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1 INTRODUCTION

Simulated annealing belongs to a class of local search algorithms that are known
as threshold algorithms. These algorithms play a special role within local search
for two reasons. First, they appear to be quite successful when applied to a broad
range of practical problems, which has given them quite a reputation among
practitioners. Second, some threshold algorithms such as simulated annealing
have a stochastic component, which facilitates a theoretical analysis of their
asymptotic convergence, and this has made them very popular to mathema-
ticians.

The emphasis of our presentation is on the mathematics of threshold algo-
rithms, with special attention paid to simulated annealing. We discard the
application of threshold algorithms to specific problems, since this issue is
discussed in detail in Chapters 8 to 13 of this volume. However, we mention some
general aspects of the algorithms’ practical use to give the reader a feeling of what
he might expect from their application.
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92 4 Simulated annealing

2 THRESHOLD ALGORITHMS

Let (&, f) be an instance of a combinatorial minimization problem with solution
set & and cost function f:% — R. Furthermore, let #": ¥ — (%) be a neighbor-
hood function, which defines for each ie& a set A/ (i)=& of neighboring
solutions. The question is to find an optimal solution i*e% that minimizes the
cost of all solutions over &. Consider the class of threshold algorithms given by the
pseudocode of Figure 4.1.

The procedure INITIALIZE selects a start solution from &, the procedure
GENERATE selects a solution from the neighborhood of a current solution, and
the procedure STOP evaluates a stop criterion that determines termination of the
algorithm. Threshold algorithms continually select a neighbor of a current
solution and compare the difference in cost between these solutions to a thresh-
old. If the cost difference is below the threshold, the neighbor replaces the current
solution. Otherwise, the search continues with the current solution. The sequence
(ttk =0,1,2,...)denotes the thresholds, where t, is used at iteration ofthe local
search algorithm.

We distinguish between the following three types of threshold algorithms
depending on the nature of the threshold:

e Iterative improvement: t, =0, k=0,1,2,... Clearly, this is a variant of the
classical greedy local search in which only cost-reducing neighbors are
accepted.

e Threshold accepting: t,=c,, k=0,1,2,..., where ¢, >0,¢,>¢;,,, and
lim, , ¢, = 0. Threshold accepting uses a nonincreasing sequence of determin-
istic thresholds. Due to the use of positive thresholds, neighboring solutions
with larger costs are accepted in a limited way. In the course of the algorithm’s
execution, the threshold values are gradually lowered, eventually to 0, in which
case only improvements are accepted.

procedure THRESHOLD_ALGORITHM;
begin

INITIALIZE (i,,,.);

1= lstarta

k:=0;
repeat

GENERATE (j from A" (i));
if £ (j)—f (i) <t, theni:=j;
k=k+1;

until STOP;

end;

Figure 4.1 Pseudocode of a class of threshold algorithms
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e Simulated annealing: t, =a random variable with expected value E(t)) = c,eR™,
k=0,1,2,.... The z,’s follow a probability distribution function F ., Over R™.
Simulated annealing uses randomized thresholds with values between zero and
infinity, and the probability of a threshold ¢, being at most yeR™ is given by
P, {tk <y}=F, (). This implies that each neighboring solution can be chosen
w1th a pos1t1ve probabllxty to replace the current solution. In practice the
function F_ is chosen such that solutions corresponding to large increases in
cost have a small probability of being accepted, whereas solutions correspond-
ing to small increases in cost have a larger probability of being accepted.

As an important matter we remark that, in the original simulated annealing
version, Kirkpatrick, Gelatt & Vecchi [1983] and Cerny [1995] take for F the
negative exponential distribution with parameter 1/c,. This choice is identical to
the following acceptance criterion. For any two solutions i, je & the probability of
accepting j from i at the kth iteration is given by

. if ()< /0,
P, {accept j} = exp(@:ﬂﬂ) if £(j)> 0.

k

ey

The parameter c, is used in the simulated annealing algorithm as a control para-
meter, and it plays an important role in the convergence analysis of the algorithm.
We will drop the subscript k of the control parameter if it is not explicitly needed.

Some preliminary convergence results

For iterative improvement it is not possible to give nontrivial convergence
results. For multistart iterative improment, which consists of single runs of
iterative improvement that are repeated with different start solutions, it is easily
verified that an optimal solution is found with probability 1 if an infinite number
of restarts is allowed.

Threshold accepting was introduced by Dueck & Scheuer [1990] as a deter-
ministic version of simulated annealing. One of the major unresolved problems is
the determination of appropriate values for the thresholds. Furthermore, asin the
case of iterative improvement, no general convergence results can be proved, but
one can do slightly better. Althdfer & Koschnick [1991] have related some
convergence properties of threshold accepting to those of simulated annealing.
The proofs of the convergence results are not constructive. They make use of the
fact that, in some sense, simulated annealing generalizes threshold accepting. For
instance, one of their propositions states that if there is a finite sequence of
thresholds for simulated annealing, leading to an optimal solution with probabil-
ity 1 — ¢ for some ¢ > 0, then there also exists a finite sequence of thresholds for
threshold accepting, leading to an optimal solution with probability 1 —e.
Furthermore, they give a simple example for which suboptimal solutions can be
reached with threshold sequences of any length, demonstrating that even asym-
ptotically the algorithm can get trapped in local minima.
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Finally, for simulated annealing there exist general convergence results, which
state that under certain mild conditions an optimal solution is found with
probability 1. These results are obtained by analyzing the algorithm in terms of
Markov chains. This central issue is the subject of Section 5 and subsequent
sections. Before we present these quantitative performance results, we first discuss
some qualitative results.

3 A QUALITATIVE PERFORMANCE ANALYSIS

To analyze the performance of the threshold algorithms introduced in the
previous section, we consider the following combinatorial optimization problem,
which is a simplified version of a problem introduced by Lundy & Mees [1986].
Let the set of solutions be given by & = {0, 1,..., N}, with 1 « N, and let the cost
function f:& — R be given by

f@=i—Li/n]9,

with neN, 1 «n« N, 6€R, and 1 < ¢ < n. Figure 4.2 illustrates the cost function
for 6 = 2. The problem is to find an element in & with minimum cost.

This problem formulation can be generalized to solution sets of d dimensions
as follows. If ¥ = {0, 1,..., N}, the cost function is given by f{ig,iy,...,i;_,}=

6
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Figure 4.2 The cost function f for 6 =2
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r —|r/n] 6, with r = max {iy,i,,...,i;_, }. Lundy & Mees [1986] discuss a two-
dimensional version of this problem.

Furthermore, let A" be a neighborhood function defined by A4 (i) = {i—1,
Li+1},forie{l,2,...,N—1},4°(0)={0,1},and #"(N) = {N — 1, N}. We now
consider the performance of the threshold algorithms on this problem, for two
choices of 6, namely 6 ~ 1 and 6> 1, corresponding to the situations where
a small or a large deterioration is required to escape from a local minimum,
respectively.

The behavior of multistart iterative improvement is identical for both cases.
A single iteration is described as follows. It randomly selects an initial solution
ifrom & ={0,1,...,N} and terminates in a local optimum given by i = |i/n |n.
Clearly, the algorithm only finds a global optimum in a given iteration if the
initial solutionisin {0, 1,...,n — 1}. The expected number of iterations to obtain
a global optimum can be shown to be O(M), with M = N/n, for the one-
dimensional case, and O(M®) for the case with d dimensions. This illustrates that
multistart iterative improvement can always find a global optimum, but that the
required effort may be very large —equivalent to enumerating all solutions in &.

We now consider the behavior of threshold accepting and simulated annealing
for the case that 6 ~ 1. For threshold accepting, we consider three situations,
depending on the value of the thresholds ¢,. If ¢, > 1, each transition from
a solution i to one of its neighbors i — 1, i+ 1 is accepted, and the algorithm
performs a random walk in the solution space &. If § — 1 < t, < 1, the algorithm
only accepts transitions from a solution i to its neighbor i — 1. Hence, in that case
the algorithm performs as an optimization algorithm. If 1, < & — 1, the algorithm
performs as iterative improvement and terminates in the local minimum i that
corresponds to the current solution i. From this example we observe that
threshold accepting may perform very well, provided that the thresholds t, are
properly chosen. If 6 — 1< #, < 1, the algorithm finds a global optimum in O(N)
transitions or, assuming that n is constant, in O(M) transitions. Note that this
number of transitions does not depend on the number of dimensions. Conse-
quently, provided the threshold is chosen properly, threshold accepting may do
considerably better than multistart iterative improvement.

For the case that 6 ~ 1, simulated annealing behaves similarly to threshold
accepting. This can be seen as follows. If ¢ > 1, simulated annealing more or less
performs a random walk, but having a slight preference for solutions with a small
cost. If 6 — 1 < ¢ « 1, the algorithm nearly only accepts transitions from a solu-
tion i to its neighbor i—1. In that case the algorithm also performs as an
optimization algorithm, requiring O(N) transitions to obtain a global optimum.
If ¢, <9, the algorithm probably terminates in the local minimum # that
corresponds to the current solution i, although there is a small probability of
obtaining better solutions.

Next we consider the case that § > 1. In that case, threshold accepting cannot
find on average better solutions than (single-start) iterative improvement. This
can be shown as follows. If t, > — 1, the algorithm accepts any proposed
transition. Consequently, as long as t, > — 1, threshold accepting performs
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a random walk on the set of solutions. If t, < § — 1, the algorithm behaves at least
as bad as (single-start) iterative improvement. Let i be the current solution at that
moment. Then the best obtainable solution is i’ = [ i/n | i. The algorithm even has
a positive probability of terminating in a local minimum j’ with j' > 7'. Since, on
average, the initial solution is identical to the solution obtained after the random
walk, we conclude that, on average, threshold accepting cannot find better
solutions than (single-start) iterative improvement. Hence, even if the algorithm s
given enough time and the thresholds are carefully chosen, threshold accepting
cannot guarantee to find a global optimum, whereas simulated annealing always
has a positive probability of reaching a global optimum, when given enough time.
As we show in the next section, simulated annealing asymptotically finds a global
optimum with probability 1.
Summarizing, we have the following conclusions.

o Forsome optimization problems, the expected number of transitions necessary
for reaching a global optimum is much smaller for simulated annealing and
threshold accepting than for multistart iterative improvement.

e For some optimization problems, the expected cost of a final solution obtained
by threshold accepting is not better than the expected cost of a final solution
obtained by (single-start) iterative improvement.

Hence, the interest in simulated annealing can be motivated by the fact that,
compared with multistart iterative improvement and threshold accepting, its
performance is less dependent on the specific topology of the ‘cost function
landscape’.

4 THE PHYSICS ANALOGY

The origin of simulated annealing and the choice of the acceptance criterion liein
the physical annealing process [Kirkpatrick, Gelatt & Vecchi, 1983; Cerny,
1985]. In condensed matter physics, annealing is a thermal process for obtaining
low-energy states of a solid in a heat bath. It consists of the following two steps: )]
the temperature of the heat bath is increased to a maximum value at which the
solid melts; (2) the temperature is carefully decreased until the particles of the
melted solid arrange themselves in the ground state of the solid. In the liquid
phase all particles of the solid arrange themselves randomly. In the ground state
the particles are arranged in a highly structured lattice and the energy of the
system is minimal.

The physical annealing process can be modeled successfully by computer
simulation methods based on Monte Carlo techniques. An introductory overview of
the use of these techniques in statistical physics is given by Binder [1978]. Here, we
discuss one of the early techniques proposed by Metropolis et al. [1953], who gave
a simple algorithm for simulating the evolution of a solid in a heat bath to thermal
equilibrium. Their algorithm is based on Monte Carlo techniques and generates
a sequence of states of the solid in the following way. Given a current state i of the
solid with energy E,, a subsequent state j is generated by applying a perturbation
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mechanism, which transforms the current state into the next state by a small
distortion, for instance by displacement of a single particle. The energy of the next
state is E;. If the energy difference, E; — E,, is less than or equal to 0, the state j is
accepted as the current state. If the energy difference is greater than 0, the state j is
accepted with a probability given by

P\, T )
B

where T denotes the temperature of the heat bath and kj is a physical constant
known as the Boltzmann constant. The acceptance rule described above is known
as the Metropolis criterion, the corresponding algorithm as the Metropolis
algorithm.

If the temperature is lowered sufficiently slowly, the solid can reach thermal
equilibrium at each temperature. Thermal equilibrium is characterized by the
Boltzmann distribution, which relates the probability of the solid of being in a state
i with energy E; to the temperature 7, and is given by

_ . exp(=Ej/kgT)
PriX=i} —Zj €xp (_Ej/kBT),

where X is a random variable denoting the current state of the solid and the
summation extends over all possible states. As we show in the following sections,
the Boltzmann distribution plays an essential role in the analysis of the simulated
annealing algorithm.

Returning to simulated annealing, we can apply the Metropolis criterion
to generate a sequence of solutions of a combinatorial optimization problem.
For this purpose we assume an analogy between a physical many-particle
system and a combinatorial optimization problem based on the following
equivalences:

e Solutions in a combinatorial optimization problem are equivalent to states of
a physical system.
e The cost of a solution is equivalent to the energy of a state.

Next we introduce a parameter that plays the role of the temperature. This
parameter is the same as the control parameter used in equation (1).

A characteristic feature of simulated annealing is that, besides accepting
improvements in cost, it also accepts to a limited extent deteriorations in cost.
Initially, at large values of ¢, large deteriorations are accepted; as ¢ decreases, only
smaller deteriorations are accepted, and as the value of ¢ approaches 0, no
deteriorations are accepted at all. Furthermore, there is no limitation on the size
of a deterioration with respect to its acceptance, such as occurs in threshold
accepting. In simulated annealing, arbitrarily large deteriorations are accepted
with positive but small probability.
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5 MARKOV MODELS

The simulated annealing algorithm can be mathematically modeled using the
theory of finite Markov chains [Feller, 1950; Isaacson & Madsen, 1976; Seneta,
1981].

Definition1 Let O denote a set of possible outcomes of a sampling process.
A Markov chain is a sequence of trials, where the probability of the outcome of
a given trial depends only on the outcome of the previous trial. Let X (k) be a random
variable denoting the outcome of the kth trial. Then the transition probability at the
kth trial for each pair of outcomes i, je O is defined as

P;(k) =P{X(k) =jIX(k —1)=i}. (2)

The matrix P(k), whose elements are given by equation (2), is called the transition

matrix. A Markov chain is called finite if the set of outcomes is finite. It is called

inhomogeneousif the transition probabilities depend on the trial number k. If they

do not depend on the trial number, the Markov chain is called homogeneous.
Let g;(k) denote the probability of outcome i€ at the kth trial, ie.,

a,(k) = P{X(k) =i} (3)
Then for all i€0, a;(k) is given as
a;(k) = Z a,(k — 1) P (k).

le®
Definition 2 An n-vector x is called stochastic if its components x; satisfy the
conditions

13

n
x,>0,i=1,...,n, and ) x;=1
i=1

i=

Ann x m matrix X is called stochastic if its components X ; satisfy the conditions

m
X;=0,i=1,..,nj=1...,m, and Y X;=1i=1..,n
ji=1
In the case of simulated annealing, a trial corresponds to a transition, and the set
of outcomes is given by the finite set of solutions. Furthermore, the outcome of
a trial only depends on the outcome of the previous trial. Consequently, we can

safely apply the concept of finite Markov chains.

Definition 3 (transition probability) Let (&, f) be an instance of a combinatorial
optimization problem and & a neighborhood function. Then the transition prob-
abilities for the simulated annealing algorithm are defined as
Gij(ck)Aij(ck) if i#],
1— 2168,!;éi Gulcd Aulcy) if i=],
where G ;(c,) denotes the generation probability, i.e., the probability of generating

a solution j from a solution i, and A;;(c,) denotes the acceptance probability, i.e., the
probability of accepting a solution j that is generated from solution i.

Vi,je&: P;;(k) ={ (4)
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Note that the matrix P of equation (4) is stochastic. The G;;(c,)’s and 4;;(c,)’s of (4)
are conditional probabilities, ie., G;c)=P. {generate jli} and 4;(c)=
P., {accept jli,j}. The corresponding matrices G(c,) and A(c,) are the generation
matrix and acceptance matrix, respectively, and need not be stochastic.

In the original version of simulated annealing the following probabilities are
used.

Definition4 The generation probability is defined by

1 )
Vi, je&: Gile) = Gy =6X(m(i» (), (5

where © = | A (i)|, for all ie&. The characteristic function )., for a subset X' of
a given set X is a mapping of the set X onto the set {0, 1}, such that y.,(x)=1if
xe X', and yx (x) =0 otherwise.

The acceptance probability is defined by

(6)

Vi, je#: A;j(c) =exp < -—M>,

Cr
where, for all aeR, a* =aifa>0, and a* =0 otherwise.

Thus, the generation probabilities are chosen to be independent of the control
parameter ¢ and uniform over the neighborhoods .4#7(i), where it is assumed that
all neighborhoods are of equal size, i.e., |4 (i)| = ©, for all ieZ.

The above definitions apply to most combinatorial optimization problems,
and close examination of the literature reveals that in many practical applications
these definitions — or minor variations—are indeed used. But it is also possible to
formulate a set of conditions guaranteeing asymptotic convergence for a more
general class of acceptance and generation probabilities. We return to this subject
below.

We now concentrate on the asymptotic convergence of simulated annealing.
A simulated annealing algorithm finds an optimal solution with probability 1 if,
after a possibly large number of trials, say k, we have

P{X(kes*) =1,

where &* denotes the set of optimal solutions. In the following sections we show
that under certain conditions the simulated annealing algorithm converges
asymptotically to the set of optimal solutions, i.e.,

lim P{X(k)es*}=1.
k= o

An essential property in the study of Markov chains is that of stationarity. Under
certain conditions on the transition probabilities associated with a Markov chain
there exists a unique stationary distribution; see Feller [1950] and Isaacson
& Madsen [1976].

Definition 5 (stationarity) A stationary distribution of a finite homogeneous Mar-
kov chain with transition matrix P on a set of outcomes @ is defined as the stochastic
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|@|-vector q, whose components are given by

q,-=klim P{X(k)=i|X(0)=j}, forallje0.

If such a stationary distribution g exists, we have lim, _, ., a;(k) = g;, where a;(k) is
given by equation (3). Furthermore, it follows directly from the definitions
that g7 =qT P. Thus, q is the probability distribution of the outcomes after an
infinite number of trials and the left eigenvector of P with eigenvalue 1. In the case
of the simulated annealing algorithm, as P depends on ¢, g depends on ¢, ie.,
q=4(c).

Before we can prove the existence of a stationary distribution for the simulated
annealing algorithm, we need the following definitions.

Definition 6 (irreducibility) A Markov chain with transition matrix P on a set of
outcomes O is irreducible if for each pair of outcomes i, je(© there is a positive
probability of reaching j from i in a finite number of trials, i.e.,

Vi,jeO IneZ*: (P");>0.

Definition 7 (aperiodicity) A Markov chain with transition matrix P is aperiodic
if for each outcome i€ O the greatest common divisor gcd(2,) = 1, where 9, is the set
of all integers n > 0 with (P");; > 0.

The integer ged (2)) is called the period of i. Thus, aperiodicity requires all
solutions to have period 1. As a corollary we have that for an irreducible Markov
chain aperiodicity holds if

3je0: P;>0. ™

We now come to the following important theorem; see Feller [1950] and
Isaacson & Madsen [1976] for its proof.

Theorem 1 Let P be the transition matrix associated with a finite homogeneous
Markov chain on a set of outcomes O, and let the Markov chain by irreducible and
aperiodic. Then there exists a unique stationary distribution g whose components g,
are uniquely determined by

Y q;Pi=q; forallicO.
jeo
As a corollary we have that any probability distribution g that is associated with
a finite, irreducible and aperiodic homogeneous Markov chain and that satisfies
the equations
q;P ij=4q jP

 foralli, jeO, (8)
is the unique stationary distribution in the sense mentioned in Theorem 1. The
equations of (8) are called the detailed balance equations, and a Markov chain for

which they hold is called reversible. .
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6 A HOMOGENEOUS MODEL

We now can prove asymptotic convergence of simulated annealing based on
a model in which the algorithm is viewed as a sequence of Markov chains of
infinite length. In this case we say that the value of the control parameter is
independent of k, i.e., ¢, = ¢ for all k. This leads to the following result.

Theorem2 Let (&, f) be an instance of a combinatorial optimization problem,
A" a neighborhood function, and P(k) the transition matrix of the homogeneous
Markov chain associated with the simulated annealing algorithm defined by (4), (5),
and (6), with ¢, = c for all k. Furthermore, let the following condition be satisfied:

Viije#3Ip=13ly,1,,...,1,e#
with

lo=i1,=j, and G,k >0, k=0,1,...,p—1.

vy

Then the associated homogeneous Markou chain has a stationary distribution q(c),
whose components are given by

exp(— f(i)/c)
Yies €xp(— f(j)/c)

g;(c)= forallie?, 9

and

1
x def 4 - ;
a7 = lim g40) = i (O, (10)

where i* denotes an optimal solution, and &* the set of optimal solutions.

The proof of the theorem follows directly from the previous results. Indeed, the
condition in the theorem guarantees that the Markov chain is irreducible; see
Definition 6. The transition probabilities given by (4) with (5) and (6) guarantee
aperiodicity through (7); see Definition 7. Hence, according to Theorem 1, there
exists a unique stationary distribution, and the correctness of the components of
(9) follows directly from the detailed balance equations of (8), which proves the
first part of the theorem. The second part follows directly from (9). The distribu-
tion given by (9) is the equivalent of the Boltzmann distribution in the Monte
Carlo simulations of the physical annealing process mentioned in Section 4. It is
characteristic of simulated annealing and, as we show below, it plays an import-
ant role in the analysis of the algorithm.
As a result of Theorem 2 we have that
lill‘(l)l klim P {X(kes*}=1. (11)
This result reflects the basic property of the simulated annealing algorithm, i.e.,
the guarantee that the algorithm asymptotically finds an optimal solution.
Furthermore, (11) expresses the characteristic of the homogeneous model for
simulated annealing: first take the limit of the homogeneous Markov chain for an
infinite number of trials, then take the limit for the control parameter to zero. In
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the inhomogeneous model of Section 7 these two limits are combined into a
single limit.

The convergence properties discussed above strongly depend on the original
choice of the transition probabilities of (4), (5), and (6). Several authors have
investigated convergence properties for a broader class of probabilities. This has
led to the following formulation.

Theorem 3 Let (<, f) be an instance of a combinatorial optimization problem,
N a neighborhood function, and P(k) the transition matrix of the homogeneous
Markov chain associated with the simulated annealing algorithm defined by (4), with
¢, = ¢ for all k. Furthermore, let the following conditions hold:

(G1) Ye>0Vi, jes Ip= 13y, 1y,...,LLesL withly=1i,1,=],
and lelk+1 (>0, k=0,1,...,p—1,
(G2) Ve>0Vi,je&L: G;(c)=Gjle),
(Al) Ve>0Vi,jes:  Ayld=1 iff)=s0)
4;;(0)e(0,1) if f@) < f(j),
(A2) Ve>0Vi, j, ke : A;j(c) Aj(c) Ayi(c) = Au(c) Ay;(c) A;(c),
(A3) Vi, je& with f (i) < f(j): lim,y 4;;(c) =0.
Then the Markov chain has a unique stationary distribution q(c), whose components

are given by
1

q;(c) = Y e (A(0)/Az1(0)

forallie, (12)

and
lim g,(c) = q},
clo

where the q¥ are defined by (10).

Condition (G1) again guarantees irreducibility and aperiodicity of the corre-
sponding Markov chain, conditions (G2), (A1) and (A2) guarantee reversibility,
and condition (A3) guarantees that stationary distributions concentrate on the
set of optimal solutions as ¢ approaches 0. In general terms, the conditions
require the following. Condition (G1) requires that each solution can be reached
from any other solution by generating a finite sequence of neighboring solutions.
To ensure this, the corresponding neighborhood graph should be strongly
connected. Condition (G2) requires symmetry of the generation matrix. Condi-
tions (A1) through (A3) require that the acceptance matrix is well behaved, i.e.,
improvements are always accepted and deteriorations are accepted with positive
probability for ¢ >0 (condition (Al)) and with zero probability for limc |0
(condition (A3)); the factorization required by condition (A2) guarantees detailed
balance as defined by (8).

Conditions (G1) through (A3) are sufficient but not necessary. Thus, there may
be acceptance and generation matrices not satisfying these conditions and still
ensuring the existence of the stationary distribution. An example of such an
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acceptance matrix is

1
L+exp(—(f() - f())e)

This acceptance matrix does not satisfy conditions (A1) and (A2), but it can be
shown to lead to the stationary distribution of (9) by using the detailed balance
equations of (8).

Furthermore, several authors have addressed the generality issue of the
acceptance probability. We discuss this issue following the lines of the work of
Schuur [1997].

4;;(c)= (13)

Theorem 4 Let P(k) be the transition matrix of the homogeneous Markov chain
associated with the simulated annealing algorithm defined by (4), with ¢, = c for all
k, and let conditions (G1) and (G2) of Theorem 3 hold. Furthermore, let the
acceptance probabilities be defined as follows. Given are two functions
$:(0,0) x R—(0,0) and H:(0,00) x R x R—(0,1], such that for ¢>0, and
x,yeR:H(c,x,y)=H(c, y,x), and

_ (b f)
Ay(c)=H(c, (i), f(j)) min (lm)
and
Vx,yeR: x>y=>lcll‘(‘)1 izc ;‘3 0. (14)

Then the Markov chain has a unique stationary distribution q(c), whose components
are given by

o(c, f()

W= e f )

for all ie Z, (15)
and

hm qi(c) = q:k’

cl0
where the g¥ are again given by (10).

As a corollary to Theorem 4 it is argued that the only well-behaved function
o(c, f(j)) that satisfies (14) is of the form

¢, () =exp () f())), (16)

where y: (0, 00)— (0, o0) and lim,, y(c) =
Kesidis [1990] and Romeo & Sanglovanm-VmcenteIh [1991] provide argu-
ments for the assertion that the fastest convergence to the stationary distribution
of (15) with (16) and y = ¢ ™! is given by the acceptance probabilities of (6).
Below we give alternatives for conditions (G1) and (G2), respectively.
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Condition (G1) can be replaced by a more general condition. This condition
guarantees that the Markov chain associated with the generation matrix G is
irreducible. If this is not the case, asymptotic convergence to a subset of the set of
globally optimal solutions can still be proved if condition (G1) is replaced by the
following necessary and sufficient condition:

(G1) Vie& Ii*eS*,p=113,1,...1,eSL
with [, =i, ], =i*, and le!kﬂ >0, k=0,1,...,p— 1 17

According to this condition it should be possible to construct a finite sequence of
transitions with nonzero generation probability, leading from an arbitrary
solution i to some optimal solution i*. For the proof of the validity of this
condition, a distinction must be made between transient and recurrent solutions,
where a solution is called transient if the probability that the Markov chain ever
returns to that solution equals zero, and recurrent if the Markov chain may
return to the solution with a positive probability [ Feller, 1950]. Furthermore, the
stationary distribution of (12) does not apply any more and should be replaced by
a stationary matrix Q(c) whose elements g;; denote the probability of finding
a solution j after an infinite number of transitions, starting from a solution i.
A more detailed treatment is beyond the scope of this chapter; the reader is
referred to Connors & Kumar [1987], Gidas [ 19857, Van Laarhoven [1988], and
Van Laarhoven, Aarts & Lenstra [1992].

In practice one does not want to bother about the requirement of condition
(G2) that the generation matrix must be symmetric. Easier to implement is
a uniform distribution over the neighborhoods, similar to that used in the
original version of simulated annealing. Lundy & Mees [1986] show that for the
choice of the generation probabilities given by

1 . ..
Gij = 'JV(I)‘ X(./V(i))(]) for all l,]ES’, (18)
condition (G2)is no longer needed to guarantee asymptotic convergence, and the
components of the stationary distribution are then given by

20— A ()
T Yo (DI A0/ Az(0)
Moreover, it follows directly that these components again converge to the g of

(10) as cl0. Finally, we mention that a generation matrix satisfying both
condition (G2) and (18) implies that |.4°(i)] is independent of i.

AP A}

7 AN INHOMOGENEOUS MODEL

In the previous section it was shown that, under certain conditions on the
generation and acceptance matrices, the simulated annealing algorithm con-
verges to a global minimum with probability 1, if for each value of the control
parameter ¢,, k=0,1,2,..., the corresponding homogeneous Markov chain is
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infinitely long and the sequence (¢, |k =0, 1,2,...) eventually converges to 0 as
k— co. In this section we discuss conditions to guarantee asymptotic conver-
gence for the case where each Markov chain is of finite length. Thus, the simulated
annealing algorithm is modeled as an inhomogeneous Markov chain with the
following transition probabilities:

_ G;i(c) A;i(co) Jj#i,
Pij(Ck) B {1 _1 yZI ) Gl 4alcy) j=i. (19)

Furthermore, we assume that the sequence (¢, |k =0, 1,2,...) satisfies the condi-
tions

lim ¢, =0, and (20)
k=
=Gy k=0,1,.... (21)

Thus, ¢, is kept constant during a number of transitions, in which case we obtain
an inhomogeneous Markov chain consisting of an infinite number of homogene-
ous Markov chains of finite length each.

We show that, under certain conditions on the rate of convergence of the
sequence (¢, |k =0,1,2,...), the inhomogeneous Markov chain associated with
the simulated annealing algorithm converges in distribution to ¢*, whose compo-
nents are given by (10). In other words we prove that

lim P{X(k)es*}=1.

k=
To discuss the convergence of inhomogeneous Markov chains we need the
following definitions; see Seneta [1981].
Definition 8 Let P(k) be the transition matrix associated with an inhomogeneous
Markov chain on a set of outcome 0. Then the matrix U(m, k) is defined as

k
Um,k)y= ] P(n)y O<m<k.

In other words the components of U (m, k) are equal to
Uimk)=P{X(k)=j|X(m—1)=i} forallijeO.

Definition 9 (ergodicy) A finite inhomogeneous Markov chain on a set of out-
comes O is weakly ergodic if

Vi,j,le0, Ym > 0: lim (U, (m, k) — U ;(m, k) = 0.
k-

It is strongly ergodic if there exists a stochastic vector q* such that

Vi,je 0,Ym>0: lim U;;(m,k) = q}.
k= o0

Thus, for a given m, weak ergodicity implies that X (k) becomes independent of
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X(m) as k — co, whereas strong ergodicity implies convergence in distribution, i.e.,
for any stochastic vector a(m) denoting the probabilities of the outcomes of the
mth trial we have that

klim af(m—1) ﬁ P(m)=(q"",

or
lim P{X(k)=j} = lim (Z U,im,k) p{X(m—1)=i}>=q;r foralli,je 0.
k— o k= \ jeo

The difference between weak and strong ergodicity can be understood from the
following example. Let the transition probabilities P;;(k) of an inhomogeneous
Markov chain be independent of j. Then the Markov chain is clearly weakly
ergodic, but it is not strongly ergodic if the P;;(k) vary forever with k for a given i.
Note that for a homogeneous Markov chain there is no distinction between weak
and strong ergodicity.

The following two theorems provide conditions for weak and strong ergodic-
ity of inhomogeneous Markov chains. The proofs can be found in Isaacson
& Madsen [1976] and Seneta [1981].

Theorem 5 Let 7, (X) denote the coefficient of ergodicity of the n x n stochastic
matrix X defined as

1 n
i nl=1

=1— min ) min(X;,Xj).
i,j=1,.... nl=1
Then an inhomogeneous Markov chain is weakly ergodic if and only if there is
a strictly increasing sequence of positive numbers (k;|i =0,1,2,...) such that

i (1 =7, (X(k;, ki 4 1)) = 0. (22)
i=0

Theorem 6 A finite inhomogeneous Markov chain is strongly ergodic under the
following conditions:

(C1) The Markov chain is weakly ergodic.

(C2) For all k there exists a stochastic vector q(k) such that q(k) is the left
eigenvector of P(k) with eigenvalue 1.

(C3) The eigenvectors q(k) satisfy

Y. lak) =gk + D, <o, (23)
k=1
where the 1-norm of an n-vector x is defined as || x| =27~ 1%l

Moreover, if g* = lim, _, _ q(k), then g* is the vector of Definition 9.
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To prove convergence in distribution for the simulated annealing algorithm it
must be shown that the associated inhomogeneous Markov chain is strongly
ergodic.

Theorem7 Let (¥, f) be an instance of a combinatorial optimization problem,
N a neighborhood function, and P(k) the transition matrix of the inhomogeneous
Markov chain associated with the simulated annealing algorithm defined by (19),(5),
and (6). Furthermore, let the following conditions be satisfied:

(D1) Vijes Ip =13y, 1y,..., 1S
withly=i,1,=j, andG,, >0, k=0,1,...,p—1.

(D2)
>~ k=0,1,..., 24
“Z Tog (k + ko) k=0,1 (24)

for some value of I' >0 and k> 2.

Then the Markov chain converges in distribution to the vector q*, with components
given by (10), or in other words

lim P{X(Yes*} =1. (25)

Theorem 7 can be proved by showing that conditions (D1) and (D2) are suffi-
cient to satisfy conditions (C1), (C2), and (C3) of Theorem 5, along the following
lines.

Condition (D1) guarantees the existence of the left eigenvector g(k) of P(k),
given by q(k) = g(c,), i.e., the stationary distribution of the homogeneous Markov
chain with transition matrix P = P(k); see Theorem 2. The components of the
eigenvectors are given by (9). Furthermore, from (20) and (9) we have
lim, _, ,, q(cy) =lim,, q(c) = q*, where the components of ¢* are given by (10). So
condition (C2) of Theorem 6 holds and, by using the explicit form of the
eigenvectors g(k), condition (C3) can be shown to hold. What remains to be
shown s that the Markov chain is weakly ergodic, as stipulated by condition (C1).
This can be done by using Theorem 5 and condition (D2).

The latter proof is quite technical, and several authors have come up with
different approaches, which vary predominantly in the estimates of the values of
the constant I'.

One of the first results was obtained by Mitra, Romeo & Sangiovanni-
Vincentelli [1986]. To discuss this we need the following definition.

Definition 10  The distance d(i,j) between two solutions i,je & is defined as the
length d of the shortest sequence of solutions (ly,1,...,1), with l, =1, |;=j, and
P’m’m+1(k) >0,l,e#,m=0,1,...,d—1.

Mitra, Romeo & Sangiovanni-Vincentelli [1986] found that I" > rA with
A =max max {|/(j) - fOI}, (26)
ie¥ jeN (i)
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and
r = min max d(i,j), (27
ie\P jes
where % denotes the set of all locally minimal solutions.

Other values of " are given by Anily & Federgruen [1987a], Gelfand & Mitter
[1985], Geman & Geman [1984], Gidas [1995], and Holley & Stroock [1988];
for an overview see Romeo & Sangiovanni-Vincentelli [1991].

The conditions for asymptotic convergence given above are sufficient but not
necessary. Necessary and sufficient conditions are derived by Hajek [1988]. The
difference with the conditions presented above again lies in the difference in value
of the constant I'. To discuss Hajek’s result we need the following definitions.

Definition 11 Let i, je &, then j is reachable at height h fromiifi=jand f(i)<h,
ordp>=13l,,...,l,e# withly=iandl,=jsuchthar G, , >0 and f (I,) < h for
allk=0,...,p—1.

Definition 12 Let { be a local minimum. Then the depth d(i) of i is the smallest
number x, x > 0, such that there is a solution je ¥ with f(j) <f (i) that is reachable
at height f (i) + x from i. By definition, for an optimal solution i*, d(i*) = co.

We now can formulate the results obtained by Hajeck.

Theorem 8 Let (c, |k =0,1,...) be a sequence of values of the control parameter
defined as

r

- k=01,...,
“=logkt2 <0

for some constant T'. Then asymptotic convergence of the simulated annealing
algorithm, using the transition probabilities of (19), (5), and (6), is guaranteed if and

only if

e the Markov chain is irreducible,

e iisreachable fromj at height h if and only if j is reachable from i at height h, for
arbitrary i,je & and h, and

o the constant T satisfies I > D, where

D = max d(i), (28)

eA\F*
i.e., D is the depth of the deepest local, nonglobal minimum.

Kern [1993] has addressed the problem of calculating the value of D. In
particular, he showed for a number of problems how it is unlikely that D can be
calculated in polynomial time for arbitrary instances of a combinatorial optimi-
zation problem. He also presents bounds on the value of D for several combina-
torial optimization problems.

Under certain conditions, asymptotic convergence of the inhomogeneous
Markov chain associated with the simulated annealing algorithm can also be
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proved for general conditions on the generation and acceptance probabilities.
This result was first proved by Anily & Federgruen [1987b] and can be
formulated as follows.

Theorem 9 Let the transition probabilities of the inhomogeneous Markov chain
associated with the simulated annealing algorithm be defined by (19), and let the
generation probabilities G ;(c) and acceptance probabilities A, ;(c) satisfy conditions
(G1) through (A3) of Theorem 3. Furthermore, let

A =min{4,(0)lics, jeV ().

Then
lim P {X(k)ey*} =1,
k—

i (4(cy)"= oo, (29)
k=0

where n denotes the maximum number of steps needed to reach an optimal solution
from any arbitrary solution, and the constant T satisfies

I'>nA, (30)
where A is given by (26).

Finally, we mention that Gelfand & Mitter [1985] derived sufficient conditions

for convergence to an arbitrary set of solutions. These conditions are similar to
those given above.

8 ASYMPTOTIC BEHAVIOR

We have shown that, under mild conditions, the simulated annealing algorithm
converges in probability to the set of optimal solutions, or in other words,
asymptotically the algorithm finds an optimal solution with probability 1. As
a result of the limits of (11) or (25), asymptotic convergence to the set of optimal
solutions is achieved only after an infinite number of transitions. In any finite-
time implementation one must resort to approximations of the asymptotic
convergence.

With respect to the approximation of the stationary distribution we have the

reAnO4T

Property 10 Let P(k) denote the transition matrix of the homogeneous Markov
chain associated with the simulated annealing algorithm defined by (4), and let q(c)
denote the corresponding stationary distribution given by the left eigenvector with
eigenvalue 1 of P. Then, as k — o0, we have

ta(k) — q(0) 1, = O(K*| A, (c)["), (31)
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where a(k) denotes the probabiiity distribution of the outcomes after k trials, 2,(c)
(0 <|A,(c)] < 1) denotes the second largest eigenvalue of P(k) with multiplicity m,,
and s=m, — 1.

Hence, the speed of convergence to the stationary distribution is determined by
4,(c). Unfortunately, computation of 4, (c) is impracticable, due to the large size
of matrix P(k). Approximation of the normin (31)leads to the following property;
see Aarts & Van Laarhoven [1985b].

Property 11 Let ¢ denote an arbitrarily small positive number. Then

la) - g(@)1; <. &
i
In(z/2)
k>K<l+m>, 33

where y(c)=min, ;, P (c) and K =|&|> - 3|&| +3.

Hence, (32) and (33) indicate that the stationary distribution is approximated
arbitrarily closely, only if the number of transitions is at least quadratic in the size
of the solution space. Moreover, the size | #| is for most problems exponential in
the size of the problem itself, for instance, in the n-city traveling salesman
problem, || = (n— 1)!. Thus, the analysis presented above indicates that ap-
proximating the stationary distribution arbitrarily closely results in an exponen-
tial-time execution of the simulated annealing algorithm.

With respect to the asymptotic convergence of the inhomogeneous Markov
chain associated with the simulated annealing algorithm, we have the following
result; see Mitra, Romeo & Sangiovanni-Vincentelli [1986].

i,je&

Property 12 Let the transition probabilities of the inhomogeneous Markov chain
associated with the simulated annealing algorithm be defined by (19),(5), and (6), and
let the sequence (c,|k =0,1,...) be given by (24), with T’ > rA, where r and A are
defined as in (26) and (27). Furthermore, let q* be the uniform probability distribu-
tion on the set of optimal solutions defined by (10). Then for k— co,

la(k)—q*1, <s,
for an arbitrarily small positive number ¢, if

k — 0(8—max(a.b))’

where

rrair rA
a=——, and b=x

w -1

with f =min,_, .. f(i) and w = min,_, min,_,, G;;

Evaluation of this bound for particular problems typically leads to a number
of transitions that is larger than the size of the solution space and thus

-3
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to an exponential-time execution for most problems. For instance, in the case of
the traveling salesman problem, Aarts & Korst [1989a] show that

k=0m"").

Note that |&]| =(n— 1)! Hence, complete enumeration of all solutions would
take less time than approximating an optimal solution arbitrarily closely by the
simulated annealing algorithm.

Summarizing, we have shown that optimal simulated annealing algorithms
require an infinite number of transitions and that the rate of convergence is
logarithmic, leading to exponential time complexities for arbitrarily close ap-
proximation of an optimal solution.

Several authors have investigated possibilities of speeding up the convergence
of optimal simulated annealing for specific problems by taking into account the
combinatorial structure of the problem at hand. For instance, Sorkin [1991]
proved that, if the neighborhoods of a problem exhibit certain fractal properties,
the time complexity of optimal simulated annealing is polynomial. More specifi-
cally, he showed that, for problems with properly scaled cost functions between
0 and 1, and a fractal neighborhood structure, a solution of expected cost no
greater than ¢ can be found in a time bounded by a polynomial in 1/¢, where the
exponent of the polynomial depends on the fractal.

Stander & Silverman [1994] discuss a simple global optimization problem and
propose an optimal method for lowering the value of the control parameter based
on the use of dynamic programming techniques. The resulting time complexity is
still exponential but the method provides optimal choices for the initial and final
values of the control parameter. Christoph & Hoffmann [1993] address the
scaling behavior of optimal annealing. They found that dominating barriers exist
at which the value of the control parameter must be lowered more slowly than in
between the barriers.

Rajasekaran & Reif [1992] obtained improved convergence rate of optimal
annealing by exploiting a special property of the cost function, if present, which
they call small-separability. Based on this concept, they developed an algorithm
called nested annealing, which is a simple modification of the classical simulated
annealing algorithm obtained by assigning different control parameter values to
different regions. For a specific class of problems in computer vision and circuit
layout, they proved that the time complexity of their optimal simulated algorithm
is 294" instead of 2%™, where n refers to the size of the problem instance at hand.

9 COOLING SCHEDULES

We now leave the issue of optimal annealing and turn to finite-time implementa-
tions of the algorithm. Earlier sections have indicated that finite-time implemen-
tations can no longer guarantee to find an optimal solution, but may result in
much faster executions of the algorithm without significantly compromising the

solution quality. Ingber [1993] refers to such implementations as simulated
quenching.




i12 4 Simulated annealing

A finite-time implementation of the simulated annealing algorithm is obtained
by generating a sequence of homogeneous Markov chains of finite length at
descending values of the control parameter. For this, a set of parameters must be
specified that govern the convergence of the algorithm. These parameters are
combined in what is called a cooling schedule.

Definition 13 A cooling schedule specifies a finite sequence of values of the
control parameter, and a finite number of transitions at each value of the control
parameter. More precisely, it is specified by

e an initial value of the control parameter c,,

e a decrement function for lowering the value of the control parameter,
e a final value of the control parameter specified by a stop criterion,

e a finite length of each homogeneous Markov chain.

Central to the discussion of cooling schedules is the concept of quasi-equilibrium.
Let L, denote the length of the kth Markov chain and ¢, the corresponding value
of the control parameter. Then quasi-equilibrium is achieved if the probability
distribution a(L,, ¢,) of the solutions, after L, triais of the kth Markov chain, is
‘sufficiently close’ to the stationary distribution at ¢, i.e.,

la(Ly, cd —qlcd s <e, (34)

for some specified positive value of ¢.

From Property 11 we recall that a number of transitions is required that is
quadratic in the size of the solution space in order to satisfy (34) for arbitrarily
small values of ¢, which leads to an exponential-time execution for most prob-
lems. Thus, in order to be of practical use, a less rigid quantification of the
quasi-equilibrium concept is needed than that of (34). For this one may resort to
the following arguments. For the acceptance probabilities of (6), and well-
behaved generation probabilities, the stationary distribution is of the form given
by (9). For ¢ — o0, the stationary distribution is given by a uniform distribution on
the set of solutions %, i.e., if

. 1

hm (9= (35)
Thus, at sufficiently large values of c,—allowing acceptance of virtually all
proposed transitions—quasi-equilibrium is obtained by definition, since all so-
lutions occur with equal probability given by the uniform distribution of (35).
Next, the decrement function and the Markov chain lengths must be chosen such
that quasi-equilibrium is restored at the end of each individual Markov chain. In
this way the equilibrium distributions for the various Markov chains are ‘closely
followed’, so as to arrive eventually, as ¢, | 0, close to g*, the uniform distribution

on the set of optimal solutions given by (10).
It is intuitively clear that large decrements in ¢, require larger Markov chain
lengths in order to restore quasi-equilibrium at the next value ¢, .. , of the control
parameter. Thus, there is a trade-off between large decrements of the control
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parameter and small Markov chain lengths. Usually, one chooses small decre-
ments, in ¢, to avoid extremely long chains, but one could use large values for L,
in order to be able to make large decrements in c,.

The search for adequate cooling schedules has been the subject of many
studies over the past year. Reviews are given by Van Laarhoven & Aarts
[1987], Collins, Eglese & Golden [1988], and Romeo & Sangiovanni-Vincentelli
[1991].

9.1 Optimal schedules

Recently, researchers have been investigating optimal finite-time schedules,
where optimal refers to the best average cost obtained in finite time. Strenski
& Kirkpatrick [1991] analyzed a small instance of a graph partitioning problem
and used an approach based on evaluating exactly the probability distributions
of outcomes of the Markov chain associated with the simulated annealing
algorithm. They found that different schedules, including iterative improvement,
may be optimal depending on the employed schedule length. When a sufficiently
long schedule is employed, annealing replaces iterative improvement as the
optimal schedule. Furthermore, they observed that optimal schedules may be
nonmonotone. This result was rather unexpected since the convergence proofs of
simulated annealing suggest a monotone lowering of the control parameter
value; see for instance Aarts & Korst [1989a]. Nevertheless, it was in accordance
with earlier theoretical results obtained by Hajek & Sasaki[19897], who found for
a small artificial problem that the control parameter values of an optimal
annealing schedule are all either O or co.

The approach of Strenski & Kirkpatrick [1991] has been further pursued by
Boese & Kahng [1994]. They introduce the concept of best-so-far versus where-
you-are. More specifically, they use an acceptance criterion based on the cost of
the best solution found so far, instead of the cost of the current solution. They
determine optimal cooling schedules for two small instances of the traveling
salesman problem and the graph partitioning problem and found that optimal
sequences of control parameter values may not be monotone. The analysis of
optimal finite-time schedules is interesting, but the results obtained so far are only
proved to hold for extremely small instances. At present it is not clear which
impact they have on larger instances. One might argue that the whimsical
structure of small instances may introduce artifacts that are absent from the more
regularly structured large instances. In that case the nonmonotonicity results
would only hold for a specific class of small problem instances.

9.2 Heuristic schedules

Most of the existing work on cooling schedules presented in the literature deals
with heuristic schedules. We distinguish between two broad classes: static
schedules and dynamic schedules. In a static cooling schedule the parameters are
fixed: they cannot be changed during execution of the algorithm. In a dynamic
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cooling schedule the parameters are adaptively changed during execution of the
algorithm. Below we present some examples.

Static cooling schedules

The following simple schedule is known as the geometric schedule. It originates
from the early work on cooling schedules by Kirkpatrick, Gelatt & Vecchi
[1983], and is still used in many practical situations.

Initial value of the control parameter. To ensure a sufficiently large value of ¢,
one may choose ¢y =Af,.., Where Af_. is the maximal difference in cost
between any two neighboring solutions. Exact calculation of Af_,, is quite
time-consuming in many cases. However, one often can give simple estimates of
its value.

Lowering the control parameter value. A frequently used decrement function 1s
given by

Ck+1 =(Z'Ck,k=0,1,,..,

where « is a positive constant smaller than but close to 1. Typical values lie
between 0.8 and 0.99. '

Final value of the control parameter. The final value is fixed at some small value,
which may be related to the smallest possible difference in cost between two
neighboring solutions.

Markov chain length. The length of Markov chains is fixed by some number
that may be related to the size of the neighborhoods in the problem instance at
hand.

Dynamic cooling schedules

There exist many extensions of the simple static schedule presented above that
lead to a dynamic schedule. For instance, a sufficiently large value of ¢, may be
obtained by requiring that the initial acceptance ratio y,—defined as the number
of accepted transitions at ¢, —is close to 1. This can be achieved by starting off at
a small positive value of ¢, and multiplying it with a constant factor, larger than 1,
until the corresponding value of y,, which is calculated from a number of
generated transitions, is close to 1. Typical values of y, lie between 0.9 and 0.99.

An adaptive calculation of the final value of the control parameter may be
obtained by terminating the execution of the algorithm at a ¢, value for which the
value of the cost function of the solution obtained in the last trial of a Markov
chain remains unchanged for a number of consecutive chains. Clearly such
a value exists for each local minimum that is found. The length of a Markov chain
may be determined by requiring that at ‘each value ¢, a minimum number of
transitions is accepted. However, since transitions are accepted with decreasing
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probability, one would obtain L, — oo for ¢, | 0. Therefore, L, is usually bounded
by some constant L_, to avoid extremely long Markov chains for small values
of ¢;.

In addition to this basic dynamic schedule, the literature presents a number of
more elaborate schedules. Most of them are based on a statistical analysis of the
simulated annealing process, thus allowing a more theoretical estimation of the
parameters. For the transition probabilities of (4), (5), and (6), the statistical
analysis leads to a model for the cost distribution that resembles an exponential
distribution at low ¢ values and a normal distribution at high ¢ values. Within this
model, the first two moments of the resulting distribution are given by Aarts,
Korst & Van Laarhoven [1988]:

o2()
E()=Ea(f) -T2 (Ml) (36)

c

ye \?
+1/°

o2N)=o2::

and

where y is given by

_Eo ()1
oI

To compute E,(f) and o2(f), values for E_ (f) and ¢2 (f) can be approximated
by the average cost value of the solutions and the corresponding standard
deviation, respectively.

The analysis given above is used by several authors to derive adaptive
parameter estimates. As an example, we discuss the schedule proposed by Huang,
Romeo & Sangiovanni-Vincentelli [1986], since it is quoted in the literature as
the most efficient one among those that require only a modicum of sophistication.
The schedule of Lam & Delosme [1986] is conjectured to be even more efficient
but its intricacy generally hinders practical use.

Initial value of the control parameter. From (36) it follows directly that
E.(f) = E, (f) for ¢ > a2 (f). Hence ¢, may be chosen as

cO = K o-i;(f)a
where K is a constant typically ranging from 5 to 10.

Lowering the control parameter value. Here the concept of quasi-equilibrium is
quantified by requiring that the average cost difference for two consecutive
Markov chains is small, ie., E.,. (f)—E,(f)=—¢ for some small positive
number &. Next, by using

i)
=)= 67
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and replacing the left-hand side of (37) with the differential quotient, we obtain
E.. (N =E,() _a(f)

lnck+1 _lnck Ck

This results in a decrement rule given by

Cort = Co exp(—%f)), (38)

where, for practical purposes, o, ( f) is approximated by the measured deviation.
In their original paper, Huang, Romeo & Sangiovanni-Vincentelli [ 1986] replace
¢ by Ao, A <1, which gives only a slight modification of (38).

Final value of the control parameter. Execution is terminated if at the end of
a Markov chain

f:nax - f:nin = Af:-nax’ (39)

where f7 . and f7; denote the maximum and minimum cost value, respectively,
and Af},., the maximum cost difference of the solutions accepted during the
generation of that chain. If (39) holds, c is set to 0, and the execution is concluded
with a simple local search to ensure local optimality of the final solution.

Markov chain length. Statistical analysis leads to the observation that, in
equilibrium, the fraction of solutions generated with cost values within a certain
range ¢ from the expected cost reaches a stationary value k. Assuming a normal
distribution of the cost values, Huang, Romeo & Sangiovanni-Vincentelli [1986]
show that k = —erf(¢/o,.( f)), where erf(x) is the error function; see Abramowitz
& Stegun [1970]. The Markov chain length is determined by the number of trials
L, for which

L¥ =pxk,

where p is a parameter depending on the size of the problem instance, and L} is
defined as the number of accepted solutions with a cost value within the interval
(E.— ¢, E, + ¢). An additional bound on L, is introduced to avoid extremely long
Markov chains.

10 ISSUES FROM PRACTICE

Four basic ingredients are needed to apply simulated annealing in practice:
a concise problem representation, a neighborhood function, a transition mechan-
ism, and a cooling schedule. The algorithm is usually implemented as a sequence
of homogeneous Markov chains of finite length, generated at descending values
of the control parameter specified by the cooling schedule. As for the choice of the
cooling schedule, we have seen in the previous section that there exist some
general guidelines. However, no general rules are known that guide the choice of
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the other ingredients. The way they are handled is still a matter of experience,
taste, and skill left to the annealing practitioner, and we expect that this will not
change in the near future.

During the years of its existence, simulated annealing has been applied to
a large variety of problems, ranging from practical real-life situations to theoreti-
cal tests. Two appealing examples of real-life applications are the scheduling of
the Australian state cricket season by Willis & Terrill [1994] and the design of
keyboards for typewriters by Light & Anderson [1993]. VLSI design, atomic and
molecular physics, and picture processing are the three problem areas in which
simulated annealing is most frequently applied. The set of theoretical test
problems includes almost all the well-known problems in discrete mathematics
and operations research, such as coding, graph coloring, graph partitioning,
sequencing and scheduling problems; see the references given below and Chap-
ters 8 through 13 of this book.

So far, about a thousand papers have been published reporting applications of
the algorithm. Many of these studies have led to modifications of the algorithm
such as the use of penalty functions, alternative generation and acceptance
probabilities, implementation-specific aspects, parallel versions, etc. Due to the
large variety of approaches and the many different implementation details, it is
virtually impossible to give a balanced overview of the experience that has been
gathered. Therefore, we restrict ourselves to some general statements and appro-
priate references.

We start with the references. General overviews of applications of simulated
annealing are given by Aarts & Korst [1989a], Collins, Eglese & Golden [1988],
Dowsland [1993], Van Laarhoven & Aarts [1987], and Vidal [1993]. Overviews
of applications in operations research are given by Eglese [1990] and Koulamas,
Antony & Jaen [1994]. Studies emphasizing performance issues for theoretical
test problems are given by several authors. One of the most elaborate studies is
presented by Johnson et al. [1989, 19917, who report on an extensive numerical
study for several combinatorial optimization problems, including graph par-
titioning, graph coloring and number partitioning. This work provides many
practical findings that in our opinion reflect the general experience of annealing
practitioners.

Perhaps the most striking element is the observed performance ambivalence.
For the graph partitioning problem, simulated annealing seems to outperform all
existing approximation algorithms, whereas for the number partitioning prob-
lem the performance is hopelessly poor. Although this bad performance for the
number partitioning problem can be understood from analytical arguments,
there seems no way to adapt the algorithm in order to improve it. A similar
ambivalence is encountered in the area of code design, where for the football pool
problem, simulated annealing is able to improve on the best known results; see
Van Laarhoven et al. [1989] and Chapter 13 of this book. On the other hand,
Beenker, Claasen & Hermens [1985] found that for problems related to the
design of binary sequences, the algorithm is inferior to simple constructive
methods.

I 1
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Furthermore, the literature presents results of studies in which the per-
formance of simulated annealing is compared with that of other local search
algorithms. Results for the job shop scheduling problem are presented by
Van Laarhoven, Aarts & Lenstra [1992], Aarts et al. [1994], and Vaessens,
Aarts & Lenstra [1996], and for the traveling salesman problem by Ulder et al.
[1991].

With some restraint one may conclude from these studies that simulated
annealing, if large running times are allowed, can outperform about all other
algorithms with respect to effectiveness. More general conclusions cannot be
drawn due to the many different quality measures that can be applied. To
illustrate this we. mention the performance studies for quadratic assignment.
Pardalos, Murty & Harrison [1993] report that simulated annealing can find
acceptable solutions with fewer iterations than tabu search. Battiti & Tecchiolli
[1994] question this conclusion and argue that it no longer holds for difficult
problem instances if high quality solutions are required.

Broadly speaking, simulated annealing can find good solutions for a wide
variety of problems, but often at the cost of substantial running times. Conse-
quently, the true merits of the algorithm become obvious in industrial problem
settings, where running times are of little or no concern. As an example we
mention design problems, since in those cases one is primarily interested in
finding high-quality solutions, whereas design time often plays only a minor role.
A well-known successful simulated annealing area in this respect is VLSI design
[Sechen & Sangiovanni-Vincentelli, 1985; Shahookar & Mazumder, 1991;
Wong, Leong & Liu, 1988].

The success of simulated annealing can be explained from the fact that the
algorithm is easy to implement and capable of handling almost any optimization
problem and any constraint, either by appropriate neighborhoods or by relaxa-
tion through the use of penalty functions. These properties are, however, not
unique for simulated annealing. They also hold for simple local search algo-
rithms. The main advantage of simulated annealing is that it is able to improve
upon the relatively poor performance of local search by simply replacing the
deterministic (strict improvement) acceptance criterion by a stochastic criterion,
thus circumventing the need of an in-depth study of the problem structure in
order to construct more effective neighborhoods, or to design more tailored
algorithms. It almost goes without saying how this is a great advantage in an
industrial environment, since often the required expertise is unavailable and, even
more important, it saves development time.

11 SPEEDING UP

The literature presents many variations on the basic simulated annealing ap-
proach presented in the previous sections. Many of these variations concentrate
on alternatives that should reduce the potentially burdensome running times
required by simulated annealing to converge to near-optimal solutions. Roughly
speaking, the existing approaches fit into three categories: fast sequential algo-
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rithms, hardware acceleration, and parallel algorithms. We mention a few
examples.

Szu & Hartley [1987] present an annealing algorithm for the optimization of
continuous-valued functions, using a generation mechanism given by a Cauchy
distribution instead of the frequently used Gaussian distribution. They claim that
their generation mechanism leads to an inverse linear cooling rate, instead of an
inverse logarithmic cooling rate as was found for the Gaussian distribution. This
approach has been further refined by Ingber [1989], who proposes a technique he
calls very fast simulated reannealing, permitting an exponential cooling rate. The
application of these approaches is limited to the optimization of continuous
real-valued functions, which prohibits their use in the many existing combina-
torial optimization problems.

Greene & Supowit [ 1986] introduce the rejectionless method as an example of
a deterministic simulated annealing approach based on an improved generation
mechanism. They propose to generate new solutions with a probability propor-
tional to the effect of a transition on the cost function. In this way, a subsequent
solution is directly chosen from the neighborhood of a given solution, i.e., no
rejection of solutions takes place. This method leads to shorter Markov chains for
a number of problems. However, the efficient use of the method depends strongly
on some additional conditions on the neighborhood function, which unfortu-
nately cannot be met by many combinatorial optimization problems. Fox [1993,
19947 further elaborates on this issue. He introduces the concept of self-loop
elimination and shows how it not only speeds up simulated annealing, but also
causes the algorithm to be more efficient than multistart iterative improvement
with random restarts. This contradicts Ferreira & Zerovnik [1993], who asserted
the opposite.

Parallel simulated annealing algorithms aim at distributing the execution of
the various parts of a simulated annealing algorithm over a number of com-
municating parallel processors. This is a promising approach to the problem of
speeding up the execution of the algorithm, but it is by no means a trivial task, due
to the intrinsic sequential nature of the algorithm. Over the years a large variety
of approaches have been proposed, leading to algorithms that are generally
applicable and to tailored algorithms. For overviews we refer to Aarts & Korst
[1989a], Azencott [1992], Boissin & Lutton [1993], Greening [1990], and
Verhoeven & Aarts [1996]. A special approach to parallel simulated annealing is
provided by the use of neural network models. To this end, the optimization
problem at hand is cast into a 0—1 programming formulation and the values of
the decision variables are associated with the states of the neurons in the network.
This has led to randomized approaches such as the Boltzmann machine [Aarts
& Korst 1989a, 1989b; Aarts & Korst, 1991], and to deterministic approaches
such as the mean field method [ Peterson & Soderberg, 19897; see also Chapter 7 of
this book. In addition to the speedup obtained by parallel execution, neural
networks also offer a speedup through their hardware implementation. This has
led to fast VLSI implementations of simulated annealing [Lee & Sheu, 19917 and
even to optical implementations [Lalanne et al., 1993].
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12 COMBINED APPROACHES

Recent approaches to local search concentrate on the combined use of different
local search algorithms, known as multilevel approaches [Vaessens, Aarts
& Lenstra, 1992]. Simulated annealing is used in several of these approaches, and
we mention some examples. Martin, Otto & Felten [1991, 1992] propose
a successful simulated annealing algorithm for the traveling salesman problem,
which uses a restricted 4-exchange neighborhood, combined with a simple local
search algorithm using a 3-exchange neighborhood. Eiben, Aarts & Van Hee
[1991] present a stochastic search procedure that combines elements of popula-
tion genetics with those of simulated annealing. They prove that their stochastic
approach exhibits convergence properties similar to those of simulated anneal-
ing. Lin, Kao & Hsu [1994] introduce a genetic approach to simulated annealing
using population-based transitions, genetic-operator based quasi-equilibrium
control, and Metropolis-criterion selection operations in the jargon of genetic
algorithms. They find empirically that their approach works quite well for the
zero—one knapsack, set partitioning, and traveling salesman problems.

Clearly, the issue of combined approaches opens many possibilities for the
design of new variants of local search algorithms. However, one should be careful
not to propose these variants as new algorithmic concepts. Research on local
search has been fascinating over the past 10 years. It has also suffered from
considerable confusion, created by so-called new concepts, which, after their
fancy names had been demystified, turned out to be only coarse or well-known
heuristic rules. )
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