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Abstract 

Business processes and, tberefore, workflow models are often adapted. Adaptations can 
be caused eitber by procedural changes, affecting all future cases or on an ad-hoc basis for 
individual cases. Eitber way, cases witb similar but different definitions will coexist in an 
organization. One can conserve tbe Similarity of such cases by considering tbem as exten­
sions or reductions of one and tbe same common ancestor. The extension/reduction concept 
is based on selectively blocking and skipping tasks, combined witb delay bisimilarity. Views 
can be defined and used for monitoring tbe flow of cases on a high level. An example case 
study is given, using Petri Nets as tbe modeling framework. 

Keywords: Workflow, Bisimulation, Petri Nets 

1 Introduction 

Efficiency has become the key aspect that organizations are competing in. In order to get the 
most work done with the least number of resources, computerized support is vital. Already most 
tasks have adequate support from applications, so the attention has shifted towards supporting the 
workflow (WF), i.e. the interplay of various tasks aimed at realizing an organization's goals. 

WF management (WFM) systems can be used to define tasks with the resources involved therein 
and the applications supporting them (cf. [WFM94], [Kou95], [HaL91]). These tasks are com­
bined to form processes. A process can be compared to a program, where the statements are tasks. 
Constructs from programming, like sequencing, choice and iteration all have their counterpart in 
WF process definitions. 

A process can be monitored by observing its overall state. This state is composed of cases be­
longing to the process. Each case has its individual case state, which is determined by the pos­
sible tasks it can directly undergo and the case states that will result from executing these tasks. 
Each case must have a final "completed" state. The ability to monitor the overall state of a WF 
process and thus discover resource bottlenecks and slack is a major advantage of WFM systems. 
With this information, resources can be reallocated. 

A process never terminates (in principle). New cases enter the process, undergo a series of tasks 
and leave completed. The "empty" overall state wherein no cases are being treated is unlikely to 
occur. This aspect makes it hard to maintain a WF process. An application can be recompiled 
while it is not being used. An operating system can be shut down, modified and rebooted. How­
ever, the ongoing work in the organization cannot be frozen for a process update. After a process 

I 



update, cases that were initially started by an earlier version of the process will still be present 
and need to be handled properly in spite of the update, Similar problems are encountered e.g. in 
the telecommunications industry. 

A radical solution is to define a new process while retaining the old one. New cases enter the new 
process. When the old process has reached the empty state it can be discarded. The drawback 
of such a solution is that the connection between the old and new process is lost, and that they 
must be monitored separately. Also, the old cases will not benefit from possible improvements in 
the new process. A similar problem occurs for cases derived from a standard process by minor 
ad-hoc modifications. 

In this paper we indicate how similar processes can be treated and viewed as instances of one 
and the same common extension. Cases disregard "new" tasks, either by skipping (moving to the 
successor state immediately) or blocking (not executing them at all). The advantage of such an 
approach is that the overall state of a process and its modifications can be monitored together. 

Monitoring the overall state of a complex process will still be cumbersome. An answer to this 
problem lies in the definition of views. By renaming and abstraction of tasks, the complexity of 
a process can be considerably reduced, concentrating on the essential features in its overall state. 
The underlying concept behind the extension, reduction and simplification of processes and their 
views is delay bisimilarity (cf. [Gla93], [Weij89]). 

In this paper we restrict ourselves to the process part of WFM. The resource part and the schedul­
ing problems involved there are at least of equal importance. However we believe that the resource 
part also benefits from a better understanding of the process part. 

2 Process Model 

. For the modeling of a process we use the Petri net formalism [Rei8S], more specifically free choice 
nets [DeE9S]. Petri nets are a good formalism to base WPM tools upon (cf. [EIN93], [AHH94] 
and [Aal96]). On the one hand, Petri nets are graphical and easy to use. On the other hand, Petri 
nets do have a formal semantics and analysis methods are abundant. In the remainder of this paper, 
we assume a basic knowledge of Petri nets. 

2.1 Notations and Conventions 

We assume the usual facts and notations about sets and functions. The product A x B of two sets 
A, B is the set of ordered pairs {(a, b) I a E A /\ b E B). A relation between A and B is a subset 
of Ax B. This can be generalized to three or more sets, giving sets of ordered triples, ternary 
relations, and so on. 

We introduce bags to formalize the states of Petri nets. The set INA of bags over a given set A is 
the set of functions with domain A and range IN. If A is finite, say A = {a, b, c) the elements 
of INA are denoted by superscripting the domain element with the value, e.g. a 1b2cO If this does 
not lead to confusion, 1 superscripts and domain elements with 0 superscripts may be omitted, so 
the above bag can also be denoted as ab2

• To each subset S of A corresponds a bag bag(S) in INA 
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satisfying bag(S)(a) = I if a E Sand bag(S)(a) = 0 if artS. Equality on bags is defined as 
follows: two bags are equal iff they have the same domain and the bag values are the same on that 
domain. When introducing Petri nets, a net's state will correspond to a bag which has a domain 
consisting of the places of the net. 

Let B E INA and S <; A. Then B + S is the bag B' defined by B'(a) = B(a) if artS and 
B'(a) = B(a) + I if a E S. We write S S B if there exists aB' E INA such thatB' + S = B;if 
so, this (unique) B' is denoted by B ~ S. 

2.2 Petri Nets 

A Petri net N is a triple (S, T, F), where Sand T are finite disjoint sets (of places and transitions 
respectively) and F <; (S x T) U (T x S) the flow relation. The elements of S U T are called 
nodes of N. Given a node x of N, the preset • x of x is the set {y I (y, x) E Fl and the postset 
x· of x is the set {y I (x, y) E Fl. A path between nodes x, y of N is a sequence of nodes 
x = Xl, ... ,Xn = Y of N such that x; E ·x;+! for all lsi < n. A path between x and x 
may consist of the singleton sequence. The length of such a path is the number of elements in the 
sequence minus one. 

The Petri net N is a free choice net (FC net) iff the presets of transitions are either disjoint or 
coincide. So for any t, u E T, ·t = ·u or ·t n ·u = 0. An S-system is a net for which every 
transition has one input and one output place. S-systems are FC nets. 

A marking of N is a bag M E INs. A transition t E T is enabled by M iff·t s M. The enabling 
relation between markings and transitions is denoted by M [t) . A transition t enabled by M can 
fire, leading to a successor marking M' given by M' = (M ~ .t) + t·. This ternary relation 
between markings and transitions is denoted by M [t) M'. A marking M' is reachable from M 
(notation M [*) M') iff either M' = M or there existtl, ... , tn E T and MJ, ... , Mn E INs such 
that M ltd Ml [t2) ... [In) Mn and Mn = M'. 

M is called live iff for every M' with M [*) M' and every t E T there exists a marking Mil with 
M' [ *) Mil [t). M is called bounded iff the set {M' I M [ *) M'l is finite. M is called a home 
marking itf for every M' with M [*) M' one has M' [*) M. There exist efficient algorithms for 
deciding these properties for FC nets (see [DeE95]). 

We now introduce labeled Petri nets presupposing a set A of labels. Now a labeled Petri net is 
a pair (N, L), where N = (S, T, F) is a Petri net and L is a function with domain T and range 
AU {T}, where T rt A is a special "silent" label. Let M, M' be states of a labeled net (N, L). If 
M [t) M' in Nand L(t) = a, we write M ~ M'. The ternary _ --=-+ _ relation between states 
and tasks is called the successor relation. 

Nets are drawn as bipartite directed graphs, with box-like transitions and circular places as nodes. 
The flow relation is depicted by arrows. Labeled nets are depicted by inscribing the label inside 
the transitions. The label T may be omitted. 
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2.3 Workflow Processes 

WF processes can be easily modeled by Petri nets. Tasks are assigned to transitions and case states 
correspond to markings. The execution of a task, leading to a successor state, corresponds to the 
firing of a transition. An example WF process is given in Figure 1. 

, rej : 
,J',h r u : 
", ~:- - --- - - - -- - - - - - - - - - - - - - - -- ---- - -- ---- --- - -- ---- ----- -- - - - - - - - - - - - - - ------- - ----

Figure 1: Claim handling net 

The task labels are inscribed in the transitions. The transitions without label can fire without any 
task being executed. The remaining labels have no formal meaning and are added for clarity only. 
We describe the process associated to this net. Initially, a case is in the state hi. The place h is 
drawn dashed for reasons indicated below, A new claim for car damage insurance can be started 
by the claim reception (rei) task. After receiving the claim, the process forks and two tasks can 
be executed independently, contacting the garage (cgar) and checking the insurance policy (chin). 
After completion of both tasks, a join action takes place, after which a decision can be made either 
to pay the damage (pay) or reject the claim (re}). Either way, the claim is filed (file) and the case 
is closed. 

Every WF process must have a "home" place h, corresponding to an initial or final case state. 
Instead of drawing it and its connected edges (dashed in the figure), the transitions with h in their 
preset or postset are barred at the left-hand, respectively right-hand side. These are the initial tasks 
(receiving a call, letter or order form) and final tasks (e.g. filing) respectively. 

It is not the case that cases, once finished, reenter the net. In fact, the "home" place construction 
has been given for technical reasons. The essential feature to consider here is that there are initial 
and final tasks. 

For the sake of clarity, large nets can be divided into subnets. Subnets are depicted with rounded 
comers and their labels have a different font (subnetlabels do not refer to tasks). Figure 2 indicates 
a possible division of our earlier net into subnets. 

...... '."""""""'" ,,,,,,,,,, .. ,,,,, .. , .. ,,,,," """''''''''''',,', ..... '> ... " ....... . 

Figure 2: Claim handling net subdivision 

We now define WF processes formally as a subclass of labeled Petri nets. The set A of labels 
represents the set of tasks to be executed. A WF process P is a labeled Petri net (N, L), where 
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N = (S, T, F) is an FC net. The transitions t with L(t) = , are transitions without task. The 
net N must have a special "home" place h E S, and the marking hI must be a live and bounded 
home marking. The net component N from a WF process (N, L) is called a WF net. When no 
confusion is possible, "net" and "process" are used as synonyms. The markings reachable from hI 
are called states of P. By the conditions imposed on N, the states of P are safe, i.e. each place can 
contain at most one token. So the states of P can be described by sets instead of bags. Let M, MI 
be states of P. If M = MI or M [tl) MI .. ' [tn) MI for certain states Mj, ... , Mn_1 different from 
hI, we write M --"-* MI. A transition t with L(t) = ,is called silent. These transitions should be 
used for synchronization purposes only. If M ~ MI, the task a may be executed in the state M 
and its execution leads to the state MI. If M ~ MI, the state MI may evolve autonomously (i.e. 
without any task being executed) from M. 
The relation M --"-* M' signifies that M can evolve into MI without passing through the state hI. It 
is the reachability relation in a net that is derived from N by splitting h into an initial and terminal 
place. 

A WF process can be modeled directly or indirectly by transforming a CCS [Mi189j or ACP [Ba V95j 
term into a net. The transformation rules are indicated e.g. in [GIV87]. The ACP term correspond­
ing to the net in Figure 1 is rei. r.(chinll cgar).r.(pay + rej).file. This approach may be preferred 
by modelers having a background in (concurrent) programming. 

One must bear in mind that the above way of modeling WF processes abstracts from several im­
portant aspects. The first such aspect is the existence of case variables. A case usually possesses 
variables that are both set and accessed by the tasks being executed. These variables may influ­
ence the WF process itself, disabling certain tasks within the process being modeled. A second 
aspect is the attribution of tasks to resources. This aspect could prevent execution of certain tasks 
in a certain state, because they lack the necessary resources. Taking either aspect into account 
can easily lead to a net that lacks the FC property. However, it is our belief that one should re­
frain from modeling the workflow at a too detailed level initially. So these aspects are not taken 
into account, which makes it acceptable to require the WF nets to be FC nets. 

3 Process Equivalence and Reduction Relations 

Different labeled nets may represent one and the same flow of work. For example the nets P, Q 
and R in Figure 3 all three consist of an initial task a followed by a final task b. In order to make 
this observation tangible, an equivalence relation is established between WF processes. 

p II a f--O--j b II Q Iia 0 b II 

R 

Figure 3: Different nets representing the same process 

There exist many equivalence relations that can be considered for this purpose (c.f. [Gla93]). 
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Here, we have chosen delay bisimilarity, which has the advantage of a rather simple definition, 
whereas some essential distinctions between processes (like the difference between internal and 
external choice described below) are preserved. 

Figure 4: Equivalent claim handling net 

The net in Figure 4 is delay bisimilar to our claim handling net. This is because to every case state 
of the one net corresponds a case state of the other allowing the same tasks, possibly after firing 
some silent transitions. Executing corresponding tasks in corresponding states of either net again 
leads to corresponding states. The states and the successor relation for the nets in Fig I and Fig 4 
respectively are given in Figure 5. The correspondence between states is given by dotted lines. 
Note that the h states of both processes do correspond. 

qu 
chin cgar pay 

h reI P q~ \ ~u v ~ h 

~' \'t I r~ :'t:~ 
" .. egar , chI';' " reJ' ,',' " , " ....., 

.. .. : ,: : " "I' " ... ...: f: ::' // ! 
.. ..:: " :: " : " 

• • I " I, " • 

.... \chini: cgal: /pay !/fil / 
'.rcl":,b I ',Ie,. 

~
' .:\ e: 

h a ~ • h 
cgar ' f file 

c 

Figure 5: A delay bisimulation between processes 

We call two WF processes equivalent iff such a relation can be constructed between their states. 
The relation is called a delay bisimulation (cf. [Gla93], [Weij89]). In the appendix the formal 
definition can be found. When considering the processes in Figure I and 4 equivalent, it is tacitly 
assumed that only one task can be executed at a time for a certain case. 

An aspect that deserves attention in process equivalence is the treatment of silent transitions. 

Figure 6: Choices with silent transitions 
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In Figure 6, four alternatives are given that involve a choice between tasks a and b. In all cases, 
the dashed arrows are connected in one and the same way to some environment net. Of these four 
alternatives, only the two in the right half are equivalent. The net in the top left quarter can evolve 
autonomously from the state p (where the a and b tasks are both still possible) to either the state 
q or r (where only a or only b is possible). A nondeterministic or internal choice has been made 
before any a or b task is executed. In the net in the bottom left quarter, the state s (allowing both 
tasks) can evolve autonomously into t (allowing only a). 

In the nets in the right half, the choice between a and b is retained until either of them is started. 
This can be regarded as a deterministic or external choice. States that are related by a delay bisim­
ulation essentially possess the same options for continuation. 

WF processes are often adapted e.g. by adding extra tasks. We shall define a relation between 
processes that embodies a structured way of adaptation. Informally, a WF process can be reduced 
by retaining its net and adding variables and instructions to skip (or hide) certain transitions and 
block (forbid) others. Here "skipping a transition" means firing it without executing the associated 
task (thus autonomously moving to its successor state), while "blocking a transition" means not 
firing it (at all or unless a certain event has taken place). Typically, blocking will occur in a choice 
context and skipping in a sequential context. 

) pay ~ file II 
II rel ~ chin K)-1 cgar ~.----n 

' . I rej II 

Figure 7: Reduction of claim handling 

In Figure 7 a reduction of the WF process in Figure 1 is depicted. In the reduced net, the cgar task 
is blocked until chin has been executed. Furthermore, the file task is skipped in case of a rejection. 
This 'example indicates that the skipping and blocking of tasks may be conditional; it may depend 
on the history of a case whether certain tasks are skipped and/or blocked. Extension is the inverse 
of reduction; P is an extension of Q iff Q is a reduction of P. 

We formally define the concept of reduction. Let PI, P2 be WF processes. Then PI is a reduc­
tion of P2 iff a relation R can be constructed between the states of PI and P2 with the following 
property. Let MI, M; be states of PI and M2 a state of P2 such that (M!, M2) E R. If M! ~ M; 
there must exist a state Mf of P2 such that M2 ~ M2 and (M;, M2) E R. If MI ....::.. M;, there 
must exist states M2, M~ of P2 such that M2 ~ M~ ....::.. M2. 
Figure 8 displays a reduction relation between the states of the processes in Figure 7 and 4. Re­
duction of processes is transitive: if A is a reduction of B and B a reduction of C then A is a 
reduction of C. The third relation can be obtained by composing the first two. 

A delay bisimulation is a reduction relation in both directions. So if A and B are equivalent WF 
processes, then A is a reduction of B and vice versa. The converse is not true: WF processes can 
be reductions of one another without being equivalent. 
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rej 

h \ rel chin'cgar,. pay·.file \h 

reI 
0--------0 

h ""- . 
egar 'b chin eeJ 

Figure 8: A reduction relation 

4 Equivalence, Reduction and Extension Rules 

Algorithms for establishing equivalence, reduction or extension of given WF processes are im­
portant for tools that support the definition and adaptation of workflow processes. Here we define 
rules for transforming a process into an equivalent, extended or reduced one. In this way a pro­
cess designer equipped with a graphical editor can modify his processes interactively by selecting 
parts of his model and invoking the rules he has in mind. 

We start by informally defining rules for process equivalence. A formal definition can be found 
in the appendix. Illustrative examples can be found in Figure 9. Each rule can be applied in two 
directions, forward and backward. The backward direction (from right to left) often simplifies 
a net. A description is given for one direction only. Some rules are applicable only to equiva­
lent places. An equivalence relation called place bisimulation [AuS92] exists for the places of 
a Petri net. This equivalence can be efficiently decided for any Petri net. A formal definition of 
place bisimulation can be found in the appendix. Informally, tokens in equivalent places can be 
interchanged without affecting the behavior of a net. 

interleave/factorize: By interleaving, a WF net can be transformed into an S-system. Every state 
corresponds to a place in the interleaved net and for each possible state transformation a transition 
is added. We call the inverse operation factorization. 
unfold/fold: Equivalent places can be folded into a single place. The pre- and postset of the folded 
place are the union of the pre-, respectively postsets of the folded places. The unfold transfor­
mation is allowed iff the resulting unfolded places are equivalent (which is not always the case). 
addrplace/delrplace: A place p is called redundant iff for any (reachable) state M and transition 
t with M + {p} [t) it holds that M [t) . Redundant places can be deleted at will and added if the 
free choice property is conserved. This rule is a consequence of the interleave rule that can be 
verified locally. 
addtauldeltau: A silent transition can be added between sets of places that are equivalent in the 
sense that a 1-1 correspondence can be given between the places in the preset and postset of the 
silent transition, such that corresponding places are equivalent or equal. 
addrtrans/delrtrans: If places p, q are connected via zero or more silent transitions followed by 
some transition t, a duplicate of t can be added connecting p to q. 
splittaulmertau: A place p can be split into places q, r, adding a silent transition between q and 
r. The incoming edges of p can be distributed between q and r and all outgoing edges of p must 
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a 

be attributed to r. 

~ ... c( 

-0-

inlerleave 

d factorize 

unfold 

fold 

addrplace 

delrpiace 

addtau 

deltau 

addrtrans 

delrlrans 

splittau 

mertau 

Figure 9: Equivalence rules 

Next, we define extension and reduction rules, shown in Figure 10. In contrast to the equiva­
lence rules above, the processes on the left-hand and right-hand side will be different. Note the 
phenomenon in the delplace/addplace rule that deleting a place results in extending the net. This 
follows from the fact that each place represents a condition that may impede the occurrence of an 
action. 

unskip/skip: A WF process can be extended by attributing a task to a silent transition and reduced 
by making a task transition silent. 
addsublblock: A WF process can be extended by inserting a subnet between two places and re­
duced by removing such a subnet. 
delplace/addplace: A WF process can be extended by deleting a place and reduced by adding 
one. This is a consequence of the addsub and interleave rules. 

The addsub/block and delplace/addplace rules are allowed only if the resulting process remains a 
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D 
unskip 
===== 
~ 

skip 

addsub 
===== 
~ 

block 

delplace ===== 
~ 

addplace 

0 

Figure 10: Extension (=» and reduction ( ~) rules 

WF process. The delplace/addplace rules can be considered to be generalizations of the "redun­
dant" place equivalence rules. 

Linear insertion/removal: (Lin ins/Lin rem) 

deltau 

E-Q = E---Cr--O--Q 
skip 
~ 

= 
unskip 

addtau 

Parallelization/Linearization: (ParallellLinear) 

~ce 

Parallel insertion/removal: 

~ Lin rem 
~ 

= 
Lin ins 

addplace 
~ 

= 
delplace 

Linear 
~ 

= 
Parallel 

Figure 11: Extension derivations 

Figure II shows some extension (and reduction) rules that can be derived from the above rules. 
They illustrate that the equivalence, extension and reduction rules allow for adaptations encoun­
tered in practice. The linear insertion rule indicates that a process can be extended by inserting 
a new task between two old ones. The parallelization rule shows how a sequential ordering of 
tasks can be converted into a parallel one. These two rules can be combined to yield the parallel 
insertion rule. The claim handling net in Figure I can be shown to be an extension of the one in 
Figure 7 by the addtau, parallelization, linear insertion and fold rules. 

We prove in the appendix that WF processes are equivalent iff they can be transformed into one 
another by means ofthe process equivalence rules. They are an extension/reduction of one another 
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iff they can be transfonned into one another by means of the extension/reduction and equivalence 
rules. 
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5 Process Views 

We will now treat the visualization of the combined state of a process, i.e. all cases currently being 
treated. In doing so, one must maintain a balance between accuracy and amount of information 
offered. A too accurate representation of the state (e.g. an overview of every case with its variables 
and history) cannot be visualized. Instead, such information should be stored in a database and 
queried. 

Figure 12: Combined state 

As indicated earlier, a Petri Net based WF model allows one to visualize the state. This is done by 
depicting the state (marking) of each case as a distribution of tokens in the places and superposing 
them, like in Figure 12. Note that some information is lost in the process: it looks as if the join 
transition is enabled in the superposition, whereas the examination of the individual cases shows 
this not to be the case. By adding extra information (e.g. the number of times each transition is 
enabled), some of this lost information can be retrieved without overloading the picture. 

We believe that a picture of the WF net where the number of tokens per place and the "enable 
count" per transition is added gives an adequate overview of the state, allowing an early discovery 
of bottlenecks and slack. 

An advantage for defining extension and reduction relations for WF processes is that the cases 
of all processes that are reductions of a single extension can still be viewed in combination. In 
Figure 13 this is depicted for our running example. Note that information is lost again, since cases 
can be depicted with options for continuation they lack. 

Still, monitoring a complex WF process can become a burden, especially when there exist many 
variants with ad-hoc tasks added to them. To reduce the complexity of such nets one can define 
views. A view corresponds to a function that renames certain tasks and abstracts from other tasks. 
A manager monitoring the car claim process might be interested in two groups of resources: the 
"check" and "decide" workers. By renaming the "check" tasks to chk and "decide" tasks to dec 
and removing the label of the other tasks, the top net in Figure 14 is constructed. This net can be 
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Figure 13: Combined state of process witb reduction 

simplified by tbe interleave, delrtrans and mertau rules to the bottom net, showing in one glance 
that the current workload consists of six "check" tasks (four of which are enabled) and five "de­
cide" tasks (one of which is enabled). 

Figure 14: View of the claim process state 

6 Example 

The "WWWizz" agency offers support to companies for presenting themselves on the Internet. 
The agency gives courses, develops company-specific style guidelines and develops and main­
tains web sites. Figure 15 gives the WF process (witb subnets) for clients tbat eventually want to 
maintain their own site. 

Figure 15 contains four subnets. The acquisition subnet (acq) creates cases (client) that enter tbe 
construction subnet (cons). After the construction subnet a web site has been started and guide­
lines have been prepared. The site can be iteratively maintained for a while (maint), during which 
the guidelines can be updated (gupd). The client can decide to initiate a guidelines release subnet 
(grel), resulting in a company-specific guidelines manual. After releasing tbe guidelines, the site 
itself can be released (srel), meaning that the maintenance responsibility shifts from WWWizz to 
the client. The maintenance site then becomes a support site. The support action (supp) is pos­
sible in that state until tbe termination of the support phase (file). Of course, the normal flow in 
Figure 15 can be aborted in earlier stages, but this has not been included in the figure. 
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gl 

gupd 

msite 

maint file 

Figure 15: WWWizz net 

Figure 16: WWWizz acquisition subnets 

Figure 16 gives the acquisition subnet in a standard form (at tbe top) and an extended form (bot­
tom). The start activity (start) generates prospects that enter a proposal writing subnet (wprop). 
A meeting is then arranged (arrme), where the proposal is discussed with the prospective client. 
The outcome of tbis discussion can be either acceptance (accept), rejection (reject) or a request 
to modify the proposal (mreq). This modification then takes place in a subnet (modij). 

In the extended net, tbe proposal is accompanied by a prototype, consisting of a few web pages 
containing material specific to the prospect, which is prepared in the mprot subnet. The WWWizz 
marketing people have found out tbat this approach gives a higher success rate, justifying tbe extra 
costs. Prototypes are not modified. The new net is an extension by parallel insertion. 

In Figure 17, the proposal subnet is depicted at the top. A session with tbe user is held to deter­
mine his requirements, which are then documented (ureq). From this document, tbe infrastructure 
requirements (hardware and software) are extracted (isreq). In parallel, the available infrastruc­
ture at tbe client's site is assessed (avis). From tbese data, the costs of creating and maintaining 
the required web site are computed (ccost). 
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Figure 17: WWWizz proposal subnets 
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ccost ~ 

The bottom net is a modification that has been made for a prospect that has no budget for new 
infrastructure. So first his available infrastructure is determined and his requirements then have 
to fit to what is available. This is a reduction by linearization and linear removal. 

client ....-"' __ --' 

o '-..r-----, 

bel 

gl 

msite 

Figure 18: WWWizzconstruction subnets 

gl 

msite 

In Figure 18, the construction subnet is depicted. At the top is the old situation. First, provisional 
guidelines are prepared (ppg/), after which web pages are produced and the guidelines updated if 
necessary (ppag). At the bottom, an extension of this net is depicted. The preparation of guide­
lines is a substantial amount of independent work. The WWWizz employees that are capable of 
doing this work have become a bottleneck resource. So the possibility has been added to out­
source this activity to free-lancers or advertising agencies. First, for every client a make-or-buy 
decision is introduced. The "make" clients then follow the old path. For the "buy" clients, a new 
subnet (bg/) is entered. It can be verified that the bottom net is an extension of the top one by 
applying the addsub and linear insertion rules. 

prospect pel 

9 '-.......r Clien:) make ~ rdy II 
'I accept 1--0~ 

lr--bu-y "II 

Figure 19: WWWizzprovisional guidelines preparation view 
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In Figure 19, an overall state view is depicted for the manager of the provisional guidelines em­
ployees. He is largely responsible for the make-or-buy decision. He must be able to monitor the 
work that his people are busy with and to estimate the amount of work needed in the near future. 
His view abstracts from all tasks but the ones depicted in the figure. The reduction is then obtained 
by invoking the fold, delrtrans and mertau rules. 

In the state depicted, his people are busy with eight guidelines. Five clients await the make-or-buy 
decision and nine prospects are negotiated with. Of course, it would be better to add more detail 
to the ppgl activity, to see how near these eight guidelines are to completion. Also the 'enable 
count' of each transition can be added. 

7 Conclusions 

The present paper gives several notions regarding workflow processes. Process equivalence can 
be used to modify processes (making them simpler or clearer) while retaining the behavior that is 
being modeled. Process extension (reduction) embodies the idea of adding (deleting) options. It 
is possible to define the "least common extension" and "greatest common reduction" of a set of 
processes derived from a single generic process. 

To further elaborate the value of process extension and reduction in practice, we consider adaptive, 
ad-hoc changes and structural, permanent ones. For the adaptive changes, one may imagine the 
situation where an organization has several template processes that serve as a starting point for the 
derivation of many actual processes. Every time a new case enters the organization, a template 
process is selected and modified to fit the requirements of that specific case. 

The notions of extension and reduction allow the organization to specify constraints upon the ways 
that processes are modified. The organization may e.g. fix a greatest common reduction that just 
possesses the necessary minimum actions, or, a least common extension that limits the actions 
that can be added. It can be checked that such constraints are met. 

For the structural part, we stress the fact that a case of process P in any state "fits" into some state 
of an extension Q of P. This allows structural changes to be made with impunity to a process 
while it is running and lots of cases being treated. Finally, the paper shows how processes can be 
monitored and defines views of the current work in progress. These views can be used to monitor 
cases being executed according to many variants of a common WF process. 

There is still alot of work to do in orderto allow the above concepts to have any impact in practice. 
One of the first efforts is incorporating the ideas sketched here into a workflow editing tool. 

We conclude with a few technical remarks. The underlying equivalence notion is delay bisimilar­
ity. One could also consider to adopt branching or weak bisimilarity (cf. [Gla93]), resulting in a 
slightly different set of "tau" rules. Weak bisimilarity can be obtained by adding an extra case to 
the "rtrans" rules. However branching bisimilarity requires a different approach; the rtrans rules 
must be weakened and the fold rules strengthened, requiring a new kind of place bisimulation. 
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Appendix 

In this appendix, formal definitions and proofs are added. We suppose the basic notions about sets, 
functions and relations to be known with the standard notations for them. Throughout this section, 
we suppose that PI = (NI, L I) and P2 = (N2 , L 2 ) are WF processes, where NI = (S], T], FI) 
is a WF net with home place h I. and N z = (S2, T2, F2), with home place hz. With a, b, ... we 
denote tasks and Ci is either a task or r. 

The simplest equivalence notion between WF processes is isomorphism. PI and P2 are isomor­
phic iff there exists a bijection f between their places and transitions such that hz = f(hIl and 
F2 = {(f(x), fey»~ I (x, y) E Fd· 

We start with the definition of simulation and bisimulation relations. First, an auxiliary notation 
is defined. Let P be a WF process and let M, M' be states of P. We write M ~ M' iff either 
Ci = r /\ M = M' or M ~ M' or there exists a state Mil such that M ~ Mil ~ M'. 

Definition 1 A strong simulation between PI and P2 is a relation R between the states of PI and 
those of Pz such that if (MI, Mz) E Rand MI ~ M;, there exists an M~ such that M2 ~ M~. 
A delay simulation between PI and Pz is a relation R between the states of PI and those of P2 
such that if (MI , M2) E Rand MI ~ M;, there exists an M~ such that Mz ~ M~. 

A (delay/strong) bisimulation is a (delay/strong) simulation R such that its inverse R- I is also a 
(delay)istrong simulation. 
PI and Pz are equivalent iff there exists a delay bisimulation between PI and P2 such that their 
home states are related. 

The relation composition of two (delay/strong) simulations is a (delay/strong) simulation, so equiv­
alence is indeed an equivalence relation. Note that PI and P2 may be one and the same process. 
We now formally define place bisimulation. 

Definition 2 A place bisimulation between the places of a WF process P is a symmetric and re­
flexive relation R between the places of P such that: 
1ft is a transition of P with·t = {Sl, ... , sn}, t· = {s; •... • s~} and rl • .... rn are places of P 
such that {(Sl. rl) •... . (sn. rn)} <; R 
then there exists a transition u of P with L(u) = L(t),·u = {rl •... • rn}, u· = {r; ..... r~} and 
{(s;.r;) • .... (s~. r~)} <; R. 
Places of a WF net that are related by a place bisimulation are called equivalent. 

Note that a place bisimulation within an S-system is a strong bisimulation. We now define rules 
for equivalence ofWF processes. Suppose PI given as before. The rules below tell us how to con­
struct an equivalent WF process P2. The· symbol used below always refers to PI. The interleave 
construction is the the hardest one. Interleaving a sub net of a given net leads to the well-known 
state explosion and cannot be obtained polynomially (in the size of the sUbnet). Its inverse (fac­
torization) is even harder: it is difficult to even identify subnets of a given net that can be factor­
ized. To apply interleaving, one must identify a subnet P3 of PI with certain properties. Define 
T; = {t E T3 I ·t n S3 = 0}, To = {t E T3 I t· n S3 = 0}, n = (T3 \ T;) \ To. Now P3 must 
satisfy 
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S3 c:: SI \ {hd, T3 c:: TI, F3 c:: FI, L3 = LI n h 
'Is E S3 : eS USe c:: T3 , 

'It E T; U Tb : t e c:: S3, 
'It E Tb U To : et c:: S3. 

This subnet must have the property that its closure is a WF process. The closure P3 of P3 satisfies 
83 = S3 U {hI}, t3 = T3, F3 = F3 U {(hI, t) I t E T;} U let, hI) I t E To}, L3 = L3 and h3 = hI. 

The simplest way to satisfy these requirements is to set P3 to PI with h I deleted. In this case, P3 = 

PI. Now we formulated the construction's precondition, we can define the interleave construction. 
The other constructions are local and easy to implement. Their inverses have not been treated, but 
are as simple to formulate. 

i) Let:E be the set of states of P3. We write M [t) M' iff M, M' E :E and t E T3 and the state 
transition takes place in P3. The interleave construction sets S2 = (SI \ S3) U (:E \ {hd), 
T2 = (TI \T3)U{(t, M') I hl [t) M'}, {(M, t, M') I t E T& A M [t) M'}, {(M, t) I M [t) hj}, 
F2 = {«M, t, M'), M') I (M, t, M') E T2}U{(M, (M, t, M')) I (M, t, M') E T2}, h2 = hl 
and L2(M, t, M') = LI (t). 

ii) Let r, S E SI be equivalent. The fold construction sets S2 = SI \ {r}, T2 = Tlo F2 = 

FI \ (T x {r} U{r} x T) U leu,s) I u E er}U {(s,u) I u E r e},h2 = hI andL2 = L I. 

iii) Let rl, ... , rn, SI, ... , Sn E SI with ri equivalent to Si for i = I, ... , n. Choose t rj. TI. 
The addtau construction sets S2 = Slo T2 = TI U it}, F2 = FI U {(rl, t), ... , (rn, t), 
(t, SI), ... , (t, sn)}, h2 = hI and L2 = LI U let, r)}. 

iv) Let M, M' be subsets of SI such that there exist tI, ... , tn in T such that M = el], tIe = 
et2, ... , tn-Ie = etn, tn e = M' and L(tl) = ... = L(tn-I) = rand L(tn) = 01. Choose 
t cj TI. The addrtrans construction sets S2 = Slo T2 = TI U {t}, F2 = F1 U {(s, t) I S E 

M} U {(t, s) I sEM'}, h2 = hI and L2 = LI U {(t, OI)}. 

v) Let r E SI be a redundant place of N I . The delrplace construction sets S2 = SI \ {r}, 
T2 = TI, F2 = (FI n S2 x T2) n T2 x S2, h2 = hI and L2 = L I. For WF nets, redun­
dant places can be found by computing place invariants. The place r is redundant in NI iff 
NI initialized with a single token in h satisfies an invariant of the form Irl = :EsEs,gs.lsl 
with Ip I denoting the number of tokens in a place p and the g, being nonnegative rational 
weights. For the addrplace rule, one can concoct such an invariant and then connect the 
new place r to transitions in a way to satisfy this invariant. The weights in the concocted 
invariant must be chosen with care. 

vi) Lett E TI with LI (t) = r such that all places in et have no other transitions in theirpostsets. 
So formally, 'Is E et : se = it}. Moreover, if {hd = et, then t e must be a singleton, say 
{IJ}. Choose Si,j rj. SI for i E et, jEte. The mertau construction sets T2 = TI \ it}, 
S2 = SI \ (et ute) U {Si,j liE et, jEte}, F2 = FI n (S2 x T2 U T2 x S2) U let, Si,j) I 
(t, i) E Fd U {(Si,j, u) I (j, u) E Fd, h2 = hI if hI cj et, h2 = Sh\," otherwise and 
L2 = L I· 
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We now state and prove our first main theorem. 

Theorem 1 WF processes P, Q are equivalent iff they can be tramformed (up to isomorphism) 
into one another by applying the above rules. 

Proof: The "if" part (soundness) is proved by constructing a delay bisimulation in all the cases 
above. For instance in the mertau case, the correspondence between the states of P and Q is given 
by replacing a place 0 E et of a state of P by the combination of sa,} 's and a place 0 E t e by the 
combination of Si,a 'So 

The "only if" part (completeness) is proved as follows. Suppose P and Q are equivalent WF 
processes. By applying the interleave rule, we may suppose that theirnets N and M are S-systems. 
We shall modify P by the transformation rules to arrive at a process P' that is equivalent to Q in 
such a way that there exists a delay bisimulation R' between P' and Q that is injective, i.e. no 
two places of P are related to the same place of Q. By modifying Q in the same way, we obtain a 
bijective delay bisimulation. By invoking the addrtrans and deltau rules, we then arrive at systems 
with isomorphic nets. 

Let R be the delay bisimulation between the markings (places) of Nand M. We take the transitive 
closure (R 0 R-1 )* ofthe composition of R with its inverse and write r ~ s itT (r, s) E (R 0 R-1)*. 
Since R was a delay bisimulation, we may deduce that ~ is a delay bisimulation too, so if r ~ s 
and r1 ~ p1 there exists a 0 such that p ~ 0 and Sl ~ 0 1. By applying the addrtrans rule, we 
can modify N to the effect that r1 ~ p1 iff r1 ~ pl. This means that ~ has become a strong 
bisimulation, and since N is an S-system, ~ is a place bisimulation in the modified system. 

Be repeatedly invoking the fold rule to N we arrive at the desired injective delay bisimulation. 
Thus we can arrive by successive modifications at isomorphic processes, concluding our com­
pleteness proof. 

Note that the delrplace/addrplace and mertaulsplittau constructions have not been used in the com­
pleteness proof. This indicates that these constructions are redundant within the chosen notion of 
equivalence. 

To arrive at a formalization of the extension and reduction rules, yet another auxiliary notion is 
defined. 

Definition 3 The flow completion oj a WF process is obtained by adding a silent transition with 
the same pre- and postset to every transition oj the original process. Let P1 and P2 be WF pro­
cesses as before. Then P2 is the flow completion <I>(Pd of P1 iff S2 = Sl, T2 = T1 X {O, I}, 
Fz = {(s, (t, x)) I «s, t), x) E F1 X {O, III U {«t, x), s) I «t, s), x) E F1 X {O, l}}, h2 = h1 and 
L2 = {«t, 1), L(t)) It E Td U {«t, 0), r) It E Td. 

It is straightforward to show that from a delay simulation between WF processes P and Q can 
be constructed a delay simulation between <I>(P) and <I>(Q). SO the <I> operator is a congruence 
W.r. t. equivalence. 

Lemma 1 Let P, Q be WF processes. P is a reduction oj Q iff there exists a delay simulation 
between P and <I>(Q). 
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Proof: If M ~ M' in Q, then also M ~ M' in <I> (Q), but also M ~ M' in <I>(Q) whenever 
M ----"-+ M' in Q. The rest follows from the definition of reduction. 

This lemma entails that the reduction relation is transitive and thus a preorder on WF processes. 

Before giving the reduction and extension rules, we give an auxiliary definition. 

Definition 4 Let t be a transition of a WF net N = (S, T, F, h). Then t -J, is defined as the 
smallest set of nodes satisfying the following conditions 
t E t-J" 
s E S 1\ ·s n t -J,= ·s, 
t E T 1\ ·t n t h~ 0. 
Informally, it consists of all places that can be marked and transitions that may fire only after t 
has fired. 

The reduction and extension rules are now formalized as follows. Let PI and Pz be defined as 
before. We give the ways to construct Pz that reduces a given PI. The inverse construction yields 
extension. 

i) Let t E TI such that LI (t) i= r. The skip construction sets Tz = TI, Sz = Sj, Fz = Fj, 
h z = hI and Lz = LI \ let, LI(t»} U let, ,)}. 

ii) Let t E TI such that U'E" s· i= it}. So if t can fire, some other transition can fire as well. 
The block construction sets Tz = TI \ t -J" Sz = SI \ t -J" Fz = FI n (t -J, x t -J,), hz = hI 
and Lz = LI n Tz x A. The condition is necessary and sufficient to ensure that Pz is a WF 
net. 

iii) Let s if SI and choose T', Til cT. The addplace construction sets Tz = TI, Sz = SI U {s}, 
Fz = FI U {(s, t) I t E T'} U let, s) I t E Til}, hz = hI and Lz = LI , provided that Nz is a 
WFnet. 

The following theorem states the soundness and completeness of the reduction and extension 
rules. 

Theorem 2 Let P, Q be WF processes. Then P is a reduction of Q iff Q can be transformed into 
P by the reduction and equivalence rules. 

Proof: The "only if' part (soundness) is again straightforward by establishing a reduction re­
lation in every case. For instance suppose P is obtained from Q by the addplace construction. 
Every state of P corresponds to a state of Q by leaving out the added place marking. This rela­
tion between states is in fact a strong simulation, since every event possible in P is also possible 
in Q, leading again to related states. 

The "if' part (completeness) is established as follows. Suppose a reduction relation R exists be­
tween P and Q. First transform Q into a process Qd with twice as many transitions, by duplicat­
ing every transition, and connecting each duplicate to the same pre- and postset and giving it the 
same label as its original. These nets are equivalent by the addrtrans rule. Next, each duplicate 

21 



transition is labeled r instead. The resulting net Qt is a reduction of Qd by the skip rule. Note that 
Qt equals Phi (Qt). The relation R between the states of P and Q now becomes a delay simula­
tion between P and Qt. Apply the interleave construction to both P and Qt. We have S-systems 
P; and Q; with a delay simulation between their states. Mark the transitions of Q; that lead to 
a place that is not related to a place of P;, and apply the block construction to those transitions, 
leading to a process Qb. The relation between the places of P; and Qb is now total, so it is a delay 
bisimulation. Hence Qb can be transformed into P; by the equivalence rules. 
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