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SUMMARY

Molecular diffusion in liquids plays an important role in fnany
chemical engineering processes. Therefore, knowledge of diffusion
coefficients is important for the design of process equipment.
Empirical and semi-empirical correlations, which have been developed
to predict the liquid diffusion coefficients in terms of solute and
solvent properties, often are not accurate enough to solve the
nonroutine problems. This thesis describes how diffusion coefficients
can be obtained by measurement and by molecular simulation. The
study has been focused on diffusion in aqueous non-electrolyte
solutions.

The Taylor dispersion method is an experimental technique
widely used for the measurement of diffusion coefficients in liquid
systems. This work starts with the description of a highly labour-
efficient implementation of the method for measuring with binary
liquid systems. The experimental set-up consists of standard HPLC
components and has been fully automated. Software has been
developed for processing the data; diffusion coefficients can easily be
calculated from the measured concentration against time curve in
various ways. Experiments performed on the methanol + water
system and the ethanol + water system at various temperatures have
shown that the binary diffusion coefficients can here be obtained with
an accuracy of 0.5 - 1.5%.

The experimental set-up and the software for binary systems
have been extended to determine the diffusion coefficients in ternary
liquid systems. A differential refractometer and an ultraviolet-visible
detector record the dispersion of the injected solutes. The diffusion
coefficients are calculated directly by fitting the theoretical dispersion
equations to about six experimental curves simultaneously. If the
ternary diffusion effects in the measured dispersion profiles have not
been obscured by the inaccuracy of the experimental method or an
unfavourable relative detector sensitivity, the diffusion coefficients
are precise (x2% - 10%). Experiments on the system methanol +
acetone + water have shown that the Taylor dispersion method is not
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always suitable for the determination of all ternary diffusion
coefficients.

If one component in the ternary system is very dilute, the
equations in the fitting procedure can be simplified. For the
determination of the diffusion coefficients of the ternary systems
glucose + water + dilute methanol, ethanol, or acetone the simplified
fitting procedure has been used. The precision of the diffusion
coefficients depends on the relative detector sensitivities for the
components. The main-diffusion coefficients are more precise than the
cross-diffusion coefficient (2% vs. +5 - 10%).

Diffusion coefficients can also be obtained from computer
experiments. Molecular Dynamics (MD) is a simulation technique to
compute the dynamic properties of many-particle systems by solving
the classical equations of motion (Newton’s equations) for the
particles. Two methods have been compared for the calculation of
Maxwell-Stefan diffusion coefficients. The first method is a non-
equilibrium molecular dynamics (NEMD) algorithm, in which the
system is driven away from equilibrium and the system response is
monitored. The second method is the equilibrium molecular dynamics
(EMD) calculation of the appropriate Green-Kubo equation.
Simulations have been performed for systems of Lennard-Jones
particles at various densities and temperatures. The systems have
been divided into two or three components by attaching a colour label
to the particles. Since a colour label plays no role in the dynamics, the
Maxwell-Stefan diffusion coefficients of the binary and ternary
systems are equal to the self-diffusion coefficient. In binary systems
the Maxwell-Stefan diffusion coefficients, determined by the Green-
Kubo (EMD) method, were found to be more accurate than the NEMD
coefficients. The Green-Kubo method is also less time consuming and
is therefore preferred. In ternary systems only the Green-Kubo
method has been used. The Maxwell-Stefan diffusion coefficients
agree well with the self-diffusion coefficient. For low mole fractions of
the coloured components the diffusion coefficients are less accurate.

Subsequent simulations have been performed on binary and
ternary systems of Lennard-Jones particles, in which the components
differ by their dynamical behaviour owing to different values of the
mass parameters and the Lennard-Jones energy-, and size

ii



SUMMARY

parameters. Also in these systems the GK method has determined the
diffusion coefficients adequately.

Next, the self-diffusion coefficients and Maxwell-Stefan diffusion
coefficients of liquid systems of particles with a more complicated
structure have been calculated, i.e. methanol + water mixtures. For
the description of the physical behaviour of the methanol and water
particles a more complex interaction function than the Lennard-Jones
potential is required. Two different force fields for each component
have been used, in order to study the influence of the force field on the
calculated self-diffusion coefficients of the pure liquids. The better
performing force fields have been used for the determination of the
diffusion coefficients in the methanol + water mixtures. The self-
diffusion coefficients of both components in the mixtures of water and
methanol are more accurate at high mole fractions of methanol. This
can be explained by the better performance of the methanol force
field. The Maxwell-Stefan diffusion coefficients in the mixtures of
methanol and water agree fairly well with the experimental values.
Since the measurements provide Fick diffusion coefficients, the
measured coefficients have been transformed into Maxwell-Stefan
coefficients, using thermodynamic correction factors.

The thesis concludes with a discussion of the results of the
measurement and molecular simulation. The MD simulations of the
methanol + water mixtures have shown the possibility of predicting
the diffusion coefficients provided that the force fields and the
simulation procedures (system size, simulation time) will be
optimised.

iii
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SAMENVATTING

Moleculaire diffusie in vloeistoffen speelt een belangrijke rol in
veel chemisch-technologische processen. Voor het ontwerpen van de
procesapparatuur is het daarom van belang de diffusiecoéfficiénten te
kennen. De empirische en semi-empirische relaties, die ontwikkeld
zijn om de diffusiecoéfficiénten in vloeistoffen te voorspellen met
behulp van de eigenschappen van de opgeloste stof en van het
oplosmiddel, zijn niet nauwkeurig genoeg om niet-routinematige
problemen op te lossen. Dit proefschrift beschrijft hoe diffusie-
coéfficiénten verkregen kunnen worden met behulp van metingen en
moleculaire simulaties. Het onderzoek is toegespitst op diffusie in
waterige oplossingen van niet-electrolyten.

De Taylor dispersie methode is een meetmethode, die algemeen
gebruikt wordt voor het meten van diffusiecoéfficiénten in vloei-
stoffen. Dit onderzoek begint met de beschrijving van een zeer
gebruiksvriendelijke implementatie van de methode voor het meten
met binaire vloeistofmengsels. De opstelling bestaat uit standaard
HPLC-componenten en is volledig geautomatiseerd. Er is software
ontwikkeld om de data te verwerken; de diffusiecoéfficiénten kunnen
vrij gemakkelijk berekend worden uit de gemeten concentratie-tijd
curve op diverse manieren. Metingen, uitgevoerd aan het methanol +
water mengsel en het ethanol + water mengsel bij verschillende
temperaturen hebben aangetoond, dat de binaire diffusiecoéfficiénten
hier bepaald kunnen worden met een nauwkeurigheid van 0.5 — 1.5%.

De meetopstelling en de software voor binaire mengsels zijn
aangepast voor het bepalen van de diffusiecoéfficiénten in ternaire
vloeistofmengsels. Een differentiéle refractometer en een ultraviolet-
detector registreren de dispersie van de geinjecteerde opgeloste
stoffen. De diffusiecoéfficiénten worden rechtstreeks berekend uit de
gemeten concentratieprofielen door de theoretische dispersie-
vergelijkingen aan ongeveer zes profielen simultaan te fitten. Als de
effecten van de ternaire diffusie in de gemeten dispersieprofielen niet
vertroebeld zijn door de onnauwkeurigheid van de meetmethode of
door een ongunstige relatieve detectorgevoeligheid, dan zijn de
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diffusiecoéfficiénten precies (+2% — 10%). Experimenten aan het
systeem methanol + aceton + water hebben aangetoond, dat de Taylor
dispersie methode niet altijd geschikt is voor het bepalen van alle
ternaire diffusie-coéfficiénten.

Als één component in het ternaire systeem erg verdund is,
kunnen de vergelijkingen in- de fitprocedure vereenvoudigd worden.
Bij de bepaling van de diffusiecoéfficiénten van de ternaire systemen
glucose + water + verdund methanol, ethanol of aceton is gebruik
gemaakt van deze vereenvoudigde fitprocedure. De precisie van de
diffusiecoéfficiénten is afhankelijk van de relatieve gevoeligheid van
de detector voor de componenten. De hoofd-diffusiecoéfficiénten zijn
preciezer dan de kruis-diffusiecoéfficiént (+2% vs +5 — 10%).

Diffusiecoéfficiénten kunnen ook bepaald worden door middel van
computerexperimenten. Moleculaire Dynamica (MD) is een simulatie-
methode om de dynamische eigenschappen van systemen, die uit
meerdere deeltjes bestaan, te berekenen door voor deze deeltjes de
klassieke bewegingsvergelijkingen (de vergelijkingen van Newton) op
te lossen. Er zijn twee methoden vergeleken voor de berekening van
de Maxwell-Stefan diffusiecoéfficiénten. De eerste methode is een
niet-evenwichts moleculaire dynamica (NEMD) algoritme, waarin het
systeem uit evenwicht gebracht wordt en de respons van het systeem
gevolgd wordt. De tweede methode is de evenwichts moleculaire
dynamica (EMD) berekening van de geschikte Green-Kubo
vergelijking. Er zijn simulaties uitgevoerd voor systemen van
Lennard-Jones deeltjes bij verschillende temperaturen en drukken.
De systemen zijn verdeeld in twee of drie componenten door aan de
deeltjes een kleur te geven. Omdat de kleur geen rol speelt in de
dynamica, zijn de Maxwell-Stefan diffusiecoéfficiénten van de binaire
en ternaire systemen gelijk aan de zelf-diffusiecoéfficiént. In binaire
systemen blijken de Maxwell-Stefan coéfficiénten, bepaald met behulp
van de Green-Kubo (EMD) methode, nauwkeuriger te zijn dan de
NEMD coéfficiénten. De Green-Kubo methode is ook minder
tijdrovend en geniet daarom de voorkeur. In ternaire systemen is
alleen de Green-Kubo methode gebruikt. De Maxwell-Stefan
diffusiecoéfficiénten komen goed overeen met de zelf-diffusie-
coéfficiént. Voor lage molfracties van de gekleurde componenten zijn
de diffusiecoéfficiénten minder nauwkeurig.

II



SAMENVATTING

Er zijn vervolgens simulaties uitgevoerd voor binaire en ternaire
systemen van Lennard-Jones deeltjes, waarin de componenten
verschillen in hun dynamisch gedrag ten gevolge van verschillende
waarden van de massa en de Lennard-Jones energie- en grootte-
parameters. Ook in deze systemen zijn de diffusiecoéfficiénten met
behulp van de Green-Kubo methode goed berekend.

Vervolgens zijn de zelf-diffusiecoéfficiénten en de Maxwell-Stefan
diffusiecoéfficiénten berekend voor vloeibare systemen van deeltjes
met een gecompliceerdere structuur, met name methanol + water
mengsels. Voor de beschrijving van het fysisch gedrag van de
methanol- en water-deeltjes is een krachtveld nodig, dat complexer is
dan de Lennard-Jones potentiaal. Voor elke component zijn twee
verschillende krachtvelden gebruikt, ten einde de invloed van het
krachtveld op de berekening van de zelf-diffusiecoéfficiént in de
zuivere vloeistoffen te onderzoeken. De krachtvelden, die het best
voldoen, zijn gebruikt voor de berekening van de diffusiecoéfficiénten
in de methanol + water mengsels. De zelf-diffusiecoéfficiénten van
beide componenten in de mengsels van methanol en water zijn
nauwkeuriger bij hoge molfracties methanol. Dit kan verklaard
worden door een beter functionerend krachtveld van methanol. De
Maxwell-Stefan diffusiecoéfficiénten in de mengsels van methanol en
water komen redelijk goed overeen met de gemeten waarden. Omdat
bij de metingen Fick diffusiecoéfficiénten bepaald worden, zijn deze
eerst omgerekend naar Maxwell-Stefan diffusiecoéfficiénten met
behulp van thermodynamische correctiefactoren.

Dit proefschrift besluit met een discussie over de resultaten van
de metingen en de moleculaire simulaties. De MD simulaties van de
methanol + water mengsels hebben aangetoond dat het mogelijk is de
diffusiecoéfficiénten te voorspellen, mits de krachtvelden en de
simulatieprocedures (systeemgrootte, simulatietijd) geoptimaliseerd
worden.
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1. INTRODUCTION

General introduction

Diffusion can be described as a mixing process on a microscopic
scale, caused by the molecular motion of the particles. In liquids it is a
slow process, and this slowness is responsible for its importance. It
can be the rate-determining step in many mass transfer operations,
such as distillation, extraction, and in industrial reactions using
porous catalysts. It controls, for instance, the release of flavour from
food. Therefore, knowledge of diffusion rates is important for the
design of process equipment [1].

Two common models can describe molecular diffusion in

multicomponent liquids [2-4]:

1. A generalisation of Fick’s law to multicomponent systems [5].
Fick’s law is a phenomenological description of diffusion for
binary liquid systems [6].

2. An extension of the Maxwell-Stefan equations to liquids [2, 7].
The Maxwell-Stefan equations were developed for describing
multicomponent diffusion in gases [8-11].

The generalised Fick’s law as well as the generalised Maxwell-Stefan

equations can be derived from irreversible thermodynamics [2]. Both

models use diffusion coefficients as parameters. The Fick diffusion
coefficients can be transformed into the Maxwell-Stefan diffusion
coefficients and vice versa, using the thermodynamic correction

factors portraying the non-ideal behaviour [2, 7].

Theories for calculating diffusion coefficients in non-electrolyte
liquid mixtures have been based on the hydrodynamic theory, kinetic
theory, thermodynamic theory, absolute rate theory, statistical
mechanics, and other concepts. Many empirical and semi-empirical
correlations have been developed, which attempt to predict the liquid
diffusion coefficient in terms of solute and solvent properties [1, 2, 4,
12-28]. None is very accurate. The estimates of the liquid diffusion

* References are given at the end of each chapter.
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CHAPTER 1

coefficients using these correlations help to solve only the routine
problems. In most nonroutine problems, however, more accurate
values of the diffusion coefficients are required. These can be obtained
by supplementing the estimates with a good supply of experimental
data. Therefore, measurements of the diffusion coefficients are
necessary.

Almost all methods for the measurement of the diffusion
coefficients in liquids employ Fick’s model. Experimental techniques
used widely are the diaphragm cell technique, interferometric
methods and the Taylor dispersion method (1, 2, 4, 12, 17, 29].
Although the diaphragm cell technique and the interferometric
methods permit more accurate measurements, the Taylor dispersion
method is often preferred: this method does not need any repeated
calibration, is fast, the set-up consists of standard HPLC components,
and the measurements can easily be automated. In binary systems,
the Taylor dispersion method is also an accurate technique. In
multicomponent systems, however, the measurement of diffusion
coefficients is still difficult and time-consuming [4].

A third way to obtain diffusion coefficients could be from
computer experiments. Computer simulations are not only used to
test new theories before applying them to the real world. More
commonly, computer simulations are applied to predict the properties
of materials, such as the location of the freezing point and the
adsorption isotherms. It is often easier and less expensive to perform
a computer experiment than to measure the property of the real
material, especially at very high temperatures or pressures. Also
properties of future materials can be predicted. In a computer
experiment it is possible to take a “sample” of the material, and to
solve Newton’s equations of motion for this sample during a specific
duration of time. The desired quantity, expressed as a function of the
positions and momenta of the particles in the system, can then be
“measured”, i.e. calculated. Diffusion depends on molecular motions
that take place over molecular distances. Thus, the mechanism of
diffusion, and the prediction of the diffusion coefficients, can be
studied by performing an abovementioned computer experiment.

Molecular Dynamics (MD) is a simulation technique to compute
the dynamic properties of many-particle systems by solving the
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classical equations of motion (Newton’s equations) for the particles.
The transport properties, e.g. the diffusion coefficients, can be
calculated by performing an equilibrium molecular dynamics (EMD)
simulation or a non-equilibrium molecular dynamics (NEMD)
simulation [30-38]. In an EMD simulation, the appropriate
equilibrium time-correlation functions are calculated. All possible
transport properties can, in principle, be determined from the
fluctuating quantities in the equilibrium system from a single EMD
run [34]. In an NEMD simulation, the system is driven away from
equilibrium by imposing an external field, and the system response is
monitored. Diffusion coefficients can be simulated by applying an
external force to the individual particles in the system. For different
transport properties a completely new simulation is necessary [38].

Because it is still difficult and time-consuming to measure the
diffusion coefficients in multicomponent systems, it is interesting to
develop a method for calculating the diffusion coefficients from
molecular simulations. By comparison of the simulation method with
measurements, performed on the real systems, the applicability and
reliability of the simulation method can be investigated. This can be
the first step to a future application of computer simulations to
supplement or even substitute diffusion coefficient measurements.

This work deals with both the measurement and the molecular
simulation of diffusion coefficients. The model systems used are
chosen for several reasons. For comparison of the results, it is
important to use the same model systems in both the simulations and
the measurements. These model systems preferably consist of small
particles, since the simulations of mixtures of small particles are
expected to be easier to accomplish. The detectability of the
components is allowed to be difficult, because then the systems are
also suitable for the investigation of the applicability and the
limitations of the Taylor dispersion method. Finally, for future use of
the results in the research of food processing, water has to be one of
the components.

For these reasons various binary and ternary liquid mixtures of
methanol, ethanol, acetone, and glucose in water have been
investigated. The binary system methanol + water consists of small
particles and is therefore used in the simulations. The necessary
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continuous monitoring of the small concentration differences in
solutions of methanol (or ethanol) in water can be performed by the
differential refractometer, which is universally usable. The
concentration of acetone in the ternary mixture of acetone + methanol
+ water can be monitored by an ultraviolet-visible detector, which
allows the independent simultaneous measurement of the
concentrations by two different detectors. This is important for the
investigation of the performance of the Taylor dispersion method in
ternary diffusion measurements. Another ternary system used, water
+ glucose + dilute methanol (or ethanol, or acetone), is chosen because
of its frequent occurrence in food processing research.

Since almost all methods for the measurement of diffusion
coefficients employ Fick’s model, the diffusivities found in the
literature are usually Fick’s diffusion coefficients. In this thesis,
therefore, Fick’s description of diffusion is used in the computation of
the diffusivities from the measurements. However, the Maxwell-
Stefan approach is preferred over Fick’s law for describing diffusion
under influence of external forces, and in multicomponent systems, in
which less Maxwell-Stefan diffusion coefficients are necessary [7]. For
these reasons, the Maxwell-Stefan approach is chosen for the
computation of the diffusivities from the molecular simulations. For
comparison, the measured Fick diffusivities can be transformed into
Maxwell-Stefan diffusivities and vice versa.

Outline of the thesis

The body of this thesis describes the measurement of diffusion
coefficients in binary and ternary liquid systems (chapters 2, 3 and 4),
followed by the molecular simulation of diffusion (chapters 5,6 and 7).

In chapter 2, the development of the instrument for measuring
diffusion coefficients in binary liquid systems is described. The
experimental technique used is the Taylor dispersion method. The
experimental set-up consists of standard HPLC equipment and has
been fully automated. Software has been developed for processing the
data. Experiments were performed on the binary systems methanol +
water and ethanol + water at various temperatures. Chapter 3
describes the extension of the Taylor dispersion method to ternary
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liquid systems. Complications in the use of this method for ternary
diffusion measurements are illustrated by the measurements on the
system methanol + acetone + water. The determination of the
diffusion coefficients in the ternary systems glucose + water + dilute
methanol, ethanol or acetone is described in chapter 4.

In chapter 5, an EMD method and an NEMD method are
compared using simulations of a Lennard-Jones fluid. As a result, the
EMD method is preferred. The simulation of the molecular diffusion
in ternary Lennard-Jones systems is described in chapter 6. In
chapter 7, the developed simulation method is applied to the binary
liquid system methanol + water.

Finally, a short discussion of the results is given in chapter 8.

Note

Chapters 2 to 7 are a collection of articles. Therefore, every
chapter is self-contained, and it is not necessary to read all chapters
preceding the chapter one is interested in.
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2. FAST AND CONVENIENT
IMPLEMENTATION OF THE TAYLOR
DISPERSION METHOD

Abstract’

A highly labour-efficient implementation of the Taylor dispersion
method for measuring mutual diffusion coefficients in binary liquid
systems is described. The experimental set-up has been fully
automated; it is possible to measure the diffusion coefficients over the
entire concentration range in a single experiment using standard
HPLC equipment. Software has been developed for processing the
data; diffusion coefficients can be calculated from the measured
concentration against time curve in various ways (e.g. from the first
and second moments and by fitting procedures) within a few seconds.
Experiments on the methanol + water system (25 °C and 35 °C) and
the ethanol + water system (25 °C and 40 °C) have an accuracy of 0.5 -
1.5%.

* The main part of this chapter has been published: Van de Ven - Lucassen, I. M. J. J,,
Kieviet, F. G., and Kerkhof, P. J. A. M., 1995, J. Chem. Eng. Data, 40, 407.



CHAPTER 2

Introduction

Liquid diffusion plays an important role in chemical engineering,

‘and the design of process equipment requires knowledge of mutual

diffusion coefficients. The purpose of this work is to develop an
apparatus for measuring diffusion coefficients in liquid systems over a
wide range of temperature and pressure in a fast, accurate, and
labour-efficient way. The instrument developed here should not need
any repeated calibration, and the calculation of the diffusion
coefficient from the measured variables is simple and easy to
computerise.

Experimental techniques used widely for measuring diffusion
coefficients are the diaphragm cell technique, interferometric
methods, and the Taylor dispersion method [1-5]. Interferometric
methods permit the most accurate measurements near room
temperature, but it is not (yet) possible to employ these instruments
over a wide range of temperature and pressure. The disadvantages of
the diaphragm cell are the necessity for calibration of the cell with a
system of known diffusivity. Another disadvantage is the long
measuring time. The Taylor dispersion technique provides a good
alternative. The method is fast, the set-up consists of standard HPLC
components, and the measurements can be readily automated [6].
Therefore we have chosen the Taylor dispersion method.

The Taylor dispersion method (TDM) is based on the following
principle [7, 8]: a slow, laminar flow of a liquid mixture is pumped
through a long capillary and a narrow pulse of a mixture of a slightly
different composition is injected into this capillary. Due to the
combined effects of convective flow and molecular diffusion, the pulse
ultimately assumes a Gaussian distribution, whose temporal variance
is dependent on both the average flow velocity and the molecular
diffusivity.

At the end of the diffusion capillary the concentration is measured
as a function of time; the diffusion coefficient is calculated from the
first and second temporal moments or by fitting the dispersion
equation to the experimental curve.
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Theory

When a pulse of a different concentration is injected into a fluid
flowing slowly through a long capillary, it spreads out due to the
laminar velocity profile in the tube and the molecular diffusion. The
concentration at the end of the diffusion tube is given by

2 t
_12(1-%
_Vieg 1 { T)

T onR? Jkt) | 4kt

2.1

In this expression Vi, is the number of moles of component i in
the injected pulse in excess of those present in the same volume of the
carrier stream (solvent), C; is the radially-averaged concentration of
component i at time ¢ relative to the background concentration, R is
the internal radius of the diffusion tube, L is the diffusion tube length,
and r = L / U is the mean residence time with U the linear velocity
averaged over the cross section. The dispersion coefficient & is found to
be [9]

k=——"—+ D12 s ‘ (22)

where D, is the binary molecular diffusion coefficient. In practice, Eq
2.2 simplifies to [7, 8]

272
b= RZL 2.3)
48‘[ D12

for diffusion in liquids, since in TDM equipment the second term is
several orders of magnitude smaller than the first term.
The assumptions made in the derivation of eq 2.1 impose some
constraints on the experimental conditions:
e Axial (molecular) diffusion can be ignored when U > a;-Dyy/R. o is
a constant: its value ranges from 6.9 [7, 8] to 700 [14] [7, 8, 10-17].

11
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* Radial concentration differences are assumed to be small when {7
< ay(L-Dy3)/R?. a, ranges from 4 to 0.1 6, 7, 10-15, 18-24].

e If o, = 0.048 [25], the perturbations due to temperature / pressure
reduction occurring in a short length between the capillary and
the detector are negligible.

¢ The development of secondary flow due to the coiling of the
capillary can be neglected when De?Sc < 20 and RJ/R > 100, in
which the Dean number De = (2RpU/n)-(R/R)Y, the Schmidt
number Sc = (77/pD;;), 77 the solvent viscosity, p the solvent density,
and R, the radius of the tubing coil [14, 15, 20, 21, 24, 27-33].

Other restrictions on the experimental conditions and corrections on

the ideal average residence time and variance are well described by

Alizadeh [14] and Baldauf [26].

When the concentration is measured, the relation between the
detector signal s(¢) and the concentration against time curve (eq 2.1) is
assumed to be

s@)=w-C;+a+b-t+¢), (2.4)

in which w is the detector sensitivity, o and b compensate for the
detector drift (which is assumed to be linear in time), and &(¢) is noise.
The signal is sampled with a sample interval of Aty y* = s(¢;). The
sample interval Af; must be chosen such that it provides a minimum of
N data points within the solute peak (N = 200 [24]).

Diffusion coefficients can be calculated from the measured
concentration against time curves in two different ways: calculation
from the first and second moments; fitting of the theoretical eq 2.4 to
the experimental curve.

Calculation from the first and second moments

For the calculation of the first and second moments the discrete
signal without the drift is required: y; = y* - (@ + & t). For the
calculation of @ and b, regions of this signal are visually marked in our
software as baseline, i.e. the concentration negligibly small. Through
these regions of the signal the drift is fitted and subtracted from the
signal.

The first moment ¢ and the second moment o are defined as
follows:

12



IMPLEMENTATION OF THE TDM

N _
Dty (ti - t)ZyiAti
7 _i=0 2 _i=0
t= ~ and o° = _— (2.5)
> yilt D vidty
i=0 i=0

The mean residence time can be calculated for either a closed or
an open system: For a closed system (no diffusion through the cross-
section at both ends of the tube, finite tube) 7 = £. For this system
Taylor derived the explicit relation [7, 8] ‘

R%t
= . (2.6)
ey
For an open system (infinite tube) the expression can be derived
_ 2
R @7
24Dy,

which results in an implicit relation for the diffusion coefficient (eq 2.3
combined with Van der Laan [25]):

%

RZ |- R? _ g2 Y 9
Dyo = t— +(tt- +8 . 2.8
1274802 || 24Dy, 24Dy, e 28

Other relations have been derived by Alizadeh [14] and Matthews [34,
35].

Fitting of the theoretical equation 2.4 to the experimental curve
This can be done in several different ways:

e The drift parameters ¢ and b are calculated as indicated above.
The term Vcw is calculated by integration of the signal. D,, is
fitted, 7 is calculated using eq 2.7 during the iterative process
(one-parameter fit).
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* a,b, and Vicw are calculated as in 1. Dy, and r are fitted (two-
parameter fit).
* a,b, and Vcw and Dy, are fitted; 7 is calculated during the fitting
process using eq 2.7 (four-parameter fit).
* a,b, and Vicw, D;, and 7 are fitted [4, 36] (five-parameter fit).
Other fitting procedures are possible (e.g. three-parameter fits).
Calculation methods were compared by processing a
concentration against time curve calculated by means of eq 2.1 with a
superposition of randomly generated noise or superposition of an
experimentally measured baseline.
Calculation of moments is extremely simple and fast. The Van der
Laan method (eq 2.8) yields the best fit to the shape of the
experimental curve (visualisation), the smallest sum of squares

N

Z(yi -wC; )2 , and minimal deviations in Dy, and . Fitting is more
i=1

accurate though. The one- and two-parameter fits are, of course, faster
than the four- and five-parameter fts, and they yield consistent
diffusion coefficients and are therefore preferred.

Equipment and experimental procedure

The apparatus used is shown schematically in figure 2.1. The
pump must deliver a constant laminar flow. Several pumps of
different types were tested. The amplitude and frequency of the
fluctuations in the pressure were measured at various backpressures
(figure 2.2). We selected an HPLC pump (type LKB2150) combining a
low pulsation and constant flow with the capability of continuous
operation. Implementation of computer control in our software was
relatively easy. The selection valve allows the solvents to be changed
during one experiment. To prevent bubbles from disturbing the flow,
an in-line degasser (Separations DG1300) was installed. Moreover, the
solvent flask was purged once with helium for 10 - 15 min. The pump
was connected to an autosampler (Spark Marathon) with a fixed
volume sample loop (20 pl); the sample tray can hold 96 vials.
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RI

Lk

Figure 2.1. Experimental set-up: SV, selection valve; D, degasser;
A, autosampler; R, refractive index detector

ACS
Kontron
ISCO
LKB
Sykam
W-590
W-590+
W-600
W-600+
Gynkotek | \

| 1 1
0 10 20 V' 336

Figure 2.2. Pulsations of the pump (pulsations in 10° bar, back
pressure 2 bar): ACS, ACS 351 isocratic HPLC pump; ISCO, ISCO LC-
5000 syringe pump; Kontron, Kontron HPLC; LKB, LKB2150 HPLC
pump; Sykam, Sykam S-1000 HPLC pump; W-590, Waters 590
Programmable Solvent Delivery Module; W-590+, W-590 + pulsation
dampeners; W-600, Waters 600/625 MS PowerLine multi-solvent
delivery system; W-600+, W-600 + pulsation dampeners; Gynkotek,
Gynkotek HPLC pump Model 300.
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Zero dead volume fittings were used to connect the diffusion tube with
the autosampler and the detector. For installation of the capillary
tube in a water bath of circular cross section (dy, = 0.50 m), which could
be kept at the desired temperature within +0.025 °C with a Lauda
CSG 2.0 kW thermostat, it was necessary to coil the tube horizontally
(d. = 0.40 m). To measure the diffusion coefficient in liquid systems
with a wide range of viscosities (and diffusion coefficients), stainless
steel tubes (i.d. = 1.041 mm) of various lengths (10, 15, 25, 50 m) were
installed. The differential refractometer (Shodex SE61) measured the
difference in refractive index between the sample stream and the
reference liquid (solvent). The analogous output signal of the
refractometer was converted by a Multilab system, which consists of
an A/D-D/A conversion system developed at Eindhoven University of
Technology (sample interval 0.98 s yielding 3000 - 4000 data points
per peak, including parts of the baseline in front of and behind the
peak). The Multilab was used to interface between detector and PC
and between selection valve and PC. The pump and autosampler were
controlled directly by a personal computer.

Software has been developed for data acquisition and controlling
the equipment (called Linus) which makes it possible to measure
diffusion coefficients in 16 different solvents in a single experiment.
All aspects of the experiment except the preparation of the solvents
and sample solutions have been automated. An optional manual
control was included. To process the data, a module was added to an
MS Windows signal processing software package that provides
extensive visualisation and data-manipulating capabilities. This
module provides various methods for the calculation of the diffusion
coefficient from the first and second moments (eq 2.5), using the
equations of Taylor (eq 2.6, Van der Laan correction eq 2.7 optional),
Van der Laan (eq 2.8), Alizadeh [14] and Matthews [34, 35], and by
means of fitting procedures, based on the least-squares approximation
between the experimental data points and the points calculated
according to egs 2.1 and 2.3. The method of Levenberg and Marquardt
[37] is used for two-parameter fitting and the Golden section search
algorithm [38] for the one-parameter fitting. Initial guesses for the
diffusion coefficient are obtained by means of the equation of
Matthews [34, 35]. The amount in the injected pulse, Vi, is calculated
by equalising the integral of the measured concentration against time
curve to the integral of eq 2.1, assuming the detector response to be
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linear with the concentration. Visual confirmation of the calculated
values of 7 and D,, is possible by overlaying the experimental peak
with the fitted peak.

In a typical diffusion experiment, the solutions are prepared by
mass and mixing and degassed by sparging with helium. Injection
solutions are made by volumetrical mixing of the degassed solvents.
The flow velocity is set in accordance with the conditions of the
previous section. In Linus a new program is created (or an already
existing method is edited), and after an emulation, the program is run.

Preparation of the solvents and injection solutions (sufficient for
three experiments) takes one day's work, and creating the new
program takes a few minutes. The data gathered in a week's run can
be processed within a few hours. Calculation of the diffusion
coefficient from one concentration against time curve takes only a few
seconds.

Experimental results and discussion

Diffusion coefficients were measured for methanol + water and
ethanol + water. Deionized water filtered through a Milli-Q Water
Purification System (Millipore, resistivity 18 MQ.cm) was used.
Analytical-grade methanol (purity > 99.8%, water < 0.05%) and
ethanol (purity > 99.8%, water < 0.2%) were obtained from Merck and
used without further purification.

Experiments were performed to show that the detector response
was linear with concentration and to test the effect of the
concentration of the injected sample on the measurement of the
diffusion coefficient. Samples of increasing methanol concentration
were injected into pure water, and the peak area and the diffusion
coefficient were calculated. Between injection and detection of a
sample, subsequent samples were injected for enhanced time
efficiency. Simultaneous dispersion of two or more 3-pulses in the tube
did not disturb the diffusion process provided the time between two
subsequent injections was large enough to prevent overlapping of the
solute peaks. Degassing of the injection solutions after preparation
appeared to be unnecessary.

The diffusion coefficient as a function of the methanol
concentration of the sample injected into pure water is shown in figure
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2.3. Below a concentration difference of 5 vol% no influence was
observed. A minimum difference of 0.5 vol% was necessary to obtain
an accurate concentration against time curve (as a result of detector
noise). Measurements at other solvent compositions confirmed this
result. Experiments for the system ethanol + water also showed a
linear detector response and an independence of the concentration
difference up to 4 vol%.

0 5 10 15 20
Inj. conc. (vol% methanol)

Figure 2.3. Influence of the concentration of the injected sample
(methanol in water, 25 C): ¢, Dy, ; —, fit (powerlog).

To examine whether short time pulsations produced by the pump
influence dispersion, experiments were carried out using a “pulsation-
free” ISCO syringe pump (500 cm?) as well as our LKB pump; solvents
were pure water and a water + methanol mixture (83 vol% methanol).
The noise in the concentration against time curves of the ISCO
experiments appeared to decrease a little and was of a slightly
different shape. The -calculated diffusion coefficients and the
inaccuracy in the results were not significantly different. Therefore,
we preferred the LKB pump.

To investigate the influence of the mean residence time (and the
flow velocity), experiments were carried out at various flow velocities
in the 15 m tube as well as in the 25 m tube for both the methanol +
water and the ethanol + water system. The results as shown in figure
2.4 demonstrate the validity of the experimental conditions described
previously.

18
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1.32 +

ap>
=13

1.16 } t + —A
0 5 10 15 20
Inj. conc. (vol% ethanol)

Figure 2.4. Influence of the flow and the injection concentration
(ethanol in water, 25 C): O, 0.1 cm®.min’’; A, 0.2 cm® min’’;
0, 0.4 cm®.min’l.

Table 1. Mutual diffusion coefficients for methanol(1) + water(2) at
25 Cand 35 €

25 °C 35°C
x, 10°D,,/(m?.s') inace,% 10°D,,/(m?%s") inacec,% 10°D,, / (m*s™)
0 1.560 0.49 1.560 0.49 1.94
0.048 1.350 1.88
0.058 1.330 0.77 1.66
0.100 1.210 0.70
0.123 1.170 1.67 1.45
0.160 1.070 0.92
0.194 1.030 1.40 1.29
0.236 0.989 1.35
0.272 0.956 1.82 1.21
0.307 0.940 3.91
0.366 0.948 2.85 1.22
0.400 0.957 3.63
0.458 0.978 2.88 1.25
0.510 1.030 3.88
0.568 1.119 3.15 1.41
0.640 1.200 1.80
0.691 1.266 0.30 1.71
0.801 1.630 4.91
0.835 1.845 7.56 2.12
0.996 2.130 2.34 2.145 4.33 2.61
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Table 2. Mutual diffusion coefficients for ethanol(1) + water(2) at
25 Cand 40 C

25 °C 40 °C

% 10°Dy,/(m%:s") inace,% 10°D;, / (m®sY)  inace,%

0 1.200 0.5 1.745 0.3
0.09 1.020 4.7
0.10 0.695 1.1
0.20 0.393 2.8 0.642 4.7
0.23 0.595 2.9
0.24 0.374 1.6 .
0.27 0.573 6.3
0.28 0.367 0.9
0.36 0.629 4.1
0.37 0.392 2.8
0.42 0.444 5.9 0.677 7.0
0.48 0.821 2.4
0.49 0.504 5.0
0.56 0.692 58.4
0.73 1.318 5.3
0.74 0.834 5.3
0.94 1.100 3.0

Finally, the binary diffusion coefficients of the methanol + water
system and the ethanol + water system at various temperatures were
measured as a function of composition. After the eluents were
switched, the system was flushed for 30 min at a high flow rate (1.5
cm®.min™) and for 6 h at the flow rate of the diffusion experiment (e.g.
0.15 cm®.min™) to attain a stable, linear baseline.

Results are listed in tables 1 and 2; each value is the average of
the calculated diffusion coefficients of several injections (various
sample concentrations in the range 0.5 - 5 vol%). The values at mole
fraction 0 are extrapolated (sample concentration 0%). The confidence
limits (“inaccuracy”) of the data (calculated according to the Student’s
¢ distribution, probability level 95%, two-tail test [39]) increase close to
the maximum in the refractive index-concentration curve of the
system, as expected.
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Figure 2.5. Diffusion coefficient methanol(1) + water(2).

25 C: O, expt 1; 0, expt 2; x, ref 5 (dual bellows diaphragm cell, 3%);
o, ref 41 (diaphragm cell); A, ref 42 (diaphragm cell).

35 C: W, expt; #, ref 40 (Taylor dispersion, 1%).

The points at mole fractions 0 and 1 are extrapolated values.

Comparison with literature values in figures 2.5 and 2.6 shows a
good agreement. The high deviation in the points of Pratt [24] at mole
fraction 0.44 and ours at mole fraction 0.56 for the ethanol + water
system is believed to be caused by using the refractive index detector
close to the maximum in the refractive index-concentration curve. For
the methanol + water system fewer literature values are available.
The higher experimental values of Kircher [5] are believed to be
caused by the method used (dual bellows diaphragm cell). As Woolf
[41, 42] did not mention the accuracy of the measurements, it is not
possible to decide whether the deviation is significant. Taylor
dispersion data at 25 °C were not available. At 35 °C and high mole
fractions the diffusion coefficients of Lee and Li [40] are lower than
the diffusion coefficients obtained in our measurements, with a
deviation of 5 - 8%.
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Figure 2.6. Diffusion coefficient ethanol(1) + water(2).

25 C: O, expt; A, ref 5 (dual bellows diaphragm cell, 3%); x, ref 24
(Taylor dispersion, 2.5%); o, ref 43 ( Taylor dispersion, 2%); 0, ref 44
(diaphragm cell, 2.6%); —, ref 45 (diaphragm cell, 1%); +, ref 46
(diaphragm cell, 2%).

40 C: W, expt; o, ref 24 (Taylor dispersion, 2.5%); +, ref 44 (diaphragm
cell, 2.6%).

The points at mole fractions 0 and 1 are extrapolated values.

Conclusions

The Taylor dispersion method for measuring diffusion coefficients
is an accurate technique. In this paper we have shown that the
technique can be fast as well if the experimental set-up is extensively
automated.

Various calculation methods have been discussed. A simple one-
parameter fit or even the Van der Laan equation newly presented in
this paper yields sufficiently accurate results.

In easily determinable systems diffusion coefficients can be
measured with an inaccuracy of +0.5 - 1.5%, e.g. our measurements on
methanol and ethanol in pure water. Concentration differences in
methanol + water and ethanol + water mixtures with a composition
close to the maximum in the refractive index-concentration curve are
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more difficult to measure; in this case the inaccuracy in the obtained
diffusion coefficients is less then +4 - 5%.
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3. COMPLICATIONS IN THE USE OF THE
TAYLOR DISPERSION METHOD FOR
TERNARY DIFFUSION MEASUREMENTS:
METHANOL + ACETONE + WATER
MIXTURES

Abstract”

The Taylor dispersion technique is used to measure the ternary
mutual diffusion coefficients of aqueous non-electrolyte solutions at
25 °C. The dispersion of the injected solutes is recorded by a
differential refractometer and an ultraviolet-visible detector. The
diffusion coefficients are calculated directly by fitting the theoretical
dispersion equations to about six experimental curves simultaneously.
If the ternary diffusion effects in the measured dispersion profiles are
not obscured by the inaccuracy of the experimental method or an
unfavourable relative detector sensitivity, the diffusion coefficients
are precise. For the system methanol + acetone + water, it is shown
that the Taylor dispersion method is unsuitable for the determination
of all diffusion coefficients if the methanol mole fraction is smaller
than 0.45 or the acetone mole fraction is larger than 0.001.

* The main part of this chapter has been published: Van de Ven - Lucassen, I. M. J. J,,
Kemmere, M. F., and Kerkhof, P. J. A. M., 1997, J. Solution Chem., 26, 1145.
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Introduction

Diffusion coefficients in liquid systems can be measured by the
Taylor Dispersion Method (TDM) [1-5]. For binary systems this
method is fast and convenient. The measured binary diffusion
coefficients have an accuracy of 0.5 - 1.5% [6]. The diffusion behaviour
in ternary or multicomponent systems, however, is more complicated.
In a ternary system, e.g., four Fick diffusion coefficients have to be
determined from the dispersion curves of two components. Ternary
mutual diffusion coefficients were determined from Taylor dispersion
profiles by Leaist et al. The three-component systems consisted of
water + salt 1 + salt 2 or water + salt + organic solute. The diffusion
coefficients were calculated from the temporal moments of the
detector signal [7, 8] or by fitting the theoretical equation of the
dispersion profile to the experimental curve [8-14]. The main-diffusion
coefficients were more accurate than the cross-diffusion coefficients.
The experimental curve was measured by a differential refractometer
(RI detector). Since changes in concentration of both solutes influence
the detector signal, the concentrations of the two solutes were not
measured independently. Therefore, the precision of the
determination of the diffusion coefficients was dependent on the ratio
w,/w, of the refractive index increments per mole of solute 1 and
solute 2. Independent measurement of the concentration profiles of
the two solutes may increase the precision of the diffusion coefficients.
One of the first attempts to obtain two independent concentration
measurements from one dispersion experiment was accomplished by
Rutten [15]. For the determination of the ternary diffusion coefficients
in the aqueous region of the system glycerol + acetone + water he used
one ultraviolet-visible (UV) detector at two different wavelengths or a
UV detector combined with an RI detector.

In this work the determination of ternary diffusion coefficients by
the Taylor dispersion method is discussed for aqueous solutions of
non-electrolytes using an RI detector as well as a UV detector. Special
attention is paid to the development of the fitting procedures and the
limitations of the method.
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Theory of the Taylor dispersion method

Diffusion in a three-component system is described by the coupled
Fick equations

J1 = —D11VCl - D12V02 ' (313)
Jy = -Dg;VC; — Dy VCsy, (3.1b)

where J; is the molar flux of component i, VC; the gradient of
concentration of component i, D; is a main-diffusion coefficient and
D;;;; a cross-diffusion coefficient. The ternary diffusion coefficients can
be measured by the Taylor dispersion technique: A pulse of different
concentrations C; and C, is injected into the ternary mixture (solvent)
flowing slowly through a long capillary. The pulse spreads out due to
the laminar velocity profile and molecular diffusion. The
concentrations C;, C, at the end of the diffusion tube are given by the
fundamental working equations of Price [16]

2 2
-t 1 exp{__(t—r)ZU }+ A, 1 exp{_(t—r)zU }

o2nR? \[noyt 4oyt onR? Jnazt 409t
(3.22)
22 R
Cy= A32 L e _-cPUR| A42 L exp _(-ofU ’
2nR Jnalt 4oyt 2nR \/7‘0'2?5 4doqt
(3.2b)
with
1
{Dzz - -Z—(Du + Doy — \/ (D11 - Dog)® + 4Dy Doy j}Ml — DyoM,
A = :
\/(Dn — Dyy)? + 4Dy3 Dy
(3.2¢)
1
{Dzz - E(Dn + Do + \/(Dll — Dg3)* +4Dy13 Dy )}M1 - DioM,
Ag = ;

- \/(Du ~ Dyy)? +4Dy5Dyy
(3.2d)
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1
{Du - '2-[1)11 + Dy - \/(Du ~ Dy3)* +4Dy3 Dy )}Mz ~ Dy My

Ag = ,
V(i1 - Dyp)? + 4Dy, Dy
(3.2e)
1
Dyy — | D11 + Dyg +,/(Dyy — Dyy)? + 4Dy5 Dy VM, - Dyy My
A= 2
- \/(Du ~ Dyp)? +4Dy3 Dy
(3.2
o1 = 1 R?%U? Dy + Dy + \/(Du — Dyp)? + 4D12D21 (3.2¢)
2 48 Dy1Dgg - Dy3Dyy
1 R*U? Dy + Doy - \/(Du — Dyy)® +4D15 Dy
, (3.2h)
T2 48 Dy1Dyy — D12 Dyy

in which M; represents the number of moles of component i in the
injected pulse in excess of those in the same volume of the carrier
stream: M; = A; + A, and M, = A, + A,. C, is the radially averaged
concentration at time ¢ relative to the background concentration, ris
the mean residence time, R the internal radius of the diffusion tube
and U the linear velocity averaged over the cross section.

The sum of the main-diffusion coefficients is positive:
Dy1 + Doy >0. Further conditions for the diffusion coefficients are

Dy Dy3 ~ DygDyy >0 and (Dyg — Doy f? + 4Dy5 Dy > 0 [17-19].

The assumptions made in the derivation of the working equations
are similar to those of the binary dispersion technique [6] with an
effective diffusion coefficient D, [16]. By comparing Toor’s method
[18], used in the derivation of Price’s equations, with Taylor’s
derivation of the binary equation [2, 3], D¢ can be described with the
eigenvalues of the D;; matrix

2(Dy1Dgy - D13 Dy, )
Deff (3-3)
Dyq + Doy £+/(Dy; — Doy + 4D12D21
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The effective diffusion coefficient is of the same order of magnitude as
the main-diffusion coefficients and is used in the equations that
provide the criteria for the operating conditions (e.g., calculation of
the flow rate) [6, 16].

The calculation of the Fick diffusion coefficients may be
complicated due to their mutual dependence. In a solvent-fixed
situation, in which diffusion causes no bulk motion of the liquid, the
following relation can be derived [20]

(Dr2) 111 — (D11) 12 = (D21 ) o — (Dag ) 121 (3.4a)

o
where u; = e} , &4 is the molar chemical potential and
oC;
Tap:Ck¢0, j
(Dy), the solvent-fixed diffusion coefficient. For volume-fixed diffusion
coefficients a similar relation has been derived by Dunlop [21].
Transformation of the volume-fixed diffusion coefficients Dy,
measured by the Taylor dispersion method, to the solvent-fixed
diffusion coefficients is possible by [22]

c Y= .
(Dy), = Dj + ﬁglvk% G,j=1,..n1), (3.4b)

where C, is the molar concentration and V; the partial molar volume
of component i. The subscript 0 refers to the solvent.

Near infinite dilution (Dy), is equal to D;. For low concentrations
of the solute components, and even in relatively concentrated
solutions, the solvent-fixed- and the volume-fixed diffusion coefficients
may differ only by 1 - 5% [22]. Furthermore, the thermodynamic,
molar concentration-based matrix (I'); can be simplified to [23]

oln y;
(Te); =65+ Ci _6—6—1_ =0 + %

j

6ln7i

%

x.
= Fij = R—IT /"1] , (35)

in which &; is the Kronecker delta, y the activity coefficient of
component i defined by convention I [24], and T; the thermodynamic
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mole fraction-based matrix. Combination of equations 3.4 and 3.5
leads to

X X
Dy =| 2 Dyglyy - =2 Dyylyp + Dooly; | [Tps. (3.6)
x1 x1

Eq 3.6 is valid at low concentrations of the solute components and
provides good estimates at higher concentrations.

The working equations of Price, eq 3.2 simplify for very low
concentrations of the solute components. If the concentration of
component 2 tends to zero (tracer), D,; ~ 0 [25], and eqgs 3.2a, 3.2b
become, respectively

__ Dy \
C = D11—Dzzz 1 expl— (t—;)z +
2nR RrR2y? R
T——t 4 ¢
48Dy 48Dg5
M1 + __DIZ_MZ
Dy1 - Dyy 1 expl- (t-f ,  (3.7a)
2nR? R2U? R?
¢ 4 t
48Dy, 48Dy,
G- L o) (t—;)2 , (3.7b)
onR? | g2 R
T t 4 t
48Dy 48Dy

The concentration curve of component 2 resembles a single Gaussian
and is independent of the injected amount of component 1. Similar
equations can be derived if component 1 tends to zero (component 1 is
tracer), i.e., D;; ~ 0. If both components tend to zero, C, and C, are
both single Gaussians: The concentration curve of component 1 is not
influenced by the injection amount of component 2 and vice versa.

When the concentration is measured, the relation between the
detector signal s(#) and the concentration vs. time curves, eq 3.2, is
assumed to be
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s@) =uwnCy + weCy +a + bt + &(2), (3.8)

in which w; is the detector sensitivity for component i, @ and b
compensate for the detector drift (which is assumed to be linear in
time), and &) is noise. The signal is sampled with a sample interval
of At = 0.98 s: y*; = s(2).

Diffusion coefficients can be calculated from the measured
dispersion peaks in two different ways: Calculation from the temporal
moments [7, 8]; fitting of the theoretical eq 3.2, combined with eq 3.8,
to the experimental curve [8-14]. In this work only fitting procedures
with the diffusion coefficients as fitting parameters will be used. In
these fitting procedures a discrete signal without drift is required: y; =
y* - (a + b t). For the calculation of @ and b, regions of the detected
signal, where the concentration is negligible, are visually marked in
our software as baseline. Through these regions of the signal the drift
is fitted and subtracted from the signal.

Fitting procedures

Fitting of the theoretical equations to the experimental curves
can be done in several different ways:

e fitting to a single curve

e simultaneously fitting of two or more curves (with different
injection concentrations) from one detector

e simultaneously fitting of two or more curves from two different
detectors (different detector sensitivities).

Furthermore, all these procedures are able to fit

e Dy, Dy, Dyy, Dy, (4-parameter fit); residence time 7 calculated [6],
detector sensitivities calculated from the peak areas.

e Dy, Dy, D), (3-parameter fit); D, is calculated during the
iterative process using eq 3.6, residence time r and detector
sensitivities calculated as above.

e  4- or 3-parameter fit + residence time

e  4- or 3-parameter fit + residence time 7 + detector sensitivities w,
and w,.

Combinations of these procedures and other fitting procedures are

possible [7, 8].
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The fitting procedures were developed in two test series. First, an
ideal detector signal was calculated by means of eq 3.2. The values of
the parameters used are listed in table 3.1. This ideal signal was
processed by fitting procedures based on the least-squares
approximation between the experimental data points (= ideal signal)
and the points calculated. These fitting procedures were written in the
SAS for Windows-package (version 6.08/6.10, SAS Institute Inc.),
using the method of Gauss-Newton method as well as the Marquardt
method. Dy;, Dy, Dy, (7, w, and w,) were fitting parameters; D,, was
always calculated using eq 38.6. The detector sensitivities and the mole
fraction ratio x,/x, were varied. Two curves with different values of the
detector sensitivities were simultaneously fitted, simulating different
detectors. The influence of noise was tested by a superposition of
randomly generated noise on the signal (0.5%, 1%, 5%, 20%). The
Marquardt method yields the best results. In some cases it is difficult
to achieve convergence depending on the ratio of the detector
sensitivities and the mole fraction ratio. The aceuracy of the diffusion
coefficients is good. The cross coefficients are of poorer precision than
the main coefficients. The values of the residence time and the
detector sensitivities (if fitted) are very accurate. Noise of less than
1% causes no problems in the calculation of the diffusion coefficients.

Table 3.1. Parameters of ideal signal series I

Dy, (10° mZs) 1.30 M, (10° mol) 0.14
D, (10° m?.s) 0.80 M, (10°mol) -0.14
D, (10° m?%.sh) -0.02 r  (8) 12000
Dy, (10° m2.sh) -0.01* U (10%m.s? 0.002
(calc. acc. eq 3.6)  -0.0045° w, 5 (RIU.m*mol?) 1;300; 600
| 0.9 w; yy (AU.m®% mol ) 0.015

| P 0.9 wyrr (RIU.mM3mol?)  1; 200; 400
Flg -0.01 wZ,UV (AU.mg.mol‘l) -

Ty -0.005 noise (%) 0.5; 1; 5; 20
fxy/x=1

b x2 /x1 = 0.015

The developed fitting procedures were tested on experimental
curves of the systems acetone + ethyl benzene + water and glucose +
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acetone + water. Simultaneously fitting of two or more curves with
different injection concentrations showed an increase of precision and
a decrease of convergence difficulties. Disadvantages of the
procedures were the long calculation times. Another problem was the
determination of accurate activity coefficients, needed in calculating
D,; according to eq 3.6. Reduction of the calculation times was
achieved by dividing the ternary systems into three types, resulting in
a reduction of the necessary fitting parameters and a simplification of
the working equations for two types:

1. solvent(0) + tracer(l) + tracer(2): fitting parameters D,; and D,;

D, =0,D, =0.

2. solvent(0) + solute(1) + tracer(2): fitting parameters D,;, D,;, and

Dyy; Dy = 0.

3. solvent(0) + solute(l) + solute(2): fitting parameters D, Dy, Dy,

and D,,.

Use of the thermodynamical eq 3.6, i.e., knowledge of the activity
coefficients, is only necessary for type 3. For each type a fitting
procedure was developed, using Marquardt’s method.

Ideal signals were calculated for each type of ternary system.
Parameters were chosen to simulate a real ternary system like
water(0) + methanol(l) + acetone(2) (table 3.2a). The UV detector
measured the concentration of component 2 by absorbance changes;
the RI detector measured changes in concentration (by refractive
index) of component 1 as well as component 2. Results of the testing of
the fitting procedures are listed in table 3.2b.

From the UV signals of type 1 and type 2, D,, can be calculated by
means of eq 3.7b. This calculation is fast and very accurate. At least
two RI signals of type 1 have to be simultaneously fitted to calculate
the diffusion coefficients D;; and D,, (eq. 7b and the analogous for C,).
The accuracy is high. The RI signals of type 2 were used to calculate
the diffusion coefficients D,;, Dy, and D, (egs 3.7a, 3.7b). The accuracy
of D, is less than that of D;; and D,,. Dy, is strongly correlated with
D,,. The determination of the diffusion coefficients of type 3 was more
difficult (eq 3.2). In series Ila the UV signals achieved convergence
with accurate values of the diffusion coefficient. The RI signals,
however, did not show convergence. In series IIb convergence was
achieved by simultaneously fitting of 6 RI signals, provided that the
starting values of the fitting parameters were close to the real values.
The accuracy was dependent on the combinations of signals used.
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Table 3.2a. Parameters of ideal signals, series ITa, IT6°

Common parameters

w; w,
Wi Rt det 1000 5000 e 10100
Wi 0y et 0 0015 fovae 9750
U 2.354
R (10® m) 0.520

Series Ila
signal code 2a 2b 2¢c 2d 2e 2f

M, 5.7 5.2 4.9 45 40 35
M, 3.6 4.7 1.2 24 36 438

type 1 type 2 type 3

(rp/x; = 2.43.10M)  (x,/x;, = 0.27)

Dy, 1.560 1.498 1.494
D,, 1.300 1.372 1.331
D,, 0 -0.214 -0.387
D,, 0 0 -0.108
'y 1 0.9453 0.9067
| P 1 1 0.8750
Ty, 0 -0.1158 -0.1956
| 0 0 -0.0588
Series IIb type 3
(%9 /2 = 1.0)
signalcode 2g 2h 2i 2j 2k 21 2m  2n
M, -5.7 -5.7 0.010 0.010 5.7 57 57 57
M, 5.7 0.010 -5.7 57 57 57 -1.0 -0.010
D, 1.668 Iy 0.9478
D,, 1.136 Iy 0.6628
D,, -0.298 Iy, -0.1348
Dy, -0.372 Iy -0.1664

“units as in table 3.1.

In general, the accuracy was improved by the use of 7, w, and w,
as fitting parameters. The thermodynamic eq 3.6 was only used to
obtain a starting value of D,,. The determination of the diffusion
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Table 3.2b. Results of testing fitting procedures. Inaccuracy (%) of the
diffusion coefficients, residence time, and detector sensitivities,
dependent on the number of signals simultaneously fitted

Series Ila

type 1 type 2 type 3
1RI 2RI 6RI 1UV 6UV 1RI 6RI 1UV6UV 6RI 6 UV
D,; - <0.1 <0.03 - - - <01 - - no <0.06
conv.
D,, - <0.03 <0.009 <0.004 <0.002 - <0.1 <5 <0.0 <0.5
02
D, - <4 - - <1
D,, <0.8
T 0.00005
w, 0.02
W,y 0.004
N.B. eq 3.6 not needed eq 3.6 not applicable w, =0 and
(zero values) eq 3.6 used

Series IIb type 3 (two different combinations of 6 RI signals)

6 RI 6 RI
(comb. 1) (comb. 2)
D, 0.04 0.08
D,, 0.1 0.2
D, 0.4 0.7
D,, 2 3
w, 1 3

N.B. Strong correlation between D,, and w,, w,.
Accuracy of the results calculated with use of eq 3.6 poorer than
without eq 3.6

coefficients from the concentration vs. time curves of the Taylor
dispersion method is only possible under certain conditions,
dependent on the ratios M,/M, and w,/w,, the values of the diffusion
coefficients and the noise level.

The fitting procedure, in which RI signals and UV signals of the
same injections were simultaneously fitted, was compared with the
procedure, in which the result of the UV fittings (Dy,) was used as a
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fixed value in the RI fittings. The first method was rather complicated
due to the different values of the residence time r and the accuracy
was poorer. Moreover, in many real systems it is not possible to get
two independent detector signals from one injection. Very often only
RI signals are available.

Therefore, the simultaneous fitting of the UV and RI signals (or
two other independent detector signals) will not be discussed further
in this work.

Experimental

The apparatus used differs slightly from that discussed earlier for
binary systems [6]. A UV detector and two extra diffusion tubes were
added to the original binary set-up. The equipment for the
measurement of diffusion coefficients in ternary liquid systems is
shown schematically in figure 3.1.

D
N UV RI
sV A N
i Y
oo oo

L

Figure 3.1. Experimental set-up for measurement of diffusion
coefficients in ternary liquid systems: SV, selection valve; D, degasser;
A, autosampler; UV, ultraviolet-visible detector; R, refractive index
detector.
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Deionized water filtered through a Milli-Q water purification
system (Millipore, resistivity 18 MQ:cm) was used. Analytical-grade
methanol (purity > 99.8%, water < 0.05%), ethanol (purity > 99.8%,
water < 0.2%), acetone (purity = 99.5%, water < 0.2%), D(+)-glucose
anhydrous (purity > 99.0%, water < 0.2%) and ethyl benzene (purity =
99%) were obtained from Merck and used without further purification.
All experiments were performed at 25 °C. The determination of the
mean residence time was very accurate both in the binary
experiments and the ternary experiments (inaccuracy << 0.01%).

Solutions were prepared by mass and degassed by sparging with
helium. Injection solutions were made by volumetrical mixing of the
degassed solvents. To prevent bubbles from disturbing the flow, an in-
line degasser (Separations DG1300) was installed. The HPLC pump
(type LKB2150), which maintained a steady flow, was connected to an
autosampler (Spark Marathon) with a fixed volume sample loop of 20
uL. Zero dead volume fittings were used to connect the diffusion tube
with the autosampler and the UV detector and a short capillary tube
between the UV and RI detectors. Several diffusion tubes were
installed: stainless steel tubes (i.d. = 1.041 mm) of various lengths (10,
15, 25, 50 m) and PEEK (Poly Ether Ether Ketone) tubes (i.d. = 1.04
mm) of two lengths (15, 25 m). The internal radii of the tubes were
determined in several ways: by gravimetry and residence time
measurements as well as by calibration with diffusion measurements
of the systems methanol + water (whole concentration range), ethanol
+ water, acetone + water.

The eluted peaks were detected with a UV detector (Applied
Biosystems 785A) and subsequently by a differential refractometer
(Shodex SE61). The UV detector was installed between the capillary
tube and the RI detector of the original binary set-up. For the
conversion of the analogous output signal of the UV detector a
hardware interface device (Strawberry-Tree Minilé ADC) was
installed in the personal computer. The software for data acquisition
and controlling the equipment as well as the data processing software
package were adequately extended.

The procedure for the measurement of diffusion coefficients in
binary systems is described in detail by Van de Ven-Lucassen et al [6].
Before starting an experiment the system was flushed for at least six
h at the flow rate of the diffusion experiment to attain a stable, linear
baseline in each detector. The flow velocity was set in accordance with
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the conditions described in the section theory (typically 0.12 em®min?).
Diffusion samples were injected every 1.5 — 2 h. The extended original
software package was used to apply a baseline correction to each
experimental curve. Binary fits were done for dispersion peaks
obtained from M, = 0 or M, = 0 injections: the mean residence time 7,
the binary diffusion coefficient (Dy; or Dy,) and the peak area were
calculated. The detector sensitivity (w; or w,) was determined from
the peak area and the injected amount. These values could be used as
starting values for the fitting parameters in the ternary procedures.

Results and discussion

Diffusion coefficients were measured for the ternary systems
acetone + ethyl benzene + water, glucose + acetone + water, and
methanol + acetone + water. Preliminary measurements were done
for the binary systems methanol + water, ethanol + water, acetone +
water, glucose + water, and ethyl benzene + water.

Binary systems

Experiments with the binary systems methanol + water, ethanol
+ water, acetone + water, and glucose + water, were performed to
show that the detector response was linear with concentration and to
study the influence of the concentration of the injected sample on the
measurement of the diffusion coefficients. In these experiments the
stainless steel tubes as well as the PEEK tubes were used. For each
binary system a minimum difference in concentration between
injection solution and solvent was necessary to obtain an accurate
experimental curve as a result of detector noise. This minimum
difference was dependent on the binary system and the detector used.
Above a certain concentration difference the calculated diffusion
coefficients started to increase, probably due to secondary flow effects.
This maximum concentration difference was independent of the
detector used. For both detectors the response was linear over a much
wider range of concentration differences. The maximum concentration
difference was 5 vol% for methanol + water, 4 vol% for ethanol +
water, 6 vol% for acetone + water (UV and RI detectors), and 3 wt%
for glucose + water. For the RI and UV detectors and for both types of
capillary tubes, the calculated diffusion coefficients were not
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significantly different. Moreover, the values of the binary diffusion
coefficients, measured with the ternary set-up, were within the
uncertainty of the measurements with the original binary set-up [6].
Injections of solutions that were denser or less dense than the solvent
did not influence the measured diffusion coefficients. The inaccuracy
of the results was lower for the PEEK tubes (PEEK: 0.5%; stainless
steel: 1.5%). For the system acetone + water the UV detector was
more accurate (uncertainty UV: 0.3%; RI: 0.5%).

Injections of dilute ethyl benzene (0.01 — 5.5 vol%) into pure water
showed tailing in the measured concentration against time curves due
to adsorption at the wall of the PEEK tube. If ethyl benzene was
present in the solvent (0.01 vol% ethyl benzene in water) no tailing
was observed. Although it is possible to calculate a diffusion
coefficient from an asymmetric peak [26], tailing was avoided in the
subsequent experiments. The dispersion profiles of high injection
concentrations of ethyl benzene (5 vol%) were non-Gaussian and
irreproducible, because of demixing in the injection vials, due to the
very low solubility of ethyl benzene in water [27]. Therefore, only
injection concentrations < 2 vol% could be used.

The binary experiments led to the selection of the PEEK capillary
for the ternary experiments. For all experiments the concentration
difference between injection solution and solvent applied was chosen
well below the maxima of the binary systems, which appeared to
agree with a value of the Grashof number less than 100 as mentioned
by Ananthakrishnan et al [28]. (Gr = d*g-(App)/V? in which d is the
tube diameter, g the gravity constant, Ap the density difference

between injection solution and solvent, p the density and v the
kinematic viscosity of the solvent.).

Ternary systems
Acetone(1) + Ethyl benzene(2) + Water(0)

Ethyl benzene was used at infinite dilution: Dy, = 0. The value of
D,,, estimated with eq 3.6, was —7.10"'2 m%s™ with D;; = 1.3.10° m*.s™
(acetone in water[29]) and D,, = 7.9.10%° m?s? (ethyl benzene in
water) and a thermodynamic matrix I'; estimated from the UNIQUAC
model [17, 30, 31] with parameters from Rutten [15] and Macedo and
Rasmussen [32]. The flow rate was 0.10 — 0.11 em®.min. Acetone was
detected at a wavelength of 266 nm, ethyl benzene at 215 nm. The RI
detector response was the summation of the acetone and ethyl
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benzene refractive index differences between peak and solvent. For
each solvent, three to six experiments with at least ten different
injections were performed, in each experiment 3 to 9 RI peaks of
different injection concentrations were simultaneously fitted and at
least three different combinations of peaks. Results are shown in table
3.3.

Table 3.3. Diﬁ"uéion coefficients at 25 C for the acetone(1) + ethyl
benzene(2) + water(0) system®

Ethyl benzene
Acetone 0 (vol%) 0.01 (vol%)
0 (vol%)
D, 1.297 + 0.004 1.30 + 0.01
Dy, 0.775%¢ / 0.673%¢ 0.83/0.78
+0.01/0.006 +0.01/0.01
D12 - -
D,, = 1.30 (ref 29)
0.2 (vol%)
D, 1.30+0.01
D,, 0.787 + 0.004
D, 0.002° + 0.004
0.4 (vol%)
D, 1.296 + 0.005
D, fixed value 1.300:
D,, 0.758 + 0.046
Dy, 0.005 + 0.003
“units as in table 3.1
®tailing
‘unreliable

The cross-diffusion coefficient D,, is very imprecise owing to the
strong correlation between D, and D,,: 0.4% deviation in the value of
D,, causes 40% deviation in Dy, D,, fixed (deviation Dy, = 0.8%:
deviation Dy, = 0.4%, D,, fixed). Another cause of the inaccuracy of D,
was the relative RI detector sensitivity w,/w, of 4500/600. At this ratio
of w/w, the ternary effects were best detected if M, << M, (eqs 3.7,
3.8). If the ternary peak was compared with a summation of two
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binary peaks (i.e., D;; = 0), the maximum difference between these
two curves was +2% for a cross-diffusion coefficient D;, of +5.10*m”.s™
(fig 3.2, curves 1 and 2). The same difference could be caused by an
inaccuracy of 2% in the determination of the injected amounts M; and
M, (fig 3.2, curves 3 and 4). Noise can mask these differences.

3.0

20 |

1.0 L

0.0
10000

14000

1.0 |

dev.sig. / sign. max. [%]

-2.0 1

-3.0 L

time [s]

Figure 3.2. Acetone(1) + ethylbenzene(2) + water(0) at 25 °C. Influence
of the cross-diffusion coefficient and injection amount on the deviation
of the detected “ternary” signal compared to the “binary-sum” signal.
Dev. sign.|sign. max. = (ternary signal (t) — binary-sum signal (t)) /
binary-sum signal (t., = 7). Parameters of the binary-sum signal:

Dy, = 1.30.10° m?.s; Dy, = 7.9.10%° m2s"; Dy, = 0; Dy; = 0; wy/w, =
4500/600; M, = 1.00.10"° mol; M, = 7.00.10° mol.

Curve 1: Dy, = 5.0.10"2 m?.s”’; Curve 2: Dy, = -7.0.102 m?.s'; Curve 3:
M, = 7.14.10°° mol; Curve 4: M, = 6.86.10° mol.
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Glucose(1) + Acetone(2) + Water(0)

Glucose (5 wt%, x; = 0.0052) and acetone (0.2 vol%, x, = 0.0005)
were dissolved in pure water. The flow rate was 0.09 ecm® min™. In this
mixture the cross-diffusion coefficient D,, was zero (acetone tracer
component). The estimated value of D,; is 8.10" m?.s? with D,, =
6.7.10"° m”s" (glucose in water) and Dy, = 1.3.10° m2.s! (acetone in
water) and a thermodynamic matrix 'y estimated from the UNIQUAC
model [17, 30, 31] with parameters from Rutten [15] and Reid et al
[33]. The dispersion of acetone was measured by the UV detector at
266 nm. The RI detector response was the summation of the glucose
and acetone refractive index differences between eluted peak and
solvent. Four experiments were performed with 9 to 12 different
injections, in each experiment six RI peaks were simultaneously fitted
in at least three different combinations of peaks.

Table 3.4. Deviation (%) in the dispersion peak for the glucose(1) +
acetone(2) + water(0) system®

injected amount as aresult of an compared with
inaccuracy of D,, =0, if

Ml MZ 1% 2% 1% 2% D12 = 0.05 D12 = 0.1
inM, inM, inM, inM,

-0.140  0.020 28 57 38 17 1.3 2.7
-0.140 0.010 31 62 21 42 0.73 1.5
-0.140 -0.0005 1 1.9 0.03 0.07 0.011 0.023
-0.050 0.010 11 22 21 44 0.75 1.5

“units as in table 3.1.

Within the experimental precision all experiments gave identical
results for the main-diffusion coefficients: D;, = 0.652 (+ 0.004) .10°
m®s? and Dy, = 1.167 (+ 0.003) .10° m%.s. The accuracy of D, is good
compared with the literature: D;; = 0.673.10° m2.s™ (0.39 wt% glucose)
[27]. The calculation of the cross-diffusion coefficient was very
imprecise: Dy, = 1.0 (+ 0.2) .10° m%s™. D;, was strongly correlated with
D,,. In these experiments the ratio wy/w, was 850/6000. From the RI
curves the D;, could not be calculated accurately. The maximum
difference between the ternary peak and the sum of two binary peaks
(i.e., D;; = 0), caused by an inaccuracy of 1% in the injected amounts
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M, and M, was much larger than that caused by a cross coefficient of
5.10" m2s?, independent of the injected amounts M, and M, (table
3.4). Noise masks these differences.

Methanol(1) + Acetone(2) + Water(0)
This ternary system was extensively tested. For the calculation of
the density of solutions, prepared by mass, equations of the form

Pij =2 Am  Xib (3.9)
m

and

Pijk =(pij)xij ‘(pjk)xjk { oy Jie (3.10)

were used, in which x;, is the mole fraction of component i in the
binary system of components i and j, x; the mole fraction of component
i in the ternary system of components i, j and k: x;;, = x; / (x; + x;) and x;
= (x; + x;)/2. p; is the density of the binary system of components i and
j at composition x;,, and py, the density of the ternary system. Similar
equations were used for the viscosity of the solutions. These equations
were fitted to the experimental values of Noda et al [34]. The values of
the constants A, are given in tables 3.5a and 3.5b. The mean relative
deviation of the calculated value vs. the experimental value was 0.006
for the density and 0.05 for the viscosity of the ternary system. The
injected amounts of components 1 and 2, M, and M,, were calculated
from the sample volume and the density equations with an inaccuracy
of + 2%. The elements of the thermodynamic matrix I'; were estimated
from the multicomponent form of the UNIQUAC model [17, 30, 31];
parameters used are listed in table 3.5¢ [35].

Preliminary type 1 experiments (see fitting procedures) were
performed with pure water and very dilute solutions of methanol (x, =
0.002) and acetone (x, = 0.001) as solvents, and injection solutions of
20 different concentrations (Gr < 100). The flow rate was 0.12
ecm3.min!. Methanol was not detected by the UV detector at 266 nm.
Both detectors were linear with concentration according to eq 3.8. No
adsorption at the wall was observed. The calculated diffusion

45



CHAPTER 3

Table 3.5a. Constants of eq 3.9 for calculation of the density of the
methanol(1) + acetone(2) + water(0) system?®

comp.i comp.j A, A, A, A,y A,
methanol water 996.887 -275.817 152.202 -162.454 75.793
acetone water 996.880 -399.668 260.633 -73.227
methanol acetone 784.713 13.886 -12.194 19.387 -19.070

“units kg.cm™

Table 3.5b. Constants of eq 3.9 for calculation of the viscosity of the
methanol(1) + acetone(2) + water(0) system®

Comp.i compj A, A, A, A, A, A;

Methanol water 0.8803 5.8337 -11.7715 1.4854 10.1519 -5.8959
Acetone  water 0.8901 8.3422 -41.1046 72.4864 -57.5002 17.2709
Methanol acetone 0.3850 0.3530 -1.5645 3.5076 -3.2706 1.2790

“units mPa.s

Table 3.5¢c. UNIQUAC-parameters of the methanol(1) + acetone(2) +
water(0) system

i comp. r q q Ay Ay Ap

0  water 0.92 14 1 0 -259.596  -155.31
1 methanol 143 143 096 402.77 0 -119.144
2 _acetone 2.5735 2.336 2.336 733.82 429.104 0

coefficients D,; and D,, were independent of the injected amounts.
Neither simultaneous injection of both components nor separate
injection did affect the calculated values of the diffusion coefficients.
Results are listed in tables 3.6a and 3.6b, type 1.

Next, experiments were performed for the ternary system of type
2: methanol(1) + acetone(2) + water(0). Binary mixtures of methanol +
water were used as solvents. The flow rate was 0.12 cm®min
Injection solutions were prepared in vials to give four different values
of M, with M, = 0, 4 different values of M, with M, =0, and 6 to 12
different combinations of M, and M,; the methanol-solely and acetone-
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Table 3.6a. Diffusion coefficients and detector sensitivity ratio at 25C
for the system methanol(1) + acetone(2) + water(0)*

separate fit

simultaneous fit

L3 X w,/wy Du-m_Dzz-m DZ&UV wyw, Dy DL Dy Dys* Dy

type 1
0.000 0.000 0.17 1.566 1.299 1295 0.15 1.649 1.301
0.000 0.001 1.575 1.292 1.288 0.19 1.658 1.301
0.002 0.000 0.19 1.568 1.291 1.287 0.22 1.579 1.293

type 2
0.000 0.000 1.566 1.295 0.15
0.041 0.000 1.405 1.158 0.18 1.404 1.174 -0.013 0.080
0.086 0.000 1.276 1.0561 0.17 1.320 1.139 -0.486 0.089
0.207 0.000 1.047 0.950 0.21 1.168 0.940 -0.169 -0.259
0.299 0.000 0.941 1.000 0.03 0.012
0.411 0.000 0.964 1.119 -0.20 0.971 1.117 -0.485 -0.471
0.478 0.000 1.018 1.205 -0.46 1.020 1.263 -0.300 -0.413
0.553 0.000 1.144 1.362 -1.59 1.145 1.360 -0.436 -0.439
0.641 0.000 1.294 1.565 -34.52 1.296 1.563 -0.475 -0.475
0.747 0.000 1.576 1.875 1.77 1.557 1.879 -0.548 -0.524
0.878 0.000 1.805 2.344 096 1.788 2.299 -0.892 -0.909
1.000 0.000 2.172 3.014 -5.13% 2.36° 2.56°

type 3
0.092 0.025 0.14 1.093 0.914 -0.149 -0.119
0.196 0.020 0.07 0.867 0.930 -0.085 -0.028
0.198 0.010 0.09 0.868 0.913 -0.086 -0.039

¢ 0.887 0.882 -0.073 -0.031

0.624 0.229 0.89 2.230 2.000 -0.229 -0.189

* f = fixed values of D;; and D,,
® units as in table 3.1

b inaccurate
‘wg yv = 0.00032 (AU.m%.mol )

solely injections were made twice. To minimise the inaccuracy, only
one injection was made from each vial. From the methanol injections
the binary diffusion coefficient D,; was calculated. The binary
diffusion coefficient D,, was calculated from the UV signals and was
independent of the injected amounts of methanol and acetone.
Comparison of the binary diffusion coefficients with the literature [6,
36] showed good agreement (fig 3.3). The ternary diffusion coefficients
D,;, D,, and D,, were calculated by simultaneously fitting 6 RI peaks,
each with a different value of M, and M,. Starting values were the
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Table 3.6b. Imprecision (%) of diffusion coefficients and detector
sensitivity ratio at 25 C for the methanol(1) + acetone(2) + water(0)
system

separate fit simultaneous fit
X Xy wywy, Dygy Dyppr Dypyv wyw, Dy Dy, Dy, D/ Dy,
type 1
0.000 0.000 6.9 0.5 0.3 0.1 0.7 1.3 0.4
0.000 0.001 10 04 1.6 2.7 0.9
0.002 0.000 26 0.03 0.1 0.2 1.0 1.6 0.7
type 2
0.000 0.000 0.5 0.1 0.7
0.041 0.000 0.1 0.2 0.2 0.4 1.1 145 7.7
0.086  0.000 0.6 0.3 0.2 0.5 0.7 23 6.7
0.207 0.000 2.5 0.2 3.1 6.2 79 542 24
0.299 0.000 2.9 0.2 0.2 9.2
0.411 0.000 0.5 0.1 0.3 0.6 09 22 1.0
0.478 0.000 0.1 0.2 0.3 04 09 17 08
0.553  0.000 1.1 0.2 0.2 0.2 06 88 0.3
0.641 0.000 0.8 0.2 2.2 0.1 0.3 34 0.1
0.747  0.000 0.7 0.5 0.1 0.1 05 52 0.2
0.878  0.000 0.9 0.2 0.7 0.6 20 12 04
1.000 0.000 1.2 0.1 -81¢ 11 176°
type 3
0.092 0.025 92 0.4 54 15 8.5
0.196 0.020 65 0.6 11 120 17
0.198 0.010 254 0.6 85 95 17
0.2° 0.3 85 129 9.2
0.624 0.229 14 5.4 3.8 55 39

" f = fixed values of D;; and D,,
¢ inaccurate
® w, yv = 0.00032 (AU.m®.mol ™)

results of the binary fits and D,, = 0 or D,, estimated using eq 3.6. The
values of the main-diffusion coefficients, obtained from six different
groups of six peaks, agreed well within the precision of the fitting
procedure, except for the cross-diffusion coefficient at low methanol
mole fractions. The precision of the ratio of the detector sensitivities
w,/w, was more dependent on the chosen combination of dispersion
peaks. For systems at low mole fractions of methanol (x; below 0.4 to
0.5) D,; was very imprecise. The fitting procedures for the experiment
at methanol mole fraction 0.3 did not converge. At this mole fraction
the main-diffusion coefficients, and the eigenvalues of the diffusion
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coefficient matrix, are nearly identical, and it is difficult to determine

the ternary diffusion coefficient by any method [37]. The cross-

diffusion coefficient D, was also calculated with fixed values of Dy;,
the binary RI diffusion coefficient, and D,,, the binary UV diffusion

coefficient. However, in this case the value of D, was more dependent

on the chosen combination of fitted peaks and the fixed value of D,,,

caused by the strong correlation between D,, and D,,. Results are

shown in tables 3.6a and 3.6b, type 2 and fig 3.3.
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Figure 3.3. Ternary diffusion coefficients of the system methanol(1) +
acetone(2) + water(0) at 25 °C and x5 = 0: O, Dyyri5 O, Dasuvs A Digofixeds
X, Dll-tem s+ DZZ-tern.; *) DlZ-tern.; o, Dll (ref 6), ™ D22 (ref36)

It was impossible to calculate the cross-diffusion coefficient D;; with
even moderate imprecision from the measured dispersion peaks for a
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Figure 3.4. (a) Relative detector sensitivity and diffusion coefficients
of the system methanol(1) + acetone(2) + water(0) at 25 °C and xg = 0
0, abs(wy/wy); 00, abs(Dyy / Dyy); A, abs(D,y,/ Dyy).

(b) Minimum measurable value of D,,/D,, for the system methanol(1)
+ acetone(2) + water(0) at 25°C and x, = 0: , abs(Dy,/ Dy,) = 0.5;
——=—,abs(Di3/Dyy) =0.3; ++++ve--- ,abs(Dyy/Dyy) = 0.2; —+ ~+ =+ —,
abs(Dy/Dyy) = 0.1; — += — ++ — == -, abs(D,,/D,,) = 0.05.
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mole fraction of methanol less than about 0.5. This was caused by an
unfavourable combination of the relative detector sensitivity and the
values of the diffusion coefficients as can be seen in figs 3.4a and 3.4b.
For x, < 0.45 the ternary effects were masked by the experimental
inaccuracy.

From the ternary experiments of type 3 with high acetone
concentrations only RI signals were available, except for the
experiment with x, = 0.01; in this case the UV signals measured at a
wavelength of 208 nm (a minimum in the UV spectrum of acetone)
appeared to be linear with concentration. The experimental procedure
was similar to the type 2 procedure. Starting values for the fitting
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Figure 3.5. Influence of the inaccuracy of the diffusion coefficients,
injection amount, detector sensitivity and residence time on the
deviation in the peak maximum (t = 1) of the detected ternary signal
compared to the ideal ternary signal, calculated by eq 3.2.

Parameters of the ideal ternary signal: Di, = 1.10.10° m*.s’;

Dy =9.1.10° m?.s%; Dyy = -1.5.10"; Dy =-1.2.107% w,/w, = 0.14;

M, = 8.00.10° mol; M, = 1.00.10° mol; 7= 10110 s.

—A— D12,' ——, D21; ——, D11,' —0—, Dgz,' -——X-— Ml;

—_——t =, M,; —— w,/w,; —B—, 7.
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procedure were values close to the “binary” D,; and the “binary” D,,
calculated from the methanol-solely and acetone-solely injections, or
calculated from a type 1 fitting procedure of two or more peaks
simultaneously. The cross-diffusion coefficients were estimated using
eq 3.6. Results are shown in tables 3.6a and 3.6b, type 3. The
precision of the calculated diffusion coefficients, especially of the cross
coefficients, was low and dependent on the chosen combination of
peaks as well as the starting values of the fitting parameters.
Moreover, there were severe convergence problems, caused by the
strong correlation between the diffusion coefficients. The influence of
the imprecision of the experimental procedure (determination of the
injected amounts and the relative detector sensitivity) on the
measured dispersion profiles was much stronger than the ternary
diffusion effects (fig 3.5). Therefore, the RI detector was not suited for
the measurement of this ternary system.

Because only a refractive index detector could be used for the in-
line detection of the component concentrations of the system
methanol(1) + acetone(2) + water(0) (for acetone concentrations above
1 vol%), the type 3 ternary diffusion measurements of this system
could not be performed by the Taylor dispersion method.

Conclusions

The Taylor dispersion method is an accurate and convenient
technique for measuring diffusion coefficients in binary systems. In
ternary systems the calculation of the main- and cross-diffusion
coefficients from the measured dispersion profiles is only possible
under certain conditions depending on the ratio of the injected
amounts M,/M,, the relative detector sensitivity w,/w,, the values of
the diffusion coefficients, and the noise level. The measurement of
accurate dispersion profiles of the components is often hindered by an
unfavourable relative sensitivity of the in-line detector used. For
moderate cross-diffusion coefficients the imprecision of the
experimental procedure can mask the ternary diffusion effects in the
dispersion profiles and the diffusion coefficients may not be calculated
correctly. This is shown for the system methanol + acetone + water. If
the methanol mole fraction is less than 0.45 or the acetone mole
fraction is more than 0.001, the only usable refractive index detector
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is unsuitable for measuring the dispersion profiles accurately enough
to determine the main-diffusion coefficients as well as the cross-
diffusion coefficients. Another experimental technique, such as the
diaphragm cell method, has to be used.
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4. DIFFUSION COEFFICIENTS OF
TERNARY MIXTURES OF WATER,
GLUCOSE AND DILUTE ETHANOL,
METHANOL, OR ACETONE BY THE
TAYLOR DISPERSION METHOD

Abstract’

The Taylor dispersion technique is used to determine the diffusion
coefficients of the ternary systems glucose + water + dilute methanol,
ethanol, or acetone at 25 °C and up to a glucose mole fraction of 0.065.
The dispersion of the injected solutes is recorded by a differential
refractometer and an ultraviolet-visible detector. The diffusion
coefficients are calculated directly by fitting the theoretical dispersion
equations to about six experimental curves simultaneously. The
precision of the diffusion coefficients is dependent on the relative
detector sensitivities of the components. The determination of the
main-diffusion coefficients is more precise than of the cross-diffusion
coefficient (2% vs +5 - 10%).

* The main part of this chapter has been published: Van de Ven — Lucassen, I. M. J. J.
and Kerkhof, P. J. A. M., 1999, J. Chem. Eng. Data, 44, 93.
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Introduction

Multicomponent diffusion in liquids plays an important role in
many chemical engineering processes such as distillation and
extraction. For the analysis of the mechanism of volatile loss during
the drying of food liquids, ternary diffusion data are required [1]. An
experimental technique to measure multicomponent diffusion is the
Taylor dispersion method le.g., 2, 3, 4 and references therein]. In a
dispersion experiment, a slow, laminar flow of a liquid mixture is
pumped through a long capillary tube and a narrow pulse of a mixture
of a slightly different composition is injected into this tube. The
injected solutes spread out owirig to the combined effects of convective
flow and molecular diffusion. At the end of the diffusion tube the
dispersion is monitored by a flow-through detector (differential
refractometer, ultraviolet-visible detector). The interdiffusion
coefficients (called “diffusion coefficients” in this paper) are calculated
by fitting the dispersion equations to the experimental curves. In this
work the ternary diffusion coefficients are determined for ternary
mixtures of a-D-glucose, water, and dilute ethanol, methanol, or
acetone.
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Theory

Diffusion in a three-component system solvent(0) + solute(l) +
solute(2) is described by the coupled Fick equations

Ji =-D;1VC| - D;yVCsy, 4.1)
and
Jg =-Dy;VC; — DogVCsy, 4.2)

where J; is the molar flux of component i and VC; the gradient in the
concentration of component i. The diffusion coefficient D;; gives the
flux of component i driven by the gradient in the concentration of
component j; Dy is called a main-diffusion coefficient and D;;,; a cross-
diffusion coefficient.

To measure the ternary diffusion coefficients by the Taylor
dispersion technique, a pulse of solution of composition C,,+AC;,
C,,+AC, is injected into the ternary mixture of composition C,,, C,
flowing slowly through a long capillary tube. The pulse spreads out
owing to the laminar velocity profile and molecular diffusion. The
concentrations of the eluted solutes at the end of the diffusion tube are
given by the fundamental working equations of Price [5]. If the
concentration of component 2 tends to zero (component 2 is a tracer),
it is impossible to produce a coupled flow of component 2 and D, =~ 0;
Price’s equations simplify to [e.g. 3, 4]

Dyp w
T2 g,
__ D1y - Dy 1 expl— (¢-c)f N
2nR? R2U? 4 R? .
—t
k 48D22 48D22 J
D,
My +—2 M,
Dy - Doy L exp __-2pP | (4.3)
2nR? R2U? ; 4 R? .
"48Dy; 48Dy
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- Mo L el =P | (4.4)
2nR? - RZUZt 4 R? ;
48D22 48D22

in which M; represents the number of moles of component i in the
injected pulse in excess of those in the same volume of the carrier
stream. C; is the radially averaged concentration of component i at
time ¢ relative to the background concentration Cip, 7 is the mean
residence time, R the internal radius of the diffusion tube, and U is
the linear velocity averaged over the cross section. The assumptions
made in the derivation of the working equations are similar to those of
the binary dispersion technique with an effective diffusion coefficient
Dy, or D, [6].

When the dispersion is monitored, the relation between the
detector signal s(¢) and the concentration against time curves (eqs 4.3,
4.4) is assumed to be

s(#) =w1Cy +wyCqy +a +bt +£(2), (4.5)

in which w; is the detector sensitivity for component i, ¢ and b
compensate for the detector drift (which is assumed to be linear in
time), and &(¢) is noise. The signal is sampled with a sample interval of
At = 0.98 s. The concentration against time curve of component 1 is
dependent on the injected amount of components 1 and 2 and on the
main-diffusion coefficients as well as the cross-diffusion coefficient (eq
4.3). The concentration against time curve of component 2 resembles a
single Gaussian, only dependent on one main-diffusion coefficient and
independent of the injected amount of component 1 (eq 4.4).
Determination of the cross-diffusion coefficient D,, is only possible
under certain conditions depending on the ratio of wy/w,, the ratio of
the injected amounts M,/M,, the values of the diffusion coefficients
and the noise level [4].

Diffusion coefficients can be calculated from the measured
dispersion profiles in two different ways: calculation from the
temporal moments [7] or fitting of the theoretical eqs 4.3 and 4.4 to
the experimental curve [e.g., 8]. In this work only fitting procedures
will be used with the diffusion coefficients, the mean residence time 7
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and the detector sensitivities w, and w, as fitting parameters. In these
fitting procedures the discrete signal y without the drift is required: y
=y* - (a + b t), in which y* is the discrete output signal of the detector.
For the calculation of a and b, regions of the detected signal before
and after the eluted solute peak, where the concentration is negligible,
are visually marked in our software as baseline. Through these
regions of the signal the drift is fitted (using a least-squares method)
and subtracted from the signal [9].

Equipment and experimental procedure

An extensive description of the equipment for the measurement of
diffusion coefficients in binary and ternary liquid systems is given by
Van de Ven — Lucassen et al [4, 9]. Solutions were prepared by mass
and mixing, and degassed by sparging with helium. Injection solutions
were made by volumetrical mixing of the degassed materials. To
prevent bubbles from disturbing the flow, an in-line degasser
(Separations DG1300) was installed. The HPLC pump (type
LKB2150), which maintained a steady flow, was connected to an
autosampler (Spark Marathon) with a fixed volume sample loop of 20
uL. Zero dead volume fittings were used to connect the diffusion tube
with the autosampler and the ultraviolet-visible detector (UV
detector) and a short capillary tube between the UV detector and the
differential refractometer (RI detector). The diffusion tube was a 25 m
length of PEEK (Poly Ether Ether Ketone) tubing wrapped in a 0.40
m diameter coil. The internal radius of the tube (0.52 + 0.01 mm) was
determined by gravimetry and residence time measurements. From
diffusion measurements of the systems methanol + water (whole
concentration range), ethanol + water, and acetone + water the
internal radius was also calculated (data used were given in [9] and
references therein); this radius was not significantly different (0.521 +
0.003 mm).

The eluted peaks were detected with the UV detector (Applied
Biosystems 785A) and subsequently by the differential refractometer
(Shodex SE61). The analogous output signal of the refractometer was
converted by a Multilab system (A/D-D/A conversion system developed
at the Eindhoven University of Technology). For the conversion of the
analogous output signal of the UV detector, a hardware interface
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device (Strawberry-Tree Minil6 ADC) was built in the personal
computer (PC). The multilab was used to interface between PC and RI
detector and between PC and selection valve. The pump and the
autosampler were controlled directly by the PC. Software has been
developed for data acquisition and controlling the equipment as well
as for processing of the data. -

The procedure for the measurement of diffusion coefficients in
binary systems is described in detail by Van de Ven - Lucassen et al
[9]. Before a ternary experiment was started, the system was flushed
for at least 6 h at the flow rate of the diffusion experiment to attain a
stable, linear baseline in each detector. The flow velocity was set in
accordance with the conditions, under which Price’s equations 4.3 and
4.4 are valid (typically 0.12 cm®min). Diffusion samples were
injected every 1'/, — 2 h. After application of a baseline correction to
each experimental curve, binary fits were done for dispersion peaks
obtained from M, = 0 or M, = 0 injections: the mean residence time T,
the binary diffusion coefficient (D,; or D,;) and the peak area were
calculated. The detector sensitivity (w, or w,) was determined from
the peak area and the injected amount. These values could be used as
starting values for the fitting parameters in the ternary procedures.

The fitting procedures have been based on the nonlinear least-
squares approximation between the experimental data points and the
points calculated according to eqs 4.3 and 4.4 [4]. These ternary fitting
procedures have been written in the SAS for Windows-package
(version 6.10, SAS Institute Inc.), using the method of Marquardt.
They are able to fit several experimental curves simultaneously with
the following fitting parameters:

* Dy, Dy, Dyy, 7, w; and w,

¢ Dy, 7, w, and wy; D,, calculated from the binary diffusion
experiments; D, calculated from the UV signals (only for acetone
as a tracer).

Other combinations of fitting parameters and calculated parameters

are possible.
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Experimental results and discussion

Diffusion coefficients were measured for the binary systems
methanol + water, ethanol + water, acetone + water, and glucose +
water and for the ternary systems glucose + ethanol + water, glucose
+ methanol + water, and glucose + acetone + water.

Water deionized and filtered through a Milli-Q water purification
system (Millipore, resistivity 18 MQ-cm) was used. Analytical-grade
methanol (purity > 99.8%, water < 0.05%), ethanol (purity > 99.8%,
water < 0.2%), acetone (purity > 99.5%, water < 0.2%), and D(+)-
glucose anhydrous (purity > 99.0%, water < 0.2%) were obtained from
Merck and used without further purification. All experiments were
performed at 25 °C. :

Binary systems

Experiments were performed to show that the detector response
was linear with concentration and to study the influence of the
concentration of the injected sample on the measurement of the
diffusion coefficients. Samples of increasing or decreasing glucose
concentration were injected into binary mixtures of glucose and water,
and the peak area and the diffusion coefficient were calculated. For all
values of the injected excess amount of glucose, the detector response
was linear. Below an absolute value of the injected excess of 1.10°
mol, the diffusion coefficient was independent of the injected amount;
at higher values the diffusion coefficient increased, probably owing to
secondary flow effects. Therefore, these high injection concentrations
were not used for the determination of the binary and ternary
diffusion coefficients. Injections of solutions of increasing methanol,
ethanol or acetone concentrations into pure water showed also a
linear detector response and an independence of the concentration
difference up to 4 - 6 vol% between injection sample and solvent.
Injections of solutions of acetone in glucose-water mixtures were
detected also by the UV detector at a wavelength of 266 nm. At this
wavelength only acetone was detected; i.e., w, = 0 in eq 4.5. From the
UV signal the diffusion coefficient Dy, (Dyyyv) and the peak area were
calculated. The detector response was linear with the injected amount
of acetone, and the diffusion coefficient was independent of the
injected amount of acetone.
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Table 4.1. Diffusion coefficients and detector sensitivities at 25 C of
the systems water(0) + glucose(1) + tracer(2)

Binary system Ternary system water(0) +
water + glucose glucose(1) + acetone(2)

mole Dy pin. / 1019 m2.s Dy, v/ 10 m? 57!

fraction x,
0 6.9 12.7

0.015 5.79 9.6

0.025 5.2

0.035 4.58 6.56

0.05 3.80 4.92

0.065 3.14 3.62

Ternary systems water(0) + glucose(1) + tracer(2)

X D,/ D,/ D,/ w;/ wy /
10" m%s? 10¥m?s?! 10 m2s?! 10'RIU.mol! 10*RIU.mol’

tracer acetone(2)

0.000 (7.05)* (12.7)%* -0.004 3.474 0.479
0.015 5.75 9.95 0.18 3.380 0.550
0.025 5.36 8.31 0.29 3.105 0.599
0.035 (4.50)* (6.56)* 0.51 3.237 0.588
0.050 3.78 5.02 0.54 3.110 0.362
0.065 3.11 3.84 0.57 2.990 0.633
tracer ethanol(2)
0.000 (7.05)* (12.2)% -0.016 3.449 0.360
0.015 5.75 9.34 0.31 3.389 0.425
0.025 5.11 7.98 0.59 3.209 0.376
0.035 4.44 6.55 0.60 3.201 0.435
0.050 3.77 491 0.69 3.111 0.282
0.065 3.11 3.69 0.64 2.990 0.492
tracer methanol(2)
0.000 (7.05)* (15.3)%* -0.015 3.435 0.079
0.015 5.77 12.1 0.071 3.409 0.158
0.025 5.27 10.3 0.07 3.075 0.181
0.035 4.56 8.5 0.21 3.259 (0.180)*
0.050 3.77 6.43 0.49 3.111 0.002
0.065 3.11 4.77 0.29 2.990 0.265

(...)* not fitted; fixed values used in the fitting procedures and obtained
from the binary experiments
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Table 4.2. Imprecision of the diffusion coefficients and detector
sensitivities at 25 C of the systems water(0) + glucose(1) + tracer(2)

Binary system Ternary system water(0) +
water+glucose glucose(l) + acetone(2)
mole Dy vin. | % Dy, uv ! %
fraction x,

0 1.6 0.5
0.015 1.0 1.3
0.025 2.5
0.035 1.7 0.8
0.05 1.2 1.2
0.065 1.0 1.3

Ternary systems water(0) + glucose(1) + tracer(2)
X Dy, /% Dy / % Dy, /% w,/ % wy [ %
tracer acetone(2)
0.000 49 0.02 0.06
0.015 0.08 0.5 6.5 0.04 0.08
0.025 0.19 1.0 11 0.08 0.15
0.035 0.1 0.02 0.03
0.050 0.21 1.0 9.3 0.09 0.32
0.065 0.08 0.2 2.9 0.04 0.06
tracer ethanol(2)
0.000 6.0 0.01 0.04
0.015 0.04 0.2 2.1 0.02 0.04
0.025 0.31 1.2 7.8 0.14 0.32
0.035 0.05 0.1 0.8 0.02 0.03
0.050 0.21 0.8 7.5 0.09 0.37
0.065 0.15 0.4 5.8 0.06 0.13
tracer methanol(2)

0.000 6.5 0.01 0.16
0.015 0.03 0.5 4.8 0.01 0.09
0.025 0.16 1.3 15 0.07 0.25
0.035 0.28 1.8 10 0.12
0.050 0.20 1.3 6.0 0.09 54
0.065 0.16 0.8 5.4 0.07 0.23

The diffusion coefficients of the binary system glucose + water
(D,,) and of the tracer acetone in the glucose + water mixtures (Dyy yv)
are listed in table 4.1; the precision of the results is given in table 4.2.
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The values of the binary D,, are the mean of seven injections and the
values of the D,,y are the mean of six injections, each with a
different concentration. The confidence limits of the binary D,; and
Dy, uv (“precision”) were calculated according to the Student’s #
distribution, probability level 95%, two-tail test [10].

Ternary systems

The ternary diffusion coefficients of the systems glucose + acetone
+ water, glucose + ethanol + water, and glucose + methanol + water
were determined by injecting ternary mixtures into the binary glucose
+ water mixture. Injection samples were prepared in vials to give
seven different values of M, with M, = 0, and for each tracer
component three different values of M, with M, = 0 and three different
combinations of M, and M,. The ternary diffusion coefficients Dy, D,,
and D,,, the mean residence time 7, and the detector sensitivities w,
and w, were calculated by simultaneously fitting of six RI peaks, each
with a different value of M, and M, (mostly two peaks with M, = 0,
two peaks with M, = 0, and two combination peaks). An estimation of
the standard errors of all parameters was given by the nonlinear SAS
fitting procedures used, and a 95% confidence interval was calculated
(“precision”). For all mixtures, the main-diffusion coefficients were
more precise than the cross-diffusion coefficient. The inaccuracy of the
residence time r was less than 0.005%. There was a strong correlation
between the cross-diffusion coefficient Dy, and the main-diffusion
coefficient of the tracer D,,. The values of the diffusion coefficients
obtained from a different group of six peaks agreed within 1 - 2% for
the main-diffusion coefficients and within the precision of the fitting
procedure for the cross-diffusion coefficients. No significant difference
was observed between the calculated diffusion coefficients if the
starting values were changed, provided convergence was achieved. In
general, experiments with tracer component methanol were less
accurate. The dispersion curves had a poorer signal-to-noise ratio, and
convergence of the fitting procedures was harder to achieve (e.g., at x,
= 0.035, x; = 0.050). This was caused by the lower RI sensitivity for
methanol. The strong correlation between D,, and D,, was studied by
fitting six RI peaks (at x, = 0.065) simultaneously with D,, and D,,
fixed at a value with a deviation of +5% of the D,, and D,,, calculated
in a previous fitting procedure. The value of the cross-diffusion
coefficient D,,, calculated with the fixed D,; and D,,;, was within the
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confidence interval of the value of the D,,, calculated in the fitting
procedure of D,;, D,,, and D,, simultaneously. Results of the ternary
diffusion measurements are listed in tables 4.1 and 4.2 and shown in
figures 4.1 — 4.4. The binary D,; and the Dy, of acetone agreed well
with the values calculated by the ternary fitting procedures.

Comparison of the values at infinite dilution (¥; = 0) and of the
binary D,; with literature values in figures 4.1 — 4.3 showed a good
agreement. Chandrasekaran and King [1] determined the ternary
diffusion coefficients for the system ethanol(l, tracer) + water(2) +
glucose(0). As the four diffusion coefficients are dependent on the
choice of the solvent, the values of Chandrasekaran and King [1] had
to be converted to the system glucose(1) + ethanol(2,tracer) + water(0).
Equations used for this conversion were [11]

* * *
DleO’ D12 z()’ D”zDzz, D22 lel,and

v v v
py=Y2py-Lop: - L2pr, (4.5)
V1 V1 Vi

in which Vi is the partial molar volume of component i and D*; the
original diffusion coefficients, determined by Chandrasekaran and
King [1]. The partial molar volumes were calculated using equations
describing the partial molar volumes as a function of the mole
fractions, the molar mass, and the (mole fraction derivatives of the)
density of the mixtures. Density values were obtained from Cerdeirina
et al [15] and from Taylor and Rowlinson [16]. Comparison of the
converted values with the measured values in figure 4.5 shows a good
agreement for the main-diffusion coefficient D,;. The values of the
measured main-diffusion coefficient D,, and of the measured cross-
diffusion coefficient D,, are higher than the converted literature
values. The accuracy of the converted cross-diffusion coefficient was
low owing to the procedure followed. The estimation of D*,; and D*y;
from a logarithmic graph occurred with only a moderate precision
(imprecision > 5%). Chandrasekaran and King [1] showed the results’
in logarithmic graphs of the diffusion coefficients versus the
concentration of water (and the weight percent sugar in solution) and
did not mention the accuracy of the measurements explicitly. The
calculation using the partial molar volumes and the estimated
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Figure 4.1. Ternary diffusion coefficients of the system glucose(1) +
acetone(2) + water(0) at 25 °C and x, = 0: 0, binary D, ; 0, ternary

D,y ; A, ternary D,, ; -, ternary Dy, ; and o, Dy, vy , this work; +, binary
Dy, ref 12, ref 13; and x, binary D,,, ref 14.
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Figure 4.2. Ternary diffusion coefficients of the system glucose(1) +
ethanol(2) + water(0) at 25 °C and x, = 0: O, binary Dy, ; 0, ternary Dy,
s A, ternary Dy, ; and -, ternary D, , this work; and +, binary D,,, ref
12, ref 13; %, binary D,,, ref 9.
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igure 4.3. Ternary diffusion coefficients of the system glucose(1) +
methanol(2) + water(0) at 25 °C and x, = 0: O, binary D, ; 0, ternary
Dy, ; (A) ternary Dy, ; and -, ternary Dy, , this work; +, binary Dyy, ref
12, ref 13; and x, binary Dy, , ref 9.
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Figure 4.4. Cross-diffusion coefficients D, of the system glucose(1) +
tracer(2) + water(0) at 25 °C and x, = 0: O, ethanol; ¢, methanol;
A, acetone.
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Figure 4.5. Comparison of the experimental ternary diffusion
coefficients of the system glucose(1) + ethanol(2) + water(0) with
previous work at 25 °C and x, = 0: 9, ternary Dy, ; A, ternary Dy, ;
and -, ternary Dy, , this work; +, ternary Dy, ; x, ternary Dy, ;
and X, ternary D, , ref 1.

diffusion coefficients decreased the precision. Furthermore, the cross-
diffusion coefficient D*;, was not set equal to 0. It is therefore
understandable that comparison of the measured D,, with the
converted D,, does not show a good agreement.

Conclusions

The Taylor dispersion method is a fast and convenient technique
for measuring diffusion coefficients in liquid systems. In ternary
systems with one component infinitely diluted, the precision of the
method is dependent on the relative detector sensitivities of the
components. Of the systems studied in this paper, the measured main-
diffusion coefficients D,; and D,, are more precise than the measured
cross-diffusion coefficient D,,.
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5. USING MOLECULAR DYNAMICS TO
OBTAIN MAXWELL-STEFAN DIFFUSION
COEFFICIENTS IN LIQUID SYSTEMS

Abstract’

Two methods are compared for the calculation of Maxwell-Stefan
diffusion coefficients. The first method is a non-equilibrium molecular
dynamics (NEMD) algorithm, in which the system is driven away
from equilibrium and the system response is monitored. The second
method is the equilibrium molecular dynamics (EMD) calculation of
the appropriate Green-Kubo equation. Simulations were performed
for systems of 250 and 300 Lennard-Jones particles at various
densities and temperatures. The systems were divided into two or
three components by attaching a colour label to the particles. Since a
colour label plays no role in the dynamics, the Maxwell-Stefan
diffusion coefficients of the binary and ternary systems are equal to
the self-diffusion coefficient. In dense fluids, the system response to
an external perturbation is not a first-order process, and the diffusion
coefficients cannot be determined from the short-term response in the
NEMD method. Only the long-term response can be used, after a
steady state has been reached. In binary systems the Maxwell-Stefan
diffusion coefficients, determined by the Green-Kubo (EMD) method,
are more accurate than the NEMD coefficients. Since in the NEMD
method only the long-term response can be used, the Green-Kubo
method is also less time consuming and is therefore preferred for the
calculation of the Maxwell-Stefan diffusion coefficients. In ternary
systems the Green-Kubo method is tested for the 250 particles system.
The Maxwell-Stefan diffusion coefficients agree well with the self-
diffusion coefficient. For low mole fractions of the coloured
components the diffusion coefficients were less accurate.

* The main part of this chapter has been published: Van de Ven - Lucassen, I. M. J. J.,
Vlugt, T. J. H., Van der Zanden, A. J. J., and Kerkhof, P. J. A. M., 1998, Molec. Phys.,
94, 495.
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Introduction

Multicomponent diffusion in liquids plays an important role in
many chemical engineering processes like extraction and distillation.
However, little is known about the concentration dependence of
multicomponent diffusion coefficients [1]. The measurement of
diffusion coefficients in liquid systems is difficult and time consuming
[2, 38]. Therefore, it would be very interesting to predict
multicomponent diffusion coefficients using a molecular simulation
technique.

The transport coefficients in a system, simulated by molecular
dynamics (MD), can be determined by two classes of methods. In the
first class of equilibrium molecular dynamics (EMD) methods, the
correlation function of fluctuating quantities in an equilibrium system
is determined. The integrals of the correlation functions are related to
the transport coefficients (e.g., diffusion coefficients) through the
Green-Kubo formalism. EMD calculations were used by Schoen and
Hoheisel [4] for the determination of the mutual diffusion coefficient
in binary Lennard-Jones mixtures. In the second class of non-
equilibrium molecular dynamics (NEMD) methods, the system is
driven away from equilibrium and the system response is monitored.
Diffusion can be simulated by applying an external acceleration to the
individual particles in the system, as described by Berendsen [5].
However, no results of any NEMD diffusion studies using this method
are available.

The purpose of this study is to compare the NEMD method,
developed by Berendsen, with the EMD method, by performing
simulations in Lennard-Jones mixtures at various temperatures and
densities.
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The Maxwell-Stefan approach for diffusion in liquids

A liquid mixture at temperature T' and pressure p consists of n
components with mole fractions x, x,, ...x,. When T and p are constant
and when there are no external forces acting on the system, the molar
fluxes N,N,..N, due to the gradient in the chemical potential x4 of
component i are given by

n xiNJ- - xjNi X
_ = \% i) 5.1
CtDij RT T.pH (5.1)

j=1
j#i

in which R is the gas constant, C, the total molar concentration and
D, the Maxwell-Stefan diffusion coefficient between components i and
j. Because Dy = Dj there are %n(n-1) independent Maxwell-Stefan
diffusion coefficients. The Maxwell-Stefan approach is preferred over
Fick’s law for describing diffusion under the influence of external body
forces and in multicomponent systems [6]. An extensive description is
given in [6, 7]. Using N; = u,C;, in which w, is the velocity and C; the
molar concentration of component i, equation 5.1 can be rewritten as

3 RT

Vrpti = 27 il ) (5.2)
1%
J#i

Suppose one particle of component i is displaced Ax in the x-direction
under constant temperature and pressure. The amount of work
needed then is

Fix o - Pixrox ~ Hix ’ (5.3)
NA NA

in which F;, is the molar force acting on component i in the x-direction
and N, is Avogadro’s number. Combining equations 5.2 and 5.3 leads
to the expression for the force acting on component i due to velocity
differences with other components j
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L RT
Fi = ZExJ(uJ —ui). (54)

J=i

quuation 5.4 describes the mean force on component i, and is used as
a basis for further derivations of the diffusion coefficients.

Calculating binary diffusion coefficients

For the determination of diffusion coefficients in a system two MD
methods are described. The first is an NEMD method, in which the
system is driven away from equilibrium and the system response is
monitored. The second is a Green-Kubo method, in which the
correlation function of fluctuating quantities in an equilibrium system
is determined.

NEMD method

A non-equilibrium driving force for diffusion is the gradient in the
chemical potential of the components (equation 5.1). In the NEMD
method as developed by Berendsen [5] a gradient in chemical
potential is simulated by imposing forces on both components in a
given direction. Every MD timestep At the velocity of each particle of
component i in the given direction is increased by aAt in such a way
that there is no net force acting on the system. This implies

M1x1a1 + M2x2a2 =0 (553.)
and
Mlxlul + M2x2u2 = 0, (55b)

in which M is the molar mass. The system will respond to these
imposed forces by
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0, o art 4 (ug —uy)
(5.6)
d'l.l2 _ RTx1 _
3 22 + M,Dy5 (“1 “2)
or
dluy —u -
) (o) B, o
Td
in which we have defined
M MyDyo 5.8)

fd = RT(Mlxl +M2x2) '

With the initial condition u; = u, = 0 the solution of equation 5.7 is

w ) -uy®) =74(a; -a,) {1 - exp[— ;t—ﬂ : (5.9
d

The stationary velocity of component 1 is equal to

(56.10)

()= aM\MyDyy
RT(M1x1 + M2x2)

From equation 5.9 it follows that D,, can be calculated either from the
short-term response by fitting equation 5.9 to the computed velocity
differences for small ¢ or from the long-term response by using
equation 5.9 for ¢ - « or equation 5.10 determining the slope of u,(«)

versus a,.

Green-Kubo method

The time correlation functions used in the Green-Kubo method
are linked to the response to weak perturbations in the equilibrium
system by linear response theory [8-10]. A very weak external
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perturbation AB, applied at ¢ = 0, changes the Hamiltonian H, of the
system to H = H, - AB, in which A is the constant force of the
perturbation and B the coupled system variable. The stationary
response of a system variable A(¢) to this perturbation is then given by
[10]

(A@)) - (A(0)) = };B—fl; T<B(O) A<r)>d ., (5.11)
0

in which & is Boltzmann’s constant. Using <B(O) A(r)> = —<B(0)A(r)> ,
equation 5.11 can be written as

[ce]

(Afe)) - (AQ) =2

B(O)A(r)>dr. (5.12)
kpT 0<

If we identify 2 with nMa, B with r, and A with w; then for very
weak forces n,M;a; on both components of a binary system, coupled to
a mean displacement of the particles r;, the system variable u, () is

given by

ul(oo)z%;}«ul(o)_uz(o)).u1 (e)dt (5.13)

in which n, is the number of particles of component 1. Using equation
5.5, the average velocity u; of component 1 can be written as a

function of the velocities, vi , of all particles of component 1

((0;(0)-ug(0))euy (1)) = iz[l + %X% vi(0)e 22 vi (t)> : (5.14)

i=1 j=1

Combining equations 5.10, 5.13 and 5.14 results in the equation for
the binary Maxwell-Stefan diffusion coefficient
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2
Myx, + Moxo ) ¢/ 2 n;
D = 1 1 2 2 1 ° J d . '
12 3n1[ T ] I<ZV1(0) ngvl(t)> ¢ (5.15)

0 \i=1

Following Schoen & Hoheisel [4], equation 5.5 inserted into equation
5.15 gives

ng o ng
f<[nzzvl( - nlzvg(o)an zvm)—nlzv;(t)Ddt
i1 k=1 i=1
(5.16)
A similar equation has been derived by Hansen and McDonald [11].
Neglecting the correlations between the velocities of two different
particles at different times, equation 5.16 simplifies to the pure

mutual diffusion coefficient, D{)Z :

DYy =72 [(v1(0)e vy (#))dt + L [(v2(0)s vo(t))ds . (5.17)
34 39

This approximation is exact if one component is infinitely diluted or if
component 1 and component 2 are identical and distinguished only by,
for example, a colour label that plays no role in the dynamics. In the
latter case the Maxwell-Stefan diffusion coefficient is equal to the self-
diffusion coefficient.

Dyg = Dgois =% (v(0)e v(t))dt . (5.18)

Ot—.S

Calculating ternary diffusion coefficients
Green-Kubo method

To derive the Green-Kubo equation for a ternary system, consider
the case that

lim () = lim uy(t) = uy(x). (5.19)

t—>0 t—>w©

77



CHAPTER 5

With equations analogous to eqs 5.5 and 5.6 this leads to

M, D3,
ag =a) ———=— (520)
My Dy
and
Dy,
n; + n2 —=
M, Dyg
= —Q; —= 5.21
ag 1 My g (6.21)

The stationary velocity of component 1 is according to the linear
response theory proportional to a;:

a;Miny Dy

a; Min
ul(oo) = —ILIntl:gl + 3RTD23

3RT Int231 , (522)

in which we have defined

Inty = [((1;(0)-u;(0))s uy (t))dt. (5.23)

This is also equal to

ayM;M3Ds, _
RT(M1x1 + M2x2 + M3x3)

uy () = (5.24)

Combining equations 5.22 and 5.24 leads to an expression for D,,

Dy, n nyDgy
= Int{q1 +—=2=21 TInton . 5.25
Mlx]_ + M2X2 + M3x3 3M3 131 3M3D23 231 ( )

Similar equations for D;, and D,; can be obtained by assuming that
the stationary velocities of two other components are equal. This leads
to three independent equations with 3 unknowns Dy, Dy, and D,,. The
solution of these equations is given by
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D nian(IntikiIntkjkIntjij + IntjkilntijkIntkij)
§j=

, (6.26
3niMiIntikiIntkjk + 3anjIntjkiIntkij - 3nkMkIntkjkIntkij ( )

in which M = Mjx; + Mjx; + Myxy . Since Inty(i = j # k = 1) = 0,

equation 5.26 simplifies to

nJM
1
Simulations

To compare the NEMD method with the Green-Kubo method,
simulations of a Lennard-Jones fluid were performed. The pair
potential U™(r) of this model system is the truncated and shifted
Lennard-Jones potential

12 6
U“(r)=4{(-°lJ -(ZJ } (5.28)
r r

in which r is the particle-particle distance, ¢ the Lennard-Jones
energy parameter and o the Lennard-Jones size parameter. Using
reduced units the reduced pair potential U™ = UY/e is a
dimensionless function of the reduced distance r* = r/o. Other reduced
quantities are the reduced time t* = (¢/0)-(¢m)", the reduced density
p* = p-d®, and the reduced temperature T* = T-kp/¢, in which m is the
mass of the atoms in the system. In all simulations we will use
reduced quantities and we, therefore, omit the superscripts *.

Systems of 250 and 300 particles with mass m = 1 were used in
the simulations. Periodic boundary conditions were applied with a
cut-off radius of the potential R,,, = 2.5 and a timestep Az = 0.001.
Starting with lattice configurations and random velocities, the total
momenta of the systems were set to zero and the systems were
equilibrated for 25 000 timesteps at T' = 0.728 and p = 0.8442. During
equilibration the temperature of the systems was scaled to the desired
temperature after each timestep. The resulting velocities and
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coordinates were used as a starting point for further work. Unless
stated otherwise, the Berendsen thermostat was used with 7= 04
[12]. The coupling time constant for the temperature . was
determined by calculating the fluctuations in the kinetic, potential
and total energy in molecular dynamics runs of 5000 timesteps.

Self-diffusion coefficients

MD simulations of multiples of 1000 timesteps (Af = 0.001) were
performed in both systems. Every 1000 timesteps a new starting
value ¢ = 0 was chosen and the velocity autocorrelation function vacf(?)
= <v(0)-v(t)>) was calculated. We denote such a row of vacf data as a
set. Using equation 5.18, the self-diffusion coefficient D, was
determined by averaging over multiple vacf sets and integrating over
(maximal) 1000 timesteps. For adequate integration times and a large
number of vacf sets the self-diffusion coefficients became constant, as
shown in figures 5.1 and 5.2. The accuracy of the self-diffusion
coefficients was estimated by grouping the simulation data of 495 vacf
sets into 5 blocks. From the standard deviation of the block averages

the error in the diffusion coefficient was calculated [10]. Results are
Dself, 250 LJ = 0.0315 i_ 0.0005 and Dself, 300 LJ = 0.0327 i' 0.0006.

Maxwell-Stefan diffusion coefficients: Green-Kubo method

Each system was divided into two species or components by
attaching a colour label to a mole fraction x,,,,,, of the particles. So, the
two species differ only by the colour label, which plays no role in the
dynamics. The MS diffusion coefficients of the coloured systems were
calculated as a function of the mole fraction coloured component. MD
simulations of multiples of 5000 timesteps (At = 0.001) were
performed for the systems of 250 and 300 LdJ particles. Every 5
timesteps a new time origin was taken, resulting in 800 time origins
per run of 5000 timesteps. During the simulation the multiple particle

autocorrelation function vi 0)e3’ v{(t) was calculated for 10

different values of the mole fraction coloured component x,
simultaneously. The Maxwell-Stefan diffusion coefficients were
determined by using equation 5.15 for several numbers of time origins
and for various integration times. For a number of time origins more
than 60 000, the MS diffusion coefficients became constant and
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Figure 5.1. Self-diffusion coefficient as a function of the integration
time t: 1, 99 vacf sets of 250 LJ particles; 2, 495 vacf sets of 250 LJ
particles; 3, 99 vacf sets of 300 LJ particles; and 4, 495 vacf sets of
300 LdJ particles.
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Figure 5.2. Self-diffusion coefficient as a function of the number
of averaging vacf sets: A, 300 LeJ particles; and 9, 250 LeJ particles.
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Figure 5.3. Maxwell-Stefan diffusion coefficient as a function of the
number of time origins for various mole fractions coloured component
(300 LdJ particles, T = 0.728, p = 0.8442).

independent of the mole fraction coloured component, as shown in
figure 5.3. Important to note is that for this system equation 5.15 is
not the most efficient way of computing the diffusion coefficient
(which is equation 5.18). However, here we are interested in
comparing the NEMD method with EMD and for the more general
case (for example, different masses) equation 5.15 must be used. The
accuracy of the MS diffusion coefficients was estimated from the
standard deviation of the averages of at least 5 consecutive
simulations of 79 200 time origins, and an integration time ¢ = 1.
Calculations of the 250 and 300 particles systems did not differ
significantly. The results of the 250 particles system are listed in table
5.1, and the differences between the values of the MS diffusion
coefficients at various mole fractions are a measure for the accuracy of
equation 5.15.
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>

Xeolour MS

0.08 0.0329 £ 0.0006

0.16 0.0338 £ 0.0007 Table 5.1. Maxwell-
0.24 0.0349 + 0.0007 Stefan diffusion

0.32 0.0340 = 0.0007 coefficient, calculated
0.40 0.0350 £ 0.0009 with equation 5.15as a
0.48 0.0340 = 0.0004 function of the mole
0.56 0.0346 £ 0.0009 fraction coloured
0.64 0.034 £ 0.001 component for an LJ
0.72 0.036 = 0.002 fluid of 250 particles:
0.80 0.035 = 0.001 T=0.728, p=0.8442.

Maxwell-Stefan diffusion coefficients: NEMD method

NEMD simulations were performed in the 250 particles system at
Xeour = %1 = 0.5 and in the 300 particles system at X0, = %; = 0.417.
Constant accelerations a, and a,, corresponding to equation 5.5, were
applied to the particles of component 1 and component 2 during 1000
timesteps (At = 0.001). Starting from the same initial configuration,
also an unperturbed simulation of 1000 timesteps was performed (a; =
a, = 0). The average velocities of the component 1 and component 2 as
functions of time were calculated by subtracting the perturbed and
the unperturbed velocities [9, 13]. Subsequent simulations were
started from the end configuration of the unperturbed simulation.
Figure 5.4 shows an example of the calculated average velocities as
functions of the simulation time. From ¢ = 0.2 the velocities of the
perturbed and unperturbed simulations started to be uncorrelated
due to the Lyapunov instability [9], and resulting in strong
fluctuations from ¢ = 0.8. The calculation of the stationary velocity
differences between component 1 and component 2 by averaging over ¢
= 0.4 to ¢ = 0.8 resulted in the smallest standard deviation. Figure 5.5
illustrates that the accuracy, estimated from the fluctuations in the
velocity differences, was dependent on the number of starting
configurations. The diffusion coefficients were calculated using the
equation

D= TL(‘”);“_Z(L’) , (5.29)
a; —ag
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LS - TR R~ B Y

Figure 5.4. Average velocities of the component 1 and component 2

as functions of the simulation time (250 LJ particles, T = 0. 728, p=
0.8442, x, = 0.5, a, = 0.05, 99 starting configurations): 1, u, component
1; 2, u, component 1; 3, u, component 1; 4, u, component 2; 5, u,
component 2; and 6, u, component 2.

which can be derived from equations 5.8 and 5.9 for ¢ — «. Results of
the 250 LdJ particles system did not differ significantly from the 300
particles system and are listed in table 5.2, which shows that the
velocity differences (u;(®) - u,(»)), and consequently the diffusion
coefficients, were independent on the acceleration a,. Calculation of
the diffusion coefficient from the slope of (u,(c) - Uu,()) or u, () versus
a; may increase the accuracy. Because the response of the velocity
differences on the perturbation was non-exponential (figures 5.4 and
5.5), the method of calculating the diffusion coefficients from the
short-time response (equation 5.9) could not be used. This is an
important result of these simulations. The assumption by Berendsen,
that the velocity difference responds with a first-order process [5], is
not correct for dense fluids in general. So, in dense systems, the
application of the NEMD method is restricted to the long-term
response only, and one of the main advantages of this method, namely
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0.008 -
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0.004 -

(I.I1,x' u2,x)

0.002

Figure 5.5. Velocity differences between component 1 and component 2
as functions of the simulation time (250 LJ particles, T = 0.728,
p=0.8442, x, = 0.5, a, = 0.05): 1, 99 starting configurations; 2, 297
starting configurations; and 3, 495 starting configurations.

Table 5.2. Diffusion coefficient calculated from the stationary response
in NEMD for LJ fluid of 250 particles: T = 0.728, p = 0.8442, x, = 0.5.

u,(0) - (o) Dys
a, 99 starting 495 starting 99 starting 495 starting
configs configs configs configs

0.01 0.00093 = 0.00007 0.00003 0.034 = 0.002 0.001
0.02 0.00186 * 0.00013  0.00007 0.034 = 0.002 0.001
0.03 0.0028 = 0.0002 0.0001 0.034 = 0.002 0.001
0.04 0.0037 + 0.0003 0.0001 0.034 = 0.002 0.001
0.05 0.0047 = 0.0003 0.0002 0.034 = 0.002 0.001
0.1 0.0096 + 0.0006 0.035 = 0.002

0.2 0.019 = 0.001 0.035 = 0.002

0.3 0.029 = 0.002 0.035 £ 0.002

0.4 0.038 = 0.003 0.035 = 0.003

0.5 0.048 + 0.004 0.035 £ 0.003

85



CHAPTER 5

the speed of the determination of the diffusion coefficients by using
the short-term response, has disappeared.

The NEMD response was also tested in the 250 particles system
with 0, = 0.5 at T = 1.5 for various densities. Figure 5.6 shows that
the short-time response of the velocity differences was dependent on
the density of the system. So, diffusion coefficients of the systems at T
= 1.5 were calculated from the stationary velocities by averaging over
t=04t0t=08(@Gfp=05,08)0orovert=11tot=15 (Gf p=0.2) and
over 99 starting configurations. The accuracy depended on the density
of the system and the averaging time interval, which is illustrated in
figure 5.6. For low densities of the system the diffusion coefficient is
higher and the time needed to attain stationary velocities increases
(7p, defined in equation 5.8). For long simulation times, however, the
fluctuations in the velocity differences become stronger due to the
Lyapunov instability, and the accuracy of the determination of the
stationary velocity differences decreases. The calculation of the self-
diffusion coefficients (equation 5.18) of the 250 particles systems at T'
= 1.5 needed a longer integration time at lower densities (see later in
figure 5.8), as expected because the velocity relaxation time 7, = D/T
[8]. The integration time, needed in the calculation of the MS diffusion
coefficients (equation 5.15) by the Green-Kubo method also was
increased to (maximal) ¢ = 5 for these systems. The results, listed in
table 5.3, show that the NEMD diffusion coefficients deviated more
from the self-diffusion coefficients and were less accurate, compared
with the Green-Kubo values.

Comparison of the NEMD method with the Green-Kubo method for
binary systems

The MS diffusion coefficients, determined by the Green-Kubo
method, are more accurate than the NEMD coefficients and deviate
less with the self-diffusion coefficients. Due to the strong fluctuations
in the velocity differences of the NEMD method, several magnitudes
of the disturbance a; and many starting configurations were necessary
to ‘achieve a fair accuracy, and the CPU time increased strongly.
Moreover, the choice of the time interval of averaging of the velocity
differences strongly influenced the accuracy of the method (figure 5.6).
The Green-Kubo method allows us to check the consistency of the
simulation by calculating the diffusion coefficients as a function of the
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Figure 5.6. Long-term response of the velocity differences between
component 1 and component 2 as a function of the simulation time ¢
(250 LdJ particles, x, = 0.5, 99 starting configurations): 1, T = 0.728,
p=08442;,2,T=15p=083,T=15p=05and4,T =15,
p=02.

Table 5.8. Diffusion coefficients of an LJ Fluid: D, is computed with
equation 5.18, Dys.xsup With equation 5.29, and Dys greenkubo With
equation 5.15.

LJ T P D self D MS-NEMD D MS-Green-Kubo
part.

300 0.728 0.844 0.0327 = 0.0006 0.035 + 0.003 0.0346 * 0.0010
250 0.728 0.844 0.0315 = 0.0005 0.034 + 0.002 0.0340 + 0.0004
250 1.5 0.8 0.106 £ 0.002 0.10 £ 0.01 0.102 + 0.007
+ + +
+ t +

250 15 05 0.327 £ 0.004 0.27 £ 0.01 0.33 £ 0.01
250 1.5 0.2 1.029 * 0.008 0.79 + 0.04 1.03 + 0.07

number of time origins (figure 5.3) and as a function of the integration
time ¢ (figure 5.7). To achieve the same accuracy in the diffusion
coefficients, the number of timesteps needed in the Green-Kubo
method could be less than in the NEMD method. An additional
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04 4

0.2 4

Figure 5.7. Self-diffusion coefficient as a function of the integration
time t: 1, 300 LdJ particles, T = 0.728, p=0.8442; 2, 250 LJ particles,
T=0.728, p=0.8442; 3, 250 LJ particles, T = 1.5, p= 0.8; 4, 250 LJ
particles, T = 1.5, p= 0.5; and 5, 250 LJ particles, T = 1.5, p=0.2.

disadvantage of NEMD methods in general is the necessity of a
completely new simulation for different transport properties.
Therefore, the Green-Kubo method may be preferred for the
simulation of diffusion in binary systems. This conclusion corresponds
with the results of the MD simulations of the shear viscosity by
Schoen and Hoheisel [14]. Since for the simulation in ternary systems,
the velocity differences of the NEMD method were expected to be even
more fluctuating, only the Green-Kubo method was tested in ternary
systems.

Ternary systems

Simulations were performed for the system of 250 LJ particles at
T = 0.728 and p = 0.8442 in the NVE ensemble. The system was
divided into three species or components by attaching a colour label to
the particles. Every 10 timesteps (A# = 0.001) a new time origin was
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Figure 5.8. Alntyj, = <(ui(0)— u j(O))- uy (t)> as a function of the
integration time t (250 LdJ particles, T = 0.728, p = 0.8442, x, = 0.36,
Xg = 0.32)' 1, AInt131; 2, AIntzgl N 3, Alnt323 5 4, AInt321 N 5, AIntm N and
6, Alntg, .

taken. The MS diffusion coefficients D; were calculated, using
equations 5.26 and 5.27. The accuracy of the MS diffusion coefficients
was estimated from the standard deviation of the averages of 5
consecutive simulations of 250 000 timesteps. Results are shown in
table 5.4 and figures 5.8 and 5.9. Figure 5.8 shows that the Aln#;, (i # ]
# k # 1) were oscillating around zero, as expected. The amplitude of the
oscillations decreased with increasing number of time origins. So, the
Alntg( # j # k # i) can be used as a test of the consistency of the
simulations. The values of the ternary diffusion coefficients agreed
well with the self-diffusion coefficient. Equation 5.27 is exact and
provided better results due to the neglect of the oscillating integrals
Intg (i = j # k # 1) (table 5.4 and figure 5.9). For low mole fractions of
components i and j the diffusion coefficients were less accurate. More
accurate results may be obtained by enlarging the ternary system
size, the integration time of the velocity correlation functions or the
number of time origins, ¢.q. the duration of the MD runs.
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Figure 5.9. Ternary Maxwell-Stefan diffusion coefficients as a
function of the integration time t (250 LJ particles, T = 0.728, p =
0.8442, x, = 0.36, x, = 0.32). For clarity, we have shifted the diffusion
coefficients calculated by equation 5.27: 1, D,, equation 5.26; 2, D, ,
equation 5.26; 3, Dy, , equation 5.26; 4, (D, - 0.02), equation 5.27;

5, (D3, - 0.02), equation 5.27; and 6, (D,s — 0.02), equation 5.27.

Conclusion

Maxwell-Stefan diffusion coefficients in binary liquid systems can
be determined by the Green-Kubo method as well as the NEMD
method. In the NEMD method, the system is driven away from
equilibrium by imposing an external force. If the system responds
with a first-order process, the diffusion coefficients can be calculated
from the short-term response (t — 0). However, simulations with
dense Lennard-Jones fluids showed that the response was not
exponential. A non-exponential response was observed also for
simulations with liquid methanol and liquid water. Since, in general,
dense fluids do not respond with a first-order process to an external
perturbation, the NEMD method, using the short-term response,
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Table 5.4. Ternary diffusion coefficients as a function of the mole
fraction coloured component for an LJ fluid of 250 particles: T = 0.728,
p=0.8442.

X1 X D MS, eq 5.26 D MS, eq 5.27
0.10 0.10 Dy, 0.025 = 0.021 0.033 £ 0.001
Dy, 0.033 £ 0.002 0.0324 = 0.0009
D,, 0.035 *+ 0.002 0.035 = 0.002
0.10 0.45 Dy, 0.032 £ 0.006 0.032 = 0.003
D, 0.035 £ 0.004 0.0326 = 0.0007
D,, 0.033 £ 0.001 0.033 = 0.001
0.36 0.32 Dy, 0.034 = 0.001 0.0339 = 0.0005
D, 0.031 = 0.001 0.032 = 0.001
D,, 0.034 = 0.004 0.033 = 0.002
045 0.10 Dy, 0.029 £+ 0.003 0.034 £ 0.002
D, 0.031 £ 0.002 0.031 = 0.002
D, 0.033 = 0.005 0.033 = 0.001
045 045 D, 0.033 = 0.002 0.032 = 0.002
Dy, 0.035 = 0.004 0.033 = 0.002
D, 0.039 = 0.008 0.034 = 0.002
0.80 0.10 D,, 0.030 = 0.002 0.031 = 0.002
Dy 0.032 = 0.002 0.032 = 0.002
D, 0.107 = 0.052 0.036 = 0.001

cannot be applied. Diffusion coefficients can be determined only from
the long-term response after a steady state has been reached, and
long simulations have to be performed. Using the long-term response,
the NEMD method was even more time consuming than the Green-
Kubo method, in which the diffusion coefficients are determined from
the fluctuating quantities in the equilibrium system. Moreover, the
diffusion coefficients, calculated by the Green-Kubo method, were
more accurate than the NEMD coefficients, calculated from the steady
state. Therefore, EMD (Green-Kubo) is preferred for the calculation of
the Maxwell-Stefan diffusion coefficients.
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In the ternary system the Maxwell-Stefan diffusion coefficients,
calculated by equations 5.26 and 5.27, agreed well with the self-
diffusion coefficient, calculated by equation 5.18. For low mole
fractions of the coloured components i and Jj the diffusion coefficients
were less accurate.
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6. MOLECULAR DYNAMICS
SIMULATION OF THE MAXWELL-
STEFAN DIFFUSION COEFFICIENTS
IN LENNARD-JONES LIQUID
MIXTURES

Abstract”

Maxwell-Stefan (MS) diffusion coefficients in multicomponent liquids
have been determined by the equilibrium molecular dynamics
calculation of the appropriate Green-Kubo equation. Simulations were
performed for systems of 300 LJ particles at various compositions.
The unary system was divided into three components by attaching a
colour label to the particles, which plays no role in the dynamics. The
binary system argon + krypton was divided into three species by
attaching a colour label to the particles of argon. The ternary system
consisted of argon, krypton and neon. The results of the calculation of
the MS diffusion coefficients in the unary and binary systems agreed
well with the literature values. The MS diffusion coefficients of the
unary system did not differ significantly from the self-diffusion
coefficient. The MS diffusion coefficients of the ternary system
behaved as expected from other physical properties.

* The main part of this chapter has been accepted for publication: Van de Ven —
Lucassen, I. M. J. J., Otten, A. M. V. J,, Vlugt, T. J. H., and Kerkhof, P. J. A. M., 1999,
Molecular Simulation.
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Introduction

Multicomponent diffusion in liquid systems plays an important
role in chemical engineering and knowledge of diffusion coefficients is
required, for example, for the design of process equipment. However,
it is very time consuming and difficult to measure diffusion
coefficients in multicomponent systems [1, 2]. Simulation techniques
like molecular dynamics provide an attractive alternative to
determine the diffusion coefficients.

For the calculation of the diffusion coefficients in a binary or
ternary mixture of Lennard-Jones particles equilibrium molecular
dynamics methods have been developed, in which the correlation
function of fluctuating quantities is determined [3-6]. The integrals of
the correlation functions are related to the diffusion coefficients
through the Green-Kubo formalism. In ref [6] we have shown that this
so-called Green-Kubo method is preferred above a non-equilibrium
method, in which the system is driven away from equilibrium and the
system response is monitored. The Green-Kubo method was tested by
performing simulations in coloured Lennard-Jones mixtures: the
particles in the binary and ternary system had identical LJ potential
parameters and differed only by a colour label, which plays no role in
the dynamics [6]. The purpose of the work presented here is to use the
Green-Kubo method by performing simulations in binary and ternary
Lennard-Jones mixtures, in which the particles have different LJ
potential parameters and different masses.
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Theory

Molecular diffusion in multicomponent systems can be described
by the Maxwell-Stefan approach. When temperature T and pressure p
are constant, and when there are no external forces acting on the
system, the molar fluxes N;, N; of components i, j due to the gradient
in the chemical potential y; of component i are given by

ppp s L B B
s P

J#i

(6.1)

in which R is the gas constant, x; the mole fraction of component i and
C, the total molar concentration. D; is the Maxwell-Stefan diffusion
coefficient between components i and j. Because Dy = D;;, there are
n(n-1)/2 independent Maxwell-Stefan diffusion coefficients. An
extensive description of the Maxwell-Stefan approach is given in [7].

Maxwell-Stefan diffusion coefficients can be calculated using an
equilibrium molecular dynamics (EMD) method based on the Green-
Kubo formalism. This Green-Kubo method uses the time correlation
functions of fluctuating quantities in an equilibrium system; these
time correlation functions are linked to the response to weak
perturbations in the equilibrium system by linear response theory [8-
10]. The Maxwell-Stefan diffusion coefficient D,, of a binary system is
then given by

2
Myxg + Moz )22/ 20 o\ B
D1=x2( 171 22J vi(0)e Y vi(¢))dt, (6.2)
2 3n; Moxq 6[5 ()ngl()

in which ¢ is the simulation time, M, is the molar mass of component i,
n, the number of particles of component 1, and vil the velocity of

particle i of component 1.
Calculation of the self-diffusion coefficient D; of component i can
be performed simultaneously, using
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D - é?{vi(o)- vi(e)dt. 6.3)
0

The derivation of equations 6.2 and 6.3 has been given in [6].

Calculating ternary diffusion coefficients

Diffusion in a ternary system can be described by the
independent Maxwell-Stefan diffusion coefficients Dy;, D;; and D,,.
For the calculation of these ternary diffusion coefficients the following
equation has been derived [6]

nian(IntikiIntkjkIntjij + Intjkilntijklntkij)

Dy = , (64

Y 3niMiIntikiIntkjk + 3anjIntjkiIntkij -~ 3nkMkIntkjkIntkij 6.4)
in which M = Mix; + M i%j + Myxy and Int, has been defined by
Intye = [((w;(0)-u; (0))o uy @)z, (6.5)

0
with w; is the velocity of component i.
Since Inty, (i #j # k #1) = 0, equation 6.4 simplifies to
I]JM

'Dij = -—3M1 Intjij . (66)
Simulations

To investigate the Green-Kubo method, simulations of a Lennard-
Jones fluid were performed. We used the truncated and shifted
potential

Ut =Y H0)-UY (Row) 7% R . (6.7)
0 r > Roy
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UY(r) is the Lennard-Jones potential

12 6
UU<r>=4{(3) —(Ej } (6.8)
r r

in which r is the particle-particle distance, ¢ the Lennard-Jones
energy parameter and o the Lennard-Jones size parameter. The cross
interaction parameters were obtained from the Lorentz-Berthelot
rules &, = (6,62 and oy, = (0 + 033)/2. Using reduced units the
reduced pair potential U™ = U/¢ is a dimensionless function of the
reduced distance r* = r/o. Other reduced quantities are the reduced
time t* = (t/0)-(gm)?, the reduced density p* = p-o®, the reduced
pressure p* = p-d’/¢, and the reduced temperature T* = T-kp/e, in
which m is the mass of the atoms in the system, and %5 is Boltzmann’s
constant. In all simulations we will use reduced quantities and we,
therefore, omit the superscripts *.

Systems of 300 particles were used in the simulations. Periodic
boundary conditions were applied with a cut-off radius of the potential
R, = 25 and a timestep At = 0.001. Starting with lattice
configurations and random velocities, the total momenta of the
systems were set to zero, and the systems were equilibrated for 25 000
timesteps at the desired temperature and density. During
equilibration the temperature of the systems was scaled to the desired
temperature after each timestep. The resulting velocities and
coordinates were used as a starting point for further simulations.

Simulations in a unary Lennard-Jones system

Simulations were performed on a system of 300 identical
Lennard-Jones particles at T = 0.728 and p = 0.8442 in the NVE-
ensemble. The system was divided into three species or components
by attaching a colour label to a mole fraction «; of the particles. So, the
three species differ only by the colour label, which plays no role in the
dynamics. MD simulations of multiples of 25 000 timesteps (Af =
0.001) were performed and every 10 timesteps a new time origin was
taken for the calculation of the multiple particle autocorrelation

function Zvil(O) OZV{(t) of eq 6.2, resulting in 2350 time origins per
run of 25 000 time steps.
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Figure 6.1. Maxwell-Stefan diffusion coefficients as a function of the
integration time for various simulation times (300 LJ particles, T =
0.728, p = 0.884, x, = 0.5, x, = 0.25, x; = 0.25). For clarity, we have

shifted the diffusion coefficients with +0.02 subsequently: =— D,,;
»Dgy;——, Dy

The MS diffusion coefficients were calculated using equation 6.6
for several numbers of time origins and for various integration times
(maximal 1500 timesteps). The accuracy of the MS diffusion
coefficients in this unary system, as well as in the following binary
and ternary systems, was estimated from the standard deviation of
the averages of at least 5 consecutive simulations of 250 000
timesteps. The MS diffusion coefficients became constant for
integration times > 1.0 (1000 timesteps). This was independent of the
simulation time, as illustrated in figure 6.1. For all mole fractions the
accuracy of the calculation was not improved significantly, if the
simulation time was extended longer than 1250 (figure 6.2).
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Figure 6.2. Maxwell-Stefan diffusion coefficients as a function of the
simulation time for various numbers of particles (300 LJ particles, T =
0.728, p = 0.884, integration time = 1.0). For clarity, we have shifted
the diffusion coefficients with +0.02 subsequently: ,Digs :
Dy ; ——, Dys.

The consistency of the calculations was also tested using the integrals
Int; of equation 6.5 [6]. Figure 6.3 -shows that the

Alntyg, = <(ui(0)—uj(0))‘ uk(t)> (i #j # k # i) were oscillating around

zero, as expected. The amplitude of the oscillations decreased with
increasing number of time origins (simulation time) and became
constant for a simulation time longer than 1250, as illustrated in
figure 6.4.

The results of the simulations with a simulation time of 1250 and
an integration time of 1.0 are listed in table 6.1. The differences
between the values of the MS diffusion coefficients at various mole
fractions are a measure for the accuracy of equation 6.6 and of the
calculations. The results of the simulations of the 300 particles system
agree very well with the simulations of the 250 particles system given
by [6], as expected.
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A Int;jy /10

W=

—

Figure 6.3. Alnty, = <(ui(0)— u; (0))- uy (t)> as a function of the

integration time t (300 LJ particles, T = 0.728, p = 0.884, x; =0.5,
Xy = 0.25, x5 = 0.25, simulation time = 1250): 1, Alnt,,, ; 2, Alnt,,, ;
3, Alntays ; 4, Alntyg, ; 5, Alnty,, ; and 6, Alnts,, .

Table 6.1. Ternary diffusion coefficients as a function of the mole
fraction coloured component for a unary LJ fluid of 300 particles:
T'=0.728, p = 0.884, simulation time = 1250, integration time = 1.0.

X1 X9 X3 Dy, Dy Dy,
0.067 0.467 0.467 0.034 + 0.003 0.032 + 0.001 0.033 = 0.002
0.250 0.250 0.500 0.032 + 0.002 0.034 = 0.001 0.033 + 0.002
0.250 0.500 0.250 0.031 + 0.001 0.0348 = 0.0007 0.034 + 0.001
0.333 0.333 0.333 0.032 + 0.001 0.034 = 0.001 0.034 = 0.001
0.467 0.067 0.467 0.0308 + 0.0007 0.033 + 0.002 0.031 = 0.003
0.467 0.467 0.067 0.031 + 0.001 0.033 £ 0.004 0.0325 + 0.0009
0.490 0.490 0.020 0.034 = 0.001 0.036 = 0.007 0.032 = 0.002
0.500 0.250 0.250 0.031 + 0.001 0.034 + 0.001 0.033 = 0.002
0.833 0.083 0.083 0.035 + 0.001 0.036 + 0.002 0.033 = 0.001
0.933 0.033 0.033 0.033 + 0.002 0.033 + 0.001 0.032 *= 0.002
0.980 0.010 0.010  0.031 + 0.001 0.035 + 0.002 0.034 + 0.001
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Figure 6.4. Alnt; = <(ui(0)— u j(O))- uy (t)> as a function of the

integration time t for various simulation times (300 L<J particles,
T=0.728, p=0.884, x; = 0.5, x5 = 0.25, x5 = 0.25). For clarity, we have
shifted the Alnt, with +0.5 subseqUently): mmm , Alntys;;
Alntyy,; and , Alntgy,.

2

Naghizadeh and Rice [11] derived a corresponding state

relationship for the self-diffusion coefficients of liquid argon, krypton,
and xenon: '

logD =0.05+ 0.07p — %(1.04 +0.1p), (6.9)

in which p is the reduced pressure, T is the reduced temperature and
D is the reduced self-diffusion coefficient. The LJ energy parameter &
= 1.71.10%* J and the LJ size parameter o = 3.418.10' m of argon
used by Nagazideh and Rice [11] differed from the parameters used in
our study (table 6.2). The reduced temperature T = 0.728 and the
reduced pressure p = 0.98 of our simulations were therefore
recalculated into T' = 0.702 and p = 0.95 for use in equation 6.9. The
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self-diffusion coefficient calculated using equation 6.9, D = 0.032,
agrees very well with the results of our simulations.

Table 6.2. Lennard-Jones parameters and molecular mass

Substance
Ar Kr Ne
e (102 1.65 2.30 0.19
o (10°m) 341 3.64 2.75
m_(10%kg) 6.64 13.92 3.36

Simulations in a binary Lennard-Jones system

Simulations were performed for binary systems of 300 LJ
particles at T = 0.8 and p = 0.7901 in the NVE ensemble. All reduced
units are constructed using the parameters of argon atoms. The first
component argon with a mole fraction (x,+x,) was divided into two
species by attaching a colour label to a mole fraction x; of the
particles. The mole fraction of the second component was x3. For this
second component we used the Lennard-Jones parameters describing
krypton. The potential parameters used are given in table 6.2. MD
simulations of multiples of 25 000 timesteps (At = 0.001) were
performed and every 10 timesteps a new time origin was taken. The
MS diffusion coefficients were calculated, using equation 6.6 for
several numbers of time origins and for various integration times
(maximal 1500 timesteps). The MS diffusion coefficients became
constant for integration times > 1.0, independent of the simulation
time and the mole fractions. The amplitude of the oscillations of
Alnty (i # j # k # i) decreased with an increasing number of time
origins and became constant for a simulation time > 1750, if the
number of the particles of one component was very low. For higher
numbers of the particles a simulation time > 1250 was sufficient.

The results of the simulations with an integration time of 1.0 are
listed in table 6.3. The values of the MS diffusion coefficients D,, and
D,; were identical within the simulation error for each system, as
expected, since the particles with a mole fraction x; and x, differed
only by colour. Moreover, the MS diffusion coefficients were
independent of the mole fraction coloured component for all
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Table 6.3. Ternary diffusion coefficients as a function of the mole
fraction for a binary LJ fluid Ar(1,2) + Kr(3) of 300 particles: T = 0.8,

p =0.7901, integration time = 1.0.

sim.

time x; Xy Xg Dy, Dy, D,

2475 010 040 050 0035 + 0001 0018 =+ 00003 00211 + 0.0007
2475 025 025 050 0037 + 0002 00194 + 0.0008 0.022 + 0.001
2475 033 017 050 0038 + 0002 0.0202 + 0.0008 0.022 + 0.001
2475 049 001 050 0038 + 0001 00212 + 0.0007 0.018 + 0.003
1250 033 033 033 0042 = 0003 0025 = 0001 0.030 + 0.001
1250 010 040 050 0034 + 0004 00187 = 0.0005 0.020 = 0.001
1250 025 025 050 0035 + 0003 00183 =+ 0.0008 0.020 + 0001
1250 033 017 050 0036 + 0002 00195 + 00009 00194 + 0.0008
1250 049 001 050 0039 + 0002 0020 = 0.001 0.024 = 0.007
1250 0.7 017 067 0031 + 0002 00156 + 0.0008 0017 + 0.001

calculations with x; = 0.5. The values of the MS diffusion coefficients
increased with an increasing mole fraction of argon (x,+x,).

For comparison with the literature values the calculated MS
diffusion coefficients had to be converted to Fick diffusion coefficients.
For a ternary system the Fick diffusivities and the MS diffusivities
are related by [7, 12]

[Df ] = [B][r], (6.10)
in which [Df] is the 2x2 matrix of the Fick diffusivities and [I'] is the

2x2 matrix of the thermodynamic factors. The elements of the 2x2
matrix [B] are equal to

X; 1 Xk . .
Byj=—Ll+Y%X ij=12n=3 (6.11)
Dy, o Di
k#i
and
I 1 ..
Bjisj=—%|—-—| Li=12n=3, (6.12)
ij in
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in which Dy are the MS diffusivities. In an ideal mixture the matrix of
the thermodynamic factors [I'] is equal to (1], the identity matrix. For
the coloured binary mixture with composition x; = x, = 0.25 and x; =
0.5 the values of the MS diffusivities were calculated to be D, =0.037
and Dy = D,; = 0.020. The Fick diffusivities D,;, = Dy, can then be
calculated from equation 6.10, assuming an ideal mixture: DY, = D%, =
0.023, or in real units D", = Df,, = 1.26.10° m%s" at 99 K. Schoen and
Hoheisel [3] computed the following binary diffusion coefficients: D,
= 2.78.10° m*s? at 116 K, and D%, = 2.05.10° m2.s? at 109 K for
equimolar mixtures with comparable potential parameters and
masses. Assuming an exponential relation D= A4 - exp(—B/T) between

the diffusion coefficient D and the temperature T' [11], the values of
Schoen and Hoheisel [3] would result in D¥, = 1.23.10° m2.s" at 99 K.
This value is in very good agreement with our simulations. Lee [13]
performed MD simulations for an equimolar mixture of argon and
krypton at 608 K, 266 K, and 117 K. An exponential extrapolation of
his results to 99 K would lead to a value of D', between 5.10"° m2.g
and 2.10° m”.s’; this extrapolation is very inaccurate but covering our
simulations.

Simulations in a ternary Lennard-Jones system

Simulations were performed for ternary systems of 300 particles
at T = 0.8 and p = 0.7901 in the NVE ensemble. All reduced units are
constructed using the parameters of argon atoms. Each system was a
liquid mixture of argon, krypton, and neon. The LJ potential
parameters used are given in table 6.2. MD simulations of multiples
of 25 000 timesteps (At = 0.001) were performed and every 10
timesteps a new time origin was taken. The MS diffusion coefficients
were calculated using equation 6.6 for various simulation times
(maximal 2 500 000 timesteps) and for various integration times
(maximal 1500 timesteps). A simulation time of 2475 was sufficient
for the MS diffusion coefficients to become constant. At this
simulation time the values of the MS diffusion coefficients were
independent of the integration time ¢ for # > 1.0. The results of the
simulations with a simulation time of 2475 and an integration time of
1.0 are given in table 6.4 and figure 6.5.
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Figure 6.5. Maxwell-Stefan diffusion coefficients of the ternary system
Ar(1) + Kr(2) + Ne(3) as a function of the mole fraction Ar (300 LJ
particles, T = 0.8, p = 0.7901, integration time = 1.0, x3 = 0.1): 00, Dy, ;
0, D31; A’ D23 .

Table 6.4. Ternary diffusion coefficients as a function of the mole
fraction for a ternary LJ mixture Ar(1) + Kr(2) + Ne(3) of 300 particles:
T = 0.8, p=0.7901, simulation time = 2475, integration time = 1.0.

X X9 X3 P Dy, Dg, Dy,

0003 0897 010 172 0.020 = 0.002 0069 + 0.002 0.0401 = 0.0009
001 08 010 169 0016 = 0.003 0066 + 0.004 0.041 + 0.002
005 085 010 158 00182 + 0.0003 0.068 = 0003 0.040 + 0.002
020 070 010 114 00235 =+ 00005 0.087 = 0006 00446 = 0.0007
040 050 010 082 0.030 = 0.001 0.103 = 0.007 0.055 + 0.002
060 030 010 060 0.039 = 0.001 0.110 = 0.008 0.060 + 0.002
080 010 010 050 00481 = 00009 0120 = 0007 00645 = 0.0007
085 005 010 048 00514 = 00008 0.125 = 0.002 0.066 + 0.002
089 001 010 048 0.050 = 0.001 0.128 + 0.003 0064 = 0.004
090 000 010 047 0131 = 0.003
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The values of the MS diffusion coefficients increase with an
increasing mole fraction x,;. An increase of approximately 15% from x,
= 0 to x; = 0.9 might be explained by the decrease of the pressure
values of the simulated systems from 1.7 to 0.47 [11]. The MS
diffusion coefficient between argon and neon (Dsy) is higher than the
MS diffusion coefficient between krypton and neon (Dyg), which is in
his turn higher than the MS diffusion coefficient between argon and
krypton (Dy,). This is in accordance with our expectations, since the
MS diffusion coefficients are inversely proportional to the frictional
coefficients between the particles [7], and these frictional coefficients
will increase with increasing masses of the components.

Conclusion

Maxwell-Stefan diffusion coefficients in unary, binary and
ternary systems of LdJ particles can be determined by the Green-Kubo
method. For all systems the MS diffusion coefficients became constant
for integration times > 1.0. The simulation times required were
dependent on the number of different components in the systems, and
increased from 1250 for a unary system, and 1750 for a binary system
to 2475 for a ternary system. The Maxwell-Stefan diffusion
coefficients calculated by equation 6.6 agreed well with the literature
values available, or were in accordance with the behaviour as
expected from other physical properties.
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7. MOLECULAR DYNAMICS SIMULATION
OF SELF-DIFFUSION AND MAXWELL-
STEFAN DIFFUSION COEFFICIENTS IN
LIQUID MIXTURES OF METHANOL AND
WATER

Abstract”

Self-diffusion coefficients and Maxwell-Stefan diffusion coefficients in
liquids have been determined by the equilibrium molecular dynamics
calculation of the appropriate Green-Kubo equation. Simulations of
water, methanol and mixtures of water and methanol have been
carried out to calculate the diffusion coefficients at 300 K. In order to
study the influence of the force field on the calculated self-diffusion
coefficients of the pure liquids, two different force fields for each
component have been used. The Van Leeuwen/Smit force field
calculated the self-diffusion of methanol accurately. The SPC/E force
field gave the best, but moderate, results for water. In mixtures of
water and methanol the self-diffusion coefficients of both components
were more accurate at high mole fractions of methanol. This can be
explained by the better performance of the methanol force field. The
Maxwell-Stefan diffusion coefficients in the mixtures of methanol and
water agreed fairly well with the experimental values. More accurate
results can be obtained by using optimised parameters in the water
force field, and by enlarging the integration time and the duration of
the simulation runs.

* The main part of this chapter has been submitted for publication: Van de Ven -
Lucassen, I. M. J. J., Vlugt, T. J. H., Van der Zanden, A. J. J., and Kerkhof, P. J. A. M.
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Introduction

Diffusion in liquid systems plays an important role in chemical
engineering and knowledge of diffusion coefficients is required, for
example, for the design of process equipment. However, in particular
for mixtures it is very time consuming and difficult to measure
diffusion coefficients [1, 2]. Hence, theoretical models for the
estimation of the diffusion coefficients in any given system may be an
attractive alternative. Simulation techniques like molecular dynamics
provide a convenient method to determine the diffusion coefficients
only from parameters describing the inter- and intramolecular
interactions of the components of the fluid mixture.

The purpose of this study is to compute the diffusion coefficients
in a methanol + water mixture. Simulations are performed on pure
water, pure methanol, and on liquid mixtures of methanol + water
over the entire concentration range. The results of the MD
simulations are compared with experimental values from the
literature.
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Theory

Molecular diffusion in a binary system can be described by Fick’s
first law:

J; = —C,Diyvxy, (7.1)

in which J; is the diffusion flux of component 1, C, the total molar
concentration and Vx, the mole fraction gradient of component 1. D,
is the Fick diffusion coefficient. For component 2 an analogous
relation can be written

Jy = -C, Db Vx, . (7.2)

Because J; +J5 =0 and x; + x5 =1, it can be derived that DY, = D%,

i.e. only one Fick diffusion coefficient describes diffusion in a binary
system. Computations of diffusion coefficients from measurements are
mostly performed using Fick’s description of diffusion [1].

Another method for describing molecular diffusion is the
Maxwell-Stefan approach. When temperature T' and pressure p are
constant, and when there are no external forces acting on the system,
the molar fluxes N;, N; of components i, j due to the gradient in the
chemical potential z of component i are given by

n x.N: —x:N: .

le-]—lez X VT,p/‘i’ (7.3)
& oDy BT

J#i

in which R is the gas constant. D; is the Maxwell-Stefan diffusion
coefficient between components i and j. Because D;; = D;;, there is also
only one Maxwell-Stefan diffusion coefficient describing diffusion in a
binary system. The Maxwell-Stefan approach is preferred over Fick’s
law for describing diffusion under influence of external forces and in
multicomponent systems [3].

For a binary system the Fick diffusivity D', and the Maxwell-

Stefan diffusivity D,, are related by
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Diy=Dyp T , (74
in which I' is the thermodynamic factor:

Glnyl
1 —
1

F'=1+x , (7.5)

with 7 is the activity coefficient of component 1. An extensive
description of both methods has been given in [4].

For the calculation of Maxwell-Stefan diffusion coefficients in a
binary or ternary mixture of Lennard-Jones particles an equilibrium
molecular dynamics method was developed, in which the correlation
function of fluctuating quantities is determined [5-8]. The integrals of
the correlation functions are related to the diffusion coefficients
through the Green-Kubo formalism. This so-called Green-Kubo
method is preferred above a non-equilibrium method, in which the
system is driven away from equilibrium and the system response is
monitored [8].

The Green-Kubo method links the time correlation functions of
the fluctuating quantities in an equilibrium system to the response to
weak perturbations in the equilibrium system by linear response
theory [9-11]. The Maxwell-Stefan diffusion coefficient D,, is then
given by

2
Myx; + Moxg | %/ & S
D =x2( 171 22] vi(0)e > vi(2)\dt (7.6)
12 3n; Moxq lezll()g:ll()

in which ¢ is the simulation time, M, is the molar mass of component 1,
n; the number of particles of component 1, and vi the velocity of

particle i of component 1. Calculation of the self-diffusion coefficient
D; of component i can be performed simultaneously, using

D =1
3

1

(vi(0)s v; (). | .7

(=X — ]

The derivation of equations 7.6 and 7.7 has been given in [8].
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Detalils of the simulations

Simulations of methanol, water, and mixtures of methanol +
water were carried out using the GROMOS (GRoningen MOlecular
Simulation) computer package with the standard GROMOS force field
[Appendix, 12, 13]. The choice of the parameter set for the GROMOS
force field influences the results of the simulations. In the literature
various parameter sets are described for water [14-18] and for
methanol [16-21]. Those parameter values were developed to
reproduce the thermodynamic properties (e.g. density, energy, heat of
vaporization), the structural properties, and sometimes the dynamic
properties (self-diffusion coefficient) of the fluid as accurately as
possible. In the simulations of this work the simple point charge
(SPC) parameters and the extended SPC (SPC/E) parameters were
used for the water particles. The SPC parameter set was optimised to
predict the density and vaporization energy of water; the SPC/E
model is a reparametrization of the SPC model to obtain the correct
density and potential energy [13, 14]. For the methanol particles the
standard GROMOS parameters were used as well as the parameters
derived by Van Leeuwen and Smit [13, 21]. The available parameter
sets for methanol, for example the GROMOS set, were optimised to
predict the liquid properties at ambient temperature and pressure;
only the Van Leeuwen/Smit parameter set was optimised to describe
liquid coexistence densities at two temperatures and predicts the
vapor-liquid curve with much higher accuracy [21]. See table 7.1. Note
that the model of Van Leeuwen and Smit uses an Ewald summation
technique for handling the long-range dipolar interactions. The
GROMOS package applies a spherical cut-off, which will influence the
performance of the Van Leeuwen/Smit parameter set.

Unless stated otherwise, the simulations were performed on a
cubic periodic system, using a timestep of 0.002 ps and a cut-off radius
R.,, = 0.9 nm. After an initial energy minimisation, the system was
coupled to a bath of constant temperature (300 K) with a coupling
time constant z; = 0.4 ps and equilibrated for 25 000 timesteps; a
constant volume was maintained by using a coupling time constant
for pressure 7, = « [22]. All bond lengths were kept fixed using the
SHAKE procedure with a relative tolerance of 0.0001. The pair list
was updated every 5 steps. The resulting velocities and coordinates
were used as a starting point for further work.
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Table 7.1. Force field parameters

water methanol
SPC SPC/E GROMOS v.Leeuwen/
Smit
To.uwi 0.100000 0.100000 roes rines 0.100000 0.100000
T'o.Hwe 0.100000 0.100000 7o, e 0.143000 0.143000
THW1HW?2 0.163299 0.163299 rcyer e 0.198842 0.198842
Qow -0.820 -0.8476  qopes -0.574 -0.700
Jw 0.410 0.4238 gy 0.398 0.435
G Mot 0.176 0.265

C'?((OW) 0.05116 0.05116 C'2,(0Met)  0.04756  0.04717
C"2,(HW) 0.0 0.0 CY(HMet) 0.0 0.0
C"(CMet)  0.09421  0.09783
C'2,,(OW) 1.623.10° 1.623.10° C'2,,(OMet) 1.227.10° 1.3121.10°
C"”,(HW) 0.0 0.0  CY,(HMet) 0.0 0.0
C'2,(CMet) 4.5665.10° 5.117.10°

R.,, 0.9 0.8 R, 0.9 0.9
7, R in nm; q in e; C'% in (kJ.mol'.nm®"%; C'2,, in (kJ.mol’.nm )12
CG = 4.8.0'6; Clz = 4.6‘.0’12

Simulations of liquid water and liquid methanol

To compare the SPC force field with the SPC/E force field in
water, and the GROMOS force field with the Van Leeuwen/Smit force
field in methanol, MD simulations were performed on two pure liquid
systems of each force field with a box length of approximately 2.5 nm
and 3.0 nm respectively. See table 7.2. In each system the self-
diffusion coefficients and the Maxwell-Stefan diffusion coefficients
using the Green-Kubo method were calculated.

Self-diffusion coefficients

MD simulations of multiples of 1000 timesteps were carried out
on all systems. Every 1000 timesteps a new starting value ¢ = 0 was
chosen and the velocity autocorrelation function vacf(t) = (v(0)-v(t))

was calculated. Such a row of vacf data was denoted as a vacf set. The
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Table 7.2. Self-diffusion coefficients of water and methanol,
calculated with equation 7.7

SyStem par. set 4Ngrt. bl* D water* D methanol*
1 SPC 509 2.50 49 + 0.2
2 SPC 898 3.02 47 + 0.1
3 SPC/E 519 250 3.1 + 0.2
4 SPC/E 889 3.00 3.45 = 0.09
5 meth-GR* 240 2.54 4.3 =+ 0.1
6 meth-GR* 415 3.05 43 = 0.1
7 meth-VL/S* 240 2.54 2.5 + 0.1
8 meth-VL/S* 415 3.05 24 + 0.1
Mills (at 25 °C: 2.299) [23] 2.41
Hurle and Woolf [26] 2.5

* bl = box length in nm; D in 10° m?.s?; GR, GROMOS force field;
VL/S, Van Leeuwen/Smit force field

self-diffusion coefficient was determined by averaging over multiple
vacf sets and integrating over 1000 timesteps (2 ps), using equation
7.7. The accuracy of the self-diffusion coefficients was estimated by
grouping the simulation data of 99 vacf sets into 5 - 10 blocks. From
the standard deviation of the block averages the error in the diffusion
coefficient was calculated [11]. Results are listed in table 7.2.

Maxwell-Stefan diffusion coefficients

To calculate the Maxwell-Stefan diffusion coefficients of a unary
system, each system was divided into two species or components by
attaching a colour label to a mole fraction x,,, of the particles. The
two species differ only by the colour label, which plays no role in the
dynamics. MD simulations of 260 000 — 346 500 timesteps were
performed on the systems 1, 3 and 5 - 8. Every 10 timesteps a new
time origin was taken. During the simulation the multiple particle

autocorrelation function Zv{(O)OZV{(t) was calculated for 10

different values of the mole fraction coloured component x;
simultaneously. The Maxwell-Stefan diffusion coefficients were
determined as a function of the mole fraction coloured component by
integrating over 1000 timesteps (2 ps), using equation 7.6. The
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accuracy of the Maxwell-Stefan diffusion coefficients was estimated by
grouping the simulation data into 6 — 8 blocks; from the standard
deviation of the block averages the error in the diffusion coefficients
was calculated. Results are listed in table 7.3.

Comparison of the force fields

Tables 7.2 and 7.3 show a better performance of the SPC/E
parameter set in water. The self-diffusion coefficient of the SPC/E
model is closer to the experimental value of Mills [23, 24] than the
SPC value, with comparable standard deviations. Simulations of
Berendsen et al [14] also showed an improvement of the value of the
self-diffusion coefficient from 4.3.10° m2.s? using the SPC parameters
to 2.5.10° m®.s™ using the SPC/E parameters; the SPC/E value was
even within simulation error of the experimental value. However,
Caldwell & Kollman [17] could not obtain this value in non-additive
MD simulations using their polarizable model with the SPC/E
parameters, and calculated a self-diffusion coefficient of 8.1.10° m2.s,
The simulations of Berendsen et al as well as the simulations of
Caldwell & Kollman were performed on a cubic box of 216 particles.
An influence of the system size on the calculation of the self-diffusion
coefficient might explain the differences between the results of the
simulations of both Berendsen et al and Caldwell & Kollman and the
results of our simulations given in table 7.2 [25). Since the SPC/E
model agreed best with the experimental data, we decided to use this
model for further work.

Tables 7.2 and 7.3 show a good performance of the Van
Leeuwen/Smit parameter set in methanol. The self-diffusion
coefficient is in good agreement with the value 2.50.10° m2.s! from
the literature [26]. The Van Leeuwen/Smit parameter set also
performs better than the polarizable model of Caldwell & Kollman,
which gives a value of 2.65.10° m2.s! [17], and than the refinements of
Jorgensen (parameter sets J1 and J2), and Haughney (parameter sets
H1 and H2) of the three-site united-atom approach for the
intermolecular potential of Jorgensen tested by Haughney et al [20].
Casulleras and Guardia used the J2 model for their simulations of
liquid methanol at 298 K, in which they studied the effect of the
system size on the transport properties and the structure of liquid
methanol [25].
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Table 7.8. Maxwell-Stefan diffusion coefficients, calculated with
equation 7.6, as a function of the mole fraction coloured component for
pure liquids

Water
system 1 system 3
(SPC, 509 part) (SPC/E, 519 part)
X colour D MS Xeolour D MS
0.098 46 = 0.2 0.096 35 = 0.3
0.196 43 + 0.3 0.193 3.6 + 0.3
0.295 48 + 0.3 0.289 34 = 0.3
0.393 49 = 03 0.385 35 = 0.2
0.491 51 = 03 0.482 3.6 + 0.2
0.589 47 =+ 04 0.578 41 = 0.3
0.688 49 = 05 0.674 39 = 03
0.786 4.7 = 04 0.771 34 = 0.2
0.884 56 = 0.3 0.867 3.3 = 0.2
0.982 52 = 04 0.963 3.8 + 0.2
Methanol
system 5 system 6
(meth-GR, 240 part.) (meth-GR, 415 part)
X colour D MS=‘< X colour D MS
0.083 43 = 0.2 0.096 44 + 0.3
0.167 46 = 05 0.193 45 = 0.6
0.250 40 = 04 0.289 42 = 04
0.333 3.9 = 03 0.386 41 + 04
0.417 41 = 05 0.482 42 = 0.5
0.500 43 + 04 0.578 47 + 0.4
0.583 42 + 04 0.675 46 + 0.3
0.667 40 = 0.6 0.771 48 + 04
0.750 41 = 05 0.867 45 = 0.3
0.833 46 = 0.2 0.964 44 = 0.2
system 7 system 8
(meth-VL/S, 240 part.) (meth-VL/S, 415 part.)
X colour D MS=(< X colour D MS
0.083 25 = 03 0.096 2.7 = 0.5
0.167 27 = 0.2 0.193 3.1 = 0.7
0.250 3.0 = 0.2 0.289 3.6 + 1.0
0.333 28 = 0.1 0.386 29 + 0.6
0.417 25 = 0.2 0.482 26 = 0.7
0.500 26 = 0.3 0.578 3.3 = 0.7
0.583 26 + 0.2 0.675 3.1 £+ 0.8
0.667 2.7 = 02 0.771 33 = 0.8
0.750 26 + 0.2 0.867 3.1 + 0.6
0.833 2.5 i— 0.2 0.964 25 + 04

* Dys in 10° m?.s!
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The self-diffusion coefficient D, of methanol increased from D, =
2.23.10° m’s? to D, = 2.59.10° m?.s! with increasing number of
particles N from N = 125 to N = 512. The Van Leeuwen/Smit model
was constant within the simulation error (table 7.2). Therefore, for
further work the Van Leeuwen/Smit parameter set was used for
methanol.

The Maxwell-Stefan diffusion coefficients in the pure liquids,
shown in table 7.3, agree fairly well with the self-diffusion
coefficients, shown in table 7.2, but are less accurate. This is in
accordance with the results of the simulations performed for Lennard-
Jones systems by Van de Ven — Lucassen et al [8]. Increasing the
integration time and the simulation time might improve the accuracy
of the Maxwell-Stefan diffusion coefficients.

Simulations of mixtures of water and methanol

Simulations were performed on 10 systems of methanol + water
particles at 300 K and 1 atm. (table 7.4). In the systems with a mole
fraction of methanol x,, lower than 0.5, methanol was treated as a
solute in the solvent water; at higher mole fractions (x, > 0.5) water
was a solute in the solvent methanol. After energy minimisation, the
systems were equilibrated for 25 000 timesteps. MD simulations of
multiples of 5000 timesteps were performed, resulting in 495 000
timesteps. During the simulation every 5 timesteps a new time origin
was taken and the multiple particle autocorrelation function

Zvi(O)OZV{(t) was calculated. The Maxwell-Stefan diffusion

coefficients were determined by using equation 7.6 for integration
times of 1000 and 1500 timesteps (2 and 3 ps), resulting in 800 and
700 time origins used per run of 5000 timesteps. Simultaneously,
every 1000 timesteps a new time origin was taken to calculate the
velocity autocorrelation functions vacfit) = (v O)v,®) (1 = 1, 2),
resulting in 5 vacf; sets (i = 1, 2) per run of 5000 timesteps. The self-
diffusion coefficients of methanol and water were determined by using
equation 7.7, and integrating over 1000 timesteps (2 ps). The accuracy
of the diffusion coefficients was estimated from the standard deviation
of the block averages, into which the simulation data were grouped (at
least 5 blocks).
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Table 7.4. Self-diffusion coefficients of methanol and water in
methanol + water mixtures, calculated with equation 7.7

N, methanol N water P* bl* X methanol D methanol* D waher*

80 744 977 3.006 0.097 169 x 0.11 255 =+ 0.07
150 596 955 3.001 0.201 158 * 0.05 196 =+ 0.05
200 499 937 3.011 0.286 141 =+ 0.03 180 = 0.03
250 385 914 3.006 0.394 128 = 0.04 175 + 0.04
275 339 903 3.016 0448 138 = 0.03 158 = 0.03
283 250 885 2942 0531 137 + 0.07 1.58 = 0.09
298 210 874 2937 0587 137 + 005 1.58 = 0.09
336 150 852 2972 0.691 146 =+ 0.04 159 = 0.08
361 100 832 2988 0.783 168 =+ 0.03 163 = 0.09
393 50 810 3.024 0.887 198 + 0.06 150 = 0.11

* p = density in kg.m*; bl = box length in nm; D in 10° m®.s?!
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Figure 7.1. Self-diffusion coefficient of water (10° m®.s?) as a function
of the mole fraction methanol x,,; o, calculated in the simulation at
300 K; O, ref 27, as estimated from the graph published; x, ref 28, as
estimated from the graph published; A, ref 29; +, ref 30; 0, ref 31.
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Self-diffusion coefficients

The self-diffusion coefficients were calculated by averaging over
495 000 simulation steps (495 vacf, sets) as well as by averaging over
395 000 simulation steps (395 vacf, sets), using the first 100 000 steps
for further equilibration of the system. There was no significant
difference between the values of the calculated self-diffusion
coefficients. Results of the calculation over 495 vacf; sets are given in
table 7.4. In figures 7.1 and 7.2 the calculated self-diffusion
coefficients (300 K) are compared with values at 25 °C, obtained from
the literature. The self-diffusion coefficients of water and methanol, as
given by Kida and Uedaira [27], were measured at 32 °C. To compare
these values with the other values from the literature, the self-
diffusion coefficients of water were multiplied by a factor 2.299.10° /
2.733:10° (equal to D,uuosc / D,iersooc), and the self-diffusion
coefficients of methanol were multiplied by 2.50-10° / 2.75-10° (equal

to D methanol,25°C / D methanol,32°C)'
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Figure 7.2. Self-diffusion coefficient of methanol (10° m?.s") as a
function of the mole fraction methanol x,;: o, calculated in the
simulation at 300 K; O, ref 27, as estimated from the graph published;
x, ref 28, as estimated from the graph published; A, ref 29; +, ref 30.
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Figure 7.1 shows a better agreement of the calculated self-
diffusion coefficients of water with the literature values at high mole
fractions of methanol; at low mole fractions of methanol the self-
diffusion coefficient of water was high. The calculated self-diffusion
coefficient of methanol agrees very well at high mole fractions of
methanol, as shown in figure 7.2; at low mole fractions the self-
diffusion coefficient of methanol is high, too. The larger deviations of
the self-diffusion coefficients at low values of the mole fraction
methanol might be explained by the use of the force fields chosen. The
SPC/E force field of water gives a much higher value of the self-
diffusion coefficient in pure water; the Van Leeuwen/Smit force field
of methanol calculates the self-diffusion coefficient of methanol more
accurate. At low mole fractions of methanol the influence of the SPC/E
force field on the calculation of the diffusion coefficients might be
larger, and the accuracy of the calculations might be smaller.

=3
Wi

3
]N]

t

Figure 7.3. Maxwell-Stefan diffusion coefficient (10° m’.s?) as a
function of the integration time t (ps): — m,2, equation 7.6 for the
methanol particles, integration time is 2 ps; — w,2, equation 7.6 for the
water particles, integration time is 2 ps; — m,3, equation 7.6 for the
methanol particles, integration time is 3 ps; — w,3, equation 7.6 for the
water particles, integration time is 3 ps.
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Table 7.5. Maxwell-Stefan diffusion coefficients in methanol + water
mixtures, calculated with equation 7.6

Xmethanol  D1o.maose” D, wa952" Dy 05 Dy 5052*
0.097 22 + 04 22+ 04 1.8+ 0.2 1.8 £ 0.2
0.201 2.0 = 0.5 20 04 1.7+ 0.3 1.7 £ 0.2
0.286 1.9 + 0.2 1.9 = 0.2 1.7+ 0.1 1.7+ 0.1
0.394 2.1 £ 0.3 2.1 0.3 1.8+ 0.2 1.8 =+ 0.2
0.448 1.8 =+ 0.3 1.7 £ 0.3 1.5+ 0.1 14 = 0.1
0.531 23 = 0.6 2.2 + 0.6 1.7+ 0.1 1.7 + 0.1
0.587 22 =+ 04 2.1+ 04 1.9+ 0.2 1.8 £ 0.2
0.691 29 = 0.5 29 = 0.5 25+ 04 24 * 0.3
0.783 2.7 £ 0.6 26 = 06 22+ 04 2.1 +04
0.887 3.5 + 15 3.2+ 15 2.1+ 0.2 1.7 + 0.2
xmethanol D12 m,495 3>l< D12 w495, 3* D12 m,395 33‘< D12 w,395, 3*
0.097 24 + 04 24 =+ 04 20+ 02 2.1 +0.3
0.201 1.5 + 0.2 1.5 + 0.1 15+ 0.1 1.6 = 0.1
0.286 1.8 =+ 04 1.8 £ 0.3 16 + 0.2 1.5 + 0.2
0.394 1.8 + 04 1.8 =+ 04 1.5+ 0.3 1.5 + 0.3
0.448 1.8 + 0.2 1.7 £ 0.1 16 + 0.1 1.5 +0.1
0.531 1.9 =+ 0.5 1.7 £+ 04 14 + 0.2 1.4 =+ 0.1
0.587 1.8 + 0.2 1.7 = 0.1 1.7 = 0.1 1.6 = 0.1
0.691 2.7 £ 0.7 25+ 0.6 22+ 06 20 = 0.5
0.783 23 + 04 21 +0.3 20+ 02 1.8 + 0.2
0.887 31114 26 + 1.3 1.8+ 0.2 1.3 + 0.2

*Din 10° m%.s?; Dy, 1 405 2 : calculated with equation 7.6 for methanol,
averaged over 495 000 steps, and integrated over 2 ps

Mutual diffusion coefficients

The mutual Maxwell-Stefan diffusion coefficients D,, were
determined by using equation 7.6 for the time origins obtained in a
simulation of 495 000 timesteps as well as for the time origins
obtained in a simulation of 395 000 timesteps, using the first 100 000
steps for further equilibration of the system. The integration times
were 1000 and 1500 timesteps (2 and 3 ps), and D,, was calculated
both for the methanol particles (Dy2,m) and the water particles (D12,
Results are listed in table 7.5. The difference between the values of
D, and D,;,, can be a measure for the accuracy of the simulation. In
general, results were more accurate if the equilibration of the systems
was increased with 100 000 timesteps. Figure 7.3 shows that an
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integration time of 2 ps was not always sufficient for the diffusion
coefficient to become constant. The fluctuations in the calculated
diffusion coefficients for long integration times will decrease, and the
accuracy will increase, with an increasing number of time origins or
simulation steps. For comparison with the literature values we used
the average values of D;;,, and D,,, obtained after further
equilibration and by integrating over 3 ps. Since the diffusion
coefficients given in the literature were Fick diffusion coefficients,
they were divided by the thermodynamic factor I' to obtain the
Maxwell-Stefan diffusion coefficients (equation 7.4). The values of I'
used were given by Mills et al [33].

The simulated diffusion coefficients agreed fairly well with the
literature values, as shown in figure 7.4. The deviations were mainly
caused by the short integration times of the multiple particle
autocorrelation functions and the low number of simulation steps,
resulting in a low number of time origins (figure 7.3). The same
procedure has been performed for the values of I' given by Hall et al
[34]; no significant difference could be observed.
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Figure 7.4. Mutual Maxwell-Stefan diffusion coefficient (10° m’.s™)
as a function of the mole fraction methanol x,: », calculated in the
simulation at 300 K; o, ref 32; x, ref 28, as estimated from the graph
published; A, ref 29.
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Conclusions

The self-diffusion and mutual Maxwell-Stefan diffusion
coefficients in a binary system can be determined by the Green-Kubo
method. The accuracy of the method is dependent on the parameters
of the force field used in the molecular dynamies simulation. The force
field of the methanol particles gives better results in the calculation of
the self-diffusion coefficient of pure methanol than the force field of
the water particles in the calculation of the pure water self-diffusion
coefficient. In mixtures of water and methanol the self-diffusion
coefficients of methanol and water are more accurate at high mole
fractions of methanol, which can be explained by the greater influence
of the methanol force field. The results of the simulations of the
mutual Maxwell-Stefan diffusion coefficients agree fairly well with
the experimental values, given in the literature. More accurate results
can be obtained by using optimised parameters in the water force
field, and by enlarging the system size, the integration time or the
number of time origins, c.q. the duration of the MD runs.
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APPENDIX

The GROMOS force field

The Gromos force field or interaction function has the following
form

y phys (r; s) — yhbon (r,' S)+ y nonb (r’. s) , (A1)

in which the term V** describes the interaction between covalently
bonded atoms and V*** the non-bonded (van der Waals and
electrostatic) interaction. The interaction between covalently bonded
atoms is described by four terms: a bond-streching term, a bond-angle
term, a (harmonic) improper dihedral-angle bending term, and a
(trigonometric) dihedral-angle torsion term. The non-bonded
interaction is described by

vy Y Cio(i,§)

nonbonded (rl Df
pairs G,j) J

+
Isi

—Cai,) |—r
ey

+

nonbonde
pairs (i,)

qig; | 1 %Crf(fi?n)z_l‘%crf (A.2)

4 4mE0s rgD R Ry

The first term in equation A.2 represents the non-bonded van der
Waals interaction. The Gromos van der Waals parameters for an atom
pair (i,j) are derived from single atom van der Waals parameters
using the relations

Ci.3) = C2(1,1)- CL(i,3) A.3)
and
Cia(i,3) = CL36,1)-CLAG ). A9
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Cs and C;; are a function of the Lennard-Jones energy- and size
parameters.

The second term in equation A.2 represents the electrostatic
interaction. R, is the cut-off radius of the reaction field force. The
reaction field force coefficient C, depends on the relative dielectric
permittivity and an inverse Debye screening length.

The values of all parameters can be found in the interaction
function parameter files of the GROMOS package.

An extensive description of the GROMOS force field is given in:
W.F. van Gunsteren, W. F., Billeter, S. R., Eising, A. A, Hiinenberger,
P. H, Kriiger, P., Mark, A. E., Scott, W. R. P., and Tironi, I. G., 1996,
Biomolecular Simulation: The GROMOS96 Manual and User Guide
(Ziirich: vdf Hochschulverlag AG an der ETH Ziirich and BIOMOS
b.v.).
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8. DISCUSSION AND CONCLUSION

The Taylor dispersion method is used to measure diffusion
coefficients in aqueous non-electrolyte solutions. This method is fast
and convenient for binary liquid mixtures. After preparation of the
solvents and the injection solutions the measurements are performed
fully automated, and the data gathered during the experiments are
processed fast and easily. In order to obtain a high accuracy, it is
necessary to work very precisely and in accordance with the
experimental conditions, as described in chapter 2. The concentration
of the injection solutions and the flow velocity of the carrier stream
have to be within certain constraints. Furthermore, adsorption of one
component at the wall of the diffusing tube can cause tailing in the
measured dispersion profiles, resulting in an asymmetric peak. This
has to be avoided.

The extension of the Taylor dispersion method to measure
diffusion coefficients in ternary liquid mixtures is not simple.
Compared with the binary measurements, the calculation of the
diffusion coefficients from the measured dispersion profiles is much
more complicated, and the accuracy is influenced more by the
carefulness of the experimental work. In the experiments there are
strong constraints to the concentrations of the injection solutions and
the flow velocity, and adsorption has to be avoided. Furthermore, in
ternary mixtures also the ratio of the injected amounts and the
relative detector sensitivity for the components are very important.
An unfavourable relative sensitivity of the detector can hinder the
measurement of accurate dispersion profiles. In that case the
calculation of accurate diffusion coefficients from the dispersion
profiles is not possible. This problem cannot always be solved by the
use of a detector of a different type or by the use of two different
detectors simultaneously. Another experimental technique has to be
chosen then.

EMD methods as well as NEMD methods have been investigated
to simulate diffusion in liquids. Simulations of binary coloured
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systems of Lennard-Jones particles show that for dense systems the
Green-Kubo (GK) method (an EMD method) performs better than the
method developed by Berendsen (an NEMD method). The GK method
is less time-consuming and the calculations are more accurate.
Because of these results, only the GK method has been extended for
simulations on ternary systems. This extended GK method performs
well determining the diffusion coefficients of the ternary coloured
systems, and of binary and ternary systems of Lennard-Jones
particles, which differ by the values of the mass- and Lennard-Jones
parameters.

For the simulation of diffusion in methanol + water mixtures a
more complex force field than the Lennard-Jones potential is required.
The results of the simulations depend on the values of the parameter
sets used. For instance, the Van Leeuwen/Smit parameter set for
methanol performs much better than the other parameter sets used in
the simulations of the self-diffusion coefficients in pure water and
pure methanol. Only the Van Leeuwen/Smit parameter set was
obtained from vapour-liquid equilibrium simulations; the other
parameter sets were developed from density-, hydrogen bond
strength-, or energy calculations. The simulations of the self-diffusion
coefficients in the methanol + water mixtures, using the most suitable
and available parameter sets for each component, show more accurate
results for higher concentrations of methanol. Thus, it would be
interesting to develop a parameter set for water, analogous to the Van
Leeuwen/Smit set for methanol, and to investigate the performance of
this parameter set simulating diffusion in pure water and in the
water + methanol liquid mixture. If the diffusion coefficients can be
calculated more accurately using the “Van Leeuwen/Smit” parameter
sets for both methanol and water, it is worthwhile to examine other
liquids and liquid mixtures in the same manner. If the parameter sets
obtained from phase equilibrium -calculations perform well on
simulating diffusion for various binary mixtures, then a “general”
procedure might be developed for calculating accurate diffusion
coefficients, using these parameter sets. Next, diffusion simulations in
ternary mixtures of complex molecules can be investigated.

The MD simulations of the methanol + water mixtures show the

possibility of predicting the diffusion coefficients provided that the
force fields and the simulation procedures (system size, simulation
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time) are optimised. The calculated diffusion coefficients are Maxwell-
Stefan coefficients. For comparison with the measurements, which
provide Fick coefficients, the thermodynamic correction factors are
necessary. These thermodynamic factors can be obtained from the
literature, measurements, or, also, from computer simulations.
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List of symbols
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acceleration of component i

drift parameter

drift parameter

radially-averaged concentration of
component i at time ¢ relative to the

background concentration

total molar concentration

internal diameter of the diffusion tube
(=i.d.)

internal diameter of the water bath

internal diameter of the tubing coil
Dean number

self-diffusion coefficient

effective diffusion coefficient

binary molecular diffusion coefficient
main-diffusion coefficient
cross-diffusion coefficient

molar force

gravity constant

Grashof number

diffusion flux of component i
dispersion coefficient

Boltzmann’s constant

diffusion tube length

atom mass

molar mass

number of moles of component i in the

injected pulse in excess of those in the same

volume of the carrier stream
number of components

number of particles of component i
Avogadro’s number

molar flux of component i

pressure

mean displacement of the particles
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particle-particle distance

gas constant

internal radius of the diffusion tube
radius of the tubing coil

cut-off radius

detector signal

Schmidt number

temperature

time

first moment

velocity of component i

linear velocity averaged over the cross
section

Lennard-Jones pair potential
velocity of particle i of component 1

partial molar volume of component i

number of moles of component i in the
injected pulse in excess of those in the same
volume of the carrier stream

detector sensitivity

mole fraction

discrete detector signal

constant

activity coefficient
thermodynamic mole fraction-based matrix
Kronecker delta

detector signal noise
Lennard-Jones energy parameter
molar chemical potential
kinematic viscosity

viscosity

density

particle density

Lennard-Jones size parameter
second moment

mean residence time

coupling time constant

(m) or (-)
(j.mol1.K?)
(m)

(m)

(m) or (-)
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(s) or (-)
(s)
(m.sh)
(m.s?)

@) or ()
(m.s?)

(m®.mol?)
(mol)

(U.m®.mol?)
)
(U)

)

)

)

)

¢8))

@)
(J.molY)
(m2.s™)
(N.s.m?)
(kg.m™®) or (-)
(m™®) or ()
(m)

(s%

(s)

(s) or (-)



LIST OF SYMBOLS

subscripts

0 solvent

b background (carrier stream)
c molar concentration-based
i component i

p pressure

s solvent-fixed

T temperature

MS Maxwell-Stefan

RI refractive index detector
uv ultraviolet-visible detector
superscripts

f Fick

i particle number

j particle number

LJ Lennard-Jones

r real units

reduced units
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Stellingen
behorende bij het proefschrift van Irma van de Ven — Lucassen

1. Dichtheidsmetingen met behulp van de Taylor dispersie methode,
zoals voorgesteld door Matthews en Akgerman, zijn alleen zinvol als

nevenproduct van de metingen van de diffusiecoéfficiént.
M.A. Matthews and A. Akgerman, 1987, Int. J. Thermophysics, 8, 363.

2. Vereenvoudiging van de practische uitvoering van de metingen van de
diffusiecoéfficiént ten gevolge van de vergaande automatisering leidt
niet tot een vermindering van het theoretisch inzicht, dat nodig is

voor een juiste interpretatie van de verkregen data.
Dit proefschrift, hoofdstuk 2 en 3.
W. Loh, C.A. Tonegutti, and P.L.O. Volpe, 1993, J. Chem. Soc. Faraday
Trans., 89(1), 113.

3. Ten gevolge van de ontwikkelingen in de computertechnologie hoeft
de simulatieduur geen rol meer te spelen bij de keuze voor een

NEMD- of een EMD-algoritme.
Methods in Molecular Simulation, CCCP5 Spring School, University of
Bristol, 1997.

4. Zolang diffusie in vloeistoffen onvoldoende begrepen wordt op
moleculaire schaal, zullen er steeds weer nieuwe en ‘betere’,
(semi)empirische  relaties voor het voorspellen van de

diffusiecoéfficiént afgeleid worden.
P.T. Cummings and D.J. Evans, 1992, Ind. Eng. Chem. Res., 31, 1237.

5. Omdat voor goede resultaten bij de natuurwetenschappen niet alleen
practisch en logisch denken nodig is, maar ook creatief en fantasierijk,
dienen de expressievakken in het voortgezet onderwijs gehandhaafd
te blijven. Dit wordt ondermeer geillustreerd door het feit dat het
principe voor het mobiele telefoonverkeer uitgevonden is door een

filmster en een componist.
H. Kramers-Pals, 1999, NVOX, 24, 51.
http: | |www.ncafe.com | chris/pat2/ patstart.html.
hittp: | [www.microtimes.com /166 | coverstory166.html.



6. Mensen die wel ingewikkelde muziekpartituren kunnen lezen, maar
beweren geen aanleg te hebben voor wiskunde, hebben waarschijnlijk

last van wiskundevrees en onvoldoende motiverend onderwijs.
Sheila Tobias, 1993, Overcoming Math Anxiety. Revised and expanded (New
York: Norton).
Keith Devlin, 1997, Mathematics. The Science of patterns (New York: The
Scientific American Library).

7. Velen zijn nog steeds doof voor de waarschuwingen van Rachel

Carson, want ze lijken een ‘Silent Spring’ niet erg te vinden.
Rachel Carson, 1962, Silent Spring (Boston: Houghton Mifflin Company).
Centrale Raad voor het Bedrijfsleven, 07.05.1998, Advies betreffende het
opnemen van lindaan en dichloorvos op de lijst van actieve stoffen van
bestrijdingsmiddelen die onderworpen zijn aan de milieutaks (Brussel).
AW. Galston, 1994, Life processes of plants (New York: The Scientific
American Library).
A.P. Dobson, 1995, Conservation and biodiversity (New York: The Scientific
American Library).

8. In een samenleving, die zich modern en democratisch noemt, dient de
toelatingsprocedure voor nieuwe medicijnen onafhankelijk te zijn van

de samenstelling en de behoeften van de toelatingscommissie.
K. Itoi, 1999, The great Viagra emergency, Newsweek, CXXXIII, 39.
H. Buurma, L.T.W. de Jong-van den Berg en H.G.M. Leufkens, 1996, Het
geneesmiddel (Utrecht: Bunge).

9. Een patiéntenbijsluiter, waarin een groot aantal bijwerkingen,
waarschuwingen en voorzorgen opgenoemd wordt, roept — zo hij al
wordt gelezen - de vraag op of er ook nog genezende werking is.

10.Het rigoureus boycotten van buitenlandse woorden leidt niet
automatisch tot een verrijking van de Nederlandse taal.

11.Bij de aanduiding ‘het millenniumprobleem’ staat de komma één
plaats verkeerd.
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