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Post Galerkin Method for the Navier�Stokes

Equations �

Hou Yanreny� Li Kaitai

College of Science� Xi�an Jiaotong University� Xi�an ������� CHINA	

Abstract� A kind of post Galerkin method based on the virtue of inertial manifold and approximate

inertial manifold for the two dimensional Navier�Stokes equations is constructed in this paper� This

kind of post Galerkin method also leads to a kind of new construction of approximate inertial manifold�

We investigate the property of this manifold and derive the error estimation of our scheme� According

to our method� one can get a much more accuracy approximate solution at any time once the standard

Galerkin approximate solution is at hand� Obviously� this method will yield a signi�cant gain in

computing time�

Key Words� Approximate inertial manifold� Galerkin method� error estimation� Navier�Stokes equa�

tions

AMS Subject Classi�cation ��M��� ��M	
� 	�D
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� Motivation

Although the computing facilities improved in the last decades� directly simulating the Navier�
Stokes Equations�NSE� still remains an open problem because of its large computing scale and
long time integrations� Therefore� how to construct high e�ective and high accuracy numerical
scheme is still an important and practical problem attracting people� Many authors derived
new techniques and methods� For example� Lin Qun�	
� W� Layton��
 and J� Xu��
 used extrap�
olation and two level meshes respectively� Especially� it is worth mentioning the applications of
Inertial Manifolds �IMs� and Approximate Inertial Manifolds �AIMs� theory which were rstly
introduced in 	��� by C� Foias� G� R� Sell� R� Temam��
 and C� Foias� O� Manley� R� Temam��
�
Based upon the nite dimensional behavior of the solutions� they show that there must be at
least some approximate interactive rules between large eddy components and small eddy com�
ponents of the solutions of many dissipative partial di�erential equations� From then on� many
papers were contributed to this subject on constructing related new algorithms� that is all sort
of nonlinear Galerkin methods� and their numerical analysis� For example� we refer readers to
��
� �	�
� �		
��	�
� �	�
 and references therein�
Suppose H be a Hilbert space and H � Hm � �H with dim�Hm� � m � ��� u�t� � H be

the solution of two dimensional NSE� Decomposing u�t� as

u�t� � p�t� � q�t�� with p�t� � Hm� q�t� � �H�

AIMs believes that there must be some approximate interactive rule � � Hm � �H such that
q�t����p�t��� Then its related nonlinear Galerkin method aims to search the approximate
solution of u in form of �um � �p � �q with �q � ���p� such that it can generate a more accuracy
approximation of u than that of Galerkin approximation um� In fact� for some positive sequence
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f�mgm�N which tends to � as m��� general nonlinear Galerkin solution �um admits

�	�	� ju�t�� �um�t�jH�
�
� C�t����m���

And the Galerkin solution um satises

�	��� ju�t�� um�t�jH�
�
� C�t��

� �
�

m���

Here C�t� is some positive constant depending on various data� Obviously� nonlinear Galerkin
method can greatly improve the convergence rate of Galerkin method� That is to say we could
get more accuracy approximation of u�t� with lower computing price compared with Galerkin
method� But its defects is also obvious�

� At each time step� nonlinear Galerkin method must solve �p and �q simultaneously� that is�
nonlinear Galerkin method can not obtain �p without �q� This leads to solving a coupled
equations and increasing computing price�

� Nonlinear Galerkin methods use large eddy component �p to correct small eddy component
�q� Noticing �q � �H and �p � Hm� the nal accuracy depends on both p � �p and q � �q�
Therefore� the nal accuracy can not exceed p� �p� This may restrict the high performance
of nonlinear Galerkin method�

� Nonlinear Galerkin solution �um takes no information from Galerkin solution um�

Being aimed at the above shortages� our paper intends to nd a new � such that the related
algorithms can overcome those defects�

� NSE and Its Galerkin Approximation

Let us consider the following two dimensional NSE conned on a bounded domain � � R�

���	�

�����
����

�u

�t
� ��u� �u 	 r�u�rp � F� �x� t� � �
R��

r 	 u � �� �x� t� � �
R��

u�x� �� � a�x�� x � ��
u�x� t� � �� �x� t� � ��
R��

Here u is �uid velocity and a the initial velocity satisfying r 	 a � �� p the pressure� � � �
stands for kinetic viscosity and F is external force which is assumed to be time independent�
For the sake of simplicity� we also assume that �� is of class C��
Now we introduce a Hilbert space

H � fu � L������r 	 u � � in weak sense � u 	 nj�� � �g�

where n stands for unit out normal vector of �� If we denote P the Leray orthogonal projection
from L����� onto H� by projecting ���	� onto H� we can obtain the abstract NSE

�����

�
du

dt
� �Au�B�u� u� � f�

u��� � a�

where A � �P� is Stokes operator� B�u� u� � P ��u 	 r�u
 and f � PF � It is well known that
A is an unbounded� self�adjoint and positive denite operator with compact inverse� Thus we
have that there exists two sequences

� � �� � �� � 	 	 	 � �n � 	 	 	 � �� and 	�� 	�� 	 	 	 � 	n 	 	 	 � H�

�



such that
A	i � �i	i� �i � N �

At the same time we can dene its powers A� for 
 � R� In fact�

D�A�� � fv � H � v �
��X
j��

vj	j�

��X
j��

���j jvjj
� � ��� vj � Rg

is a closed subspace of H������ and jA� 	 j is an equivalent norm of it at least for 
 �
�

�
� where

j 	 j stands for the L�� norm� In the rest� sometimes we denote V � D�A
�
� �� In addition� ��A

generates an analytic semigroup on H� denoted by fe��Atgt��� with following estimation

����� kA�e��AtkL�H�H� � c���t�
��e���t� t � �� 
 � ��

where � � � is a constant related only on A� c� � � is a constant� For the sake of convenience� we
always use cj � �� j � N � to denote constants which have di�erent meaning in di�erent places
appearing in the analysis� We also introduce the notation kjujkt � sup

��s�t
ju�s�j� especially�

kjujk � sup
s�R�

ju�s�j�

Now for any m � N � we introduce an orthogonal projection Pm

�v �
��X
j��

vj	j � H� Pmv �
mX
j��

vj	j�

Meanwhile� we use Qm to denote I � Pm� The following inequalities are classical and we just
state them out�

jQm	j � �
� �

�

m��jA
�
�	j� �	 � V�

j	jL� � LmjA
�
� 	j� �	 � Hm�

where Lm � �	 � ln�m�
�
� �

By using these two orthogonal projections� we could decompose H as

H � Hm � �H� Hm � PmH� �H � QmH�

To numerically solve ������ we use following Galerkin scheme�

�����

�
dum

dt
� �Aum � PmB�um� um� � Pmf�

um��� � Pma�

Here we use um�t� to represent the Galerkin approximation of u�t�� As well known� its stability
and convergence results are classical� For example� we have the following convergence results

����� ju�t�� um�t�j � C��t��
��
m��� jA

�
� �u�t�� um�t��j � C��t��

� �
�

m���

where C��t� and C��t� are positive constants depending on �� f and a�
How to construct more accuracy approximate solution of u�t� by taking advantages of known

information of it� that is um�t�� is the main problem to be solved in the rest� Of course� nonlinear
Galerkin method can partly solve the problem although it has some defects as we just said in
section 	� Here� we aim to get a new method which can overcome those shortages as well as
improve convergence rate by using the virtue of AIMs to construct a new nite dimensional
mapping� We call it post Galerkin method� It should be able to correct um at any time without
introducing any extra computation except for computing um�

�



� Further Properties of um

In this section� we will give some properties of um which will be very important for our further
discussion� First of all� let us give a kind of new decomposition of true solution u� In fact� after
we get its Galerkin approximation um� the very nature decomposition is to decompose u�t� as
um�t� and its residue �u�t� � u�t� � um�t�� that is

���	� u�t� � um�t� � �u�t��

For the convenience of stating� we identify um�t� � Hm and �u�t� � H as large and small
eddy components respectively� Obviously� the Galerkin approximation um�t� reaches the large
eddy component of true solution exactly� Then� how to approximate small eddy components
is the only problem� According to the ideal of AIMs� we suppose there also exist some kind
of approximate interactive rule between large and small eddies� That is� there should exist a
nite dimensional mapping � from Hm into H� Before we begin to construct it� we need some
further property of um�
Subtracting ����� from ������ we can easily get

�����

�
d�u

dt
� �A�u� B��u� um� � B�um� �u� � B��u� �u� � Qm�f �B�um� um�
�

�u��� � Qma�

This is a nonlinear evolutionary equation of �u�t��
Now let us consider some properties of �u� To do so� we decompose �u as

����� �u � Pm�u� Qm�u
�
� p� q�

Then p satises

�����

�
dp

dt
� �Ap� PmB�um� p� q� � PmB�p � q� um� � PmB�p � q� p� q� � ��

p��� � ��

If we set 	� v� w be any vectors in V which have the forms of

	 � �	�� 	��
T � v � �v�� v��

T � w � �w�� w��
T �

we denote by b the trilinear form��


b�	� v� w� � �B�	� v�� w� �

Z
�

�	 	 r�v 	wdx�

which has the following estimations

����� b�	� v� w� � cbjA
s�
� 	j jA

s���

� vj jA
s�
� wj� �	 � D�A

s�
� �� v � D�A

s���

� �� w � D�A
s�
� ��

Here� s�� s�� s	  � satises s� � s� � s	  	 with �s�� s�� s	��� �	� �� ������ 	� �� and ��� �� 	��
On the other hand� we can alter the form of b� In fact

�	 	 r�v 	w �

��
	�
	�

�
	

�
�x
�y

�	�
v�
v�

�
	

�
w�

w�

�
� 	��xv�w� � 	��yv�w� � 	��xv�w� � 	��yv�w�

� �w 	 rv� 	 	�

where w 	 rv means w�rv� �w�rv�� Denoting B�w� v� � P �w 	 rv�� then we have

����� b�	� v� w� � �B�	� v�� w� � �B�w� v�� 	��

�



We are familiar with the general properties of B�about which we refer readers to ��
� But
those are not enough for our discussion� we still need some further properties of B and B which
we state as following two lemmas�

Lemma ��� For any w � D�A
�
� �� v � D�A� and � � r �

	

�
� it holds

jArB�w� v�j � c�jA
�
�wj jAvj�

And for r �
	

�
and w � D�A

�
� �� we have

jA
�
�B�w� v�j � c�jA

�
�wj jAvj�

Here c� is some positive constant depending only on � and r�
This property of B was proven in �	�
� Noticing the form of B and B are quite alike� we

can easily get the similar property of B by the same method used in �	�
� So we only state the
property in the following without proving�

Lemma ��� For any w � D�A
�
� �� v � D�A� and � � r �

	

�
� it holds

jArB�w� v�j � c�jA
�
�wj jAvj�

And for r �
	

�
and w � D�A

�
� �� we have

jA
�
�B�w� v�j � c�jA

�
�wj jAvj�

Here c� has the same meaning as in lemma ����
Now we are ready to study the important property of �u� By using the semi�group presenta�

tion� we can rewrite ����� as

p�t� ��

Z t

�

e��A�t�s�PmfB�um� p� �B�p� um� �B�p� p� �B�p� q� �B�q� p�

� B�um� q� �B�q� um� � B�q� q�gds

��

Z t

�

e��A�t�s�PmB��p�ds �

Z t

�

e��A�t�s�PmB��q�ds�

where
B��p� � B�um� p� � B�p� um� �B�p� p� � B�p� q� � B�q� p��
B��q� � B�um� q� �B�q� um� �B�q� q��

Then by using ������ we have

jA�
�
� p�t�j �

Z t

�

jA�
�
� e��A�t�s�PmB��p�jds�

Z t

�

jA�
�
� e��A�t�s�PmB��q�jds�����

�

Z t

�

jA
�
� e��A�t�s�A��PmB��p�jds�

Z t

�

jA
�
� e��A�t�s�A��PmB��q�jds

�c��
��
�

Z t

�
�t � s��

�
� e���t�s�jA��PmB��p�jds

� c��
��
�

Z t

�

�t� s��
�
� e���t�s�jA��PmB��q�jds

�



Let us estimate each term of jA��B��p�j and jA��B��q�j� Firstly� we consider each term of
jA��B��p�j� For example� consider jA��PmB�um� p�j� Noticing lemma ��	� for any v � Hm

jb�um� p� A
��v�j �jb�um� A

��v� p�j � j�A
�
�B�um� A

��v�� A�
�
� p�j

�c�jA
�
�umj jA

��
� pj jvj�

Thus we have

����� jA��PmB�um� p�j � c�jA
�
�umj jA

��
� pj�

Similarly� we can derive

����� jA��PmB�p� p�j � c�jA
�
�uj jA�

�
� pj�

���	�� jA��PmB�q� p�j � c�jA
�
�uj jA�

�
� pj�

For the other two terms� we will use lemma ��� to cope with them� For any v � Hm

jb�p� um� A
��v�j �jb�p�A��v� um�j � j�A

�
�B�um� A

��v�� A�
�
� p�j

�c�jA
�
�umj jA

��
� pj jvj�

So we get

���		� jA��PmB�p� um�j � c�jA
�
�umj jA

��
� pj�

Do the same thing to the last term� we have

���	�� jA��PmB�p� q�j � c�jA
�
�uj jA�

�
� pj�

Combining ���������	��� we derive the rst estimation

���	�� jA��PmB��p�j � �c��kjA
�
�ujk� kjA

�
� umjk�jA

��
� pj�

For the estimation of jA��PmB��q�j� the method is completely the same as the above one�
We also use lemma ��	 to deal with B�um� q� � B�q� q� and lemma ��� to deal with B�q� um��
So we just give the result in the following

���	�� jA��PmB��q�j � �c��kjA
�
�ujk� kjA

�
� umjk�jA

��
� qj�

Obviously�

sup
t��

Z t

�
�t� s��

�
� e���t�s�ds � ������ �

�
� ��

where

�� �

Z �

�

s��e�sds � ���	 � 
��

By introducing the following constants

c� � �c�c��
� �

� � �
�
�kjA

�
�ujk� kjA

�
� umjk��

c	 � �c�c��kjA
�
�ujk� kjA

�
� umjk��

�



we can get a new integration inequality from ������ That is

jA�
�
� p�t�j � c	�

��
�

Z t

�

�t� s��
�
� e���t�s�jA�

�
� pjds� c��

��
� kjA�

�
� qjkt�

Set
g�s� � jA�

�
� p�s�je�s�

we have

g�t� � c��
��
� e�tkjA�

�
� qjkt � c	�

��
�

Z t

�

�t� s��
�
� g�s�ds�

To give the estimation of g� we must introducing an inequality� Many inequalities of this type
can be found in Henry��
� The following special version� lemma ���� was proven in �	�
�

Lemma ��� Let T � 
�  and � be positive constants� � � � � 	� Then for any continuous
function f � ��� T 
� ������ that satis�es

f�t� � 
� 

Z t

�

�t� s���f�s�ds� � � t � T�

we have
f�t� � c

 expfc


�������tg� � � t � T�

with a positive constant c
 that depends only on ��
Now by using lemma ���� we can immediately obtain

g�t� � c�c
�
��
� e�t expfc
c

�
	�
��tgkjA�

�
� qjkt�

Denoting by T��t� � � the constant c�c
 expfc
c�	�
��tg� �

�
� � we have

���	�� jA�
�
� p�t�j � ���

�
�T��t�� 	�kjA

��
� qjkt�

Now we summarize the above deducing into the following
Theorem ��� For any given data a � D�A� and f � H� we know the Navier�Stokes

equations �	�
� and its Galerkin approximate equations �	��� have unique solutions

u�t� � L��R�� D�A��� um�t� � L��R�� D�A���

And there also exist some positive constants M� and M� related on �� a and f such that

kjA
�
�ujk� kjA

�
�umjk �

M�

�
� kjAujk� kjAumjk �M��

Then for any t � �� we have

jA�
�
� �u� um�j � ��

�
� �

� �
�

m��T��t�kju� umjkt�

Proof From �	�
 and ���	��� we can immediately get the result� �

� Finite Dimensional Mapping �

As we said before� the main task in our paper is to construct some kind of approximate in�
teractive rule between �u and um� That is to nd some kind of nite dimensional mapping
� � Hm � V such that �u���um��

�



To do so� we introduce an smooth function

g�s� � C��R��

with the following properties

� � g�s� � 	� jg��s�j � �� and �s � ��� 	
� g�s� � 	� �s � ������ g�s� � ��

Now let us recall ������ Of course� ����� is a kind of rule� We may exactly get �u from
um� This is� in fact� to solve the Navier�Stokes equations� It is not suitable for our purpose

because it is as complex as ������ But� enlightened by this equations and noticing
d�u

dt
and

B��u� �u� are smaller quantities compared with other terms in ������ we introduce the following
nite dimensional mapping

���	�

��
�
�	 � Hm� nd w � V such that

h��w � �Aw� g�
�jA

�
�	j

M�
��B�w� 	� �B�	�w�
 � g�

�jA
�
�	j

M�
�Qm�f � B�	� 	�
�

Here� h � � is a small constant which will be given soon� Let us introduce bilinear form

L�w� v� �� h���w� v� � ��A
�
�w�A

�
� v� � g�

�jA
�
�	j

M�
��b�w� 	� v� � b�	�w� v�
�

It is clear that L�	� 	� is a continuous bilinear form from V 
 V to R� Furthermore� we have
Lemma ��� L�	� 	� is continuous and coercive if h is small enough such that

����� h �
��

c�bM
�
�

�

Proof Indeed

�h��w��Aw� g�
�jA

�
�	j

M�
��B�w� 	� � B�	�w�
� w� �

jwj�

h
� �jA

�
�wj� � g�

�jA
�
�	j

M�
�b�w� 	�w�


jwj�

h
� �jA

�
�wj� � cbjA

�
�	j jwj jA

�
�wj 

jwj�

h
� �jA

�
�wj� � cbM�jwj jA

�
�wj

�
	

h
�
c�bM

�
�

��
�jwj� �

�

�
jA

�
�wj� 

�

�
jA

�
�wj��

Notice we used an implicit condition jA
�
�	j � M� in the above inequality� For jA

�
�	j  M�� g

will be equal to zero and the above result is obvious� Then we can get the result� �

Consequently� by using Lax�Milgram theorem� we know� for any give 	 � Hm� there exists
an unique solution w � ��	� of the following variational problem corresponding to ���	��

�����

��
�
�	 � Hm� nd w � V such that

L�w� v� � g�
�jA

�
�	j

M�
���Qmf� v� � b�	� 	�Qmv�
 �v � V

Theorem ��� Assume h satis�es ���	�� Then ����� can determine a �nite dimensional
mapping � from Hm to V which has the following properties

i� ��	� � � for jA
�
�	j  M��

ii� For any 	 � Hm�

jA
�
���	�j � �m �

�

�
�jf j � cbM

�
�Lm��

� �
�

m���

�



of course �m � � when m���
iii� � is a Lipschitz smooth mapping� That is� there exists some constant lm � � such that

jA
�
� ���	��� ��	���j � lmjA

�
� �	� � 	��j�

And lm � � when m���
Proof By virtue of lemma ��	� it asserts that ���	� can determine a nite dimensional

mapping�

i� Let us consider jA
�
�	j  M�� Notice the denition of g� we know g�

�jA
�
�	j

M�
� � � at this

time� So ���	� becomes
h��w � �Aw � ��

Of course� it only has zero solution� That is� under this circumstance�

w � ��	� � ��

ii� We only need to consider jA
�
�	j � M�� Just as being done to prove the uniqueness of the

solution� we can get

�

�
jA

�
���	�j� �j�f�Qm��	�� � b�	� 	�Qm��	��j

��jf j� cbM
�
�Lm��

� �
�

m��jA
�
���	�j�

Then we can get the result�
iii� At last� we will show this mapping is also Lipschitz continuous� For any given 	�� 	� �

Hm� we can get w� � ��	�� and w� � ��	�� from ���	�� That is

h��w� � �Aw� � g�
�jA

�
�	�j

M�
��B�w�� 	�� � B�	�� w��
 � g�

�jA
�
� 	�j

M�
�Qm�f � B�	�� 	��
�

h��w� � �Aw� � g�
�jA

�
�	�j

M�
��B�w�� 	�� � B�	�� w��
 � g�

�jA
�
� 	�j

M�
�Qm�f � B�	�� 	��
�

If we denote 	e � 	��	�� we � w��w� and �g � g�
�jA

�
�	�j

M�
��g�

�jA
�
�	�j

M�
�� we can derive

from the above two equations that

h��we��Awe � g�
�jA

�
�	�j

M�
��B�we� 	�� � B�w�� 	e�
�����

�g�
�jA

�
� 	�j

M�
��B�	e� w�� � B�	�� we�
 � �g�B�w�� 	�� � B�	�� w��


��gQmf � g�
�jA

�
�	�j

M�
�Qm�B�	e� 	�� �B�	�� 	e�
 � �gQmB�	�� 	���

For di�erent values of jA
�
�	�j and jA

�
� 	�j� we divided our proof into several cases�

Case 	� jA
�
�	�j� jA

�
�	�j M��

Noticing the denition of g� ����� becomes

h��we � �Awe � ��

�



We can get the Lipschitz continuous result for any lm � R��

Case �� One of them exceeds M��

Without loss of generality� we suppose jA
�
�	�j M� and jA

�
�	�j � M�� Then ����� reads

����� h��we � �Awe ��gB�w�� 	�� � �gB�	�� w�� � �gQmf ��gQmB�	�� 	���

Notice that �g � �g�
�jA

�
�	�j

M�
� at this time� But we pretend that g�

�jA
�
�	�j

M�
� is still there�

Then by using the property of g� we have

����� j�gj �
�

M�
�jA

�
�	�j � jA

�
�	�j� �

�

M�
jA

�
�	ej�

Multiply ����� by we and integrate it on �� we get

h��jwej
� � �jA

�
�wej

� �j�gb�w�� 	�� we�j� j�gb�	�� w�� we�j

� j�g�f�Qmwe�j� j�gb�	�� 	�� Qmwe�j������

Noticing ����� and the result of ii�� we majorize each term on the right hand side of ����� as�

j�gb�w�� 	�� we�j �
�cb
M�

jA
�
�w�j jA

�
�	�j jA

�
�wej jA

�
�	ej � �cb�mjA

�
�wej jA

�
�	ej�

j�gb�	�� w�� we�j � �cb�mjA
�
�wej jA

�
�	ej�

j�g�f�Qmwe�j �
�jf j

M��
�
�

m��

jA
�
�wej jA

�
�	ej�

j�gb�	�� 	�� Qmwe�j �
�cb
M�

j	�jL� jA
�
�	�j jQmwej jA

�
�	ej

��cbM�Lm�
� �

�

m��jA
�
�wej jA

�
�	ej�

Combining the above inequalities and omitting h��jwej� on the left hand side of ������ it yields

�jA
�
�wej

� � ��cb�m � �M�jf j�
� �

�

m�� � �cbM�Lm�
� �

�

m���jA
�
�wej jA

�
�	ej�

Denoting lm � �����cb�m � �M�jf j�
� �

�

m�� � �cbM�Lm�
� �

�

m���� we can get the result�

Case �� jA
�
�	�j� jA

�
�	�j � M��

Multiply ����� with we and integrate it on �� we have

h��jwej
���jA

�
�wej

� � jb�we� 	�� we�j� jb�	e� w�� we�j�����

�j�gb�w�� 	�� we�j� j�gb�	�� w�� we�j� j�g�f�Qmwe�j� jb�	e� 	�� Qmwe�j

�jb�	�� 	e� Qmwe�j� j�gb�	�� 	�� Qmwe�j�

Just like the previous case� we majorize each term on the right hand side of ����� as�

jb�we� 	�� we�j � cbM�jA
�
�wej jwej �

�

�
jA

�
�wej

� �
c�bM

�
�

��
jwej

��

	�



jb�	e� w�� we�j � cb�mjA
�
�wej jA

�
�	ej�

j�gb�w�� 	�� we�j � �cb�mjA
�
�wej jA

�
�	ej�

j�gb�	�� w�� we�j � �cb�mjA
�
�wej jA

�
�	ej�

j�g�f�Qmwe�j �
�jf j

M�
�
� �

�

m��jA
�
�wejjA

�
�	ej�

jb�	e� 	�� Qmwe�j � cbj	ejL� jA
�
�	�jjQmwej � cbM�Lm�

� �
�

m��jA
�
�wejjA

�
�	ej�

jb�	�� 	e� Qmwe�j � cbM�Lm�
� �

�

m��jA
�
�wejjA

�
�	ej�

j�gb�	�� 	�� Qmwe�j � �cbM�Lm�
� �

�

m��jA
�
�wejjA

�
�	ej�

Then� from ������ we have

�

�
jA

�
�wej � ��cb�m � �cbM�Lm�

� �
�

m�� � �jf jM
��
� �

� �
�

m���jA
�
�	ej�

Once again� if we denote

lm �
�

�
��cb�m � �cbM�Lm�

� �
�

m�� � �jf jM
��
� �

� �
�

m����

we can derive the result again� �

� Post Galerkin Method

In previous section� we construct a nite dimensional mapping � � Hm � V � Now� we will use
it to give our post Galerkin scheme� In fact� once we get �� the construction of post Galerkin
scheme is obvious� We state it as following three steps�
�Step �� Galerkin approximation���

��
nd um�t� such that
dum

dt
� �Aum � PmB�um� um� � Pmf�

um��� � Pma�

�Step �� Postprocess um�t� at any time t � R�

��
�

nd �u�t� � ��um�t�� such that

h���u� �A�u� g�
�jA

�
� umj

M�
��B��u� um� �B�um� �u�
 � g�

�jA
�
�umj

M�
�Qm�f � B�um� um�
�

�Step �� Post Galerkin approximation

u��t� � um�t� � �u�t� � um�t� � ��um�t���

In the rest� we will investigate the accuracy presented by this scheme� First of all� we give
some classical result as

Lemma �����
 Under the conditions of theorem ���� the solution u�t� of �	�	� is analytic
in time� in a neighborhood of the positive real axis� as a D�A�� valued function�
Denoting by d the distance between the boundary of analytic region and the positive real

axis� we could derive the following estimation of
d�u

dt
at any time by Cauchy theorem�

		



For any given t � �� we know from the above lemma and Cauchy theorem

d�u�t�

dt
�
	

��i

Z
jz�tj�d

�u�z�

�t� z��
dz�

Thus�

jA�
�
�
d�u�t�

dt
j �

	

��
j

Z
jz�tj�d

A�
�
� �u�z�

�t� z��
dzj���	�

�d��kjA�
�
� �ujkt � d����

�
��

� �
�

m��T��t�kj�ujkt�

Generally� d is a small constant related to � and f � For its concrete express� we refer readers
to ��
� Now� we give our main result as

Theorem ��� Under the conditions of theorem ��� and ���	�� we have

jA
�
� �u�t� � u��t��j � T��t��

� �
�

m���

where
T��t� � ��

��C��t���h
�� � d�����

�
�T��t� � c�C��t���

Proof Notice that

u��t� � um�t� � ��um�t��� u�t� � um�t� � �u�t��

Thus� to get the estimation� we only need to concern about

�u�t�� ��um�t�� � �u�t�� �u�t��

Because of kjA
�
� umjk �

	

�
M�� we have

g�
�jA

�
� umj

M�
� � 	�

Thus �u satises the following equations at any give time

����� h���u� �A�u�B��u� um� �B�um� �u� � Qm�f �B�um� um�
�

Subtracting ����� from ����� and denoting e � �u� �u� we have

h��e � �Ae� B�e� um� �B�um� e� � h���u�
d�u

dt
� B��u� �u��

From lemma ��	� we know

kh��e � �Ae�B�e� um� �B�um� e�kL�V�V �� 
�

�
jA

�
� ej�

And from ������ theorem ��	 and ���	�� we have

kh���u�
d�u

dt
�B��u� �u�kL�V�V �� � �h

�� � d���kjA�
�
� �ukjt � c�j�ujjA

�
� �uj

���h�� � d�����
�
�T��t��

� �
�

m�� � c�jA
�
� �uj�j�uj������

	�



By using ����� we conclude

jA
�
� ej � ����C��t���h

�� � d�����
�
�T��t� � c�C��t���

� �
�

m���

End of the proof� �

Remark� Notice that �Step �� of the post Galerkin scheme is solved in whole space V �
When we consider the realistic implementation of this scheme� we should restrict this step
in a larger nite dimensional subspace of V � namely� HM with M � m and to get a nite
dimensional approximation u�M �t�� That is we should modify the �Step �� and �Step �� as
�Step �	� Postprocess um�t� at any time t � R�

������
�����

nd uM �t� � �M �um�t�� � HM such that

h��uM � �AuM � g�
�jA

�
�umj

M�
�PM �B�uM � um� �B�um� uM�


� g�
�jA

�
� umj

M�
�PMQm�f � B�um� um�
�

�Step �	� Post Galerkin aprroximation

u�M �t� � um�t� � uM�t� � um�t� ��M �um�t���

It is easy to show that this nite dimensional scheme has the following error estimation

jA
�
� �u�t� � u�M �t��j � T��t��

� �
�

m�� � C�
� �

�

M���

Of course� to balance the two terms on the right hand side of the above inequality� we should
choose M � m	� That is the performance of our proposed scheme is just like that of a standard
Galerkin scheme with very large computing scale�
On the other hand� the results here are also valid when we consider the periodic boundary

conditions case�

� Numerical experiment

In this section� we will present a simple numerical experiment for our scheme� For the sake
of simplicity� we will consider problem ����� in a square domain � � ���� ��� with periodical
boundary conditions� Under this circumstance� H is

H � fu �
X

k�Z�k 	��

uke
ix
k� uk � u�k� divu � � under weak sense �

X
k�Z�k 	��

jukj
� � ��g�

We assume that we have a true solution of ������ In fact� we give some function u�t� � H with

juk�t�j � jkj
���

And for given m � N � we dene Pm is the orthogonal projection from H onto

Hm � fu �
X

jk�j�jk�j�m

uke
ix
k� uk � u�k� divu � �g�

where k � �k�� k��
T � Meanwhile� for the periodical case� it is very easy to get the divergence

free projection P � Then we use this u�t� to compute Pmf�t� in ����� and solve it to get the
standard Galerkin approximation�

	�



Concerning about the computing scale� we only give a small scale simulation here� For
example� in our numerical implementation� we take m � �� M � �m and h � � � 	� Following
table indicates the relative error of standard Galerkin method and post Galerkin method dened
as

SGM �
ku� umk

kuk
�

and

PGM �
ku� u�Mk

kuk
�

where SGM and PGM mean the relative error of standard Galerkin method and post Galerkin
method respectively�

Time SGM PGM
��� ���� ����� 
��� ���� 	��� 
��� ���� ���	 
��� 	��� ���� 
	��� ���� ���� 
	��� ���� ���� 
	��� ���� 	��� 
	��� ���� 	��� 
	��� ���� ����� 
���� ���� ����� 
���� ���� ����� 

It seems that
PGM

SGM
�
	

�
� From the remark at the end of last section� we know this ratio

is restricted by the truncation error because we just take M � �m instead of M � m	 when

concerning about the large computing scale� So this ratio is reasonable because
�
� �

�

M���

�
� �

�

m���

should

be close to
M��

m��
�
	

�
�
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