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Priorean Tense Logics in Modal Pure Type Systems*

Tijn Borghuis
Eindhoven University of Technology®

1. Intreduction

The aim of this paper is to extend typed A-calculus with temporal reasoning. Typed A-calculi
have a number of features which make them very suitable for applications to knowledge
representation {see [Ahn et al. 1994]), but they lack the possibility for reasoning about
situations that change in time which is vital to some of these applications. Simply put, the
reason for this inability is that the language of type theory (like that of other major logical
formalisms) is atemporal; it was designed to deal with the truth and falsity of propositions
sub specie aeternitatis. This is in strong contrast with natural language, where temporal
properties of states of affairs (such as their duration or temporal order) can be expressed
directly through changes in verb-form or ‘tense’: ‘John sings’ is true when John sings now,
whereas ‘John sang’ is true when John was singing somewhere in the past.

One of the first attempts to reconcile the discrepancy between the atemporal language of
logic and tensed natural language with modern logical means were Arthur N. Prior’s ‘tense
logics’” ([Prior 1957], [Prior 1967]). In Priorean Tense Logic, standard propositional logic
is extended with four operators that transform an untensed proposition () into a tensed
expression:

Ge: ‘always in the future it is Going to be the case that ¢’
F¢: ‘somewhere in the Future it will be the case that ¢’
Hy: ‘always in the past it Has been the case that ¢’

Py: ‘somewhere in the Past it was the case that ¢’.

The extended language allows the expression of a great variety of temporal structures and
temporal arguments. This has led to widespread applications ranging from the semantics of
natural language (see [Gamut 1982]) to the verification of computer programs (cf. [Goldblatt
1992]).

For the purposes of this paper, the main advantage of Priorean Tense Logics is that they
capture temporal reasoning by means of intensional (or modal) operators. From the point
of view of present day modal logic, tense logics can be conceived of as multi-modal logics of
which the operators interact in specific ways. This view provides a direct connection with
the framework of Modal Pure Type Systems (MPTSs) presented in [Borghuis 1994]. These
systems extend typed A-calculi that correspond to standard non-meodal logics with modal

*This research was carried out in the project ‘Dialogue Handling and Knowledge Acquisition’ (DenK),
supported by the Tilburg-Eindhoven Organisation for Inter-University Cooperation _
"Department of Mathematics and Computing Science, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
E-mail: tijn@win.tue.nl



operators. For a family of multi-modal logics a ‘propositions-as-types’ interpretation has
already been given in the MPTS-framework, i.e. a formal mapping has been constructed from
natural deduction proofs in these logics to terms in an MPTS (and vice versa). Therefore
investigating the possibilities for the interpretation of Priorean Tense Logics in MPTSs seems
a promising way of bringing temporal reasoning into type theory.

Because of the unusual combination of subjects, keeping this paper self-contained is in-
feasible. However, we do not aim at an (imaginary) ideal reader with detailed knowledge
of both Priorean Tense Logic and Modal Pure Type Systems hut assume that the reader is
familiar with basic modal logic (e.g. [Chellas 1980]} and linear natural deduction (as in [van
Westrhenen et al. 1993]) on the one hand and with typed A-calculi (preferably Pure Type
Systems [Barendregt 1992]} and the propositions-as-types interpretation of (non-modal) logic
on the other hand. Throughout the paper we try to focus on ideas rather than technical
details, and to provide the reader with sufficient examples to gain an intuitive understanding
of what is going on.

The structure of this paper is as follows: first we give an introduction to the basic tense
logic and a number of its extensions, each capturing a different conception of the flow of time
(section 2). Then natural deduction formulations of these logics are given (section 3). Using
the natural deduction systems, MPTSs are defined in which the tense logics can be inter-
preted (section 4). Section 5 contains a short digression on the limitations of strengthening
tense logical deduction systems and MPTSs by so-called modal rules. The paper closes with
concluding remarks (section 6).

Due to this structure, the reader will meet all of the logical systems and principles discussed
in this paper three times: first in an axiomatic guise (section 2), then in a deductive guise
(section 3), and finally in the guise of a type system (section 4). Since we treat a fair number
of systems and principles, we thought it might be helpful (if only for future reference) to
provide the reader with some sort of road-map indicating where particular systems occur and
reoccur in the course of this paper. The table below lists (the section numbers of) the three
occurences for each of the main systems and clusters of principles treated in this paper. The
first entry is for the minimal Priorean Tense Logic K;. All other tense logics are obtained by
strengthening this logic with additional principles formalizing further properties of time. A
number of these principles, listed here as ‘further properties’, are treated in this paper. One
of the logics extending K; is the logic Lin which is the minimal tense logic for linear flows
of time. If Lin is in turn extended, we obtain tense logics for a number of linear structures
which are familiar from mathematics (like {IV,<)). These logics are treated as a group in
this paper and listed below as ‘familiar structures’.

Tense logic Azioms | Deduction | Type System
K, 2.1 3.1 4.2
further properties 2.2 3.3 4.3

Lin 2.3.1 3.51 4.5.1
familiar structures | 2.3.2 3.5.2 4.5.2




2. Tense logic

In this section we briefly introduce the tense logical systems that will be subjected to deductive
and type theoretical treatment throughout this paper. For a thorough discussion of the listed
axioms and logics the reader is referred to [van Benthem 1983].

2.1. The basic system K,

The language of Priorean Tense Logics is that of (classical) propositional logic extended with
operators G, F, H, and P: given a propositional language consisting of propositions letters
Ay, As, .., B, ..., constants T and L, and connectives -, A, V, D, >, Gy, the formulas F,
Hy and Py are well-formed if ¢ is itself a well-formed formula.

The smallest Priorean tense logic is K; which, according to [Prior 1967], was first proposed
by Lemmon in 1965. It can be characterized as the set of propositions derivable by means

of:
e all propositional tautologies

¢ definitions:

F(IGH _|G_t(p
PQD(—J» ""IH"'I(P

e axioms:

GleD¥)Dd(GeD Gy)  H(pD9)D(HypD Hy)  (Normality)
D GPy @2 HFp (Symmetry)

e rules:

(Modus Ponens) oY

(Necessitationg) if ¢ is a thesis, then Gy is a thesis

(Necessitationy)  if ¢ is a thesis, then He is a thesis

{where a thesis is a well-formed formula that is an axiom or a theorem of the logic, hence
derivable without assumptions; note that Modus Ponens also holds in the presence of
assumptions).

From the perspective of modal logic, K; can be seen as consisting of two copies of the minimal
normal modal logic K: one for the operator ‘G’, looking ‘forward’ in time, and one for the
operator ‘H’, looking ‘back’. These two logics are linked by the symmetry axioms which
ensure that the two directions in which one can look are each other’s inverse: if ¢ holds now,
then going to any point in the future (past) one can see the point where ¢ holds somewhere
in the past (future). In the Kripke models for K;, the accessibility relation of the operator
G, Rg, and that of H, Ry are each the converse of the other: sRgt 4 tRys (see for instance
[Goldblatt 1992]). Hence the following theorem in [van Benthem 1983] comes as no surprise:



THEOREM. K, axiomatizes the tense logic of all symmetrical point structures.

An interesting consequence of this symmetry is that K; has the ‘mirror image property’:
if a formula ¢ in which ¢ and H may occur (¢{ G, H}) is a theorem of K;, then the same
formula with G and H exchanged (¢(H, G)) is also a theorem of K.

2.2, Further properties of time

Tense logics above K; are obtained by adding axioms expressing further properties of the
flow of time. These axioms can be divided into ‘pure’ axioms, which state properties for one
direction of time (generally occuring in pairs : one for the future, one for the past), and
‘mixed’ axioms which describe ways in which the past and future direction of time interact.

2.2.1. Pure axioms

Several axioms which are familiar from general introductions to modal logic, such as [Chellas
1980] or [Hughes and Cresswell 1972|, reappear when one tries to formalize intuitions about
the flow of time. Although pure axioms can be adapted separately for the past and future di-
rection of time, we shall discuss them in ‘mirror-image pairs’ which express a certain intuition
symmetrically with respect to past and future.

o 4 G D GGy 4, HpD HHy
These axioms express transitivity of the time flow, which may become clear by looking at the

sometimes preferred (e.g. in [Koymans 1989]) K;-equivalent forms FF¢ O Fo/PPp D Pey:
in this form 4; says that any point in the future of a future point is also a future point.

e Dy GeD Fop D, HpD Py

The operators ¢ and H quantify universally over respectively all future and past time
points, regardless of the existence of such point. To ensure that if G¢ (Hy) holds there
actually exists a future (past) time point at which ¢ holds, the above axioms for ‘seriality’
or ‘succession’ of the time-point ordering are needed. Dy and D, enforce that the time flow
has no end points in the future and past direction. These principles are expressed in several
ways in the literature, such as FT/PT ([Goldblatt 1992]), GF(-L)/HP(-1) ([Gabbay et
al. 1994]) and ~G{p A =)/~ H(p A ¢} ([Gamut 1982]), all of which are K;-equivalent to
Ds/D,. :

o Ty GOy T, HeD g
These axioms express reflexivity of the time-point ordering: if always in the past (always

in the future) ¢ holds, then ¢ holds now. Hence adding a T-axiom to K; turns the ‘<’-
ordering of the time points into a ‘<’-ordering®.

e Densy GG D Gy Dens, HHp D Hy

These axioms express density of the time flow: between any two points in the order there
lies another point. This may be more apparent from their Kj-equivalent forms Fe D
FFe/Pg > PP ([Koymans 1989]): in this form Dens; says that any reachable point in
the future (Fy) is also reachable via an intermediate point in the future (FF¢).

*Clearly we cannot add these axioms separately for the future and past direction. This issue is discussed
in section 3.4.



Besides these ‘general purpose’ principles which are also known from applications of modal
logic to other areas than temporal reasoning, more subtle intuitions concerning the ordering
of the time points can be formalized by means ofjust G or H.

W; G(Gp D ¢)D Gy W, H(Hp D @)D Hyp

These tense logical versions of the Léb-axiom from provability logic enforce well-foundedness
of the ordering ([van Benthem 1983]): in a given direction there are only finite chains of
ordered time points. Hence time flows where time has a beginning can be captured using
W,.

Zs G(GeD ) D (FGy D Gy) Zy H(He D) D (PHeD He)

These axioms, also known as ‘modified Léb’ ([van Benthem 1983]), express ‘discreteness’
of the ordering: between any two time points (in a given direction) lie only finitely many
points.

Dum; G(G{e D Gp) D ¢) D (FGp D ¢)

Dum, H(H(p D Hep)D @)D (PHP D @)

Proposed by Dummet in 1958, these axioms capture a different idea of discreteness, that
of “finite variability’: between any two points (in a given direction) a proposition can only
go through finitely many changes of its truth value.

2.2.2. Mixed axioms

In the logic K;, the past and future direction of time are already closely intertwined due to the
symmetry axioms. This interaction can be strengthened by adding further axioms ‘mixing’
‘H’ and ‘P’ with ‘G’ and ‘F”.

Pres; Fo D HF @ Pres, Pp D GPy

These axioms are called ‘preservation axioms’ because they stipulate that existential tense
formulas holding for one direction of time are preserved universally in the other direction
of time: If (Pres,) ¢ holds somewhere in the past (Pe), then in all future points it will be
true that ¢ holds somewhere in the past (GPy).

Ly FeD G(PpVeVFyp) L, PpD H(PpV oV Fp)

These axioms enforce linearity of the time flow ‘to the left’ (L,) and ‘to the right’ (L;). For
instance, Ly preempts branching of the future by demanding that if ¢ holds at some point
in the future (F¢), any point in the future can ‘see’ this point either ‘in front’ of itself (in
its future), ‘behind’ itself (in its past), or in itself. In a branching future this would only
hold for the future time points that lie on the same branch as the point at which ¢ is true.

Cont M(Hyp D> FH) D (Hp D Gy)

(where ‘W@’ is the modality ‘at any time (past, present or future)’, which is definable in G
and : Wy =4 HeA @A Gp.) This axiom, also known as the Inkspot Principle, encodes
a Dedekind-like definition of continuity (see [van Benthem 1983], p. 162). It allows us to
distinguish between dense and continuous flows of time.



2.3. Linear flows of time

The purpose of this section is to show how K, can be systematically extended with the above
axioms to obtain logical characterizations of different conceptions of the flows of time. We
concentrate on linear time flows, which have traditionally been one of the main stays of
Priorean analysis. After introducing the basic tense logic underlying all linear time flows, we
look at a number of standard examples of linear flows in the literature.

2.3.1. The logic Lin
The logic Lin of all linear flows of time is K, extended with the axioms for
transitivity: 4y Ge D GGy 4, Hp D HHy
linearity: Ly Fop D> G(PpVeV Fp)
L, PpD> HPpVeVFg)

By adding transitivity to K; the tense logical theory of strict partial orders is obtained, {van
Benthem 1983). The linearity axioms preclude ‘branching’: they forbid that the past or the
future consist of more than one partial order. Hence the combined effect of the axioms is to
enforce that all time points (past, present and future) lie on a single ‘time line’.

Throughout the rest of this paper we will use a less customary formulation of the linearity
axioms, which can be found in [Goldblatt 1992):

Ly Wmp D> HGyp L, wp D> GHy ,

Given the definition of ‘W', My =4 Hy A ¢ A G, the logical equivalence of the two
formulations is provable in K;. The reason for preferring the ‘B’-form of the axioms is that
they can be given a direct and intuitive treatment in Fitch-style deduction, which is not
possible for the axioms in their original formulation (this will be discussed in section 3.5.1).

2.3.2. Familiar linear structures

By extending Lin with different (combinations of ) axioms, various conceptions of a linear flow
of time can be formalized. In the literature, this is usually illustrated by giving tense-logical
characterizations of mathematical number structures, allowing the reader to keep a model in
mind in which time points are numbers ordered by the ‘<’-relation. We follow this custom
and compare tense logics for discrete, dense and real linear time flows.

Integer time (Z, <)
The tense logical theory of integers, Thy(Z), is axiomatized by Lin plus:

Dy GeD Fy D, HpD Py

Zy G(GpD @)D (FGy D Gy) Z, HHpD )2 (PHp D Hy)
This logic, called Lin Disc in [Goldblatt 1992, enforces that time is infinite in both directions
by means of Dy and D,, and that the ordering of time points is discrete by Zy and Z,.

Natural time (IV, <)
The tense logical theory of the natural numbers, Thy(IV), is axiomatized by Lin plus:



Dy GpD Fy

Zy G(GpD¢) D (FGp D Gy)

W, H(HeD @)D He
Compared to Th,(Z), the axioms for the past direction of time have been changed: the axiom
D, expressing infinity in the direction of the past has been replaced by W, which enforces
well-foundedness of the past. Hence in this logic, Lin Disc” in [Goldblatt 1992], time has a

beginning. Note that the ordering of time points in the past direction remains discrete; W,
(propositionally) implies Z,.

Rational time (@, <)
The tense logical theory of the rational numbers, Th(§), is axiomatized by Lin plus:

Dy GeD Feo D, HpD Py

Densy GG D Gy Dens, HHp D Hop
This logic, Lin Ret, is obtained from that for integer time by replacing the axioms for dis-
creteness (Z,, Zs) with those for density of the time-point ordering (Densy, Dens,). An even
simpler logic can be given for dense reflezive time: since both the seriality axioms (Dy, D,)

and the density axioms are derivable given the reflexivity axioms, this structure can be char-
acterized by the logic Lin Rat Ref which is Lin plus:

T G2y T, HpoD .

Real time (IR, <)
Thi(IR) is axiomatized by Lin plus:

Dy Ge D Fo Dy, HeD Py
Dens; GGy D Gy Dens, HHp D Hep
cont W(Hyp D FHe)D (Hyp D Gy)

In other words, the logic Lin Re for the real numbers is the logic for the rational numbers
extended with the ‘Inkspot Principle’ (the axiom cont).



3. Natural deduction for tense logics

A prerequisite for the type theoretical interpretation of the Priorean tense logics discussed so
far is to find a natural deduction formulation for these logics. Although tense logics hardly
ever appear in a deductive guise in the literature, we can hope to obtain suitable formulations
by using techniques developed for modal logic in general.

In [Borghuis 1994] a framework for multi-modal ‘Fitch-style’ natural deduction is devel-
oped in which the tense logics can be stated: we take them to be bi-modal logics of which
the operators (G, H) are related by symmetry. After presenting the framework, a natural
deduction system for K; is defined which is then extended in a modular way to deal with
stronger logics. Special attention is paid to the effects of the symmetry between the operators
in the resulting deduction systems.

3.1. Fitch-style deduction for multi-modal systems

Natural deduction systems for proposition and predicate logic come in two ‘styles’, character-
ized by the form of their proofs: ‘Prawitz-style’ systems have deduction proofs in the form of
trees, ‘Fitch-style’ systems have lineair proofs. For modal logic the vast majority of systems
in the literature is linear. Fitch-style deduction for modal logic starts in [Fitch 1952], where a
new construct is introduced that extends his deduction system for propositional logic to one
for modal logic.

Central to Fitch-style propositional deduction is a construction known as ‘subordinate
proof’. It consists in writing a proof as part of another proof. For instance, to prove 4 D B
one starts a new, subordinate, proof by assuming A and then sets out to prove B. When
this goal is achieved the subordinate proof is ended by adding A D B to the original proof,
justified by the implication introduction rule, thereby discharging the assumption A.

A A
C
B :
ADRH 5
0
ADBHB
A subordinate proof Reiteration

Structurally (in the graphical representation), subordinate proofs are positioned to the
right of the proof to which they are subordinate, the ‘main’ proof. The topmost formula (A4)
is the hypothesis of the subordinate proof, the vertical line indicates the exact extent of the
subordinate proof; the hypothesis interval.

Subordinate proofs are just like ‘main’ proofs except that some of the formulas in them



may be repetitions of formulas from a proof to which they are subordinate (in the figure
above, C is such a formula). Such a repetition is called ‘reiteration’; a formula in a proof may
be reiterated in another proof if the latter is subordinate to the former. Subordinate proofs
can be nested at will: a subordinate proof may be written as part of a subordinate proof.

To extend his deduction system to modal logic, Fitch added a new kind of subordinate
proof, the strict subordinate proof. It differs from ‘ordinary’ subordinate proofs in two re-
spects:

¢ A strict subordinate proof may be started at any point in a proof, it requires no hypothesis.
¢ Reiteration in a strict subordinate proof is restricted to formulas of a certain form.

Structurally these proofs are just like subordinate proofs, their ‘strictness’ is indicated by
means of a ‘0’ on top of the vertical line, which indicates the modal intervel.

For the logic K, the logic underlying all normal modal operators, reiteration is restricted to
formulas of the general form O¢: formulas of this form occurring in a proof may be repeated
in a strict subordinate proof, without their boxes (as ). This procedure can be added to a
Fitch-style deduction system for propositional logic in the form of the following rule:

O¢

¥
A strict subordinate proof K-import
K -import: ¢ may occur in a strict subordinate proof if Oy occurs earlier in the proof to which
it 1s immediately subordinate.

A formula that has been imported into a strict subordinate proof never counts as hypoth-
esis of that proof. Strict subordinate proofs may be written as part of another proof, hence
we can have arbitrary nestings of strict and ordinary subordinate proofs.

Formulas can also ‘travel’ in the opposite direction: conclusions () derived by means of
a categorical strict subordinate proof may be added to the main proof in a necessitated form
(O¢). A subordinate proof is categorical when all its assumptions have been discharged; the
conclusion lies directly inside the modal interval, there are no nested subordinate proofs that
are still ‘open’. This procedure for ‘exporting’ information from the strict subordinate proof
to the main proof is expressed in the following rule:

Oy



K -export: if @ occurs in a categorical strict subordinate proof then Oy may occur later in the
proof to which it is immediately subordinete.

Fitch-style systems for multi-modal logics have separate subordinate proofs and K-rules
for each of the normal modal operators. Hence for Priorean tense logic we have strict G-
subordinate proofs as well as strict #-subordinate proofs. From the temporal perspective,
the procedures for import and export can be understood in the following way: if we take
a main proof to be the time point at which we try to establish the truth of a tense logical
formula, a strict G-subordinate proof (H-subordinate proof) corresponds to an arbitrary
future time point (past time point). In such a future time point we only know the truth of
the propositions (¢} that hold always in the future (G'p) of the point of evaluation. In this
view, starting a strict G-subordinate proof amounts to continuing the proof in an arbitrary
future time point. Every proposition () that can be derived without hypotheses in such a
point could have been derived in any future time point, hence it can be considered to hold
always in the future of the original time point (G4). In this way conclusions obtained in the
future time point can be brought back (exported) to the point where the proof was started,
and the proof can be resumed there.

We now give a formal definition of DPROPftch, a Fitch-style deduction system for the
multi-modal logic K, by combining a standard Fitch-style system for propositional logic with
K-import and K-export*. The system will be presented in the manner of {van Westrhenen et
al. 1993|, describing the proof figures and deduction rules in terms of intervals. Although the
definition is somewhat elaborate, it is more concise than the usual ‘look at the picture’-type
of presentation. The benefits of this will become apparent later on, when the vocabulary
introduced here allows us to easily describe extensions of the system and to define various
notions needed in meta theoretical proofs.

The first stage in defining DPROP)gCh is to specify what configurations of modal and
hypothesis intervals are allowed in the Fitch-style modal deduction proofs, given the set of
PROP of well-formed formulas of K. Intervals are represented as [¢, 7], where ¢ and j are the
line numbers of the lines in the proof figure that form the extremes of the interval.

3.1. DEFINITION. Proof figure
A proof figure D is a mathematical structure consisting of:

1. a closed interval D = [1, n|, where D C IV,
2. a function F : D — PROP, and

3. a collection I of subintervals of D, such that for each interval [i,7] € I, ¢ < 7, and such
that for each pair of (different) intervals [4,7],[k,{] € T we have i < k < [ < j, or
k<i<j<lor[ij]n[k,{] = 0. The collection I of subintervals is the union of two
disjoint subcollections H and M:

H the hypothesis intervals of the proof figure. If D ¢ H, then D is called the 0-th interval
If [k, 1] € H than the formula Fy is called the hypothesis of [k, 1].

M the modal intervals of the proof figure, this set is the union of all sets M° where
o € O, the set of operator indices (O = {1,...,n} for some n € IN). D may not be
an element of M.

*In [Borghuis 1994) this system is referred to DPROP%;’;I“H““, because there the set © was called
Modalities.

10



In Fitch-style deduction for non-modal propositional logic I = H; every subinterval is
a hypothesis interval introduced by assuming the topmost formula of that interval. The
presence of a modal interval in a proof figure does not require an assumption and hence the
topmost formula of such an interval is not a hypothesis. Another difference is that a modal
interval may never be the leftmost (‘0-th’) interval of a proof figure: the figure only qualifies
as a derivation after all modal subordinate proofs have been closed. In a proof figure a modal
interval can be recognized by the box (‘0°’) on top of its vertical line, where the index o
indicates for which of the operators in O this modal interval is a strict subordinate proof.

Some more terminology is needed before we can define the deduction rules:
3.2. DEFINITION. Precede, lie in

If + € D, then F(i), usually written as F;, denotes the formula on line 4 of the proof figure.
We say that F; preceeds Fj,if © < j.

If i € I for a certain interval € TU {D} and there is no J € I such that i € J C I, then
it is said that the formula F; lies in I, written as F; € I. An interval I les in interval
J € lu{D}if I ¢ J and thereis no K € I, such that I ¢ K C J.

To each formula in a proof we attribute a degree of ‘nestedness’. In a non-modal system
the degree of a formula F; is simply the number of hypotheses at that stage of the proof:
‘the number of vertical lines to the left of the formula’ at line ¢ in the proof figure. In modal
deduction proofs this set of hypotheses can be ‘partitioned’ by modal intervals, and for the
formal definition of the K-rules we have to keep track of this. Therefore the degree of a
formula in a modal proof figure is represented as a pair of natural numbers, where the first
number denotes the ‘modal depth’ of F;: number of nested modal intervals (€ M) ‘to the
left” of F;. The second number represents the number of hypothesis intervals (¢ H) ‘to the
right’ of the most deeply nested modal interval of which F; is an element.

3.3. DEFINITION. Degree

The degree of a formula F;, written gr(7), is defined as a pair of natural numbers:
gr(i) = (card{I e M [i € I}, card{! € H'|i € I}) where

H ={I€H|ie€ [ and thereis no J € M such that (i € J C I)}

(card denotes the cardinality of a set).

The natural deduction rules of EIPROPEZ o4 are defined in two stages; first their structural
effect on the proof figures is shown in a picture, then the conditions for their application are
defined in terms of the form of the formulas acting as the premisses and conclusion of the
rule and in terms of the relation between the intervals in which these formulas lie.
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3.4. DEFINITION. Deduction rules

V-intro V-elim
A B Av B
Av B AV B A
C
B
C
C
—-intro —-elim
A ——A4
B A
-B
-4
D-intro D-elim
ADB
A
B
A-intro A-elim
A AAB AAB
B A B
AANB
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—-intro - o-elim

ASB Ao B A< B
Bo A ADB BOA
A< B

K import K export

0° A

A

: 004
A

reiteration

A

In these structural representations of the deduction rules the bottommost formula is the
conclusion of the rule, which may be written in a proof if all the premisses indicated above it
are already present in the proof. Note that these premisses can be formulas as well as proofs,
for instance: the V — elim rule has as its premisses one formula (A V B) and two proofs of C,
one under the hypothesis A and one under the hypothesis B.

3.5. DEFINITION. Application of deduction rules

Given a proof figure D, with interval D = [1,n], formulas Fi,...,F, and intervals 1. A
formula F is the result of an application of deduction rule R, if F is the conclusion of R, the
premisses of R precede E, and one of the following conditions is met:

1. R € {Vv-intro, ~-elim, D-elim, A-intro, A-elim, «-intro, <-elim}.
In this case the premisses and the conclusion £ all lie in the same interval. The order in
which the premisses appear may differ from the one given in the table.

2. R =~ — intro.
There has to be a hypothesis-interval [k, ] € H, such that Fy = A, and such that either
F; = =B and B lies in [k,!], or F; = B and =B lies in [k,!]. The conclusion F = -4
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and the interval [k, {] have to lie in the same interval (it is allowed that B = Fj (4 and B
coincide), or that =B = F; (A and =B coincide)).

3. R =D-intro.
There has to be a hypothesis-interval [k,!] € H, such that F; = A and F; = B. The
conclusion £ = 4 D B and the interval [k, {] have to lie in the same interval.

4. R = V-elim.
There have to be hypothesis-intervals [7,7],[k,!] € H, such that F; = A, F; = C, F;, = B
and F; = ', where 5 < k, or [ < . The conclusion £ = (', the premiss AV B and the
intervals [7,7] and [k, {] have to lie in the same interval.

5. R = reiteration.
If the premiss A lies in the interval I € IU{D} and the conclusion E = A lies in the interval
J € TU{ D}, then it has to be the case that (/ C [)A-3dK e M (J C K C I}. Or,in terms
of modal depth: the first coordinate of gr(4) is equal to the first coordinate of gr( £}, and
the second coordinate of gr{ A} is smaller than or equal to the second coordinate of gr( E).

6. R = K import.
If the premiss 0O°A lies in interval I € I where o € 0, and the conclusion F = A lies in
the interval J € M?, then it has to be the case that the interval J lies in the interval I.

7. R = K ezport.
If the premiss A lies in interval I € M® where ¢ € O, and the conclusion £ = 0°A lies in
the interval J € I, then it has to be the case that the interval I lies in the interval J.

Note that K ezport allows us to export more than cne formula from a strict subordinate
proof, as long as these formulas all occur after the assumptions in the strict subordinate proof
are discharged.

3.6. DEFINITION. Derivation without hypotheses
A derivation of a formula C is a proof figure D with interval D = [1, n] and formulas Fy, ... Iy,
that satisfies the following conditions:

1. Fp = C and gr(n) = (0,0);

2. every formula F;(1 < ¢ < n)is a hypothesis or the result of the application of a deduction
rule on a number of formulas preceding F;.

3.7. DEFINITION. Derivation with hypotheses
A derivation of a formula C from the formulas Py,..., Py (m > 1) is a proof figure D with
interval D = [1, n] {(n > m) and formulas Fy,...F,, that satisfies the following conditions:

1. F; = P; is a hypothesis for 1 < ¢ < m, such that gr(¢) = (0, i);
2. F, = C,and C and P, lie in the same hypothesis-interval, where gr(n) = (0, m)

3. every formula F; (1 < i < n)is a hypothesis or the result of the application of a deduction
rule on a number of formulas preceding F;.

14



A derivation with hypotheses is a proof where the assumptions Py,..., P, are not dis-
charged. These assumptions are listed consecutively at the first m lines of the proof figure,
this mandatory enumeration excludes the possibility that there are modal intervals mixed in
with the hypothesis intervals.

3.8. DEFINITION. Derivability

1. A formula C is derivable if there exists a derivation of C, written as b C.

2. A formula C is derivable from the formulas Pq,...P,, if there exists a derivation of
from P ...P,,, written as Py,..., P, F C.

3. Let ' € PROP be a set of formulas. A formula C is derivable from T if there exist a finite
number of formulas Py,..., P, €T such that Py,..., P, F C. This is written: T + (.
Hr=9FC.

The multi-modal deduction system we have just finished defining is minimal in the sense
that it gives us the smallest normal modal logic K for each of the operators in . Nothing is
said about further properties of individual operators or interactions between the operators.
As will be explained in section 3.3, there are two ways to extend the deduction system to
accommodate such strengthenings, one of which is to add modal rules. In [Borghuis 1994] rules
are listed for a number of standard mono-modal axioms, which occur throughout literature
under various interpretations of the modal operator (see [Chellas 1980]):

D Qp > ~0-¢
T: Op>de

4 : Op > 00
5 : =0y D O-0yp
B ¢ D 0O-0-¢

The reader will have noted that we have already encountered most of these axioms with
temporal operators ‘G’ and ‘H’ replacing ‘Q’, which makes it useful to add the corresponding
rules to EIPROP};‘: .+ Tor each of the axioms a single extra import- or export-rule is needed
to make it a theorem of the deduction system:

3.9. DEFINITION. Deduction rules
O°A4 -0°A4 A

o] EQ o]
0° A ~o04 L0 4

4-import B-import B-import
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A A
-0%-4 A
D-export T-export

3.10. DEFiNITION. Application of deduction rules

Given a proof figure D, with interval D = [1,n], formulas Fy,..., F, and intervals 1. A
formula F is the result of an application of deduction rule R, if E is the conclusion of R, the
premisses of R precede F, and one of the following conditions is met for the modal rules:

8. R =4 import.
If the premiss O°A lies in interval I € I where 0 € O4impor:(C O), and the conclusion
F = 0%A4 lies in the interval J € M?, then it has to be the case that the intervel J lies
in the interval I.

9. R = 5import.
If the premiss =0°A lies in interval I € I where 0 € O impor:(C @), and the conclusion
F = —0°A lies in the interval J € M?, then it has to be the case that the inferval J lies
in the interval 1.

10. R = B import.
If the premiss A lies in interval I € I where 0 € OB import(C O), and the conclusion
FE = -0°-A lies in the interval J € M?, then it has to be the case that the interval J
lies in the interval I.

11. R = D export.
If the premiss A lies in interval I € M° where 0 € Op egport(C O), a € People and the
conclusion F = —0°-4 lies in the interval J € I, then it has to be the case that the
interval I lies in the interval J.

12. R = T ezport.
If the premiss A lies in interval I € M® where 0 € OT cppore(C O), and the conclusion
E = A lies in the interval J € I, then it has to be the case that the interval I lies in the
interval J.

Note that for the K-rules we only demanded that the operator-index of the modality
match that of the modal subordinate proof. For the other rules we also demand that the
operator-index ¢ is an element of the set of operators (7,,;. for which the rule is to hold, this
is a convenient way of specifying different combinations of rules for different operators.

All the modal deduction rules presented here act on formulas containing only universal
modal operators (0°). To bring out the relation between axioms and deduction rules as clearly
as possible, we will henceforth write all axioms using only universal operators. This means
that the existential operators F and P used in section 2 will replaced by ~G- and —~H{~. For
a deductive treatment of existential modalities, the reader is referred to the appendix of this

paper.
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3.2. Natural deduction for K;

To give a natural deduction system for K; in the above framework, we first state that the
operators of this multi-modal logic are G and H: O = {G,H}. This ensures that K-
import and K -export hold for both operators, allowing the derivation of the normality axioms
Gle DY) D (Gp D Gy)and H(p D) D (He D Hy). We show this for the first axiom:

1. G(A D B)

2. GA
3. G(ADB) (reiteration 1)

G]

4, ADB (K-import 3)
5. A (K-import 2)
6. B (D-elim 4,5)

7. GB { K-export 6)
8. GAD GB (D-intro 2-7)

9. G(AD>B)D> GAD GB (D-intro 1-8)

Besides Modus Ponens, the original definition of K (section 2.1) contains two inference rules
called Necessitation:

Necessitationg if ¢ is a thesis, then G is a thesis
Necessitationg if ¢ is a thesis, then Ho is a thesis.

These inference rules are covered deductively by the K-export rules: if ¢ is a thesis of K;(F ¢),
it can be derived without hypothesis. Hence the proof of ¢ is categorical, which means that
after putting this proof in a G- or H-subordinate proof, K-export is applicable, resulting in
a proof of Gy or Hy. Since these proofs do not depend on further assumptions, Gy and Hyp
are then theses (F G, b He) of K.

In the basic tense logic, the two operators are related by the symmetry axioms ¢ D
G-H-yp and ¢ O H-G-p. These axioms cannot be accounted for by means of just K-
import and K-export. Also none of the additional modal rules presented in the previous
section directly corresponds to the symmetry axioms. However, the B-import rule provides
some insight into the form of the rules that are to relate G and H: with B-import and K-
export the symmetry axiom for a single operator (¢ D O°-0°-¢) is derivable. With this in
mind, it is not difficult to come up with rules for multi-modal symmetry, for instance for the
axiom @ D G- H-ep:

@
'—|H—|(p

The axiom expresses that if ¢ holds now, we should be able to see ¢ somewhere in the
past (mH—-¢) when we look back from any future time point. Hence deductively a formula
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@ occurring in the main proof should be available as ~H -y in G-subordinate proofs which
represent arbitrary future time points.

Because of its resemblance to B-import, we call this rule ‘B2-import’, for ‘bi-modal B-
import’. Using the normality of the G-operator, it is easy to show that the axiom can be
derived by the rule and that the rule is derivable in the presence of the axiom:

1. @

v :
2. *—‘H—!Lp (B2-import,1) f;_‘G_'H_"P (axiom)
3. G—H=¢ ( K-export,2) i

4. D G-H-yp :
-H-p  (K-import}
From rule to axiom From axiom to rule

Obviously, substituting G for A and H for G in the above diagrams will give us the B2-
import rule for the ‘mirror axiom’ ¢ 5 H-G-p. Hence we add B2-import to the deduction
system in the following general form.

3.11. DEFiNITION. B2-import

—||j0’_,A

R = B2-import.

If the premiss A lies in the interval I € I, where (0,0") € Opa-import (€ O x O), and the
conclusion £ = —0° =4 lies in the interval J € M?, then it has to be the case that the
interval J lies in the interval I.

The basic tense logic Ky can now be formulated deductively as: the multi-modal Fitch-
style system with O = {G, H} and Opg_impore = {(G, H),(H, G)}.

3.3. Further properties of the tenses

There are two ways of extending the deduction system for K; to accommodate stronger logics:
Extension by axioms

Allow tense logical axioms to be used as ‘tacit assumptions”: they may be written anywhere
in a natural deduction proof without further justification. Conclusions not available in K,

can then be reached by proving the antecedent of an axiom using the K;-rules, writing that
axiom as a line in the proof and moving to the consequent of the axiom through Modus Ponens.
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Extension by rules

Add import and export rules to K, allowing for more ways of transporting formulas from
the main proof to the modal subordinate proof and vice versa. Conclusions not available
in Ky can then be reached because: more kinds of formulas can be transferred to the modal
subordinate proof to be combined there (additional import rules), and formulas derived in the
subordinate proof can be brought back to the main proof in more than one form (additional
export rules).

For a discussion of the relative merits of these two approaches the reader is referred to
[Borghuis 1994]. Two conclusions of this discussion are relevant here. Firstly, extension
by rules is preferred, because it creates a ‘separation of concerns’ in the natural deduction
proofs: these proofs can be conceived of as a bundle of propositional deductions between
which formulas may be exchanged. The import and export rules governing this exchange
determine the tense logical strength of the system. In other words reasoning at a certain time
point is purely propositional, whereas modal reasoning takes place in moving between time
points. The type theoretical advantage of this separation of concerns will become clear in
section 4.6. Unfortunately the second conclusion is that it seems unlikely that for every given
modal axiom a corresponding import or export rule can be found, meaning that in some cases
extension by axioms is the only option. This issue will be adressed at the end of the section.

For the ‘pure’ tense axioms 4;/4,, Ty /T,, and D; /D, we can make immediate use of the
additional mono-modal import and export rules defined in the previous section. In each case
we show, for one member of the axiom-pair, the rule, the derivation of the axiom by the rule,
and how the rule can be derived in the presence of the axiom:

: 1. Hep Hep
Hy Hp D> HH¢ (axiom)
2. ’ Hyp  (4-import 1) HHp
:
:H(p 3. HH (K-export 2) *Htp (K-import)
4. He D HHyp
4-import From rule to axiom From axiom to rule

L Gy
: :
@ 2. ¢ (K-import 1) )

¥ 3. @ (T-export 2) Go {( K-export)
4. Gpdy Gp D¢ (axiom)
@
T-export From rule to axiom From axiom to rule
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L. Hyp
: :
@ (K-import 1) @

@

2.
~H-p 3. -H-¢  (D-export 2) Hy ( K-export)
4. Hed -H=p Hp D -~H=p (axiom)
~H-y
D-export From rule to axiom From axiom to rule

The density axioms (GGy D Go, HHp D Hyp) are derivable by combining K-import with
T-export, but this is of no help in building a deduction system for weaker logics which extend
K, with just Dens;/Dens,. A weaker version of T-export is needed that corresponds directly
to these axioms:

L. GGy
5 :
Gy 2. Gy (K-import,1) G
Gy 3. Gy ( Dens-export,2) GGy (K -export)
4. GGy > Gy GGy D Gy (axiom)
Gy
Dens-export From rule to axiom From axiom to rule

This ‘ Dens-export’ rule allows only formulas of the form G ( Hy) derived in a G-subordinate
(H-subordinate) proof to be brought back to the main proof unchanged, whereas T-export
allows this for all formulas regardless of their form.

3.12. DEFINITION. Dens-export

O0°A
O%4

R = Dens export.
If the premiss O°A lies in interval I € M° where 0 € Opens egport (€ O), and the conclusion
E = 0°A lies in the interval J € I, then it has to be the case that the interval I lies in the

interval J.

Regarding the ‘mixed’ axioms, extensions by rules can be given for the preservation axioms
(~H-¢ D> G-H-p, ~G-p D H-G-yp) and the linearity axioms (M D> GHe, Bg O HGe)
but we postpone this to sections 3.4 and 3.5 that deal with the influence of symmetry on
extensions of K; and with linear tense logics respectively. This leaves the following axioms of
the lists presented in section 2.2:

Zy G(GpD @)D (~G-Ge D Gy) Zy H(HpD @)D (~H-Hyp D Hyp)
Wy G(GeD)D Gy W, HHeD¢)D e

20



Dumy G(G(¢ D Gp) D ) D (~G-Gyp D ¢) Dum, H(H{(p > He)D @)D (~H-Hyp D p)
Cont M(He D ~G-Hy) D (He D Gy)

For these axioms no rules of the above kind, i.e. rules which transfer a formula between proofs
changing just the modality of that formula (its main connective), can be found. Rules for
Zs [ Zy (export) and Wy/ W, (import) do suggest themselves, but these rules change the matrix
of a formula whilst transferring it. Such rules raise questions about the expressive limitations
of Fitch-style modal deduction and since we want to discuss these questions against the
background of the interpretation of the Fitch-style proofs in type theory, we postpone this
discussion till section 5. Meanwhile we resort to extension by axioms for Z;/Z,, W;/W,,
Dumy / Dum,, and Cont.

3.4. The interaction between past and future

In the minimal tense logic K, the descriptions of the future and past directions of time are
not independent. The operators ‘GG’ and ‘H’ are related by the symmetry axioms that express
the intuition that the flow of time is ‘isotropic’; the observable properties of the ordering of
the time points in future and past direction are the same. In this section we look at two ways
in which the influence of this basic symmetry extends beyond K;.

3.4.1., The mirror image property

In the presentation of K; (section 2.1), the ‘mirror image property’ of this logic was pointed
out: if a formula (G, H) is a theorem of K, so is ¢(H,G). This means that given a
theorem, we can obtain a new theorem ‘for free’ by simply changing all occurrences of G into
occurrences of H and all occurrences of H into occurrences of G. Rephrased for the natural
deduction system for K, the mirror image property states that given a natural deduction
proof for ¢( G, H) we should be able to find a natural deduction proof for (H,G). It is
not difficult to see why this property should hold for the K;-deduction system: for both ‘G’
and ‘H’ the system has K-import and K-export, and the B2-import rules that relate the
operators are each other’s ‘mirror image’ {one turns an occurrence of ¢ into an occurrence of
-GG inside an H-subordinate proof, the other turns ¢ into —~H ¢y inside a G-subordinate
proof). Therefore we can find a proof for ¢{H, G), given a proof for ¢( G, H), by taking
the mirror image of all hypotheses occurring in the original proof and then matching all rule
applications in the original proof step by step with applications of the mirror images of those
rules in the new proof.

In general the mirror image property is not preserved when the logic K; is extended with
further axioms, but there are cases in which it is: sometimes adding an axiom expressing a
property of one direction of time will automatically result in the validity of the mirror image
of that axiom. To see this, we go back to the model theoretic effect of the symmetry axioms:
in any model of K,, given two time points s and ¢t sRgt & sRyt (where sRgt = tRys).
Hence adding an axiom to K, that corresponds to a relational property that is invariant
under ‘reversing the arrows’ can yield the validity of mirror images. A trivial example of this
is extending K with the T-axiom for one direction of time, say Gy D ¢. Since this axiom
corresponds to reflexivity of the R relation, iRt will hold for all time points in all models.
Because of the symmetry tRyt also holds for all time points in all models, and so Hy D ¢
will be a theorem of K; + G D ¢ without having been added to K; explicitly. In natural
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deduction, this example takes the following form: adding T-export for G to the deduction
system for K; makes ¢ O ¢ derivable (by means of a simple proof*).

Although a syntactic characterization of relational properties that are preserved under
reversing the arrows is still to be found [van Benthem 1983], a number of interesting cases
has been noted in the literature. In this section we look at two of these (one involving an
export-rule and one involving an import-rule), to show how the modal rules for symmetry in
K, combine with the rule for an additional axiom in the deduction proof for the mirror image
of that axiom.

ExaMPpLE 1.

The first case is the extension of K; with the 4-axioms. These axioms (G¢ O GGe/Hyp D
HH ) correspond to transitivity of the accessibility relations ( B¢ and Ry respectively) in the
models of K; + 4. Assuming that we add just the 45-axiom {Ge D GGy) to Ky, all models
of the extended logic will have that for any time points s, ¢, u: sRgt& tRgu = sRgu.
Reversing the relations in this property yields tRgs& uRgt = uRgs, which is equivalent
to sRyt& tRyu = sRyu, hence Ry is also transitive in all models and so H¢ D HHyp is a
theorem of K;+4g. To show the mirror image property of the 4-axiom deductively, we extend
the natural deduction system for K; with the 4-import rule for G after which Hy D HHy
can be proved as follows:

1. Hey
[#]
2. -G-Hy (B2-import 1)
H

3. ~G(--)G-Hyp (B2-import 2)

4, g

5. -H(--)¢ (B2-import 4)

6. G-Hy ( K-export 5)

7. G-Hyp (4-import 6}

8. GG-Hey ( K-export 7)

9. -GG-Hy (reiteration 3}
10. ——p (=-intro 4-9)
1. o (~-elim 10)
12. Ho (K-export 11)
13. HH ( K -export 12)
14. HeD> HHy (D-intro 1-11)

Note that the derivation of ~GG-H¢ from ~G-~G-Hy (between lines 3 and 9) was left

*A hint for readers who want to try this: assume Hp and -, and derive a contradiction using B2-import
and T-export for G.
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out in this proof, as well as the derivation of = H ¢ from ~H - (between lines 5 and 6) were
left out. Since the removal of embedded double negations is a routine task (as the reader can
easily check for himself), we merely indicated the presence of these double negations between
brackets but did not spell out their removal. This ‘abbreviation’ will be used in deduction
proofs throughout the paper.

ExAMPLE 2.

When extending K; with the Dens-axioms (GGy D Ge/HHyp O Hy), it is sufficient to
add one of them to K; to turn both axioms into theorems of the extended logic. These
axioms enforce the property of density for the accessibility relations in the models, hence if
we add HHe¢ O Hy to Ky, a third time point can be found between any two time points
related by Ry in a model: sRyt = Ju sRyub uRgt. Reversing the relations yields:
tRys = du uRps& tByu. Hence, by the definition sRgt = tRgs, we have density for
Rg and so GG D Gy is a theorem of K; + Densy.

Deductively, the mirror image property of the Dens-axioms is shown by extending the deduc-
tion system for K; with Dens-export for H and proving GGy D G:

1. GGy
[¢]
2. - H-GGy (B2-import 1)
4, -Gy (K-import 3}
5. -G (--)Gye (B2-import 4)
6. H-GGyp (K -export 5)
7. H-GGyp Dens-export 6)
8. ~H-GGy (reiteration 2)
9. ~H-Gyp (—-intro 3-8)
140. g
11. =G(==)p { B2-import 10)
12. H-Gyp (K -export 11)
13. -H-Gp (reiteration 9)
14. - (=-intro 10-13)
15. @ (—-elim 14)
16. Gy { K-export 15)
17. GGy D Gy (D-intro 1-15)

These examples show that the Fitch-style treatment of symmetry in K; by means of the
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B2-import rules correctly accounts for the preservation of the mirror image property: in
extending K, it is sufficient to add just one of the 4-import rules or Dens-export rules to
obtain proofs of both 4-axioms or Dens-axioms.

Since the ‘mirror axiom’ becomes derivable after adding the rule for one operator, the rule
for the other operator is redundant: it is derivable in the presence of the axiom. However, the
examples also show that the deduction proofs for the mirror axioms are not always obvious
or easy to find. Therefore it makes sense to include both rules in the deduction system for
the extension of K, if we are after a practical rather than a ‘minimal’ deduction system. This
is the strategy we apply in extending K, with 4 and Dens and in similar cases throughout
the rest of this paper.

3.4.2. General interaction patterns

A second effect of the symmetry between G and H is that it can cause dependencies between
different extensions of K,, which would have been independent had the operators been unre-
lated. As with the preservation of the mirror image property, there is no systematic account
of these phenomena but we look at a couple of cases to see how extensions of K, can interact
in the natural deduction system.

To structure the discussion, we invoke a classification of axioms involving multiple O
from [van der Hoek 1992]. This classification allows us to find the import or export rules
corresponding to these axioms in a somewhat systematic way ([Borghuis 1994]). In the
following the letters X, Y and Z range over normal modal operators (i.e. G and H):

a) X¢ D YZg are called positive introspection (pi. -) formulas

b) = X¢ O Y-Zp are called negative introspection (ni. -) formulas
¢} XY D Zy are called positive extraspection (pe. -) formulas

d) XYy D ~Zyp are called negative extraspection (ne. -) formulas.

Instantiations of a) — d) are collectively referred to as inspection formulas.
Given only that X, Y, and Z are normal operators, the introspection formulas correspond
to import rules and the extraspection formulas to export rules:

'ti .—-Xgo
-—‘Z(p

A%

positive introspection negative introspection
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positive introspection

If the premiss X ¢ lies in the interval I € I and the conclusion F = Zy lies in the interval
J € MY, then it has to be the case that the interval J lies in the interval I. negative
introspection

If the premiss ~ X ¢ lies in the interval / € I and the conclusion E = ~Z lies in the interval
J € MY, then it has to be the case that the interval J lies in the interval I.

Yo

Zy

positive extraspection negative extraspection

positive extraspection
If the premiss Y lies in interval I € M and the conclusion E = Zy lies in the interval
J € I, then it has to be the case that the interval I lies in the interval J.

negative extraspection
If the premiss - Y ¢ lies in interval I € MX and the conclusion E = ~Zy lies in the interval
J € I, then it has to be the case that the interval I lies in the interval J.

All modal rules above K-import and K -export fit into this classification if we allow modalities
to be identified (e.g. X = Y') and ‘left out’; replaced with the ‘empty modal operator’ denoted
by ‘@’ (for instance X = @):

Positive introspection 4-import: X =Y =2
Negative introspection 5-import: X =Y =2
B-import: X =0, Y =2*
B2-import: X =0, Y £ 2~
Positive extraspection Dens-export: X =Y =2
T-export: X = Z,Y =0
Negative extraspection D-export: X =Z, Y =0 .*

In the next section, which deals with the deductive treatment of linear temporal flows, rules
will be proposed which use the full generality of the schemata in the sense that they involve
three different modal operators.

Using the classification, it is easy to find the rules corresponding to the last pair of
interaction axioms discussed in 2.2.2, the ‘preservation axioms’: -H-¢ O G-H-¢ and
G-y D H-G-p. These are clearly cases of negative introspection (with X = Z = H,
Y=Gand X =Z =G, Y = H respectively), which give rise to the following import rules:

* Where the occurrences of ‘" are replaced by occurrences of ‘=’ in the rule schemas, yielding ‘——¢’ in
some cases which is to be replaced by the equivalent ‘5’
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~H-p —|G—|(p

.—lH—NP .—|G—|(P

In keeping with the nomenclature used so far, these negative introspection cases where
X = Z # Y are called ‘52-import’ rules (cf. B2-import versus B-import).

In multi-modal logics where there are no pairs of symmetrically related operators (like in
the epistemic/doxastic logics from which the above classification originates, see [van der Hoek
1992]}, extensions of the basic logic K with positive introspection axioms are independent of
extensions with negative introspection axioms. For the basic tense logic K, such extensions are
not independent: in K, + Gy > GGy¢/Hyp O HHy (positive introspection) the preservation
axioms " H-p D G- H~p/~G-p O H-G~p (negative introspection) are theorems. Deduc-
tively this means that the preservation axioms should be derivable in the natural deduction
system for K; extended with the 4-import rules. We show this for ~H-@ D> G-H-ep.

1. -y

[c]
2. -H(-=)H-¢ (B2-import 1)
3. H-yp
4 H-y¢ (4-import 3}
5. HH-¢ ( K-export 4)
6. -HH-¢  (reiteration 2}
7 ~H=p (—~-intro 3-6)
8 G-H-p (K -export 7)
9. ~H-pD G-H-yp (D>-intro 1-8)

Using the ‘mirror images’ of B2-import and 4-import, the other preservation axiom
(=G-p O H-G-yp) is derivable in exactly the same way. Hence the 52-import rules for
these axioms proposed earlier are derived rules of the deduction system for K; +4. This does
not come as a complete surprise, since the symmetry axioms are themselves (simple) cases
of negative introspection. However, the interaction between symmetry and transitivity is not
trivial: the proofs of the preservation axioms can be generalized to the following proposition
relating the categories of positive and negative introspection in the classification of multi-
modal axioms.

ProrosiTION.

A negative introspection formula ~X¢ 2 Y-X¢ is derivable for normal operators X, Y
and Z where Y and Z are related by symmetry, ¢ O Y-Z-¢ (negative introspection where
X =), and X and Z by positive introspection, X D ZX .
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Proor.

2 =Z(--)X¢ (symmetry 1)

3 X

4 Xy (positive introspection 3)
5. ZXp ( K-export 4)

6. -ZX¢  (reiteration 2)

7 X (—-intro 3-6}

8 Y-~Xp (K-export 7)

9. -XeD Y-Xg (>-intro 1-8)

The symmetry between the operators can also influence the extension of K; with extraspec-
tion rules, for instance in the case of the ‘actuality axioms’: GHy D Hy and HGy¢ O Ge.
These axioms state that if always in one direction of time something holds always in the other
direction of time, it already holds for that other direction of time at this actual moment. By
themselves the axioms are clearly cases of positive extraspection, giving rise to export rules
like those for the density axioms:

;qcp .ch
Hyp G

However, the actuality axioms are also a theorem of K; + 4 extended with seriality (Gy D
=G, Hp D ~H-yp). We show the case for GHy D He:
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1 GHe
2 -Hey
[c]

3. ~H(~")H¢ (B2-import 2})
4, He

5. Hy (4-import 4)

6. HHy (K-export 5)

7. -HHyp  (reiteration 3)

8. ~He (—-intro 4-7}

9. ~G(--)He ( D-export 8)
10. GHy (reiteration 1)
11. ~—Hy (—-intro 2-10)
12. Hy (~-elim 11)
13. GHypD Hyp (D-intro 1-12)

Hence the export rules for the actuality axioms proposed above are derived rules in the
deduction system for K;+4+ D. In the same way as for the preservation axiom, this connection
between extensions with axioms of different classes can be formulated in a more general way:
A positive extraspection formula XY ¢ O Y is derivable for normal modal operators X, Y,
and Z where Y and Z are related by symmetry, ¢ O Y-Z-¢, and positive introspection
Yo O ZY ¢, and negative extraspection X¢ O ~X-¢p holds for X.

As stated before, there are no general results about the influence of symmetry on the
extensions of K, in the literature. The examples discussed in this section show that cases
that have been noted in model theory or axiomatics have a counterpart in the Fitch-style
deduction systems. This is all we can hope to achieve at the moment, even working ount all
possible dependencies between axiom classes in the classification of inspection formulas will
not provide us with a general picture of the influence of symmetry since the classification
covers only part of even the most well-known temporal axioms.

3.5, Linear tense logics

Armed with the basic deduction system for K; and the extensions discussed in the previous
section, we will now attempt to give a deductive formulation of the tense logics for linear
flows of time that were introduced in section 2.3.

3.5.1. The logic Lin

'The logic of all linear flows of time, Lin, was defined as K; plus the axioms for transitivity
and linearity of past and future:

4 Gp D GGy 4, Hp D HHyp
L; e D HGy L, Wp D GHe
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The 4-axioms can be dealt with straightforwardly by adding the 4-import rule to K; for both
the ‘G’ and the ‘H’ operator (Qaimpers = {G, H}). For the linearity axioms L; and L, we
can go in two directions, depending on the treatment of the universal operator ‘W’:

1. View the universal operator as a mere abbreviation of a complex formula: By =4, HpA
@ A G. The deduction system has no rules for the operator; it allows us to abbreviate

formulas using ‘0, but ‘calculates’ with the complex formulas using the rules for ‘G”,
\'.HJ’ a,[}d ‘/\)-
2. View ‘W’ as an operator in its own right, giving modal rules for it in the deduction

system.

Initially, option 1 seems to be preferable; the definition By = Hyp Ao A G shows that the uni-
veral operator does not introduce something conceptually new in the deduction system. This
idea is confirmed by the easy derivations of the formulas corresponding to the abbreviations:

o H{p D) D (Mp D W) {normality)

o Ny D HEyp {transitivity)

o MpDop (reflexivity)

o MpD Gp, WD He (M is stronger than G and H)

However, it is not so clear what additional modal rules would allow us to derive the linearity
axioms in unabbreviated form (given the standard rules for ‘A’, ‘G’, and ‘H’). There seem
to be no import- or export-rules comparable to the ones we encountered so far, that would

make (Hp Ao A Gp) D HGy (Ly)or (HeAw A Gy) D GHy (L,) derivable.

Under option 2 we can find natural deduction rules corresponding to the linearity axioms,
but we have to do more work because the relation between ‘@ and the operators ‘&’ and
‘H’ is not given in the deduction system. To capture this relation we need deduction rules
corresponding to the principles in the above list. The first step is to add the universal modal-
ity to the set of operators: O = {G, H,®}. In this way we automatically get K-import and
K-export for ‘W, making normality for this operator derivable. For the other properties listed
above further rules must be added: 4-import for transitivity, T-export for reflexivity, and less
traditional rules for the principles

My D G, M D Hy
We D GHe (L), Wp D HGyp (Lf) .

Fortunately, all of these axioms fit in the classification of interactions discussed above as ‘posi-
tive introspection formulas’. This allows us to give rules for the axioms by simply substituting
the relevant operators for ‘X’, ‘Y’, and ‘Z’ in the rule-schema for positive introspection. For
the axioms By D Gy and By > He, these substitutions are X .= M, ¥ = Z = G, and
X =MW, Y = Z = H respectively, which give rise to the following import rules:

[0 Hp
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Rules of this sort occur in a different setting in [Borghuis 1994], and shall be called ‘K2-
import’ for ‘bi-modal K-import’. For the linearity axioms By D GHy and By O HGy the
substitutions are X := W, Y := G, Z := H,and X := W, Y := H, Z := (G, resulting in
import rules:

W Wy
.Hgo -G’t,o

We shall call these import rules ‘U-import’, for ‘universal’ import, since they involve the
universal operator and represent the most general case of positive introspection with X #

Y #£Z+X.

3.13. DErFINITION. Deduction rules
These interactions can be brought into the deduction-system by adding the following rules:

ao4 0o 4

Ed
A DOIIA
K2-import U-import

3.14. DEFINITION. Application of deduction rules

Given a proof figure D, with interval D = [1,n|, formulas Fy,..., F, and intervals I. A
formula F is the result of an application of deduction rule R, if F is the conclusion of R, the
premisses of R precede F, and one of the following conditions is met for the modal rules:

13. R = K2wmport.
If the premiss O°A lies in interval [ € T and the conclusion £ = A lies in the interval
J € M? where (0,0") € Ogq(C @ x ©), then it has to be the case that the interval J
lies in the interval I,

14. R = U wmport.
If the premiss O° A lies in interval [ € I and the conclusion £ = 0°" A lies in the interval
J € M° where (0,0, 0") € Oy (C O x Ox ), then it has to be the case that the interval
J lies in the interval I.

It would seem that adding these last two rules completes our deductive characterization
of Lin under option 2: the axioms L; and L,, and all listed axioms relating ‘B’ to ‘G’ and
‘H’ have become derivable. However, the proposed deductions rules cover only half of the

There they were called ‘FK-import’ for ‘forced’ K-import, but in this paper we want to avoid confusion
with the tense operator ‘F°.
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definition Wy = Hp A @ A G, i.e. the elimination of formulas My (Be D (Hp A ¢ A Gy),
derivable by means of K2-import and T-export). The other half of the definition, (Hy¢ A
@ A G¢) D My, is not derivable, indicating that we have not yet covered all possibilities for
introducing formulas of the form My. By means of the K-rules we can introduce formulas of
this form on the basis of other M-formulas, but we cannot account for cases where  holds for
different reasons in different directions of time: if for instance G'(1 D ¢) and G, and (¢ D )
and 7 yield ¢ for the all future time points and the present (Go A ), but H({ D ¢) and HE
yield ¢ for all time points in the past (H ), we can conclude to By by means of the definition
since we have (Hp A ¢ A Gy), but we cannot derive it by means of the deduction rules. Since
no reasonable Fitch-style rule corresponding to the ‘introduction-half’ of the definition exists
(this will be discussed in section 5), we will have to add it as an axiom.

Given these considerations, we can now define the deduction system for Lin as a multi-
modal Fitch-style deduction system where:

O={G,H,m},

Op2—import = {(G, H),(H, G)},
Os—impore = {G, H, W},

Ok a—import = {(W, G),(M, H)},
Ov_impors = {(M, G, H),(W, H,G)},
OT— export = {W} ,

and we have the axiom W-int (HpA @A Gp) D By .

3.5.2. Familiar linear structures

For each of the logics corresponding to a familiar linear structure (as presented in section
2.3.2), a Fitch-style deduction system can now be defined by extending the deductive system
for the logic Lin with the appropriate import- or export-rules and axioms:

o (Z, <), the deduction system for Lin and
additional rules:  D-export for &
D-export for H

additional axioms: Z; G(Ge D ¢) D (~«G-~Gyp D Gy)

Z, HHpD @)D (~H-Hyp D Hy)

e (IV, <), the deduction system for Lin and
additional rules:  D-export for G
additional axioms: Zy G(Gy D ¢) D (=G-Gp D Ge)
W, H{HpD p)D Hy

o (), <}, the deduction system for Lin and

The same problem occurs with other operators that are model theoretically defined as the transitive reflex-
ive closure of the accessibility relations of the operators in (@, such as the operator for ‘Common Knowledge’
(see [Borghuis 1994]).
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additional rules:  D-export for G
D-export for H
Dens-export for G
Dens-export for H

e (), <), the deduction system for Lin and
additional rules:  T-export for G
T-export for H

» (IR, <), the deduction system for Lin and
additional rules:  D-export for &
D-export for H (Opegport = {G, H})
Dens-export for &7
Dens-export for H
additional axiom: Cont (Hp D ~G-Hyg) D (He D Gy)
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4. Tense MPTSs

The possibilities for temporal reasoning offered by the tense logics can be brought to typed
A-calculus by interpreting these logics in so-called Modal Pure Type Systems in a propositions-
as-types way. After the definition of MPTSs and a brief introduction to their relation to modal
logic, we show how MPTSs corresponding to the various tense logics discussed so far can be
build. At the end of this section, we point out an interesting consequence of the ‘proofs-as-
objects’ correspondence between modal natural deduction proofs and MPTS-terms: given a
deduction proof for a certain proposition, a simpler proof of that proposition can sometimes
be found by means of reductions on the MPTS-term corresponding to the deduction proof.

4.1, MPTSs with multiple modalities

MPTSs are an extension of the Pure Type Systems of [Barendregt 1992], which give a general
description of a large class of typed lambda calculi providing possibilities for generic proofs of
meta theoretical properties. The interpretation of (non-modal} propositional and predicate
logics are well-understood, see [Geuvers 1993}, which makes PTSs an excellent starting point
for the construction of modal type systems. In the definition of MPTSs below, we assume
that the reader is familiar with PTSs and with the propositions-as-types interpretation of
propositional logic. This allows us to concentrate on the aspects that are specific for the
modal systems, for a more gentle introduction the reader is referred to {Borghuis 1994].

We start the definition in the usual way, by specifying the set of psendoterms given the
set of ‘sorts’ § supplemented with a set of ‘modalities’ O.

4.1. DEFINITION. Pseudoterms
The set of pseudoterms 7 over & and O is:

7 w= 8| Var|(Il Var - T.TY(A Var . T.7)|TT|Q° Tk T |kOT|C

where Var is a countable set of variables, and C is countable set of constants which will be
used to deal with ‘logical axioms’.

Hence the pseudoterms are those of PT5s, complemented with ‘modal types’ (7)), and
proof terms for the modal rules (£°7,k97). MPTSs also have an extended set of pseudo
contexts.

4.2. DEFINITION. Contexts

(i) A declaration is a judgement of the form z : A, where z is a variable and A4 a pseudoterm.

(ii) A pseudo-contert is a finite ordered sequence of declarations {z : A), all with distinct
subjects: xy : Ay, ..., @yt Ay

(iii) A generalized pseudo-context is a finite ordered sequence of pseudo-contexts and indexed
separators: G =T 8 °..8° [, with o,...,0" € O.

Clauses (i) and (ii) define PTS-contexts, clause (iii) allows us to insert ‘separators’ (@ °) in
these contexts. The separators let us partition the declaration in the context in the same way
in which modal subordinate proofs in Fitch-style deduction partition the set of hypotheses
during the proof. As will become clear below, this additional structuring of the context opens
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up the possibility to define type theoretical analogons of the Fitch-style import and export

rules.

Given the definitions of pseudoterms and generalized contexts, and the notational abbre-
viation G + A: B:CforG + A:Band G + B : (C, the derivation rules of MPTSs can
be stated in the following way.

4.3. DEFINITION. Multi-Modal Pure Type Systems

A multi-modal Pure Type System with 8-conversion, MPTSS, is given by a set S of sorts
containing Prop, Set, and Type, a set AT¥¢ C S x 8 of typing axioms, a set Abosic ccx T
of logical azioms, and a set R C § x § x § of rules. The MPTS that is given by §, A and R
is denoted by OAg(S, .4, R) and is the typed A-calculus with the following deduction rules:

(azioms)

(start)
(weakening)
{product)
(application)
(abstraction)
(conversion)
(boxing)
(transfery)
(transfery)
(transfers)

(transfery,)

(K import)

e b siisy if 15, AT e b ciA:Prop if c: A€ Abose

G+ A:

Q’,xAI- 1A

G+Fr A:B GF C:s
G,z:CF+ A:B

GF A:s51 G,z:AF B:s

g F (H.’E.A,B):SS if (31532133)€R

GF F:(lz:AB) GF a:A4
G + Fa: B[z = d]

G, z: A+ b:B G+ (lz:AB):s
G F (Az: A.b): (Ilz : A.B)

G+ A:B G F B':s B:ﬁBI

CFA:B
i e (if 0 € 0)
g@g'J:f:AS;s (if 0 € 0)
kD g
g@t f :FBI;%; (it 0 € 0)

G E c:A: Prop
ga°s - e: 4
G F A:0°B: Prop
Gomee F k°A: B

(if 0 € @ and ¢: 4 € ALy

(if 0 € O)

In [Borghuis 1994] generalized contexts were denoted by the letter G, here we denote them by G because
of the clash with the established use of G for the forward looking universal tense operator.
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G@°ec + A:B: Prop
G+ k°Ad:0°B
s ranges over the § the set of sorts, z ranges over variables, ¢ over constants, ¢ ranges over

the set O of modal indices, and it is assumed that in the rules (start) and (weakening), the
newly declared variable is always fresh.

(K ezport) (if 0 € O)

The rules up to conversion (with the exception of azioms for the ‘logical axioms’ ALos*¢)
are familiar; they are the PTS-rules stated with respect to generalized contexts {G) rather
than ‘ordinary’ contexts (I'). The rule bozing allows the formation of a ‘modal type’ 0°A
for some operator in O if this type is a proposition (A : Prop). The rest of the rules use the
additional structure of the generalized context.

In modal Fitch-style deduction, modal subordinate proofs are used to restrict the reiter-
ation rule to formulas of a certain modal form. In MPTSs this is achieved by means of the
separators. In a generalized context G B I, we call G the ‘main context’ and ‘I’ the subordi-
nate context. The K-import rule states that only statements representing proof/proposition
pairs for propositions of the form O°B (A : O°B : Prop) in the main context may be repeated
in the subordinate context with their type ‘demodalized’ (B : Prop). The rule switches the
context of derivation from G to the empfy subordinate context G @ ¢ to indicate that K-
import by itself does not require a hypothesis in the subordinate proof (assumptions can be
introduced in the subordinate context using start and weakening). In the K-export rule it
is essential that the subordinate context is empty: Fitch-style K-export requires that the
formula to which it is applied has a categorical proof in the modal subordinate proof, i.e. the
subordinate proof has no undischarged assumptions. Type theoretically this means that a
statement A : B : Prop must be derivable on the empty subordinate context G @ ° ¢ before it
may be brought back to the main context with its type modalized (0O°B).

Besides the propositions (types) and interval structure (context) of Fitch-style deduction,
MPTSs also have terms inhabiting the types. Under the propositions-as-types interpretation,
terms represent a proof of the proposition represented by their type. Steps in the proof (like
D-introduction or elimination) are ‘recorded’ in the structure of the term (as applications and
abstractions). To record K-import and export steps in modalized deduction, the MPTS-rules
change the terms by means of the ‘modal functions’ ‘k°’ for import and “§° for export. With
the Kripke semantics of modal logic in mind, their effect can be described as follows:

— k°: import ‘specializes’ a proof A of B for all accessible o-worlds (0°B) inte a proof of B
for the arbitrary o-accessible world represented by the subordinate context.

~ ke export ‘generalizes’ a proof A of B in an arbitrary o-world (the subordinate context}
into a proof of B for all accessible o-worlds and hence into a proof of O°B in the main
context.

Hence for statements representing proof/proposition pairs, the transfer between the main
and subordinate context is restricted in precisely the same way as the transfer of propositions
between the main and modal subordinate proof in Fitch-style deduction. The {ransfer rules 1-
3 ensure that this restriction does not apply to the rest of the statements; for these statements
the separators in generalized contexts are irrelevant, they behave in the same way as they do
in PTS8s with respect to ‘ordinary’ contexts.

The MPTS definition above is for multi-modal systems which have the minimal modal
logic K for all operators in (3. As in Fitch-style deduction, one way to increase the modal
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strength is to add further import and export rules. We give the type theoretical versions of
the additional rules of section 3.1.

4.4, DEFINITION. Additional modal rules
G+ A.0°B: Prop

(4 import) GBI A OB (if 0 € O4import (S O))
(5 import) gg@i ;4 }_"‘? f ::ﬁPD" ‘f; (if © € Os import(C O))
(B import) Dgo ; FA éi:;irgﬁw (if 0 € OB import(C O)
(D ezport) 2 ; At L (i 0 € Opapon(€ O))
(Tewpory T8 EEABiProp oo oo (CO))

G+ i°A: B

Note that each rule introduces its own modal function, requiring the set of pseudoterms
to include 497, 597, §°T, d97, and 1°7.

Like PTSs, MPTSs are parametrized by sorts (§), axioms (.A) and rules (R). The MPTS
we use for multi-modal propositional logics is ADPROP2, the modal version of the PTS
APROP2 ([Geuvers 1993]). The latter system is part of the ‘Logic Cube’, a family of PTSs
specifically tailored for the interpretation of (non-modal) logics. It has sorts for propositions
(Prop), sets (Sets) and their supertypes ( Type?, Type®) related by the type azioms Prop :
Type? and Set : Type®. The rules R of APROP2 and A\OPROP2 are ( Prop, Prop, Prop} and
( Type?, Prop, Prop) which substituted for s, sz, s3 in product, application, and abstraction
allows for the formation, elimination and introduction of propositional implication (A D
B .= llz : A.B : Prop, for A,B : Prop) and universal quantification over propositions
(Va € Prop.B := lla : Prop.B for B : Prop).

APROP?2 corresponds to second order intuifionistic propositional logic and is the PTS
standardly used for the interpretation of classical propositional logic (see [Geuvers 1993]).
Since P'TSs are inherently intuitionistic, the rule of double negation elimination of classical
logic has no counterpart in these systems. Using the quantification over propositional types,
the double negation rule becomes expressible as an axiom schema: ¢ : (Va € Prop.((a D
L)oo a), where ‘1’ is defined as Ve € Prop.a. Adding this statement to ADPROP2
as a ‘logical axiom’ (€ AL%¢), gives us a modal type system with an underlying classical
propositional logic. Unlike in PTSs, we cannot simply treat logical axioms as elements of the
initial context of a derivation. In MPTSs, we have to distinguish them from other statements
representing proof/proposition pairs (A : B : Prop), since for these statements traffic between
the main and subordinate contexts is restricted whereas the logical axioms should be available
everywhere {which is guaranteed by transfer,.).

We will not go into the formal details of the correspondence between modal Fitch-style
proofs and MPTS-terms. The following sections provide the reader with enough examples to
capture the intuition underlying it. Formalizing this intuition requires a lot of what Girard
would call ‘bureaucracy’, and therefore we summarize these formalities by means of two the-
orems from [Borghuis 1994], relating ADPROP2 to the Fitch-style system OPROP2 which is
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a PROP}?-,-tCh (section 3.1) with universal quantification over propositions, and ‘D’ and ‘1’ as
its set of connectives.

TueorREM. If ¥ is a natural deduction proof of ¢ in OPROP2, then 'y F o 0 s
derivable in ADPROP2 (where I's, is a (non-blocked) contezt depending on X ).

THeorEM. IfT + M : ¢ : PROP for a term M in N\OPROP2, then M’ is a natural
deduction proof of @ in OPROP2 (where T' is non-blocked, and all (open) hypotheses of M"
are declared in T').

Hence we have formal mappings from Fitch-style proofs to MPTS-terms (‘') and from
MPTS-terms to Fitch-style proofs (‘7°), both of which are sound.

4.2. The MPTS MK,

In defining an MPTS (AK;) for the tense logic K;, we adopt the same strategy as used for
the definition of the Fitch-style deduction system for this logic (section 3.2); we start from
the minimal multi-modal type system for the two tense operators:
Sorts: & = { Prop, Set, Type®, Type®}
Axioms:
ATvwe — [ Prop : Type?, Set : Type*}
Abosic — {e: (Vo € Prop.((a D L} D 1) D o)}
Rules: R = {{Prop, Prop, Prop),{ Type?, Prop, Prop)}
Operators: O = {G, H} .
The triple (S,.4,R) determines the MPTS AQPROP29, in which the minimal modal logic
K can be interpreted for each of the operators in 0. As in the Fitch-style system, having the
K-rules for ‘G’ and ‘H’ suffices to account for the normality axioms and the Necessitation-
rules. To provide the reader with an opportunity to see the MPTS at work, we construct an

inhabitant for the axiom G(A D B) D (GA O3 GB). {The Start lemma used in the derivation
will be explained below.)

All other connectives can be defined unsing ¥, 2 and L.

37



I' v G(AD B): Prop (Start lemmal

1.

2. INz:G(ADB)F z:G{(ADB) (start 1)

3. T,2:G(ADB) F GA: Prop (Start lemma)
4. T,2:G(ADB),y:GAF y:GA (start 3)

5. I'e:G(ADB), y:GA + z:G(AD B) (Start lemma)
6. [,z:G(ADB), y:GAB%c + kSz:4> B (K-import 5)
7. 1V2:G(ADB),y:GAB% ¢ + k%y: A ( K-import 4)
8. I'Nz:G(ADB),y:GA@%¢ + kE%z(kSy): B (appl. 6,7)

9. T,2:G(ADB), y: GA + k%kCz(kCy)): GB ( K-export 8)
10. T,2:G(AD B) b Ay: GAEC(E%2(k%y)): GA D GB (abstr. 4,9)
1. T F Az:G(AD B).(Ay: GAES(EC(kCy))) -

G(AD B)> (GAD GB) (abstr. 2,10)

If we look just at the types to the right of ‘+’, we see that from line 4 on down the
type derivation is analogous to the natural deduction proof for G{A > B) D (GA D GB)in
section 3.2 (keep in mind that the presence of ‘@ %’ in the context signifies a G-subordinate
proof). Lines 1 and 3 abbreviate the derivation of the well-typedness of G(A D B) and GA:
we have simply assumed that the context T already contains these statements, and we use a
derived rule (the Start lemma) that allows us to say that any statement that is an element of
a non-blocked context is derivable on that context regardless of its position in it. After the
well-formedness of these types has been established, we introduce variables inhabiting them.
The variables ‘2’ and ‘y’ act as ‘dummy proof objects’; adding the statements z : G(A D B)
and y : GA to the context is the type theoretical analogon of opening hypothesis intervals
with hypotheses G(A > B) and GA in the natural deduction proof.

However, the fundamental correspondence between the logic and the type theory is that
between entire natural deduction proofs in OPROP2Y., ., and single terms in
AOPROP29: the natural deduction proof of G{4 > B) D (GA D GB) is represented in
the proof object Az : G(A D B).(Ay : GA.kS(kFz(kCy))) as it occurs in the final line 11.
The idea is that the natural deduction proof can be ‘reconstructed from the bottom up’ by
reading the A-term ‘from the outside in’. The outermost elements of the term are the A-
abstractions over z : G(4 > B) and y : GA. These correspond to applications of D-intro in
natural deduction, discharging hypotheses G(A D B) and (before that) GA. The remaining
term kC(E%z(k%y)) codes a proof of GB. By the outermost function EC, the last step in
this proof was an application of K-export from a G-subordinate proof. This (G-subordinate
proof of B is represented by the application term (k%z)(k®y), hence the last applied rule
was D-elimination with %z proving (4 B) and EGy proving A. Outermost in both terms
is the function k% which shows that they were obtained by an application of K-import into a
G-subordinate proof. Hence we are left with two ‘atomic’ proof objects: we cannot decompose
the variables ¢(: G(A D B)) and y(: GA) any further, they are inhabitants of hypotheses of
the natural deduction proof.

Now that the correspondence between the minimal 2-operator modal logic and the minimal
2-operator MPTS has been established, we still have to deal type theoretically with the

The full derivation of G{A D B): Prop and GA : Prop would start from the type aziom : e = Prop : Typef.
By applications of start a context A : Prop, B : Prop can be created on which A O B : Prop (Ilz : A.B : Prop)
is derivable using product. Subsequent applications of Boring then yield G(A D B): Prop and GA : Prop.

38



symmetry axioms. We do this in the same way as in Fitch-style deduction, by adding an
import rule to AK; (cf. definition 3.11):

G+ A:B: Prop

B9
( 2 zmpor‘t) g o° e - é(o,o')A ' ~3° =

B (lf o, o’ € OBZimpo'rt(g O x O)) .

Clearly this rule changes the types of statements in the same way as the equinominous Fitch-
style rule changes propositions: a type B is transformed into -0°-B in an o-subordinate
context (cf. section 3.2). The proof object 4 is prefixed with the function &(°°"), which records
the modality of the subcontext into which the statement is imported in the index o, and the
modal operator that is prefixed to the type in the index o’. If we instantiate the import rule
for the set Opa_imgort of K (= {(G, H),(H, G)}) we get the following two rules:

GF A:B: Prop GF A:B: Prop
GaCGc k- eGHA . -H-B GaH e+ eHGIA:~G-B "’

In combination with the appropriate K-export rule, these immediately give us inhabitants
for the symmetry axioms: Az : go.ch(é(G’H)a:) s D G-H-yp, Az (p.IEH(é(H'G):c) oD
H-G-e.

The examples given above do not yet show that the MPTS A K, corresponds in any precise
formal way to the Fitch-style deduction system for K;, and we cannot conclude it directly
from the theorems relating multi-modal Fitch-style deduction systems to multi-modal MPTSs
in the previous section, since they are concerned with systems without B2-import. However,
the proofs of these results (see [Borghuis 1994]) can easily be redone for OPROP2%;, , and
AOPROP2° extended with B2-import.

4.3. Further properties of the tenses

For the extension of AK; with further properties of the tenses, we have the two options dis-
cussed for Fitch-style deduction in 3.3:

Extension by axioms

Tense logical principles can be added to AK; as logical axioms (€ AX%¢). The possibil-
ity of quantifying over propositional variables allows us to use axiom schemas rather, e.g.
¢s, : (Yo € Prop(Ha O HHa)). From such a schema, the axiom for a particular type (say
A : Prop) can be obtained by applying the schema to that type (cs, 4 : HA O HHA). The
resulting axiom can then be used as in natural deduction proofs; by applying it to a proof of
the antecedent of the axiom (M : HA) a proof of the consequent is obtained ((csA)M : HHA).
Logical axioms may be repeated anywhere in a derivation because our rules interact to ensure
that they are derivable on any well-formed context: by aziom logical axioms are derivable on
the empty context ¢, hence they are derivable on any non-blocked context I' by (repeated)
weakening, and by transfer,. they can be lifted over @ ’s into subordinate contexts.

Extension by rules

Like in Fitch-style deduction, adding import and export rules to AK; strengthens the sys-
tem by allowing for more ways of transporting statements from the main to the subordinate
context and back. The Fitch-style rules indicate how the types of statements behave under
import or export, the terms change in such a way that they record all information needed to
reconstruct the modal step in the natural deduction proof (like the modality of the imported

39



formula and that of the subordinate proof).

In section 4.1 a number of additional modal rules are given which are the type theoretical
counterpart of the mono-modal Fitch-style rules of section 3.1. Hence we can use these to
deal straightforwardly with the tense logical properties 45/4,, T;/T, and D;/D, of section
2.2.1. We show this in detail for 4,; given AK, and the 4-import rule for f, an inhabitant for
Hyp D HHyp can be constructed.

G+ A:HB: Prop
GoH e 454 HB

(4-import)

1. £ + Prop: Type? (axiom)

2. @:Prop F @ Prop (start 1)

3. ¢:Prop - Hy: Prop {boxing 2)

4. @:Prop,z:Hyp F z:Hep (start 3)

5. @:Prop,z:Hp@t ¢ - 4y Hy (4-import 4)
6. @:Prop,z:Hyp F kH(iHz): HHp (K -export 5)
7. @:Prop - Az:HpkH(d¥z) . Hp D HHyp (abstr. 6)

The corresponding proof for 4; is left to the reader.
Similarly by combining T-export (for G) and D-export (for H) with K-import, we obtain
proof objects for T¢: G D ¢ and Dyt He D —H-p

Ga%¢ -+ A:B: Prop

(T-export) G F %A B

Az Gp.tC(kC2): Gp Do

Go ek A:B: Prop
G+ dfA:-H-B
The derivation leading to proof objects for T, and Dy are, again, left to the reader.

For the density axioms, Dens;: GG¢ O Gy and Dens,: HH¢ D He, we adopt the type
theoretical analogon of the Fitch-style rule Dense-export:
GB°e - A:Q°B: Prop

G F icdA.0°B

(D-ezport) e Hod"(kH2): Hp > =H-p

(Dense-ezport) Yo € Opense—caport (T O) .

In this rule §° records that Dense-export was applied to a proof of O° B (for some proposition
type B) in an o-subordinate proof. In the above format, the rule summarizes Dense-export
for both directions of time: instantiating it with G and H gives us two export rules which
immediately yield inhabitants for the density axioms.

Ga%e + A:GB: Prop
G+ 9%A: GB
Gafl e+ A:HB: Prop
G+ oHA.HB
Since no additional import- or export-rules of the above kind can be given for the remaining

principles Z;/Z,, Wy /W, Dumy/Dum,, and Cont, we act as in section 3.3 and add them as
logical axioms for the time being (this matter will be discussed further in section 5.2}

Az GGp. 9% (kCe): GGy O Gy

Az : HHo. 68 (k¥z): HHp D Hy .
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e 1 (Yo € Prop.G(Ga D o) D (-G-Ga D Ga))

€ : (Vo € Prop. H{(Ha D o) D (~H-~Ha D Ha))

cuf + (Yo € Prop.G(Ga D o) D Ga)

Cup : (Y € Prop. H{Ha D a) D He)

Chums : (Yoo € Prop.G(G(a D Ga) D a) D (~G-Ga D a))
€Dump : (Yoo € Prop. H(H(a D Ha) D a) D (~H-Ha D a))
€Cont - (Yo € PropM{(Ha D -G-Ha) D (Ha D Ga))

In cases for which both an extension by axioms and an extension by rules exists, these two
extensions of AK; are equivalent in the sense that a term inhabiting the axiom schema can be
derived in AK; extended with the rule and a term corresponding to the term introduced by the
import- or export-rule is derivable in AK; extended with the axiom schema. We show this for
the principle 4, : Hy D HHe. For a formal translation between terms in the rule-extended
system and terms in the axiom-extended system the reader is referred to [Borghuis 1994].

From rule to axiom schema:

In AK; extended with 4g-import, an inhabitant for the type of the logical axiom ¢4, : (Vo €
Prop (Ha D HHa)) can be derived on the empty context, as can be seen as follows: the ex-
ample derivation for the 4-axiom above ended in ¢ : Prop + Az : Hcp.ch(le:n) :He D HHe.
It can be continued by abstracting over the propositional variable ¢, resulting in ¢ + Ay :
Prop A : Hp k" (472) : (Vo € Prop.Hp D HH¢) in which the term represents a proof of
the axiom schema (modulo a-equivalence).

From axiom schema to rule:

In AK,; extended with the logical axiom c4, : (Vo € Prop.(Ho O HHa)) the 4g-import rule
can be ‘mimicked’; starting from a statement M : Hy in some context ¢ we can obtain a
statement of type H¢ in the subordinate context which has M as a subterm, using K-import
for H as the only modal rule:

1. G- M:Hp (assumption)
2. G F cyy:(Va€ Prop.(Ha D HHa)) (4,-axiom)
3. G+ ¢:Prop Start lemma
4. G+ (eapp):HpD HHyp (appl. 2,3}
5 G F (cap )M : HHo (appl. 1,4}
6. GEH e+ E((capp)M): Hop (K-import 5)

4.4. The interaction between past and future

In the logic K}, the basic interaction between the past and future directions of time is given
by the symmetry between G and H. A Fitch-style analysis of the deductive effects of this
symmetry in systems for K; and extensions was given in section 3.4. Since MPTSs correspond
closely to the Fitch-style deduction systems, this analysis carries over to AK;. Hence we cannot
expect new insights into the effect of symmetry on the level of types. However, on the level
of terms some aspects of the Fitch-style analysis can be made more precise.
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In 3.4.1 an informal explanation of the mirror image property for the deduction system
for K, was given: from a proof of ¢(G, H) we can construct a proof of ¢(H, G} by taking
the mirror image of all hypotheses occurring in the original proof and then matching all rule
applications in the original proof step by step with applications of the mirror images of these
rules in the new proof. Since in AK; terms represent an entire natural deduction proof of
their proposition type, this operation can be viewed as a substitution on terms which given
a proof object M of type ¢( @G, H) yields a proof object M’ inhabiting o( H, G).

ProrosiTioN. If the AK;-term M corresponds to a natural deduction proof (X) of ¢(G, H)
in K; Ty F M : (G, H)), a AKi-term M’ corresponding to a natural deduction proof
of o(H,G)in K, (g + M': o(H,G)) can be obtained by simultaneously replacing all
occurences in M (and I'g) of:

(i) G by occurrences of H,
H by occurrences of G,

(i) £% by occurrences of &7 / k¥ by occurrences of &€,
kY by occurrences of k¥ / kf by occurrences of EC,
¢(%H) by occurrences of &(#:5) / &(H,G) by occurrences of {GH),

Clause (i) substitutes the mirror images for the hypotheses of the natural deduction proof
¥, which occur in the proof object M as the type of a bound variable (if the hypothesis
is discharged in X) or as the type of a declaration in the context I'y (if the hypothesis
is not discharged). The second clause replaces every modal function in M representing an
application of an import or export rule in ¥ by the modal function representing an application
of the mirror image of this import or export rule.

An example of a pair of proof objects that are each others mirror image under this trans-
lation are the inhabitants of the normality axioms:

Az G(A D B)Ay: GAEC(ECe)k%y)): G(AD B) D (GA D GB)
Az H(AD B).Ay: HARH((E¥2)(kHy)): H(AD B) D (HA > HB) .

The effects of symmetry on the extensions of K; highlighted by the examples 1 and 2 of 3.4.1
are equally present in AK|:

In AK; plus 4-import for G an inhabitant of Hp O HHy can be constructed.
In AK; plus Dens-export for H an inhabitant of GGy O G can be constructed.

We leave it as an exercise for the industrious reader to actually derive the proof objects
corresponding to the Fitch-style proofs in Examples 1 and 2.

For a more general view on the interaction between the past and future direction of time,
we return to the classification of interaction axioms in categories positive/negative intro-
Jextraspection. In section 3.4 it was shown how Fitch-style rules can be given for each of
these categories, and by now the reader will not be surprised that we can match these with
MPTS-rules. Below we give an overview for introspection and extraspection, showing from
top to bottom: the interactions axiom, the Fitch-style rule, the MPTS-rule, and an inhabitant
of the axiom derived by means of the latter rule.
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Introspection
XpDd YZyp ~XpDd Y-Ze
X(,D —|ch
Z(,O _'Z(P
positive introspection negative introspection

GF M:Xp: Prop neq introspection GF M:=Xp: Prop
cga?¥e I-I')(X*Yﬂz)M:Zg: g P Gat e FfL(X’Y’Z)M:—'Z(p

pos ntrospection

Au: Xgo.l?:y(ﬁ(X*Y’Z)u) :Xp D YZy Au :-ﬂti.E:Y(fz(X*yﬂz)u) XD Y Zp.
Extraspection

XYe D Zy X-YeD-Zyp

Y(P - Y(’p
Z(p —|Z(p
positive extraspection negative extraspection

Ga¥Xet M:Yyp: Prop e eztraspection Ga¥et M:-Y¢g: Prop
G F XYM Zy g P G F AV DM 7

pos extraspection

M XY plB VDN kX)) XY D Zo  Au: XY a0 (iXy): X-Yp D -Z¢ .

Note that the proof functions (p, p, 2, 72) in these MPTS-rules are indexed with triples of
operator indices to record all relevant aspects of the application of the I'itch-style rules: the
modality of the formula to which the rule is applied, the modality of the strict subordinate
proof and the modality of the resulting formula. As for the Fitch-style rules, all modal
MPTS-rules defined sofar fit in the classification by identifying or leaving out combinations
of operators (in the types) and indices X, Y, Z (in the terms), and replacing n and p by
more mnemonic letters.

In section 3.4.2, we discussed two cases where an extension of K; with an interaction
axiom of one category made an axiom of a different category derivable due to the symmetry
between G and H. Naturally these examples go through for AK,:
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e in AK,+4-import inhabitants for the preservation axioms, ~G-p D H-G-p and -H ¢ D
G- H~-¢ can be constructed.

e in AK; 4+ 4-import 4+ D-export inhabitants for the actuality axioms, GHy O He and
HG¢ D G can be constructed.

The details of this are left to the industrious reader who should be able to derive these proof
objects on the basis of the Fitch-style proofs in 3.4.2.

4.5, Linear MPTSs

Given the type theoretical version of the classification of interaction axioms, we can simply
follow the Fitch-style analysis of section 3.5 in defining MPTSs corresponding to the minimal
linear tense logic Lin and its extensions.

4.5.1. The MPTS XALin

The first step in extending AK; to ALin, the MPTS corresponding to the minimal linear tense
logic, 1s to include the 4-import rule for G' and H, as the ordering of time points is transitive
in linear logics (4, : Hp D HHyp, 47 : G D GGe).

The second step is to add the universal modality, ‘W, to the set of operators, O =
{G, H,m}, in order to deal with the linearity axioms L, : My D GHyp, and Ly : B D HGo.
Adding ‘W’ to O automatically gives us K-import and K-export for this operator, which
supplemented with 4-import and T-export suffices to account for its ‘pure’ properties:

Az W(AD B).Ay: WAE"((k"z)(k"y)) : M(A D B) D (WA D MB)
SRS VWLIPLIAR VY | V|
Az WA T"(E%z) WA D A .
For the ‘mixed’ principles relating ‘B’ to ‘G and ‘H’, we need the type theoretical analogon
of the positive introspection rules K2-import and U-import proposed in 3.5.1:
G+ A.:Q°B: Prop
Ga@o et fleodq: B

G b+ A:0°B: Prop
ga e F aleoe")4:0°"B

K2-import if o, o€ OK2-—import

U-import if 0,0",0" € Ov_imporst -
The modal function f{**) introduced by K2-import records the modal operator of the im-
ported type in the index o, and the modality of the subordinate context in the index o’. The
function #(%¢°") introduced by U-import does the same and in addition stores the operator
prefixed to the imported type in the index o”. If we instantiate these rules according to the
sets Og2—import (= {(W, G), (W, H)}) and Opy_import (= {(W, G, H), (W, H, G)}) of the Lin,
we get two pairs of import rules which immediately give us inhabitants for the mixed axioms
of ‘W™

As in the natural deduction system, the operator ‘W is definable in AK; (Wy =45 Yo € Prop.(He D

(¥ D {G¥ > @))) D «), but only adding it explicitly yields satisfactory deduction rules for the linearity axioms.
Cf. section 4.2.
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G+ A:®B: Prop G F-A.:RB: Prop

R 2-import GBC¢e - jMGIA:B Gafet jWH) A B
IRY PR THULOPES PR Rer A W BHfH)y . mp 5 He
U-import G+ A:WB: Prop G+ A:WB: Prop
GaGe F 4@MGH)A: HB Ga¥ ¢ - ¢MHG) A GB
A W kCymGH), mp > GHe Az : Mk y(™HC)y  me D HGo .

By adding these two rules, we have covered every way of eliminating the B-operator. For its
introduction we will have to add a logical axiom, like we did for the Fitch-style system in
section 3.5.1. In short, the MPTS ALin corresponding to the minimal linear tense logic can
be described as ADPROP2°, where:

O={(G,H,m}

Opa—impors = {(G, H),(H, G)}

Os_import = {G, H, W}

OK2-import = {(W, G), (W, H)}

OUeimport = {(M, G, H),(W, H,G)}

OT—ezport = {M}

Abesie = Lo (Va € Prop((e D L) D L) D a),ca: (Vo € Prop{{Ha D (a D Ga}) D Ma)}

4.5.2. Familiar linear structures

For each of the linear structures presented in section 2.3.2, we can give an MPTS by extending
ALin with the same combinations of additional rules and additional axioms that were used
in the Fitch-style systems of section 3.5.2.

s (Z,<), the MPTS ALin and

additional rules: D-export for GG
D-export for H

logical axioms: ¢y : (Va € Prop.G(Ga D a) D (-G~Ga D a))
Czp : (Ve € Prop.H(Ha D o) D (~H-Ha D Ha))

s (IN,<), the MPTS ALin and

additional rules: D-export for G

logical axioms: ¢y : (Vo € Prop.G(Ga D «) D (-G-Ga D «a))
Cyp : (Yo € Prop. H(Ha D o) D Ha)

¢ (Q,<), the MPTS ALin and
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additional rules: D-export for G
D-export for H
Dense-export for G
Dense-export for I

o (€, <), the MPTS ALin and

additional rules: T-export for G
T-export for H

e (IR,<), the MPTS ALin and

additional rules: D-export for G
D-export for H
Dense-export for GG
Dense-export for H

logical axioms:  ¢gon : (Ya € Prop.{Ha D -G-Ha) 2 (Ha D Ga)) .

4.6, Subject reduction

The fact that MPTS-terms correspond to entire natural deduction proofs implies that oper-
ations on these terms inside an MPTS correspond to meta-operations on natural deduction
proofs. More in particular, simplification operations on natural deduction proofs can be ex-
pressed type theoretically as reduction rules on terms. For standard typed A-calculi the most
important of these ‘subject reductions’ is 8-reduction: S-reduction on a term representing a
(Prawitz-style) natural deduction proof corresponds to cut-elimination in that proof. Hence
the g-normal form of the term will represent a cut-free proof of the proposition represented
by the type of the term.

For MPTSs, the question arises whether simplifications of modal Fitch-style proofs exist
which can be specified as subject reduction rules jnside the type system. In [Borghuis 1994]
a number of combinations of import- and export steps that can cause ‘detours’ in Fitch-style
proofs have been identified. These detours show up in the MPTS-terms as patterns of import-
and export functions, on which subject reduction rules can be defined. Besides the detours
familiar from general modal logic, the tense logics discussed in this paper also contain new
ones.

4.6.1. Reduction in K;

Because of the symmetry between K-import and K-export the application of the import rule
on a proposition immediately followed by an application of the export rule does not have any
observable effect on that proposition. The proposition has not been used to derive anything
in the subordinate proof (no rules have been applied to it between import and export) and
all steps in the proof that could have been taken before this ‘detour’ can be taken after it.

Prawitz-style (or ‘tree-form’) natural deduction rules have an explicit cut-rule, in Fitch-style deduction
the situation is more complicated, but f-reduction alse simplifies the proof (see {Borghuis 1994]).
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GA = .G’A

@,

GA

kS (RCM) M
Type theoretically there is a difference between the occurrences of GA before and after the
detour. If the original proof object for GA is M, then the inhabitant of GA after the detour
will be £%(kGM). In this term it is recorded that the original proof (M) of the proposition
(GA) in the main context which has first been specialized to a proof (£ M) of the proposition
(A) in the G-subordinate context by means of the function £ and then generalized back into
a proof of the original proposition (GA) in the main context by k.
Given this signature of a detour, we can define a type theoretical reduction rule to formalize
the idea that a combination of subsequent K-import and K-export for a given normal modal
operator is pointless in a natural deduction proof.

4.5. DEFINITION. kk reduction: k°(k°M) = M VYoe O

Combined with the mappings to and from the natural deduction proofs, kk-reduction allows
us to eliminate detours in a natural deduction proof in the way depicted above: any sequence
of K-import and immediate K-export of a formula can be eliminated from the proof.

In view of the symmetry of the basic modal rules, it is not surprising that we can make a
similar observation about sequences in the ‘reverse order’: K-export followed by K-import.
Given an occurrence of A in a strict subordinate proof, subsequent applications of K-export
and K-import again yield an occurrence of A in a strict subordinate proof.

A = A
GA

A

EC(ECM) M
Eliminating this detour does not make a difference for the rest of the natural deduction proof;
since KA -export could be applied to 4, we know that the first occurrence of 4 does not depend
on any hypotheses of the modal subordinate proof.

Supposing that the original inhabitant of A is M, the type theoretical signature of such a
detour is k“(k%M). Hence we can define the following reduction for its elimination.

4.6. DEFINITION. kk reduction: k°(k°M) = M VYoe O

We shall call both kinds of reduction ‘annihilation’; any time a A°-function meets a k°-
function in any order in a term they ‘destroy’ each other. These reductions are ‘compatible’,
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which means that a subterm of the right form (e.g. k¥ (k¥ M)) may always be replaced (by
M), regardless of the structure of the term in which it appears (for instance, an application

N(EE (B2 M)

4.6.2. Reduction in Lin

In extensions by rules for logics above K;, new pointless combinations of import and export
may arise. In the logic Lin this happens for the universal operator ‘0’; for this operator we
have 4-import, allowing us to transfer formulas of the form ‘B¢’ unchanged to a W-subordinate
proof, and T-export, allowing unchanged export of any formula out of a M-subordinate proof.

Immediate subsequent use of these rules leads to detours in the natural deduction proofs of
Lin:

B4 = mA

..,
A
(A M M
A = mA
mA
mA
(%) M

In Lin, these detours can be identified as subterms of the form i™(4"M) or 4"(t" M)
(where M is of type Byp). Hence we can formalize their elimination by means of the following
subject reduction rules:

4.7. DEFINITION. t4 reduction and 4% reduction.
td reduction : 1°(4°M) = M Vo € O such that 0 € O7_ ppes and 0 € Oy import
At reduction : 4°(3°M) = M Vo € O such that 0 € O4_import and 0 € O crport

If the logic Lin is strengthened further to accommodate dense flows of time, the above
detours can also occur with the weaker operators G and H: in Lin we already have 4-import
for these operators and in extensions for dense logics Dens-export is added. Since Dens-export
behaves exactly like T-export for formulas of the form G and H, subsequent application
of these rules yields the above detours. In the MPTS, these detours can be recognized by the
presence of the ‘4’ import function and ‘%’ export function.

See [Barendregt 1992].
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4.8. DEFINITION. ¥4 reduction and 49 reduction.
b4 reduction : 9°(4°M) = M Vo € O such that 0 € Opense— coport and 0 € Os_import
49 reduction : 4°(9°M) = M Vo € O such that 0 € O4y_import and 0 € Opense—eport

Annihilation rules are well-behaved; the combined reductions in an MPTS with S-reduction
and annihilations have the same desirable properties as the f-reductions in the original

MPTS.

Subject Reduction If G - M : A and M reduces to M’ through a number of annihila-
tions (and F-steps), then G + M’ : A: the reduced proof is again a proof of the original
formula.

Strong Normalisation For every term M, there is an upperbound to the reductions
starting from it: the annihilation reductions of proofs terminate.

Church Rosser If a term M and reduces to different terms M’ and M”, then M’ and
M" have a common reduct: different reduction paths will eventually lead to the same
result.

This was proved for kk/kk-reduction and #4/4¢-reduction in [Borghuis 1994], these proofs are
easily adapted to include #4/4#-reduction.

Annihilations eliminate pointless combinations of import and export steps, they remove
simple ‘local’ detours from modal Fitch-style proofs. For modalities for which T'-export holds,
more interesting operations on proofs are possible: since T-export does not change the form
of the propositions to which it is applied, it can sometimes be interchanged with propositional
steps in the proof. An example of this in Lin, where we have T-export for ‘W, is the exchange
of D-elim and T-export:

:I(IA ~ mB) :I(IA 5 EmB)

|A nA
=
mA D MB (K-import) NA D WB (K-import)
mA (4-import) NA (4-import)
wB (3-elim) WA D NB ( T-export)
uB ( T-export) | ( T-export)
aB (D-elim)
IR((k™M)(A"N) (1% (k™ M))(1%(4"N))

In the proof on the left, two formulas are imported into the M-subordinate proof, >-
elimination is performed and the result is T-exported to the main proof. In the proof on
the right, two formulas are imported, immediately T-exported and D-elimination is then
performed on the results of the export in the main proof. Hence we have shortened the
B-subordinate proof by permuting the application of D-elim and T-export. Intuitively this
operation is justified by the reflexivity of the ‘W’. Since it quantifies over all time points,
H-subordinate proofs correspond to arbitrary time points and propositional steps inside such
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proof involve formulas which are true at all time points. Hence these proof steps could also
be carried out at the present time point (in the main proof).

In the MPTS-terms corresponding to the two proofs, applications of T'-export are recorded
as occurrences of ‘t™’. Hence the permutation of T-export and >-elim in the natural deduction
proof shows up as a distribution of ¥ over application in the terms: {®((k™"M)(4"N)) =
(1™ (E"M))(i™(4"N)), assuming that A : B(MA D ®B) and N : WA. At first glance, it
may seem that the deduction proof resulting from this reduction is not simpler than the
original proof: its subordinate proof may be shorter but the main proof has more steps than
the original. However, a second look reveals a possibility for further simplification in the
new proof; it is now obvious that the 4-import and T-export of MA is superfluous, we could
immediately have used the topmost occurrence of WA in the D-elimination. This possibility
is reflected in the proof term which contains the t4-redex {™(4® N). Reducing it in the way
described above yields a proof that is simpler than the original proof:

:I(IA D WB) :I(IA D EB)

mA uA
=
BA D BB (K-import) I—T_] BA D EB (K-import)
mA (4-import) .4 DWB (T-export)
A DWEB (T-export) mB
mA ( T-export) .
mB
(IR("M))(ER(A"N)) (F"(k"M))N

This example shows how the distribution of ¢ through a proof term can give rise to more
‘global’ proof reductions, eliminating detours which are not immediately visible in the natural
deduction proof. Since defining proper reduction rules for distribution of { over application
is technically rather involved, we refer the reader to the discussion of these rules in [Borghuis
1994]. An important conclusion of this discussion is that the set of distribution rules is not
as well-behaved as that of annihilations: Subject Reduction fails and at best we have Weak
Normalization.

The point of this section is to show that the ‘separation of concerns’ that is enforced in
Fitch-style systems above K which are extended by rules has advantages for the interpretation
of these logics in MPTSs. If all modal steps in the deduction proof are coded by import- and
export functions in the proof term, simplifications of the modal structure of the deduction
proof can be formalized inside MPTSs in the form of simple subject reduction rules. For
systems which are extended by axioms, we can find formulations of some annihilation rules
but these are rather awkward compared to those above. Disttibution rules cannot be specified
for extensions by (T'-) axioms.
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5. Axioms and rules

In section 3.3, two ways of extending the Fitch-style deduction system for the basic tense
logic K; were discussed: extension by axioms versus extension by rules. Although it was
argued that extension by rules is preferred, there were several tense logical principles for
which an extension by axioms was adopted because there didn’t seem to be a Fitch-style rule
corresponding to them. In this section we take a more systematic look at these cases, to
see what we can learn with respect to the general (open) question of expressivity of modal
Fitch-style deduction rules.

Throughout this paper, a number of axioms has been discussed for which no corresponding
Fitch-style rule was given:

o 7y G(GeDy)D (FGy D Gy) Z, H(HpD @)D (PHp > Hy)

o Wy G(GeDy)D Gy W, HHeD¢)De

o Dumy G(G(eD Ge) D9} D (FGe D) Dumy H(H(pD Hg)D ) D (PHe D ¢)
o Cont M(Hp D FHp) D (Hyp D Gy)

e Wint (Hohph Ge)DHlp.

However, with a somewhat more insouciant approach to Fitch-style deduction one could come
up with rules for these axioms; an import rule for W/ W, and B-int, and an export rule for
Zt ] Z,, Dumyg [ Dum, and Cont (for the axiom pairs, we only show the rule for the f-axiom}:
Import rules

Wf - int

G(Gy D ) Hohph Gy

Export rules
Zs Dumy Cont
GeDyp Glp D Gp) Dy He > FHy
FGp D Gy FGp D Hp > Gy

As the reader can easily check, adding these rules to K; will make the corresponding axiom
a theorem of the resulting system. Vice versa, adding one of the axioms to K; will make the
corresponding rule derivable. The modal rules we had encountered sofar only changed the
modality which is the main connective of the formula they import or export. The above rules
change modalities inside the formulas to which they are applied, and some even change the
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propositional form of these formulas. Intuitively such rules are counterproductive; they seem
to interfere with the ‘separation of concerns’ they are supposed to promote. This intuition is
supported by an observation which has been made both in tense logic and in the meta theory
of MPTSs.

In [Prior 1967], Smiley’s ‘proof of consistency’ is mentioned: when a tense logical axiom
or rule ‘survives’ the interpretation Go = Hg = Fy = Py, it is deemed consistent. The idea
is that an axiom or rule that turns into a tautology when stripped of its tense operators holds
in ‘instantaneous time’, where everything happens simultaneously in a single instant. Of the
above axioms only W; and W, fail Smiley’s test, they turn into (¢ D @) D . In the proofs
of the meta-theoretical properties of MPTSs ([Borghuis 1994]) this same idea of stripping the
modal parts comes up. A vital ingredient of these proofs is a mapping that projects MPTSs
back onto their underlying PTS, by erasing everything that is modal in types, terms and
contexts.

5.1. DEFINITION. Erasure Mapping
Let | | be a mapping of MPTS-terms to PTS-terms:

i. |@°Aj= 4], |-0°-A]=|A|forall o€ O

i, |AjAg| = |A1||4al, |Az: A.b| = Az :{A|.|b], |z : A.B| = iz : |4| .{B|
IT,z: Al =|[|,|z: 4], |G@°T|=|G|,|T|forall o € O
|A: B|=|4|:|B|, |e| = ¢, |z| =z (for z € Var), |s| = s (for s € §)

v. [keAl= Al [b7A] = 4], 14°4] = 4], [5°4] = 4],
|k°A| = |4}, |d°A| = |4], |#°A] = |A] for all 0 € O.

If we apply this mapping to the standard import and export rules they turn into identities
for the underlying PTS, for instance K-import

G+ A:0°B:Propy L' - |A|:|B|: Prop
gg°e + kA:B | I + [A]:|B|
(where I' = |G @° ¢| = |G,e] = |G|). This shows that these modal rules do not in any
way strengthen the underlying non-modal PTS with respect to the derivation of non-modal
statements.
However, all of the deduction rules proposed in this section fail this test, with the exception

of the export rules for Z;/Z, and Cont. The first example is the type theoretical analogon of
Wy-import, which fails the erasure test in the same way that Wy fails Smiley’s test:

G F M: GG(,ngo)| Ik [M|:]eD el
Ga%e F wGM:p T+ |M|:|e

The stripped rule incorrectly strengthens the PTS by stating that a term | M| of type |¢ D |
on context I' is also an inhabitant of type |p| on that context. The type theoretical test is
stricter than that of Smiley since it demands that the premiss and the consequence of the
rule are identical after stripping. This eliminates the rules for the Dumy/Dum, and B-int
axioms, which pass Smiley’s test. For instance, the rule for B-int:

GF M:HponpAGey T F [M|: I(,o/\go/\go|
Ga%e F {"M:p - L+ Mgl
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Although the type of the premiss statement propositionally implies the type of the conclusion
statement, the stripped rule still strengthens the underlying PTS (APROP2). It allows us
to immediately use a proof object |M| for |¢ A ¢ A ¢| as proof object for ||, whereas the
PTS-derivation of a term inhabiting |¢| from {M| would require a number of steps changing
the form of |M|. Hence the erasure mapping leaves us with just the export rules for Z;/Z,
and Cont; the stripped form of all of these rules is the harmless

L + [M|:]e2 ¢
T [M]:feDel

Although these rules seem unproblematic from a type theoretical point of view, they subtly
interfere with the separation between modal and propositional steps in Fitch-style proofs. In
natural deduction a common ‘bottom up’ strategy for finding a proof for a given formula is to
decompose it according to its main connective by assuming that the last step in its proof was
the introduction of this connective. This leaves us a deduction problem for a simple formula
which can again be decomposed..., etc. In Fitch-style systems for simple modal logics, like
K., this strategy continues to work: proving a formula of the form O%¢ can be simplified to
proving ¢ inside a O°-subordinate proof. Rules like those for Z;/Z, and Cont undermine such
local strategies because they act inside a formmula rather than on its main connective. If faced
with the task of proving a formula He O G¢, one would assume that the last step in the
proof was the introduction of ‘2’, rather than reducing the problem to proving He O FHyin
a B-subordinate proof (Cont). In this case a local strategy for finding proofs would suggest a
propositional rule where a modal rule is needed. Clearly a further proof-theoretical analysis
of modal Fitch-style deduction systems is needed to characterize the tense logical principles
of which an extension by rules is possible. However, the above observations suggest that the
propositional forms of these principles will be simple.
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6. Concluding remarks

This paper shows that the possibilities for temporal reasoning captured by Priorean Tense
Logics can be brought into type theory by interpreting these logics in MPTSs. Crucial to this
interpretation are the Fitch-style deduction formulations of these logics: the proofs in these
modal natural deduction systems correspond directly to term in the MPTSs. Through this
close correspondence solutions to problems of temporal reasoning found (in the widespread
applications of) tense logics are now available to type theory, which is of particular interest
for applications of type theory to knowledge representation.

In section 3.2 a Fitch-style system for the minimal tense logic K; is given. This system
gives a satisfactory deductive account of the fundamental symmetry between the past and
future direction of time expressed by the K;-axioms ¢ O GPy/¢ D HF p: the effects of this
symmetry, both in K; and its extensions, that were noted in the literature can be reproduced
in it. The modal rules of the system suggest why the mirror image property holds for Fitch-
style Ki; for every modal rule for the G-operator there is a ‘mirror image’ rule for the H-
operator: K-import and K-export hold for both G and H, and the FB-import rules relating
the operators are each others structural mirror image. Hence, given a deduction proof of
@{(G, H) a proof of ¢(H, G) can be found by taking the mirror images of all hypotheses in
the proof of ¢(G, H), and matching each application of a modal rule in that proof with an
application of the mirror image of that rule. This meta-construction of ‘mirror image’-proofs
can be formalized in AK; (the MPTS corresponding to the deduction system) as a substitution
operation on the term representing the proof of (G, H).

Essentially the Fitch-style system for K; and AK; suffice for the type theoretical inter-
pretation of any Priorean Tense Logic, since we can trivially accommodate all further tense
logical principles by adding them to the deduction system and the MPTS as (logical) axioms.
However, for a number of well-known tense logical principles, such as those expressing tran-
sitivity, density, infinity and reflexivity of the flow of time, a more interesting extension of
the basic systems is possible. Each of these principles becomes derivable by adding one extra
import or export rule to Fitch-style K; and AK, (cf. sections 3.3 and 4.3). An advantage of
these extensions by rules is that all modal steps in the proof consist in exchanging formulas
between the main and modal subordinate proofs, whereas all propositional steps take place
inside the main or modal subordinate proof. This separation of concerns manifests itself in
the structure of the MPTS-terms corresponding to these proofs: modal steps are recorded by
occurrences of modal functions (IE", ke, ...) in these terms, propositional steps are recorded
as A-abstractions and applications. In proof terms of this kind, certain detours (pointless
combinations of modal steps) in natural deduction proofs can be identified as subterms pre-
fixed by specific combinations of modal functions. The removal of these detours, which is a
meta-operation on Fitch-style proofs, can be formalized in MPTSs as a set of well-behaved
subject reduction rules (see section 4.6).

An interesting family of logics above K; are the linear tense logics, which are discussed in
sections 3.5 and 4.5, Initially, the minimal linear tense logic Lin does not seem amendable
to the kind of Fitch-style treatment applied to K;, because of the form of the characteristic
axioms L, : Pe D H(PpV eV Fp)and Ly - Fe D G(PpV oV Fy). However, using
the definable universal normal operator ‘W (Mg =4 He A @ A Gp) these axioms can be
rephrased as L, : We O GHye and Ly : Be O HG¢ for which perfectly good Fitch-style
import rules can be given. All other ways of eliminating the W-operator can also be dealt
with by modal rules, but its definition cannot be eliminated completely; for some cases of
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introduction one half of it is needed, the ‘axiom’ W-int : HeApA Gy O Wy, By extending the
Fitch-style system for Lin and the corresponding MPTS ALéin with further axioms and rules,
tense logics describing familiar linear conceptions of time can be captured type theoretically.
From a deductive point of view the systems for ‘rational time’ ({§, <) and (@, <)) are of
particular interest, since they can be obtained from Lin and ALin by extending only with
rules. The discussion in section 5 shows that in general the prospect of capturing a tense logic
deductively by extending the Fitch-style system for K; with only rules, is limited to tense
logics which have syntactically simple axioms.
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Appendix: Interderivability of CA4 and -0-A

Throughout this paper, all natural deduction rules and type derivation rules were stated using
only the ‘universal’ (or ‘0’-) modalities ‘G’ and ‘H’. The ‘existential’ (or ‘{’-) operators ‘F’
and ‘P’ were treated as definitional abbreviations of ‘=G’ and ‘~H—’ respectively. This is
sufficient for the purpose of this paper, but one may prefer a deduction or derivation sys-
tem in which ‘F’ and ‘P’ are first-class citizens, bringing the proofs closer to the standard
presentation of the axiomatics and model theory of tense logics in the literature. However,
in a system that has both universal and existential operators the equivalences Fp < G-
and Py & ~H-yp (in general O¢ « —~0-¢) should be derivable instead of dependent on a
definition.

The easiest way to bring the definitions into the deduction proofs would be to introduce
rules which allow the replacement of an occurrence of the existential operator ‘¢’ with that
of an occurrence of ‘-0-’ (and vice versa) in a single step:

0(‘0 0=

0= O
Although completely straightforward, this solution is not in the spirit of the ‘separation of
concerns’ advocated earlier. According to this idea propositional reasoning steps in a natural
deduction proof are carried out inside hypothesis-intervals of the same modal depth, whereas
modal reasoning steps correspond to the transfer of formulas between hypothesis-intervals
of different modal depth. The ‘replacement rules’ given above do not respect this distine-
tion: they code a modal equivalence by means of rules that are carried out inside a single
hypothesis-interval.

If we state the relation between the universal and the existential operator as ~C¢ « O,
a solution can be found that is more in line with what we have done sofar. Given the K-
deduction rules for ‘Q’, this equivalence becomes derivable by adding an extra import rule
(def-import) for the direction - D O-p and an extra export-rule (def-export) for the di-
rection O-¢ D .

1. Qg :
~Qyp O
2. EEF—NP (def-import,1) —Op D U-p  (axiom)
- O-
‘ 3. Q=g ( K-export,2) L4
I 4. G D O-gp
) (K-import)
def-import From rule to ‘axiom’ From ‘axiom’ to rule

The intuition behind the rule is that if ¢ holds there is no accessible world (future/past
time point) when ¢ holds, hence —¢ has to hold in every accessible world (future/past time
point}, i.e. ~¢p is true in the arbitrary accessible world represented by the strict subordinate

58



proof. The export rule formalizes the converse intuition: if —¢ holds in an arbitrary world, ¢
will not be true in any accessible world and hence =< holds:

1. |:|—|('0
."(P 2. - (K-import 1) .—M,D
—Op 3. O {def-export 2) O { K -export)
4. O-p D ~Op O-¢ D O (axiom)
—Qu
def-export From rule to ‘axiom’ From ‘axiom’ to rule

To show that these two rules are sufficient, we give the deduction proof for the remain-
ing cases covered by the definition of ‘G’ by means of ‘O

O-A 1. -0A
2. oA 2, —O-A
3. ~A 3. -—A (def-import 2)
4, A (K-import 2) 4. A
5. —A 5. 04 (K-export 4)
6. -4 6. -4
7. -$-A (def-export 6) 7. 04
8, -4 8. -4

10. &4 5 —-04

This strategy for bringing the definition into the natural deduction system can also be applied
to MPTSs for tense logics. All that is required for a type theoretical translation of def-import
and -export is a slight extension of the syntax: we have to allow ‘existential modal types’
(©T), and new functions (déf, déf) that will record the use of the ‘definition-rules’ in the
proof object.

G F A:-CB: Prop def —ezport G@ e - A:-B: Prop
GD ¢ F defd:-B P G F defd:-OB

def —import

Clearly, these rules enable us to transform any ‘O-type’ statement into its ‘O-type’ counter-
part (and vice versa), by means of derivations analogous to the natural deduction proofs above.

A disadvantage of incorporating the relation between ‘O’ and ‘¢’ by means of deduction
(or derivation} rules is that proofs (derivations) can turn out to contain pointless combina-
tions of steps involving the definition rules. The simplest example of such a detour is the
subsequent application of def-import and def-export to a formula of the form - A:
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-CA = -CA

@ 4 ' The proof on the left turns an oc-
QA

def(defM) M

currence of =< A into an occurrence of = A, while every rule that is applicable to the second
occurrence was already applicable to the first occurrence. Obviously, this proof could be sim-
plified to the one on the right by omitting the detour consisting of def-import and def-export.
In natural deduction such simplifications are meta-operations on proofs but, as pointed out
earlier, type theoretically they can sometimes be expressed as subject reduction rules. The
signature of the detour in the above proof is a subterm of the form def(défM), where M
represents the proof upto the first occurrence of < A. Since the signature of the simplified
proof is M, the situation seems to be analogous to that for K-import and K -export discussed
eatlier. Hence we stipulate annihilation for the definition rules:

def(defM) = M
déf(defM) = M .

In tandem with the annihilations for K-import and -export, these rules are able to eliminate
more interesting detours than the one in the example above:

1. -OA
2. Lﬁl_l -A  (def-import 1) oA
3. a-A ( K-export 2) - vy
4. Fl -4 (K-import 3) —CA D -OA
b, -CA (def-export 4)
6. "OAD-CA
Az =CQAdef (k(k(defe))) Az : =CAx

The proof on the left derives =<{A from <A via O-A4 instead of establishing this iden-
tity directly as in the proof on the right. In the corresponding proof term this detour is
recorded as a sequence of K- and def-functions which can be reduced in the following way:

Az : ~OA.def(k(k(defe))) —i;

Az : —-OAdéf(défx) —rdefdef

Az —CAx .
The resulting proof term is the identity function for z : ~<$ A4, which corresponds to the proof
on the right; the combined reduction rules have eliminated the detour. In the same way
a proof of O-A from O-4 via =CA can be reduced to an identity proof. However, these

examples should not lead us to believe that any ‘unnecessary’ application of the definition
rules in a proof can be eliminated using K-annihilation, def-annihilation and S-reduction:
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the proofs of &-A from ¢-4 through ~0OA and -0A4 from -0A4 via ¢-A4 do not reduce to
identity. This is caused by the application of ——-elimination in these proofs (cf. the deduc-
tion proof of -0A D $—A given earlier). Since MPTSs are by heritage intuitionistic, double
negation-elimination requires invoking the logical axiom ¢ : Vo : Prop(——ea D ). This leaves
a ‘scar’ in the proof object (consisting of the constant ¢ applied to some proposition type)
which blocks the reduction path leading to the identity function.

The discussion of import- and export-rules as a means for expressing the definition of ‘¢’
as ‘-0O-’ was started in an attempt to answer the practical question how a deduction or type
system could be obtained in which the operators ‘F’ and ‘P’ are first-class citizens. The
practical conclusions of the discussion are that for the natural deduction system we only have
to add the def-import and def-export rules relating  to ¥ and H to P, whereas the MPTS
(AOPROP?2) needs to be extended with a couple of things.

o ‘Boxing rules’ for F and P, stating that every proposition type may be prefixed with the
existential modal operators:

G + A: Prop Bogin G+ A: Prop
G + FA: Prop gp G + PA: Prop’

Bozingr

¢ def-import and -export rules relating ' to G and P to H

G+ A:-FB: Prop def ort G@ge b A:-B: Prop
GBge F defod-—B GmEmONG T e defa A PR

G+ A:=PB: Prop G@pge+ A:-B: Prop
GOpe & defyA:-FB G+ defgA:-PB

def —import

def —importy def —erporty

¢ Annihilation rules for def-import/export combinations (optional)

defe(defeM) = M defo(defoM) = M
defy(defuM) = M defy(defy M) = M .

The additional Boxing- and import/export rules have no influence on the meta-theoretical
properties of the MPTS, the proofs of these properties in [Borghuis 1994] can be extended
to deal with these rules in a straightforward way. Similarly, the well-behavedness of the
deéf & def annihilation {by itself and in combination with the K-annihilation) can be shown
by adapting the proofs for Subject Reduction, Strong Normalization and Church Rosser
given those for the k & k annihilation.
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