
 

When do datatypes commute?

Citation for published version (APA):
Hoogendijk, P. F., & Backhouse, R. C. (1997). When do datatypes commute? (Computing science reports; Vol.
9708). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1997

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Feb. 2024

https://research.tue.nl/en/publications/8efc6908-1db6-4553-af64-7a9457a1da61


Eindhoven University of Technology 
Department of Mathematics and Computing Science 

When do datatypes commute? 

by 

P. Hoogendijk and RC. Backhouse 

ISSN 0926-4515 

All rights reserved 
editors: prof. de. R.C. Backhouse 

prof.dr. J.C.M. Baeten 

Reports are available at: 
http://www.win.tue.nllwin/cs 

Computing Science Reports 97/08 
Eindhoven, April·1997 

97/08 





When do datatypes commute? 

Paul Hoogendijk and Roland Backhouse 

Department of Mathematics and Computing Science, 

Eindhoven University of Technology, 

P.O. Box 513, 

5600 MB Eindhoven, 

The Netherlands. 

March 6, 1997 

Abstract 

Polytypic programs are programs that are parameterised by type constructors 
(like List), unlike polymorphic programs which are parameterised by types (like Int). 
In this paper we formulate precisely the polytypic programming problem of "commut
ing" two datatypes. The precise formulation involves a novel notion of higher order 
polymorphism. We demonstrate via a number of examples the relevance and interest 
of the problem, and we show that all "regular datatypes" (the sort of datatypes that 
one can define in a functional programming language) do indeed commute according 
to our specification. The framework we use is the theory of allegories, a combination 
of category theory with the point-free relation calculus. 

1 Polytypism 

The ability to abstract is vital to success in computer programming. At the macro level 
of requirements engineering the successful designer is the one able to abstract from the 
particular wishes of a few clients a general purpose prod uet that can capture a large 
market [31). At the micro level of programming the ability to write so-called "generic" 
code capturing commonly occurring patterns is vital to reusability and thus to programmer 
productivity. 

One of the most significant contributions to generic programming has been the notion of 
parametric polymorphism - first introduced by Strachey [32) and later incorporated in 
the language ML by Milner [25, 26). The use of parametric polymorphism eliminates the 
compulsion in languages like Pascal to provide irrelevant type information. For example, 
it is irrelevant to the computation of the length of a list whether the elements of the list 
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are integers, characters, or whatever. In Pascal this information must be supplied, thus 
enforcing the programmer to rewrite essentially the same code each time a length function 
is required for a new element type. 

In this paper we consider a problem that entails a higher level of parametricity than can 
normally be expressed by polymorphism. The problem is roughly stated in the title of 
the paper - "when do two datatypes commute?" - and an illustrative instance of two 
commuting dataypes is provided by the fact that a list of trees all of the same shape can 
always be transformed without loss of information to a tree of lists all of the same length. 
The paper has three goals. First, we want to show that the problem is relevant and 
interesting. Second, we want to formulate the problem precisely and concisely. Third, we 
want to use this problem as a primer to the theory of higher order polymorphism that we 
have developed. It is not the purpose of this paper to provide a technical justification for 
all results claimed in the paper. A complete technical justification is given by Hoogendijk 
[14], refining earlier work of Backhouse, Doornbos and Hoogendijk [3]. 

Our commuting datatypes problem is an instance of what has recently been dubbed "poly
typic programming" [16, 17, 23]. "Polytypic" programs distinguish themselves from poly
morphic programs in that the parameter is a datatype like "list" or "tree" -a function 
from types to types- rather than a type like "integer", "list of integer" or "tree of string" . 

The emergence of polytypism as a viable research field has occurred gradually over a 
number of years. A landmark was the formulation by Malcolm [20, 21, 22] of a theorem 
expressing when two computations could be fused into one computation. Malcolm's fusion 
theorem was polytypic in that it was parameterised by a datatype and so could be instanti
ated in a variety of ways. Malcolm exploited the -polytypic- notion of a "catamorphism" 
and introduced the "banana bracket" notation which was popularised and extended to the 
-polytypic- notions of "anamorphisms" and "hylomorphisms" by Fokkinga, Meijer and 
Paterson [24]. (Malcolm referred to "promotion" rather than "fusion", that being the 
terminology used by Bird [6] at the time in his theory of lists.) Since then the theme 
of polytypism has been explored in a variety of ways. Several authors [4, 16, 23] have 
explored polytypic generalisations of existing programming problems, Doornbos [9, 8, 10] 
has developed a polytypic theory of program termination and the recently published book 
by Bird and De Moor [5] contains a wealth of material in which parameterisation by a 
datatype plays a central role. 

Functional programmers have a well developed intuitive understanding of what it means 
for a function to be polymorphic. Being able to experiment with the notion by writing and 
executing polymorphic programs is clearly enormously beneficial to understanding. Nev
ertheless, an unequivocal formal semantics of "parametric polymorphism" is still an active 
area of research [11]. The situation with polytypism is much worse: the term is vague and 
probably understood in different ways by different authors. Moreover, experimental im
plementations of polytypism in functional programming languages are only just beginning 
to get off the ground. The emphasis at this point in time is in showing the ubiquity of 
polytypism; a drawback is the ad hoc nature of some developments. To give one simple 
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example: the "size" function for a datatype is often cited as a polytypic generalisation of 
the length of a list. But what is the appropriate notion of "size" for a tree - the number 
of nodes or, perhaps, the depth of the tree? Without a theoretical understanding of the 
notion of polytypism it is difficult to provide convincing arguments for one or the other 
choice. 

This paper contributes to the theoretical foundations of polytypism, albeit tentatively. We 
draw inspiration from Reynolds' [29] and Plotkin's [28] seminal accounts of the semantics of 
parametric polymorphism. Roughly speaking, Reynolds and Plotkin showed that any para
metrically polymorphic function satisfies a certain (di )naturality property that is derivable 
from the type of the function via so-called "logical relations". We turn this around and de
fine the notion of commuting datatypes by requiring that a certain higher-order naturality 
property be satisfied. The framework we use for formalising such properties is the theory 
of allegories [12], a combination of category theory with the point-free relation calculus. 

In the interests of greater understanding we approach the central topic of the paper slowly 
and deliberately. First we need to agree on what a datatype is. For this purpose we briefly 
summarise Hoogendijk and De Moor's [15] arguments. The next step is to present several 
illustrations of "commuting datatypes". One of these is a concrete example, concerning 
the transposition of matrices represented as lists of list, which we learnt from D.J. Lillie. 
A second is more abstract: we argue that Moggi's [27] notion of "strong" functor is an 
instance of the phenomenon "commuting datatypes". Armed with these examples we are 
able to proceed to a precise formalisation of the notion. 

2 Allegories and Datatypes 

A brief summary of this section is that our notion of a "datatype" is a "relator with 
membership" [15J and an appropriate framework for developing a theory of datatypes is 
the theory of allegories [12J. 

2.1 Parametric Polymorphism 

To motivate these choices let us begin by giving a brief summary of Reynolds' [29J account 
of parametric polymorphism. (This summary is partially borrowed from [ll J with some 
notational changes.) Suppose we have a polymorphic function f of type T IX for all types 
IX. That is, for each type A there is an instance fA of type T A. Then parametricity of the 
polymorphism means that for any relation R of type A+-B there is a relation TR of type 
TA+- TB such that (fA, fB1ETR. 

In order to make the notion of parametricity completely precise, we have to be able to 
extend each type constructor T in our chosen programming language to a function R f--) TR 
from relations to relations. Reynolds did so for function spaces and product. For product 
he extended the (binary) type constructor x to relations by defining R x S for arbitrary 
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relations R of type A!-B and S of type C!-O to be the relation of type AxC(-BxO 
satisfying 

((u,v), (x,YllERxS == (u,x)ERA(v,Y)ES . 

For function spaces, Reynolds extended the !- operator to relations as follows. For all 
relations R of type A!-B and S of type C!-O the relation R(-S is the relation of type 
(A!-C)!- (B(-O) satisfying 

(f, g)ER!-S == \f(x,-y:: (fx, gy)ER {= (x,y)ES) . 

Note that we equate a function f of type A!-B with the relation f of type A!-B satisfying 

a=fb == (a,b)Ef . 

This means that the relational composition fog of two functions is the same as their func
tional composition. That is, a=f(gc) == (a,c)Efog. It also means that the definitions of 
fxg and f!-g , for functions f and g, coincide with the usual categorical definitions of the 
product and hom functors (respectively) for the category Set. 

An example of Reynolds' parametricity property is given by function application. The 
type offunction application is (X!- (X!-13) x 13. The type constructor T is thus the function 
mapping types A and B to A!- (A(-B)xB. The extension of T to relations maps relations 
Rand S to the relation R!- (R!-S)xS. Now suppose @ is any parametrically polymorphic 
function with the same type as function application. Then Reynolds' claim is that @ 
satisfies 

(@A,C, @B,O) E R(- (R!-S)xS 

for all relations Rand S of types A(-B and C!-O, respectively. Unfolding the definitions, 
this is the property that, for all functions f and g, and all e and d, 

(f@e, g@d)ER{=\f(x,y::(fx, gY)ER {= (x,y)ES)A(e,d)ES . 

The fact that function application itself satisfies this property is in fact the basis of 
Reynolds' inductive proof of the parametricity property (for a particular language of typed 
lambda expressions). But the statement of the theorem is stronger because function appli
cation is uniquely defined by its parametricity property. To see this, instantiate R to the 
singleton set {(fe, fe)} and S to the singleton set {(e,e)}. Then, assuming @ satisfies the 
parametricity property, (f@e, f@c) E R. That is, f@e = fe. Similarly, the identity function 
is the unique function f satisfying the parametricity property (fA, fs) E R!-R for all types 
A and B and all relations R of type A(-B -the parametricity property corresponding to the 
polymorphic type, (X(-(X for all (X, of the identity function-, and the projection function 
fst is the unique function f satisfying the parametricity property (fA,B, fc,o) E R!- RxS 
for all types A, B, C and 0 and all relations Rand S of types A!-B and C!-O, respectively 
-the parametricity property corresponding to the polymorphic type, (X (- (Xx 13 for all (X 
and 13, of the fst function. 
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The import of all this is that certain functions can be specified by a parametricity prop
erty. That is, certain parametricity properties have unique solutions. Most parametricity 
properties do not have unique solutions however. For example, both the identity function 
on lists and the reverse function satisfy the parametricity property of function f, for all 
R:At-B, 

(fA, f B ) E ListRt- ListR 

Here ListR is the relation holding between two lists whenever the lists have the same length 
and corresponding elements of the two lists are related by R. 

2.2 Allegories and Relators 

2.2.1 Allegories 

As we remarked earlier, a precise formalisation of Reynolds' parametricity property requires 
extending each type constructor T to a mapping R f-j TR from relations to relations. 
The type requirement on this extension is tpat if R: At- B then TR: TA t- TB. This type 
requirement has of course exactly the same form as the type requirement on a functor and 
it has been known for a long time that datatypes are indeed functors. But just being a 
functor is probably much too weak a requirement to capture the notion of a datatype. 
Moreover, it seems to be difficult or clumsy to express non-deterministic properties in a 
strict categorical setting. An appropriate step to take, therefore, is to allegory theory [12J 
and the requirement that datatypes be "relators". 

An allegory is a category with additional structure, the additional structure capturing the 
most essential characteristics of relations. Being a category means, of course, that for 
every object A there is an identity arrow idA, and that every pair of arrows R : At- Band 
5: B t- C, with matching source and target', can be composed: RoS : At- C. Composition 
is associative and has id as a unit. 

The additional axioms are as follows. First of all, arrows of the same type are ordered by 
the partial order S;;; and composition is monotonic with respect to this order. That is, 

Secondly, for every pair of arrows R, 5 : At- B, their intersection (meet) RnS exists and 
is defined by the following universal property, for each X : At- B, 

XS;;;RI\XS;;;S X S;;; RnS . 

Finally, for each arrow R : At- B its converse RU : B t- A exists. The converse operator is 
defined by the requirements that it is its own Galois adjoint, that is, 

RU S;;; 5 == R S;;; 5 u 
, 

1 Note that we refer to the "source" and ((target" of an arrow in a category in order to avoid confusion 
with the domain and range of a relation introduced later. 
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and is contravariant with respect to conrposition, 

(R05)U = 5uoRu 
• 

All three operators of an allegory are, connected by the modular law, also known as 
Dedekind's law [30]: 

R05 n T ~ (R n T05U)05 

The standard example of an allegory is Rei, the allegory with sets as objects and relations 
as arrows. With this allegory in mind, we refer henceforth to the arrows of an allegory as 
"relations" . 

2.2.2 Relators 

Now that we have the definition of an allegory we can give the definition of a relator. 

Definition 1 (Relator) A relator is a monotonic functor that commutes with converse. 
That is, let A and B be allegories. Then the mapping F : A f- B is a relator iff, 

o 

FRo F5 = F(R05) for each R: Af- Band 5 : B f- C, 

FidA = idFA for each object A, 

FR~F5 {= R~5 foreachR:Af-Band5:Af-B, 

(FR)U = F(RU) for each R : A f- B. 

(2) 

(3) 

(4) 

(5) 

Two examples of relators have already been given. List is a unary relator, and product is a 
binary relator. List is an example of an inductively-defined datatype; in [1] it was observed 
that all inductively-defined datatypes are relators. 

A design requirement which lead to the above definition of a relator [1, 2] is that a relator 
should extend the notion of a functor but in such a way that it coincides with the latter 
notion when restricted to functions. Formally, relation R : A f- B is total iff 

idB ~ RUoR , 

and relation R is single-valued or simple iff 

RoRu ~ idA. 

A function is a relation that is both total and simple. It is easy to verify that total 
and simple relations are closed under composition. Hence, functions are closed under 
composition too. In other words, the functions form a sub-category. For an allegory A, we 
denote the sub-category of functions by Map(A). In particular, Map(Rel) is the category 
having sets as objects and functions as arrows. Now the desired property of relators is 
that relator F : A f- B is a functor of type Map (A) f- Map(B). It is easily shown that our 
definition of relator guarantees this property. 
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2.2.3 Division and Tabulation 

The allegory Rei has more structure than we have captured so far with our axioms. For 
instance, in Rei we can take arbitrary unions (joins) of relations. There are also two 
"division" operators, and Rei is "tabulated". In full, Rei is a unitary, tabulated, locally 
complete, division allegory. For full discussion of these concepts see [12] or [5]. Here we 
briefly summarise the relevant definitions. 

We say that an allegory is locally complete if for each set S of relations of type A f- B, the 
union uS : A f- B exists and, furthermore, intersection and composition distribute over 
arbitrary unions. The defining property of union is that, for all X : A f- B, 

US<:;;X == \I(SES:: S<:;;X) . 

We use the notation .ilA,B for the smallest relation of type A f- Band TT A,B for the largest 
relation of the same type. 

The existence of a largest relation for each pair of objects A and B is guaranteed by the 
existence of a "unit" object, denoted by 1. We say that object 1 is a unit if id 1 is the 
largest relation of its type and for every object A there exists a total relation !A : 1 f- A . 
If an allegory has a unit then it is said to be unitary. 

The most crucial consequence of the distributivity of composition over union is the existence 
of two so-called division operators "\" and "/". Specifically, we have the following three 
Galois-connections. For all R : A f- B, S : B f- C and T : A f- C, 

ReS <:;; T S <:;; R\T 

ReS <:;; T _ R <:;; TIS 

S C;;; R\T R C;;; TIS 

(where, of course, the third is just a combination of the first two). 

Note that R\ T : B f- C and TIS: A f- B. The interpretation of the factors is 

(b,c) E R\ T 

(a,b)ET/S 

\I(a: (a,b)ER: (a,c)ET) , 

\I(c: (b,c)ES: (a,c)ET) . 

The final characteristic of Rei is that it is "tabular". That is, each relation is a set of 
ordered pairs. Formally, we say that an object C and a pair of functions f : A f- C and 
9 : B f- C is a tabulation of relation R : A f- B if 

An allegory is said to be tabular if every relation has a tabulation. 
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Allegory Rei is tabular. Given relation R,: A(- B, define C to be the subset of the cartesian 
product AxB containing the pairs of ¢lements for which (x,lJ) E R. Then the pair of 
projection functions outl : A (- C and outr : B (- C is a tabulation of R. 

If allegory B is tabular, a functor is monotonic iff it commutes with converse [5]. So, if 
we define a relator on a tabular allegory, one has to prove either requirement (4) or (5). 
For this reason Bird and De Moor [5] define a relator to be a monotonic functor; they also 
attribute the definition to Kawahara [18] and Carboni, Kelly and Wood [7]. 

2.2.4 Domains 

In addition to the source and target of a relation it is useful to know their domain and 
range. The domain of a relation R : A (- B is that subset R> of id B defined by the Galois 
connection: 

R <;; TT A,B 0 X == R> <;; X for each X <;; id B . (6) 

The range of R: A(- B, which we denote by R<, is the domain of RU. 

The interpretation of the domain of a relation is the set of alllJ such that (x;y) E R for 
some x. We use the names "domain" and "range" because we usually interpret relations 
as transforming "input" lJ on the right to "output" X on the left. The domain and range 
operators play an important role in a relational theory of datatypes. 

2.2.5 Pointwise Closed Classes of Relators 

We have already mentioned a few examples of relators. Of these, only product is primitive; 
the others are composite. In general, our concern is with establishing that certain classes 
of relators are commuting. That is, every pair of relators in the class commutes with 
each other. A requirement is that a class be sufficiently rich in the sense that it is closed 

under a number of composition operators. The composition operators that we consider 
indispensable are functional composition and tupling. 

Little needs to be said about functional composition at this moment. It is easy to verify 
that the functional composition of two relators F : A (- Band G : B (- C, which we denote 
by FG, is a relator. There is also an identity relator for each allegory A, which we denote 
by Id leaving the specific allegory to be inferred from the context. The relators thus form 
a category -a fact that we need to bear in mind later- . 

Tupling permits the definition of relators that are multiple-valued. So far, all our examples 
of relators have been single-valued. Modern functional programming languages provide a 
syntax whereby relators (or, more precisely, the corresponding functors) can de defined 
as datatypes. Often datatypes are single-valued, but in general they are not. Mutually
recursive datatypes are commonly occurring programmer-defined datatypes that are not 
single-valued. But composite-valued relators also occur in the definition of single-valued 
relators. For example, the (single-valued) relator F defined by FR = RxR is the composition 
of the relator x after the (double-valued) doubling relator. More complicated examples 
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like the binary relator <6> that maps the pair (R, S) to R+SxS involve projection as well 
as repetition (doubling), product and coproduct. The programmer is not usually aware of 
this because the use of multiple-valued relators is camouflaged by the use of variables. For 
our purposes, however, we need a variable-free mechanism for composing relators. This is 
achieved by making the arity of a relator explicit and introducing mechanisms for tupling 
and projection. 

We consider a collection of allegories created by closing some base allegory C under the 
formation of finite cartesian products. (The cartesian product of two allegories, defined in 
the usual pointwise fashion, is clearly an allegory. Moreover, properties such as unitary, 
locally complete etc. are preserved in the process.) An allegory in the collection is thus Ck 
where k, the arity of the allegory is either a natural number or l*m where 1 is an arity 
and m is a number. Note that we identify 1 *k and k* 1 with k. 

The arity of a relator F is k!---l if the target of F is Ck and its source is Cl . We write 
F : k!--- 1 rather than the strictly correct F : Ck !--- Cl . A relator with arity 1 !--- 1 is called an 
endorelator and a relator with arity 1 !--- k for some k is called single-valued. 

Given a number k and a number of relators Fi ( 0::; i< k) all of the same arity l!--- m, the 
relators can be tupled in the obvious way to form a relator of arity l*k!--- m. We denote the 
tupled relator by ~(i: O::;i<k: Fd. (Note that this defines ~ as a mapping from the range 
(i::O::;i<k) to the relators.) Some variations on this notation are used. First, we often use 
h to abbreviate the mapping (i: O::;i<k: Fd in a tuple expression. That is, we abbreviate 
~(i: O::;i<k: Fd to ~Fk' Second, we sometimes use ~ as an infix operator -reduced slightly 
in size to avoid ambiguity-; thus, Fl>G is the relator that maps relation R to the pair of 
relations (FR, GR). Thirdly, when all the relators are equal to one and the same relator 
F we write simply t.F ; this is the relator that given relation R makes k copies of FR to 
create a vector of length k. Finally, there are times when we need to make the implicit 
parameter k explicit. In such cases we add it as a subscript to Ll. In particular, we most 
often write LlkF in order to indicate clearly the amount of duplication of F. 

Complementary to tupling is projection. For each number k and for each i, 0::; i < k, we 
can define the relator Proj; that maps a k-tuple of relations Ro, ... , Rk- 1 to Ri . (Note 
that, following the convention introduced above, Proh denotes the function mapping i in 
the range O::;kk to Prok) In the case that k is 2 we use the special notation Outl and 
OutT for the two projections. Note that the identity relator is a special case of a projection 
(the case k= 1). 

Using tupling and projection we can define several other operations. The operation _k can, 
of course, be extended to a functor. If F has arity l!--- m then 

has arity l*k!---m*k. Another relator transposes hk into bl. We denote this relator by 
'"C -irrespective of the dimensions 1 and k, relying on the context to determine what its 
dimensions are-. The definition of '"C : hl!--- hk is t.kLldProhProh); it is the unique 
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mapping such that for all matrices of single-valued relators Fi,j, where O:s i< k and O:S j < 1., 
one has 

't( -"'k-"'l (fk,tl) = -"'l-"'k (fd 

By composing _k and 't we get a functor dual to _kj specifically, we define kf by kF = 'tFk't. 
Thus, for F: 1.t--m we have fk : hkt--m*k and kF : k*1.t-- k*m. 

Projection and tupling are connected by the law 

(7) 

for all Hand F. We also need to bear this in mind when defining the notion of a commuting 
class of relators. 

We conclude this subsection with the definition of a "pointwise closed" class of relators. 

Definition 8 (Pointwise Closed) A collection of relators is said to be pointwise closed 
with base allegory C if each relator in the collection has type Ckt--C l for some arities k and 
1., and the collection includes all projections and is closed under functional composition 
and tupling. 
o 

We have chosen the name "pointwise closed" to suggest the idea that the classes of relators 
we are interested in are those that are obtained by pointwise definitions starting from some 
primitive collection of relators2. For example, the binary relator that maps the pair (R, S) to 
R+S xS would be expressed as +( Outt,,, (x (-"'zOutr ))) in the notation introduced above. 
The primitive relators in this example are coproduct and product which we now introduce. 

2.2.6 Regular Relators 

The "regular relators" are those relators constructed from three primitive (classes of) 
relators by pointwise closure and induction. 

For each object A in an allegory there is a relator KA defined by KAR = idA. Such relators 
are called constant relators. 

A coproduct of two objects consists of an object and two injection relations. The object is 
denoted by A+B and the two relations by iniA,B : A+B t--A and inrA,B : A+B t-- B. For 
the injection relations we require that 

and 

iniA,B a iniA,B = idA and inrA,B a inr A,B = idB , 

inlAu B a in r A B = J..LA B , , ' . 
(9) 

(10) 

(11) 

21£ there is a standard term in the literature that we could use instead of "pointwise closed') then we 
would be happy to do so. We do not know of such a term. 
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Having the functions inl and inr, we can define the junc operator: for all R : C (-- A and 
5: C(--B, 

R,,5 ~ Roinl~,B U 50inr~,B , (12) 

and the coproduct relator: for all R : C (-- A and 5 : D (-- B 

R+5 ~ (inlc,D 0 R) " (inrc,D 05) . 

A product of two objects consists of an object and two projection arrows. The object is 
denoted by AxB and the two arrows by outlA,B : A(--AxB and DutrA,B : B (--AxB. For 
the arrows we require them to be functions and that 

DutIA,B 0 DutrA,B = TT A,B , (13) 

and 

outl~,B ooutlA,B n outr~,B oDutrA,B = id AxB . (14) 

Having the projection functions outl and outr, we can define the split operator on relations: 
for all R : A (-- C and 5 : B (-- C 

R Co 5 ~ Dutl~,B 0 R n Dutr~,B 05 , (15) 

and the product relator: for all for R : C (-- A and 5 : D (-- B, 

Rx5 ~ (RooutIA,B) Co (500utrA,B) . 

(The similarity between the symbol "to" used to denote tupling of relators and the split 
operator " L::.." is, of course, not coincidental.) 

Tree relators are defined as follows. Suppose that relation in : A (-- FA is an initial F
algebra. That is to say, suppose that for each relation R : B (-- FB (thus each "F-algebra") 
there exists a unique F-homomorphism to R from in. We denote this unique homomor
phism by [F; R]. Formally, [F; R] and in are characterized by the universal property that, 
for each relation X : B (-- A and each relation R : B (-- FB, 

X=[F;R] == Xoin=RoFX. (16) 

Now, let 0 be a binary relator and assume that, for each A, inA T A (-- A <21 T A is an 
initial algebra of (A<2I)3. Then the mapping T defined by, for all R : A(-- B, 

TR = [A<2I; inB 0 R<2IidTB] 

is a relator, the tree relator induced by 0. 

(Characterization (16) can be weakened without loss of generality so that the univer
sal quantifications over relations X and R are restricted to universal quantifications over 
functions X and R. This, in essence, is what Bird and De Moor [5] refer to as the Eilenberg
Wright lemma.) 

3Here and elsewhere we use the section notation (A@) for the relator @(KA '" Id). 
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2.3 Natural Transformations 

Reynolds' characterisation of parametric polymorphism predicts that certain polymorphic 
functions are natural transformations. To see this it helps to re-express the pointwise 
definition of the t-- operator in the following point-free form: 

(f, g) E Rt--S == foS <;;; Rog . 

Now consider, for example, the reverse function on lists, denoted here by rev. This has 
polymorphic type ListA t-- ListA for all A and so, according to Reynolds' prediction: 

(rev, rev) E ListRt-- ListR 

for all relations R. That is, 

revo ListR <;;; ListRorev 

for all relations R. Similarly the function that makes a pair out of a single value, here 
denoted by fork, has type AxAt--A for all A, and so is predicted to satisfy the property: 

forkoR <;;; RxRofork 

for all relations R. 

The above properties of rev and fork are not natural transformation properties because 
they assert an inclusion and not an equality; they are sometimes called "lax" natural 
transformation properties. It so happens that the inclusion in the case of rev can be 
strengthened to an equality but this is certainly not the case for fork. Nevertheless, in the 
functional programmer's world being a lax natural transformation between two relators is 
equivalent to being a natural transformation between two functors as we shall now explain. 

Since relators are by definition functors, the standard definition of a natural transformation 

between relators makes sense. That is to say, we define a collection of relations oc indexed 
by objects (equivalently, a mapping oc of objects to relations) to be a natural transformation 
of type f t-- G, for relators f and G iff 

fRo OCB = OCA 0 GR for each R : At-- B. 

However, as illustrated by fork above, many collections of relations are not natural with 
equality but with an inclusion. That is why we define two other types of natural transfor
mation denoted by F f-' G and F'-l G, respectively. We define: 

oc: f (-' G !!=. (fRo OCB ;2 OCA 0 GR for each R : A t-- B) 

and 

A relationship between naturality in the allegorical sense and in the categorical sense is 
given by two lemmas. Recall that relators respect functions, i.e. relators are functors on 
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the sub-category Map. The first lemma states that an allegorical natural transformation 
is a categorical natural transformation: 

(ff 0 (XB = (XA 0 Gf for each function f : A f- B) {= (X: f f-" G . 

The second lemma states the converse; the lemma is valid under the assumption that the 
source allegory of the relators f and G is tabular: 

(X: f f-" G {= (ff 0 (XB = (XA 0 Gf for each function f : A f- B) 

In the case that all elements of the collection (X are functions we thus have: 

(X:ff-"GinA == (X:ff-GinMap(A) 

where by "in X" we mean that all quantifications in the definition of the type of natural 
transformation range over the objects and arrows of X. 

Since natural transformations of type f f-" G are the more common ones and, as argued 
above, agree with the categorical notion of natural transformation in the case that they 
are functions, we say that (X is a natural transformation if (X : f f-" G and we say that (X is 
a proper natural transformation if (X: f f- G. (As mentioned earlier, other authors use the 
term "lax natural transformation" instead of our natural transformation.) 

The natural transformations studied in the computing science literature are predominantly 
(collections of) functions. In contrast, the natural transformations discussed in this paper 
are almost all non-functional either because they are partial or because they are non
deterministic (or both). 

The notion of arity is of course applicable to all functions defined on product allegories; in 
particular natural transformations have an arity. A natural transformation of arity k f- 1 
maps an l-tuple of objects to a k-tuple of relations. The governing rule is: if (X is a natural 
transformation to f from G (of whatever type - proper or not) then the arities of f and 
G and (X must be identical. Moreover, the composition (Xoj3 of two natural transformations 
(defined by ((Xoj3)A = (XA 0 j3A) is only valid if (X and j3 have the same arity (since the 
composition is componentwise composition in the product allegory). 

2.4 Membership and Fans 

Since our goal is to use naturality properties to specify relations it is useful to be able to 
interpret what it means to be "natural". All interpretations of naturality that we know of 
assume either implicitly or explicitly that a datatype is a way of structuring information 
and, thus, that one can always talk about the information stored in an instance of the 
datatype. A natural transformation is then interpreted as a transformation of one type 
of structure to another type of structure that rearranges the stored information in some 
way but does no actual computations on the stored information. Doing no computations 
on the stored information guarantees that the transformation is independent of the stored 
information and thus also of the representation used when storing the information. 
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Hoogendijk and De Moor have made this precise [15]. Their argument, briefly summarised 
here, is based on the thesis that a datatype is a relator with a membership relation. 

Suppose f is a relator. For the moment we assume that f is an endorelator. (Thus the 
source of f is not a product of allegories.) The interpretation of fR is a relation between 
f-structures of the same shape such that corresponding values stored in the two structures 
are related by R. For example, List R is a relation between two lists of the same length 
-the shape of a list is its length- such that the ith element of the one list is related by 
R to the ith element of the other. Suppose A is an object and suppose X <;;; idA. So X is 
a partial identity relation; in effect X selects a subset of A, those values standing in the 
relation X to themselves. By the same token, fX is the partial identity relation that selects 
all f-structures in which all the stored values are members of the subset selected by X. This 
informal reasoning is the basis of the definition of a membership relation for the datatype 
f. 

The precise specification of membership for f is a collection of relations mem (indexed by 
objects of the source allegory of f) such that memA : A f- fA and such that fX is the 
largest subset Y of id FA whose "members" are elements of the set X. Formally, mem is 
required to satisfy the property: 

(17) 

Note that (17) is a Galois connection. A consequence is that a necessary condition for 
relator f to have membership is that it preserve arbitrary intersections of partial identities. 
In [15] an example due to P.J. Freyd is presented of a relator that does not have this prop
erty. Thus, if one agrees that having membership is an essential attribute of a datatype, 
the conclusion is that not all relators are datatypes. 

Property (17) doesn't make sense in the case that f is not an endorelator but the problem 
is easily rectified. The general case that we have to consider is a relator of arity k f- l for 
some numbers k and l. We consider first the case that k is 1; for k> 1 the essential idea is 
to split the relator into l component relators each of arity 1 f- k. For illustrative purposes 
we assume for the moment that l=2. 

The interpretation of a binary relator I2i as a datatype-former is that a structure of type 
Aol2iAl, for objects Ao and A l , contains data at two places: the left and right argument. In 
other words, the membership relation for I2i has two components, memo: Ao f- Aol2iAl and 
meml : Al f- Aol2iAl, one for each argument. Just as in the endo case, for alll2i-structures 
being elements of the set XOI2iXl , for partial ident.ities Xo and Xl, the component for the left 
argument should return all and only elements of Xo, the component for the right argument 
all and only elements of Xl. Formally, we demand that, for all partial identities Xo <;;; id Ao ' 
Xl <;;; id A1 and Y <;;; id AoOA1 , 

The rhs of (18) can be rewritten as 

((memo,memlloL\2Y)< <;;; (XO,Xl ) 
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where L':.2 denotes the doubling functor: L':.2 Y = (Y, V). Now, writing mem = (memo, meml), 
A = (Aa ,Ad and X = (Xo ,Xd, equation (18) becomes, for all partial identities X ~ idA 
and Y ~ id(0)A, 

The above equation for a membership relation for a binary relator suggests the equation 
for an arbitrary single-valued relator f of arity 1 f- 1. Specifically, we demand that the 
membership relation mem for f be a collection of relations such that, for all vectors of 
objects A (i.e. objects of arity 1) 

memA : A f- L':.\fA 

and such that, for all partial identities X ~ idA and Y ~ id FA , 

fX;;:> Y == (memA0L':.\Y)< ~ X . (19) 

In fact, in [15] neither (19) nor (17) is used as the defining property of membership. Instead 
the following definition is used, and it is shown that (19) is a consequence thereof. (Actually 
[15] only considers the case 1 = 1, a detail we will ignore here.) 

A collection of arrows mem of arity k * 1 f- 1 is a membership relation of relator f: k f- 1, 
if for each vector of objects A 

and for each object B, vector of objects A and each R A f- L':.\B, 

Properties (20) and (19) are equivalent under the assumption of extensionality as shown 
by Hoogendijk [14]. Note that nS denotes the intersection of the 1 elements of the vector 
of relations S. Division in a product allegory is of course componentwise division in the 
base allegories. 

Property (20) gives a great deal of insight into the nature of natural transformations. First, 
the property is easily generalised to: 

fRon(mem\((L':.S)S)""C = n(memA \ ((L':.S)(RoS)) (21) 

for all R : A f- Band 5 : B f- L':.\c. Next we require that the membership of a tuple of 
relators is the tuple of their memberships: 

mem.f = 'tL':.dmem.Prohf) (22) 

Then, it is straightforward to show that the membership, mem, of relator f : k f- 1 is a 
natural transformation. Indeed 
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and also 

(For endorelator F these properties simplify to mem : Id \-' F and mem \id : F (---' Id.) Hav
ing established these two properties, the -highly significant- observation that mem 
and n(mem \ ((~k)\)id)~\ are the largest natural transformations of their types can be 
made. Finally, and most significantly, suppose F and G are relators with memberships 
mem.F and mem.G respectively. Then the largest natural transformation of type F \-' G 
is n(mem.F\mem.G). (We refer the reader to [1.5] for proofs of all these properties in the 
case of endorelators, and to [14] in the general case. The key element in the proof is the 
identification axiom which states that the identity function is the largest natural trans
formation of type Id \-' Id. The identification axiom plays the same role in our theory as 
the property stated in the introduction that the identity function is the only polymorphic 
function of type Id (- Id does in Reynolds'. ) 

The insight that these properties give is that natural transformations between datatypes 
can only rearrange values; computation on the stored values or invention of new values is 
prohibited. To see this let us consider each of the properties in turn. A natural transforma
tion of type Id\-' F constructs values of type A given a structure of type FA. The fact that 
the membership relation for F is the largest natural transformation of type Id \-' F says 
that all values created by such a natural transformation must be members of the structure 
FA. Similarly, a natural transformation ex of type F \-' G constructs values of type FA 
given a structure of type GA. The fact that n(mem.F\mem.G) is the largest natural trans
formation of type F\-'G means that ex<;;; (mem.F\mem.G)i for each component i of the 
vector mem.F\mem.G. According to the interpretation of the division operator, this means 
that every member of the F-structure created by ex is a member of the input G-structure. 
A proper natural transformation ex : F (- G has types F \-' G and F'-) G. Consequently, a 
proper natural transformation copies values without loss or duplication. 

The natural transformation n(mem \ ((~k)\)id)~\, the largest natural transformation of 
type F~\ (---' ~k, is called the canonical fan of F. It transforms an arbitrary value into an 
F-structure by non-deterministically creating an F-structure and then copying the given 
value at all places in the structure. It plays a crucial role in the sequel. (The name "fan" 
is chosen to suggest the hand-held device that was used in olden times by dignified ladies 
to cool themselves down.) Rules for computing the canonical fan for all regular relators 
are as follows. (These are used later in the construction of "zips".) 

fan.PToj id (23) 
fan.~Fk ~(fan.Fk) (24) 
fan.FG F(fan.G) ofan.F (25) 
fan.KA TTA,_ (26) 
fan.+ (id v id)U (27) 
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fan.x id l> id 

fan.T - ([idl8l; (fan.I8I)U]U 

(where T is the tree relator induced by 181). 

3 Commuting Datatypes: Examples 

(28) 

(29) 

In this section we want to argue that the notion that two datatypes "commute" is a common 
occurrence. 

The best known example of a commutativity property is the fact that two lists of the same 
length can be mapped into single list of pairs whereby 

([01,02, ... J, [b1 ,b2, ... J) >-1 [(01 ,bJ), (02, b2), ... J 

The function that performs this operation is known as the "zip" function to functional 
programmers. Zip commutes a pair of lists into a list of pairs. 

Other specific examples of commutativity properties are easy to invent. For instance, it is 
not difficult to imagine generalising zip to a function that commutes m lists each of length 
n into n lists each of length m. Indeed, this latter function is also well known under the 
name matrix transposition. Another example is the function that commutes a tree of lists 
all of the same length into a list of trees all of the same shape. There is also a function 
that "broadcasts" a value to all elements of a list -thus 

(0, [b1 , b2 , ... J) >-1 [( 0, bd , (0, b2), ... J 

That is, the datatype an element of type A paired with (a list of elements of type B) 
is "commuted" to a list of (element of type A paired with an element of type B). More 
precisely, for each A, the family of broadcasts indexed by B is a natural transformation of 
type List(Ax) f--' (Ax ) List; the two datatypes being "commuted" are thus (Ax) and List. 
This list broadcast is itself an instance of a subfamily of the operations that we discuss 
later. In general, a broadcast operation copies a given value to all locations in a given data 
structure. 

A final example of a generalised zip would be the (polymorphic) operation that maps 
values of type (A+B)x(C+D) to values of type (AxC)+(BxD), i.e. commutes a product 
of disjoint sums to a disjoint sum of products. A necessary restriction is that the elements 
of the input pair of values have the same "shape", i.e. both be in the left component of 
the disjoint sum or both be in the right component. 

In general then, a zip operation transforms F-structures of G-structures to G-structures of 
F-structures. Typically, "zips" are partial since they are only well-defined on structures of 
the same shape. As we shall see, they may also be non-deterministic; that is, a "zip" is a 
relation that need not be simple. Finally, the arity of the two datatypes, F and G, need 
not be the same; for example, the classical zip function maps pairs of lists to lists of pairs, 
and pairing has arity 1 (--2 whereas list formation has arity 1 (--1. 
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3.1 Structure Multiplication 

A good example of the beauty of the "zip" generalisation is afforded by what we shall call 
"structure multiplication". (This example we owe to D.J. Lillie [private communication, 
December 1994].) A simple, concrete example of structure multiplication is the following. 
Given two lists [U1 , Ul, ... J and [b1 , bl , ... J form a matrix in which the (i, j)th element 
is the pair (Ui, b j ). We call this "stlUcture multiplication" because the input type is the 
product ListA x ListB for some types A and B. 

Given certain basic functions, this task may be completed in one of two ways. The first 
way has two steps. First, the list of u's is broadcast over the list of b's to form the list 

[([U1 ,Ul, ... J,bd,([U1 ,Ul, ... J,bl), ... J 

Then each b is broadcast over the list of u's. The second way is identical but for an 
interchange of "u" and "b". 

Both methods return a list of lists, but the results are not identical. The connection 
between the two results is that one is the transpose of the other. The two methods and 
the connection between them are summarised in the following diagram. 

ListA x List B 

List (ListA x B) List (A x List B) 

ListList(A x B) _. ----. ListList(A x B) 

The point we want to make is that there is an obvious generalisation of this procedure: 
replace ListA by fA and ListB by GB for some arbitrary relators f and G. Doing so leads 
to the realisation that every step involves a "zip" operation (i.e. commuting the order of a 
pair of datatypes). This is made explicit in the diagram below. 
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FAxGB 

(';P.(FA')~ ~(XGB).F)' 
G(FAx B) F(A x GB) 

G(zip.(xB).F)A (ZiP.F(AX~ F(zip.(Ax).G)B 

GF(A X B~ FG(A x B) 
(zip.F.G)A x B 

In order to make evident which datatypes are being "commuted" at each step, each ar
row has been labelled by an expression involving a "zip" term. A "zip" takes the form 
zip.F.G for some datatypes F and G. In the absence of a formal specification (to be given 
later) one should interpret zip.F.G as a family of relations indexed by types such that 
(zip.F.G)A: GFA(- FGA. 

An additional edge has been added to the diagram to show the usefulness of generalising 
the notion of commutativity beyond just broadcasting; this additional inner edge shows 
how the commutativity of the diagram can be decomposed into smaller parts4. Specifically, 
in order to show that the whole diagram commutes (in the standard categorical sense of 
commuting diagram) it suffices to show that two smaller diagrams commute. Specfically, 
the following two equalities must be established: 

(zip.F(Ax).GJB = (zip.F.G)AxB 0 F(zip.(Ax).G)B (30) 

and 

(zip.F(Ax) .GJB 0 (zip.( X GB ).F)A = G (zip.( X B ).F)A 0 (zip.(FAx ).G)B (31 ) 

We shall in fact design our definition of "commuting datatypes" in such a way that these 
two equations are satisfied (almost) by definition. In other words, our notion of "com
muting datatypes" is such that the commutativity of the above diagram is automatically 
guaranteed. 

3.2 Strength 

Several scientists have argued that the notion of functor is too general to capture the 
notion of a datatype as understood by programmers. Moggi [27] argues that the notion of 
"strength" is fundamental to computation, "strength" being defined as follows. 

4The additional edge together with the removal ,if the right-pointing edge in the bottom line seem to 
make the diagram asymmetric. But, of course, there are symmetric edges. Corresponding to the added 
diagonal edge there is an edge connecting G(FAx B) and FG(A x B) but only one of these edges is needed 
in the argument that follows. 
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Definition 32 (Strength) A natural transformation strA,B : F(A X B) f-' FAx B is 
said to be a strength of relator F iff strA, B is a function that behaves coherently with 
respect to product in the following sense. First, the diagram 

F (A xl) _--s-tr-A-'.."l---- FAx 1 

F~ 
FA 

(where ridA A (-- A X 1 is the obvious natural isomorphism) commutes. Second, the dia
gram 

FAx (B X C) assFA,B,e (FA X B) X C 

strA,B X ide 

strA,Bxe F(AxB)xC 

strAxB, e 

F(Ax(BxC» F((AxB)xC) 
FassA,B,e 

(where assA,B,e : A X (B X C) (-- (A X B) X C is the obvious natural isomorphism) com
mutes as well. A relator that has at least one strength is said to be strong. 
o 

The idea behind "strength" is very simple. A relator F is "strong" if, for each pair of 
types A and B, it is possible to broadcast a given value of type B to every element in an 
F-structure of A's. The broadcasting operation is what Moggi calls the "strength" of the 
relator. 

The type of the "strength" strA,B of relator f is the same as the type of (zip.(xA).fh, 
namely F(A X B) (-- FAx B. We shall argue that, if F and the family of relators (xA) are 
included in a class of commuting relators, then any relation satisfying the requirements of 
(zip.(xA).f)B also satisfies the definition of strA,B. 

Let us begin with an informal scrutiny of the definition of strength. In the introduction 
to this section we remarked that a broadcast operation (a "strength") is an example of 
a zip. Specifically, a broadcast operation is a zip of the form (zip.(xA).F)B' Paying due 
attention to the fact that the relator F is a parameter of the definition, we observe that 
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all the natural transformations involved in the definition of strength are special cases of a 
broadcast operation and thus of zips. 

In the first diagram there are two occurrences of the canonical isomorphism rid. In general, 
we recognise a projection of type A r- A x B as a broadcast where the parameter F is 
instantiated to KA , the relator that is constantly A when applied to objects and is the 
identity on A when applied to arrows. Thus ridA is (zip.(x1).KA)B for some arbitrary B. 
In words, ridA commutes the relators (x 1) and KA. Redrawing the first diagram above, 
using that all the arrows are broadcasts and thus zips, we get the following diagram5 • 

(zip.(x1).F)KA 
F( A xl) -'--'---'----'------ FAx 1 

F[';P'[Xl).[~ fo' 1).[K .. 1 

FA 

Expressed as an equation, this is the requirement that 

zip.( X l).(KFA) = F(zip.( x l).(KA)) 0 (zip.( x l).F)KA (33) 

Now we turn to the second diagram in the definition of strength. Just as we observed that 
rid is an instance of a broadcast and thus a zip, we also observe that ass is a broadcast 
and thus a zip. Specifically, assA.B.e is (zip.(xC).(Ax))s. Once again, every edge in the 
diagram involves a zip operation! That is not all. Yet more zips can be added to the 
diagram. For our purposes it is crucial to observe that the bottom left and middle right 
nodes -the nodes labelled F(A x (B x C)) and F(A x B) x C- are connected by the edge 
(zip.( x C).F(Ax))s. 

(zip.( x C).(FAx ))B 
FAx (B x C) ---'------ (FA x B) x C 

(zip.(xB).F)A x ide 

(ZiP'(XC).F~ 
(zip.(x(BxC)).F)A F(AxB)xC 

(zip. (x C).F)AxB 

/ 
F (A x (B xC)) ---::-:--:-----:--=--:-:-----o-c- F ( (A x B) xC) 

F (zi p. ( xC). (A x )) B 

5To be perfectly correct we should instantiate each of the transformations at some arbitrary B. We 
haven't done so because the choice of which B in this case is truly irrelevant. 
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This means that we can decompose the original coherence property into a combination of 
two properties of zips. These are as follows. First, the lower triangle: 

(zip.( xC).f(Ax ))B = f(zip.( xC).(Ax ))B 0 (zip.(x C).f)AxB (34) 

Second, the upper rectangle: 

(zip. (X (B X C)).f)A 0 (zip.( x C).(fAx ))B = (zip. (X C).f(Ax) ls 0 (zip. (x B ).f)A x ide (35) 

Note the strong similarity between (33) and (34). They are both instances of one equation 
parameterised by three different datatypes. There is also a similarity between these two 
equations and (30); the latter is an instance of the same parameterised equation after 
taking the converse of both sides and assuming that zip.f.G = (zip.G .f)u. Less easy to spot 
is the similarity between (31) and (35). As we shall see, however, both are instances of 
one equation parameterised again by three different datatypes except that (35) is obtained 
by applying the converse operator to both sides of the equation and again assuming that 
zip.f.G = (zip.G .f)u. 

4 The Requirement 

In this section we formulate precisely what we mean by two datatypes commuting. 

Looking again at the examples above, the first step towards an abstract problem specifi
cation is clear enough. Replacing "list", "tree" etc. by "datatype f" the problem is to 
specify an operation zip.f.G for given datatypes F and G that maps FG-structures into 
GF-structures. 

Note that the informal language we use here seems to imply that we consider only endo 
relators (relators of arity 1 f-1). After all, the composition FG is meaningless if the source 
arity off is not the same as the target arity of G. If F : m f- k and G : n f- 1 then (Tl F)( Gk) 
is a meaningful composition, as too is (Gm)(lf), both having arity n*mf- hk. (Recall 
that for H: If-m we have Hk : hkf-m*k and kH : blf- bm.) Thus, to be perfectly 
precise we should talk about mapping (TlF)(Gk)-structures to (Gm)(lF)-structures. 

Being able to handle relators of arbitrary arity and not restricting ourselves to endorelators 
is an important element of our development -were we to restrict ourselves to just endore
lators then we could not even handle the standard example of zipping a pair of lists since 
product is not endo- but nevertheless we often omit arity information in our informal 
motivation of some elements of our requirement. In all formal statements we do supply 
the arity information. The point is that these details can easily be inferred by a process of 
arity checking (using the rules given in section 2) but their inclusion in the first instance 
is a burdensome complication. 

The first step may be obvious enough, subsequent steps are less obvious. The nature 
of our requirements is influenced by the relationship between parametric polymorphism 
and naturality properties discussed earlier but takes place at a higher level. We consider 
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the datatype F to be fixed and specify a collection of operations zip.F.G indexed by the 
datatype G. (The fact that the index is a datatype rather than a type is what we mean 
by "at a higher level" .) Such a family forms what we call a collection of "half-zips". The 
requirement is that the collection be "parametric" in G. That is, the elements of the 
family zip.F should be "logically related" to each other. The precise formulation of this 
idea leads us to three requirements on "half-zips". The symmetry between F and G, lost 
in the process of fixing F and varying G, is then restored by the simple requirement that a 
zip is both a half-zip and the converse of a half-zip. 

The division of our requirements into "half-zips" and "zips" corresponds to the way that 
zips are constructed. Specifically, we construct a half-zip zip.F.G for each datatype F in 
the class of regular datatypes and an arbitrary datatype G. That is to say, for each 
datatype F we construct the function zip.F on datatypes which, for an arbitrary datatype 
G, gives the corresponding zip operation zip.F.G. The function is constructed to meet 
the requirement that it define a collection of half-zips; subsequently we show that if the 
collection is restricted to regular datatypes G then each half-zip is in fact a zip. 

A further subdivision of the requirements is into naturality requirements and requirements 
that guarantee that the algebraic structure of pointwise definition of relators is respected 
(for example, the associativity of functional composition of relators is respected). These 
we discuss in turn. 

4.1 Naturality Requirements 

Our first requirement is that zip.F.G be natural. That is to say, its application to an FG
structure should not in any way depend on the values in that structure. Suppose that 
F : m (- k and G : n (- 1. Then we demand that 

Thus a zip is a proper natural transformation indexed by an l* k matrix of types each 
member of the family being an n*m matrix of relations. 

As forewarned, arity information is included in the formal statement (36) although not in 
the informal discussion preceding it. For endorelators the requirement is much simpler: 

zip.F.G : GF (- FG . 

Our advice is thus to ignore all tupling and projection operators (the superscripts in this 
case) on a first reading. 

Note that we require zip.F.G to be a proper natural transformation since for a zip operation 
on a structure no loss or duplication of values should occur. 

Demanding naturality is not enough. Somehow we want to express that all the members 
of the family zip.F of zip operations for different datatypes G and H are related. For 
instance, if we have a natural transformation ex: G (- H then zip.F.G and zip.F.H should 
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be "coherent" with the transformation (x. That is to say, having both zips and (X, there 
are two ways of transforming FH-structdres into GF-structures; these should effectively be 
the same. 

One way is first transforming an FH-structure into an FG-structure using F(X, (i.e. applying 
the transformation (X to each H-structure inside the F-structure) and then commuting the 
FG-structure into a GF-structure using zip.f.G. 

Another way is first commuting an fH-structure into an Hf-structure with zip.F.H and 
then transforming this H-structure into a G-structure (both containing f-structures) using 
(XF. So, we have the following diagram. 

F(X 
fG---FH 

zip.F.G zip.F.H 

Gf ---=--Hf 
(Xf 

One might suppose that an equality is required, i.e. 

(XF 0 zip.F.H = zip.F.G 0 F(X (37) 

for all natural transformations (X: G (- H. But this requirement is too severe for two 
reasons. 

The first reason is that if (X is not functional, i.e. (X is a non-deterministic transformation, 
the rhs of equation (37) may be more non-deterministic than the lhs because of the possible 
multiple occurrence of a. Take for instance f:= List and G = H:= x, i.e. zip.F.G and 
zip.F.H are both the inverse of the zip function on a pair of lists, and take (X:= id Uswap, 
i.e. a non-deterministically swaps the elements of a pair or not. Then aF 0 zip.F.H unzips 
a list of pairs into a pair of lists and swaps the lists or not. On the other hand, zip.F.G 0 Fa 
first swaps some of the elements of a list of pairs and then unzips it into a pair of lists. 

The second reason is that, due to the partiality of zips, the domain of the left side of (37) 
may be smaller than that of the right. 

As a concrete example, suppose listify is a polymorphic function that constructs a list of 
the elements stored in a tree. The way that the tree is traversed (inorder, preorder etc.) is 
immaterial; what is important is that listify is a natural transformation of type List (- Tree. 
Now suppose we are given a list of trees. Then it can be transformed to a list of lists by 
"listify"ing each tree in the list, i.e. by applying the (appropriate instance of the) function 
List(listify). If all the trees in the list have the same shape, a list of lists can also be 
obtained by first commuting the list of trees to a tree of lists (all of the same length) and 
then "listify"ing the tree structure. That is we apply the (appropriate instance of the) 
function (listify)List 0 zip.List.Tree. The two lists of lists will not be the same: if the size 
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of the original list is m and the size of each tree in the list is n then the first method will 
construct m lists each of length n whilst the second method will construct n lists each 
of length m. However the two lists of lists ·are "zips" of each other ("transposes" would 
be the more conventional terminology). This is expressed by the commutativity of the 
following diagram in the case that the input type List(TreeA) is restricted to lists of trees 
of the same shape. 

List(listifY)A 
List(ListA) --~~.:..:..:..- List(TreeA) 

(zip. List.List)A (zip. List.T ree)A 

List(ListA) ------ Tree(ListA) 
listifYListA 

Note however that if we view both paths through the diagram as partial relations of type 
List(ListA) f- List(TreeA) then the upper path (via List(ListAl) includes the lower path (via 
Tree(ListA)). This is because the function List(listifY)A may construct a list of lists all of 
the same length (as required by the subsequent zip operation) even though all the trees in 
the given list of trees may not all have the same shape. The requirement on the trees is 
that they all have the same size, which is weaker than their all having the same shape. 

Both examples show that we have to relax requirement (37) using an inclusion instead 
of equality. Having this inclusion, the requirement for IX can be relaxed as well. So, the 
requirement becomes 

IXF 0 zip.F.H <;;; zip.F.G 0 FIX for all IX: G f-' H . 

Including arity information, the formal statement of the requirement is that for all relators 
F : m f- k and G , H : n f- l , and all IX: G f-' H, 

(38) 

4.2 Pointwise Integrity 

The variable-free mechanism we have introduced for "pointwise closing" a class of relators 
allows some freedom in the manner in which relators are composed. Formally, the relators 
form a category under functional composition, and the tupling and projection operators 
are related by the characteristic equation 

(Note that the right side of this equivalence is an equation between mappings following 
the convention explained earlier. Thus it is true iffor all i., 0::; i.< k , Proj,F = Gi .) Our 
second set of requirements guarantee that this algebraic structure is respected by the 
mapping zip.F. 
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We begin with tupling and projection. In view of arity considerations the obvious require
ments are: 

zip.f.G = '(D.n(zip.F.PTojnG) (39) 

where n is the arity of the target of G -the zip of a tuple is the tuple of the zips- and 

(40) 

for each projection relator PTOj : 1 (- 1, assuming F : m (- k. 

In fact, (39) becomes redundant when we introduce requirement (41) on the composition 
of relators. 

For our final requirement we consider the monoid structure of functors under composition. 
Fix functor F and consider the collection of zips, zip.F.G, indexed by (endo)functor G. 
Since the (endo )functors form a monoid it is required that the mapping zip.F is a monoid 
homomorphism. 

In order to formulate this requirement precisely we let ourselves be driven by type consid
erations. The requirement is that zip.F.GH be some composition of zip.F.G and zip.F.H of 
which zip.F.Id is the identity. But the type of zip.F.GH, 

zip.F.GH : GHF (- FGH , 

demands that the datatype F has to be "pushed" through GH leaving the order of G and 
H unchanged. With zip.F.G we can swap the order of f and G, with zip.f.H the order of f 
and H. Thus transforming fGH to GHf can be achieved as shown below. 

GHf G(zip.F.H) fHG \zip.F.GIH fGH 

So, informally, we demand that 

zip.f.GH = G(zip.f.H) 0 (zip.f.G)H 

Moreover, in order to guarantee that zip.f.GleI = zip.f.G = zip.f.IdG we require that 

zip.f.IeI = idf . 

Formally, the demand is that, for all f : m (- k, G : n (- 1 and H : 1 (- 0, 

zip.f.GH = (Gm)(zip.f.H)o (zip.f.G)(Hk ) , 

and, for f : m (- k and the identity relator lei: 1 (- 1, 

zip.f.Id = (idhm)(lf) . 

(41 ) 

( 42) 

In order to verify that zip.f is indeed a monoid homomorphism we make the monoid explicit. 
Define (for fixed datatype f) the monoid M as follows. The elements are pairs consisting 
of a natural transformation, ct , and a functor, G, where 

(ct,G)EM == ct:Gf~fG 
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Define composition in the following way: 

(ex,G)·([3,H) ~ (G[3 0 exH , GH) 

That (G [30 exH , GH) is an element of M is, by definition, G[3 0 exH : GHF f- FGH which 
follows from [3 : HF f- FH and ex : GF f- FG. It is easily seen that"·" has unit (idF, Id) 
and is associative. 

Now, define f(G) = (zip.F.G ,G). Then zip.F is a monoid homomorphism if 

f(GH) = f(G)· f(H) 

and 

f(Id) = (idF , Id) . 

Expanding the definition of f, we thus demand 

zip.F.GH = G(zip.F.H) 0 (zip.F.G)H 

and 

zip.F.Id = idF . 

(Note that idF : IdF f- Ed.) 

4.3 Half Zips and Commuting Relators 

Apart from the very first of our requirements ((36), the requirement that zip.F.G be nat
ural), all the other requirements have been requirements on the nature of the mapping 
zip.F. Roughly speaking, (38) demands that it be parametric, (39) and (40) that it respect 
tupling and projection, and (41) and (42) that it be functorial. Of these requirements, (39) 
and (42) are redundant. ((39) can be derived from (40) and (41); it can then be used in 
combination with (40) to derive (42).) We find it useful to bundle the (non-redundant set 
of) requirements together into the definition of something that we call a "half zip" . 

Definition 43 (Half Zip) Consider a fixed relator F : m f- k and a pointwise closed 
class of relators y. Then the members of the collection zip.F.G, where G ranges over y, are 
called half-zips iff 
(a) zip.F.G : (Gm)(lF) f- (nF)(Gk), for each G : nf-l 
(b) zip.F.PTOj = (idm)F(PTOjk) for all PTOj : 1 f-l, 
(c) zip.F.GH = (Gm)(zip.F.H) 0 (zip.F.G)(Hk) for all G : nf-l and H: If- 0, 

(d) (exm)(lF) 0 zip.F.H <;;; zip.F.G 0 (nF)(exk) for each ex: G f-' H where G, H : nf-l. 
o 

Note that for F : mf- k and G : nf-l, we have 

zip.F.G : n*mf- hk 
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and 

(zip.G.F)U : mmt- hl . 

So for non-endo F and G they do not have the same arity. The source and target arities 
are clearly related by matrix transposition, i.e. the relator 'r. That is, 

,((zip.G.F)U,( : n*mt- hk . 

So, the general definition becomes: 

Definition 44 (Commuting Relators) The half-zip zip.F.G IS said to be a ZIP of 
(F, G) if there exists a half-zip zip.G.F such that 

zip.F.G = ,((zip.G.F)u,( 

We say that datatypes F and G commute if there exists a zip for (F, G). 
o 

5 Consequences 

In this section we address two concerns. First, it may be the case that our requirement is 
so weak that it has many trivial solutions. We show that, on the contrary, the requirement 
has a number of consequences that guarantee that there are no trivial solutions. On 
the other hand, it could be that our requirement for datatypes to commute is so strong 
that it is rarely satisfied. Here we show that the requirement can be met for all regular 
datatypes. (Recall that the "regular" datatypes are the sort of datatypes that one can 
define in a conventional functional programming language.) Moreover, we can even prove 
the remarkable result that for the regular relators our requirement has a unique solution. 

5.1 Shape Preservation 

Zips are partial operations: zip.F.G should map F-structures of (G-structures of the same 
shape) into G-structures of (F-structures of the same shape). This requirement is, however, 
not explicitly stated in our formalisation of being a zip. In this subsection we show that it 
is nevertheless a consequence of that formal requirement. In particular we show that a half 
zip always constructs G-structures of (F-structures of the same shape). We in fact show a 
more general result that forms the basis of the uniqueness result for regular relators. 

Let us first recall how shape considerations are expressed. The function !A is the function 
of type 1 t- A that replaces a value by the unique element of the unit type, 1. Also, for an 
arbitrary function f, Ff maps an F-structure to an F-structure of the same shape, replacing 
each value in the input structure by the result of applying f to that value. Thus F!A maps 
an F-structure (of A's) to an F-structure of the same shape in which each value in the 
input structure has been replaced by the unique element of the unit type. We can say that 
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(f!A)X is the shape of the f-structure x, and f!A 0 f is the shape of the result of applying 
function f. 

Now, for a natural transformation (X of type f (-- G, the shape characteristics of (X in general 
are determined by (Xl, since 

That is, the shape of the result of applying (XA is completely determined by the behaviour 
of (Xl. The shape characteristics of zip.f.G, in particular, are determined by (zip.f.Gh since 

Gf!A 0 (zip.f.G)A = (zip.f.Gh 0 fG!A 

Our shape requirement is that a half zip maps an f-G-shape into a G-f-shape in which all 
f-shapes equal the original f-shape. This we can express by a single equation relating the 
behaviour of (zip.f.Gh to that offan.G. Specifically, we note that (fan.G)Fl generates from 
a given f-shape, x, an arbitrary G-structure in which all elements equal x, and thus have 
the same f-shape. On the other hand, f(fan.Gh, when applied to x, generates f-structures 
with shape x containing arbitrary G-shapes. The shape requirement (for endorelators) is 
thus satisfied if we can establish the property 

(fan.G)Fl = (zip.f.Gh 0 f(fan.Gh . ( 45) 

This property is an immediate consequence of the following lemma (stated in full general
ity). 

Suppose f: k(--l and G: m(--n are datatypes. Then, iffan.G is the canonical fan of G, 

(46) 

From equation (45) it also follows that the range of (zip.f.Gh is the range of (fan.G)Fl, i.e. 
arbitrary G-structures of which all elements are the same, but arbitrary, f-shape. 

A more general version of (46) is obtained by considering the so-called fan function. Re
calling the characterising property of the membership relation (20), we define the mapping 
"F (with the same arity as F, namely k(--l) by 

(47) 

for all R : A (-- ~lB. (Note that "F is a partial mapping since it is only defined on relations 
with source a vector of 1 instances of the same object.) Then the generalisation of (46) is 
the following lemma. 

Suppose F: k(--l and G: m(--n are datatypes. Then, if (; is the fan function of G, 

((;kWF)R = (zip.F.G)A 0 (mF)((;l)R , 

for all R: A(-- ((~n)l)B. 

It is (48) that often uniquely characterises zip.f.G. 
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5.2 Commuting relators 

One reason why our requirements might have trivial solutions is that they are expressed in 
terms of lax natural transformations. Requiring properness of a natural transformation is 
stronger. The next lemma establishes a properness result for zips on commuting datatypes; 
it proves to be the key in showing that certain zips are unique. 

Let E, denote a class of commuting datatypes. Then for all F : k (- 1, and G , H : m (- n in 
E, and all families of functions IX such that IX : G (- H, 

(49) 

Note that the lemma does not imply that the zips are themselves simple. On the face of 
it, the property stated in the lemma is quite weak. 

5.3 All regular datatypes commute 

We now come to the main result of this paper, namely, that all regular relators commute. 
Morever, for each pair of regular relators F and G there is a unique natural transformation 
zip.F.G satisfying our requirements. 

The regular relators are constructed from the constant relators, product and coproduct 
by pointwise extension and/or the construction of tree relators. The requirement that 
zip.F.G and zip.G.F be each other's converse (modulo transposition) demands the following 
definitions: 

zip.Id.G - idG (50) 
zip.Proj.G idG(Projk) for all G : 1 (- k and all Proj : 1 (- 1 (51) 
zip.""h.G '("""(zip.h.G) (52) 
zip.FG.H - (zip.F.HWG) 0 F(zip.G.H) for all H : 1 (- k (53) 

The restriction to single-valued relators in these equations is made possible by the rule for 
zip.G .""Fl . 

For the constant relators and product and coproduct, the zip function is uniquely charac
terised by (48). One obtains the following definitions, for all G : 1 (- k: 

zip.KA.G 

zip.+.G 

zip.x.G 

(fan.G)(KA) 

Ginl " Ginr 

(Goutl " Goutr)U 

(54) 

(55) 
(56) 

Note that, in general, zip.KA.G and zip.x.G are not simple; moreover, the latter is typically 
partial. That is the right domain of (zip.x .G)(A,B) is typically a proper subset of GA X GB. 
Datatypes defined in terms of these datatypes will thus also be non-simple and/or partial. 
Nevertheless, broadcast operations ("strengths") are always functional. 
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Tree relators are the last sort of relators in the class of regular relators. Let T be the tree 
relator induced by 0 as defined in section 2.2.6. Here the uniqueness of zip.T.G for all 9 is 
assured by (49) with ex. instantiated to in. One obtains: 

zip.T.G = [id G0; G(kin)o(zip.0.G)C'(IdLlT))D for all G: 1 (-k (57) 

5.4 Broadcast and Structure Multiplication, Again 

In our motivation of commuting datatypes, we said that the requirements for structure 
multiplication and "strength" would be met "almost by definition". In this section we 
observe in what sense that is indeed the case. 

The requirements for structure multiplication are given by equations (30) and (31); those 
for broadcasts by (33), (34) and (35). 

We begin with (30), (33) and (34). Note that all of these correspond to triangular dia
grams. All are instances or simple consequences of the compositionality requirement of 
zips,43(c). This is easiest to see in the case of (34) since it suffices to make the substi
tutions F,G,H := (xC), F, (Ax). Next easiest to see is (33). Here the observation has 
to be made that KFA = FKA. Then make the. substitutions F,G,H := (x 1), F, KA. Finally, 
(30) is a combination of 43( c) and (44) with the substitutions F,G ,H := G , F , (Ax). Thus 
all three requirements are satisfied, by definition, if it can be shown that all the relators 
involved belong to a class of commuting relators. In particular, since the sections (x C) 
and (A x) are regular relators, all the requirements are met if in each case F is a regular 
relator. 

The remaining two requirements, (31) and (35), are instances of (49) and 43(d), re
spectively. This is less easy to see. The key is to observe that the broadcast ex. where 
ex.B = (zip.( x B) .F)A is a proper, functional natural transformation of type F(Ax) (- (FA) x 
for each regular relator F and each A. (Note that the functionality is a special prop
erty of broadcasts. As mentioned before, zips are typically partial and nondeterministic. 
Hoogendijk [14] proves that (zip.(xB).F)A is functional for all regular relators F.) Property 
(31) is then an instance of (49) after making the substitutions F,G,H := G, F(Ax), (FA)x 
and defining ex. as above. Property (35) is obtained from 43(d) using the substitutions 
F,G,H,ex.B := (xC), F(Ax), (FA)x, (zip.(xB).F)A. This results in an inclusion -not an 
equality- but every term is a broadcast, and thus a function, and inclusion of functions is 
equivalent to their equality. We conclude that (31) and (35) are also met provided that F 
and all sections of the form (x C) and (A x) are members of a class of commuting relators, 
and in particular if F is a regular relator. 

6 Conclusion 

Polytypism is a new concept in the repertoire of generic programming. In this paper we 
have made several innovatory contributions to the theoretical and practical development 
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of polytypism. First, and arguably most importantly, we have provided strong evidence for 
the necessity of developing a theory of p,olytypism in a relational rather than a functional 
framework. Membership and fans can only be discussed at a metalevel in a functional 
framework and the fact that all regular relators commute is just not true in a functional 
framework since some of the transformations are necessarily nondeterministic. Second, we 
have demonstrated how to cope cleanly with non-endorelators thus overcoming a limitation 
of all other work in this field published to date that we know of (including our own). Third, 
we have illustrated a general approach to the specification of poly typic programs. Roughly 
summarised the approach is to require that the class of programs is compositional with 
respect to the pointwise definition of datatypes, and that the class is "higher order natural" 
in the sense that it maps related datatypes to related datatypes (just as polymorphic 
functions map related objects to related objects). This is a major advance on our earlier 
work [3] in which the commuting requirement was substantially more operational in flavour 
and hence ad hoc. 

Several challenges remain. A major frustration is that we have been unable to establish 
a general unicity property of the "zip" operators even though in every individual case 
that we have studied we can prove unicity. This suggests that our requirements can be 
made stronger and, in the process, yet simpler and more elegant. Broader questions are 
how the notion of polytypism relates to, for example, design patterns [13] and adaptive 
object-oriented programming [19]. 

Acknowledgement The diagrams were drawn with the aid of Paul Taylor's commutative 
diagrams package. 
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