at systems
with isomorphic nets.

Let R be the delay bisimulation between the markings (places) of Nand M. We take the transitive
closure (R 0 R-1)* ofthe composition of R with its inverse and write r ~ s itT (r, s) E (R 0 R-1)*.
Since R was a delay bisimulation, we may deduce that ~ is a delay bisimulation too, so if r ~ s
and r1 ~ p1 there exists a 0 such that p ~ 0 and Sl ~ 0 1. By applying the addrtrans rule, we
can modify N to the effect that r1 ~ p1 iff r1 ~ pl. This means that ~ has become a strong
bisimulation, and since N is an S-system, ~ is a place bisimulation in the modified system.

Be repeatedly invoking the fold rule to N we arrive at the desired injective delay bisimulation.
Thus we can arrive by successive modifications at isomorphic processes, concluding our com­
pleteness proof.

Note that the delrplace/addrplace and mertaulsplittau constructions have not been used in the com­
pleteness proof. This indicates that these constructions are redundant within the chosen notion of
equivalence.

To arrive at a formalization of the extension and reduction rules, yet another auxiliary notion is
defined.

Definition 3 The flow completion oj a WF process is obtained by adding a silent transition with
the same pre- and postset to every transition oj the original process. Let P1 and P2 be WF pro­
cesses as before. Then P2 is the flow completion <I>(Pd of P1 iff S2 = Sl, T2 = T1 X {O, I},
Fz = {(s, (t, x)) I «s, t), x) E F1 X {O, III U {«t, x), s) I «t, s), x) E F1 X {O, l}}, h2 = h1 and
L2 = {«t, 1), L(t)) It E Td U {«t, 0), r) It E Td.

It is straightforward to show that from a delay simulation between WF processes P and Q can
be constructed a delay simulation between <I>(P) and <I>(Q). SO the <I> operator is a congruence
W.r. t. equivalence.

Lemma 1 Let P, Q be WF processes. P is a reduction oj Q iff there exists a delay simulation
between P and <I>(Q).

20

Proof: If M ~ M' in Q, then also M ~ M' in <I> (Q), but also M ~ M' in <I>(Q) whenever
M ----"-+ M' in Q. The rest follows from the definition of reduction.

This lemma entails that the reduction relation is transitive and thus a preorder on WF processes.

Before giving the reduction and extension rules, we give an auxiliary definition.

Definition 4 Let t be a transition of a WF net N = (S, T, F, h). Then t -J, is defined as the
smallest set of nodes satisfying the following conditions
t E t-J"
s E S 1\ ·s n t -J,= ·s,
t E T 1\ ·t n t h~ 0.
Informally, it consists of all places that can be marked and transitions that may fire only after t
has fired.

The reduction and extension rules are now formalized as follows. Let PI and Pz be defined as
before. We give the ways to construct Pz that reduces a given PI. The inverse construction yields
extension.

i) Let t E TI such that LI (t) i= r. The skip construction sets Tz = TI, Sz = Sj, Fz = Fj,
h z = hI and Lz = LI \ let, LI(t»} U let, ,)}.

ii) Let t E TI such that U'E" s· i= it}. So if t can fire, some other transition can fire as well.
The block construction sets Tz = TI \ t -J" Sz = SI \ t -J" Fz = FI n (t -J, x t -J,), hz = hI
and Lz = LI n Tz x A. The condition is necessary and sufficient to ensure that Pz is a WF
net.

iii) Let s if SI and choose T', Til cT. The addplace construction sets Tz = TI, Sz = SI U {s},
Fz = FI U {(s, t) I t E T'} U let, s) I t E Til}, hz = hI and Lz = LI , provided that Nz is a
WFnet.

The following theorem states the soundness and completeness of the reduction and extension
rules.

Theorem 2 Let P, Q be WF processes. Then P is a reduction of Q iff Q can be transformed into
P by the reduction and equivalence rules.

Proof: The "only if' part (soundness) is again straightforward by establishing a reduction re­
lation in every case. For instance suppose P is obtained from Q by the addplace construction.
Every state of P corresponds to a state of Q by leaving out the added place marking. This rela­
tion between states is in fact a strong simulation, since every event possible in P is also possible
in Q, leading again to related states.

The "if' part (completeness) is established as follows. Suppose a reduction relation R exists be­
tween P and Q. First transform Q into a process Qd with twice as many transitions, by duplicat­
ing every transition, and connecting each duplicate to the same pre- and postset and giving it the
same label as its original. These nets are equivalent by the addrtrans rule. Next, each duplicate

21

transition is labeled r instead. The resulting net Qt is a reduction of Qd by the skip rule. Note that
Qt equals Phi (Qt). The relation R between the states of P and Q now becomes a delay simula­
tion between P and Qt. Apply the interleave construction to both P and Qt. We have S-systems
P; and Q; with a delay simulation between their states. Mark the transitions of Q; that lead to
a place that is not related to a place of P;, and apply the block construction to those transitions,
leading to a process Qb. The relation between the places of P; and Qb is now total, so it is a delay
bisimulation. Hence Qb can be transformed into P; by the equivalence rules.

22

Computing Science Reports

In this series appeared:
93/01

93/02

93/03

93/04

93/05

93/06

93/07

93/08

93/09

93/10

93/11

93/12

93113

93/14

93115

93/16

93/17

93118

93/19

93/20

93/21

93122

93/23

93/24

93125

93/26

93127

93/28

93/29

93/30

R. van GeJdrop

T. Verhoeff

T. Verhoeff

E.H.L. Aarts
I.H.M. Korst
P.I. Zwietering

I.C.M. Baeten
C. Verhoef

J.P. Veltkamp

P.O. Moerland

J. Verhoosel

K.M. van Hee

K.M. van Hee

K.M. van Hee

K.M. van Hee

K.M. van Hee

I,C.M. Baeten
lA. Bergstra

I.C.M. Baeten
lA. Bergstra
R.N. Bol

H. Schepers
1. Haoman

D. Alstein
P. van der Stok

C. Verhoef

G-I. Houben

F.S. de Boer

M. Codish
D. Dams
G. File
M. Bruynooghe

E. Poll

E. de Kogel

E. Poll and Paula Severi

H. Schepers and R. Gerth

W.M.P. van der Aalst

T. Kloks and D. Kratsch

F. Kamareddine and
R. Nederpelt

R. Post and P. De Bra

J. Deogun
T. Kloks
D. Kratsch
H. Miiller

Department of Mathematics and Computing Science
Eindhoven University of Technology

Deriving the Aho-Corasick algorithms: a case study into the synergy of programming
methods, p. 36.

A continuous version of the Prisoner's Dilemma, p. 17

Quicksort for linked lists, p. 8.

Detenninistic and randomized local search, p. 78.

A congruence theorem for structured operational
semantics with predicates, p. 18.

On the unavoidability of metastable behaviour, p. 29

Exercises in Multiprogramming, p. 97

A Formal Deterministic Scheduling Model for Hard Real-Time Executions in DEDOS, p.
32.

Systems Engineering: a Formal Approach
Part I: System Concepts, p. 72.

Systems Engineering: a Formal Approach
Part lI: Frameworks, p. 44.

Systems Engineering: a Formal Approach
Part III: Modeling Methods, p. 101.

Systems Engineering: a Formal Approach
Part IV: AnaJysis Methods, p. 63.

Systems Engineering: a Formal Approach Part V: Specification Language, p. 89.

On Sequential Composition, Action Prefixes and
Process Prefix, p. 21.

A Real-Time Process Logic, p. 31.

A Trace-Based Compositional Proof Theory for
Fault Tolerant Distributed Systems, p. 27

Hard Real-Time Reliable Multicast in the DEDOS system,
p.19.

A congruence theorem for structured operational
semantics with predicates and negative premises, p. 22.

The Design of an Online Help Facility for ExSpect, p.21.

A Process Algebra of Concurrent Constraint Programming, p. 15.

Freeness Analysis for Logic Programs - And Correctness, p. 24

A Typechecker for Bijective Pure Type Systems, p. 28.

Relational Algebra and Equational Proofs, p. 23.

Pure Type Systems with Definitions, p. 38.

A Compositional Proof Theory for Fault Tolerant Real-Time Distributed Systems, p. 31.

Multi-dimensional Petri nets, p. 25.

Finding all minimal separators of a graph, p. II.

A Semantics for a fine A-calculus with de Bruijn indices,
p.49.

GOLD, a Graph Oriented Language for Databases, p. 42.

On Vertex Ranking for Permutation and Other Graphs,
p. II.

93/31

93/32

93/33

93/34

93/35

93/36

93/37

93/38

93/39

93/40

93/41

93/42

93/43

93/44

93/45

93/46

93/47

93/48

94/01

94/02

94103

94/04

94/05

94/06

94/07

94/08

94109

W. Korver

H. ten Eikelder and
H. van Geldrop

L. Layens and J. Moonen

J.C.M. Baeten and
lA. Bergstra

W. Ferrer and
P. Severi

J.C.M. Baeten and
J.A. Bergstra

J. Brunekreef
J-P. Katoen
R. Koymans
S. Mauw

C. Verhoef

W.P.M. Nuijten
E.H.L. Aarts
D.A.A. van Erp Taalrnan Kip
KM. van Hee

P.D.V. van der Stok
M,M.M.P.I. Claessen
D. Alstein

A. Bijlsma

P.M.P. Rambags

B,W. Watson

B.W. Watson

EJ. Luit
I.M.M. Martin

T. Kloks
D. Kratsch
1. Spinrad

W. v.d. Aalst
P. De Bra
G,1. Hauben
Y. Kornatzky

R.Gerth

P. America
M. van der Kammen
R.P. NederpeJt
O.S. van Roosmalen
H.C.M. de Swart

F. Kamareddine
R.P. Nederpelt

L.B. Hartman
K.M. van Hee

I.C,M. Baeten
1.A. Bergstra

P. Zhou
1. Hooman

T. Basten
T. Kunz
1. Black
M. Coffin
D. Taylor

K.R. Apt
R. Bol

O.S. van Roosmalen

I.C.M. Baeten
1.A. Bergstra

Derivation of delay insensitive and speed independent CMOS circuits, using directed
commands and production rule sets, p. 40.

On the Correctness of some Algorithms to generate Finite
Automata for Regular Expressions. p. 17.

ILIAS. a sequential language for parallel matrix computations, p. 20.

Real Time Process Algebra with Infinitesimals, p.39.

Abstract Reduction and Topology, p. 28.

Non Interleaving Process Algebra, p. 17.

Design and Analysis of
Dynamic Leader Election Protocols
in Broadcast Networks. p. 73.

A general conservative extension theorem in process algebra. p. 17.

Job Shop Scheduling by Constraint Satisfaction, p. 22.

A Hierarchical Membership Protocol for Synchronous
Distributed Systems, p. 43.

Temporal operators viewed as predicate transfonners, p. 11.

Automatic Verification of Regular Protocols in prr Nets, p. 23.

A taxomomy of finite automata construction algorithms, p. 87.

A taxonomy of finite automata minimization algorithms, p. 23.

A precise clock synchronization protocol,p.

Treewidth and Patwidth of Cocomparability graphs of
Bounded Dimension, p. 14.

Browsing Semantics in the "Tower" Model, p. 19.

Verifying Sequentially Consistent Memory using Interface
Refinement. p. 20.

The object-oriented paradigm, p. 28.

Canonical typing and IT-conversion, p. 51.

Application of Marcov Decision Processe to Search
Problems, p. 21.

Graph Isomorphism Models for Non Interleaving Process
Algebra, p. 18.

Fonnal Specification and Compositional Verification of
an Atomic Broadcast Protocol, p. 22.

Time and the Order of Abstract Events in Distributed
Computations, p. 29.

Logic Programming and Negation: A Survey, p. 62.

A Hierarchical Diagrammatic Representation of Class Structure. p. 22.

Process Algebra with Partial Choice, p. 16.

94/10

94/11

94/12

94113

94/14

94/15

94/16

94117

94/18

94/19

94120

94121

94122

94/23

94/24

94/25

94/26

94/27

94/28

94/29

94/30

94/31

94/32

94/33

94/34

94/35

94/36

94/37

94/38

94/39

T. verhoeff

1. Peleska
C. Huizing
C. Petersohn

T. KIoks
D. Kratsch
H. Miiller

R. Seljee

W. Peremans

RJ.M. Vaessens
E.H.L. Aarts
J.K. Lenstra

R.C. Backhouse
H. Doornbos

S. Mauw
M.A. Reniers

F. Kamareddine
R. NederpeJt

B.W. Watson

R. Bloo
F. Kamareddine
R. Nederpelt

B.W. Watson

B.W. Watson

S. Mauw and M.A. Reniers

D. Dams
O. Grumberg
R. Gerth

T. Kloks

R.R. Hoogerwoord

S. Mauw and H. Mulder

C.W.A.M. van Overveld
M. Verhoeven

J. Haoman

I.C.M. Baeten
I.A. Bergstra
Gh. ~tefanescu

B.W. Watson
RE. Watson

1.1. Vereijken

T.Laan

R. Bloo
F. Kamareddine
R. Nederpelt

I.C.M. Baeten
S. Mauw

F. Kamareddine
R. Nederpelt

T. Basten
R.801
M. Voorhoeve

A. Bijlsma
C.S. Scholten

A. Blokhuis
T. Kloks

The testing Paradigm Applied to Network Structure. p. 31.

A Comparison of Ward & Mellor's Transfonnation
Schema with State- & Activitycharts, p. 30.

Dominoes, p. 14.

A New Method for Integrity Constraint checking in Deductive Databases, p. 34.

Ups and Downs of Type Theory, p. 9.

Job Shop Scheduling by Local Search, p. 21.

Mathematical Induction Made Calculational, p. 36.

An Algebraic Semantics of Basic Message
Sequence Charts, p. 9.

Refining Reduction in the Lambda Calculus, p. 15.

The perfonnance of single-keyword and multiple-keyword pattern matching algorithms, p.
46.

Beyond ,B-Reduction in Church's A.~, p. 22.

An introduction to the Fire engine: A C++ toolkit for Finite automata and Regular Ex­
pressions.

The design and implementation of the FIRE engine:
A C++ toolkit for Finite automata and regular Expressions.

An algebraic semantics of Message Sequence Charts, p. 43.

Abstract Interpretation of Reactive Systems:
Abstractions Preserving V'CTL*, 3CTL* and CTL*, p. 28.

K1J-free and W4-free graphs, p. 10.

On the foundations of functional programming: a programmer's point of view, p. 54.

Regularity of BPA-Systems is Decidable, p. 14.

Stars or Stripes: a comparative study of finite and
transfinite techniques for surface modelling, p. 20.

Correctness of Real Time Systems by Construction, p. 22.

Process Algebra with Feedback, p. 22.

A Boyer-Moore type algorithm for regular expression
pattern matching, p. 22.

Fischer's Protocol in Timed Process Algebra, p. 38.

A fonnalization of the Ramified Type Theory, pAO.

The Barendregt Cube with Definitions and Generalised
Reduction, p. 37.

Delayed choice: an operator for joining Message
Sequence Charts, p. 15.

Canonical typing and IT-conversion in the Barendregt
Cube, p. 19.

Simulating and Analyzing Railway Interlockings in
ExSpect, p. 30.

Point-free substitution, p. 10.

On the equivalence covering number of splitgraphs, p. 4.

94/40 D. Alstein

94/41 T. Kloks
D. Kratsch

94/42 I. Engelfriet
1.1. Vereijken

94143 R.C. Bad,house
M. Bijsterveld

94144 E. Brinksma J. Davies
R. Gerth S. Grnf
W. Janssen B. Jonsson
S. Katz G.Lowe
M. Poel A. Pnueli
C. Rump J. Zwiers

94145 G.J. Houben

94146 R. Bloo
F. Kamareddine
R. Nederpelt

94147 R. Bloo
F. Kamareddine
R. NederpeJt

94/48 Mathematics of Program
Construction Group

94/49 I.CM. Baeten
1.A. Bergstra

94/50 H. Geuvers

94/51 T. Kloks
D. Kratsch
H. Milller

94/52 W. Penczek
R. Kuiper

94/53 R. Gerth
R. Kuiper
D. Peled
W. Penczek

95/01 1.1. Lukkien

95/02 M. Bezem
R. Bol
J.F. Groote

95/03 I.CM. Baeten
C. Verhoef

95/04 J. Hidders

95/05 P. Severi

95/06 T.W.M. Vossen
M.G.A. Verhoeven
H.M.M. ten Eikelder
E.H.L. Aarts

95/07 G.A.M. de 8ruyn
o.S. van Roosmalen

95/08 R. Bloo

95/09 J.C.M. Baeten
lA. Bergstra

95/10 R.C. Backhouse
R. Verhoeven
O.Weber

95/11 R. Seljee

95/12 S. Mauw and M. Reniers

Distributed Consensus and Hard Real-Time Systems, p. 34.

Computing a perfect edge without vertex elimination
ordering of a chordal ~ipartite graph, p. 6.

Concatenation of Graphs, p. 7.

Category Theory as Coherently Constructive Lattice
Theory: An Illustration, p. 35.

Verifying SequentiaJly Consistent Memory, p. 160

Tutorial voor de ExSpect-bibliotheek voor "Administratieve Logistiek", p. 43.

The A.-cube with classes of tenns modulo conversion,
p. 16.

On II-conversion in Type Theory, p. 12.

Fixed-Point Calculus, p. II.

Process Algebra with Propositional Signals. p. 25.

A short and flexible proof of Strong Normalazation
for the Calculus of Constructions, p. 27.

Listing simplicial vertices and recognizing
diamond-free graphs. p. 4.

Traces and Logic, p. 81

A Partial Order Approach to
Branching Time Logic Model Checking, p. 20.

The Construction of a small CommunicationLibrary, p.16.

FormaJizing Process Algebraic Verifications in the Calculus
of Constructions, pA9.

Concrete process algebra, p. 134.

An Isotopic Invariant for Planar Drawings of Connected Planar Graphs, p. 9.

A Type Inference Algorithm for Pure Type Systems, p.20.

A Quantitative AnaJysis of Iterated LocaJ Search, p.23.

Drawing Execution Graphs by Parsing. p. 10.

Preservation of Strong Normalisation for Explicit Substitution, p. 12.

Discrete Time Process Algebra, p. 20

Math/pad: A System for On-Line Prepararation of Mathematical
Documents, p. 15

Deductive Database Systems and integrity constraint checking, p. 36.

Empty Interworkings and Refinement

Semantics of Interworkings Revised, p. 19.

95113 B.W. Watson and G. Zwaan A taxonomy of sublinear multiple keyword pattern matching algorithms, p. 26.

95114 A. Ponse, C. Verhoef, De proceedings: ACP'95, p.
S.F.M. Vlijmen (eds.)

95/15 P. Niebert and W. Penczek On the Connection of Partial Order Logics and Partial Order Reduction Methods, p. 12.

95116 D. Dams. O. Grumberg, R. Gerth Abstract Interpretation of Reactive Systems: Preservation of CTL*, p. 27.

95117

95118

95119

95/20

95/21

95122

95/23

95124

95125

95126

95127

95/28

95/29

95/30

95/31

95/32

95/33

95/34

95/35

96/01

96102

96/03

96/04

96/05

96/06

96107

96/08

96/09

96/10

96/11

96112

96/13
96114

96115

96116

S. Mauw and E.A. van der Meulen

F. Kamareddine and T. Laan

J.C.M. Baeten and J.A. Bergstra

F. van Raamsdonk and P. Severi

A. van Deursen

B. Arnold, A. v. Deursen, M. Res

W.M.P. van der Aalst

F.PM. Dignum. W.P.M. Nuijten,
L.M.A. Janssen

L. Feijs

W.M.P. van der Aalst

P.D.V. van der Stok. 1. van der Wal

W. Fokkink, C. Verhoef

H. Jurjus

1. Hidders, C. Hoskens, J. Paredaens

P. Kelb, D. Dams and R. Gerth

W.M.P. van der Aalst

J. Engelfriet and JJ. Vereijken

J. Zwanenburg

T. Basten and M. Voorhoeve

M. Voorhoeve and T. Basten

P. de Bra and A. Aerts

W.M.P. van der Aalst

S. Mauw

T. Basten and W.M.P. v.d. Aalst

W.M.P. van der Aalst and T. Basten

M. Voorhoeve

ATM. Aerts, P.M.E. De Bra,
J.T. de Munk

F. Dignum, H. Weigand, E. Verharen

R. Bloo. H. Geuvers

T. Laan

F. Kamareddine and T. Laan

T. Borghuis
S.H.J. Bos and M.A. Reniers

M.A. Reniers and J.J. Vereijken

P. Hoogendijk and O. de Moor

Specification of tools for Message Sequence Charts. p. 36.

A Reflection on Russell's Ramified Types and Kripke's Hierarchy of Truths.
p. 14.

Discrete Time Process Algebra with Abstraction, p. IS.

On Nonnalisation, p. 33.

Axiomatizing Early and Late Input by Variable Elimination. p. 44.

An Algebraic Specification of a Language for Describing Financial Products,
p. 11.

Petri net based scheduling, p. 20.

Solving a Time Tabling Problem by Constraint Satisfaction, p. 14.

Synchronous Sequence Charts In Action, p. 36.

A Class of Petri nets for modeling and analyzing business processes, p. 24.

Proceedings of the Real-Time Database Workshop. p. 106.

A Conservative Look at tenn Deduction Systems with Variable Binding, p. 29.

On Nesting of a Nonmonotonic Conditional, p. 14

The Fonnal Model of a Pattern Browsing Technique, p.24.

Practical Symbolic Model Checking of the full Wcalculus using Compositional
Abstractions, p. 17.

Handboek sirnulatie, p. 51.

Context-Free Graph Granunars and Concatenation of Graphs, p. 35.

Record concatenation with intersection types, p. 46.

An algebraic semantics for hierarchical PfT Nets, p. 32.

Process Algebra with Autonomous Actions, p. 12.

Multi-User Publishing in the Web: DreSS, A Document Repository Service
Station. p. 12

Parallel Computation of Reachable Dead States in a Free-choice Petri Net, p. 26.

Example specifications in phi-SDL

A Process-Algebraic Approach to Life-Cycle Inheritance
Inheritance = Encapsulation + Abstraction, p. 15.

Life-Cycle Inheritance A Petri-Net-Based Approach, p. 18.

Structural Petri Net Equivalence, p. 16.

OODB Support for WWW Applications: Disclosing the internal structure of
Hyperdocuments, p. 14.

A Fonna1 Specification of Deadlines using Dynamic Deontic Logic, p. 18.

Explicit Substitution: on the Edge of Strong Normalisation, p. 13.

AUTOMATH and Pure Type Systems. p. 30.

A Correspondence between Nuprl and the Ramified Theory of Types. p. 12.

Priorean Tense Logics in Modal Pure Type Systems, p. 61
The /2 C-bus in Discrete-Time Process Algebra, p. 25.

Completeness in Discrete-Time Process Algebra, p. 139.

What is a data type? p. 29.

96117

96/18

96/19

96120

96/21

96/22

96/23

E. Boiten and P. Hoogendijk

P.D.V. van def Stok

M.A. Reniers

L. Feijs

L. Bijlsma and R. Nederpelt

M.C.A. van de Graaf and GJ. Hauben

W.M.P. van def Aalst

Nested collections and polytypism, p. II.

Real-Time Distributed Concurrency Control Algorithms with mixed time con­
straints. p. 71.

Static Semantics of Message Sequence Charts, p. 71

Algebraic Specification and Simulation of Lazy Functional Programs in a concur­
rent Environment, p. 27.

Predicate calculus: concepts and misconceptions, p. 26.

Designing Effective Workflow Management Processes, p. 22.

Structural Characterizations of sound workflow nets, p. 22.

	Abstract
	1. Introduction
	2. Process Model
	2.1 Notations and Conventions
	2.2 Petri Nets
	2.3 Workflow Processes
	3. Process Equivalence and Reduction Relations
	4. Equivalence, Reduction and Extension Rules
	5. Process Views
	6. Example
	7. Conclusions
	References
	Appendix

