
 

Capacity and coding in digital communications

Citation for published version (APA):
Hekstra, A. P. (1994). Capacity and coding in digital communications. [Phd Thesis 2 (Research NOT TU/e /
Graduation TU/e), Electrical Engineering]. Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1994

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/dd5245fd-9bae-4c8c-88b1-c3abee95b991


Andries P. Hekstra 

Capacity and Coding in Digital 

Communications 

~----~ SOURCE 2 



~,~ 
I·' 

Capacity and Coding in 
Digital Communications 

scaniv
Text Box



CIP-GEGEVENS KONINKLIJKE BIBLIOTHEEK, DEN HAAG 

Hekstra, Andries Pieter 

Capacity and coding in digital communications/ Andries 
Pieter Hekstra. -Leidschendam: PTT Research. lU. 
Proefschrift Eindhoven. -Met lit. opg., reg. 
ISBN 90-72125-46-0 
Trefw: Digitale communicatie. 

@1994 by Royal PTT Nederland, NV, PTT Research 

Subject to the expectations provided for by law, no parts of this publication 
may be reproduced and/ or published in print, by photocopying on microfilm 
or in any other way without the written consent of the copyright owner. The 
same applies to whole or partial adaptations. The copyright owner retains 
the sole right to collect from third parties fees payable in respect of copying 
and/or to take legal or other action for this purpose. 



Capacity and Coding in 
Digital Communications 

PROEFSCHRIFT 

ter verkrijging van de graad van doctor aan de 
Technische Universiteit Eindhoven, op gezag van 

de Rector Magnificus, prof.dr. J.H. van Lint 
voor een commissie aangewezen door het College 

van Dekanen in het openbaar te verdedigen 
op donderdag 22 december 1994 te 14.00 uur 

door 
Andries Pieter Hekstra 

geboren te Breda 



Dit proefschrift is goedgekeurd door de promotoren: 

prof.dr.ir. J.P.M. Schalkwijk, 

en 

prof.dr. T. Berger. 

Copromotor: dr.ir. F.M.J. Willems 



To my Mother ... 



The work presented in this dissertation was carried out 
at 

• Eindhoven University of Technology, Eindhoven, 
the Netherlands, 

• Cornell University, Ithaca, USA, 

• PTT Research, Leidschendam, the Netherlands. 

This dissertation was prepared while at PTT Research. 



Abstract 

In the year 1994, approximately half a century since Shannon's foun
dation of the field, information theory remains to a lively and multi 
disciplinary field of research. This dissertation presents contributions 
in the following arreas. 

• an upper bound for the capacity region of the two way channel 
with single output; 

• an analysis of the maximum processor density in programmable 
gate arrays, in which any n pairs of processors can communicate 
via disjunct routes of communication cells; 

• definition of a timing jitter channel and determination of its ca
pacity region; 

• a new method for the implementation of the path or state metrics 
in the Viterbi algorithm using modulo arithmetic; 

• an analysis of the numerical range of the path metrics in the 
Viterbi algorithm, as well as a technique for reduction of this 
numerical range with a factor of at most two. 
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Chapter 0 

Introduction 

0.1 The scope of information theory 

Since Shannon's seminal papers, information theory has grown to be 
a subject with a wide range of topics. To demonstrate the width of 
the spectrum of subjects, consider the list of sessions of the 1994 IEEE 
International Symposium on Information Theory. 

• entropy and coding of random processes and fields, 

• rate distortion theory, 

• source coding and entropy theory, 

• source coding, 

• universal source coding, 

• vector quantization, 

• image coding, 

• single-user channels, 

• multi-user channels, 

• multiple and random accessing, 
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• universal source coding, stochastic complexity, 

• cyclic codes, 

• concatenated codes, 

• group codes, 

• algebraic geometry codes, 

• algebraic structure of convolutional codes, 

• properties of codes, 

• soft decision decoding, 

• convolutional coding techniques, 

• data communication systems, 

• trellis coding on fading channels, 

• trellis coding for block codes, 

• trellis coded modulation, 

• coding for multiple access channels, 

• code division multiple access sequences and techniques, 

• sequences and arrays, 

• recording channels, 

• optical communication systems, 

• coding with partly known errors, 

• special channels, 

• coding for special channels, 

• synchronization, 
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• combinatoric designs and tilings, 

• estimation, 

• detection, 

• pattern recognition and estimation, 

• signal processing techniques, 

• neural information processing, 

• complexity of receivers, 

• approximation of information sources, 

• combinatorics 

• coding and modulation, 

• channel equalization, 

• queueing analysis, 

• automatic repeat request systems, 

• data networks, 

• random processes and random fields, 

• statistical analysis of stationary sources, 

• cryptosystems and wire-tap channels, 

• secret sharing, authentication and key distribution, 

In the following paragraphs we briefly introduce these topics to the 
non-informationtheorist and consider their relation to the central mean
ing of information theory, i.e. the fundamental study of information, 
information transmission and information processing. In our descrip
tion of these topics we do not limit ourselves to the contents of the 
symposium mentioned. In the following section, the topics for which 
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this thesis presents contributions will be put into special focus. The 
common theme of the contributions is that they deal with capacity 
problems and coding problems in information theory. The three capac
ity problems that are addressed are that of 

• the information rates in two-way channel with single output, 

• the packing density of processor cells in a programmable gate 
array, 

• the information rate of a class of timing jitter channels. 

The two "coding problem" contributions concern the implementation 
of the Viterbi algorithm. 

0.1.1 Entropy and coding of random processes and 
fields 

The entropy of a random variable X with probability distribution p(x) 
goes back to Shannon's landmark paper [l], 

H(X) =- LP(x)log2 p(x). (0.1) 
X 

A key theorem is that for any uniquely decodable (data compression) 
code for X, the expected length E( L) of the code cannot be less than 
the entropy of the source H(X). The difference 

R d;j E(L) H(X) (0.2) 

is called the redundancy of the code. Using Huffman codes [2] a re
dundancy of at most one bit can be achieved for any random variable 
X. 

A random process is an (at least) one dimensional array of random 
variables. A random field is a two dimensional array of random vari
ables. The interdependence between the random variables complicates 
the computation of the entropy rate of these random processes/random 
fields per source symbol as well as the coding methods. 
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0.1.2 Rate distortion theory 

The entropy rate of a random process equals the amount of bits per 
source symbol necessary to exactly reproduce the source output. In rate 
distortion theory, one considers the number of R bits per source symbol 
necessary to reproduce the source output up to a certain accuracy, or 
distortion d. In many practical cases, e.g. coding of image or sound 
signals, it is sufficient to specify a signal up to a given small distortion, 
which remains unperceptible to the human receiver. The larger the 
distortion d that is allowed, the smaller the required rate R. The result 
is a convex R( d) curve. 

0.1.3 Source coding and entropy theory 

Source coding, i.e. data compression problems can be considered in
volving more than one receiver and or transmitter. For instance, take 
the multiple description problem. Data compression is applied to a se
quence of independent identically distributed (i.i.d.) random variables. 
The resulting message however is designed to consist of two pieces. Re
ceiver 1 receives only piece 1 which requires a data rate of R 1 bits per 
source symbol. Similarly, receiver 2 receives only piece 2 which requires 
a data rate of R2 bits per source symbol. Receiver 3 receives both con
stituents of the message at data rate equal to the sum of both rates 
R3 = R1 + R2 • This communication situation is intended to model the 
situation in which it is not sure whether both messages will arrive at the 
receiver. Receiver 3 can reconstruct the source sequence with a rela
tively high accuracy, i.e. a relatively low distortion d3 • Receivers 1 and 
2 are only able to reconstruct the source sequence with some larger dis
tortion d1 , d2 , respectively. The problem is to study the coding methods 
which minimize the rate triples (Rt, R2 , R3 ) and minimize the distor
tions (d1 , d2 , d3 ). This leads to a six dimensional shape of all achiev
able rate-distortion tuples (R1, R2, R3 , d1, d2, d3), which fully character
ize which rate-distortion tuples can occur in practise and which are 
impossible. 

Many other source coding problems exist. E.g. two persons wish to 
exchange messages, but the messages they have are not statistically in
dependent. Again, the interdependence complicates the problem. The 
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minimum number of bits necessary to exchange the messages can be 
studied as a function of the number of rounds of communication that 
are allowed, etc. 

The aforementioned problems are both instances of multi-user source 
coding, because they involve multiple terminals (transmitters, receivers). 

0.1.4 Source coding 

Classical source coding problems consider data compression with only 
a single transmitting and a single receiving user. When an in princi
ple infinite length data stream, e.g. bit stream, is to be compressed, 
two common approaches exist. One is to chop the data stream into 
fixed length messages words which are translated into variable length 
codewords. Relatively more likely message words are translated into 
relatively shorter codewords and vice versa. This is called fixed-to
variable length coding. Also the oppossite approach exists, variable-to
fixed length coding. Then, the data sequence is chopped into message 
words of about equal probability of occurrence. Various methods can 
be considered to achieve fixed-to-variable and variable-to-fixed length 
coding. 

0.1.5 Universal source coding 

In classical source coding, one generally assumes that the receiver and 
the transmitter know the statistics of the source. For instance, the 
source can produce ASCII symbols according to some given distribution 
function in a memoryless way. In many practical cases, however, the 
statistics of the source are a priori unknown and must be estimated in 
some way, before they can be used in a source coding scheme. U ni versaJ 
source coding concerns itself with this problem: compression of data 
sequences with unknown statistical properties. 

0 .1. 6 Image coding 

Image coding is a special branch of source coding which concerns itself 
with data compression of image information. Each image is represented 
by three arrays with colour information for each image point (pel). A 
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distinction can be made between single image data compression and 
compression of sequences of images (video coding). Two principles can 
be exploited in order to obtain data compression. First of all, image in
formation is statistically correlated. Decorrelation techniques result in 
data compression. Secondly, the human eye has a particular sensitivity. 
For instance, the human eye is less sensitive to fine grain inaccuracies 
than to distortions that affect entire blocks of the image. By shaping 
the distortions in the frequency domain, relatively large distortions can 
be allowed where the human is least sensitive. Image coding thus 
corresponds to a complex example of rate distortion theory: The sig
nal has a complicated stochastic structure, and the distortion function 
involves multiple masking effects inherent to the human psychovisual 
system. 

0.1.7 Vector quantization 

Quantization amounts to a form of truncation. For instance, "round 
off to the nearest multiple of 8", or "round off to the nearest power of 
2". Thus, the essence of quantizer is to replace the input value by an 
output value from a limited alphabet. Vector quantization involves the 
same principle, applied to n-tuples, vectors. Vector quantization 
makes use of a codebook, i.e. a set of output vectors that the quantizer 
can produce. This codebook is designed with the aid of a so called 
training set of experimental data that is to be quantized. During the 
training phase an analysis is made of the frequency of different input 
vectors. The codebook vectors are chosen such that they maximally 
look alike the occuring input vectors. 

0 .1. 8 Single-user channels 

In information theory, a channel is a device by means of which infor
mation can be transmitted. Single user channels involve only a single 
transmitter and a single receiver. Storage of information is consid
ered as a special case, viz. transmission in the time dimension. In 
all interesting cases, the channel is imperfect, in that (in some cases) 
it leaves the receiver with some (statistical) uncertainty about which 
signal was input to the channel by the transmitter. Consider for in-
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stance a telephone line, or a satellite link that limits the bandwidth of 
the transmitted signal, which is, therefore, distorted. In addition, the 
signal is received with noise added. The receiver's problem is to esti
mate the transmitted signal sequence and, thereby, the message with 
minimal (average) error probability. 

0.1.9 Cyclic codes 

A decoding error occurs in channel coding if the receiver cannot decide 
what signal sequence (codeword) was transmitted by the sender. To 
minimize the decoding error, the codewords must be distinctly different, 
so that they remain discernable when the channel has introduced a 
limited amount of errors (substitutions). That is, any two codewords 
must have some prespecified number of indices in which they differ. The 
number of indices in which two sequences differ is called the Hamming 
distance. The set of all codewords, binary sequences that the user may 
send, is called the codebook, or the code. A binary error correction 
code has as its parameters: the codeword length n, the logarithm k 
of the number of codewords, and the minimum Hamming distance d 
between any pair of codewords. 

A special branch of applied discrete mathemetics concerns itself with 
the design of codes that have maximum minimum Hamming distance. 
Cyclic codes are codes for which one can think of the first index fol
lowing the last index. That is, the codewords can be thought of being 
placed on a circle. With a cyclic code, each cyclic shift of a codeword 
is also a codeword. 

0.1.10 Convolutional coding 

With a block code, the encoder accepts k message bits, e.g. k 57, 
and outputs codewords of length n, e.g. n 63. The decoder accepts 
blocks of n bits and outputs an estimate of the message sequence of k 
bits. With a convolutional code, the encoder consists of k shift registers. 
The message sequence is thought of as an in principle infinite length bit 
stream. The bit stream is chopped into k-tuples. Out of each k-tuple, 
one bit is fed into each shift register. There are n, n > k, linear output 
functions. Each output is a linear function of any of the bits in the 
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k shift registers. The codeword bit stream consists of a sequence of 
n-tuples. The decoder of a convolutional code has to perform sequence 
estimation. In many practical cases, k = 1. Then there is only one 
shift register. The convolutional encoder outputs n output bits for each 
message bit entered into the shift register. Then output functions are 
in fact finite impulse response (FIR) filters. 

0.1.11 Algebraic structure of convolutional codes 

A convolutional code may be generated by more than one encoder. It is 
useful to find the minimal, or simplest encoder. Also special properties 
of a certain convolutional code can be studied in relation to simplified 
decoding algorithms. 

0.1.12 Concatenated codes 

Concatenation of two codes amounts to placing two encoders in se
quence. That is the message sequence is encoded with the first code. 
The result is encoded with the second code. Thus, the message is 
doubly protected against errors. At the receiver's side, the received 
sequence is first decoded with the second (so called inner) code. Thus, 
many errors are corrected. The result is decoded using the first (outer) 
code and remaining errors are corrected. Note that the encoder-decoder 
pairs are placed as brackets around the channel. In order for the con
catenation to be effective, the two codes must be matched in a certain 
sense. Errors which are not correctable with the inner code must be 
correctable with the outer code. Also the error rate performance of the 
concatenated code is an issue of study. 

0.1.13 Group codes 

Classically, code design concerns itself with binary codes. However, not 
all channels have binary inputs. E.g. with phase modulation, higher 
cardinality signal sets can be used. Under some specific conditions, 
the error correcting codes in such cases are codes over mathematical 
groups. 
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0.1.14 Algebraic geometry codes 

A relatively new branch of code design that makes use of the subfield 
of algrebraic geometry of mathematics. This subfield has yielded some 
very good codes. Recently, effective decoding algorithms for algebraic 
geometry codes have been found. 

0.1.15 Properties of codes 

Symmetries and other invariances of codes can be used to attain sim
plifications during encoding or decoding. Also properties of codes can 
be of interest when coding systems or modulation systems are concate
nated. An important property is cyclicity of a code. A code does not 
have to be evidently cyclic by construction, whereas it is still cyclic, or 
the indices can be permuted to obtain a cyclic code. 

0.1.16 Soft decision decoding 

Assume that the codewords transmitted over a channel are binary. 
Then, it is not necessarily the case that what is received is again a 
sequence of binary values. For instance what is received can be a real
valued voltage. Of course, this voltage can be truncated into a binary 
signal, but then information is thrown away. With soft decision de
coding, the voltage is e.g. truncated into one out of 8 levels instead of 
only 2 levels (the latter would be called hard decision). This 8-valued 
signal is then used in the decoder. Whenever applicable, the use of soft 
decision gives a marked performance improvement. 

0.1.17 Data communication systems 

System aspects of communication systems involving error correction 
codes, modulation schemes, multiplexing schemes, in the presence of 
synchronization errors, fading channels, etc. 

0.1.18 Coding and modulation 

In the recent history of information theory, the combination of error 
correction and modulation has yielded an improvement in the perfor-
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mance of modems. The classical approach to modulation would be to 
choose input signals to a channel such that the resulting probability 
of error would be small. With coded modulation the number of input 
signals is increased such that the resulting channel error probability is 
relatively large. In a clever way, only the detail signal that is added 
to the input signal is protected with forward error correcting codes. 
The coarse grain of the input signal is not protected with forward error 
correction, or with a much less powerful error correcting code. The 
introduction of the extra detail in the input signal minus the cost of 
protecting it with forward error correction gives a substantial gain in in
formation rate. Because only the detail signal is heavily protected with 
forward error correction, the resulting increase in coder complexity and 
redundancy of the code is minimal. 

0.1.19 Trellis coded modulation 

Subject of research are the choice of the constellation of input signals, 
the forward error correction that is added, how to apply trellis coded 
modulation to channels that employ phase modulation, performance of 
trellis coded modulation over intersymbol interference channels, etc. 

0.1.20 Performance of trellis-coded diversity re
ceivers over slowly fading channels 

Fading radio channels occur e.g. in mobile communications. In certain 
circumstances, the reception of a signal may drop to zero, e.g. because 
of the blockage of a radio signal by a building. When the receiver moves 
out of the shadow of the building, the reception of the signal can be 
continued. Special coding techniques are used to combat such adverse 
transmission conditions. 

0.1.21 Trellis decoding for block codes 

Consider a rate R = 1/ n convolutional encoder. The encoder consists 
of one length m shift register. Initially, at time index zero, the encoder 
state is assumed all zeroes. For each of the two possible input symbol 
values to the shift register, the all zeroes state has a successor states at 
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time index one. At time index two, there are four states, etc. At time 
index m and beyond, the number of states settles at a fixed number of 
2m states. The connections between states and each of its two successor 
states can be depicted in a graph called a trellis. The trellis is the state 
transition diagram of the convolutional encoder. It serves as a tool in 
the Viterbi decoder algorithm. 

Since the Viterbi algorithm is a handy tool for soft decision decod
ing, and soft decision decoding of block codes rather than standard hard 
decision decoding brings a substantial performance gain, a method has 
been devised to give block codes a trellis description. Then, the Viterbi 
algorithm can be used to decode such codes. 

0.1.22 Multi-user channels 

Multi-user channel theory involves more than one transmitter and/or 
more than one receiver. An important example is that of the multiple 
access channel and the two-way channel (the two-way channel is intro
duced, below). The multiple access channel has two (or more) inputs, 
one for each transmitting user, and one output, connected to the re
ceiver. The users may only communicate with each other via the chan
nel. The messages of the transmitters are statistically independent. In 
this communication situation no noise source needs to be present in the 
channel. The communication of one message to the receiver hampers 
the reception of the other messages. An simple approach is to divide 
the time equally among the transmitters, and let only one transmitter 
send information at a time. However, in general, such a time-sharing 
approach does not yield the maximum average communication rates 
that can be achieved in such a configuration. 

0.1.23 Multiple and random accessing 

In mobile communications and computer communications, it is often 
the case that there is a single transmission medium, e.g. a LAN cable 
or a certain radio frequency band, that can be seized by only one trans
mitter at a time. All users involved can receive the signal transmitted 
by a sending user. Time is divided into time slots, and all users have 
synchronous clocks. Whenever, a user stops sending, immediately the 



0.1 The scope of information theory 13 

channel is open for transmission by other users. When two or more 
users start transmission simultaneously, a collision occurs, and the per
taining time slot is wasted in the sense that the users only know that 
more than one user want to transmit, but not which user nor what was 
transmitted. Strategies can be devised that minimize the number of 
collisions that occur, and maximize the utilization of the transmission 
medium. Upper bounds can be derived on the maximum utilization 
rate of the channel. 

0.1.24 Code division multiple access sequences and 
techniques 

Code division multiple access (CDMA) uses noise-like waveforms for 
communication. The encoder and decoder are assumed to be in time 
synchronization. The encoder sends "+ noise like waveform" or " -
noise like waveform". The decoder correlates the received signal with 
the noise like waveform and receives a "+" or a "-". The trick is that 
because of the use of the noise-like waveform, this communication is 
difficult to intercept by someone who does not know what waveform is 
used. In the frequency spectrum, the noise-like signal has its energy 
smeared out over a very wide band. Thus, the signal energy can remain 
well below the noise level. Apart from secret communications, CDMA 
can be used for multiple access. Different senders each have their own 
noise-like sequence. Because the cross correlation between different 
noise sequences is almost zero, different users do not interfere with 
each other. Each additional user just adds slightly to the overall noise 
level. 

0.1.25 Sequences and arrays 

The sequences used in CDMA must be noise like. To define what 
"noise like" means and to find sequences that have these properties is a 
special topic. Maximum length shift register sequences can do the job, 
but there are not very many of them. With secret communications, 
one wants to have a large supply of "good" sequences to choose from. 
Noise-like arrays are sometimes used in radar applications. 
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0.1.26 Coding for multiple access channels 

Alternatives to CDMA are time division multiple access (TDMA) and 
frequency division multiple access (FDMA). With TDMA, each user has 
a different time slot. With FDMA each user has a different frequency 
band. With a large number of users that seldomly use the channel both 
TDMA and FDMA are inefficient, because a large portion of the time 
period (frequency band) isalloted to inactive users. With CDMA, only 
those users that are sending add slightly to the overall noise level. 

0.1.27 Recording channels 

A channel which is of especial practical importance is the recording 
channel. The optical recording channel (CD) and the magnetical record
ing channel can be distinguished. With both recording channels, as
sume that a digital signal is recorded. During play off, transitions in 
the input signal are used to derive a clock signal. If transitions oc
cur too far spaced apart in time, it becomes a problem to distinguish 
exactly how many bits are in between the transitions. Therefore, the 
maximum distance between transitions must be limited. Similarly, if 
transitions occur with too high a frequency, due to the bandlimitedness 
of the detector, these transitions lead to inter symbol interference. In 
short, a minimum spacing d + 1 and a maximum spacing k + 1 between 
the transitions is prescribed. 

A branch of information theory concerns itself with the design of 
optimal ( d, k) codes, that have maximal information density and yet 
have simple encoders and decoders. Also joint ( d, k) constrained and 
error correction codes are studied. 

0.1.28 Analysis of optical communication systems 

Laser communication through optical fibers is a special branch of chan
nel coding/modulation that requires its own analysis. Typically, the 
detector is assumed to count the received photons. Photon noise, band
width restrictions and intersymbol interference can limit the possible 
communication rate. 
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0.1.29 Coding with partly known errors 

Classically, error correction codes are designed to cope with one of two 
types of errors. With so called random errors at most e errors can 
occur anywhere in the codeword. With burst errors, a number of errors 
can occur at successive positions over an index range of at most b. 
However, other situations can occur in practise. A priori knowledge 
can be available about the set of error vectors. Or, with nonbinary 
codes, the values of the errors can be known and only their locations 
need to be resolved. For each situation, special error correction codes 
need to be designed. 

0.1.30 Special channels 

Several topics can be classified under this subject. For instance, multi
user channels such as the two-way binary multiplying channel, bandlim
ited additive Gaussian noise channels in the presence of sampling jitter 
(see also 'Synchronization'), and channels with insertions and deletions. 

0.1.31 Coding for special channels 

Classically with error correction, it is assumed that O's can go over 
into 1 's and vice versa. If only O's can turn into 1 's but not the other 
way around, one has so called asymmetrical errors. Asymmetrical error 
detection and error correction codes are a special subject. 

0.1.32 Synchronization 

In classical information theory, one assumes that sender and receiver are 
in time synchronization, and that only the noise in the channel limits 
the communication capacity between sender and receiver. In practise, 
sender and receiver do not have perfect clocks available, and the timing 
uncertainty can limit the communication capacity, too. For example, 
consider the replay of a disc. Inaccuracies in the replay velocity incur 
a timing discrepancy at the "receiver". 

Differences in timing velocity may the receiver to miss certain bits, 
or to insert spurious bits. This is referred to as the channel with inser-
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tions and deletions. Coding for this channel is a relatively new branch 
of coding theory. 

0.1.33 Contbinatoric designs and tilings 

A subject which generalizes upon the design of good error correction 
codes. 

0.1.34 Estimation 

Estimation of stock performance turns out to be a problem closely re
lated to universal data compression. Estimation of probability densities 
and entropies is another subject of interest. 

0.1.35 Detection 

Detection of signals or the presence of signals such as is the case with 
radar, and the computation of false alarm probabilities is a discipline 
by itself. Distributed detection entails detection using more than one 
receiver and combining the results before making a decision. Maximum 
likelihood rules and other rules can be used to make decisions. 

0.1.36 Pattern recognition and estimation 

E.g. recognition of letters in a digitized camera output signal can be an 
important application of patter recognition. Artificial neural networks 
can be trained to recognize particular shapes, e.g. bomb craters. In 
certain circumstances, bounds can be derived on the error probabilities 
of pattern recognition and estimation. See also 'Neural information 
processing'. 

0.1.37 Signal processing techniques 

Signal processing techniques are e.g. used in image coding and in image 
restoration. Also signal analysis, e.g. frequency and wavelet analysis 
are of interest to the informationtheorist. 
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0.1.38 Neural information processing 

Artificial neural networks mimic certain brain functions and can be used 
to realize associative memories. These networks contain a large number 
of connection weights that, during the learning phase, are positively 
reinforced to produce certain given outputs in response to certain given 
inputs. After the learning phase, the neural networks can be used to 
produce the outputs in response to the inputs. Also, these networks 
have a certain generalization capability. 

0.1.39 Complexity of receivers 

Shannon proved that good error correcting codes can be found by sim
ple coin tossing (in case of a binary channel when a uniform input 
distribution realizes channel capacity). The problem is that for such a 
random code, the encoder and decoder are extremely complex. Thus, 
a good code is only really valuable if simple encoder and decoders exist 
for this code. The decoding problem amounts to finding the codeword 
closest to the received word. Because of this search aspect, decoding 
is inherently more complex than encoding. Given an error correcting 
code, the encoder and decoder are not at all uniquely determined. The 
degrees of freedom can be used to achieve simplifications. In many 
broadcast situations, only one encoder has to be realized, but many 
decoders. Then, decoder complexity is especially important. 

0.1.40 Approximation of information sources 

Approximation of information sources can be of interest for theoreti
cal analysis and for practical simulations. E.g. also in simulations of 
particular information sources, can approximation be of interest. 

0.1.41 Combinatorics 

Zero error communication leads to graph problems. Therefore, for in
stance graph problems are relevant to information theory. 
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0.1.42 Channel equalization 

A transmission channel can have a certain non-ideal frequency transfer 
function. E.g. the channel can have a low pass behavior. Then, high 
frequencies are blocked. Frequencies that lie in the transition range of 
the frequency transfer function can suffer attenuation and phase distor
tion. Such distortion can work out to a "smearing out effect" on pulses 
transmitted accross that channel. Equalization means compensation of 
the low pass characteristic, so that within the frequency range of the 
channel that is actually used, it has a flat amplitude characteristic and 
linear phase. 

How to control the equalization filter such that this is achieved can 
be approached in different ways. One approach is to sometimes send 
a signal with a known frequency characteristic. Then, the frequency 
transfer function of the channel can be calculated. Another approach 
is to calculate the frequency transfer function of the channel "on the 
fly". 

0.1.43 Queueing analysis 

Oftentimes information is transmitted in the form of packets. Packets 
can await transmission in queues, as is e.g. the case in broadband 
ISDN network nodes. Therefore the analysis of queueing disciplines is 
of special interest to information theory. 

0.1.44 Automatic repeat request systems 

If the receiver has a feedback link to the sender, the sender need only 
use a code for error detection rather than error correction, and the 
receiver can request for all data packets received in error to be repeated. 
This approach to error correction does impose extra transmission delay 
before the retransmitted data packets are available. 

0.1.45 Data networks 

Important issues with data networks are the delay a data packet en
counters when transmitted through the network, the maximum through-
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put in terms of number of packets per second that can be transmitted 
between the various points in a network and stability issues. Many 
data networks contain queues and therefore, require queueing analysis. 
Topology issues can be addresses of how to serve a large number of 
users most effectively. Protocols are used to modularize the functional 
entity of a network into several layers. In short, there are many infor
mationtheoretical and statistical problems related to data networks. 

0.1.46 Statistical analysis of stationary sources 

Stationary sources have a certain probability density function that can 
be analyzed. The probability density function provides a lot of insight 
about the stochastic structure of the source. Stationary sources have a 
spectrum. Spectral analysis is one of the corner stones of linear system 
theory. Spectral analysis is a topic by itself. 

0.1.47 Cryptosystems and wire-tap channels 

Cryptography is an important part of information theory. The purpose 
of secure communications is to make data unintelligible to an unautho
rized user, who is not in possession of the secret key information. To 
break in on such a scheme is not theoretically impossible, it just takes a 
very large computation time. These computation times depend on the 
creativity of the attacker, so a cryptosystem is as secure as the lowest 
complexity attack for that scheme. 

0.1.48 Secret sharing, authentication and key dis
tribution 

Protection of confidentiality against a wire-tapper is not the only sub
ject of cryptography. Digital signatures by means a user can unmis
takenly prove his identity are another important topic. Also the dis
tribution of secret key information among different users is topic of 
interest. 
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0.2 Introduction to the results 

Results have been obtained on the following topics: 

• upper bounds on the capacity of the single output two-way chan
nel (multi-user channels), 

• the density of processor cells in a programmable gate array net
work (data networks), 

• the capacity of a timing jitter channel (synchronization, special 
channels), 

• implementation of the Viterbi algorithm (convolutional coding). 

We now present introductions to each of these topics. 

0.2.1 The two-way channel 

In the simplest situation a two-way channel consists of two one-way 
channels, one from user A to user B and from user B to user A. The 
set of all rate pairs (Rll R2 ) that are achievable for such a constellation, 
I.e. the capacity region, consists of a rectangle, as follows: 

where CAB, CBA denote the capacity of the channel from A to Band 
v.v., resp. As evidence that the communications in both directions have 
nothing to do with each other, the inputs to both channels A-t Band 
B -t A are statistically independent. 

Theoretically more interesting are those channels for which the com
munication in the first A ---+ B direction interferes with the communi
cation in the second, B ---+ A direction. The capacity region of such 
channels is not rectangular. Also the inputs to the two-way channel are 
in general not statistically independent. However, because the inputs 
reflect message information and the messages are statistically indepen
dent, any dependence between the inputs of the channel must have 
been created during previous transmission. Considerations like this led 
to the dependence balance bound. 
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Chapter 1 presents an upper bound for the capacity region of the two 
way channel with single output on the basis of a so called dependence 
balance bound. In case a two way channel consists of two separate one 
way channels in both directions, the input signals to both channels in 
the optimal case are independent. For the general two way channel, 
statistical dependence between the inputs can increase the achievable 
data rates. The inputs are derivates of the messages, and the messages 
are independent. Therefore, the first input signals in any strategy are 
necessarily statistically independent. This does not hold for the sub
sequent input signals, but what can be proved is that on average the 
amount of dependence between the input signals cannot be larger than 
the amount of a posteriori conditional dependence of the input sig
nals given the output signal. The amount of dependence is measured 
with the (conditional) mutual information. In essence, any dependence 
between the input signals first has to be created. In addition, the intro
duction of an additional parallel channel can only increase the capacity 
of the combined channel. Such a parallel channel can be chosen such 
that the a posteriori dependence of the input signals given the output 
signal is reduced, and that the amount of information that 1s g1ven 
away by the parallel channel is as small as possible. 

The new outer bound to the capacity region that has been obtained 
is the strongest bound yet known. It allows the determination of upper 
bound results for new two way channels of interest, and provides a lot 
of insight to the role of dependence in the construction of good codes 
for the two way channel. 

The key ingredient in this contribution was to measure the depen
dence between the terminals with the conditional mutual information 
and require that on average as much dependence is produced as is con
sumed. Further research could aim other relationships between the a 
priori and the a posteriori distribution of the inputs given the outputs 
to further tighten the bound obtained. 
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0.2.2 Processor densities in programmable gate ar
rays 

The design of error correction codes amounts to a packing problem. 
How to pack as many codewords in the space of all sequences of a certain 
length as possible without that the spheres around these codewords 
with a radius of l(d 1)/2J intersect? 

A more complex packing problem is the following: How can as many 
processor cells as possible by packed in, say, a two-dimensional grid 
such that pairs of of processors satisfy the constraint of being mutually 
connectable? 

The simplest case has an appealing analog to the configuration of 
parking lots. How can as many cars as possible be parked on a two 
dimensional grid of cells such that any car can be moved to an exit cell 
without having to move other cars? When the movements of the car 
are bidirectional, this means that each car can move to the exit cell and 
from there to any other car. That is, any two cars can be connected 
via a route over empty cells. 

Chapter 2 discusses what with some feeling for analogies can be 
called parking lot theory. Given a rectangle that is partitioned into 
small rectangular cells, all of equal size, the cells can be used as proces
sor cells or as communication cells. The target is to achieve the highest 
possible density of processor cells under the constraint that every pair 
of processor cells can communicate via a path of communication cells. 
The largest achievable density turns out to be 2/3. If the processor 
cells are considered as cars and the communication cells are considered 
as empty cells, a single processor cell can be coined exit cell, and then 
all cars can move to the exit. Vice versa, if in a parking lot all cars can 
move to an exit cell without that other cars have to be moved away, if 
the cars can move bidirectionally, any car can move to the exit cell and 
from there to any other car. Thus, any two pair of cars are connected. 
More generally, we seek the maximum processor density given that n 
pairs of processors can communicate via n disjoint paths. The optimal 
density turns out to be O(n-2). 

It should be noted that this contribution also amounts to a capacity 
problem related to the packing of points in a space. "Packing points 
in a space subject to a condition" is also the form of the problem of 
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finding good error correcting codes. Only in this case the condition is a 
connectivity condition which is more complex than the usual minimum 
distance requirement. 

Further research could aim at the analysis of more realistic pro
grammable gate arrays with multiple layers and more general networks 
to be embedded. 

0.2.3 Timing jitter channels 

In classical Shannon channel theory, each channel input symbol gives 
rise to one channel input symbol. Implicitly this means, that sender 
and receiver have a perfect clock. In practise, this often is not the case. 
For instance, the channel can be a storage device which is replayed. 
If the replay velocity is not perfectly equal to the recording velocity, 
timing errors occur. The output signal is resampled. It is evident that 
timing errors can affect the correctness of the message that is received 
and can reduce the information capacity of the channeL This problem 
is also addressed by Heegard, et. al. [3]. The binary input signal of a 
timing jitter channel consists of successive runs of zeroes and ones. We 
assume that the timing jitter is not synchronous, but run-synchronous. 
That is, the lengths of runs of zeroes and ones can be changed, but 
not entire runs are omitted. Thus, the problem can be reformulated 
in terms of a channel that has run variables as input and output. The 
capacity of this channel can be analyzed using a result of Verdu about 
capacity per unit cost. Here, cost is the length of the input run. In 
this way, the capacity of the channel is renormalized to the information 
capacity per input bit. 

Chapter 3 introduces channels with timing jitter. Shannon's well 
known result for the capacity of the one way channel presumes that 
sender and receiver have a perfect clock, and thus are capable of sub
mitting and sampling the input and output signals at the correct time. 
In general, channels transport signals not only in the spatial dimen
sions but also in the time dimension. Following Baggen and Wolf, we 
consider a class of channels that occur, e.g., in storage media such as 
compact disc and optical or magnetic tape. If the velocity at which such 
a medium is played is not exactly equal to the velocity at which the 
information was recorded, uncertainty is created in the time relation 
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between sender and receiver. Assume that the signal has binary input 
and output signals. The length of a pulse train of 1 's or O's, also called 
a run of 1 's or O's, can be affected by an incorrect sampling speed. If it 
is assumed that only the runlengths are affected, as opposed to entire 
runs being missed or inserted, sender and receiver agree on the run in
dex number which, in turn, can serve as an alternative synchronization 
index. Reformulation of the problem in runlengths allows for exact de
termination of the capacity region of this channel using a theorem of 
Verdu about capacity per unit of cost. 

The results obtained allow for an easy determination of the capacity 
of an important class of timing jitter channels. For instance in the case 
of compact disc, the information written on the disc is coded such that 
it has a hole around zero in the frequency spectrum. Thus, a low fre
quency pilot tone written on the disc can be recognized in the frequency 
domain. The result is that for the data written on the disc- a timing jit
ter channel- side information is available about the transmitter's time. 
This led Baggen and Wolf to introduce a different timing jitter channel 
in which the running sum of the timing disparities is bounded. This is 
motivated by the boundedness of the timing uncertainty because of the 
side information. In our approach, however, the creation of a hole in 
the frequency spectrum is considered as a loss of channel capacity. We 
do not consider side information. Instead e.g. the timing uncertainty 
can be bounded by letting the transitions in the input to the channel 
happen at a prescribed rate. The estimate of the transmitter time then 
equals the transition rate times the transition index. Further research 
could analyze the capacity of this timing jitter channel with a restric
tion on the code such that the timing uncertainty is bounded. This 
research could be motivated by a promising improvement in efficiency 
over the pilot tone approach. 

0.2.4 The Viterbi algorithm 

The Viterbi algorithm is a very widely used tool for maximum likelihood 
sequence estimation. Assume e.g. that symbols Xi E { 1, 1} are sent, 
and that symbols Ri E 1? are received, i = 1, 2, .... Furthermore, 
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assume that the differences Ri Xi are normally distributed. Then, 

(0.4a) 

N 

p(RIX) =II p(Ri), (0.4b) 
i=l 

where R, X denote sequences over the index range {1, ... , N}. Maxi
mization of p(RIX) is tantamount to minimization of II R X ll2· 

Given a state space flow diagram or trellis, the Viterbi algorithm 
determines that path through the trellis for which the aforementioned 
quantity is minimal. With hard decision, if the Ri take on values in 
{ -1, 1}, the Viterbi algorithm find that path (codeword) for which the 
Hamming distance to the received sequence is minimal. 

The Viterbi algorithm has variables which represent a running sum 
of the distance between the R and X sequences, so far, for each of 
the encoder states in which a sequence X can end. As these so called 
metric variables accumulate the difference between these sequences, 
the problem arises of how to arrive at an implementation using a finite 
number of bits. 

Presented are a new technique to implement the path or state metric 
variables (modular arithmetic), an analysis technique for exact deter
mination of the numerical range of these variables, and a new technique 
to actually reduce the numerical range of the metric variables. 

The subject of Chapter 4 is the implementation of the path or state 
metrics in the Viterbi algorithm (VA). The results holds for (almost) 
any application of the VA, not just for decoding of linear convolutional 
codes. The path metrics in the VA accumulate the distance between 
the received channel symbol sequence and the survivor paths in the 
trellis for the respective states. As the number of channel errors in
creases, so do the path metrics. In an implementation it is preferred 
that the path metrics can be represented with a finite number of bits. 
To this end the following properties of the VA can be exploited. 1. The 
selection of survivor paths depends only on differences of path met
rics. 2. The maximum difference between any two path metrics can be 
bounded using structure properties of the trellis. A well known imple
mentation method which makes use of these properties is the rescaling 
method. After each iteration of the VA the minimum path metric is 
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deducted from all path metrics. This costs hardware and computation 
time. Presented is an alternative method which obliterates the need for 
subtraction inside the VA loop. The modulo reduced difference of two 
path metrics equals the true difference provided that the true difference 
lies in the range of the modulo operator, which can be chosen approxi
mately symmetric around zero. This corresponds to two's complement 
arithmetic. Overflows do occur, but do not cause problems. 

As a sequel to Chapter 4, in Chapter 5 the maximum difference 
between path metrics is analyzed for the case of a decoder of linear 
convolutional codes. The results hold for hard decision decoders and 
a class of soft decision metrics. It can be proven that the reception 
of the all zeroes codeword represents the worst case for the maximum 
difference between path metrics. In addition, it can be proven that, 
as a function of the depth in the trellis, this difference increases to a 
maximum value and then (slightly) decreases. What matters for an im
plementation, is the maximum difference between candidate values for 
the path metrics inside the VA metric update loop. These difference can 
be larger than the differences between path metrics. With respect to 
the maximum difference between candidate path metrics, a distinction 
must be made between a rescaling implementation and modulo arith
metic. With modulo arithmetic only the difference between candidate 
path metric values for the same state have to be considered. Because of 
this, with modulo arithmetic the numerical range of the candidate path 
metrics is somewhat smaller than with the rescaling method. Further
more, a selection rule is introduced that prunes nodes from the trellis 
for which the path metric is relatively large at the given depth in the 
trellis. Large path metric differences correspond to unlikely survivor 
paths. It can be proven that some of these paths never can have the 
overall minimal metric, i.e., cannot be the output path of the VA, be
cause there always is another path that has smaller path metric. The 
resulting reduction in the numerical range of the path metrics is at 
most a factor of two. 

Chapter 4 presents a very practical method of how to simplify the 
implementation of the Viterbi algorithm. The results of Chapter 5 
can be used to determine the numerical range of the path metrics of 
a decoder of linear codes exactly. In addition it describes a method of 
how to reduce this numerical range to achieve a further simplification 
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of the Viterbi algorithm. Further research could aim at combination of 
the selection rule of Chapter 5 with the two's complement arithmetic 
method of Chapter 4. Also Chapter 4 could be extended to nonlinear 
trellis codes. 

0.3 Contributions of fellow authors 

The dependence balance bound was the author's Master's thesis. A 
large part of the results are due to my Master's thesis advisor, Dr. 
Frans M.J. Willems. The dependence balance bound was obtained as a 
generalization of Willems' dissertation. The observation that Willems' 
results had an avoidable asymmetry which led to generalizations is 
by the author. Also, the observation that the dependence increase 
I( A; B)- I( A; B/C) is in fact a special case of Csiszar and Korner's 
mutual information in three variables I(A; B; C) is by the author. 

The author independently proved an upper bound 0(1/n) for the 
density of Programmable Gate Arrays (PGA's), in which n pairs of 
processors are connectable via disjoint paths. Independently, the au
thor conjectured that the true density was 0(1/n2 ) and proved that 
the achievability of 0(1/n2

). The simpler proof of achievability and 
the converse result were obtained by Berger and Orlitsky. 
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Chapter 1 

Dependence balance bounds 
for single output two-way 
channels 

Abstract 

If in a transmission the inputs of a single-output two-way channel ex
hibit some interdependence, this dependence must have been created 
during earlier transmissions. The idea that no more dependence can 
be consumed than produced is used to obtain new upper bounds to the 
capacity region of the discrete memory less single-output two-way chan
nel. With these upper bounds we can show that Shannon's inner bound 
region is the capacity region for channels in a certain class and improve 
upon the Zhang-Berger-Schalkwijk upper bound for Blackwell's multi
plying channel. 

1.1 Introduction 

A challenging problem in multiuser information theory is that of de
termining the capacity region of the two-way channel (TWC). In 1961 

°Co-authored with F.M.J. Willems from Eindhoven Technical University, Eind
hoven, The Netherlands. Published in IEEE Transactions on Inform. Theory, vol. 
IT-35, nr. 1, pp.44-53, Jan. 1989. 
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Shannon [1] proposed this problem and found an inner and an outer 
bound for this capacity region. In general these bounds are differ
ent, and we do not know the capacity region. A well-known TWC for 
which inner and outer bounds do not coincide is Blackwell's multiplying 
channel (BMC). By means of an example, Dueck [2] showed 18 years 
after the introduction of the TWC that channels exist for which the 
capacity region is strictly greater than Shannon's inner bound region. 
Schalkwijk [3], [4] constructed coding strategies for the BMC and rates 
exceeding Shannon's inner bound. For general TWC's Han [5] deter
mined an achievable rate region that improves upon Shannon's inner 
bound region. The first improvements of Shannon's outer bound in the 
general case were recently obtained by Zhang et al. [6]. 

We determine a new upper bound for the capacity region of single
output TWC's. This upper bound improves upon the bound of Zhang 
et al. For a certain class of TWC's, our upper bound is equal to Shan
non's inner bound and therefore establishes the capacity region. For 
the multiple access channel (MAC) with feedback, analogous results are 
obtained. 

1.2 Definitions and preliminaries 

1.2.1 The Two-Way Configuration 

A discrete memoryless (DM) single-output TWC denoted by (X1 x 
X2 , P*(y I Xt, x 2 ), Y) consists of three finite alphabets X1 , X2 , and Y, 
and a probability matrix P*(y I Xt, xz). The inputs to the channel are 
X 1 and X 2 and the output is Y. This TWC is the basic element of the 
two-way communication system shown in Fig. 1. 

Sources 1 and 2 generate messages W1 E {1, 2, · · ·, M!} and W2 E 
{1, 2, · · ·, M 2 }, respectively. The messages W1 and W2 are statisti
cally independent and uniformly distributed. These messages are to be 
transmitted to the other terminal via N transmissions. 

Each encoder is completely described by a set of N encoding func
tions. These functions map the message and the sequence of received 
channel outputs into the next channel input. Letting at denote ( a1 , a2 , 

···,at) fort= 1, 2, ···,Nand a0 "empty" we may describe the encoders 
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Figure 1.1: Single-output two-way configuration. 

as follows: 
X1n = ftn(Wt, yn-l) (1.1a) 

X2n hn(W2, yn-l ), n 1, ... , N. (1.1b) 

Decoders 1 and 2 produce estimates W2 and W1 , based on their 
knowledge of their own messages wl and w2, respectively, and the 
sequence of received channel outputs yN. Hence 

W2 g1(W1, YN) 
A N 

W1 = g2(W2, Y ). 

(1.2a) 

(1.2b) 

An (N, M1, lYI2, Pet, Pe2) code for the DM single-output TWC consists 
of two sets of N encoding functions and two decoding functions such 
that 

Pr{Wt :f. Wd =Pet 

Pr{W2 :f. W2} = Pe2· 

(1.3a) 

(1.3b) 

A rate pair (Rb R2 ) is achievable for the DM single-output TWC if 
and only if for 6 > 0 there exists an ( N, M1 , M2, Pel, Pe2) code with 

1 
N ·log(Mt) ~ Rt - 6 (1.4a) 

1 
N · log(M2) ~ R2- 8 (1.4b) 

(1.4c) 

(1.4d) 

The capacity region Cnvc of the DM single-output TWC is the set of 
all achievable rate pairs (Rb R2) with R1 ~ 0 and R2 ~ 0. 
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1.2.2 Blackwell's Multiplying Channel 

The BMC is a deterministic single-output TWC with X1 = X2 = Y 
{0, 1} and P*(y I x 1x 2 ) = 1 if y = x 1 • x2 and 0 otherwise. 

1.2.3 Fano's Result 

Fano's result (see, e.g., Csiszar and Korner [7, p. 53]) may be applied 
to obtain 

(1.5a) 

and 
(1.5b) 

l:::. 
Here h( 1) = 1 · log(!) - (1 1) · log(1 - 1) for 0 :::; 1 :::; 1 denotes the 
binary entropy function. 

1.2.4 K-Information 

Multiple mutual information, or ](-information as we shall call it, was 
first defined by McGill [8]. Fano [9] devoted a subsection of his book. 
[10] to this subject, and more recently, Han [11 J used [(-information to 
describe multiple interactions in frequency data. The present subsec
tion is an introduction to K-information. 

Let {Vo, Vi, Y;, · · · VK} be a set of ]( + 1 random variables (Ji = 

1, 2, · · · ), and assume that each of these variables takes values in some 
finite alphabet. Let the random variables St, S2 , and S3 be subsets of 
{Vi, v;, ···VI<}. We define the entropy of S1 as 

H(St) = L -Pr{St sd ·log(Pr{St = sl}) 

and the conditional entropy of sl given s2 as 

H(St I S2) = Es1S2- Pr{Sl Sl, s2 = s2} 
·log(Pr{St s1 I Sz = sz}). 

(1.6a) 

(1.6b) 
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An important property of entropy follows from the chain rule of prob
ability: 

H(Sl, Sz I S3) - H(Sl I S3) + H(Sz I sl, S3)· (1. 7) 

We are now ready to define the K-in/ormation IK 

h·(Vi; \12; ... ; Vr<) 
="""' (-l)k-1 ""' H(S) LA=l,K L S C {Vi, \12, ... VK} . (1.8a) 

IS k 

and the conditional K-information 

IK(Vl, \12; ... ; VK I Vo) 
"""' ·(-l)k-1"""' H(S I Vr) 
Lk=l.l'- L., s c {Vi, \12, ... 'VK} 0 

Hence, 

lSI k 

I 1(A) = H(A) 
I 2(A; B)= H(A) + H(B)- H(A, B) 

h(A; B; C)= H(A) + H(B) + H(C) H(A, B) 
-H(A, C)- H(B, C)+ H(A, B, C,) 

I 4 (A; B; C; D)= H(A) + H(B) + H(C) + H(D) 
-H(A,B)- H(A,G) H(A,D) 
-H(B, C)- H(B, D) 

(1.8b) 

-H(G,D) + H(A,B,G) (1.9) 

and 
h(A;B I C)= 

I3(A; B; c I D) 

+H(A, B, D)+ H(A, C, D) 
+H(B, C, D)- H(A, B, C, D) 

H(A I C)+ H(B I C) H(A,B I G) 
H(A I D)+ H(B I D)+ H(G I D) 
-H(A,B I D)- H(A,C I D) 
-H(B, c I D)+ H(A, B, c I D), 

etc. We state without proof two properties of K-information as follows. 
The chaining property: 
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The recursive property (I< =fl) : 

IK(Vl; v;, ... 'VI< I Vo) = IK-1(Vl; V2; ... ; VK-1 I Vo) 
-IK-l(Vl; Vz; ... ; Vl<-1 I VK, Vo). 

(l.lOb) 

Note that the I< -information is completely symmetrical in all its I< "ar
guments." This means with the recursive property we have I< possible 
ways of writing IK, e.g., I2(A; B)= 11(A) 11(A I B) 11(B) 11(B I 
A). 
Clearly 11 is equal to the entropy and 12 to the mutual information. 
Both 11 (entropy) and h (mutual information) have an intuitive mean
ing. Until now, 13 had no natural intuitive meaning (see, e.g., Csiszar 
and Korner [7, p. 53]). In the proofs given in this paper it turns out 
that 13 plays a crucial role. We can think of h as the dependence 
reduction. 

1.3 The Shannon Bounds 

Shannon's inner bound region Bsi for the single-output TWC is defined 
in the following way: 

Bsi 6. CO ( {(R1, R2) : 0 :S: R1 :S: J(X1; Y I X2), 
0 ::; R2 ::; 1(X2; y I XI), 
for some P(x1,x2,y) 
= P(.rc1)P(x2)P*(y I x1,x2)}). 

Here "co" denotes convex hull. 
Shannon's outer bound is defined as 

Bso ~ {(R1, R2): 0::; R1 :S: 1(Xl; Y J X2), 

(1.11) 

0 ::; R2 ::; 1(X2; y I Xt), (1.12) 
for some P (xt, x2, y) = P(xb x2)P*(y I xh x2)}. 

Note that Bsa is a convex region. 

Shannon [1] proved that Bsi C Cywc C Bso· For the BMC it follows 
from Shannon's outer bound that, for the maximal equal rate point, 
R1 R2 ::; 0.69424 bit/transmission. 
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1.4 The dependence balance bound 

In this section we prove the main result of this paper. We start by 
observing that for an (N,M1 ,M2 ,Pel,Pe2 ) code 

log(MI) H(WI I W2) 
(a) 

I(WI; yN I vV2) + h(Pel) Pel · log(MJ) < 
® J(W1; yN I W2) + N?./Jt(N, M11 Pet) 

Ln=l,N I(Wl; Yn I w2, yn-l) + N?./Jt(N, Ml' Pet) 
(:j Ln=l,N I(WI; Xlni Yn I w2, X2n, yn-I) 

+N'I/Jt(N, Ml? Pet) 
(d) 

J(Xlni Yn I X2n, yn-l) < 
+N?./J1(N, Mt, Pet), 

(1.13a) 
and 

log(M2) 
(e) 

,N J(X2ni Yn I X yn-1) < In, (1.13b) 
+N?./J2(N, M2, Pe2)· 

Here (a) follows from Farro's result (see (5)); (b) if we define 

1./J(N,.Mt, ) e:. (h(Pet) +Pet ·log(Mt))/N; 

(c) from the encoding functions (see (1)); (d) from the Markov relation 
(Wt, W2, yn-I )-(X1n, X 2n)- Yn; and (e) if we define ?./J2 in an analogous 
way to ?./J1 . Note that A-B-C is used to express the fact that the 
random variables A, B, and C form a Markov chain in that order. 

So far our derivation is rather standard. In fact, Shannon's outer 
bound follows almost immediately from (13). However, in Shannon's 
outer bound (see (12)) the input distribution may be arbitrary. We will 
show here that we can impose a restriction on this input distribution. 
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To see this, consider 

0 < I(Wt; w2 I yn) 

(a) I(Wt; W2YN) I(Wt; W2) 

® -Is(WI; W2; yN) 
(c) ( I 1) Ln=l,N -/3 W1; W2; Yn yn-

(d) Ln=I,N( -H(Yn I yn-l) + H(Yn I Wt, yn-1) 

+H(Yn I w2,yn-1 ) H(Yn I WI,W2,yn-l)) 

(e) Ln=l,N( -H(Yn I yn-l) + H(Yn I wl, yn-I, Xln 
+H(Yn I w2, yn-t, X2n) 
-H(Yn I WI, w2,yn-t,xln,X2n)) 

(f) 
< Ln=l,N( -H(Yn I yn-l) + H(Yn I Xln,X2n 1 yn-l)) 

(:9 Ln=1,N -/3(X1ni X2ni Yn I yn-l 

Ln=1,N(I(XtniX2n I yn-1)). 

(1.14) 

Now (a) follows from the independence of W1 and W2 , (b) from the 
recursive property of K -information (see (lOb)), (c) from the chaining 
property of K- information (see ( 1 Oa)); (d) from the definition of K
information (see (8b) and (7)); (e) from (1); and (f) from the Markov 
relation (Wt, W2, yn-1) - (Xtn, X2n) Yn. 

We can interpret inequality (14) as follows. If I(X1n; X2n I yn-1
) is 

the dependence that is consumed in transmission n, then we can think 
of /(Xtni X2n I Yn, yn- 1

) as the dependence that is produced in that 
transmission. Inequality ( 14) tells us that each code must produce the 
dependence it consumes or, in other words, must satisfy the dependence 
balance. 

To see what input distributions are possible, first note that 

(1.1.5) 

Define 

(1.16) 

where S is a random variable that is uniformly distributed over { 1, 
· · · , N} and independent of (Wt, W2 , X[", Xf, YN). From (13)-(16) we 
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can conclude that, for each (N, Mt, M2, Pe1 , Pe2) code, there exists a 
distribution 

(1.17a) 

with 
(L17b) 

and such that 

(L17c) 

(1.17d) 

From the definition of the capacity region we know that for every achiev
able rate pair (R1,R2) and 8 > 0 there is an (N,Mt,M2,Pet,Pe2) code 
that satisfies (4). We now combine (4) with (17) and let 8 l 0. As a 
result 'lj;1 l 0 and 1/;2 l 0, and we obtain the following theorem. 

Theorem 1: For each single-output TWC (XI X x2, P*(y I Xt, x2), Y) 
we have Crwc C B1 where 

B1 
6 

{(R1, R2) : o ::; R1 :::;; I(X1; Y 1 x2, T), 
o:::;; R2:::;; I(X2; Y 1 x1, T), 
for some P(t,x~,x 2 ,y) = P(t,x1,x2)P*(y I Xt,X2) (1.18) 
such that /(XI; x2 I T) :::;; I(XI; x2 I Y, T) 
with IT 1:::; 3}. 

The cardinality constraint on the time-sharing variable T follows from 
the support lemma (see Csiszar and Korner [7. p. 310]. Because of this 
constraint 131 is closed. 

Note that 81 differs from Shannon's outer bound 13.90 only because 
of the restriction on the input distributions. The only (sets of) input 
distributions that are possible are those that do not consume more de
pendence (on the average) than they produce. 

Applications: 
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a) An example: Consider the deterministic channel with X1 = X2 

{0, 1, 2} andY {0, 1, 2, 3, 4, 5, 6}. The relation between the 
puts and the output is shown in Table 1. Clearly, for this channel, 
I(Xl; x2 I Y, T) 0 always. Therefore, I(Xl; x2 I T) 0, and 
thus the capacity region of this channel is Shannon's inner bound 
region. Note that the random variable T performs the convexifi
cation. Now IT! 2 suffices. 

b) The BMC: For the symmetrical rate point of the BMC our new 
upper bound is useless. The reason is that the corresponding 
outer bound probability distribution P(xt, x 2 , y) satisfies J(X1 ; X 2 ) 

:; I(X1; x2 1 Y). 

Table 1.1: The output of the channel as a function of its inputs 

0 1 2 
0 0 1 1 
1 2 3 4 
2 2 5 6 y 

1.5 The parallel channel extension 

A generalization of Theorem I can be obtained if we use a parallel 
channel. This parallel channel is assumed memoryless and has a finite 
output alphabet Z, inputs Xt, and x 2 , andy, and a transition probabil
ity matrix p+ ( z I Xt, x 2 , y ). The idea behind introducing the parallel 
channel is to reduce the amount of dependence produced. For example, 
if we take z = Xt, the term I(Xl? x2 I Y, Z, T) is 0 and, consequently, 
only product input distributions are allowed. This can yield a better 
upper bound as we shall see. Before going into more detail, we shall 
derive our second bound. 

Noting that H(W1 I yN,BN, W2):; H(W1 I yN, W2) and H(W2 I 
yN, EN, W1 ) :::; H(W2 I yN, W1) and proceeding along the lines of (13) 
and (14), we find that 
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and 

log(M1) :; L:n=1,N I(X1n; Yn, Zn I Xzn, (Yn-I, zn-1)) 
+N'l/;1(N, M1, Pel), 

log(Mz):; L:n=1,N I(X1ni Yn, Zn I Xzn, (Yn-t, zn-1 )) 
+N'l/;1(N, M1, Pez), 

41 

(1.19a) 

(1.19b) 

(1.20) 

From (13) and the Markov relation yn-l - (Xln, Xzn) Yn, we obtain 
the following (Shannon outer bound) constraints: 

log(M1) < L J(X1ni Yn I Xzn) + N'l/;1(N, Mb Pel) 
n=l.N 

log(Mz) :; L I(Xzn; Yn I Xln) N'l/;z(N, Mz, Pez). 

Note that 

Defining 

n=l,N 

P ( (yn-1, Zn-l ), Xln, Xzn 1 Yn 1 Zn) 
P(yn-1' zn-1 )P(x1n' Xzn I (yn-1' zn-1 ) 
·P*(Yn I X1n, Xzn)P+(zn I X1n, Xzn, Yn)· 

T ~ (S, ys-l' zs-l) Xt ~XIs Xz ~ Xzs 

Y 
6 

Ys Z 
6 

Zs 

(1.21a) 

(1.21b) 

(1.22) 

(1.23) 

where Sis a random variable uniformly distributed over {1, 2, · · ·, N} 
and independent of (W~, lVz,Xf,Xf, yN, zN), we obtain our next re
sult. 
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Theorem 2: For the single-output TWC (Xt X Xz, P*(y I x1, xz), Y) 
and any DM parallel channel (X1 x X2 x Y, P+(z I x1 , x 2 , y ), Z) we have 
that CTwc C Bu, where 

Bu = {(Rt, Rz) : 0 s Rt s I(Xt; Y, Z I Xz, T) 
0 S Rz S I(Xz;Y,Z I X1,T) 
0 S R1 S I(Xt;Y I Xz), 
0 s Rz s I (X z; y I xl)) 
for some P(t,x1,x2 ,y,z) 
= P(t,xt,xz)P*(y I Xt,Xz)P+(z I Xt,Xz,y) 
such that I(X1; Xz IT) S I(X1; Xz I Y, Z, T,) 
with ITI S IXtl· IXzl + 2}. 

(1.24) 

Again the cardinality constraint follows from the support lemma (see 
[7, p. 310]), and Bu is closed. 

It follows from the definition of B II that, to get a good upper bound, 
a parallel channel has to be chosen to reduce the dependence pro
duction I(X1 ; X 2 I Y, Z, T) without increasing the information rates 
I(X1 ; Y, Z I X2 , T) and I(X2; Y, Z I XtY) too much. 

Applications: 
c) A corollary: Let the output Z o£ the parallel channel be equal to its 
input xl. First we obtain that I(Xt;Xz; I Y,Z,T) 0, and thus the 
only input distributions allowed are the ones for which X 1 T X 2 . 

Now since I(X1 ; Y, Z I Xz, T) = H(X1 I T) and I(Xz; Y, Z I X1, T = 
I(X2 ; Y I Xt, T) S I(Xz; Y I X1), we obtain from Theorem 2 the fol
lowing corollary. 

Corollary: For the single-output TWC (Xt x X 2 , P*(y I x1 , x 2 ), Y) we 
have that CTwc C Bj~8 where 

Bzbs 6. 
II {(R1, Rz) : 0 S R1 S H(X1 IT), 

0 S Rz S I(Xz;Y I Xt,T), 
0 S R1 S I(X1; Y I Xz), 
for some P(t,xt,Xz,y) 

P(t)P(x1 I t)P(xz I t)P*(y I Xt, xz) 
with ITI S IX1I· IXz/ + 1}. 

(1.25) 
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This bound could be called the Zhang et al. bound for single
output TWC's. Although it is obtained in an entirely different way, 
it is the same bound as Zhang et al. give in [6, theorem 3]. Numeri
cal computation based on this Zhang et al. bound shows that 0.64891 
bit/transmission is an upper bound for R1 R2 of the maximal equal 
rate point of the BMC. 
d) Another corollary: A single-output TWC for which there exists 
a mapping f from x2 X y into XI such that P*(y I xl, x2) 0 if 
X} =/:. f(y, x2), is said to be in class v1. For such a channel, 

I(X1; Y 1 X2) = H(X1 1 X2)- H(X1 1 x2, Y) 
= H(X1 1 X2)- H(X1 1 x2,Y,X1 = J(Y,X2)) 
= H(Xl I X2) 
~ H(X1 1 x2, T) 

H(XI IT) 
(1.26) 

where the last step follows of the Markov relation XI- T- x2. From 
Corollary 1 and (26) we obtain the following upper bound forthe ca
pacity region of a TWC in class V1 : 

Bd !.:;,. 

II {(Rt, R2) : 0 ::; R1 ::; H(X1 IT), 
o ::; R2 ::; I(X2; Y 1 xlJ T), 
forsome P(t,xbx2,y) 
= P(t)P(x1 I t)P(x2 I t)P*(y I x1, x2) 
with ITI 2}. 

(1.27) 

Next observe that for channels in class V1 the upper bound region Bj1 

is equal to Shannon's inner bound region Bsi· Hence we have the next 
corollary. 

Corollary 2: For a single-output TWC belonging to class V 1 the 
capacity region Crwc = Bsi· 

1.6 An adaptive parallel channel 

The parallel channel in the previous section was a fixed channeL A 
good parallel channel simultaneously achieves low values of I(X1 ; Z I 
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Y, x2, T), and J(X2; z I Y, Xt, T), and of J(X1; x2 I Y, z, T). It is easy 
to see that even lower values of these mutual informations might be 
obtained if for each t the parameters of the parallel channel are allowed 
to depend on P( x 1 , x 2 I t) instead of being fixed as in the previous 
section. These lower values can then lead to an upper bound that is 
better than B II. This is shown in the present section. 

First assume that the transition probabilities of the adaptive parallel 
channel are completely determined by the past outputs (yn- 1

, ) of 
both the channel and its parallel channel. Then, clearly, 

P( n n n n) 
w~, w2 ,x1 ,x2 ,y ,z 

P(w1)P(w2)P(xu I wt)P(x21 I w2) 
·P*(Yt I xu,x21)P+(z1 I xu,x2t,Y1, r/>), 
for n = 1 where r/> denotes "empty" 
P( n-1 n-1 ( n-1 n-1)) Wt,W2,x1 ,x2 , y ,z 
·P(xln I WI,Yn-1)P(x2n I w2,Yn-l) 
·P*(Yn I X1n, X2n)P+(zn I X1n 1 X2n, Yn, (yn-1, 
for n = 2, · · · , N. 

From (28) we obtain the Markov relation 

(1.28) 

)), 

(1.29) 

We now specify how the past outputs determine the parameters of 
the parallel channel. First let ~(V) be the set of all distributions of V 
and ~(V I W) the set of all conditional distributions of V given W. 
Now the mapping 

(1.30) 

gives us for each (yn-1 , zn-1) the transition probabilities 

(1.31) 

Noting that Px1nx2 n (·, • I (yn-1 , zn-1 )) is completely determined by (yn- 1
, 

zn-l ), we conclude that the transition probabilities of the parallel chan-
nel are functions of (yn-t, ). 
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We now return to the proof of Theorem 1. Noting that here (29) 
(instead of (lV1, W2, (Yn-1, zn-1 )) - (Xtn,X2n)- (Yn, Zn)) expresses 
the Markov relation and proceeding along the lines of (13) and (14), 
we find that (19), (20), and (21) hold for adaptive parallel channels as 
well, where now 

p ( ( yn-1' zn-1 ), X1n, X2n, Yn, Zn) 

Define 

P(yn-I,zn-l)P(x1n,X2n I (yn-I,zn-1)) 
·P*(Yn I X1n, X2n)P+ (zn I X1n, X2n, Yn, (yn-1

' zn-1 )) . 

T t::. (S, ys-t, zs-1) 

Yt::.Ys 

(1.32) 

(1.33) 

where Sis a random variable uniformly distributed over {1, 2, · · ·, N} 
and independent of (WlJW2,Xf,Xf,YN,zN). We can now deduce 
the following. 
Theorem 3: For the single-output TWC (X1 X x2, P*(y I Xt, x2), Y) 
and any mapping F : ~(Xt X X2) -+ ~(Z I xl X x2 X Y), we have 
Crwc C Bnr where 

Bnr ~:::. cl ( {(R1, R2) : 0 :; R1 :; I(X1; Y, Z I X2, T), 
0 :; R2 :; I(X2; Y, z I Xt, T), 
0 :; Rl :; J(Xl; y I X2), 
0 :; R2 :; I(X2; y I XI), 
for some P(t,xbx2 ,y,x) 
= P(t, x~, x2)P*(y I x1, x2)P+(z I x11 x2, y, t) 
such that for all t P,ix

1
x2y(· I ·, ·, ·, t) 

F(Px1x2(·, · I i)) 
and such that J(Xt; x2 IT):; I(Xl; x2 I Y, z, T) 
with IT! :; IX1I · IX2I + 3}). 

( 1.34) 

Here cl denotes closure. This operation is necessary to guarantee that 
Bnr is closed for noncontinuous mappings F as well. These noncontin
uous mappings also require the cardinality constraint to be one more 
than in the fixed- parallel-channel case because Caratheodory's theo
rem (instead of the Fenchel-Eggleston theorem) must be applied to get 
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a support lemma (see Eggleston [11]). In the case where the mapping 
F is noncontinuous but the mutual information I(X1 ; Y, Z I X 2 , T 
t), I(X2; Y, z I xl, T t), and I(Xt; x2 I Y, z, T t) still are contin
uous functions of P(x 1 , x 2 I T = t), and also in the case where the map
ping F is continuous, the constraint again becomes ITI:::; IXti·IX2I +2 
and the closing operation is superfluous. 
Applications: 
e) A corollary: We next consider an extension to Corollary 2. We say 
a channel is in class 'D2 if it is a single-output TWC for which there 
exist a finite alphabet U and two mappings ft : Y x X2 --+ U and 
12: y X xl--+ u such that P*(y I Xt,X2) 0 if ft(y,xi) =1- !2(y,x2), 
and for which /(Xt; Y;) 0 implies that !(XI; x2 I Y, U) 0 where 
U is the random variable which is equal to f 1 (Y, XI) f2(Y, X2 ) with 
probability one. From this definition we can see that channels in class 
'D2 have an implicit extra output U and that this extra output together 
with Y cannot generate any dependence from independent input as
signments. We shall use Theorem 3 to show that for these channels 
Shannon's inner bound region is the capacity region. An alternative 
proof of this result can be found in [12]. 

For our proof we need a wringing lemma. The lemma is stated be
low, and its proof can be found in Appendix 1. 

Wringing Lemma: Let c: ~ 0. If A and B are two discrete random 
variables with I( A; B) S e:, then a third discrete random variable C 
exists such that I(A;B I C)= 0 and H(C):::; 8(c:). The function 8(-) 
depends on IAI and IB I only, is concave, and limdo8( c:) = 0. 

We can now specify the mapping F by defining the random variable 
Z as a function of P(x1, x 2 It): 

!:>. Z (U, Ct) (1.35) 

where Ct is a random variable for which I(X1 ; X2 I Y, U, Ct, t) = 0 
with entropy H(Ct I Y, u, t) s 8(e:) when I(Xt; x2 I Y, u, t) :::; (. 
In addition, lim!08( c:) 0. The existence of this random variable 
is guaranteed by a conditional version of the wringing lemma, which 
holds because of the concavity of 8(.). Because of (35) we conclude that 
I(X1;X2 I Y,Z,T) = I(X1;X2I Y,U,CT,T) 0. It now follows from 
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the dependence balance that we may restrict ourselves to probability 
distributions for which P(x1, Xz I t) = P(x1 I t)P(x2 I t). Since in this 
case H( Cr I Y, U, T) = 0, we find that 

I(X1; Y, z 1 X2, T) = I(X1; Y, u, Cr 1 X2, T) 
:::; I(Xl;Y,U I x2,T) + H(Cr I Y,U,T) 

I(X1; Y, u 1 x2, T) 
= I(X1; Y 1 x2, T) + I(X1; u 1 Y, x2, T) 
= I(X1; Y 1 x2, T) 

I(X1; Y 1 X2, T) H(Y 1 X2, T) H(Y 1 X1, x2, T) 
(1.36a) 

(1.36b) :::; H(Y I Xz)- H(Y I xl, X2) 
= I(Xl; y I X2), 

and in a similar way, 

(1.36c) 

Thus we obtain the following corollary. 

Corollary 3: For a single-output TWC (XI X x2, P*(y I XI, x2), Y) 
in class V 2 the capacity region Crwc Bsi· 

f) An example: Consider the deterministic channel with X 1 X 2 = 
Y = {0, 1, 2}. The relation between the input and the output of the 
channel is given in Table 2. 

Table 1.2: The output of the channel as a function of its inputs 

X1 o 1 2 x2 
0 0 1 2 
1 1 0 2 
2 1 2 0 y 

Defining the mappings / 1 and fz as in Table 3, we obtain the con
figuration in Table 4 for the channel and parallel channel. This chan
nel is equivalent to the channel in Table 1. Just like the channel in 
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Table 1, it cannot create dependence between the inputs, and thus 
I( XI; x2 I Y, U) = 0 always. Therefore, the channel in Table 2 belongs 
to class V 2 and, because of corollary 3, its capacity region is Shannon's 
inner bound region. In Appendix II it is shown that the Zhang et al. 
bound (and therefore Shannon's outer bound as well) yields rate points 
outside Shannon's inner bound for the channel of Table 2. From this 
and the fact that the Zhang et al. bound follows from Theorem 3, we 
may conclude that for single-output TWC's our Theorem 3 is in general 
stronger than the Zhang et al. bound and Shannon's outer bound. 

Table 1.3: The mappings / 1 and h 

X1 x2 
0 1 2 y 0 1 2 y 

0 0 2 ~ 0 1 
1 1 1 2 1 2 1 
2 2 1 1 /1(Y,Xl) 2 2 2 h(Y,X2) 

Table 1 The outputs of both channels as a function of their inputs 

x1 o 1 2 x2 
0 0,0 1,2 1,2 
1 1,1 0,1 2,2 
2 11 u 

g) Another example: The preceding example demonstrated use 
of an implicit output of the single-output TWC to obtain a better 
upper bound for its capacity region. With the channel in Table ,) we 
give an example of a channel for which J(X1 ; X2 ) = 0 implies that 
J(X1 ; 12 I Y) 0. Note that now the channel has no implicit output. 
From the table we see that different values of y divide up the X1 X 

X 2 space in independent structures (rectangles). Hence for a product 
input distribution, for each output y, the output distribution is again 



1.6 An adaptive parallel channel 49 

a product distribution. Therefore, this channel is in class 1)2 and its 
capacity region is Shannon's inner bound region. 

Table 1.5: A channel for which I(Xt; X2) = 0 implies that J(Xl; x2 I 
Y) = 0 

0 1 2 3 x2 

1 1 2 3 3 
2 4 4 4 5 
3 4 4 4 5 y 

h) The BMC: Here we show that 0.64628 bit/transmission is an 
upper bound for R1 = R2 of the maximal equal rate point of the BMC. 
With this result we improve upon the Zhang et al. bound [7] (0.64891). 
vVhile in the Zhang et al. bound Z was chosen equal to X 1 in Corollary 
1 (and equal to X 2 in symmetric counterpart), we choose a Z which 
is less "informative" than XI or x2· However, we still require that 

(1.37) 

The results in the Z-channel are given in Table 6 (0:::; p:::; 1). 

Table 1.6: A Z-channel for the BMC 

(X1,X2, Y) 0 1 2 z 
(0,0,0) 0 p 1 p 
(0,1,0) 0 1 0 
(1,0,0) 0 0 1 
(1,1,1) 1 0 0 P*(z I x1,x2,y) 

We can easily verify that J(X1 ; X 2 I Y, Z, T) 0 since Z = 0 
implies that xl = x2 = 1, z = 1 implies that XI = 0 and z = 2 
implies that X 2 0. Thus (37) holds, and we may restrict ourselves to 
input distributions of the product type. 
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If p 0, then Z completely determines X 2 (and nothing more than 
that). On the other hand, if p = 1 then Z completely determines .. Y1 

(and nothing more). Hence choosing p 0 or p = 1 gives us the Zhang 
et al. bounds. The question is whether there is a better choice for p. 
To answer this question, note that 

(1.38) 

is the sum of the information leak quantities forT= t. We can therefore 
choose Popt so that it minimizes A. Expressing A as a function of p we 
obtain 

(1.39) 

where c'{ll ~ P(X1 = 0 I T = t) and c'{l2 ~ P(Xz = 0 I T = t). Since (38) 
(and therefore also (39)) is convex-U in p, we deduce via differentiation 
of A that 

p - {[lt(t-<P2) 
opt - {[>1(1-{[>2 )+(1-{[>1}{[>2 

_ P(xl ::::Oit)P(x2=llt) (1.40) 
- P(x1 =Oit)P(x2=1it)+P(xl=llt)P(x2=Dit) 

minimizes A if the denominator of ( 40) is positive. It turns out that 
if the denominator of ( 40) equals 0, A 0 and Popt may be chosen 
arbitrarily. 
The mapping F is now defined by (40) and Table 5. Note that the 
mapping is not continuous in Px1 ,x2 1t· However, I(X1 ; Y, Z I Xz, T) 
and I(X2; Y, z I xl, T) are. Therefore, it suffices to take ITI ~ 5. 
Computer evaluation of the resulting bound shows that no more than 
0.64628 bit/transmission are achievable for the BMC. 

1. 7 Results for the multiple access chan
nel with feedback 

The close relationship between the single-output TWC and the MAC 
with feedback is obvious. Therefore, it is not surprising that Theorems 
1-3 hold for the MAC with feedback if we add the constraint 

R1 + R2 ~ I(Xt; X2; Y) 

and adjust the cardinality bounds for T. 

(1.41) 
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The MAC variant of Corollary 2 tells us that the feedback capacity 
region for MAC's in class 'D1 equals the achievable region found by 
Cover and Leung [13], a result previously obtained by Willems [14] via 
a different approach. The MAC variant of Corollary 3 can be thought 
of as an extension of Willems' result. It states that for MAC's in class 
V 2 the Cover-Leung region is again the feedback capacity region. Note 
that class vl is strictly inside class v2. 

1.8 Conclusion 

In this paper we derived upper bounds for the capacity region of the 
general single-output TWC. Our basic idea was that each code must 
produce the dependence (measured in terms of mutual information) 
it consumes. We introduced a parallel channel to decrease the de
pendence production without introducing excessively large information 
leaks. Finally, we assumed that the transition probabilities of the par
allel channel are adaptable to the actual input distribution. These 
methods yielded a number of results. First, we were able to show 
that, for channels in a certain class, the capacity region is Shannon's 
inner bound region. Roughly speaking, this class contains channels 
that cannot produce "real" dependence when the inputs are a priori 
independent. Secondly, our upper bound improves upon the Zhang et 
al. upper bound. We show that, for the BMC, rate pairs with R1 

R2 > 0.64628 bit/transmission cannot be achieved. This is still far from 
Schalkwijk's best achievable rate point for which R1 = R2 = 0.63056 
bit/ transmission. 

For the MAC with feedback we can derive analogous bounds. For 
MAC's in class 'D2 we determined the feedback capacity region. This 
generalizes Willems [14] result. We finally note that more detailed 
derivations of the results in this paper can be found in Hekstra's master 
thesis [15]. 
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Appendix A 

The proof of the wringing 
len1ma 

Without loss of generality, we assume that P(a) i= 0 and P(b) i= 0. We 
use the notation P(a,b) := Pr{A a,B = b},P(a) := Pr{A =a} and 
P(b) := Pr{B = b}. Let h(.) denote the binary entropy function and 
assume that all logarithms in this Appendix are natural. 

In our proof we construct a random variable C that will satisfy the 
conditions in the lemma. First we define 

. P(a,b) 
(;W P(a)P(b) · (A.1) 

Let the pair (a', b') achieve this minimum. Note that >. ~ 1 or, equiv
alently, P(a', b') ~ P(a')P(b'). Assume that P(a', b') < P(a')P(b'). 
Since for all (a, b) the inequality P( a, b) ~ >.P( a )P( b) holds, we obtain 
that 

Pr{A i= a', B i= b'} > >. = P(a', b') . 
Pr{A i= a'}Pr{B i= b'} - P(a')P(b') (A.

2
) 

The fact that P(a', b') < P(a')P(b'), Pr{A i= a', B i= b'} = 1 P(a')
P(b') + P(a', b') together with (A2) now yields that 

P(a') + P(b') ~ 1 (A.3a) 

and consequently 
P(a')P(b') ~ 1/4 (A.3b) 
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If ..\ = 1 then A and B are independent. Without loss of generality we 
may assume that P(a') :::; P(b'). 

The log-sum inequality (see Csiszar and Kornmer [7, p. 481]) along 
with a lower bound for the divergence in terms of variational distance 
[7, p. 58] yield 

+ 
> 

> 
> 

I(A;B) 
P( 1 b') 1 ( P(a',b') ) 

a ' · og P(a')P(b') 

L(a,b)~(a',b') P(a, b) ·log (Pf})/A)) 
( 1 1) ( P(a',b') ) 

p a 'b . log P(a')P(b( 
1 1 1-P(a',b') 

+(1 - P( a , b)) · log l-P(a')P(b')) 
2(P(a')P(b') P(a1

, b')) 2 

P(a') 2P(b') 2(1- ..\) 2
• 

We can now distinguish between two cases. 

(A.4) 

a) Assume first that P(a1)P(b') 2:: (1 - ..\). Then we obtain from 
(A3b) that 1- ..\:::; 1/4. Furthermore, (A4) implies that E 2:: (1- ..\)4

• 

We therefore conclude that 1 ..\ :::; min{1/4, t 114 }. Let P(a, b) = 
>.P(a)P(b) + (1- >.)Q(a, b) where Q(a, b) is some probability distrib
ution. We introduce the random variable D which takes values in the 
set { *} C A x B. We define for each (a, b) 

{ 

>.P(a)P(b), if d = * 
Pr{A=a,B b,D=d}· (1-..\)Q(a,b), ifd=(a,b) 

0, otherwise 
(A.5) 

Observe that I( A; B! D)= 0 and that 

H(D) :::; h(min{1/4, t 1
/

4
}) min{1/4, t 1

/
4

} ·log( lA! ·IBI). (A.6) 

b) Now assume that (1 >.) > P(a')P(b'). In this case (A4) implies 
that E > P(a')4 P(b')4

• From P(a'):::; P(b') it follows that P(a') < t 118, 

and from (A3a) we find that P( a') :::; 1/2. We conclude that P( a') :::; 
min{1/2, t 1

/ 8 }. Next we introduce the random variable D E { *, a'}is 
equal to * if A a' and equal to a' if A= a'. Then 

H(D) :::; h(min{l/2, E118
} ), (A.7) 
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and furthermore, 

c ~I( A; B)= I( A, D; B)= I(D; B) I(A; BID) 
~ I(A; BID)= (l- P(a')) · I(A; BID=*) (A.8) 
~ (l/2)./(A; B I D = * ). 

Hence 
I(A;B I D = *)::; 2c, (A.9) 

and it appears that we have transformed the original problem into an 
equivalent one. Now I( A; B I D = *) ::; 2c, and we have to construct 
a random variable C with H(C I D = *) ::; O(c)- H(D) such that 
I( A; B I C, D *) 0, etc. 

Alternatives a) and b) suggest an iterated construction of C. Start
ing with the original distribution we have to perform step b) as long 
as 

Pr{ A a',B b'l Dt = *,· ·· ,Dm = *} 
< Pr{A a' I Dt *, .. ·,Dm = *} 

·Pr{B b'IDt ... ,Dm=*} (A.lO) 
·(l Pr{A a' I Dt = *,···,Dm = *} 
·Pr{B b'IDt *,···,Dm=*}). 

Here Dm is the random variable that is constructed during iteration 
m. Note, furthermore, that Em. 2m-t · t. It is impossible to satisfy 
(AlO) for m ~ /AI+ IBI 3. In this case either Pr{A = a', B = b' I 
D1 = *, · · ·, Dm = *} Pr{ A a' / Dt = *, · · · , Dm = *} or Pr{ A = 
a',B b'IDt *,···,Drn *} Pr{B=b'IDt=*,···,Dm=*}. 
After having performed step b) M ::; /AI + IBI - 3 times, we perform 
step a) once. Now fM+l 2M · E, and the random variable DM+l is 
constructed. We can finally compose the (discrete) random variable C 
as follows: 

(A.ll) 

Note that 

I(A;B I C) I(A;B I Dt,···,DM,DM+t) 
Pr{ Dt = *, · · · , DM *, DM+l = *} 
·l(A;B I Dt *,· .. ,DM *,DM+l = *) 

(A.12) 

0 
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and that 

H(C) < l::m=I,M H(Dm) + H(DM+I) 
< L:m=I,M h(min{1/2, E;{8

}) + h(min{1/4, E~~1 }) 
+ min{l/4, E~~1 } ·log(IAI· IBI) 

< L:m=l,M h(min{1/2, (2M-1 .c)118
}) 

+h(min{1/4, (2M .t:)114
}) 

+ min{l/4, (2M. E)l/4
} ·log(IAI· IBI) 

::; (I AI IBI- 2) · h( 6) + 8 ·log(IAI· IBI) := 8( c) 
(A.l3) 

where 8 := min{l/2, (2/.A./+18 1-3 · t:)118 }. We conclude our proof with the 
observation that 8(.) is concave and right-continuous at zero, 8(0) = 0. 
Together with (A13) this proves our lemma. 

We remark that the wringing lemma stated here is not the first of its 
kind in information theory. Wringing techniques were introduced a few 
years ago by Dueck [16] and Ahlswede [17], [18] for weakly dependent 
sequences. 



Appendix B 

The Zhang et al. bound 
not tight 

• 
IS 

Consider the channel in Table 2. By Corollary 3 the capacity region 
of this channel is Shannon's inner bound region. We here derive an 
upper bound for R1 + R2 of the inner bound rate pairs. Without loss 
of generality, let 

(B. I) 

for some 0 :S a1, a 2, {31 , {32 :S 1. In terms of a's and f3's we can express 
the sum of the rate constraints C as 

c = I(Xl; y I X2) + I(X2; y I XI) 
h(a1) + a1a2h(f31) h(a2) + a1a2h(f32) (B.2) 

:S h(a!) + h(a2) + 2a1a2 

where the last inequality follows from the fact that h( x) :::; 1 bit for 
0 :S x :::; 1. Note that in this Appendix the base of the logarithms is 
two. Defining 

then 0 :::; a :::; 1 and 

t::. at+ a2 
a=---

2 
(B.3) 

(B.4) 
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Numerical evaluation shows that C :::; 2.74885 bit/transmission. Now 
consider the Zhang /it et al. bound for this channel. The assignment 

P(t = 0) = 0.86505 
P(x1 = 0 It= 0) = 0.17364 

P(x2 = 0 I t = 0) = 0.25168 

P(x1 = 0 It= 1) = 0.87568 

P(x2 = 0 It= 1) = 0.41200 

yields 

P(t = 1) = 0.13495 
P(x1 = 1 It= 0) = P(x1 = 2 It= 0) 
= 0.41318 
P(x2 = 1 It= 0) = P(x2 = 2 It= 0) 
= 0.37416 
P(x1 = 1 It= 1) = P(x1 = 2 It= 1) 
= 0.06216 
P(x2 = 1 It= 1) = P(x2 = 2 It= 1) 
= 0.29400 

R1 + R2 = 2.76160 bit/transmission 

(B.5) 

(B.6) 

From the above we conclude that the Zhang et al. bound is not tight 
for the channel in Table 2. Since the Zhang et al. bound improves upon 
Shannon's outer bound, the latter bound cannot be tight either. It is 
Corollary 3 that gives us the capacity region for this channel. 
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Chapter 2 

Asymptotic component 
densities in programmable 
gate arrays realizing all 
circuits of a given size 

Abstract 

A Programmable Gate Array (PGA) is modeled as a square grid. Some 
grid nodes are processing nodes containing electrical elements. The rest 
are switching nodes capable of connecting wires incident on them. Two 
possible types of switching nodes are considered. In vertex connectivity 
each switching node can connect only one pair of wires. In edge con
nectivity each switching node can simultaneously connect two pairs of 
wires. The PGA must be capable of implementing any graph of size at 
most k and degree at most four. We prove tight bounds on the highest 
achievable density of processing nodes. 

In edge connectivity the highest achievable density is 8(1/k). In 
vertex connectivity the highest achievable density is 8( 1/ P). If the 
grid is augmented by the diagonal edges then the highest achievable 

°Co-authored with T. Berger from Cornell University, Ithaca, USA, and A. Orl
itsky from AT&T Bell Labs., Murray Hill, USA. Published in Algorithmica, vol. 9, 
nr. 2, pp. 101-127, Feb. 1993. 
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density is 8(1/k) even with vertex connectivity. These extend known 
results for embedding graphs in grids. 

Small graphs of degree one are further examined. For k = 2 and 
k = 3 the highest density of processing nodes equals the highest density 
of parked cars in a square parking lot where each car can exit. Both 
densities are 2/3. For k = 4 the highest density is 1/2. 

2.1 Introduction 

A Programmable Gate Array (PGA) consists of many components placed 
on a wafer and of wires capable of connecting them. By selecting a sub
set of the components and connecting the appropriate wires, various 
circuits can be implemented. A PGA thereby combines the versatility 
of a printed circuit board with the speed of a single-wafer VLSI chip. 

Ideally, a PGA would have a wire between any two components. 
Then every circuit could be implemented by connecting the appropriate 
wire ends to the components. However, the number of wires in such a 
PGA would grow as the square of the number of components. 

Therefore, a compromise usually is adopted whereby the PGA re
sembles a graph we call the PGA graph. The wires are the edges of 
the PGA graph; the points where they can be connected are the nodes. 
Some of the nodes contain the electrical elements; these are the process
ing nodes. Each processing node can connect the electrical element it 
contains to any of the wires incident upon it, but cannot directly con
nect two wires1 . The other nodes are switching nodes. They can connect 
pairs of wires incident upon them. We distinguish between two assump
tions concerning the connection capabilities of the switching nodes: 

Vertex Connectivity -Each switching node can connect only one 
pair of wires. 

Edge Connectivity - Each switching node acts as a crossbar and 
can simultaneously connect several pairs of wires. 

1 Another model where processing nodes can connect wires is discussed in Sec
tion 2.7. 
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These names were chosen in part because in vertex connectivity 
the switching nodes can be regarded as connecting the two wires to 
the node (vertex), while in edge connectivity the switching nodes can 
be regarded as connecting pairs of wires (edges) directly; however, the 
main reason for adopting these names will become clear in the next 
section. In circuits implemented by PGA's with vertex connectivity, 
the wires correspond to vertex-disjoint paths in the PGA graph whereas 
in circuits implemented by PGA's with edge connectivity, the wires 
correspond to edge-disjoint paths. Edge connectivity clearly requires 
a more advanced technology. However, one of our main conclusions is 
that edge connectivity allows for a significant increase in the number 
of components the PGA can contain. 
Remark: Previous works on embedding graphs in grids considered 
one-layer graph embeddings and two-layer graph embeddings. One
layer graph embedding is equivalent to vertex connectivity. Two-layer 
graph embedding is similar to edge connectivity except that wires can 
run in two layers, hence the two are equivalent if we ignore constant 
factors pf the number of wires. In current PGA's, cf. [7] and [5], the only 
freedom afforded the user is to determine switching-node connections; 
hence we use vertex and edge connectivities. 

Circuits, too, can be modeled as graphs, called circuit graphs. The 
vertices correspond to the electrical elements of the circuit and the 
edges represent the connections. For a PGA to implement a circuit, 
the processing and switching nodes are reconfigured by the user. Two 
processing nodes are connected by a chain of PGA wires if and only 
if the corresponding electrical elements are connected in the circuit. 
We assume that each electrical element of the circuit corresponds to a 
unique component of the PGA. This is the case, for example, if each 
type of electrical element appears in the PGA exactly once2 • 

Although any graph can serve as a PGA graph, we shall consider 
only the standard two-dimensional square grid. The grid is popular, 
among other reasons, for its regularity, its high connectivity, and its 
simple layout. Figure 2.1 illustrates a PGA. The processing nodes are 
numbered and the switching nodes are drawn empty. 

2This assumption constitutes a major departure from most real PGA's. For 
further discussion, see Section 2.7. 
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Figure 2.1: A 6 by 6 grid PGA with 8 processing nodes. 

Example 1 Assume that the PGA graph depicted in Figure 2.1 has 
to embed the circuit graph 1 2, 3-4, 5 6, where a dash represents a 
required connection. With vertex connectivity we can connect the wires 
as shown by the thick lines in Figure 2.2(a). With edge connectivity 
we can either use the same paths or the simpler paths shown in Fig
ure 2.2(b). Note that the path form 3 to 4 crosses the path from 5 to 
6 at a switching node. This is permissible in edge-connectivity PGA 's. 
If the circuit contained the additional wire 7 8, it could not have been 
implemented with vertex-connectivity but could have been implemented 
with edge connectivity. D 

It is desirable to have many processing nodes in the PGA. This, how
ever, limits the circuits that can be implemented, both because there 
are fewer switching nodes left for connecting the wires and because, if 
the processing nodes are too close together, not all circuits using these 
nodes can be implemented3. It is this tradeoff between density and con
nectivity that we shall investigate. For a given k, we want to determine 
the largest proportion of grid nodes that can be used as processing 
nodes subject to the requirement that every k-element circuit usmg 
these nodes can be implemented. 

3 We shall see later that this is the more dominant of the two reasons. Hence, 
for large PGA's there is a diminishing difference between PGA's with processing 
nodes that can connect wires and PGA's where the processing nodes cannot connect 
wires. See Section 2.7. 
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(a) (b) 

Figure 2.2: Embedding a circuit graph in a PGA graph. 

We state the problem formally in the next section. We define lld,k 

to be the largest proportion of grid nodes that can serve as processing 
nodes in a vertex-connectivity PGA if every circuit of degree d and size 
k whose elements are among the processing nodes can be implemented 
by the PGA. We define td,k similarly for edge-connectivity PGA's. 

We assume that each edge of the PGA graph represents one actual 
wire. Since every grid node has degree at most four, the PGA cannot 
implement circuits of degree larger than four4

. Therefore fd,k 0 for 
d?:. 5. 

Recall that when a PGA implements a circuit, each circuit wire is 
mapped into a sequence of wires, or path, in the PGA. In a vertex
connectivity PGA these paths cannot intersect at any node, so the 
crossing number of the circuit graph cannot exceed the crossing number 
of the PGA graph. Grids are planar graphs; hence, vertex-connectivity 
grid PGA's can implement only planar circuits. Since there are nonpla
nar graphs of degree three, lld,k 0 for d?:. 3. Define v~:~nar as lld,k ex-

cept that only planar graphs need be embedded. Clearly, vf:;nar = v 1,k 

d planar 
an v 2,k = v2,k· 

The simplest type of circuit that involves k elements consists of pairs 
of connected elements. Such a circuit has degree 1. First, we consider 

4In real PGA's, each grid edge represents several wires. Circuits of higher degree 
can therefore be implemented. This is discussed in Section 2.7. 
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embedding degree-1 graphs of small size. Degree-1 graphs with 2 or 
3 vertices have only one edge, hence the same PGA's can implement 
both. Also, for one embedded edge, there is no advantage to edge 
connectivity. Therefore v1,2, v1 ,3 , <:1 ,2 , and <:1,3 coincide. In Section 2.3 
we draw on an analogy to parking lots to prove that 

2 
V1,2 = VI,3 = E1,2 = EI,3 = 3 · 

We argue that the largest density of parked cars in a square lot is 
precisely v1,2 . The standard parking lot arrangement consists of two 
parked rows, then one empty row, followed by two more parked rows, 
and so on. We show that this arrangement, which clearly achieves a ~ 
density of parked cars, is asymptotically optimal. 

In Section 2.4 we consider embedding degree-1 graphs of size 4 in 
vertex-connectivity PGA's. We show that 

1 
V14 =- · , 2 

We then turn to embedding graphs of general fixed size. In Sec
tion 2.5 we consider embedding size-k circuit graphs in edge-connectivity 
PGA's. Clearly Eo,k = 1, and we remarked earlier that Ed,k = 0 ford 2 5. 
We show that for all k 

1 32 
S(k + 1) ::::; E4,k::::; E3,k::::; E2,k::::; E1,k::::; k . 

That is, for 1 ::::; d ::::; 4 

Ed,k E 8 (~) . 

Hence, regardless of whether the PGA must implement just the sim
plest kind of circuits (pairs of processors) or the most complicated ones 
(arbitrary degree-4 circuits), the highest possible density of processing 
nodes is asymptotically of the same order. 

In grid graphs each vertex has degree ::::; 4. Hence with edge connec
tivity, any switching node can simultaneously connect at most two pairs 
of wires. With vertex connectivity each switching node can connect one 
pair. Although this difference might appear inconsequential, we show in 
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Section 2.6 that it accounts for a large difference in achievable density. 
Again, Vo,k 1 and Vd,k = 0 for d 2:: 5, but for all k, 

Ct < planar < planar < < < C2 
k2 - v4,k - v3,k - v2,k - vl,k - k2 

where c1 and c2 are constants. That is, for 1 < d < 4, 

planar E e (_!_) 
vd,k k2 

This shows that as k, the size of the circuits guaranteed imple
mentable, increases, the component densities achievable in vertex and 
edge connectivity PGA's decrease at different rates. Hence, the capa
bility to connect more than one pair of wires at a switching node allows 
for a significant increase in density. 

The results of Sections 2.5 and 2.6 are related to those of [4], [1], 
and [2). These papers consider the minimal size of a grid that can embed 
planar graphs of size n with prescribed vertex locations. Ignoring slight 
model differences, their results show that in the model equivalent to 
vertex connectivity the grid has to be of size 0( n3 ) while in the model 
equivalent to edge connectivity the required size is 0(n2

). 

These results can be derived from those described in Sections 2.5 
and 2.6. Let n denote both the number of processing nodes and the 
size of the embedded graphs5 . For edge connectivity, we show that 
--:-+"--:-- = 0 (~),therefore grid size 0(n2

). For vertex connectivity, 

ridnsize = 0 (n\), therefore grid size 0(n3
). Thus, the results of 

§ections 2.5 and 2.6 can be viewed as generalizing known results to the 
embedding of graphs of size k where k is not necessarily the number of 
processing nodes. 

Most of the paper is devoted to the model discussed in this introduc
tion. The PGA graph is a two dimensional grid. Each edge represents 
one wire. The electrical elements are located in the processing nodes. 
A processing node can only connect the element it contains to a wire; it 
cannot connect any pair of wires. In Section 2.7 we discuss alternative 
models. We show that the asymptotic results remain valid even if the 
processors are placed in the squares rather than at the nodes and even 

5The proofs have to be slightly modified to account for increasing graph size. 
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if each can connect to all vertices around it. They are unchanged even 
if the processing nodes can connect pairs of wires. 

We show that adding the diagonal to the grid, which only 
doubles the number of wires (see Figure 2.18), increases the asymptotic 

component density in vertex-connectivity PGA's to e (t), that which 
is achievable with edge-connectivity grid PGA's (with or without the 
diagonal edges). As we shall see later on, this occurs partly because 
the resulting PGA graph is no longer planar. 

2.2 Definitions 

A graph is an ordered pair (V, E). V is a set, called the vertex set; its 
elements are vertices or nodes. E is a collection of edges: unordered 
pairs of vertices. An edge consisting of two identical vertices is a self 
edge, and an edge appearing more than once in E is a multiple edge. 
The following standard definitions assume that G = (V, E) is a graph. 
Strictly speaking, all definitions should be qualified by the underlying 
graph (e.g., vertices of G) but, for brevity, G is omitted throughout. 

If u and v are vertices and { u, v} is an edge, u and v are adjacent, 
neighbors, or connected by { u, v}, and the edge { u, v} connects u and v. 
A path is a sequence v 0, . .• ,v1 of vertices such that Vi is adjacent to vi+l 

for i = 0, ... ,l - 1. The vertices v 0 and v1 are the end vertices of the 
path and the vertices v 1 , ... ,vl-1 are the interior vertices. The edges 
{Vi, Vi+l} for i = 0, ... ,l 1 are the edges of the path. Let u and v be 
vertices of G. A path between u and v, or a path connecting u and v, is 
a path whose end vertices are u and v. u and v are connected if there 
is a path between them. Note that a single vertex is a path; hence a 
vertex is always connected to itself even if it is not contained in a self 
loop. Let S ~ V be a set of vertices. A path in S is a path whose 
interior vertices are in S. The end vertices may or may not be in S. 

Two paths u0, ... ,u1 and vo, ... ,vm are vertex disjoint if they do not 
share any vertices: Ui Vj for all 0 ~ i ~ l and all 0 ~ j ::; m. The 
paths are edge disjoint if they do not share any edge. A set of paths 
is vertex disjoint (edge disjoint) if every pair of two paths in the set is 
vertex disjoint (edge disjoint). 

Let G' (V', E') be a graph with V' ~ V and let S ~ V. A 
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vertex-disjoint embedding of G' in S is a mapping that, with each edge 
{ v1 , v2 } E E', associates a path in S connecting v1 and v2 such that the 
resulting set of paths is vertex disjoint. If such an embedding exists, G' 
is vertex-disjoint embeddable inS. An edge-disjoint embedding of G' in 
S, and being edge-disjoint embeddable in S, are defined similarly except 
that the paths have to be edge disjoint. 

Recalling the Programmable Gate Array model described in the 
introduction, think of Gas the PGA graph withE as the set of wires 
and V as the set of nodes, and think of S as the set of switching nodes. 
The graph G' represents a circuit we want the PGA to implement. 
Each vertex of G' is an electrical element corresponding to a unique 
component, or vertex, of V. Note that the vertices of G' are fixed. 
They correspond to specific components in the PGA. The only freedom 
in the embedding is in the choice of the interior vertices of the paths. In 
vertex-connectivity PGA 's, the paths cannot cross at a vertex. Hence 
the circuit G' can be implemented by the PGA if and only if G' is vertex
disjoint embeddable in S. In the edge-connectivity model, G' can be 
implemented by the PGA if and only if G' is edge-disjoint embeddable 
inS. 

The size lSI of a set S is the number of its elements. The size of 
a graph is the of its vertex set. A graph is size-k if its size is 
at most k. The degree of a vertex is the number of edges containing 
it. A self edge counts twice and multiple-edge counts add. The degree 
of a graph is the largest degree of its vertices. A graph is degree-d if 
its degree is at most d. The complement of a subset S of vertices is 
V - S def { v : v E V and v r/. S}. 

Let d and k be positive integers. A subset P of V is ( d, k )-vertex
disjoint embedding if every degree-d, size-k graph with vertices in P 
is vertex-disjoint embeddable in V - P. (Note that it is P that we 
call( d, k )-vertex-disjoint embedding although the graphs are embed
dable in V - P.) The ( d, k) -vertex-disjoint density of a graph G is the 
size of the largest ( d, k )-vertex-disjoint embedding set in G, normalized 
by the size of G: 

max{IPI :Pis (d, k)-vertex-disjoint embedding} 

IVf 
In the PGA model, G is the PGA graph, P represents the process-
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ing nodes, and V - P is the set of switching nodes, assumed vertex 
connecting. P is (d, k)-vertex-disjoint embedding if and only if every 
degree-d, size-k circuit whose electrical elements correspond to compo
nents of P can be implemented by the PGA. The ( d, k )-vertex-disjoint 
density of G is the largest possible proportion of processing nodes in a 
vertex-connecting PGA based on G if this PGA can implement every 
degree-d, size-k circuit. 

We define a ( d, k) -edge-disjoint embedding set similarly, and let the 
( d, k )-edge-disjoint density of a graph be: 

max{IPI :Pis (d, k)-edge-disjoint embedding} 

lVI 
For all d and k and all graphs G, 

and if d' d" and k' 2 k" then 

Because of the application motivating this paper, we are not inter
ested in the full generality of ( d, k )-vertex-disjoint or ( d, k )-edge-disjoint 
embeddings. Rather, we restrict our attention to the 2-dimensional 
square grid graphs, which model most existing PGA's6

. .For every 

m, n 2 1, the 2-dimensional m by n grid denoted by Gm,n (Vm,n, Em,n) 

is the graph whose vertex set is Vm,n d;j {0, ... ,m -1} X {0, ... ,n -1} 
and whose edges are the horizontal edges: { { ( i, j 1 ), ( i, j)} : i 
0, ... ,n 1, j = 1, ... ,n 1} and the vertical edges: { {(i-1,j), (i,j)}: 
i = l, ... ,n - 1, j = 0, ... ,n - l }; cf. Figure 2.3. Note that the first 
coordinate corresponds to the vertical axis and that coordinate values 
increase from top to bottom and from left to right. These conventions 
are adopted throughout the paper. We call Gn,n a square grid and 
denote Gn,n, Vn,n, and Bn.,n by Gn, Vn, and En respectively. 

A planar representation of a graph G is a drawing in the plane con
sisting of a dot corresponding to each vertex of G and a simple curve 

6For several variations, see Section 2.7. 
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( 0, 0) ,....___,..______,_____,_,...._ .... ( 0, 5) 

(3, 0) .....____.__...___._...__. (3, 5) 

Figure 2.3: G4,6· 

in the plane connecting two dots if and only if the corresponding ver
tices are connected by an edge in G. At most two lines are allowed to 
intersect at any point in the plane. Every graph has a planar represen
tation. The crossing number of a graph G is the minimal number of 
line crossings in a planar representation of G. A graph with crossing 
number 0 is planar. 

If G' is vertex-disjoint or edge-disjoint embeddable in a subset of V, 
then the degree of every vertex v E V' in G' is not larger than its degree 
in G. Therefore in grid graphs Ed,k(Gn) is nonzero only for d ~ 4. In 
practice, each edge of Gn often represents several actual wires, in which 
case circuits of degree larger than four can be implemented7

. 

Furthermore, with vertex connectivity when a graph G' is embedded 
in another graph G, each edge of G' is mapped into a path in G and 
distinct paths do not intersect at any node. A planar representation of 
G can therefore be used to derive a planar representation of G' with 
at most as many line crossings. Hence, in vertex connectivity, a graph 
can be embedded only in a graph with at least as large a crossing 
number. Grid graphs are planar and therefore can only embed planar 
graphs. Since there is a non-planar graph of six vertices and degree 
three, lld,k( Gn) is zero ford 2::: 3 and k 2::: 6. 

We are interested in lld,k( Gn) for large grids. Therefore we define 
the ( d, k )-vertex-disjoint density: 

lld,k limsupvd,k(Gn). 
n-->co 

7See Section 2.7. 
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Analogously, we define the ( d, k )-edge-disjoint density: 

td,k d!.flim sup td,k( Gn) . 
n-+oo 

vd,k has the interpretation of the largest proportion of grid vertices that 
can serve as processing nodes in a vertex-connectivity PGA if every 
degree-d, size-k circuit can be implemented by the PGA. td,k has the 
same interpretation for edge-connectivity PGA's. 

A description and a brief interpretation of the results obtained in 
the paper were given in the last part of the introduction. 

2.3 Embedding Degree-1 Graphs of Size 
2 or 3 

Consider embedding degree-1 graphs with 2 or 3 vertices. Such graphs 
have at most one edge. Therefore, a set is (1, 2)-vertex-disjoint em
bedding if and only if it is (1, 3)-vertex-disjoint embedding (similarly 
for edge-disjoint embeddings). Furthermore, there is no advantage to 
a path that intersects itself; hence, vertex-disjoint and edge-disjoint 
connectivity coincide and 

We determine v1 ,2 . To obtain a lower bound, we draw on an analogy. 
Consider a parking lot consisting of an n by n array of square spaces. 
One of the spaces on the perimeter is marked EXIT. Each space either 
contains a parked car or is vacant. Cars can move from a space to any 
of the four adjacent spaces provided it is vacant. The parking lot can 
accommodate n 2 cars but then only one car can move to the EXIT 
space: the car that is there already. It is desirable to allow each car to 
"EXIT" without moving any other car. How many cars can be parked? 

The parking lot problem is closely related to (1, 2)-vertex-disjoint 
embeddability. Ann by n parking lot with p parked cars can be used to 
derive a (1, 2)-vertex-disjoint embedding set P of size pin Gn· Consider 
the natural correspondence between Gn and an n by n parking lot in 
which each node of Gn represents the corresponding parking space. Let 
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P consist of the nodes corresponding to spaces containing parked cars, 
as illustrated in Figure 2.4. (Note that the arrangement shown is not 
valid because the car marked "1" cannot EXIT.) Since every car can 
EXIT, there is a path in Vn P from every node in P to the EXIT node 
(the node corresponding to the EXIT space). Hence, there is a path in 
Vn - P between any two nodes in P. The set P of processing nodes is 
therefore (1, 2)-vertex-disjoint embedding and of size p. The converse, 
though not used (we prove the upper bound directly), is also correct. 
If a set P ~ Vn is (1, 2)-vertex-disjoint embedding, eliminate from P a 
node closest to the EXIT node; the parking spaces corresponding to the 
remaining nodes can be used to park cars. Therefore, as n increases, 
the proportion of cars that can be parked in an n by n parking lot 
approaches 111,2· 

.I 
EXIT 

Figure 2.4: An arrangement of parked cars and the corresponding PGA. 

The standard parking-lot arrangement is depicted in Figure 2.5. 
Two pairs of parked columns are separated by one column of vacant 
spaces. For n divisible by 3, the total number of parked cars is ~n( n -
1) + 2. Hence, 

implying 
2 

llt2>-. 
! - 3 

In Theorem 1 we shall show that 

2 
1112<-, -3' 
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• • • I I I 
I I I • • • • • • • • • •••n••• 

EXIT 

Figure 2.5: Standard arrangement of a square parking lot. 

thereby proving that the standard arrangement asymptotically achieves 
optimal density. First, we need some preliminaries. 

Let S ~ V be a set of vertices. Two vertices (not necessarily in 
S) are connected in S if there is a path in S that connects them. As 
a property, being connected in S is reflexive and symmetric but, in 
general, not transitive. For example, in the graph u-v-w, where edges 

are denoted by -, the vertices u and v are connected in S def { u, w}, 
as are v and w. However, the only path connecting u and w contains 
the interior vertex v, so u is not connected to win S. However, when 
restricted to elements of S, the property of being connected in S is 
also transitive, hence an equivalence relation. Therefore, a set S is 
partitioned into equivalence classes of S-connected components. A set 
S of vertices is self connected if every two of its elements are connected 
in S. The following properties hold for any set S: 

Pl. If two vertices are connected in S, they are connected in one of 
the S -connected components. 

P2. Each of the S-connected components is self connected. 

P3. S is self connected if and only if it has only one S-connected 
component. 

P4. Sis self connected if and only if Gls, the restriction of G to S, is 
connected. ( Gls is the graph whose vertex set is S and in which 
u, v E S are connected by an edge if and only if { u, v} is an edge 
in E.) 
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Let S ~ V. The vicinity of Sis the set of vertices outside S that 
are adjacent to vertices of S: 

V(S) d,g { v E V- S: vis adjacent to somes inS} . 

Lemma 1 If S is self connected in a two-dimensional grid1 then 

IV(S)I ~ 2ISI + 2 . 

Proof 
By induction on IS!. If lSI = 1 then S has at most 4 neighbors. If S 
is self connected and has more than one element, there is an element 
s E S such that S { s} is self connected (S can be chosen as a leaf of 
a spanning tree for Gls). By the induction hypothesis, IV(S- {s})l ~ 
2(1SI - 2 = 2ISI. 

( S { s} )nV( { s}) be the set of vertices in S- { s} that are 
neighbors of .s. T is not empty because S is self connected and has at 
least 2 elements. Clearly, 

V(S) = (v(s- {s})UV({s}))- (rU{.s}) . 

Therefore1 

IV(S)I < IV(S 

< 2ISI 
2ISI 

Theorem 1 

Proof 

{s})l + IV({s})I-IV(S- {s})nv({s})!-ITI-1 
4 0 1-1 

2. 0 

2 
l/1 2 = - · ' 3 

We argued earlier that 111,2 ;:::: ~. Now we show that v1 ,2 ~ ~. Let S and 
P be disjoint sets of vertices in Gn such that P is connected in S. Pick 
a vertex p E P and let S1, S2, ... ,S I be the S -connected components 
with elements adjacent top (that is, p E V(Si) for 1 ~ i ~ I). These 
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components are disjoint and p has at most 4 neighbors; hence 0 ::; I ::; 4. 
Since Pis connected inS, any element of P isS-connected top. From 
property 2.3 above, any element of P is Bi-connected to p for some 
1 i ::; I. But a vertex v is Si connected to p if and only if v E V ( Si) 

or v E V(p). Therefore, P ~ V(p)U (Uf=1 V(Si)). By the previous 
lemma, 

I 

IPI < (4- I)+ L IV(Si)l (I- 1) 
i=l 

I 

< (4- I)+ L 2ISil + 2I- (I- 1) 
i=l 

< 2ISI +5. 

But !PI + lSI ::; n 2
• Combined, the last two inequalities yield: !PI ::; 

2(n2 -IPI) 5, or 

I I 
2 2 5 

p < -n +-. 
- 3 3 

0 

2.4 Embedding Degree-1 Graphs of Size 
4 

Unlike graphs of size two or three, embedding graphs of size 4 may be 
different with vertex and edge connectivity. We consider only vertex 
connectivity. 

The subset of Vn consisting of the center n - 2 elements in every 
other column (see Figure 2.6) is easily seen to be (1, 4)-vertex-disjoint 
embedding, so v1 ,4 2:: ~. We prove a matching lower bound thereby 
showing that 

1 
1/1,4 = 2 . 
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Figure 2.6: A (1, 4)-vertex-disjoint embedding set of size 15 in G7 • 

Let Z denote the set of integers. Define the south-eastern neighbor
hood of a paint s = ( i,j) E Z 2 to be 

SE(s) def {(i + 1,j), (i,j + 1), (i + 1,j 1)} , 

the set of grid points, 'south,' 'east,' and 'south east' of s. Define the 
south-eastern neighborhood of a set s ~ Z 2 to be 

SE(S) d,;j U SE(s) S, 
sES 

the set of points in Z 2 S that are 'south,' 'east,' or 'south east' of some 
point in S. Figure 2. 7 illustrates a set and its south-eastern vicinity. 
The elements of the set are denoted by dots and those of the south
eastern neighborhood by x's. Lemma .5, proved below, shows that if P 
is (1,4)-vertex-disjoint embedding, then ISE(P)I ~ IPI· This enables 
us to prove 

Figure 2.7: A set and its south-eastern neighborhood 
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Theorem 2 

Proof 

1 
Vt,4 ~ 2 . 

Let P be (1,4)-vertex-disjoint embedding in Gn· By definition1 P and 
SE(P) are disjoint and their union is contained in {0, ... ,n} x {0, ... ,n}. 
Therefore, 

IPI + ISE(P)I ~ (n + 1)2 

From Lemma 5, IPI < ISE(P)I, so 

IPI 1 1 -< + 2 - 2 n n 

1 
2n2 · 

This holds for all n and all (1, 4)-vertex-disjoint embedding sets in Gn. 
Letting n tend to infinity1 we obtain the theorem. 

To prove that jSE(P)I ~ IPI, we first show that (1,4)-vertex-disjoint 

embedding sets are comprised of simple subsets. Let d( s1 , s 2 ) d;j ( ( i 1 -

i2)2 (j1 h)2)112 denote the Euclidean distance between two points 
s1 = ( i1, jt) and s2 = ( i2, h) in Z 2 • A mapping cp : Z 2 --+ Z 2 is 
distance-preserving or an isometry if d(8 1 ,s2 ) = d(cp(s1 ),c/J(s2)) for all 
81 , 5 2 E Z 2

• Two subsets S and T of Z 2 are isometric if there is an 
isometry from S onto T. Since any isometry is 1 1, isometric sets 
have the same cardinality. (Also, two isometric sets are related via a 
sequence of rotations, translations, and reflections.) 

The restriction GniP of the square grid Gn to a set P ~ Vn was 
defined in Section 2.3. Let G1(P), ... ,Gk(P) be the connected compo
nents of GniP (see Figure 2.8), and fori 1, ... ,k let Pi be the vertices 
of Gi(P). 

Define z+ {0, 1, 2, ... } and z- d:!_ {0, 1, 
lemma can be proved by inspection. 

... } . The following 

Lemma 2 If P is (1, 4)-vertex-disjoint embedding in Gn then each 
Pi is isometric to a connected subset of one of the following sets: 

1. sL z- x {o} u {o} x z+ 
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Figure 2.8: A set P in G4 and its connected-components. 

2. Sr d;j { -1} x Z U {(0, 0)} 

3. s z d;J { o} x z+ u { -1} x z- . 

Subsets of SL, Sr, and Sz are illustrated in Figure 2.9 which also sug
gests the reason why these three subscripts where selected. D 

Figure 2.9: The different types of (1, 4)-vertex-disjoint embedding con
nected components. 

Lemma 3 If C is a (1, 4)-vertex-disjoint embedding connected com-
ponent, then 

ISE(C)I = ICI + 2 ° 

Proof 
By induction on the size of C. There are fourteen types of connected 
components: the four rotations of each of SL, Sr, and Sz, the 'horizon
tal' connected component, and the 'vertical' one. Induction is carried 
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out separately for each. Figure 2.10 shows four of the inductions bases. 
0 

Figure 2.10: A few induction bases showing that ISE(C)j ICI + 2. 

Let P s;: Vn be (1,4)-vertex-disjoint embedding and let Pb ... ,Pk 
be the vertex sets of P's connected components as defined earlier. For 
each i E {1, ... ,k} define Si, Ti, and Ui as follows: 

si def {x E SE(Pi): X r¢ SE(Pj) and X r¢ Pj for all j =f i}, 

Ii {x E SE(Pi): x E SE(Pj) for some j =f i}, 

{x E SE(Pi): x E Pj for some j =f i}. 

For every i E {1, ... ,k }, the sets Si, Ti, and Ui are disjoint and their 
union is SE(Pi)· First, we bound the number of points inTi and Ui. 

Lemma 4 Let P ~ Vn be (1,4)-vertex-disjoint embedding. Fori E 

{1, ... ,k} define Pi, si, Ti, and ui as above. Then, for all i E {1, ... ,k L 

I Ti I + I U·l < 2 . 2 t -

Proof 
All fourteen cases mentioned in the proof of Lemma 3 need to be exam
ined. We illustrate four of them here. 

Let Pi be the connected component depicted in Figure 2.11 (a). Only 
the point Ut may belong to ui and only tl and t2 may belong to Ti. 
Hence IT£! :::; 2 and lUi I :::; 1, so + IUd :::; 2. Note that ift3 E Ti, then 
v E P, and the connections v- 2, 1 3 cannot be made simultaneously; 
similarly, t 4 rf. Ti. 
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Substituting u 2 for t4 at the end of the last sentence, the argument 
illJ. above also shows that 2; + IUd :::; 2 for the connected component Pi 

depicted in Figure 2.11 (b). 
For the connected component Pi depicted in Figure 2.11 (c), only the 

point u 1 may belong to Ui and only t 1 , t 2, and t3 may belong to 'n. If 

12f + I ui I > 2' then Ut E ui and all of it, t2, t3 are in Ti. In particular, 
u1 and v are both in P. But then, regardless of the other points in P, 
the connections u 1 - 1 and v - 2 cannot be made simultaneously. 

For the connected component Pi depicted in Figure 2.11 (d), only the 
points U} and Uz may belong to ui, and only tl and t2 may belong to Ti. 
If J.¥ lUi I > 2, then u1 and u2 are both in Ui and at least one of t1 

and t 2, say t 11 is inTi. But then u 1, u 2 , and v are in P and, regardless 
of the other points in P, the connections u1 - 1 and v 2 cannot be 
made simultaneously. D 

(a) (b) (c) (d) 

Figure 2.11: Four connected components satisfying 1.¥ +lUi! :::; 2. 

Lemma 5 

Proof 

Let P be ( 1, 4) -vertex-disjoint embedding in G n. Then 

ISE(P)I 2: IPI . 

Let P11 . .. ,Pk be the vertex sets of the connected components of P and 
define Si, Ti, and Ui for i E {1, ... ,k} as above. An element of Vn 
belongs to SE(P) if and only if it belongs to 1i or Ui for some i E 
{ 1, ... ,k}. Hence, 

SE(P) 
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By definition, all the Si 's are disjoint and each element of Uf=1 Ti be
longs to Ti for exactly two indices i. Hence, using Lemmas 3 and 4 

ISE(P)I t lSi I+ E:=l !Til 
i=l 2 

k 

l:(ISil + ITil + IUil)- ( IUil) 
i=l 

i=l 

IPI · 

D 

2.5 Edge-Disjoint Embeddings of Size-k 
Graphs 

In this section we assume that the switching nodes are edge connecting. 
Each can simultaneously connect two wire pairs. We show that for all 
k 2:: 1, 

1 32 
---,--- < €4 k < €3 k < €2 k < €1 k < - · 8(k + 1) - ' - ' - ' ' - k 

That is, for all 1 :::; d :::; 4, 

As mentioned in the introduction, Ed,k 0 for d 2:: 5 and Eo,k 1. We 
begin by proving the upper bound. 

Theorem 3 For all k 2:: 1, 

32 
Et,k:::; k · 
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Proof 
Let n > ~max{~' 1"} and let P C Vn be (1, k )-edge-disjoint embed
ding in Gn. We assume that 

IPI 32 
n2 > k 

and derive a contradiction. As illustrated in Figure 2.12, partition 
Vn into subsets8

, each a subgrid of dimensions at most n/ifii by 

Figure 2.12: Par·tition of Gn into subgrids. 

At least one of these 21[1 subgrids contains ~ elements of P. Also, 
by the assumptions just made, 

!PI> 32 n 2 > 32 (-k-) 2 

k 
k k 4v'2 

and 

8 For simplicity we disregard integer roundoffs (e.g. r ¥ l subsets). Since the 

derived bound is asymptotic (n is arbitrarily large), it is not affected by these 
approximations. 
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Hence, 
2 k IPI k 

n 2IPI < 2 < IPI - 2 ' 
so there must be at least ~ elements of P outside any subgrid. 

Consider a subgrid with at least ~ elements of P. Since P is (1, k) 
edge-disjoint embedding, there must be ~ edge-disjoint paths, each con
necting an element of P in the subgrid and an element of P outside the 
subgrid. Therefore, there must be at least ~ edges connecting the subgrid 
to the rest of the grid. But the number of such edges is bounded above 
by the circumference of the subgrid which is at most 4n~. Hence, 

k . fk 
2 :::; czrcumference :::; 4ny 2fPT 

which contradicts our initial assumption. 

Next, we prove a matching lower bound by applying a combination 
of standard embedding and 'snaking' techniques (e.g., [4], [1]) to our 
problem. 

Theorem 4 For all k 2:: 1, 

1 
E4,k 2:: 8(k + 1) 

Proof 
First we show that the set P d;j {(1, 4i + 1) : i = 0, ... ,n- 1} is ( 4, k )
edge-disjoint embedding in the grid G2k+2,4n. Then we show how to 
"map" this rectangular grid into the square grid G 2(2k+2)+f Jsn(k+l)l' 

This implies 

E4,k 2:: lim sup 
n-+oo ( 2(2k 

n 1 

1) + jJsn(k + 1)1)
2 8(k + 1) 

Figure 2.13 shows G2k+2,4n, the set P fork n = 4, and an embed
ding of a sample graph. When embedding a degree-4, size-k graph G', 
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we sequentially embed each edge {in any order). Suppose that an edge 
connecting the i 'th and the j 'th nodes of G' has not yet been embedded. 
Since G' is of degree ::::; 4, at least one. of the four lines leaving vertex 
( 1, 4i + 1) and one of the four lines leaving vertex ( 1, 4j + 1) are not 
used. We use these lines to get from the vertices to the first row that 
has not been used and connect the paths in that row. The row will not 
be used again. 

A B c D 

" I'-
. " L'-. 

[jj m~ 

Figure 2.13: Embedding the graph A-B, A-B, A-C, A-D, B-D, B-D, 
C-C, C-D, in G10,16· 

The process is repeated until all edges have been embedded in Gzk+2,4n· 

Since G' is of size k and of degree at most 4 it has at most 2k edges so 
2k + 2 rows suffice. Therefore, G' can be embedded in Gzk+2,4n. 

To map Gzk+2,4n into 
G r· I l' we 'fold' it as shown in Figure 2.14 into a rec-

2(2k+2)+ y8n(k+l) 

tangular grid at most r Jsn( k + 1) I by r Jsn( k + 1) l in size. The 
added strips of width 2k + 1 ensure that the original paths can be 
rerouted in the folded version. The resulting grid has side at most 

2(2k + 1) + r Jsn( k + 1) I· D 
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2k + 1 

2k+ 1 

Figure 2.14: Mapping a rectangular grid into a square grid. 

2.6 Vertex-Disjoint En1.beddings of Size-k 
Graphs 

In Section 2.5 we considered edge-connectivity PGA's. Each switching 
node could connect two wire pairs. We showed that the ( d, k )-edge
disjoint density is 

fd,k E e (~) . 
Now, we assume that the switching nodes of the PGA are vertex
connecting, that is, each can connect only· one pair of wires. We show 
that this seemingly minor distinction accounts for a decided difference 
in achievable densities to the effect that for all k, 

Ct < planar < planar < < < C2 k2 - v4,k - v3,k - v2,k _ Vt,k - k2 

where c1 and c2 are constants. That is, for 1 :::; d :::; 4 

plana.r E 0 (_]:__) 
1J d,k 'CI k2 . 

Thus as the size of implementable circuits increases, the achievable 
densities in vertex and edge connectivity PGA's decrease at different 
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rates. Switching nodes capable of simultaneously connecting two wire 
pairs significantly increase the achievable density. 

We do not describe the lower bound here. [2] provided an algorithm 
for embedding a planar graph of size n in a grid of area O(n3

) with 
prescribed vertex locations. This algorithm can be modified easily to 
embed any planar graph of size k in a rectangular vertex-connectivity 
PGA of area O(nP) with n processing nodes. The rectangular grid can 
then be mapped as in the last section into a square grid of the same 
area. Therefore, 

vd,k = n ( n:2) = n ( :2) · 
The matching upper bound, 

c2 
Vdk <-, - k2' 

uses a lemma of [10] for proving lower bounds on crossing numbers of 
graphs (stated here as Lemma 8) and a technique similar to one used 
by [1]. The proof, given in Theorem 5, is based on chorded cycle graphs 
and on two lemmas. These are described first. 

For even k, a chorded cycle of size k (or a chorded k-cycle) is a 
graph whose vertex set is {1, ... ,k} and whose edges are the cycle 
edges: { { k, 1 }, {1, 2}, ... ,{ k - 1, k} }, and the chord edges: arbitrary 
non-self edges. Each vertex belongs to exactly one chord. An example 
of a chorded 8-cycle is shown in Figure 2.15. 

Figure 2.15: A chorded 8-cycle 

The crossing number of a graph G was defined in Section 2.2 as the 
minimal number of line crossings in a planar representation of G. A 
graph with crossing number zero is planar. The graph consisting of just 
the cycle edges of a chorded k-cycle is planar as is the graph consisting 
of the chords only. The chorded k-cycle itself is not necessarily planar. 
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For example, the crossing number of the chorded 8-cycle in Figure 2.15 
IS one. 

Since a chorded k-cycle has ~ chords, its crossing number is at most 

e~2) ~ The first lemma states that there is a chorded k-cycle 
with a crossing number asymptotically that high. Because the proof is 
lengthy, it is postponed until after Theorem 5. 

Lemma 6 For all even k 2:: 6, there exists a chorded k-cycle with 
crossing number :2:: P /108 . 

The second lemma is the grid-graph equivalent of a well known 
geometrical result. If IPJ points are placed in the unit square, there 

is a path of length at most c · jiPI going through all the points. The 

exact constant multiplying jiPI has been studied in several papers 
including [6] and [9], but is not of interest here. We prove a weak 
version of the lemma. 

Let G be a graph. A path vo, ... ,v1 in G is simple if no vertex 
appears twice in it: Vi =/= Vj for all 0 :::; i < j :::; l. The length of the 
path is l, the number of edges in the path. 

Lemma 7 Let Gn = (Vn, En) be the square grid and let P ~ Vn. For 
every 1 ~ k ~ JPI there is a subset p0 , ••• ,pk of P and a simple path of 

length~ 1; 1n(4jiPI + 2) in Gn connecting Po, ... ,Pk· 
Proof 
We prove that there is a simple path of length ~ n(2jiPI 1) con
necting all points in P. The lemma then follows from aver·aging ar-

guments. Partition Vn into jiPI 'vertical stripes' S1 , ... ,S JiPi where 

si def {0, ... ,n- 1} X {(i 1) JiPT' ... ,i #I -1}. Let ai d:JIPnSil be 

the number of elements of P in the ith stripe and let p~ (x~, yj) be 
the j th element of Pnsi where the elements are ordered by increasing 
x value for even i and decreasing x values for odd i (elements with 
the same x value are ordered by increasing y value). For even i, let 

p~ def (0, (i-1) ~) and let P~·+I d;j (n-1, i ~ -1). For odd i reverse 
y IPI ' v IPI 

the definition of p~ and P~;+l' Fori = 1, ... ,jiPI, the path connects p~ 
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to pj+1 for j = 0, ... ,ai by first going 'horizontally' then 'vertically' if 

necessary. The path then connects P~;+l to p~+l. Therefore, for each i, 
the length of the path in stripe si is at most 

£: (lxj 
a; 

i:(x~- x~+l) 
j=O j=O 

a; n 
+2:

j=O /fPI 

lx~;+l x~l (ai + 1)-n-
/IPI 

n 
n + ( ai + 1) fiDi . 

yiP! 
The total length of the path is at most 

n {~";;! n 
(ai + 1) !IDi) = ny !PI+ IPI fiDi + n 

yiPI yiP! 
n(2/fPI + 1) . 

We now use Lemmas 6 and 7 to prove the upper bound. 

Theorem 5 For all k 2: 1, 

Proof 
Let P s;;;; Vn be ( 1, k) -vertex-disjoint embedding and let W be a chorded 
k-cycle (or a chorded (k I)-cycle if k is odd) with crossing number 
2: P /108 . Such a chorded cycle exists by Lemma 6. Denote the graph 
whose edges are the chords ofW by We. Label the vertices of the chorded 
cycle v1 , ..• ,vk, sequentially on the cycle. Let Pb ... ,pk be a sequence 
of elements of P such that there is a simple path of length at most 4·7!;;; 

yiPI 
connecting p1 , ... ,pk in that order. Lemma 7 guarantees the existence 
of such a sequence. Complete the path to a cycle in the plane by adding 
a parallel path alongside it and connecting the corresponding ends. The 
length of this cycle is at most 8·~. Identify vertex Vi of W with vertex 

viPI 
p; of Vn and find a vertex-disjoint embedding of We in Vn P. Such 
an embedding exists as P is ( 1, k) -vertex-disjoint embedding and We is 
a degree-1 graph of size k. 
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N ext1 connect the simple path that goes through p1 , . .. ,pk. The re
sulting graph is isomorphic toW and hence has a crossing number of at 
least k2 /108 . These crossings are not cycle to cycle or chord to chord. 
Therefore they are all cycle edges crossing chord edges. The distance be
tween any two chords is at least a grid unit. Therefore the total length of 
the path is at least k 2 /108

. Thus, k 2 /108 
:::; length of the path :::; ~ 1 

or 
IPI 8. 1017 

-< D n2 - k2 . 

A graph G (V, E) is a-expanding for a> 0 if every subsetS~ V 
of size at most IVI/2 is adjacent to at least aiSI vertices in V S. vVe 
now prove Lemma 6. The proof uses the following interesting result 
proved in [10]. (The constant 97 is derived using the planar-separator 
bound of [3].) 

Lemma 8 {1 0} The crossing number of a k-node, a-expanding graph 
is at least 

k
2 [ Co~Q r i1 - t] . 

We show that there exists a 1~0 -expanding chorded k-cycle. Let Ck 
be the k-vertex circle-graph with vertices: { 1, ... ,k} and edges: { { k, 1}, 
{1, 2}, {2, 3}, ... ,{k-1, k }}. A nonempty set I~ {1, ... ,k} is an island 
of Ck if the graph Ckii is connected. Every set S ~ {1, ... ,k} decom
poses uniquely into islands of Ck. These are the connected components 
of Ckls. For example, the set {1,3} consists of 2 islands, {1} and {3}, 
in c4 and of the single island {1, 3} in c3. 

Lemma 9 
ck is 

The number of sets of size s that consist of i islands in 

(~) (k . s - 1) + (~ - 1) (k ~ s) ~ (~ - 1) (k ~ s 1) 
2 z-1 z-1 z z z-1 z-1 

Proof 
We use the following facts: 
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1. The number of ways to partition the circle 1, ... ,l into m islands 

is (~). 

2. The number of ways to partition the circle 1, ... ,l into m islands 
so that 1 and l belong to different islands is (~-::._\) . 

Each set S of size s consisting of i islands in Ck that contains the point 
1 uniquely corresponds to a partition of the circle 1, ... ,s into i islands 
combined with a partition of the circle 1, ... ,k - s into i islands so that 
1 and k s are in different islands. Hence there are (;) e7~~1) such 
sets. 

Similar·ly, each size s set consisting of i islands in Ck that does not 
contain the point 1, uniquely corresponds to a partition of the circle 
1, ... ,s into i islands so that 1 and s are in different islands and a 
partition of the circle 1, ... ,k s into i islands. Therefore, there are 

(:=D e7s) such sets. D 

Example 2 Lemma 9 implies that there are (~) (;) + (;) (~) = 54 
sets of size 5 consisting of 3 islands in Cg. They are all 9 cyclic shifts 
of the sets in Figure 2.16. D 

00 00 
Figure 2.16: Sets of size 5 consisting 3 islands in C9 • 

Let k be even, S ~ {1, ... ,k} a fixed set of size s, and t < s. 
k/2 

Consider all TI ( k + 1 2i) different chorded k-cycles. If s and t have 
i=l 
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different parities, no chorded k-cycle has exactly t chords connecting 
elements of S to elements of { 1, ... ,k} S. If 8 and t have the same 
parity, the number of chorded k-cycles with exactly t spokes connecting 
S to {1, ... ,k} - S is 

s t + 1- 2i) . 

Therefore, if a chorded k-cycle is picked uniformly at random, the prob
ability that t spokes connect S to V - S 

(s) . lrrJ k- s + 2- (th 
t i=1 k + 1 

s-t 

2i -2 8 - t + 1 - 2i . f] -k ---t-+_1_+_( t-)2---2-i 

where (th denotes the remainder of t when divided by 2. Thus the 
probability that S is connected to { 1, ... ,k} S by fewer than as 
spokes, a < ~, is bounded above by 

fa£
1 (s) ti s _ t + 1 

t=O t i=1 k - t + 1 

2i 
< 2i-

s 

k 
fasl + 2- 2i 
fasl + 2- 2i 

If 0 < s ::; ~ and S consists of i < s islands, then at least i + 1 
elements of {1, ... ,k} - S are connected to elements of S via cycle 
edges. Therefore, any set of size 0 < s ::; ~ connected to fewer than 0:'8 

elements of {1, ... ,k} S consists of at most f as l - 2 islands. From 
fas]-2 

the last lemma, there are at most L ( (:) (k~~~ 1 ) + (:=D e:s)) such 
t=l 

sets. For a::;~' this is at most (ra8l- 2)(fasl-l) (r:sl~ 1)· 
Hence, for a < the probability that a randomly chosen set of size 

s ::; ~ will be connected to its complement by fewer than as edges is 
at most: 

s- [<>s]+l 

2) ( s )
2 

( k-s ) TI s-fe>s]+2-2i 
fas]-1 fas]-1 i=l k-fas]+2-2i 
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where we used the inequalities 

and ( cf.[8]) 

(s) < / S • 2s·h( ~) 
t v 27rt( s - t) . 

For a = .01 we obtain that the probability there is a set of size s 
that is connected to fewer than 1 ~0 elements in its complement is at 
most 1~0 2-s/3 . Therefore, the probability that a chorded-cycle is not 

k/2 
an expander is bounded above by 1 ~0 2::: s2-s/3 < 1. We have proved: 

s=l 

Lemma 10 For all even k, there is a -expander chorded k-cycle. 
0 

Lemmas 8 and 10 prove Lemma 6 and hence Theorem 5. 

2.7 Alternative Models 

We now discuss some variations of the PGA model and their effect 
on the achievable density. We heretofore assumed that the electrical 
elements are placed in the processing nodes. In most real PGA's they 
are placed in the 'squares' between the wires. This is modeled by the 
modified PGA graph shown in Figure 2.17(a). 

Arguments similar to those used in Sections 2.5 and 2.6 can show 
that the same asymptotic results hold for such a PGA, too. Even if 
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each processing element were connected to all of its four neighboring 
nodes, as shown in Figure 2.17(b ), the asymptotic densities would not 
change. 

(a) (b) 

Figure 2.17: PGA's with processors in the squares. 

We assumed that a processing node cannot connect two wires even 
if the node is not used in the specific implementation. This is the 
most restrictive of several possible assumptions. The least stringent 
assumption allows a processing node to connect two wires even when 
the element it contains is used. 

Relaxing this assumption increases the highest achievable density 
in both vertex and edge connectivity. For example, v1,2 increases from 
2/3 to 1. Yet the asymptotic results remain valid. This is clear in edge 
connectivity. To see that it holds in vertex connectivity, consider the 
chorded k-cycle with crossing number 0( P) in the proof of Theorem 5. 
At most k of the crossings can correspond to edges passing through 
vertices of the chorded k-cycle. Still, there must be 0( k2

) crossings 
between chords and rim edges. Hence the proof can proceed as before. 

Allowing processing nodes to connect wires will not make a dif
ference in the graph of Figure 2.17(a) since each processing node is 
connected to just one edge. Allowing the processing nodes of Fig
ure 2.17(b) to connect wires will result in a PGA graph similar to that 
of Figure 2.18. This graph is discussed next. 

Consider the graph of Figure 2.18. We show that any grid PGA with 
edge-connecting nodes can be simulated by a PGA based on the graph 
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of Figure 2.18 with vertex-connecting nodes with only a factor of four 
loss in density. Associate node (i,j) of the grid PGA with node (2i, 2j) 
of the new PGA and leave all other nodes as switching nodes. It is not 
hard to see that each switching node of the original PGA together with 
three of its new neighbors can simulate an edge-connecting switching 
node. This is interesting because the PGA of Figure 2.18 uses only twice 
the number of wires used in a standard grid PGA. Yet even with vertex 

connectivity, it allows for a 8 (%-) component density; viz., the same 
density which is achievable only with edge connectivity in standard 
grid PGAs. This occurs partly because the current PGA graph is not 
planar. 

Figure 2.18: PGA consisting of the grid and the diagonal edges. 

We assumed that each edge of the grid represents one wire. In prac
tice, each edge corresponds to a channel consisting of several wires. 
This enables implementation of circuits with degree larger than four. 
Allowing a fixed number of wires in every channel increases the achiev
able density by a constant factor but the asymptotic results remain 
valid. 

Perhaps the most critical departure of our model from real PGA's is 
that in practice each component represents a type of electrical element 
such as a gate or a memory cell. A real PGA contains many components 
of each type. A circuit design specifies the type of component that must 
be used and every component of that type will do. 

One extreme version of the problem assumes that all components 
are of the same type. This is the traditional graph embedding problem 
discussed in paragraph 3 of [11] and the references therein. The user has 
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the freedom to choose the mapping both of the vertices and of the edges. 
We assumed the other extreme, namely that every component is of a 
different type. Hence the vertex mapping is given. The intermediate 
problem where there is a certain number of components of each type is 
interesting but was not dealt with here. So is the problem of realizing 
all circuits of a given size with a large PGA having only one type of 
component. 
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Chapter 3 

On the capacity of a binary 
channel with timing jitter at 
signal transitions modelled as 
a random walk 

Abstract 

Our interest is in the communication situation in which the time dispar
ity between the receiver's clock and the transmitter's clock is modelled 
as a random walk. We obtain the channel capacity as a special case of 
capacity per unit cost ([15]). 

Keywords Timing jitter, Channel capacity, Capacity per unit cost, 
memoryless, random walk, Brownian motion 

3.1 Introduction 

In his classical paper [1], Shannon mathematically described one-way 
communication and gave a single letter characterization of the infor-

0Published in IEEE Trans. on Inform. Theory, voL IT-39, nr. 3, pp. 1064-1067, 
May 1993. 
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mation capacity of the general discrete memoryless ( dm) one-way com
munication channel (OWC). In a communication system, as defined by 
Shannon, each channel input gives rise to one channel output. Trans
mitter and receiver are aware of the sequence number of the trans
mission, which can be regarded as a global clock to the system. The 
channel capacity expresses the rate at which communication is possible 
given the statistical uncertainty at the receiver's side about the channel 
inputs of the transmitter. 

In many practical communication systems exact synchronization is 
either impossible or impractical. By the very nature of communication 
situations, transmitter and receiver are either physically remote or re
mote in the time dimension (e.g., storage applications). Oftentimes, 
the receiver recovers the transmitter time from the received sequence. 
Then, the receiver will not only have uncertainty about the amplitudes 
of the channel inputs, but also about their timing. Time uncertainty 
can affect the rate at which communication is possible. 

Asynchronicity has been studied in the context of multi-user infor
mation theory. Willems [3] has solved the asynchronous Slepian-Wolf 
situation, and Verdu [4, 5] has studied asynchronicity for the multiple 
access channel. However, asynchronicity is commonly understood as 
the existence of a time-offset between different users that has a random 
value but is constant in time. This contrasts with timing jitter~ for 
which time disparities fluctuate. The influence of timing jitter on pulse 
amplitude modulated systems and sampling has been dealt with in the 
literature [6, 7, 8). However, the first attempt to quantify the effect of 
timing jitter in terms of information theoretical capacity functions was 
by Baggen and Wolf [2]. 

Consider a timing jitter channel with { 0,1} binary input and out
put (Baggen and Wolf [2]). The bi-valuedness can be due to the trans
mission medium (e.g., compact disc: "pit" /"no pit") or can be due 
to a restriction to binary modulation and detection methods. Let 
i E N { 0, 1, 2, ... } denote time according to the transmitter's clock 
and let X = (Xili E N) represent the random input sequence. Sim
ilarly, let j E N denote time according to the receiver's clock. The 
receiver samples the output of the channel at the ticks j E N of its 
clock and thus obtains the output sequence (}j !j E N). Partic
ular realisations of will be denoted x, y, respectively (Random 
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variables are denoted in capital letters; realisations are denoted in or
dinary letters). 

As usual, a 0-run of a sequence x of length r > 0 is a maximal 
subsequence {Xi, Xi+l, .•• , Xi+r-l} such that x equals zero on that set, 
I.e., 

Xi= Xi+l 

Xi-1 = 1 V Z 

Xi+r 1. 

Xi+r-1 = 0, 
0, (3.1) 

A 1-run can be similarly defined, interchange 0 and I. A run perse, is 
either a 0-run or a 1-run. By the maximality of a run, in any sequence 
0-runs and 1-runs alternate. Any finite or semi-infinite binary sequence 
x can be uniquely described by its starting symbol x 0 and the sequence 
of the runlengths r = {r0 , r1, r 2 , •.. } of its consecutive runs. The pair 
( x0 , r ) is called the runlength description of the sequence x. Consecu
tive runs are separated by transitions. For the sake of definiteness, if 
Xi # Xi-l or i 0, a transition is said to occur at time instant i (rather 
than at i 1 or "i- 1/2"). 

Like [2], the time uncertainty is modelled by letting timing jitter 
shift the location of transitions in the output sequence with respect to 
the location of transitions in input sequence. In general, there is a one
to-one relationship between the locations of transitions and runlengths. 
The following assumption expresses that the channel does not loose any 
transitions (runs). 

Assumption RS There is a one-to-one correspondence between 0--+ 
1 (1 --+ 0) transitions in any finite input sequence, and 0 --+ 1 (1 --+ 0) 
transitions in the corresponding output sequence. 

Equivalently, 

Assumption RS' There is a one-to-one correspondence between 0-
(1-) runs in any finite input sequence, and the 0- (1-) runs in the cor
responding output sequence. 

From Assumption RS' it follows that the run index n EN constitutes 
a common reference for the transmitter and receiver, which can serve 
as a clock if both operate in terms of runlengths. Such a binary timing 
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jitter channel (TJC) is denoted a TJC-RS (TJC with synchronisation 
on the level of runs, or 'Run Synchronisation' for short). The operation 
of a TJC-RS is readily defined using runlength descriptions of the input 
and output sequence. As any finite binary sequence has a runlength 
description, runlength descriptions can be used without any loss of 
generality. As we are interested only in the effects of timing jitter and 
not in amplitude uncertainty, it is assumed1 that Yo = X0 • Denote the 
runlength sequences of X, Y by U and V, respectively. The effect of 
timing jitter is that V is a distorted version of U. In order to define a 
TJC-RS, it remains to specify the probabilistic dependency of on 

Note that the timing jitter equals the difference between receiver 
time and transmitter time. Therefore, the timing jitter Sn at the be
ginning of the n-th run (equivalently, at the n-th transition) is 

n-1 

Sn l:(llk Uk)· (3.2) 
k=O 

Obviously, in order for the order of time to be preserved by the channel 
and Assumption RS to hold, it is mandatory that2 

vk > 0, for all k. (3.3) 

Baggen and Wolf consider a TJC-RS for which the (Snln EN) are 
defined to be independent random variables according to some given 
distribution Ps which lives on { Smin, Smin 1, ... , Smax}. The input 
sequences are restricted to be runlength-constraint in the sense that 
any run has length at least d + 1 > Smax Smin· Observe that the order 
of time is preserved and Assumption RS holds, since 

Vn ;:::: Smin Smax d 1 > 0. 

(3.4a) 

(3.4b) 

We will refer to this channel model as the BWTJC. Equation (3.4a) 
expresses that the transfer from Un to Vn is governed by an additive 

1 As a consequence, for block length 1 any TJC can transmit 1 bit/transmission, 
which is the maximum possible. 

2Channels for which V =0 is possible, are not run synchronous. 
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channel with noise component Dn = Sn+l Sn. As the stochastic 
process ( Dn In E N') has memory, so far, only upper and lower bounds 
on the capacity function of the BWTJC have been obtained [2]. 

To the author the BWTJC suggested a different model, in which 
rather the ( Dn In E N') are defined as independent random variables 
according to some given distribution Pv. Then, the time jitter Sn 
becomes a random walk, 

n-1 

Sn = LDn, n EN'. 
k=O 

(3.5) 

Brownian motion, sampled at the transition times of the input sequence 
was put forward [10, 11] as a continuous time example of a time dis
parity process3 . Because the runlengths are distorted by the difference 
of successive time disparities Sn, 

(3.6) 

definition of the timing jitter as a running sum of independent random 
innovation variables makes that successive runlengths are affected by 
statistically independent distortions. Thus, the transfer from Un to 
Vn is governed by a dm OWC. This simplifies the analysis and allows 
for exact determination of the channel capacity. In accordance with 
communication practice and as exemplified by the sampled Brownian 
motion example, the statistics of the innovations can be allowed to de
pend on the actual input runlengths, without complicating the analysis. 
That is, for some distribution P*: 

Pr{Vn = viUn u} P*(vlu), n EN. (3.7) 

In our model, the binary memoryless increments (bmi) TJC-RS, 
the timing uncertainty introduced by the channel (without the effect 
of coding), increases as time grows to infinity, which is a marked dif
ference with the Baggen-Wolf model, for which the timing jitter Sn 
remains bounded as n goes to infinity. Therefore, the BWT JC im
plicitly assumes some global time reference at the receiver which leaves 

3 0f course, the velocity of the receiver time with respect to the transmitter time 
should be constrained from being negative. 
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some local time uncertainty to be dealt with by the coding scheme. Our 
model does not assume an implicit time reference and models total time 
uncertainty. See Figure 1. 

Since we are interested in nonterminating transmission using block 
codes, we fix the total number of input runs in any given code. As 
encoder and decoder are synchronized on the level of runlengths, this 
is a natural extension of block coding to the TJC. Determination of 
the capacity of the bmi TJC-RS is a special case of the capacity per 
unit cost, as defined by Verdu [15]. The capacity of the bmi TJC
RS equals the supremum of the mutual information of input runlength 
and output runlength, normalized by the expected input runlength. 
In [10], a slightly different definition of capacity is adopted that leads 
to a more self-contained presentation (average message bit error rate 
criterion instead of probability of decoding error). 

Figure 3.1: Bmi TJC, time series 

Figure 3.2: Bmi TJC-RS, runlength description 
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3.2 Definitions and preliminaries 

As remarked in Section 1, the operation of bmi TJC-RS is most easily 
specified in terms of a runlength description (X0 , U) of the input se
quence X and a runlength description (Yo, V) of the output sequence 
Y of the channeL Throughout the paper, we will assume that the first 
bit is faithfully transmitted, i.e. Yo = X 0 • Note that, generally, and 
Y have different lengths but the same number N of runs. A bmi TJC
RS consists of two finite alphabets U, V, and a probability transition 
matrix P*(vlu). The alphabets U and V must be subsets of the set 
of positive natural numbers 'P = {1, 2, ... }. The runs are indexed by 
n E {O,l, ... ,N -1}. 

The operation of the bmi TJC-RS can be considered in two equiv
alent ways: 

• In terms of input sequence X and output sequence Y, 

• In terms of the run length descriptions ( X 0 , U) of the input and 
(Yo, V) of the output sequence. 

The crucial matter is that, when considered in terms of runlength de
scriptions of the input, and output sequence, the bmi TJC-RS features 
in a well-known one-way communication system as defined by Shannon 
(1]. See Figure 2. (Prior to the communication of U0 , the first chan
nel symbol X 0 of the input sequence is faithfully transmitted to the 
receiver.) 

A code for bmi TJC-RS is defined by a tuple (N, M, T, Pe, e, d). 
These parameters denote the following: 

N number of runs in a codeword; 
M number of messages; 
T maximum number of bits transmitted; 
Pe average message error probability; 
e encoding function; 
d decoding function. 

The source generates a message W, uniformly distributed over { 0 , 
... , M 1 }. A message is to be transmitted to the other side using 
at most T transmissions (input symbols). The total number of runs in 
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X and Y is fixed. The encoder is completely described by an encoding 
function e, that maps the message into the runlength description of the 
input sequence X, 

(X0 , U) = e(W). (3.8) 

All input runlength sequences with positive probability must satisfy the 
following time constraint 

N-1 

I: Un ~ T. (3.9) 
n=O 

The decoder produces an estimate W of W, based on its knowledge 
of the sequence of received channel outputs that has runlength de
scription (Yo, V), by means of a decoding function d: 

W = d(Yo, V), (Yo = Xa). (3.10) 

An (N, M, T, Pe, e, d) code for the bmi TJC-RS consists of an encoding 
and a decoding function such that the following average message error 
probability constraint is satisfied, 

(3.11) 

A rate R ~ 0 is achievable for a bmi T J C-RS if for all £ > 0 there exists 
an T0 such that for every T ~ T0 there exists an (N, M, T, P6 , e, d) code 
with 

,.. = log2M > R ( ) ' T _ £, 3.12a 

Pe ~ £ (3.12b) 

All logarithms in this paper are to the base 2. By definition, the set 
of all achievable rates is closed. The capacity of the bmi TJC-RS is 
defined as the maximum achievable rate. 

3.3 Statement of result 

Theorem 1 The capacity of the bmi T JC-RS (U, V, P*) is given by 
the following single letter characterisation. 

C = {n I 0 < R < I(U; V) nuv max _ _ E[UJ , n (3.13) 
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I(U; V) denotes the mutual information of the random variables U on 
U and V on V, E[.] denotes the expectation operator. 

3.4 Proof of result 

In terms of the runlength description of the problem, the capacity of the 
bmi TJC-RS with X 0 E {0, 1} fixed at some definite value, corresponds 
to that of capacity per unit cost (Verdu [15]). The freedom of choice 
for X 0 can contribute to the rate of any scheme at most 1/T ~ 1/N 
bit/transmission, which vanishes asymptotically. Our result follows as 
a corrolary from Theorem 2 of [15]. 

3.5 Examples 

To illustrate the use of the capacity formula, consider the following 
binary symmetric bmi TJC-RS, 

u = v = {1,2} 
P*(2j1) = P*(ll2) = p = 1- q 

(3.14) 

for some fixed p, 0 ~ p ~ 1. If a= Pu(1), then 

C=max{ 1l1= h(p+(q;!):)-h(p)' O~a~1} (3.15) 

This maximum can be evaluated for any p. Figure 3 shows how I(U; V) 
= h(p + (q- p)a) - h(p) as a function of E[U] = 2- a is a shifted 
segment of the curve of the binary entropy function. The aforemen
tioned maximum corresponds to the slope parameter of a tangient to 
this curve. 

Consider a generalized bmi TJC-RS for which the input signal still 
is {0,1}-valued, but time is continuous. Let X(t) denote this input 

random process. Transitions in X(t) can happen at times t E ~+ d:J 
[O,oo). Likewise, (Dili EN) and (Yili EN') may take on real values. 
Interestingly, if we assume that every interval [i- 0.5, i + 0.5) contains 
at most one transition, 

Vn ~ 1, n EN'. (3.16) 
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It makes no difference if we assume that the output Y(t) is filtered and 
sampled, 

1
i+0.5 

Yi = . Y(t). 
t=~-0.5 

(3.17) 

Because of constraint (3.16), Y(t) is reconstructable from (l'ili EN). 
The capacity formula remains valid, however, with U, V C [1, oo). 

t 

1-h(p) 

h(X) 

t 

slope=C 

. 1 
:"I 
! I 
f I 
; I 
: I 
; I I 
: ... t·······················l .. ··: 

0 p -x q 1 

EU-.... ..,. 

Figure 3.3: Illustration of capacity of example 

3.6 Discussion 

From our point of view, the Baggen-Wolf channel is a binary timing 
jitter channel with memory. As such, its capacity is more difficult 
to determine. Even if time goes to infinity and without the effects of 
coding, the distribution of the time disparity introduced by the channel 
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still has finite support. This is only possible if there is some (implicite) 
global time reference. Consider the replay of a disk or tape. The 
velocity of the replay can be modelled as random. This will give rise to 
a certain spectrum of the velocity. A discrete memoryless TJC makes 
the simplifying assumption that the velocity has a white spectrum (and 
more than that: is independently identically distributed). Thus, if we 
assume a Gaussian4 distribution of the replay velocity, the receiver time 
disparity is a Brownian motion process. With discrete input runlengths, 
this Brownian motion process is sampled at random transition times 
of the input sequence, giving rise to a random walk process. A bmi 
T JC-RS for which E[U] = E[V] is said to have zero average jitter, as 
the expected value of the timing jitter is zero (although the variance 
increases with time). 

There is a straightforward generalization of the above capacity re
sults to nonbinary memoryless increments (dmi) TJC-RS. For a dmi 
TJC-RS with A levels, log(A 1) must be added to the capacity per 
run. Another direct generalization is that to channels for which the out
put runlengths depend on the input runlengths and the channel symbol 
that makes up the runs: P*(viu, x). Then, I(U; V) is to be replaced 
by I(U; VIX), with Px(O) Px(l) = 1/2. For TJC that introduce 
amplitude uncertainties, there is a probability that successive runs by 
chance get the same amplitude, and thus merge into a single run. Such 
channels are no longer run synchronous. 

Computation of the capacity of the bmi TJC-RS is a special case of 
computation of 'capacity per unit cost' as defined by Verdu [15]. Gen
eralized Aritmoto-Blahut algorithms for the computation of capacity 
formulas I(X; Y)/ E[b(X)] exist in the literature (see [15]). 

3. 7 Conclusions 

We conclude that a timing jitter channel that models timing jitter be
tween transmitter and receiver as a random walk allows for exact de
termination of the channel capacity. This holds true even in the, from 
a practical point of view, very interesting case in which the innova-

4 0f course, the velocity of receiver time with respect to transmitter time should 
be constrained from being negative. 
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tions of the timing jitter depend on the lengths of the input runs. In 
our approach, the Baggen-Wolf channel is a timing jitter channel with 
memory, whose capacity remains an open problem. Another interesting 
toppic for further research is obtained by the combination of time and 
amplitude uncertainty. Such channels are no longer run synchronous. 
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Chapter 4 

An alternative to metric 
rescaling in Viterbi decoders 

Abstract 

In the Viterbi algorithm, the negative log-likelihood estimates, accumu
lated distances, or path metrics are unboundedly increasing functions 
of time. For implementation, all variables must be confined to a finite 
range. The following properties of the Viterbi algorithm can be ex
ploited. 1) Path selection depends only on differences of metrics. 2) 
The difference between metrics is bounded. In the rescaling scheme, at 
each iteration the minimum metric is subtracted from all metrics. The 
use of two's complement arithmetic is proposed as an alternative to the 
rescaling method. Surprisingly this scheme avoids any kind of rescal
ing subtractions. Obvious advantages in implementation are hardware 
savings, and a speedup inside the metric update loop, which is critical 
to the decoder's computational throughput. Although the described 
technique appears to be known, it has not yet been published in the 
open literature. 

0 Published in IEEE Trans. on Commun., Vol. COM-37, pp. 1220-1222, 
Nov.l989. 
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4.1 Introduction 

This correspondence presents an efficient implementation of the metrics 
in the well-known Viterbi algorithm (VA) [1]. Whereas the principles 
and performance of the Viterbi algorithm are very well described in the 
literature, we agree with Rader [3] that some of the tricks that ease 
its implementation are not widely known. The technique described 
in this paper has been discovered independently by others, but has 
not been published in the open literature. Other approaches to the 
implementation of the metrics that have been studied in the literature 
are: to rescale the metrics, as described below [7]- [9]; to sum only 
a certain number of most recent branch metrics [10] (a fully analog 
implementation is considered). 

In its most general form, the VA may be viewed as a solution to the 
problem of maximum a posteriori probability estimation of the state 
sequence of a finite-state discrete-time Markov chain with memoryless 
output noise (Forney [2]). However, for our purposes it will suffice to 
consider the VA on a purely mechanical level. More elaborate descrip
tions can be found in references [1]-[6]. For implementation, a version 
of the VA needs to be found that is a finite state machine. In the VA 
there are two kinds of variables: sequence or path variables, and their 
metrics. Rader [3] presents an elegant solution to the path represen
tation problem. This correspondence addresses the representation of 
metric information in the VA. It is shown that the input/output be
havior of the VA is unaffected by the application of a modulo operator 
to all metric variables, when the range of the modulo operator is suffi
ciently large and approximately symmetric around zero. This modulo 
operator corresponds to the overflow mechanism in two's complement 
arithmetic and therefore has no hardware cost. Two properties of the 
VA will emerge: operation of the VA depends only on differences of met
rics, and the difference between metrics is bounded. The well-known 
rescaling approach to the implementation of the VA is to subtract the 
minimum metric from all metrics, so that they all remain in a range 
defined by property II. The correctness of the two's complement and 
rescaling modifications of the VA is derived from the afore mentioned 
properties. Finally, the complexities of the resulting implementations 
are observed, and a comparison is made. 
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4.2 Description of the Viterbi Algorithm 

Let k E N = { 1, 2, · · ·} represent time, and let s E S, t E S be states. 
The path metric of a state s at time k is denoted Ms( k ). The so 
called branch metric pertaining to the single step transition from a 
state s at time k - 1 to a state t at time k is denoted bst( k ). The 
branch metrics depend on the received sequence that is the input to 
the decoder. However, notationally this is omitted. The generic update 
equation of the VA reads 

m 8 (k) min{mst(k)!.s E S}, t E S, kEN (4.1a) 

where mst ( k) is the candidate metric for state t at time k associated 
with a transition from state s at time k- 1 to state t at time k: 

ffi 8t(k) = ms(k 1) + bst(k), S E S, t E S, kEN. ( 4.1 b) 

At the initial time k 0, the values of the path metrics are zero. 
In typical applications, the range of the minimization in (1a) can be 
limited to a set of states s for which the transition to the state t is 
admissible. For instance, if states correspond to the contents of a shift 
register machine, state transitions must be producable by the pertaining 
shift operator. Formally, metrics of state transitions that are inadmis
sible can be thought of as infinite. The set of admissible single step 
state transitions (s, t)-from s to t, s E S, t E S - is denoted T. For 
simplicity, T is assumed to be constant in time. 

Along with the computation of the metrics, for each state, the al
gorithm keeps track of a path that leads to it. If a states achieves the 
minimum candidate metric for a given state t and time k in (1a), s is 
called the precursor oft at time k. In principle, the algorithm has the 
values of the precursors, for all states and times, stored in memory. Go
ing backwards like this, for each state t and time k, a sequence of states 
called the survivor path Pt ( k) of t is defined. A survivor path ends in 
the state t that corresponds to it and, theoretically extends all the way 
back to the initial time zero. Observe that if an arbitrary survivor path 
that ranges over a time span { 0, · · · , k}, is truncated to a path over 
{0, · · ·, i}, for some i :::; k, this again yields a survivor path. Another 
property of survivor paths -that is also readily verified- is that of all 
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the paths that end in a certain state, the survivor path of that state has 
the minimum metric. Here, the metric of a path is defined as the sum 
of the branch metrics of its single step state transitions. Theoretically, 
the output of the VA is a path with the minimum overall metric in 
this sense. It is the survivor path of a state with the minimum metric. 
Furthermore, in certain applications, the difference between the mini
mum path metric and other metrics is used as a reliability indicator in 
a synchronization loop. 

4.3 Two Properties of the Vitervi Algo
rithm 

The following two properties of the Viterbi Algorithm can be exploited 
at its implementation. 

Property I: The output of the VA depends only on differences of met
ncs. 
The selection of survivor paths, as governed by (1), involves only 
comparisons of candidate metrics ms(k I)+ bst(k) and, hence 
depends only on differences of metrics. Reliability indicators that 
are not based on metric differences are left out of consideration. 

Property II: The difference between metrics is bounded. 
By assumption, S is a finite set. Let B be an upper bound for 
the absolute values of the finite branch metrics: 

lbst(k)i ~ B, (s,t) E T,k EN. ( 4.2) 

From hereon, Tis interchangeably considered as a subset of S x S 
and as a 0 - 1 matrix on S x S. A sufficient condition for Property II 
to hold is, that T, when raised to some finite power n, has all its entries 
strictly positive. Such a T could be called irreducible and aperiodic. 

Proof Let t1 and t 2 be arbitrary states at time k. Furthermore, 
let p1 be an abbreviation for Pt1 ( k), the survivor path of t 1 at time k. 
Without loss of generality, mtl(k) ~ mt2(k). In case k is less than n, 
q2 is set equal to the survivor path of t2 at time k. Otherwise, there 
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exists a state s at time ( k- n) on the survivor path of t 1 . The segment 
of PI that starts at time zero and ends at time ( k n) is denoted q 
(this is Ps ( k - n)). By the assumption on T, there is an extension of q, 
along branches from t, to a path that ends in t2 at time k. Provided k 
is greater than or equal to n, let this path be q2 • In either case, path 
q2 ends in t 2 , and therefore has a metric that is not less than mt2 ( k). 
Thus, the difference (mt2(k)- mn(k)) is upper bounded by the metric 
of q2 minus the metric of the survivor path of t 1 . In an expansion of 
the metrics of q2 and PI as sums of branch metrics, all but the last min 
{ k, n} pairs of terms cancel in their difference, so that with m 2n, 

lmn(k) mtz(k)l:-s;mB, itES,t2ES,kEN. (4.3) 

In convolutional decoder applications, the entries of Tn are positive 
for n equal to the memory order of the code [6]. Tightness of the upper 
bound in (3) is important to all implementations that do not allow 
metric overflow. Often, the sharper bound m = n can be attained. 
For instance, in hard-decision convolutional decoder applications this 
is the case. Assume that bst(k) is of the form d(e(s, t), r) where sis the 
presumed state at time k-1, tis the presumed state at time k, e(s, t) is 
the output symbol that corresponds to a transition from state s to state 
t, and r is the output symbol received at time k. It is sufficient that 
d satisfies the triangle inequality of a distance function for the sharper 
bound to hold. The proof above shows that the difference of any two 
"state metrics" is upper bounded by a sum of at most n terms, each 
term consisting of a difference of two branch metrics. A term is of the 
form d( e( s2 , t 2 ), r) d( e( s1 , tt), r) where s2 , t 2 and St, ti are successive 
states on q2 and PI, respectively. By the triangle inequality, the absolute 
value of each term is bounded above by d(e(s 2 , t2 ), e(st, tt)). From this 
d = n follows. 

Metrics large in comparison to the minimum metric correspond to 
unlikely survivor paths. The degradation in decoding performance that 
results from not faithfully representing large metric differences is often 
small [5], [9]. Thus, it is sufficient for Property II to hold in a proba
bilistic sense. 
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4.4 The rescaling approach 

By Property I, subtraction of a constant from a metric vector ( m 8 ( k) 18 E 

S) does not affect the output of the VA. Let the rescaling functions 
rk, kEN, and the minimum metric ck be defined as 

( 4.4a) 

Ck min{ms(k)ls E S}, kEN. (4.4b) 

In a rescaling implementation of the VA, the metrics m.~( k) are replaced 
by rescaled versions rk( m 8 ( k) ). By Property II the rescaled metrics 
satisfy 

0:; rk(ms(k)):; mB for all s E S,k EN. (4.5) 

The algorithmic equation ( 1) turns into 

Note from ( 6) that intermediate values up to ( m + 1 )B can occur. The 
most negative number that can occur is Once (ck ck_ 1 ) has 
been subtracted, (5) applies again. If the metrics are nonnegative, the 
required numerical range can be reduced accordingly. Otherwise, the 
numerical range will generally have to be chosen symmetrically. Then 
Ck can be an arbitrary metric. 

The depth of the comparison tree for the determination of the min
imum metric is proportional to log2 (IS!). This implies that in all but 
those cases in which there is no serious constraint on the computational 
throughput of the decoder, modifications of the above scheme are neces
sary. For instance, Ck can be redefined to be an arbitrary metric. The 
numerical range may increase. Some residual delay due to rescaling 
operations will be difficult to avoid. None of this is necessary. 

4.5 Two's compl. arithmetic approach 

The key idea to improvement is not to invest in avoiding overflow, as in 
the rescaling approach, but instead to accommodate overflow in such 
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a way that it does not affect the correctness of the results. Two's 
complement arithmetic, in c bits, refers to the additive group over 

{ 1- 2c-1 ... 2c-1 1} 
' ' ' 

(4.7) 

where addition is defined modulo 2c. The modulo operator which re
duces a number to an element of the interval Fe is denoted "mod2c". 
Modification of the VA for the purpose of an implementation based 
on two's complement arithmetic entails replacing the metrics ms( k) by 
their residuals m 5 ( k) mod 2c, s E S, k - 0, 1, · · ·. As noted in Prop
erty I, the computation of the minimum in the right-hand side of (1) is 
performed by comparison of elements. It is the signs of all differences 

ms(k -1) + bst(k) (ms'(k -1) + bs't(k)),s E S,s' E S,t E S,k EN 
( 4.8) 

that matters. Substitution of the modulo-2c reduced metrics in the 
right-hand side of ( 1) will lead to the evaluation of the differences 

m 5 (k-1)+bst(k)-(ms'(k-1)+bs't(k)) mod 2C,s E S,s' E S,t E S,k EN. 
(4.9) 

By Property II, (8) does not exceed (m + 2)B((n + 1)B if the branch 
metrics are nonnegative. Hence, if the numerical range is at least 
{ -(m + 2)B, · · ·, (m + 2)B}, that is 

2c-l- 1 2:: (m + 2)B ( 4.10) 

the reduced difference (9) equals the true difference (8). Then, Property 
I implies the correctness of the two's complement modification. 

In principle, there is a worst case one-bit penalty in terms of data 
width over the rescaling option. However, such a penalty can be avoided 
by a small compromise in the range of the branch metrics or in the prob
ability of error due to the occurrence of metric overflow. If the branch 
metrics are nonnegative, the required numerical range is actually the 
same as for the rescaling option. 

4.6 Conclusions 

The VA has the property that its behavior is left invariant when a 
modulo operator is applied to the metrics, provided that its range is 
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sufficiently large and approximately symmetric around zero. This mod
ulo operator corresponds to the overflow mechanism in two's comple
ment arithmetic and therefore has no hardware cost. In the worst case, 
the two's complement option will need a small compromise in the met
ric branch range or in the probability of overflow so as to preserve the 
width of the data paths. We conclude that the use of two's complement 
arithmetic to accomodate metric overflow in the VA offers significant 
advantages in implementation, in terms of design simplification and 
computational throughput .. 
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Chapter 5 

On the numerical range of 
the path metrics in a binary 
Viterbi decoder 

Abstract 

This paper addresses the numerical range of the path metric calculus in 
the well-known Viterbi algorithm (VA). Given a binary convolutional 
code, we present an exact expression for the maximum difference of 
(candidate) path metrics. We prove that the maximum difference cor
responds to the case of noiseless reception of codewords, a trivial mode 
of operation. We show that for any convolutional code there is a con
stant B, such that states with path metrics exceeding the minimum 
path metric by more than B can never be on the output path of the 
VA. These so called 'looser states' are deleted from the trellis by means 
of a stopping rule. Comparison of tight bounds for the required numer
ical range shows that the stopping rule can at best half the required 

0 This paper has been submitted to IEEE Trans. on Inform. Theory, Sept. 
1993. Parts of this paper were presented at the 13th Symp. on Inform. Theory in 
the Benelux, Enschede, the Netherlands, .lune 1-2, 1992, at the 1993 IEEE Intern. 
Symp. on Inform. Theory, San Antonio, USA, Jan. 17-22, 1993, and at the 14th 
Symp. on Inform. Theory in the Benelux, Veldhoven, The Netherlands, May 17-18, 
1993, the 1994 IEEE Intern. Symp. on Inform. Trondheim, Norway, June 
27-July 1, 1994. 
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numerical range. 

Keywords 

Viterbi algorithm, reduced complexity, path metrics, survivor paths. 

I - INTRODUCTION 

The path metrics, negative log-likelihood variables or accumulated dis
tance functions in the Viterbi algorithm (VA) are increasing, unbounded 
functions of time. However, the survivor path selection in the VA de
pends only on differences of candidate path metrics. As usual, by a state 
we refer to a node in the trellis. A state is determined by an encoder 
state (contents of the encoder shift register) and the depth in the trellis. 
A path is a series of connected states in the trellis, that connects the 
initial 'all zeroes' state with some state at the final stage of the trellis. 
The term path is also used to indicate the sequence of output symbols 
that corresponds to a path as defined before. A candidate path metric 
( cpm) for a certain state Sis the sum of the path metric of some state 
at an incoming branch to state S in the trellis plus the corresponding 
branch metric. Only these differences of candidate path metrics need 
to be faithfully reproduced in an implementation. By the VA, the path 
metric of a state equals the minimum of all its candidate path metrics. 
Due to the structure of the trellis, the maximum difference of candidate 
path metrics is bounded. 

A possible implementation of the path metrics in the VA is to sub
tract, at each stage of the trellis, the minimum path metric from all 
path metrics. With this so called trescaling' approach, the required 
numerical range must be large enough to represent the maximum dif
ference of any two candidate path metrics for any two nodes at a given 
depth in the trellis. The latter maximum is denoted max{L.lcpm}. 
Consequently, the minimum candidate path metric is reduced to zero, 
and the maximum value that occurs is max{L.lcpm}. When processing 
units work with b-bits nonnegative integers {0, 1, ... , 2~> -1 }, for correct 
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operation of the decoder it is required that 

2b 1 2 max{ L\cpm}. (5.1) 

When the arithmetic units allow for positive and negative integers, 
{ -2b-l, -2b-l + 1, ... , 2b-l - 1} we have that one additional bit is 
required, 

2b-l -1 2 max{L\cpm}. (5.2) 

An alternative to rescaling is modulo arithmetic with a numerical 
range symmetric around zero e.g. two's complement representation [2]. 
Provided the maximum possible difference of any two candidate path 
metrics for the same node, max 1 { L\cpm}, fits inside the range of the 
modulo operator, the modulo reduced difference of the candidate path 
metrics equals the true difference and the correct survivor paths are 
selected. Denote the maximum difference of any two path metrics by 
max{L\pm}. If the output path of the VA is traced back [3] from the 
state with minimal metric, also the difference of any two path metrics 
must fit inside the numerical range. In formula, 

2b-l -1 2 max{maxt{L\cpm},max{L\pm}}. (5.3) 

A clear advantage of modulo arithmetic is that it saves the computa
tion time and hardware associated with the subtraction of the minimum 
path metric from all other path metrics. If a rescaling implementation 
uses only nonnegative integers, there is a one bit penalty in required 
data width for modulo arithmetic. When inequality occurs in 

max{maxt{L\cpm},max{L\pm}} ~ max{L\cpm}, (5.4) 

that penalty for modulo arithmetic may be reduced. 
The results presented in this paper apply to all hard decision Viterbi 

decoders, i.e. Viterbi decoders that use the Hamming distance as metric 
function as well as to soft decision decoders that satisfy the following 
rather weak assumptions. For a rate R k/n binary convolutional 
code, we assume the following. 
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Assumptions 
I Symbol metrics are nonnegative integers. 
II If transmission is over a noiseless channel, the symbol metric 

equals either Smax or zero depending on whether or not the 
received bit equals the hypothesis bit. 

III A branch metric is the sum of n symbol metrics; 
a path metric is the sum of the branch metrics along the 
path. 

With respect to Assumption I, note that what counts for the survivor 
path selection is the difference of the symbol metric given that a '0' 
was sent minus the symbol metric given that a '1' was sent. Figure 1 
illustrates that this difference can be negative, even though the sym
bol metrics satisfy Assumption I. Assumption II merely states that the 
maximal ( Smax) and minimal symbol metric ( 0) occur. 

Throughout the paper, we assume a realization of the encoder as 
a parallel combination of k shift registers i = 1, 2, ... , k for which the 
i-th shift register is mi cells long [4). Let M denote the total number 
of shift register cells in the encoder, i.e. 

The number of states in the trellis equals 2M. The memory order m is 
defined as the maximum among the m/s [4). Similarly, define m_ as 
the minimum length of any of the encoder shift registers. A route is 
a series of connected states in the trellis. Observe that any two states 
that are m stages apart in the trellis are connected by some route in 
the trellis. A route is a segment of a path. 

Given a particular binary convolutional code, Theorem I gives exact 
expressions for max{D.pm}, maxi{D.cpm} and max{~cpm}. These 
expressions are readily evaluated (the approach of [9) for nonbinary 
convolutional codes requires linear programming). By max L { ~pm}, 
max l,L { ~cpm} and max L { ~cpm} we indicate the maximum ( candi
date) path metric difference at depth L = 0, 1, ... into the trellis. At 
L = 0, the trellis starts with the 'all zeroes' state. It turns out that as 
a function of L, the maxima first increase, then decrease, and finally 
settle at some level. 
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As the path metrics can be interpreted as log-likelihood functions, 
large path metric differences indicate a strong discrimination between 
candidate output sequences of the VA. Intuitively, we therefore expect 
large path metric differences to occur if the transmissions are over an 
ideal channel. We prove in Theorem I that the maximum (candidate) 
path metric differences occur in the case of noiseless reception of the 'all 
zeroes' codeword and comparison of the 'all zeroes' path as candidate 
survivor path for the 'all zeroes' state with a (candidate) survivor path 
of maximum Hamming weight. We show that the worst case ( candi
date) path metric differences occur at a depth of m_ + 1 S L S m + 1 in 
the trellis ( m_ S L s m for max{ ~pm}). With these simplifications, 
the aforementioned maxima are easy to determine. 

In an application for which the VA works on finite blocks of data, the 
required numerical range is maximized over L in order to avoid a loss 
of performance. However, in applications in which the VA works on an, 
in principle, infinite data stream, it suffices to consider the limit values 
as L increases to oo in Theorem I. Evaluation of Theorem I for a given 
binary convolutional code indicates at what value of L, the maximum 
(candidate) path metrics settle at a fixed level. The level L00 at which 
this occurs can be bounded. We use the notation max 1,00 { ~cpm }, etc., 
to indicate the limit values. 

As stated before, large path metric differences indicate a strong 
discrimination between survivor paths. It turns out that in such a 
situation, for many states with 'large' path metrics it can be ruled out 
that the output path of the VA runs through those states. Here, a 
path metric of a state is called 'large' if the path metric exceeds the 
minimum path metric at the given depth in the trellis by more than 
some constant B that depends on the given binary convolutional code. 
Theorem II formulates a stopping rule that deletes all states with a 
'large' metric, as for any path that runs through such a state and for 
any received sequence, a detour exists via the state that has minimal 
path metric such that the resulting path has a smaller metric than the 
original path. Hence, the required numerical range can be reduced. 
A worst case example for a 'large' path metric occurs with noisefree 
reception of the 'all zeroes' codeword up to a certain time, followed 
by the reception of some other codeword that continues from some 
nonzero state and most quickly returns to the 'all zeroes' path in terms 
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of Hamming distance. 
The stopping rule requires the computation of the difference of the 

path metrics with the minimum path metric, and is most logically com
bined with the rescaling method. Application of the principle behind 
the stopping rule to modulo arithmetic and trellis codes under further 
study. Theorem III gives an exact analysis of the numerical of 
the path metrics for the VA with stopping rule. The approach of Theo
rem I is extended to include the B-constraint. The results of Theorem 
I and III are precise, and require an evaluation that depends on the 
generators of the binary convolutional code used. T'heorem IV gives 
an upper bound on max 00 {6.pm} in terms of n,m,k and dfree· This 
upper bound is a generalisation of a recent result by Alston and Chau 
[1]. 

II - STATEMENT OF THEOREMS, EX
AMPLES AND LEMMAS 

Throughout the paper, the Viterbi decoder satisfies Assumptions I-III 
and we consider only binary convolutional codes. The linearity of the 
convolutional encoder is essential in our proofs. The trellis starts from 
the initial encoder state 'all zeroes'. A state in a trellis of a given finite 
length is called final, if it is located at the final stage of the trellis. 

The output path of the VA is a path that has the minimal overall 
metric value for the entire codeword length considered. By pm( S) we 
denote the path metric of stateS. The Hamming metric HmL(S) of an 
encoder state S at depth L, is the path metric of that state, if 

• the decoder were of the hard decision type, 

• the Hamming distance is used as metric function, and 

• the received sequence were 'all zeroes'. 

In other words, the Hamming metric is the Hamming weight of the 
'lightest' path from the 'all zeroes' starting state of the trellis. Here, 
'lightest' refers to minimal Hamming weight. A candidate Hamming 
metric for a state, is a candidate path metric, if the decoder were of the 
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hard decision type, etc. A candidate Hamming metric for a state 8 is 
the sum of a Hamming metric of a state at an incoming branch to state 
8 in the trellis plus the Hamming weight of that branch. Because the 
Hamming metrics are just path metrics, they are readily determined 
with the VA. 

Theorem I 
For a Viterbi decoder that satisfies Assumptions I-III, we have 

• maxL{ .6-pm} equals Smax times the maximum Hamming metric of 
a final state in a trellis L branches deep, maxL { Hm}, 

• max 1,L{.6.cpm} equals Smax times the maximum candidate Ham
ming metric for the final 'all zeroes' state in a trellis L branches 
deep, max s=O,L { cHm} 1 

• max£ { .6-cpm} equals Smax times the maximum of all candidate 
Hamming metrics of all final states in a trellis L branches deep, 
maxL{cHm}. 

More information about the distribution of the path metrics is obtained 
from 

jpm(S)- pm(T)I $ SmaxHmL(S- T), (5.5) 

for arbitrary states 8 and T at depth L. For maximization over the 
depth L into the trellis, w.l.o.g. m_ ::;: L :::; m for max{ .6-pm}, and 
m_ + 1 ::;: L ::;: m + 1 for max 1 { .6-cpm} and max{ .6-cpm}. 

The paths provided by Theorem I can actually occur during the 
operation of the Viterbi decoder. By Assumption II, in case of noiseless 
reception of the 'all zeroes' codeword, the path metric of a state equals 
Smax times its Hamming metric. Hence, in the proof of Theorem I, we 
only need to show that no larger (candidate) path metric differences 
than specified can occur. The folllowing example illustrates that the 
three maxima in Theorem I can differ (the convolutional code is not a 
good code to use in practise). 
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Example I Consider the R 1/2, memory order m = 2, binary 
convolutional code with generators (notation of [4]), and hard decision 
decoding ( Smax 1), 

g(l) (1 0 1), g<2) = (1 0 0). 

Figure 2 illustrates the evaluation of max{ b.pm} = 4, max 1 { b.cpm} = 
3, max{b.cpm} 5. 

For block based applications of the VA, one only needs to evaluate 
the (candidate) Hamming metrics at depths of L < m + 1 in the trellis. 
For stream based applications, values of L 2 m + 1 give an upper 
bound for the required numerical range. Consider e.g. the evaluation 
of max 00 { Hm}. The Hamming metric of any encoder state at depths 
L 2: m in the trellis can only decrease with the depth as a trellis of 
length L contains a subtrellis of length (L- 1), prefixed with a 'all 
zeroes' branch. Denote by Loo the depth in the trellis at which the 
(candidate) Hamming metrics have settled at their final value. The 
value of L= can be upper bounded as follows. No survivor path visites 
a certain encoder state more than once. Therefore, the total number of 
iterations necessary is at most 2M, the number of states in the trellis. 
Out of the 2M states, a fraction 2-n has an outgoing branch labelled 
with 'all zeroes'. The Hamming weight of any survivor path is upper 
bounded by maxm { Hm}. Therefore, 

L
00

:::; 2(M-n) + max{Hm} + 1:::; 2(M-n) + nm + 1. (5.6) 
m 

Conclude that all expressions in Theorem I are computable within 
2(M-n) iterations of the VA. 

Corollary I 
max L+l { .6..cpm} - nsmax ~ max L{ .6..pm} ~ max L+l { .6..cpm} - Sm~:>. 7 a) 

max{.6..cpm}- nsmax ~ max{.6..pm} ~ max{.6..cpm}- Smax (5.7b) 

max 00 {.6..cpm}- nsmax ~max 00 {.6..pm} ~max 00 {.6..cpm} Smax (5.7c) 
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Proof of Corollary I 
To show the left hand side of (5.7a), use the identities of Theorem I, 

and take any length-(L+ 1) candidate survivor path that has maximum 
Hamming weight. Omission of the last branch, yields a survivor path 
and reduces the Hamming weight by at most n. The resulting weight 
cannot exceed max L{ Hm}. The right hand side of ( 5. 7 a) follows be
cause any survivor path of maximum Hamming weight can be extended 
to a length-(L + 1) candidate survivor path. Each state by assumption 
has at least one outgoing branch labelled with a nonzero output sym
bol. Equations (5.7b, 5.7c) follow from (5.7a) by maximization over L, 
and let L go to oo, resp. D 

By an excursion we mean the encoder output that corresponds to 
a series of states that begins and ends with an 'all zeroes' state, and 
has no such states in between. Let dfree,L denote the free distance of 
the binary convolutional code attained over at most L branches. For 
L > m_, d free,L exists and is nonincreasing. If the output path of 
the VA is traced back from an arbitrary state instead of the state with 
minimum path metric [3], the quantities (5.8b, 5.8c) together with (5.3) 
prescribe the required numerical range for modulo arithmetic. 

Corollary II 
If k = 1,R = 1/n, then 

max 1,L { .6.cpm} 

max 1,oo { .6.cpm} 

max 1 { .6.cpm} 

Proof of Corollary II 

djree,L, 

djree, 

djree,m-+1 

(5.8a) 

(5.8b) 

(5.8c) 

An excursion X of at most L branches of minimal Hamming weight, 
viz. dfree,L, ends in the final 'all zeroes' state. In general, dfree,L can be 
(slightly) larger than dfree [l]. Because k = 1, there are only two can
didate survivor paths for the final 'all zeroes' state, viz. the 'all zeroes' 
path and the path that has weight dfree,L· Therefore, the expression 
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for max 1,L{~cpm} given in Theorem I and dfree,L are equal. D 

Example II 
Consider the R 2/3, memory order 1, binary convolutional code 

with generators [4], 

9P) = (11), 9~2) = (0 1), 9p> (11), 

9~l) = (0 1), 9~2) = (1 0), 9~3) = (1 0). 

Figure 3 depicts the evaluation of max 1 { ~cpm} = 5. However, d free,m+l 

d free = 3. Example I already showes that max{ ~cpm} can differ 
from d free,m+l· 

Theorem II-A 'Stopping rule' 
A state S at depth L in the trellis with a path metric that exceeds 

the path metric of a state T by SmaxG(S T) or more cannot be on 
the output path of the VA, where G(S) denotes the minimal Hamming 
weight of any connection of state S to the 'all zeroes' path, 

G(S) = min{wH(vs) I vs: 'vs starts inS, 

ends in an 'all zeroes 'state' } . (5.9) 

In particular state T can be chosen to have minimal path metric. 
Stopping rule A deletes all states S for which the path metric exceeds 
the minimum path metric of some state T = MIN by SmaxG( S AlliN) 
or more. By stopping rule A+ we mean that all pairs S, T are con
sidered, not just T = MIN. ln the proof of Theorem li-B we show 
that with stopping rule A the path metric differences at depth L in the 
trellis cannot exceed BL, where 

(5.10) 

In order to simplify application of the stopping rule, all states S for 
which the path metric exceeds the minimum path metric by more than 
BL are deleted. This is called stopping rule B. 
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With respect to the tightness of the bounds in Theorem III, it is of 
relevance whether for instance at an arbitrary depth into the trellis all 
path metrics can be equal. With hard decision decoders, in general, this 
is not the case. For the sake of definiteness, we introduce an erasure 
symbol that, when received, adds zero the discrimination between paths 
in the trellis. 

Assumption IV 
There is a channel symbol '*' that represents an erasure. That is, 

the symbol metric of '*' given that a '0' was sent equals the symbol 
metric given that a '1' was sent. 

Theorem II-B '(Simplified) stopping rule' 
A state S at depth L in the trellis for which the path metric exceeds 

the minimum path metric by more than BL cannot be on the output path 
of the VA. For decoders with an erasure symbol (Assumption IV) BL 
can not be defined any smaller than (5.1 0) up to a "round off" margin 
of (smax- 1). 

Application of the stopping rule requires the computation of the mini
mum path metric and comparison of all path metrics with the minimum 
metric. Therefore, as stated before, the stopping rule is most logically 
combined with the rescaling method. Because HmL(S), L 2:: m is non
increasing in L, BL is also non-increasing in L. For stream applications 
Boo is used, for block applications the larger value 

(5.11) 

applies. 
Let Hm(S) denote HmL(S) at L = L00 • Define G(S) is the Ham

ming metric of Sat depth "oo" of the time-reversed convolutional code. 
Note that G(S) can be computed with the VA1. Recall 

HmL(S) = min{ wH( us)lus :'us starts in 

an 'all zeroes' state, ends inS, length L'}. (5.12) 

1See also Proof 2 of Theorem II-B. 
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For a given S, the concatenation of the optimal us, vs in (5.9,5.12) 
forms an excursion X(S) through S of minimal Hamming weight ('light
est excursion'). Vice versa, given a lightest excursion X(S) through S 
the section Xpre(S) from the start of X up to S has weight Hm(S), and 
the section X post ( S) from S to the end of X has weight G( S). For the 
sake of uniqueness of definition, if excursions have equal weight, the 
order is defined in some arbitrary manner, e.g. lexicographically. Boo 
is redefined in terms of X (.) as, 

Boo =max{ min{ SmaxWH(Xpost(S)) 1, SmaxWH(Xpre(S))}IS}. (5.13) 

For the computation of BD, the length of Xpre(S) is constrained to L. 
The set of excursions {X ( S) IS} is put in increasing order, X = 

{Xi li}. Each Xi has the property that it passes through some state 
for which Xi is the excursion of least Hamming weight to go through 
that state. By definition, X1 has weight dfree, and for all states on 
X 1 we have that X(S) equals X 1 . Similarly, it can be verified that for 
all states on Xj that are not on any Xi (i < j), we have X(S) = Xj. 
Denote by W the maximal Hamming weight of an excursion in X, 

W = max{wH(X)IX EX}. 

Let WL be similarly defined, with a constrained on the length of Xpre(S) 
to at most L. 

Lemma I 
For binary convolutional codes for which any route of m_ branches 

has Hamming weight at least n, it holds that 

max s=O,oo { cHm} :::; W. (5.14) 

For any binary convolutional code, we have 

(5.15b) 
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Proof of Lemma I 
The assumption implies that G(S) of a state 8 that has an outgoing 

branch to an 'all zeroes' state equals the weight of that branch. Thus, a 
candidate path metric for the 'all zeroes' state corresponds to a lightest 
excursion and (5.14) follows. Equation (5.15b) follows from (5.15a) for 
L L00 • The right hand side of (5.15a) is a consequence of (5.13) for 
general L instead of L00 • To show the left hand side of (5.15a) observe 
that there is a state Son X 1 = X(S), which has Hamming weight at 
least djree, such that 

SmaxWH(Xpre(S)) < SmaxWH(Xpost(S)) l, 
SmaxWH(Xpre(S)) > (smaxdfree- 1)/2 Smaxn + 1, 

D 
Examples III and IV illustrate the computation of Band Boo, and 

the use of the stopping rule. We remark beforehand, that for a certain 
value of B, path metric differences larger than B (but not larger than 
B + n) can occur before new looser states are deleted. 

Example III 
The code of Example I is reused (see Figure 2). A hard decision 

decoder is used, Smax = 1. From the trellis observe that, in terms of 
encoder output, 

Note that 

X(10) = X(Ol) = X1 = (11 00 10), 
X(ll) = X 2 = (11 11 10 10). 

Hm(lO) 
Hm(ll) 

Hm(Ol) = 2, G(lO) G(Ol) 
4, G(ll) = 2. 

1, 

The values of B and Boo work out to 1. Moreover, B cannot be defined 
any smaller (e.g., reception of 01 01 00 10 10). The numerical range 
with rescaling is reduced to B + 1 = 2 for the A-rule, and to B + 2 = 3 
for the B-rule (see Example V). Compare this with max{.6.cpm} = 
max 00 { .6-cpm} 5. If the 'all zeroes sequence' is received, the stopping 
rule deletes all states except the 'all zeroes' states. 
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Example IV 
The m = 4, R = 1/2 binary convolutional code with maximal 

dfree = 7 is taken from [4], Sma.x 1 and the generator functions are 
defined as 

g(l) = (1 0 0 1 1 ), g(2
) = (1 1 1 0 1 ). 

By inspection of the trellis, the following excursions are obtained (in 
terms of encoder output): 

x1 (11 01 01 10 11 ), 
X 2 (11 10 00 00 00 10 10 11), 
X 3 (11 01 10 00 00 10 00 01 11 ), 
x4 (11 01 10 oo oo 01 01 oo 01 11), 
X 5 (11 01 01 01 10 01 10 11). 

The Hamming weight Wi of path xi is 

w1 7, Wz 7, w3 = 8, w4 = 9, Ws = 10. 

Each Xi has the following states S for which X(S) 
notation of the states), 

xi (decimal 

X1 : 1, 2, 4, 8, Xz : 5, 6, 11, 12, X3 : 3, 7, 10, 13, 14, X4 : 15, X 5 : 9. 

Table 1 lists Hm(S) and G(S). Observe that Boo 4 and Boo equals 
the maximum of the ( G( S) - 1) values. Hence, BL is constant and B 
equals Boo. The maximum difference between candidate path metrics 
which occurs before looser states are deleted equals B + 1 5 for the 
A-rule, and B 2 6 for the B-rule (see Example V). Without a 
stopping rule, the maximum difference between candidate path metrics 
equals max{cHm} = 8 for block applications and max 00{cHm} = 7 for 
stream applications (see Theorem I). 

Denote by maxA,L { f::l.cpm} the maximum difference between candi
date path metrics for states at depth L when stopping rule A is used. 
Similarly, maxB,L{ f::l.cpm} for stopping rule B. A trivial bound is given 
by 

(5.16) 
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s* 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Hm<Sl 5 4 5 3 3 3 5 2 5 4 3 3 4 4 5 

G<Sl 2 3 3 4 4 4 3 5 5 4 4 4 4 4 4 

WH<X<Sl) 7 7 8 7 7 7 8 7 10 8 7 7 8 8 9 

* In decimal notation 

Table 5.1: Numerical results of Example IV 

In general, a somewhat tighter result than B + n is possible. Let I(S) 
be the maximum weight of any outgoing branch of the state S, i.e., 

I(S) max{ wH( e(S, T))! '(S, T) a branch in the trellis'}. 

Theorem III 
}or any binary convolutional code that satisfies Assumptions I-III, 

and S a state at depth ( L - 1) in the trellis, it holds that 

max{~cpm} ::; max{min{ SmaxG(S)-l, SmaxHmL-I(S) }+smaxi(S)jS}, 
A,L 

(5.17a) 
max{~cpm}::; max{min{BL-J,SmaxHmL-I(S)} + Smaxi(S)!S}. 
B,L 

(5.17b) 
If a soft decision decoder has an 'erasure symbol' (Assumption IV), 
these bounds are tight within a uround off" margin of (smaz -1). 

Example V 
For Examples III, IV with the B-rule, it can be verified by inspection 

that the values obtained from (5.16) are already tight, and Theorem 
III confirms these results. In case of Example III, note that 

I(Ol) = WH(Ol) 1, I(lO) WH(ll) 2, I(ll) = WH(Ol) = 1. 
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As a result, 
r:J.ix{ ~cpm} ::; 2. 

With Example IV, only 1(9) 1 is of importance. Hence, 

For the B-rule these values are tight as well. 
The following Lemma II puts a limit on the reduction in numeri

cal range that can be achieved by the stopping rules. It implies that 
for R = 1/n binary convolutional codes, the penalty for modulo arith
metic without stopping rule compared to rescaling with stopping rule 
is at most one bit (two bits, if rescaling can be implemented with non
negative numbers). 

Lemma II 
The following lower bound applies to the numerical range of the VA 

with stopping rule. 

l]~l { ~cpm} ~ r:J.r:{ ~cpm} ~ ( Smaxd free - 1) /2. (5.18) 

Proof of Lemma II 
There is a branch (S, T) on X1 = X(S) = X(T) such that for the 

states S, T, 

SmaxWH(Xpre(T)) 2:: (smaxdfree- 1)/2. 

Assume the 'all zeroes' sequence is received. Observe that stateS is not 
a looser state. The candidate path metric of the branch ( S, T) equals 

SmaxHmL-l(S) + SmaxWH(e(S, T)) 8maxWH(Xpre(T)) 
> (smaxdfree- 1)/2 

As demonstrated by Examples I and II there is no simple general 
relation between d free and the required numerical range. Theorem IV 
presents an upper bound on max 00 { ~pm} in terms of the parameters 
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(n, k, m, A1, dfree) of the binary convolutional code. This upper bound 
generalizes a recent result by Alston and Chau [1]. They proved that 
for decoders of binary R = 1/ n codes, under certain assumptions on 
the metric function [1], it holds that 

(5.19) 

Define D.M as the difference between the maximum possible number of 
memory cells in the encoder, km, and the true number of memory cells 
M. Note that D.M = 0 fork= 1. 

Theorem IV 'Generalized Alston & Chau bound' 
Under Assumptions I-III1 for any (n, k, m, M, dfree) binary convo

lutional code1 it holds that 

max= { D.pm} ~ 

Smaxmin{ ln(m +h)- dfree(1- 2-(i.lM+kS))J I 8 

Example VI 

(5.20) 

0, 1, ... }. 

For the code of Example I, the upper bound in Theorem IV evaluates 
to 4, which is a tight result. For the code of Example IV, we have that 
max 00 {b.pm} equals 5. However, Theorem IV gives an upper bound 
of 6. l-Ienee, Theorem IV is not tight in general. 

The question arises: Can 6 > 1 strengthen the bound for a particular 
(n, k, m, M, dfree)? For the sake of simplicity set k = 1 and let 

f(8)- n(m + 6)- djree(1- 2-8
). 

The 6 that minimizes f equals 

(5.21) 

For the sake of simplicity, assume (dJree/n) is a power of two. Then, 
we have that 

f(8*) n(m + 1 log2(dJree/n))- dfree 
nm- djree + n o(dJree)· 

(5.22) 
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The A & C bound equals nm- dfree/2 + n. From the table of n = 2, 
optimal dfree codes [4], we see that for 2 ::; m ::; 16, the free distance 
lies in the range m + 3 ::; d free ::; m + 4. For m 16, the table reads 
dfree = 20 and the (A & C) bound equals f(1) 24. The new bound, 
with 15* = 3 yields f(3) 20. 

III- THE NUMERICAL RANGE 
REQUIRED FOR THE VA 

In this section, Theorem I is proved. This theorem provides exact ex
pressions for max L { .1.pm}, max 1 ,L{ .1.cpm} and max L { .1.cpm}. These 
expressions are easy to evaluate. We already pointed out that if the all 
zeroes sequence is received, the path metrics equal Smax times the Ham
ming metrics by Assumption II. Therefore, we only need to show that 
no larger (candidate) path metric differences than stated in Theorem I 
can occur. 

Proof of Theorem I 
First, we show that no larger values for max£ { .1.cpm} than spec

ified can occur. Hereafter, the other two maxima follow from small 
modifications of the arguments below. 

See Figure 4. At a given depth Lin the trellis, let MIN be the state 
that has minimal candidate path metric. The candidate survivor path 
Q of MIN consists of the survivor path of some state min, followed 
by the branch (min, MIN). By e( Q) we refer to the encoder output 
symbols that correspond to the series of states Q, and similarly for 
other paths. In the context of metrics, Hamming weights, etc., the 
term 'path' always refers to a path in terms of encoder output symbols, 
i.e., e(Q) instead of Q. Let MAX be the state that has maximum 
candidate path metric at depth L. The candidate survivor path for 
MAX consists of the survivor path of some state max, followed by the 
branch (max, MAX). (MAX and MIN may coincide.) 

Note, that the survivor path of max has the minimal metric of all 
paths that end in max. The difference of the given candidate path met
rics of MAX and MIN is upper bounded by the given metric function d 
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of an arbitrary path P that leads to max and MAX, minus the metric 
of Q. The choice of P is detailed below. As discussed in [2], a term in 
the latter difference is of the form 

where 

r 
81, t1 

s2,t2 
e(s,t) 

d(x,y) 

received channel symbols (ann-vector), 
successive states on P, 
successive states on Q, 

(5.23) 

encoder output n-vector that corresponds to the state 
transition ( s, t), 
metric function of the (series of) channel symbol( s) x 
and the hypothesis bit( s) y. 

The difference of the branch metrics of the paths P and Q at a 
certain depth in the trellis can be upper bounded as follows. 

d(r,e(st,tl))- d(r,e(s2,t2)) < SmaxdH(e(sbtl),e(s2,t2)) 
- SmaxWH(e(st, tl)- e(s2, t2)) 

(5.24) 
Summation over the length of the paths of (5.24) yields the following 
upper bound on the maximum path metric difference, 

max{b.pm} ::=; SmaxWH(e(P)- e(Q)). (5.25) 

By the linearity of the encoder function e(.), we have 

e(P) e(Q) = e(P Q) = e(O, ... , (max- min), (MAX- MIN)) 
(5.26) 

Hence, (5.25) is equivalent to 

max{b.pm} ::=; SmaxWH(e(P Q)). (5.27) 

That is, the maximum candidate path metric difference of any two 
states is upper bounded by Smax times the Hamming weight of a path 
L branches long. 

Next, consider the question whether this path can be assumed to 
consist of a survivor path followed by a connecting branch. Observe 
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that the path P can be chosen freely out of all possible paths ending in 
max, followed by the branch (max, MAX). There is a affine correspon
dence between a path P and the resulting difference path U = (P- Q), 
that ends with the branch (max- min, MAX- MIN). Thus, there 
is a choice of P makes U equal to the survivor path of (max - min) 
followed by (max - min, MAX - MIN) 

Consider max{ cHm}. Survivor paths of length L < m_ + 1 can 
always be prefixed with 'all zeroes' branches to reach length m_ + 1. 
The Hamming metric stays the same and one again obtains survivor 
paths because no selection has been made yet. Thus, maximization for 
L = m_ + 1 upper bounds the result for L < m_ + 1. Now assume 
L > m + 1. Consider a candidate survivor path Z that ends with 
some branch (opt, OPT). Let pre be the 'all zeroes' state at depth 
( L - L'), L' 2: m + 1. Extend the 'all zeroes' path that leads to pre to a 
path that ends with (opt, OPT). By the VA, the resulting path W has 
a larger Hamming metric than the original candidate survivor path Z. 
W can be stripped of its leading (L- L') 'all zeroes' branches, so that 
it assumes length L'. As a result, 

maxL{cHm}:::; maxu{cHm}, L 2: L' 2: m + 1. (5.28) 

This proves Theorem I, for max { ~cpm}. 
Next, consider max 1 { ~cpm}. The distinction between the proof of 

the previous situation is that differences of candidate path metrics for 
the same state are considered. Thus, MAX and MIN coincide, and 
(MAX- MIN) equals the 'all zeroes' state. With this restriction, the 
rest of the proof still holds true. In case of max{ ~pm}, instead of sur
vivor paths followed by a connecting branch, only survivor paths are 
considered. In the latter proof, equality (5.5) emerges as a combination 
of equivalents of (5.25) and (5.26) for survivor paths P and Q. Again, 
the proof is similar and is left to the reader. 0 
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IV - SELECTION OF STATES THAT CAN 
BE ON THE OUTPUT PATH 

Figure 5 illustrates the key idea behind the stopping rule. With refer
ence to Corollary II, consider the worst case situation with k = 1 for 
max 1,oo{D.cpm} = dfree· That is, a VA with Hamming metric, compar
ison of the 'all zeroes' candidate survivor path with an excursion X of 
weight dfree, when the 'all zeroes' sequence is received. Take a state S 

at some depth tin the trellis that is about half-way on X. Assume that 
the Hamming weight of the section [0, ... , S] of X, i.e., the Hamming 
metric Hm(S) of S slightly exceeds dfree/2. Can the output path of 
the VA run via state S? Even if the data received after stage t would 
exactly match the section [ S, ... , 0] of X, the metric of the path X still 
exceeds dfree/2, whereas the 'all zeroes' path ends with a metric less 
then dfree/2. 'Looser state'S cannot be on the output path of the VA. 
Deletion of looser states could half max { D.cpm}. 

We give two proofs of Theorem II-A. The first proof is more con
structive and detailed in nature. The second proof, which invokes The
orem I, is more conceptual. 

Proof 1 of Theorem II-A 
The formal principle behind the stopping rule is illustrated by Fig

ure 6. Consider a state S and T at depth L into the trellis. Assume 
that the path metric pm( S) of S exceeds the path metric of T by 
SmaxG(S - T) or more. Let Ps be the survivor path of S. Take an 
extention qs of Ps that starts from state S to what could in principle 
be the output path P = (Pslqs) of the VA. The metric of Pis 

mp = pm(S) + d(r, qs), (5.29) 

where r is the received sequence that starts from depth t, and d is the 
metric function as defined in the proof of Theorem I. Out of all paths 
that emanate from Tat depth t and merge with qs at some later stage 
of the trellis, let qmin be the path for which dH( qmin, qs) is minimal. 
The metric of the concatenation Q of the survivor path of T with qmin 
IS 

mQ = pm(T) + d(r, qmin)· (5.30) 
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Observe that for mp to be smaller than mQ, qs is the best possible 
value of r. Let v be the difference path v = qs - qmin that connects the 
state (S- T) to the 'all zeroes' path. By the triangle inequality, 

mp- ffiQ = pm(S)- pm(T) + d(r, qs)- d(r, qmin) 
~ pm(S)- pm(T)- SmaxdH(qs,qmin) 
= pm(S) pm(T) SmaxWH(v) 

pm( S) - pm(T) SmaxG( S - T) 
~0. 

(5.31) 

If the path metric difference equals SmaxG(S - T) then the output 
path of the VA may be non-unique, and the path which goes via T is 
preferred. This gives a further reduction in numerical range. 

For block applications, special considerations apply to the end of 
the trellis. A finite length of the trellis can limit the length of the 
extension qs, qmin· On the other hand, in that case it suffices for qs, 
qmin to reach the final stage of the trellis. They do not have to merge. 
Accordingly, define GM(S) to be 

GM(S) = min{wH(vs)lvs: 'vs starts inS, has length M' }, (5.32) 

so that we have 

GM(S) < min{wH(vs)l'vs begins inS, has length L = oo'} 
min{wH(v)l'v begins inS, v merges with 'zeroes' path} 
G(S) 

(5.33) 
Thus, at the end of the trellis SmaxG( S) is an overestimate of the gain 
that can be realized. Hence, looser states for a certain possible gain 
SmaxG, certainly are looser states when the true possible gain is only 
SmaxGM. 

Proof 2 of Theorem II-A 
If at a certain depth L in the trellis, the path metric of a state S 

exceeds that of a state T, then this difference must be compensated 
for by a difference in metrics ("gain") of the extensions of the survivor 
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paths of S and T to the end of the trellis. Otherwise, the output path 
of the VA cannot run via S. By (5.5) applied to the time reversed 
convolutional code the difference between the metrics of the extensions 
is bounded by SmaxHmrev(S- T), where Hmrev denotes the Hamming 
metric function of the time reversed convolutional code. 

In fact, (5.5) needs to be modified to the situation in which all 
encoder states are allowed as initial states of the time reversed code 
because all encoder states are possible at the end of the trellis. As a 
consequence, not just 'all zeroes' but all initial states are allowed in 
the evaluation of Hmrev(S T). This change in initial condition makes 
that Hmrev,L(S) is non-decreasing in L. At the end of the trellis, i.e., at 
the beginning of the time reversed trellis, Hmrev(S- T) is an overesti
mate of the possible gain Hmrev(S T). The gain function G(S) is an 
overestimate of Hmrev(S), because the modification of initial condition 
can only decrease the Hamming metrics. In case the difference of path 
metrics of S and T equals SmaxG(S T), the path that goes via T is 
preferred. Finally, conclude that if S is to be on the output path of the 
VA, then the path metric of S should be less than SmaxG(S- T). 0 

Examples III, IV show that the stopping rule can reduce the numer
ical range of the rescaling option. Analysis of the effect of the stopping 
rule on the numerical range is the subject of Theorem III. 

Proof of Theorem 11-B 
Consider the maximum difference between path metricf' when the 

stopping rule of Theorem II-A has been applied. We show that this 
numerical range is at most Br,. Therefore, deletion of all states that 
have a path metric that exceeds the minimum path metric by more 
than B L is a valid alternative stopping rule. 

By Theorem I, for arbitrary states S and T at depth L, we have 

pm(S)- pm(T) :S SmaxHmL(S- T). (5.34) 

The stopping rule of Theorem II-A deletes Sunless 

pm(S)- pm(T) :S SmaxG(S- T)- 1. (5.35) 
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Combination of (5.34) and (5.35) yields 

pm(S) pm(T) ::; min{ SmaxG(S- T)- 1, SmaxHmL(S- T)}. (5.36) 

Maximization over A = ( S - T) proofs that no larger difference than 
BL is possible. 
LetS* be the state that achieves the maximum in (5.10). If SmaxHm(S*) 
is less than or equal to (smaxG(S*) 1), then we suppose that the 'all 
zeroes' sequence is received noisefree and a path metric difference of 
BL occurs between S* and the 'all zeroes' state. If SmaxHrn(S*) ex
ceeds (smaxG(S*)- 1), assume that 'al1 zeroes' are received noisefree 
until the survivor path of S* has accumulated a Hamming metric of 
Smax( G( S*) -1 ). Assume that the remaining 1 'sin the survivor path of 
S are erased. Each erasure reduces by Smax the path metric difference 
between S* and the 'all zeroes' state, which originally was SmaxHm( S*) 
and now becomes Smax(G(S*) - 1). Hence, for soft decision decoders 
with an erasure symbol the value of BL is within ( Smax- 1) of optimal
~ 0 

V- REQUIRED NUMERICAL RANGE 
FOR RESCALING W. STOPPING Rl.JLE 

Proof of Theorem III 
Let (s, S) and (t, T) be branches, with S and T states at depth L 

in the trellis ( s, t at depth ( L - 1)). Because state s was not deleted 
by the stopping rule, it holds that 

pm(s) prn(t) ::; SmaxG(s- t)- 1, for stopping rule A, (
5

.
37

) 
pm(s) pm(t) ::; BL-b for stopping rule B. 

Similarly as in the proof of Theorem I, with u s t, U = S- T, it 
follows that 

pm(S)- prn(T) < pm(s)- pm(t) + d(r, e(s, S)) d(r, e(t, T)) 
< pm(s)- pm(t) + Bmaxdn(e(s, S), e(t, T)) 
< pm(s)- pm(t) + Smaxwn(e(u, U)) 

(5.38) 
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Combination with (5.5), (5.37) and maximization over (u, U) yields the 
right hand side of (5.17a,b) as an upper bound. 

To show that the values specified by (5.17) can actually occur in 
practise for decoders that have an erasure symbol, assume that the re
ceived symbols that correspond to the branch (s, S) are received noise
free (Assumption II). Combination with the result of Theorem II-B 
shows that within a "round off" margin of ( Smax - 1) the bounds of 
(5.17) are tight under Assumption IV. D 

VI- BOUND ON maxoo{~pm} IN TERMS 
OF dfree 

The generalized A & C bound (5.21) reduces to the elementary bound 

max oo { !:lpm} ~ Smaxmn, 

for 8 = 0 and !:lM = 0 (k=1). The A & C bound is obtained forb 1 
for rate R 1/n codes. First, the A & C case is proved. Finally, a 
packing lemma (Lemma III) establises Theorem IV for kfl + !:lM > 1. 
Note that Theorem IV easily generalizes to dfree,m+5 [1] instead of dfree, 

i.e., the free distance attained over L m + 8 branches. 

Proof of Theorem IV for tJ 1, k 1, 'A & C bound' 
By Theorem I it suffices to find an upper bound for the maximum 

Hamming metric in a trellis L branches deep. Denote the state with 
maximum Hamming metric 'OPT'. 

For L = m + 1, there are at least two different paths that start in 
the 'all zeroes' state and end in OPT. By definition, the Hamming 
distance between any two different paths that start in the same state 
and end in the same state is at least dfree· Thus, the two paths have 
distance at least djree· Call these paths P 1 and P 2 • Define Q1 and Q2 

as the bitwise complement of P1 and P2 , respectively. Of course, Q1 

and Qz also have minimum distance dfree: 
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WH(P2) = (m + l)n WH(Q2)· 

By the triangle inequality for the Hamming distance function dH, we 
have that 

WH(QI) + WH(Q2) = dH(Qt,O) dll(Q2,0) ~ dll(QI,Q2) ~ djree· 
(5.39) 

By Lemma I, it holds that 

maxoo{~pm} ::; Smaxmin{wH(P!),wll(P2)} 
= Smax l(m + l)n- max{ WH(QI), WJI(Q2)}J. 

(5.40) 
Since a maximum is never less than the average, from (5.39) it follows 
that 

(5.41) 

Substitution of (5.41) in (5.40) yields the Alston and Chau ( A & C) 
result, i.e., 

max 00 { ~pm} Smax l( m+ 1 )n-dfree/2 J. D 
(5.42) 

In our proof of the A & C bound the substitution of (5.41) in (5.40) 
is the crucial step. Given any set of two binary vectors { Q1 , Q2 } with 
minimum distanced free, at least one of the vectors has Hamming weight 
at least dfree/2. Essentially, this amounts to a packing problem. It is 
impossible to pack 2 points with minimum distance dfree in a sphere 
of radius less than dfree/2. For the i-th shift register, mi bits are 
determined by the final state OPT, and 6 + (m mi) bits can be 
chosen freely. In total there are 

k6 km - M = k6 + ~M 

degrees of freedom. If 26k+t::.M > 2 points are to be packed, the radius 
of the containing sphere has to be larger. This increases the "dfree/2" 
term of the A & C bound. However, this increase can be compensated 
for by an commensurable increase in the "( m + 1 )n" term to ( m + o)n. 
As we shown in Example VI, for codes with a large enough (dJree/n)
ratio a significant net improvement over the A & C bound is possible. 
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The set2 of 26
k+t::.M paths which connect the initial 'all zeroes' state 

and 'OPT' forms a affine space. As the encoding function is linear, 
both the state sequences and the encoder output of the paths form a 
linear space. Because a convolutional code is uniquely decodable, the 
paths have the same starting state and the same final state, the encoder 
output sequences of the paths are all different. Any pair of paths has 
distance at least dfree (or dfree,m+t;, etc.). Finally, the (n, k, m, M, dfree) 
convolutional code supplies an affine subspace of 28k+t::.M binary vectors 
{ Qili} with minimal Hamming distance dfree· Our generalization of the 
A & C bound concentrates on the solution of the following problem. 

Packing Problem 

Given an affine subspace of 2H vectors { Q1 , Q2, . .. , Q2H}, 
Qi E GF(2N) with minimum Hamming distanceD: What 
is the smallest possible radius R*(H, D, N) of a sphere with 
center zero that contains all vectors? 

With the following choice of the parameters H, D, M: H kb+t:l.M, 
D = d free, N = ( m + b)n, our proof of the A & C bound generalizes 
and shows that 

max 00 { t:l.pm} s; ( 5.43) 

Smaxmin{l(m + b)n R*(kb + t:l.M, dfree, (m + b)n)J IS 2:: 0}. 

Lemma III provides an analytical lower bound for R*. Substitution of 
this bound in (5.44) proves Theorem IV. 

Lemma III 'Packing Lemma' 
The maximum Hamming weight R* of an H -dimensional affine sub

space of GF(2N) with minimum Hamming distance D is at least (1 
2-H)D. 

2 For codes with k > 1 and D.M > 0, the value li = 0 is allowed. 
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Proof of Lemma III 
Lemma III is first proved for the case H 2. Consider four binary 

vectors { Qt, Q2, Q3 , Q4 } that form an affine subspace. In a field of 
characteristic two, if four points form a linear subspace, the sum of the 
vectors equals the 'all zeroes' vector. This property is invariant under 
a translation of the points over a constant vector. Thus, the same 
property holds for an affine subspace. Denote by (abed), a, b, c, d E 
{0, 1} the entries of the vectors at an index i 1, 2, ... , N. The affine 
subspace property is in fact a bitwise property. The number of ones, 
i.e., (a + b + c + d) is even. Nabcd denotes the number of times the 
combination (abed) occurs. 

The packing problem can be restated in terms of the Nabcd-variables, 
as an integer linear programming problem (ILP) (e.g., N10** = N 1000+ 
N1001 + Nww + Nwu). 

N =EN****' (5.44a) 

D ~ d12 Nw** + E No1**, 
(5.44b) 

D ~ d34 N**lO EN**Ob 

W1 = ENh**' 
(5.44c) 

w4 = EN***l 

max_w .~ w1 
> ... (5.44d) 

max_w ~ w4 

R* min{ max_w I Nabcd, (5.45a-d) }. (5.44e) 

The conditions (5.45a-d) are necessary conditions. 
The ILP (5.45) can be relaxed to a real linear programming prob

lem (LP) when only the average weight of the vectors and the average 
pairwise distance are constrained. 

N =EN****' (5.45a) 

(5.45b) 
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R =min{ w I Nabcd, (5.46a-c) }, 
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( 5.45c) 

(5.45d) 

where avg_wabcd = (I/4)wH(abcd), and avg_dabcd, denotes the average of 
the six pairwise Hamming distances between the four bits. For instance, 
avg_doon = 4/6 2/3. Observe that avg_wabcd as well as avg_dabcd 
depend only on the Hamming weight of (abed). 

Let 
To= Noooo, 

T2 Nnoo + N1010 + N10o1 + Nona + No101 + Noou, 

T4 =Nun· 

Substitution of (5.47) into (5.46) yields 

D ~ 2T2/3, 

w T2/2+T4. 

(5.46a) 

(5.46b) 

(5.46c) 

(5.47a) 

(5.47b) 

(5.47c) 

The solution of the LP is R 3Dj4. Indeed, this solution is indepen
dent of the dimension N of the space. However, as a consequence of 
equation (5.48a) N must exceed 3D/2, or the LP (5.48) has no solution. 
Observe that the LP (5.48) is a relaxation of the original formulation 
of the packing problem (5.45), so if (5.48) has no solution, in fact, the 
packing problem has no solution. Hence, the proof of our result pro
duces as a Corollary a lower bound for the dimension N of the space 
for the packing problem to have a solution at all. 

The main facts used in the proof for H = 2 are 

• avg_wabcd and avg_dabcd depend only on the number of ones in the 
section (abed) of the affine subspace, 

• the number of ones in a section of an affine subspace of dimension 
H equals 2H-1, with the exception of the trivial 'all zeroes' and 
'all ones' sections. 
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These basic facts hold true regardless of the value of H. Let P = 2H-l. 
For general H, the analogue of (5.48) works out to 

PTp 
D:::; 2P -1' 

w = Tpf2 + T2P, 

R* =min{ w I Tp, T2p, (5.49a, b) }. 

(5.48a) 

(5.48b) 

(5.48c) 

Here Tp denotes the sum of all Nx1 ••• x2p for which ( x 1 ••• x 2p) forms 
a section of an affine subspace and the Hamming weight of ( x 1 ••• x 2p) 
equals P. The LP (5.49) is solved for R* = (1 - 2-H)D, which proves 
Lemma III in full generality. Similarly to the case H 2, a necessary 
lower bound for the dimension N of the space for the packing problem 
to have a non-empty solution at all follows, viz. N 2 (2 1/ P)D. 0 

Proof of Theorem IV 
For 8 0 and D.M = 0, the bound (5.44) reduces to the elementary 

upper bound Smaxmn. Therefore, without loss of generality, it is as
sumed that D.M > 0 for 8 = 0. Thus, in any case the number of points 
in the affine subspace is nonzero because k8 + D.M > 0. Theorem IV 
follows by application of Lemma III to (5.44). 0 

History of Results and Acknowledgen1.ent 

While reading [1], we discovered a more general approach as stated in 
Theorem I and Theorem IV. Subsequently, we learned of the existence 
of a NASA internal report in which results very similar to our Theorem 
I had apparently been found [8]3 Theorems I, IV were presented at 
the 1992 Symposium on Information Theory in the Benelux [5], and 

3 During the revision of the manuscript (Sept. 1993) a copy of [8] is not yet 
available to us. 
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at the 1993 IEEE International Symposium on Information Theory. 
Theorem I shows that the maximum differences between (candidate) 
path metrics occurs in a situation that is trivial for decoder operation, 
viz. noiseless reception of codewords. This led to the discovery of the 
stopping rule (Theorem II, III). In an extension of the original paper 
for the 1993 Benelux Symposium ([6]) the stopping rule and its analysis 
were added. 

The author would like to thank his colleagues Johan van Tilburg 
and Frank Muller for their careful reviews of this manuscript. 
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al 

bl 

cl 

Figure 5.1: Symbol metrics 
a - given that a '0' was sent 
b - given that a '1' was sent 

Metric 

Metric 

Metric 

c - difference between b) and a) 
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4 4 

Figure 5.2: Trellis of R=l/2 code. 3 stages, 4 states 

00 00 00 

2 

Figure 5.3: Part of trellis of R=2/3 code. 2 stages, 4 states 
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_..!---- ...... _,...-, 
-- max MAX 

00 .. 00 
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L-1 L 

Figure 5.4: Converse for max{ L:lcpm} 
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W > dfree 
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Figure 5.5: Key idea behind stopping rule 
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Figure 5.6: Competition between paths 
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Excerpt (Abstract in Dutch) 

Anno 1994, circa een halve eeuw na Shannon's stichting van het vakge
bied, is inforrnatietheorie een nogsteeds zeer levendig, en uiterst veel
zijdig vakgebied. Deze dissertatie presenteert bijdragen op een aantal 
deelgebieden der inforrnatietheorie, 

• een bovengrens voor het capaciteitsgebied van het tweeweg-kanaal 
met enkelvoudige uitgang, 

• een analyse van de maximale processordichtheid in een program
meerbare chip, waarbij n paren processoren via n disjuncte paden 
rnoeten kunnen communiceren, 

• definitie van een kanaal met onzekere tijdrelatie tussen zender 
en ontvanger, en een bepaling van het capaciteitsgebied van dit 
kanaa.l, 

• een irnplernentatiemethode voor de padmetrics in het Viterbi al
goritrne gebruik makende van two's complement arithmetic, 

• een analyse van het numeriek bereik van de padmetrics in het 
Viterbi algoritme, alsmede een techniek voor de reductie van dit 
bereik met maximaa.l een factor twee. 

Hoofdstuk 1 behandelt een bovengrens voor het capaciteitsgebied 
van het tweewegkanaal met enkelvoudige uitgang. op basis van een 
zogenaarnde afhankelijksheidsbalans. Wanneer een tweeweg-kanaal uit 
twee onafhankelijke 'eenweg-kanalen in beide richtingen bestaat dan 
zijn in het optimale geval de ingangssignalen aan beide zijden van het 
gecombineerde kanaal statistisch onafhankelijk. In het algerneeri, kan 
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het gebruik van statistische afhankelijkheid tussen de beide ingangssig
nalen de bereikbare datasnelheden vergroten. De ingangssignalen zijn 
echter afgeleid van de berichten, en de berichten zijn statistisch on
afhankelijk gekozen. De eerste ingangssignalen van een strategic zullen 
derhalve altijd onafhankelijk zijn. Voor volgende ingangssignalen hoeft 
dat niet te gelden, maar wat wel bewezen kan worden is dat gemiddeld, 
de afhankelijkheid die de ingangssignalen bezitten niet groter kan zijn 
dan de a posteriori afhankelijkheid van de ingangssignalen gegeven de 
uitgangssignalen. Waar het op neer komt is dat afhankelijkheid die ge
bruikt wordt eerst opgebouwd moet worden. Bovendien kan het intro
duceren van een extra parallelkanaal de capaciteit van het oorspronke
lijke kanaal aileen maar vergroten. Een dergelijk parallelkanaal kan zo 
gekozen worden dat het a posteriori afhankelijkheid afbreekt, zonder 
dat het wezenlijke informatie weggeeft en derhalve het capaciteitsge
bied daadwerkelijk vergroot. 

Hoofdstuk 2 verhandelt over wat met wat gevoel voor analogie par
keerplaatstheorie genoemd kan worden. Gegeven een rechthoek die is 
onderverdeeld in rechthoekige cellen, allemaal van gelijke grootte, kun
nen cellen gebruikt worden als processorcellen of als communicatiecellen. 
Het streven is een maximale dichtheid van processorcellen te bereiken, 
gegeven dat elk paar processorcellen verbonden kan worden via een 
pad dat uit louter communicatiecellen bestaat. De maximale dichtheid 
van processorcellen blijkt 2/3 te zijn. Wanneer we de processorcellen 
als autos beschouwen, en de communicatiecellen als lege cellen, en een 
processor cell vervangen door een 'uitgangs eel', kan iedere auto naar 
de uitgang. Vice versa, op een parkeerplaats, wanneer alle autos naar 
een uitgangscel kunnen bewegen over een pad van vrije cellen, indien de 
autos bidirectional kunnen bewegen, kan dan iedere auto via de uitgang 
naar iedere andere auto bewegen. In die zin is dan ieder paar autos met 
elkaar te verbinden. Meer algemeen is de vraag, wat, gegeven n paren 
van processoren die verbonden moeten worden via disjuncte paden, de 
maximale dichtheid van processorcellen kan zijn? Het blijkt dat het 
optimale verloop van de processordichtheid O(n-2 ) is. 

Hoofdstuk 3 gaat over kanalen met een onzekere tijdrelatie. Shan
non's resultaat voor de capaciteit van het 'eenweg-kanaal vooronder
stelt dat zender en ontvanger de beschikking hebben over een perfecte 
klok, en derhalve in staat stelt perfect 'een op 'een de ingangs- en nit-
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gangswaarden van het kanaal te bemonsteren. In het algemeen, trans
porteren kanalen signalen niet aileen in de spati" ele maar ook in de tijd
dimensie. In het voetspoor van Baggen en Wolf, beschouwen we een 
belangrijke klasse van kanalen nl. opslagmedia zoals compact disc en 
optische of magnetische tape. lndien de snelheid waarmee een dergelijk 
medium wordt afgespeeld niet exact gelijk is aan de snelheid waarmee is 
opgenomen, ontstaat onzekerheid in de tijdrelatie tussen zender en ont
vanger. Neem aan dat het kanaal een tweewaardige ingang en uitgang 
heeft. De lengte van een pulstrein oftewel 'run' van 'eenen of nullen kan 
dan worden uitgerekt of verkort onder invloed van de onjuiste bemon
steringssnelheid. Indien wordt aangenomen dat slechts de lengtes van 
pulstreinen wordt be"iinvloedt, maar dat niet hele pulstreinen van 'ee
nen of nullen verloren gaan waardoor naburige pulstreinen van nullen, 
resp. 'eenen zouden versmelten, zijn zender en ontvanger synchroon op 
het nivo van het pulstrein-volgnummer. Door het probleem te herfor
muleren in term en van pulstreinen als ingang en uitgang van het kanaal, 
kan de capaciteit van dit kanaal bepaald worden met behulp van een 
theorema van Verdu over de capaciteit per eenheid van kosten. 

Hoofdstuk 4 heeft als onderwerp de implementatie van het Viterbi 
algoritme (VA). Het resultaat is geldig voor (nagenoeg) iedere toepass
ing van het Viterbi algoritme, niet aileen voor het decoderen van lin
eaire convolutiecodes. De padmetrics in het VA accumuleren de afs
tand tussen de ontvangen reeks kanaalsymbolen en de 'survivor'-paden 
in de trellis. Naarmate het aantal opgetreden kanaalfouten toeneemt, 
groeien de padmetrics. In een implementatie heeft het de voorkeur in
dien de padmetrics kunnen worden ge" implementeerd met een eindig 
aantal bits. Derhalve kunnen de volgende eigenschappen van het VA 
worden uitgebuit. L De selectie van de survivor-paden hangt aileen af 
van verschillen van padmetrics. 2. Het maximale verschil tussen twee 
padmetrics is eindig en kan worden begrensd met behulp van eigen
schappen van de trellis. Een bekende implementatiemethode die ge
bruik maakt van deze twee eigenschappen is de zogenaamde 'rescaling' 
implementatie. Daarbij wordt na iedere iteratie van het VA de mini
male padmetric van aile padmetrics afgetrokken. Zodoende blijven alle 
padmetrics in het bereik van nul tot en met het maximale padmetric 
verschil. Deze methode heeft als nadeel dat aftrekmiddelen noodza
kelijk zijn in de iteratie van het VA. Dit kost hardware en rekentijd. 
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Het bepalen van de minimale padmetric kan evt. vermeden worden. 
Voorgesteld wordt een alternatieve methode die het gebruik van a.f
trekmiddelen overbodig maakt. Indien de padmetrics worden gerepre
senteerd modulo een constante zodanig dat het bereik van de modulo 
operator ongeveer symmetrisch is om nul zoals bij 'two's complement 
arithmetic', treden weliswaar overflows op, maar indien de constante 
groot genoeg gekozen wordt, leidt dit niet tot algoritmische fouten. Het 
modulo gereduceerde verschil van twee padmetrics is namelijk gelijk aan 
het originele verschil mits dit originele verschil binnen het bereik van 
de modulo operator ligt. 

In het verlengde van hoofstuk 4, wordt in hoofdstuk 5 het maxirnale 
verschil tussen twee padmetrics nader geanalyseerd voor het geval van 
toepassing op lineaire convolutie codes. Het resultaat is geldig voor 
hard decision decoding en voor een klasse van soft decision metrics. 
Bewezen kan worden dat het ontvangen van het codewoord bestaande 
uit allemaal nullen de meest kritische situatie is voor het verschil tussen 
padmetrics. Tevens kan bewezen worden dat dit verschil als functie van 
de diepte in de trellis eerst toeneemt en vervolgens (licht) afneemt. Voor 
de implementatie is het van belang het maximale verschil tussen can
didaatwaarden voor de padmetrics te bepalen in de VA iteratie. Deze 
verschillen zijn namelijk groter dan die tussen de padmetrics zelf. Voor 
wat betreft de maximale verschillen tussen kandidaatwaarden voor de 
padmetrics dient een onderscheid gemaakt te worden tussen rescaling 
en modulo aritmetiek implementaties. Bij modulo aritmetiek hoeven 
namelijk aileen de verschillen tussen twee kandidaatwaarden voor een
zelfde padmetric d.w.z. voor eenzelfde node in de trellis beschouwd te 
worden. Hierdoor is bij modulo aritmetiek het numeriek bereik van de 
padmetric-waarden (iets) kleiner. Een ander resultaat is dat de max
imale verschillen tussen padmetrics gereduceerd kunnen worden door 
een selectiecriterium. Relatief grote padmetrics komen overeen metre
latief onwaarschijnlijke survivorpaden. Het kan bewezen worden dat 
sommige van die paden nooit het output pad van het VA kunnen zijn, 
omdat er altijd een ander pad is dat een kleinere padmetric heeft. Dit 
leidt tot een reductie van het numeriek bereik van de padmetrics en 
van de kandidaatwaarden voor de padmetrics. De winst bedraagt op 
zijn hoogst ca. een factor twee. 
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1. De hoeveelheid afhankelijkheid zoals gemeten met de ( conditionele) 
mutuele informatie vormt een effectief aangrijpingspunt voor een bo
vengrens aan het capaciteitsgebied van het twee-weg kanaal met enkel
voudige uitgang. 

2. De maximale dichtheid van processoren in een programmable gate array 
met vertex connectivity zodanig dat elke n paren processorcellen via 
n disjuncte paden van communicatiecellen kunnen communiceren is 
O(n-2 ). 

3. Het capaciteitsgebied van een belangrijke klasse van kanalen met onze
kere tijdrelatie tussen zender en ontvanger laat zich exact bepalen met 
behulp van een beschrijving in termen van pulstrein-lengtes. 

4. Two's complement aritmetiek leidt tot een efficieiite implementatie van 
de padmetrics in het Viterbi algoritme. 

5. Het numeriek bereik van de padmetrics in het Viterbi algoritme, als
mede van kandidaatwaarden hiervoor, laat zich exact analyseren voor 
decoders van lineaire convolutiecodes. Dit numeriek bereik kan geredu
ceerd worden met een eenvoudige selectieregel. 

6. Het fragmentarisch contact met andere vakgebieden bevestigt de stu
dent in zijn studiekeus. 

7. Een voordeel van het commerciele denken van deze tijd is dat het men
sen dwingt positief over te komen. 

8. Gegegeven het periodieke karakter van veel processen en ervaringen in 
het Ieven, veroorzaakt door de eindigheid van variatie en de alornte
genwoordigheid van terugkoppelmechanismen, is de vraag gerechtigd 
of het Ieven niet eenvoudiger in een frequentiedomein begrepen zou 
kunnen worden. 

9. Hoewel de eerste en tweede wet van Newton ingang gevonden hebben in 
het algemeen spraakgebruik ( actie-reactie wet: "wie kaatst moet de hal 
verwachten", aantrekkingswet: "aantrekking tussen mensen met verge
lijkbare interesses" ), rijst de vraag of ook Einstein's theorie niet over
draagbaar is naar interpersoonlijke relaties. Massa, ge:interpreteerd als 
weerstand tegen veranderingen zou, volgens Einstein, een in zichzelf 
gesloten vorm van energie zijn, die vrijgemaakt kan worden. De ener
gie die vrijkomt (bijv. bij het krijgen van een inzicht) zou evenredig 
zijn met de orngezette massa oftewel de vrijgemaakte weerstand tegen 
veranderingen. 

10. (Analogie van Einstein's wet van constante Iicht oftewel waarnerning-



snelheid.) Aangezien zowel waarneming perse als tijdsbeleving direkt 
gekoppeld zijn aan het ervaren van een verandering in de bewustzijns
toestand van de waarnemer is de subjectieve waarnemingssnelheid, hoe
wei onquantificeerbaar, voor alle waarnemers (bijv. een schildpad en 
een vogel) gelijk. 

11. Snelheidsbeperkende afbuigingen van een rijbaan in de verticale di
mensie hebben de voorkeur hoven horizontale afbuigingen omdat deze 
laatste methode verschillende soorten verkeersdeelnemers met elkaar in 
conflict brengt. 

12. Voor het spreekwoord "iemand een oor aannaaien" zijn nieuwe toe
passingen mogelijk in het kader van het voorzien van alle koeienoren 
met genummerde plastic labels en in het kader van het Dolby ProLogic 
systeem met vijf luidsprekers. 




