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Priorean Tense Logics in Modal Pure Type Systems* 

Tijn Borghuis 
Eindhoven U ni versity of Technology t 

1. Introduction 

The aim of this paper is to extend typed A-calcnlus with temporal reasoning. Typed A-calculi 
have a number of features which make them very suitable for applications to knowledge 
representation (see [Ahn et al. 1994]), but they lack the possibility for reasoning about 
situations that change in time which is vital to some of these applications. Simply put, the 
reason for this inability is that the language of type theory (like that of other major logical 
formalisms) is atemporal; it was designed to deal with the truth and falsity of propositions 
sub specie aeternitatis. This is in strong contrast with natural language, where temporal 
properties of states of affairs (such as their duration or temporal order) can be expressed 
directly through changes in verb-form or 'tense': 'John sings' is true when John sings now, 
whereas 'John sang' is true when John was singing somewhere in the past. 

One of the first attempts to reconcile the discrepancy between the atemporallanguage of 
logic and tensed natural language with modern logical means were Arthur N. Prior's 'tense 
logics' ([Prior 1957], [Prior 1967]). In Priorean Tense Logic, standard propositional logic 
is extended with four operators that transform an untensed proposition ('I') into a tensed 
expression: 

G'I': 'always in the future it is Going to be the case that '1" 
F'I': 'somewhere in the Future it will be the case that '1" 
H'I': 'always in the past it Has been the case that '1" 
P'I': 'somewhere in the Past it was the case that '1". 

The extended language allows the expression of a great variety of temporal structures and 
temporal arguments. This has led to widespread applications ranging from the semantics of 
natural language (see [Gamut 1982]) to the verification of computer programs (cf. [Goldblatt 
1992]). 

For the purposes of this paper, the main advantage of Priorean Tense Logics is that they 
capture temporal reasoning by means of intensional (or modal) operators. From the point 
of view of present day modal logic, tense logics can be conceived of as multi-modal logics of 
which the operators interact in specific ways. This view provides a direct connection with 
the framework of Modal Pure Type Systems (MPTSs) presented in [Borghuis 1994]. These 
systems extend typed A-calculi that correspond to standard non-modal logics with modal 

*This research was carried out in the project 'Dialogue Handling and Knowledge Acquisition} (DenK), 
supported by the Tilburg-Eindhoven Organisation for Inter-University Cooperation 

t Department of Mathematics and Computing Science, P.O. Box 513, 5600 MB Eindhoven, The Netherlands. 
E-mail: tijn@win.tue.nl 
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operators. For a family of multi-modal logics a 'propositions-as-types' interpretation has 
already been given in the MPTS-framework, i.e. a formal mapping has been constructed from 
natural deduction proofs in these logics to terms in an MPTS (and vice versa). Therefore 
investigating the possibilities for the interpretation of Priorean Tense Logics in MPTSs seems 
a promising way of bringing temporal reasoning into type theory. 

Because of the unusual combination of subjects, keeping this paper self-contained is in
feasible. However, we do not aim at an (imaginary) ideal reader with detailed knowledge 
of both Priorean Tense Logic and Modal Pure Type Systems but assume that the reader is 
familiar with basic modal logic (e.g. [Chellas 1980]) and linear natural deduction (as in [van 
Westrhenen et al. 1993]) on the one hand and with typed A-calculi (preferably Pure Type 
Systems [Barendregt 1992]) and the propositions-as-types interpretation of (non-modal) logic 
on the other hand. Throughout the paper we try to focus on ideas rather than technical 
details, and to provide the reader with sufficient examples to gain an intuitive understanding 
of what is going on. 

The structure of this paper is as follows: first we give an introduction to the basic tense 
logic and a number of its extensions, each capturing a different conception of the flow of time 
(section 2). Then natural deduction formulations of these logics are given (section 3). Using 
the natural deduction systems, MPTSs are defined in which the tense logics can be inter
preted (section 4). Section 5 contains a short digression on the limitations of strengthening 
tense logical deduction systems and MPTSs by so-called modal rules. The paper closes with 
concluding remarks (section 6). 

Due to this structure, the reader will meet all of the logical systems and principles discussed 
in this paper three times: first in an axiomatic guise (section 2), then in a deductive guise 
(section 3), and finally in the guise of a type system (section 4). Since we treat a fair number 
of systems and principles, we thought it might be helpful (if only for future reference) to 
provide the reader with some sort of road-map indicating where particular systems occur and 
reoccur in the course of this paper. The table below lists (the section numbers of) the three 
occurences for each of the main systems and clusters of principles treated in this paper. The 
first entry is for the minimal Priorean Tense Logic K t . All other tense logics are obtained by 
strengthening this logic with additional principles formalizing further properties of time. A 
number of these principles, listed here as 'further properties', are treated in this paper. One 
of the logics extending Kt is the logic Lin which is the minimal tense logic for linear flows 
of time. If Lin is in turn extended, we obtain tense logics for a number of linear structures 
which are familiar from mathematics (like (/N, <)). These logics are treated as a group in 
this paper and listed below as 'familiar structures'. 

Tense logic Axioms Deduction Type System 

K t 2.1 3.1 4.2 
further properties 2.2 3.3 4.3 
Lin 2.3.1 3.5.1 4.5.1 
familiar structures 2.3.2 3.5.2 4.5.2 
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2. Tense logic 

In this section we briefly introduce the tense logical systems that will be subjected to deductive 
and type theoretical treatment throughout this paper. For a thorough discussion of the listed 
axioms and logics the reader is referred to [van Benthem 1983J. 

2.1. The basic system Kt 

The language of Priorean Tense Logics is that of (classical) propositional logic extended with 
operators G, F, H, and P: given a propositional language consisting of propositions letters 
All A2 ) .. " B, ... , constants T and .i, and connectives -,,1\, V, :), f-t, Gc.p, the formulas F<p, 
H <p and Pip are well-formed if <p is itself a well-formed formula. 

The smallest Priorean tense logic is K t which, according to [Prior 1967], was first proposed 
by Lemmon in 1965. It can be characterized as the set of propositions derivable by means 
of: 

• all propositional tautologies 

• definitions: 

• aXIOms: 

G(<p::J 'IjJ)::J (G<p::J G'IjJ) 

<p => GP<p 

• rules: 

<p <p::J 'IjJ 
'IjJ 

H(<p::J 'IjJ) ::J (H<p ::J H'IjJ) 

<p => HF<p 

(Modus Ponens) 

(NecessitationG) 

(N ecessitationH) 

if <p is a thesis, then G<p is a thesis 

if <p is a thesis, then H <p is a thesis 

(Normality) 

(Symmetry) 

(where a thesis is a well-formed formula that is an axiom or a theorem of the logic, hence 
derivable without assumptions; note that Modus Ponens also holds in the presence of 
assumptions) . 

From the perspective of modal logic, K t can be seen as consisting of two copies ofthe minimal 
normal modal logic K: one for the operator 'G', looking 'forward' in time, and one for the 
operator 'H', looking 'back'. These two logics are linked by the symmetry axioms which 
ensure that the two directions in which one can look are each other's inverse: if <p holds now, 
then going to any point in the future (past) one can see the point where <p holds somewhere 
in the past (future). In the Kripke models for K" the accessibility relation of the operator 
G, RG, and that of H, RH are each the converse ofthe other: sRGt ~ tRHs (see for instance 
[Goldblatt 1992]). Hence the following theorem in [van Benthem 1983J comes as no surprise: 
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THEOREM. Kt axiomatizes the tense logic of all symmetrical point structures. 

An interesting consequence of this symmetry is that Kt has the 'mirror image property': 
if a formula <p in which G and H may occur (<p(G,H)) is a theorem of K t , then the same 
formula with G and H exchanged (<p(H, G)) is also a theorem of K t . 

2.2. Further properties of time 

Tense logics above Kt are obtained by adding axioms expressing further properties of the 
flow of time. These axioms can be divided into 'pure' axioms, which state properties for one 
direction of time (generally occuring in pairs: one for the future, one for the past), and 
'mixed' axioms which describe ways in which the past and future direction of time interact. 

2.2.1. Pure axioms 

Several axioms which are familiar from general introductions to modal logic, such as [Chellas 
1980] or [Hughes and Cresswell 1972], reappear when one tries to formalize intuitions about 
the flow of time. Although pure axioms can be adapted separately for the past and future di
rection of time, we shall discuss them in 'mirror-image pairs' which express a certain intuition 
symmetrically with respect to past and future. 

These axioms express transitivity of the time flow, which may become clear by looking at the 
sometimes preferred (e.g. in [Koymans 1989]) Kt-equivalent forms FF<p ::J F<p/ PP<p ::J P<p: 
in this form 4J says that any point in the future of a future point is also a future point. 

The operators G and H quantify universally over respectively all future and past time 
points, regardless of the existence of such point. To ensure that if G<p (H<p) holds there 
actually exists a future (past) time point at which if' holds, the above axioms for 'seriality' 
or 'succession' of the time-point ordering are needed. DJ and Dp enforce that the time flow 
has no end points in the future and past direction. These principles are expressed in several 
ways in the literature, such as FT / PT ([Goldblatt 1992]), GF( ,1.)/ HP( ,1.) ([Gabbay et 
al. 1994]) and ,G(<p/\ '<p)/,H(<p/\ '<p) ([Gamut 1982]), all of which are Kt-equivalent to 
DJlDp. 

These axioms express reflexivity of the time-point ordering: if always in the past (always 
in the future) <p holds, then <p holds now. Hence adding a T-axiom to K t turns the '<'
ordering of the time points into a ':=;'-ordering* . 

• DensJ GG<p::J G<p Densp HH<p::J H<p 

These axioms express density of the time flow: between any two points in the order there 
lies another point. This may be more apparent from their Kt-equivalent forms F<p ::J 
FF<p/ P<p ::J PP<p ([Koymans 1989]): in this form DensJ says that any reachable point in 
the future (F<p) is also reachable via an intermediate point in the future (FF<p). 

*Clearly we cannot add these axioms separately for the future and past direction. This issue is discussed 
in section 3.4. 
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Besides these 'general purpose' principles which are also known from applications of modal 
logic to other areas than temporal reasoning, more subtle intuitions concerning the ordering 
of the time points can be formalized by means of just G or H. 

• Wf G(G<p:::J<p):::JG<p 

These tense logical versions of the Lob-axiom from provability logic enforce well-foundedness 
of the ordering ([van Benthem 1983]): in a given direction there are only finite chains of 
ordered time points. Hence time flows where time has a beginning can be captured using 
Wp. 

• Zf G(G<p:::J<p):::J(FG<p:::JG<p) Zp H(H<p:::J <p) :::J (PH<p:::J H<p) 

These axioms, also known as 'modified Lob' ([van Benthem 1983]), express 'discreteness' 
of the ordering: between any two time points (in a given direction) lie only finitely many 
points. 

• Dumf G(G(<p:::JG<p):::J<p):::J(FG<p:::J<p) 
Dump H(H(<p:::J H<p) :::J <p) :::J (PH<p :::J <p) 

Proposed by Dummet in 1958, these axioms capture a different idea of discreteness, that 
of 'finite variability': between any two points (in a given direction) a proposition can only 
go through finitely many changes of its truth value. 

2.2.2. Mixed axioms 

In the logic K" the past and future direction of time are already closely intertwined due to the 
symmetry axioms. This interaction can be strengthened by adding further axioms 'mixing' 
'H' and 'P' with 'G' and 'F'. 

• Presf F<p:::J HF<p Presp P<p:::J GP<p 

These axioms are called 'preservation axioms' because they stipulate that existential tense 
formulas holding for one direction of time are preserved universally in the other direction 
of time: If (Presp) <p holds somewhere in the past (P<p), then in all future points it will be 
true that <p holds somewhere in the past (GP<p). 

• Lf F<p:::J G(P<p V <p V F<p) Lp P<p:::J H(P<p V <p V F<p) 

These axioms enforce linearity of the time flow 'to the left' (Lp) and 'to the right' (Lf). For 
instance, Lf preempts branching of the future by demanding that if <p holds at some point 
in the future (F<p), any point in the future can 'see' this point either 'in front' of itself (in 
its future), 'behind' itself (in its past), or in itself. In a branching future this would only 
hold for the future time points that lie on the same branch as the point at which <p is true. 

• Cont .(H<p:::J FH<p) :::J (H<p:::J G<p) 

(where '.' is the modality 'at any time (past, present or future)', which is definable in G 
and H: .<p =def H<pA<pA G<p.) This axiom, also known as the Inkspot Principle, encodes 
a Dedekind-Iike definition of continuity (see [van Benthem 1983], p. 162). It allows us to 
distinguish between dense and continuous flows of time. 
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2.3. Linear flows of time 

The purpose of this section is to show how K, can be systematically extended with the above 
axioms to obtain logical characterizations of different conceptions of the flows of time. We 
concentrate on linear time flows, which have traditionally been one of the main stays of 
Priorean analysis. After introducing the basic tense logic underlying all linear time flows, we 
look at a number of standard examples of linear flows in the literature. 

2.3.1. The logic Lin 

The logic Lin of all linear flows of time is Kt extended with the axioms for 

transitivity: 4j Grp::J GGrp 4p H rp ::J HH rp 

linearity: Lj Frp::J G(Prp V rp V Frp) 

Lp Prp::J H(PrpV rp V Frp) 

By adding transitivity to K t the tense logical theory of strict partial orders is obtained, [van 
Benthem 1983]. The linearity axioms preclude 'branching': they forbid that the past or the 
future consist of more than one partial order. Hence the combined effect of the axioms is to 
enforce that all time points (past, present and future) lie on a single 'time line'. 

Throughout the rest of this paper we will use a less customary formulation of the linearity 
axioms, which can be found in [Goldblatt 1992]: 

Given the definition of '.',.rp =def H rp 1\ rp 1\ Grp, the logical equivalence of the two 
formulations is provable in Kt • The reason for preferring the '.'-form of the axioms is that 
they can be given a direct and intuitive treatment in Fitch-style deduction, which is not 
possible for the axioms in their original formulation (this will be discussed in section 3.5.1). 

2.3.2. Familiar linear structures 

By extending Lin with different (combinations of) axioms, various conceptions of a linear flow 
of time can be formalized. In the literature, this is usually illustrated by giving tense-logical 
characterizations of mathematical number structures, allowing the reader to keep a model in 
mind in which time points are numbers ordered by the '<'-relation. We follow this custom 
and compare tense logics for discrete, dense and real linear time flows. 

Integer time (~, <) 
The tense logical theory of integers, Tht(~), is axiomatized by Lin plus: 

DJ Grp::J Frp Dp H rp ::J Prp 

Zj G(Grp::J rp)::J (FGrp::J Grp) Zp H(Hrp::J rp) ::J (PHrp::J Hrp) 

This logic, called Lin Disc in [Goldblatt 1992], enforces that time is infinite in both directions 
by means of DJ and Dp, and that the ordering of time points is discrete by ZJ and Zp. 

Natural time (IN, <) 
The tense logical theory of the natural numbers, ThJ(IN), is axiomatized by Lin plus: 
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Dj G<p:J F<p 

Zj G(G<p:J <p):J (FG<p:J G<p) 

Wp H(H<p:J <p) :J H<p 

Compared to Tht (7Z), the axioms for the past direction oftime have been changed: the axiom 
Dp expressing infinity in the direction of the past has been replaced by Wp which enforces 
well-foundedness of the past. Hence in this logic, Lin Discw in [Goldblatt 1992], time has a 
beginning. Note that the ordering of time points in the past direction remains discrete; Wp 
(propositionally) implies Zp. 

Rational time (Q, <) 
The tense logical theory of the rational numbers, Tht ( Q), is axiomatized by Lin plus: 

Dj G<p:J F<p 

Densj GG<p:J G<p 

Dp H<p:JP<p 

Densp HH <p :J H <p 

This logic, Lin Rat, is obtained from that for integer time by replacing the axioms for dis
creteness (Zp, Zj) with those for density of the time-point ordering (Densj, Densp). An even 
simpler logic can be given for dense reflexive time: since both the seriality axioms (Dj, Dp) 
and the density axioms are derivable given the reflexivity axioms, this structure can be char
acterized by the logic Lin Rat Ref which is Lin plus: 

Tp H <p :J <p . 

Real time (ill, <) 
Tht(ill) is axiomatized by Lin plus: 

Densj GG<p:J G<p Densp HH <p :J H <p 

cont .(H<p:J FH<p) :J (H<p :J G<p) 

In other words, the logic Lin Re for the real numbers is the logic for the rational numbers 
extended with the 'Inkspot Principle' (the axiom cont). 
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3. Natural deduction for tense logics 

A prerequisite for the type theoretical interpretation of the Priorean tense logics discussed so 
far is to find a natural deduction formulation for these logics. Although tense logics hardly 
ever appear in a deductive guise in the literature, we can hope to obtain suitable formulations 
by using techniques developed for modal logic in general. 

In [Borghuis 1994] a framework for multi-modal 'Fitch-style' natural deduction is devel
oped in which the tense logics can be stated: We take them to be bi-modal logics of which 
the operators (G, H) are related by symmetry. After presenting the framework, a natural 
deduction system for K, is defined which is then extended in a modular way to deal with 
stronger logics. Special attention is paid to the effects of the symmetry between the operators 
in the resulting deduction systems. 

3.1. Fitch-style deduction for multi-modal systems 

Natural deduction systems for proposition and predicate logic come in two 'styles', character
ized by the form of their proofs: 'Prawitz-style' systems have deduction proofs in the form of 
trees, 'Fitch-style' systems have lineair proofs. For modal logic the vast majority of systems 
in the literature is linear. Fitch-style deduction for modal logic starts in [Fitch 1952], where a 
new construct is introduced that extends his deduction system for propositional logic to one 
for modal logic. 

Central to Fitch-style propositional deduction is a construction known as 'subordinate 
proof'. It consists in writing a proof as part of another proof. For instance, to prove A J B 
one starts a new, subordinate, proof by assuming A and then sets out to prove B. When 
this goal is achieved the subordinate proof is ended by adding A J B to the original proof, 
justified by the implication introduction rule, thereby discharging the assumption A. 

A 

B 

AJB 

A subordinate proof 

c 

A 

c 

B 

AJB 

Reiteration 

Structurally (in the graphical representation), subordinate proofs are positioned to the 
right of the proof to which they are subordinate, the 'main' proof. The topmost formula (A) 
is the hypothesis of the subordinate proof, the vertical line indicates the exact extent of the 
subordinate proof; the hypothesis interval. 

Subordinate proofs are just like 'main' proofs except that some of the formulas in them 
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may be repetitions of formulas from a proof to which they are subordinate (in the figure 
above, C is such a formula). Such a repetition is called 'reiteration'; a formula in a proof may 
be reiterated in another proof if the latter is subordinate to the former. Subordinate proofs 
can be nested at will: a subordinate proof may be written as part of a subordinate proof. 

To extend his deduction system to modal logic, Fitch added a new kind of subordinate 
proof, the strict subordinate proof. It differs from 'ordinary' subordinate proofs in two re
spects: 

• A strict subordinate proof may be started at any point in a proof, it requires no hypothesis. 

• Reiteration in a strict subordinate proof is restricted to formulas of a certain form. 

Structurally these proofs are just like subordinate proofs, their 'strictness' is indicated by 
means of a '0' on top of the vertical line, which indicates the modal interval. 

For the logic K, the logic underlying all normal modal operators, reiteration is restricted to 
formulas of the general form Dip: formulas of this form occurring in a proof may be repeated 
in a strict subordinate proof, without their boxes (as ip). This procedure can be added to a 
Fitch-style deduction system for propositional logic in the form of the following rule: 

A strict subordinate proof K-import 

K -import: ip may occur in a strict subordinate proof if Dip occurs earlier in the proof to which 
it is immediately subordinate. 

A formula that has been imported into a strict subordinate proof never counts as hypoth
esis of that proof. Strict subordinate proofs may be written as part of another proof, hence 
we can have arbitrary nestings of strict and ordinary subordinate proofs. 

Formulas can also 'travel' in the opposite direction: conclusions (ip) derived by means of 
a categorical strict subordinate proof may be added to the main proof in a necessitated form 
(Dip). A subordinate proof is categorical when all its assumptions have been discharged; the 
conclusion lies directly inside the modal interval, there are no nested subordinate proofs that 
are still 'open'. This procedure for 'exporting' information from the strict subordinate proof 
to the main proof is expressed in the following rule: 
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K -export: if cp occurs in a categorical strict subordinate proof then Dcp may occur later in the 
proof to which it is immediately subordinate. 

Fitch-style systems for multi-modal logics have separate suhordinate proofs and K-rules 
for each of the normal modal operators. Hence for Priorean tense logic we have strict G
subordinate proofs as well as strict H-subordinate proofs. From the temporal perspective, 
the procedures for import and export can be understood in the following way: if we take 
a main proof to be the time point at which we try to establish the truth of a tense logical 
formula, a strict G-subordinate proof (H-subordinate proof) corresponds to an arbitrary 
future time point (past time point). In such a future time point we only know the truth of 
the propositions (cp) that hold always in the future (Gcp) of the point of evaluation. In this 
view, starting a strict G-subordinate proof amounts to continuing the proof in an arbitrary 
future time point. Every proposition (..p) that can be derived without hypotheses in such a 
point could have been derived in any future time point, hence it can be considered to hold 
always in the future of the original time point (G..p). In this way conclusions obtained in the 
future time point can be brought back (exported) to the point where the proof was started, 
and the proof can be resumed there. 

We now give a formal definition of DPROPf?"h' a Fitch-style deduction system for the 
multi-modal logic K, by combining a standard Fitch-style system for propositional logic with 
K-import and K-export*. The system will be presented in the manner of [van Westrhenen et 
al. 1993], describing the proof figures and deduction rules in terms of intervals. Although the 
definition is somewhat elaborate, it is more concise than the usual 'look at the picture'-type 
of presentation. The benefits of this will become apparent later on, when the vocabulary 
introduced here allows us to easily describe extensions of the system and to define various 
notions needed in meta theoretical proofs. 

The first stage in defining DPROPf?"h is to specify what configurations of modal and 
hypothesis intervals are allowed in the Fitch-style modal deduction proofs, given the set of 
PROP of well-formed formulas of K. Intervals are represented as [i,j], where i and j are the 
line numbers of the lines in the proof figure that form the extremes of the interval. 

3.1. DEFINITION. Proof figure 
A proof figure D is a mathematical structure consisting of: 

1. a closed interval D = [1, n], where D c IN, 

2. a function F : D -> PROP, and 

3. a collection I of subintervals of D, such that for each interval [i,j] E I, i :0:; j, and such 
that for each pair of (different) intervals [i,j], [k, lJ E I we have i < k < I :0:; j, or 
k < i < j :0:; I or [i,j] n [k, I] = 0. The collection I of subintervals is the union of two 
disjoint sub collections Hand M: 

H the hypothesis intervals of the proof figure. If D rj. H, then D is called the O-th interval. 
If [k, IJ E H than the formula Fk is called the hypothesis of [k, IJ. 

M the modal intervals of the proof figure, this set is the union of all sets M' where 
o E 0, the set of operator indices (0 = {l, ... , n} for some n E IN). D may not be 
an element of M. 

'In [Borghuis 1994] this system is referred to DPROpModalities because there the set 0 was called fitch , 

Modalities. 
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In Fitch-style deduction for non-modal propositional logic I = H; every subinterval is 
a hypothesis interval introduced by assuming the topmost formula of that interval. The 
presence of a modal interval in a proof figure does not require an assumption and hence the 
topmost formula of such an interval is not a hypothesis. Another difference is that a modal 
interval may never be the leftmost ('O-th') interval of a proof figure: the figure only qualifies 
as a derivation after all modal subordinate proofs have been closed. In a proof figure a modal 
interval can be recognized by the box (' 0 ") on top of its vertical line, where the index 0 

indicates for which of the operators in 0 this modal interval is a strict subordinate proof. 

Some more terminology is needed before we can define the deduction rules: 

3.2. DEFINITION. Precede, lie in 

If i E D, then F(i), usually written as Fi , denotes the formula on line i of the proof figure. 
We say that Fi preceeds Fj, if i < j. 

If i E I for a certain interval I E I U {D} and there is no J E I such that i E J C I, then 
it is said that the formula Fi lies in I, written as Fi E I. An interval I lies in interval 
J E I U {D} if I C J and there is no K E I, such that I eKe J. 

To each formula in a proof we attribute a degree of 'nestedness'. In a non-modal system 
the degree of a formula Fi is simply the number of hypotheses at that stage of the proof: 
'the number of vertical lines to the left of the formula' at line i in the proof figure. In modal 
deduction proofs this set of hypotheses can be 'partitioned' by modal intervals, and for the 
formal definition of the K-rules we have to keep track of this. Therefore the degree of a 
formula in a modal proof figure is represented as a pair of natural numbers, where the first 
number denotes the 'modal depth' of Fi: number of nested modal intervals (E M) 'to the 

left' of Fi. The second number represents the number of hypothesis intervals (E H) 'to the 
right' of the most deeply nested modal interval of which Fi is an element. 

3.3. DEFINITION. Degree 

The degree of a formula Fi, written gr(i), is defined as a pair of natural numbers: 
gr(i) = (card{J E MI i E I},card{I E H'li E I}) where 
H' = {J E H liE I and there is no J E M such that (i E J C In 
(card denotes the cardinality of a set). 

The natural deduction rules of DPROPfi"h are defined in two stages; first their structural 
effect on the proof figures is shown in a picture, then the conditions for their application are 
defined in terms of the form of the formulas acting as the premisses and conclusion of the 
rule and in terms of the relation between the intervals in which these formulas lie. 
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3.4. DEFINITION. Deduction rules 

V-intra V-elim 
A B AvB 

AvB AvB 

~ 
~ 

C 
,-intro ,-elim 

A "A 

B A 

,B 

,A 

> intra >elim 

~ A::JB 

A 
A::JB 

B 

II-intra II-elim 
A AIIB AIIB 

B A B 

AIIB 
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~-intro H-elim 
A:JB AHB AHB 

B:JA A:JB B:JA 

AHB 

K import K export 

OVA 

IA 
I~ OVA 

reiteration 

A 

In these structural representations of the deduction rules the bottommost formula is the 
conclusion of the rule, which may be written in a proof if all the premisses indicated above it 
are already present in the proof. Note that these premisses can be formulas as well as proofs, 
for instance: the V - elim rule has as its premisses one formula (A V B) and two proofs of C, 
one under the hypothesis A and one under the hypothesis B. 

3.5. DEFINITION. Application of deduction rules 
Given a proof figure D, with interval D = [1, n], formulas F""" Fn and intervals 1. A 
formula E is the result of an application of deduction rule R, if E is the conclusion of R, the 
premisses of R precede E, and one of the following conditions is met: 

1. R E {V-intro, ,-elim, :J-elim, /I-intro, /I-elim, H-intro, +-+-elim}. 
In this case the premisses and the conclusion E all lie in the same interval. The order in 
which the premisses appear may differ from the one given in the table. 

2. R = , - intro. 
There has to be a hypothesis-interval [k, I] E H, such that Fk = A, and such that either 
FI = ,B and B lies in [k, I], or FI = Band ,B lies in [k, I]. The conclusion E = ,A 
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and the interval [k, I] have to lie in the same interval (it is allowed that B = Fk (A and B 
coincide), or that ,B = Fk (A and ,B coincide)). 

3. R =-:J-intm. 
There has to be a hypothesis-interval [k, I] E H, such that Fk = A and FI 
conclusion E = A -:J B and the interval [k, I] have to lie in the same interval. 

4. R = V-elim. 

B. The 

There have to be hypothesis-intervals [i,j], [k,l] E H, such that Fi = A, Fj = C, Fk = B 
and FI = C, where j < k, or I < i. The conclusion E = C, the premiss A V B and the 
intervals [i,j] and [k, I] have to lie in the same interval. 

5. R = reiteration. 
If the premiss A lies in the interval I E IU{ D} and the conclusion E = A lies in the interval 
J E IU{D}, then it has to be the case that (J <;; 1)A,3K E M (J C K <;; 1). Or, in terms 
of modal depth: the first coordinate of gr(A) is equal to the first coordinate of gr(E), and 
the second coordinate of gr(A) is smaller than or equal to the second coordinate of gr(E). 

6. R = K import. 
If the premiss 0' A lies in interval I E I where 0 EO, and the conclusion E = A lies in 
the interval J E M', then it has to be the case that the interval J lies in the interval I. 

7. R = K export. 
If the premiss A lies in interval I E M' where 0 E 0, and the conclusion E = 0' A lies in 
the interval J E I, then it has to be the case that the interval I lies in the interval J. 

Note that K export allows us to export more than one formula from a strict subordinate 
proof, as long as these formulas all occur after the assumptions in the strict subordinate proof 
are discharged. 

3.6. DEFINITION. Derivation without hypotheses 
A derivation of a formula C is a proof figure D with interval D = [1, n] and formulas FI, ... Fn, 
that satisfies the following conditions: 

1. Fn=Candgr(n)=(O,O); 

2. every formula Fi(l :s; i :s; n) is a hypothesis or the result ofthe application of a deduction 
rule on a number of formulas preceding Fi. 

3.7. DEFINITION. Derivation with hypotheses 

A derivation of a formula C from the formulas P" . .. , Pm (m 2: 1) is a proof figure D with 
interval D = [1, n] (n > m) and formulas FI, ... Fn , that satisfies the following conditions: 

1. Fi = Pi is a hypothesis for 1 :s; i :s; m, such that gr( i) = (0, i); 

2. Fn = C, and C and Pm lie in the same hypothesis-interval, where gr(n) = (0, m) 

3. every formula Fi (1 :s; i :s; n) is a hypothesis or the result of the application of a deduction 
rule on a number of formulas preceding Fi. 
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A derivation with hypotheses is a proof where the assumptions PI, ... , Pm are not dis
charged. These assumptions are listed consecutively at the first m lines of the proof figure, 
this mandatory enumeration excludes the possibility that there are modal intervals mixed in 
with the hypothesis intervals. 

3.8. DEFINITION. Derivability 

1. A formula C is derivable if there exists a derivation of C, written as f- C. 

2. A formula C is derivable from the formulas PI, .. . Pm if there exists a derivation of C 
from Pl ... Pm, written as PI,"" Pm f- C. 

3. Let r ~ PROP be a set of formulas. A formula C is derivable from r ifthere exist a finite 
number of formulas PI, . .. , Pm E r such that PI, ... , Pm f- C. This is written: r f- C. 
If r = 0, f- C. 

The multi-modal deduction system we have just finished defining is minimal in the sense 
that it gives us the smallest normal modal logic K for each of the operators in O. Nothing is 
said about further properties of individual operators or interactions between the operators. 
As will be explained in section 3.3, there are two ways to extend the deduction system to 
accommodate such strengthenings, one of which is to add modal rules. In [Borghuis 1994] rules 
are listed for a number of standard mono-modal axioms, which occur throughout literature 
under various interpretations of the modal operator (see [Chellas 1980]): 

D: 0'1' ::l ~D~<p 

T: 0'1' ::l 'I' 

4 0'1' ::l 00'1' 

5 ~D<p ::l D~D<p 

B 'I' ::l D~D~<p 

The reader will have noted that we have already encountered most of these axioms with 
temporal operators 'G' and 'H' replacing '0', which makes it useful to add the corresponding 
rules to DPROPfi"h' For each of the axioms a single extra import- or export-rule is needed 
to make it a theorem of the deduction system: 

3.9. DEFINITION. Deduction rules 

D'A -,0° A A 

I ~'A I ~DoA I ~oo-'A 
4-import 5-import B-import 
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IA IA 
-,o°-,A A 

D-export T-export 

3.10. DEFINITION. Application of deduction rules 
Given a proof figure D, with interval D = [1, nJ, formulas Fl"'" Fn and intervals I. A 
formula E is the result of an application of deduction rule R, if E is the conclusion of R, the 
premisses of R precede E, and one of the following conditions is met for the modal rules: 

8. R = 4 import. 
If the premiss 0' A lies in interval I E I where 0 E 0 4 ;mport( <;; 0), and the conclusion 
E = 0' A lies in the interval J E M', then it has to be the case that the interval J lies 
in the interval I. 

9. R = 5 import. 
If the premiss ,0' A lies in interval I E I where 0 E 05;mport(<;; 0), and the conclusion 
E = ,0' A lies in the interval J E M' , then it has to be the case that the interval J lies 
in the interval I. 

10. R = B import. 
If the premiss A lies in interval I E I where 0 E OB import(<;; 0), and the conclusion 
E = ,O',A lies in the interval J E M', then it has to be the case that the interval J 
lies in the interval I. 

11. R = D export. 
If the premiss A lies in interval I E M' where 0 E OD ,xporl(<;; 0), a E People and the 
conclusion E = -,Oo,A lies in the interval J E I, then it has to be the case that the 
interval I lies in the interval J. 

12. R = T export. 
If the premiss A lies in interval I E M' where 0 E OT <xport(<;; 0), and the conclusion 
E = A lies in the interval J E I, then it has to be the case that the interval I lies in the 
interval J. 

Note that for the K-rules we only demanded that the operator-index of the modality 
match that of the modal subordinate proof. For the other rules we also demand that the 
operator-index 0 is an element of the set of operators Or,l, for which the rule is to hold, this 
is a convenient way of specifying different combinations of rules for different operators. 

All the modal deduction rules presented here act on formulas containing only universal 
modal operators (0'). To bring out the relation between axioms and deduction rules as clearly 
as possible, we will henceforth write all axioms using only universal operators. This means 
that the existential operators F and P used in section 2 will replaced by ,G, and ,H,. For 
a deductive treatment of existential modalities, the reader is referred to the appendix of this 
paper. 
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3.2. Natural deduction for Kt 

To give a natural deduction system for K t in the above framework, we first state that the 
operators of this multi-modal logic are G and H: 0 = {G, H}. This ensures that K
import and K-export hold for both operators, allowing the derivation of the normality axioms 
G('P::J 'Ij;)::J (G'P::J G'Ij;) and H('P::J 'Ij;)::J (H'P::J H'Ij;). We show this for the first axiom: 

1. G(A ::J B) 

2. GA 

3. G(A ::J B) (reiteration 1) 

4. Il OB (K-import 3) 
5. (K-import 2) 
6. (>elim 4,5) 

7. GB (K -export 6) 

8. GA ::J GB (::J-intro 2-7) 

9. G(A ::J B) ::J GA ::J GB (::J-intro 1-8) 

Besides Modus Pan ens, the original definition of K t (section 2.1) contains two inference rules 
called Necessitation: 

NecessitationG if 'P is a thesis, then G'P is a thesis 

NecessitatianH if'P is a thesis, then H'P is a thesis. 

These inference rules are covered deductively by the K-export rules: if'P is a thesis of Kt(f- 'P), 

it can be derived without hypothesis. Hence the proof of 'P is categorical, which means that 
after putting this proof in a G- or H-subordinate proof, K-export is applicable, resulting in 
a proof of G'P or H 'P. Since these proofs do not depend on further assumptions, G'P and H 'P 
are then theses (f- G'P, f- H 'P) of K t • 

In the basic tense logic, the two operators are related by the symmetry axioms 'P ::J 
G,H,'P and 'P ::J H,G,'P. These axioms cannot be accounted for by means of just K
import and K-export. Also none of the additional modal rules presented in the previous 
section directly corresponds to the symmetry axioms. However, the B-import rule provides 
some insight into the form of the rules that are to relate G and H: with B-import and K
export the symmetry axiom for a single operator ('P::J D',D','P) is derivable. With this in 
mind, it is not difficult to come up with rules for multi-modal symmetry, for instance for the 
axiom 'P ::J G,H ''P: 

'P 

The axiom expresses that if 'P holds now, we should be able to see 'P somewhere in the 
past (,H,'P) when we look back from any future time point. Hence deductively a formula 
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'P occurring in the main proof should be available as ,H ''P in G-subordinate proofs which 
represent arbitrary future time points. 

Because of its resemblance to B-import, we call this rule' B2-import', for obi-modal B
import'. Using the normality of the G-operator, it is easy to show that the axiom can be 
derived by the rule and that the rule is derivable in the presence of the axiom: 

1. 'P 

Cf ,H,'P 

'P 

2. (B2-import,l) 'P-:J G,H,'P (axiom) 
,H,'P 

3. G,H,'P (K-export,2) 

I~H~' 4. 'P -:J G,H ''P 

(K-import) 

From rule to axiom From axiom to rule 

Obvionsly, substitnting G for Hand H for G in the above diagrams will give ns the B2-
import rule for the 'mirror axiom' 'P -:J H,G,'P. Hence we add B2-import to the deduction 
system in the following general form. 

3.11. DEFINITION. B2-import 

A 

R = B2-import. 
If the premiss A lies in the interval 1 E I, where (0,0') E OB2-import (C;; 0 X 0), and the 
conclusion E = ,0" ,A lies in the interval J E M', then it has to be the case that the 
interval J lies in the interval 1. 

The basic tense logic Kt can now be formulated deductively as: the multi-modal Fitch
style system with 0 = {G, H} and OB2-import = {( G, H), (H, Gn. 

3.3. Further properties of the tenses 

There are two ways of extending the deduction system for K t to accommodate stronger logics: 

Extension by axioms 
Allow tense logical axioms to be used as 'tacit assumptions': they may be written anywhere 
in a natural deduction proof without further justification. Conclusions not available in K t 

can then be reached by proving the antecedent of an axiom using the Kt-rules, writing that 
axiom as a line in the proof and moving to the consequent of the axiom through Modus Ponens. 

18 



Extension by rules 
Add import and export rules to K" allowing for more ways of transporting formulas from 
the main proof to the modal subordinate proof and vice versa. Conclusions not available 
in K t can then be reached because: more kinds of formulas can be transferred to the modal 
subordinate proof to be combined there (additional import rules), and formulas derived in the 
subordinate proof can be brought back to the main proof in more than one form (additional 
export rules). 

For a discussion of the relative merits of these two approaches the reader is referred to 
[Borghuis 1994]. Two conclusions of this discussion are relevant here. Firstly, extension 
by rules is preferred, because it creates a 'separation of concerns' in the natural deduction 
proofs: these proofs can be conceived of as a bundle of propositional deductions between 
which formulas may be exchanged. The import and export rules governing this exchange 
determine the tense logical strength of the system. In other words reasoning at a certain time 
point is purely propositional, whereas modal reasoning takes place in moving between time 
points. The type theoretical advantage of this separation of concerns will become clear in 
section 4.6. Unfortunately the second conclusion is that it seems unlikely that for every given 
modal axiom a corresponding import or export rule can be found, meaning that in some cases 
extension by axioms is the only option. This issue will be adressed at the end of the section. 

For the 'pure' tense axioms 4j /4 p, Tj / Tp, and Dj / Dp we can make immediate use of the 
additional mono-modal import and export rules defined in the previous section. In each case 
we show, for one member of the axiom-pair, the rule, the derivation of the axiom by the rule, 
and how the rule can be derived in the presence of the axiom: 

l. H<p H<p 

lilH'P 
H'P::J HH'P (axiom) 

2. (4-import 1) HH'P 

up H'P 3. HH'P (K-export 2) (K-import) 
4. H'P ::J HH'P 

4-import From rule to axiom From axiom to rule 

1. G'P I. 2. CfJ'P (K.import 1) 

'P 3. 'P ( T ·export 2) G'P (K-export) 

4. G'P ::J 'P G<p ::J 'P (axiom) 

'P 
T-export From rule to axiom From axiom to rule 
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l. H<p I. 2. UP<P (K -import 1) 

3. ,H,<p (D-export 2) H<p (K-export) 

4. H<p:l ,H,<p H<p:l ,H,<p (axiom) 
.H '<p 

D-export From rule to axiom From axiom to rule 

The density axioms (GG<p :l G<p, HH<p :l H<p) are derivable by combining K-import with 
T-export, but this is of no help in building a deduction system for weaker logics which extend 
K t with just DensJl Densp • A weaker version of T-export is needed that corresponds directly 
to these axioms: 

l. GG<p 1\. 2. CfG<P (K-import,l) 

3. G<p (Dens-export ,2) GG<p (K-export) 

4. GG<p :l G<p GG<p :l G<p (axiom) 
G<p 

Dens-export From rule to axiom From axiom to rule 

This' Dens-export' rule allows only formulas of the form G<p (H <p) derived in a G-subordinate 
(H -subordinate) proof to be brought back to the main proof unchanged, whereas T -export 
allows this for all formulas regardless of their form. 

3.12. DEFINITION. Dens-export 

~ 
I ~'A 

D'A 

R = Dens export. 
If the premiss D' A lies in interval IE M' where 0 E aDm, export (c::; 0), and the conclusion 
E = 0' A lies in the interval J E I, then it has to be the case that the interval I lies in the 
interval J. 

Regarding the 'mixed' axioms, extensions by rules can be given for the preservation axioms 
(,H,<p:l G,H,<p, ,G'<p:l H,G,<p) and the linearity axioms (.<p:l GH<p,.<p:l HG<p) 
but we postpone this to sections 3.4 and 3.5 that deal with the influence of symmetry on 
extensions of K t and with linear tense logics respectively. This leaves the following axioms of 
the lists presented in section 2.2: 

Zj G(G<p:l <p):l (,G,G<p:l G<p) 

Wj G( G<p :l <p) :l G<p 
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Zp H(H<p:l <p) :l (,H,H<p :l H<p) 

Wp H(H<p:l <p) :l <p 



Dum! G(G(<.p:::J G<.p):::J <.p):::J (,G,G<.p:::J <.p) 

Cont .(H<.p:::J ,G,H<.p) :::J (H<.p:::J G<.p) 

For these axioms no rules of the above kind, i.e. rules which transfer a formula between proofs 
changing just the modality of that formula (its main connective), can be found. Rules for 
Z! / Zp (export) and W, / Wp (import) do suggest themselves, but these rules change the matrix 
of a formula whilst transferring it. Such rules raise questions about the expressive limitations 
of Fitch-style modal deduction and since we want to discuss these questions against the 
background of the interpretation of the Fitch-style proofs in type theory, we postpone this 
discussion till section 5. Meanwhile we resort to extension by axioms for ZJi Zp, WJi Wp, 
Dum! / Dump, and Cont. 

3.4. The interaction between past and future 

In the minimal tense logic K t , the descriptions of the future and past directions of time are 
not independent. The operators 'G' and 'H' are related by the symmetry axioms that express 
the intuition that the flow of time is 'isotropic'; the observable properties of the ordering of 
the time points in future and past direction are the same. In this section we look at two ways 
in which the influence of this basic symmetry extends beyond Kt . 

3.4.1. The mirror image property 

In the presentation of K t (section 2.1), the 'mirror image property' of this logic was pointed 
out: if a formula <.p(G, H) is a theorem of K" so is <.p(H, G). This means that given a 
theorem, we can obtain a new theorem 'for free' by simply changing all occurrences of G into 
occurrences of H and all occurrences of H into occurrences of G. Rephrased for the natural 
deduction system for K" the mirror image property states that given a natural deduction 
proof for <.p( G, H) we should be able to find a natural deduction proof for <.p(H, G). It is 
not difficult to see why this property should hold for the Kt-deduction system: for both' G' 
and 'H' the system has K-import and K-export, and the B2-import rules that relate the 
operators are each other's 'mirror image' (one turns an occurrence of r.p into an occurrence of 
,G,<.p inside an H-subordinate proof, the other turns <.p into ,H,<.p inside a G-subordinate 
proof). Therefore we can find a proof for <.p(H, G), given a proof for <.p(G,H), by taking 
the mirror image of all hypotheses occurring in the original proof and then matching all rule 
applications in the original proof step by step with applications of the mirror images of those 
rules in the new proof. 

In general the mirror image property is not preserved when the logic K t is extended with 
further axioms, but there are cases in which it is: sometimes adding an axiom expressing a 
property of one direction of time will automatically result in the validity of the mirror image 
of that axiom. To see this, we go back to the model theoretic effect of the symmetry axioms: 
in any model of K" given two time points sand t sRat ¢} sRHt (where sRat = tRHs). 
Hence adding an axiom to Kt that corresponds to a relational property that is invariant 
under 'reversing the arrows' can yield the validity of mirror images. A trivial example of this 
is extending K t with the T-axiom for one direction of time, say G<.p :::J <.p. Since this axiom 
corresponds to reflexivity of the Ra relation, tRat will hold for all time points in all models. 
Because of the symmetry tRH t also holds for all time points in all models, and so H <.p :::J <.p 
will be a theorem of K t + G<.p :::J <.p without having been added to K, explicitly. In natural 
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deduction, this example takes the following form: adding T -export for G to the deduction 
system for K, makes H <p :J <p derivable (by means of a simple prooF). 

Although a syntactic characterization of relational properties that are preserved under 
reversing the arrows is still to be found [van Benthem 1983], a number of interesting cases 
has been noted in the literature. In this section we look at two of these (one involving an 
export-rule and one involving an import-rule), to show how the modal rules for symmetry in 
K, combine with the rule for an additional axiom in the deduction proof for the mirror image 
of that axiom. 

EXAMPLE 1. 
The first case is the extension of K, with the 4-axioms. These axioms (G<p :J GG<p/ H<p :J 
HH <p) correspond to transitivity of the accessibility relations (Ra and RH respectively) in the 
models of K, + 4. Assuming that we add just the 4a-axiom (G<p :J GG<p) to K" all models 
of the extended logic will have that for any time points s, t, u: sRat & tRau =} sRau. 
Reversing the relations in this property yields tRas & uRat =} uRas, which is equivalent 
to sRHt & tRHu =} sRHu, hence RH is also transitive in all models and so H<p :J HH<p is a 
theorem of K, +4a. To show the mirror image property of the 4-axiom deductively, we extend 
the natural deduction system for K, with the 4-irnport rule for G after which H <p :J HH <p 
can be proved as follows: 

1. H<p 

2. 

3. 
4. 

5. 

6. 

7. 

8. 
9. 

10. 

11. 

12. 

13. 

14. 

H 

H<p 

HH<p 

H<p:J HH<p 

"<p 
<p 

'<p 

CfJ ,H( .. )<p 

G,H<p 

CfJ G,H<p 

GG,H<p 
,GG,H<p 

(B2-import 1) 

(B2-import 2) 

(B2-import 4) 

(K-export 5) 

(4-import 6) 

(K -export 7) 
(reiteration 3) 

(,-intro 4-9) 

(,-elim 10) 

(K-export 11) 

(K-export 12) 

(:J-intro 1-11) 

Note that the derivation of ,GG,H<p from ,G"G,H<p (between lines 3 and 9) was left 

• A hint for readers who want to try this: assume H rp and '<p, and derive a contradiction using B2-import 
and T -export for G. 
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out in this proof, as well as the derivation of ~H <p from ~H ~~<p (between lines 5 and 6) were 
left out. Since the removal of embedded double negations is a routine task (as the reader can 
easily check for himself), we merely indicated the presence of these double negations between 
brackets but did not spell out their removal. This 'abbreviation' will be used in deduction 
proofs throughout the paper. 

EXAMPLE 2. 

When extending Kt with the Dens-axioms (GG<p :::J G<P/ HH <p :::J H <p), it is sufficient to 
add one of them to K t to turn both axioms into theorems of the extended logic. These 
axioms enforce the property of density for the accessibility relations in the models, hence if 
we add HH <p :::J H <p to K" a third time point can be found between any two time points 
related by RH in a model: sRHt =? 3u SRHU& uRHt. Reversing the relations yields: 
tRHs =? 3u URHS& tRHU. Hence, by the definition sRat = tRHs, we have density for 
Ra and so GG<p :::J G<p is a theorem of Kt + DensH. 
Deductively, the mirror image property of the Dens-axioms is shown by extending the deduc
tion system for K t with Dens-export for H and proving GG<p :::J G<p: 

1. GG<p 

2. 
3. 

4. 

5. 

6. 

7. 
8. 

G 

H 
~G<p 

if ~G( .. )G<p 

H~GG<p 

H~GG<p 

~H~GG<p 

9. ~H~G<p 

10. 

11. 

12. 
13. 

14. 
15. 

16. 

17. 

~~<p 

<p 

G<p 

GG<p :::J G<p 

~<p 

up ~G(~~)<p 
H~G<p 

~H~G<p 

(B2-import 1) 

(K-import 3) 

(B2-import 4) 

(K -export 5) 

Dens-export 6) 
(reiteration 2) 

(~-intro 3-8) 

(B2-import 10) 

(K-export 11) 
(reiteration 9) 

(~-intro 10-13) 
(~-elim 14) 

(K-export 15) 

(:::J-intro 1-15) 

These examples show that the Fitch-style treatment of symmetry in K t by means of the 
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B2-import rules correctly accounts for the preservation of the mirror image property: in 
extending K" it is sufficient to add just one of the 4-import rules or Dens-export rules to 
obtain proofs of both 4-axioms or Dens-axioms. 

Since the 'mirror axiom' becomes derivable after adding the rule for one operator, the rule 
for the other operator is redundant: it is derivable in the presence of the axiom. However, the 
examples also show that the deduction proofs for the mirror axioms are not always obvious 
or easy to find. Therefore it makes sense to include both rules in the deduction system for 
the extension of K, if we are after a practical rather than a 'minimal' deduction system. This 
is the strategy we apply in extending Kt with 4 and Dens and in similar cases throughout 
the rest of this paper. 

3.4.2. General interaction patterns 

A second effect of the symmetry between G and H is that it can cause dependencies between 
different extensions of K" which would have been independent had the operators been unre
lated. As with the preservation of the mirror image property, there is no systematic account 
of these phenomena but we look at a couple of cases to see how extensions of K t can interact 
in the natural deduction system. 

To structure the discussion, we invoke a classification of axioms involving multiple 0 
from [van der Hoek 1992]. This classification allows us to find the import or export rules 
corresponding to these axioms in a somewhat systematic way ([Borghuis 1994]). In the 
following the letters X, Y and Z range over normal modal operators (i.e. G and H): 

a) X <p:) YZ <p are called positive introspection (pi. -) formulas 

b) ,X <p:) Y ,Z <p are called negative introspection (ni. -) formulas 

c) XY<p:) Z<p are called positive extraspection (pe. -) formulas 

d) X, Y<p:) ,Z<p are called negative extraspection (ne. -) formulas. 

Instantiations of a) - d) are collectively referred to as inspection formulas. 
Given only that X, Y, and Z are normal operators, the introspection formulas correspond 

to import rules and the extraspection formulas to export rules: 

positive introspection negative introspection 
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positive introspection 
If the premiss X'P lies in the interval I E I and the conclusion E = Z'P lies in the interval 
J E MY, then it has to be the case that the interval J lies in the interval I. negative 
introspection 
If the premiss ,X'P lies in the interval I E I and the conclusion E = ,Z'P lies in the interval 
J E MY, then it has to be the case that the interval J lies in the interval I. 

Z'P ,Z'P 
positive extraspection negative extraspection 

positive extraspection 
If the premiss Y'P lies in interval I E M X and the conclusion E = Z'P lies in the interval 
J E I, then it has to be the case that the interval I lies in the interval J. 

negative extraspection 
If the premiss, Y'P lies in interval I E M X and the conclusion E = ,Z'P lies in the interval 
J E I, then it has to be the case that the interval I lies in the interval J. 

All modal rules above K -import and K -export fit into this classification if we allow modalities 
to be identified (e.g. X = Y) and 'left out'; replaced with the 'empty modal operator' denoted 
by '0' (for instance X = 0): 

Positive introspection 4-import: X = Y = Z 

Negative introspection 5-import: X = Y = Z 
B-import: X = 0, Y = Z * 
B2-import: X = 0, Y 'I z * 

Positive extraspection Dens-export: X = Y = Z 
T-export: X = Z, Y = 0 

Negative extraspection D-export: X = Z, Y = 0.* 

In the next section, which deals with the deductive treatment of linear temporal flows, rules 
will be proposed which use the full generality of the schemata in the sense that they involve 
three different modal operators. 

U sing the classification, it is easy to find the rules corresponding to the last pair of 
interaction axioms discussed in 2.2.2, the 'preservation axioms': ,H ''P :::J G,H ''P and 
,G,'P :::J H,G,'P' These are clearly cases of negative introspection (with X = Z = H, 
Y = G and X = Z = G, Y = H respectively), which give rise to the following import rules: 

"' Where the occurrences of '<pI are replaced by occurrences of ''''!p' in the rule schemas, yielding '-'-'ip' in 
some cases which is to be replaced by the equivalent 'ip'. 
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In keeping with the nomenclature used so far, these negative introspection cases where 
X = Z oj Yare called '52-import' rules (cf. B2-import versus B-import). 

In multi-modal logics where there are no pairs of symmetrically related operators (like in 
the epistemic/doxastic logics from which the above classification originates, see [van der Hoek 
1992]), extensions of the basic logic J( with positive introspection axioms are independent of 
extensions with negative introspection axioms. For the basic tense logic J(, such extensions are 
not independent: in J(, + G'P :::> GG'P/ H'P :::> HH'P (positive introspection) the preservation 
axioms ,H,'P:::> G,H''P/,G,'P:::> H,G,'P (negative introspection) are theorems. Deduc
tively this means that the preservation axioms should be derivable in the natural deduction 
system for J(, extended with the 4-import rules. We show this for ,H ''P :::> G,H ''P. 

1. ,H,'P 

G 
2. ,H( .. )H,'P (B2-import 1) 
3. H,'P 

4. up H,'P (4-import 3) 

5. HH,'P (J( -export 4) 

6. ,HH,'P (reiteration 2) 

7. -,H -''P (,-intro 3-6) 

8. G,H,'P ( J( -export 7) 

9. ,H,'P :::> G,H,'P (:::>-intro 1-8) 

Using the 'mirror images' of B2-import and 4-import, the other preservation aXIOm 
(,G,'P :::> H ,G,'P) is derivable in exactly the same way. Hence the 52-import rules for 
these axioms proposed earlier are derived rules of the deduction system for J(, + 4. This does 
not come as a complete surprise, since the symmetry axioms are themselves (simple) cases 
of negative introspection. However, the interaction between symmetry and transitivity is not 
trivial: the proofs of the preservation axioms can be generalized to the following proposition 
relating the categories of positive and negative introspection in the classification of multi
modal axioms. 

PROPOSITION. 

A negative introspection formula ,X'P :::> Y ,x 'P is derivable for normal operators X, Y 
and Z where Y and Z are related by symmetry, 'P:::> Y,Z''P (negative introspection where 
X = 0), and X and Z by positive introspection, X'P :::> ZX 'P. 
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PROOF. 
l. ,X<.p 

Y 
2. ,Z( .. )X<.p (symmetry 1) 
3. X<.p 

4. ~ X<.p (positive introspection 3) 

5. ZX<.p (K-export 4) 
6. ,ZX<.p (reiteration 2) 

7. ,X<.p (,-intro 3-6) 

8. Y,X<.p (K-export 7) 

9. ,X<.p::> Y,X<.p (::>-intro 1-8) 

The symmetry between the operators can also influence the extension of K, with extraspec
tion rules, for instance in the case of the 'actuality axioms': GH <.p ::> H <.p and HG<.p ::> G<.p. 
These axioms state that if always in one direction of time something holds always in the other 
direction of time, it already holds for that other direction of time at this actual moment. By 
themselves the axioms are clearly cases of positive extraspection, giving rise to export rules 
like those for the density axioms: 

G<.p 
However, the actuality axioms are also a theorem of K, + 4 extended with seriality (G<.p ::> 
,G,<.p, H<.p::> ,H,<.p). We show the case for GH<.p ::> H<.p: 
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l. GH<p 

2. ,H<p 

G 
3. ,H(,,)H<p (B2-import 2) 
4. H<p 

5. If H<p (4-import 4) 

6. HH<p (K-export 5) 
7. ,HH<p (reiteration 3) 

8. ,H<p (,-intro 4-7) 

9. ,G( ,,)H<p (D-export 8) 
10. GH<p (reiteration 1) 

1l. "H<p (,-intro 2-10) 
12. H<p (,-elim 11) 

13. GH<p:::J H<p (:::J-intro 1-12) 

Hence the export rules for the actuality axioms proposed above are derived rules in the 
deduction system for Kt +4+D. In the same way as for the preservation axiom, this connection 
between extensions with axioms of different classes can be formulated in a more general way: 
A positive extraspection formula XY <p :::J Y <p is derivable for normal modal operators X, Y, 
and Z where Y and Z are related by symmetry, <p :::J Y ,Z '<p, and positive introspection 
Y'P :::J ZY'P, and negative extraspection X'P :::J ,X ''P holds for X. 

As stated before, there are no general results about the influence of symmetry on the 
extensions of K t in the literature. The examples discussed in this section show that cases 
that have been noted in model theory or axiomatics have a counterpart in the Fitch-style 
deduction systems. This is all we can hope to achieve at the moment, even working out all 
possible dependencies between axiom classes in the classification of inspection formulas will 
not provide us with a general picture of the influence of symmetry since the classification 
covers only part of even the most well-known temporal axioms. 

3.5. Linear tense logics 

Armed with the basic deduction system for Kt and the extensions discussed in the previous 
section, we will now attempt to give a deductive formulation of the tense logics for linear 
flows of time that were introduced in section 2.3. 

3.5.1. The logic Lin 

The logic of all linear flows of time, Lin, was defined as Kt plus the axioms for transitivity 
and linearity of past and future: 

4f G'P:::J GG<p 

Lf .'P:::J HG'P 

4p H<p:::J HH'P 

Lp .'P :::J GH'P 
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The 4-axioms can be dealt with straightforwardly by adding the 4-import rule to K t for both 
the 'G' and the 'H' operator (04import·= {G,H}). For the linearity axioms LJ and Lp we 
can go in two directions, depending on the treatment of the universal operator '.': 

1. View the universal operator as a mere abbreviation of a complex formula: .'1' =d'J H'PII 
'I'll G'P. The deduction system has no rules for the operator; it allows us to abbreviate 
formulas using '.', but 'calculates' with the complex formulas using the rules for 'G', 
'H', and '1\'. 

2. View'.' as an operator in its own right, giving modal rules for it in the deduction 
system. 

Initially, option 1 seems to be preferable; the definition .'1' = H'P II 'I' II G'P shows that the uni
veral operator does not introduce something conceptually new in the deduction system. This 
idea is confirmed by the easy derivations of the formulas corresponding to the abbreviations: 

• .('P:::J ,p) :::J (.'P:::J .,p) (normality) 

• .'1' :::J •• '1' (transitivity) 

• .'1' :::J 'I' (reflexivity) 

• .'P:::JG'P, .'1' :::J H'P (. is stronger than G and H) 

However, it is not so clear what additional modal rules would allow us to derive the linearity 
axioms in unabbreviated form (given the standard rules for 'II', 'G', and 'H'). There seem 
to be no import- or export-rules comparable to the ones we encountered so far, that would 
make (H'P II 'I' II G'P):::J HG'P (LJ) or (H'PII'PII G'P):::J GH'P (Lp) derivable. 

Under option 2 we can find natural deduction rules corresponding to the linearity axioms, 
but we have to do more work because the relation between '.' and the operators 'G' and 
'H' is not given in the deduction system. To capture this relation we need deduction rules 
corresponding to the principles in the above list. The first step is to add the universal modal
ity to the set of operators: 0 = {G, H, .}. In this way we automatically get K-import and 
K -export for '.', making normality for this operator derivable. For the other properties listed 
above further rules must be added: 4-import for transitivity, T-export for reflexivity, and less 
traditional rules for the principles 

.'P:::J G'P, .'P:::J H'P 

.'P:::J GH'P (Lp), .'P:::J HG'P (LJ). 

Fortunately, all of these axioms fit in the classification of interactions discussed above as 'posi
tive introspection formulas'. This allows us to give rules for the axioms by simply substituting 
the relevant operators for' X', 'Y', and' Z' in the rule-schema for positive introspection. For 
the axioms .'1' :::J G'P and .'1' :::J H'P, these substitutions are X := ., Y = Z = G, and 
X := ., Y = Z = H respectively, which give rise to the following import rules: 
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Rules of this sort occur in a different setting in [Borghuis 1994], and shall be called 'K2-
import' for 'bi-modal K-import'. For the linearity axioms .rp J GHrp and .'P J HGrp the 
substitutions are X .- ., Y := G, Z := H, and X := ., Y := H, Z := G, resulting in 
import rules: 

We shall call these import rules' U-import', for 'universal' import, since they involve the 
universal operator and represent the most general case of positive introspection with X of 
Yof Z of X. 

3.13. DEFINITION. Deduction rules 
These interactions can be brought into the deduction-system by adding the following rules: 

O'A o'A 

I~ I o ~,n A 

K2-import U-import 

3.14. DEFINITION. Application of deduction rules 
Given a proof figure D, with interval D = [1,n], formulas F I , . .. ,Fn and intervals I. A 
formula E is the result of an application of deduction rule R, if E is the conclusion of R, the 
premisses of R precede E, and one of the following conditions is met for the modal rules: 

13. R = K2 import. 
If the premiss 0' A lies in interval I E I and the conclusion E = A lies in the interval 
J EM" where (0,0') E OK2(~ 0 X 0), then it has to be the case that the interval J 
lies in the interval I. 

14. R = U import. 
If the premiss 0' A lies in interval I E I and the conclusion E = 0 ,n A lies in the interval 
J EM" where (0, 0', a") E Ou(~ 0 X 0 X 0), then it has to be the case that the interval 
J lies in the interval I. 

It would seem that adding these last two rules completes our deductive characterization 
of Lin under option 2: the axioms Lj and Lp, and all listed axioms relating '. ' to 'G' and 
'H' have become derivable. However, the proposed deductions rules cover only half of the 

There they were called 'FK-import' for 'forced' K-import, but in this paper we want to avoid confusion 
with the tense operator' F'. 
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definition .'1' = HI" /\ 'I' /\ G'P, i.e. the elimination of formulas .'1' (.'1' ::J (HI" /\ 'I' /\ G'P), 
derivable by means of K2-import and T-export). The other half of the definition, (HI" /\ 
'I' /\ G'P) ::J .<p, is not derivable, indicating that we have not yet covered all possibilities for 
introducing formulas of the form .<p. By means of the K-rules we can introduce formulas of 
this form on the basis of other .-formulas, but we cannot account for cases where <p holds for 
different reasons in different directions of time: if for instance G(7f; ::J <p) and G7f;, and (7f; ::J <p) 
and 7f; yield <p for the all future time points and the present (G<p /\ <p), but H( ( ::J <p) and H ( 
yield <p for all time points in the past (H<p), we can conclude to.<p by means of the definition 
since we have (H <p /\ <p /\ G<p), but we cannot derive it by means of the deduction rules. Since 
no reasonable Fitch-style rule corresponding to the 'introduction-half' of the definition exists 
(this will be discussed in section 5), we will have to add it as an axiom. 

Given these considerations, we can now define the deduction system for Lin as a multi
modal Fitch-style deduction system where: 

O={G,H,.}, 

OB2-import = {(G,H),(H, G)}, 

a K2-import = {(., G), (., H)} , 

aU-import = {(., G, H), (., H, G)} , 

aT-export = {.} , 

and we have the axiom.-int (H <p /\ <p /\ G<p) ::J .<p . 

3.5.2. Familiar linear structures 

For each of the logics corresponding to a familiar linear structure (as presented in section 
2.3.2), a Fitch-style deduction system can now be defined by extending the deductive system 
for the logic Lin with the appropriate import- or export-rules and axioms: 

• (iZ, <), the deduction system for Lin and 

additional rules: D-export for G 

D-export for H 

additional axioms: Zj G(G<p::J <p)::J (-.G-.G<p::J G<p) 

Zp H(H<p::J <p)::J (-.H-.H<p::J HI") 

• (IN, <), the deduction system for Lin and 

additional rules: D-export for G 

additional axioms: Z, G(G<p::J <p)::J (,G,G<p::J G<p) 

Wp H(H<p::J <p) ::J H<p 

• (Q, <), the deduction system for Lin and 

The same problem occurs with other operators that are model theoretically defined as the transitive reflex
ive closure of the accessibility relations of the operators in 0, such as the operator for 'Common Knowledge' 
(see [Borghuis 1994]). 
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additional rules: D-export for G 

D-export for H 

Dens-export for G 

Dens-export for H 

• (Q, ::;), the deduction system for Lin and 

additional rules: T -export for G 

T -export for H 

• (IR, <), the deduction system for Lin and 

additional rules: D-export for G 

D-export for H (OD"p,rt = {G, H}) 

Dens-export for G 

Dens-export for H 

additional axiom: Cont (H<p:::J ~G~H<p) :::J (H<p:::J G<p) 
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4. Tense MPTSs 

The possibilities for temporal reasoning offered by the tense logics can be brought to typed 
A-calculus by interpreting these logics in so-called Modal Pure Type Systems in a propositions
as-types way. After the definition of MPTSs and a brief introduction to their relation to modal 
logic, we show how MPTSs corresponding to the various tense logics discussed so far can be 
build. At the end of this section, we point out an interesting consequence of the 'proofs-as
objects' correspondence between modal natural deduction proofs and MPTS-terms: given a 
deduction proof for a certain proposition, a simpler proof of that proposition can sometimes 
be found by means of reductions on the MPTS-term corresponding to the deduction proof. 

4.1. MPTSs with multiple modalities 

MPTSs are an extension of the Pure Type Systems of [Barendregt 1992]' which give a general 
description of a large class of typed lambda calculi providing possibilities for generic proofs of 
meta theoretical properties. The interpretation of (non-modal) propositional and predicate 
logics are well-understood, see [Geuvers 1993], which makes PTSs an excellent starting point 
for the construction of modal type systems. In the definition of MPTSs below, we assume 
that the reader is familiar with PTSs and with the propositions-as-types interpretation of 
propositional logic. This allows us to concentrate on the aspects that are specific for the 
modal systems, for a more gentle introduction the reader is referred to [Borghuis 1994]. 

We start the definition in the usual way, by specifying the set of pseudoterms given the 
set of 'sorts'S supplemented with a set of 'modalities' O. 

4.1. DEFINITION. Pseudoterms 
The set of pseudoterms 7 over Sand 0 is: 

where Var is a countable set of variables, and C is countable set of constants which will be 
used to deal with 'logical axioms'. 

Hence the pseudoterms are those of PTSs, complemented with 'modal types' (0°7), and 
proof terms for the modal rules (k07, "k°7). MPTSs also have an extended set of pseudo 
contexts. 

4.2. DEFINITION. Contexts 

(i) A declaration is a judgement ofthe form x: A, where x is a variable and A a pseudoterm. 

(ii) A pseudo-context is a finite ordered sequence of declarations (x : A), all with distinct 
subjects: x, : A" ... , Xn: An. 

(iii) A generalized pseudo-context is a finite ordered sequence of pseudo-contexts and indexed 
separators: g = f, IQI 0 ••• QI 0' f n with 0, ... , 0' E O. 

Clauses (i) and (ii) define PTS-contexts, clause (iii) allows us to insert 'separators' (IQI 0) in 
these contexts. The separators let us partition the declaration in the context in the same way 
in which modal subordinate proofs in Fitch-style deduction partition the set of hypotheses 
during the proof. As will become clear below, this additional structuring of the context opens 
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up the possibility to define type theoretical analogons of the Fitch-style import and export 
rules. 

Given the definitions of pseudoterms and generalized contexts, and the notational abbre
viation 9 I- A: B : C for 9 I- A: Band 9 I- B: C, the derivation rules of MPTSs can 
be stated in the following way. 

4.3. DEFINITION. Multi-Modal Pure Type Systems 
A multi-modal Pure Type System with {3-conversion, MPTS~, is given by a set S of sorts 
containing Prop, Set, and Type, a set A Type C S X S of typing axioms, a set AL,gi, C exT 
of logical axioms, and a set ReS X S X S of rules. The MPTS that is given by S, A and R 
is denoted by OAfJ(S, A, R) and is the typed A-calculus with the following deduction rules: 

(axioms) 

( start) 

( weakening) 

(product) 

( application) 

( abstraction) 

( conversion) 

(boxing) 

( transfer1) 

( transfer2) 

( transfer3) 

( transfer ax) 

(K import) 

91-A:s 

g, x : A I- x: A 

gl-A:B gl-C:s 

g, x: C I- A: B 

E I- c: A : Prop if c : A E AL,gi, 

9 I- A: S1 g, x : A I- B: S2 

9 I- (IIx: A.B) : S3 

9 I- F: (IIx : A.B) 9 I- a: A 

9 I- Fa: B[x := a] 

g, x : A I- b: B 9 I- (IIx: A.B) : s 

9 I- (AX: A.b): (IIx : A.B) 

9 I- A: B 9 I- B': s B =fJ B' 
9 I- A : B' 

9 I- A: Prop 
(if 0 E 0) 

9 I- o'A: Prop 

9 I- A: s 
(if 0 E 0) 

9 ©J ' c I- A: s 

9 I- A:B:Type 
(if 0 E 0) 

g©J'EI-A:B 

9 I- A: B : Set 
(if 0 E 0) 

g©J'EI-A:B 

9 l- c: A: Prop 
(if 0 E 0 and c : A E AL,gi') 

g©J'c I- c:A 

9 I- A: 0' B : Prop 
(if 0 E 0) 

9 ©J '£ I- k' A : B 

In [Borghuis 1994] generalized contexts were denoted by the letter G, here we denote them by 9 because 
of the clash with the established use of G for the forward looking universal tense operator. 
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(K export) 
91Q1'€ I- A:B:Prop 

9 I- k'A:O'B 
(if 0 E 0) 

s ranges over the S the set of sorts, x ranges over variables, c over constants, 0 ranges over 
the set 0 of modal indices, and it is assumed that in the rules (start) and (weakening), the 
newly declared variable is always fresh. 

The rules up to conversion (with the exception of axioms for the 'logical axioms' AL,gi') 
are familiar; they are the PTS-rules stated with respect to generalized contexts (9) rather 
than 'ordinary' contexts (f). The rule boxing allows the formation of a 'modal type' 0' A 
for some operator in 0 if this type is a proposition (A : Prop). The rest of the rules use the 
additional structure of the generalized context. 

In modal Fitch-style deduction, modal subordinate proofs are used to restrict the reiter
ation rule to formulas of a certain modal form. In MPTSs this is achieved by means of the 
separators. In a generalized context 9 IQI f, we call 9 the 'main context' and 'f' the subordi
nate context. The K-import rule states that only statements representing proof/proposition 
pairs for propositions of the form 0' B (A : 0' B : Prop) in the main context may be repeated 
in the subordinate context with their type 'demodalized' (B : Prop). The rule switches the 
context of derivation from 9 to the empty subordinate context 9 IQI € to indicate that K
import by itself does not require a hypothesis in the subordinate proof (assumptions can be 
introduced in the subordinate context using start and weakening). In the K-export rule it 
is essential that the subordinate context is empty: Fitch-style K-export requires that the 
formula to which it is applied has a categorical proof in the modal subordinate proof, i.e. the 
subordinate proof has no undischarged assumptions. Type theoretically this means that a 
statement A : B : Prop must be derivable on the empty subordinate context 9 IQI ' € before it 
may be brought back to the main context with its type modalized (0' B). 

Besides the propositions (types) and interval structure (context) of Fitch-style deduction, 
MPTSs also have terms inhabiting the types. Under the propositions-as-types interpretation, 
terms represent a proof of the proposition represented by their type. Steps in the proof (like 
~-introduction or elimination) are 'recorded' in the structure of the term (as applications and 
abstractions). To record K-import and export steps in modalized deduction, the MPTS-rules 
change the terms by means of the 'modal functions' 'k" for import and 'k" for export. With 
the Kripke semantics of modal logic in mind, their effect can be described as follows: 

- k': import 'specializes' a proof A of B for all accessible a-worlds (0' B) into a proof of B 
for the arbitrary o-accessible world represented by the subordinate context. 

- k': export 'generalizes' a proof A of B in an arbitrary o-world (the subordinate context) 
into a proof of B for all accessible o-worlds and hence into a proof of 0' B in the main 
context. 

Hence for statements representing proof/proposition pairs, the transfer between the main 
and subordinate context is restricted in precisely the same way as the transfer of propositions 
between the main and modal subordinate proof in Fitch-style deduction. The transfer rules 1-
3 ensure that this restriction does not apply to the rest of the statements; for these statements 
the separators in generalized contexts are irrelevant, they behave in the same way as they do 
in PTSs with respect to 'ordinary' contexts. 

The MPTS definition above is for multi-modal systems which have the minimal modal 
logic K for all operators in 0. As in Fitch-style deduction, one way to increase the modal 
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strength is to add further import and export rules. We give the type theoretical versions of 
the additional rules of section 3.1. 

4.4. DEFINITION. Additional modal rules 

(4 import) 
9 f- A: 0' B : Prop 

(if 0 E 04impOTt(~ 0)) 
glQl'E f- 4'A:0'B 

(5 import) 
9 f- A: ~O' B : Prop 

(if 0 E 05impOTt(~ 0)) 
glQl' E f- 5'A :~o'B 

(B import) 
9 f- A: B : Prop 

(if 0 E OB impOTt(~ 0) 
glQl'E f- b' A : ~O'~B 

(D export) 
glQl'E f- A: B: Prop 

(if 0 E ODexport(~ 0)) 
9 f- d' A : ~O'~B 

(T export) 
glQl'£ f- A:B:Prop 

(if 0 E aT "POTt(~ 0)) 
9 f- t'A: B 

Note that each rule introduces its own modal function, requiring the set of pseudoterms 
to include 40 T, 50 T, bOT, JOT, and tOT. 

Like PTSs, MPTSs are parametrized by sorts (8), axioms (A) and rules (R). The MPTS 
we use for multi-modal propositional logics is )"OPROP2, the modal version of the PTS 
)"PROP2 ([Geuvers 1993]). The latter system is part of the 'Logic Cube', a family of PTSs 
specifically tailored for the interpretation of (non-modal) logics. It has sorts for propositions 
(Prop), sets (Sets) and their supertypes (Type P, Type') related by the type axioms Prop: 
Type P and Set: Type'. The rules R of )"PROP2 and )"OPROP2 are (Prop, Prop, Prop) and 
(Type P , Prop, Prop) which substituted for s" S2, s:\ in product, application, and abstraction 
allows for the formation, elimination and introduction of propositional implication (A :J 

B := ITx : A.B : Prop, for A, B : Prop) and universal quantification over propositions 
(Va E Prop.B := ITa : Prop.B for B : Prop). 

)"PROP2 corresponds to second order intuitionistic propositional logic and is the PTS 
standardly used for the interpretation of classical propositional logic (see [Geuvers 1993]). 
Since PTSs are inherently intuitionistic, the rule of double negation elimination of classical 
logic has no counterpart in these systems. Using the quantification over propositional types, 
the double negation rule becomes expressible as an axiom schema: c : (Va E Prop.((a :J 

1-) :J 1-) :J a), where '1-' is defined as Va E Prop.a. Adding this statement to )"OPROP2 
as a 'logical axiom' (E AL,gic), gives us a modal type system with an underlying classical 

propositional logic. Unlike in PTSs, we cannot simply treat logical axioms as elements of the 
initial context of a derivation. In MPTSs, we have to distinguish them from other statements 
representing proof/proposition pairs (A : B : Prop), since for these statements traffic between 
the main and subordinate contexts is restricted whereas the logical axioms should be available 
everywhere (which is guaranteed by transfer,,). 

We will not go into the formal details of the correspondence between modal Fitch-style 
proofs and MPTS-terms. The following sections provide the reader with enough examples to 
capture the intuition underlying it. Formalizing this intuition requires a lot of what Girard 
would call 'bureaucracy', and therefore we summarize these formalities by means of two the
orems from [Borghuis 1994]' relating )"OPROP2 to the Fitch-style system oPROP2 which is 
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OP ROP'j!,tck (section 3.1) with universal quantification over propositions, and':::J' and '.1..' as 
its set of connectives. 

THEOREM. If 2: is a natural deduction proof of'P in OPROP2, then rE I- 2:! 'P ts 

derivable in AOPROP2 (where r E is a (non-blocked) context depending on 2:). 

THEOREM. If r I- M: 'P : PROP for a term M in AOPROP2, then M? is a natural 
deduction proof of'P in OPROP2 (where r is non-blocked, and all (open) hypotheses of M? 
are declared in r). 

Hence we have formal mappings from Fitch-style proofs to MPTS-terms ('!') and from 
MPTS-terms to Fitch-style proofs ('?'), both of which are sound. 

4.2. The MPTS AKt 

In defining an MPTS (>.Kt ) for the tense logic K" we adopt the same strategy as used for 
the definition of the Fitch-style deduction system for this logic (section 3.2); we start from 
the minimal multi-modal type system for the two tense operators: 

Sorts: S = {Prop, Set, TypeP, Type'} 

Axioms: 

ATyp, = {Prop: Type P , Set: Type'} 

ALogic = {c: (Va E Prop.((a:::J.1..):::J.1..):::J a)} 

Rules: R = {(Prop, Prop, Prop), (Type P, Prop, Prop)} 

Operators: 0 = {G, H} . 

The triple (S, A, R) determines the MPTS AOPROP20, in which the minimal modal logic 
K can be interpreted for each of the operators in O. As in the Fitch-style system, having the 
K-rules for 'G' and' H' suffices to account for the normality axioms and the Necessitation
rules. To provide the reader with an opportunity to see the MPTS at work, we construct an 
inhabitant for the axiom G(A :::J B) :::J (GA :::J GB). (The Start lemma used in the derivation 
will be explained below.) 

All other connectives can be defined using V, J and .L 
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l. r I- G(A J B) : Prop (Start lemma) 
2. r, x: G(A J B) I- x: G(A J B) (start 1) 
3. r,x: G(A J B) I- GA: Prop (Start lemma) 
4. r, x: G(A J B), y: GA I- y: GA (start 3) 
5. r, x : G(A J B), y: GA I- x: G(A J B) (Start lemma) 

6. r, x: G(A J B), y: GA [jJ G £ I- kGx: A J B (K-import 5) 

7. r, x: G(A J B), y: GA [jJ G £ I- kGy : A (K-import 4) 

8. r,x: G(A J B), y: GA [jJ G £ I- kGx(k Gy): B (appl. 6,7) 

9. r,x: G(A J B), y: GA I- kG(kGx(k Gy)): GB (K -export 8) 

10. r,x: G(A J B) I- )..y: GA.kG(kGx(k Gy)): GA J GB (abstr.4,9) 

II. r I- )..x: G(A J B).()..y: GA.kG(kGx(kGy))) 
G(AJB)J(GAJGB) (abstr. 2,10) 

If we look just at the types to the right of '1-', we see that from line 4 on down the 
type derivation is analogous to the natural deduction prooffor G(A J B) J (GA J GB) in 
section 3.2 (keep in mind that the presence of '[jJ G, in the context signifies a G-subordinate 
proof). Lines 1 and 3 abbreviate the derivation of the well-typedness of G(A J B) and GA: 
we have simply assumed that the context r already contains these statements, and we use a 
derived rule (the Start lemma) that allows us to say that any statement that is an element of 
a non-blocked context is derivable on that context. regardless of its position in it. After the 
well-formedness of these types has been established, we introduce variables inhabiting them. 
The variables 'x' and 'V' act as 'dummy proof objects'; adding the statements x : G(A J B) 
and y : GA to the context is the type theoretical analogOll of opening hypothesis intervals 
with hypotheses G(A J B) and GA in the natural deduction proof. 

However, the fundamental correspondence between the logic and the type theory is that 
between entire natural deduction proofs in OPROP2~;"h and single terms in 
)"OPROP2o: the natural deduction proof of G(A ::J B) J (GA J GB) is represented in 
the proof object AX : G(A J B).(Ay : GA.kG(kGx(kGy))) as it occurs in the final line II. 
The idea is that the natural deduction proof can be 'reconstructed from the bottom up' by 
reading the A-term 'from the outside in'. The outermost elements of the term are the )..
abstractions over x : G(A J B) and y : GA. These correspond to applications of J-intro in 
natural deduction, discharging hypotheses G(A J B) and (before that) GA. The remaining 
term kG(kGx(k Gy)) codes a proof of GB. By the outermost function kG, the last step in 
this proof was an application of K-export from a G-subordinate proof. This G-subordinate 
proof of B is represented by the application term (kGx)(k Gy), hence the last applied rule 
was ::J-elimination with kGx proving (A J B) and kGy proving A. Outermost in both terms 
is the function kG which shows that they were obtained by an application of K-import into a 
G-subordinate proof. Hence we are left with two 'atomic' proof objects: we cannot decompose 
the variables xC: G(A J B)) and y(: GA) any further, they are inhabitants of hypotheses of 
the natural deduction proof. 

Now that the correspondence between the minimal 2-operator modal logic and the minimal 
2-operator MPTS has been established, we still have to deal type theoretically with the 

The full derivation of G( A :> B) : Prop and G A : Prop would start from the type axiom: € f- Prop: Type P. 

By applications of start a context A: Prop, B: Prop can be created on which A :> B : Prop (IIx: A.B: Prop) 
is derivable using product. Subsequent applications of Boxing then yield G(A :> B) : Prop and GA: Prop. 
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symmetry axioms. We do this in the same way as in Fitch-style deduction, by adding an 
import rule to AKt (cf. definition 3.11): 

(B2 . ) 9 I- A: B : Prop ( , 
zmport (')' if 0,0 E OB2;mport(<;;; a x 0)). gill' c I- e ',' A: ~O' ~B 

Clearly this rule changes the types of statements in the same way as the equinominous Fitch
style rule changes propositions: a type B is transformed into ~o" ~B in an o-subordinate 
context (cf. section 3.2). The proof object A is prefixed with the function e(""), which records 
the modality of the sub context into which the statement is imported in the index 0, and the 
modal operator that is prefixed to the type in the index 0'. If we instantiate the import rule 
for the set a B2-;mport of K t (= {( G, H), (H, Gn) we get the following two rules: 

9 I- A:B:Prop 9 I- A:B:Prop 
gill Gel- e(G,H)A: ~H~B gill He I- e(H,G)A: ~G~B . 

In combination with the appropriate K-export rule, these immediately give us inhabitants 
for the symmetry axioms: Ax: 'P.kG(e(G,H)x) : 'P :J G~H~'P, Ax : 'P.kH(e(H,G)x) : 'P :J 

H~G~'P. 

The examples given above do not yet show that the MPTS AKt corresponds in any precise 
formal way to the Fitch-style deduction system for K" and we cannot conclude it directly 
from the theorems relating multi-modal Fitch-style deduction systems to multi-modal MPTSs 
in the previous section, since they are concerned with systems without B2-import. However, 
the proofs of these results (see [Borghuis 1994]) can easily be redone for OPROP2~;"h and 
AOPROP2° extended with B2-import. 

4.3. Further properties of the tenses 

For the extension of AKt with further properties of the tenses, we have the two options dis
cussed for Fitch-style deduction in 3.3: 

Extension by axioms 
Tense logical principles can be added to AKt as logical axioms (E AL,g;,). The possibil
ity of quantifying over propositional variables allows us to use axiom schemas rather, e.g. 
C4p : (Va E Prop(Ha :J HHa)). From such a schema, the axiom for a particular type (say 
A : Prop) can be obtained by applying the schema to that type (C4pA : HA :J HHA). The 
resulting axiom can then be used as in natural deduction proofs; by applying it to a proof of 
the antecedent of the axiom (M: HA) a proofofthe consequent is obtained ((C4A)M: HHA). 
Logical axioms may be repeated anywhere in a derivation because our rules interact to ensure 
that they are derivable on any well-formed context: by axiom logical axioms are derivable on 
the empty context c, hence they are derivable on any non-blocked context r by (repeated) 
weakening, and by transferax they can be lifted over Ill's into subordinate contexts. 

Extension by rules 
Like in Fitch-style deduction, adding import and export rules to AKt strengthens the sys
tem by allowing for more ways of transporting statements from the main to the subordinate 
context and back. The Fitch-style rules indicate how the types of statements behave under 
import or export, the terms change in such a way that they record all information needed to 
reconstruct the modal step in the natural deduction proof (like the modality of the imported 
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formula and that of the subordinate proof). 

In section 4.1 a number of additional modal rules are given which are the type theoretical 
counterpart of the mono-modal Fitch-style rules of section 3.1. Hence we can use these to 
deal straightforwardly with the tense logical properties 4, /4 p, T, / Tp and D, / Dp of section 
2.2.1. We show this in detail for 4p; given >-.Kt and the 4-import rule for H, an inhabitant for 
H <p :::> HH <p can be constructed. 

( 4y-import) 
9 I- A: HB : Prop 

9 IQI H £ I- LiH A : HB 

1. £ I- Prop: Type P 

2. <p: Prop I- <p: Prop 
3. <p: Prop I- H <p : Prop 
4. <p:Prop,x:H<p I- x:H<p 

5. <p:Prop,x:H<pIQlH £ I- LiHx:H<p 

6. <p:Prop,x:H<p I- kH(jHx):HH<p 

7. <p:Prop I- >-'x:H<p.kH(LiHx):H<p:::>HH<p 

The corresponding proof for 4, is left to the reader. 

(axiom) 
(start 1) 
(boxing 2) 
(start 3) 

(4-import 4) 

(K-export 5) 
(abstr. 6) 

Similarly by combining T-export (for G) and D-export (for H) with K-import, we obtain 
proof objects for T,: G<p:::> <p and Dp: H<p:::> ,H,<p 

( T-export) 

(D-expart) 

glQlG£ I- A:B:Prop 

91-1 G A:B 

glQlH £ I- A:B:Prop 

9 I- dHA: ,H,B 

The derivation leading to proof objects for Tp and D, are, again, left to the reader. 
For the density axioms, Dens,: GG<p :::> G<p and Densp: HH<p :::> H<p, we adopt the type 

theoretical analogon of the Fitch-style rule Dense-export: 

( Dense- export) 
9 IQI' £ I- A: D' B : Pmp 

9 I- v'A:D'B 

In this rule iJ' records that Dense-export was applied to a proof of D' B (for some proposition 
type B) in an a-subordinate proof. In the above format, the rule summarizes Dense-export 
for both directions of time: instantiating it with G and H gives us two export rules which 
immediately yield inhabitants for the density axioms. 

9 IQI GEl- A: GB : Prop 
9I-iJGA:GB 

9 IQI H E I- A: HB : Prop 
9 I- iJHA: HB 

Since no additional import- or export-rules of the above kind can be given for the remaining 
principles Z, / Zp, W, / Wp, Dum, / Dump, and Cont, we act as in section 3.3 and add them as 
logical axioms for the time being (this matter will be discussed further in section 5.2): 
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Czj : (Va E Prop.G( Ga ::l a) ::l (,G,Ga ::l Ga)) 

c zp : (Va E Prop.H(Ha::l a)::l (,H,Ha::l Ha)) 

Cwj : (Va E Prop.G( Ga ::l a) ::l Ga) 

cwp : (Va E Prop.H(Ha ::l a) ::l Ha) 

CDumj: (Va E Prop.G(G(a::l Ga)::l a)::l (,G,Ga::l a)) 

CDump: (Va E Prop.H(H(a::l Ha)::l a)::l (,H,Ha::l a)) 

Ce,nt : (Va E Prop._(Ha ::l ,G,Ha) ::l (Ha ::l Ga)) 

In cases for which both an extension by axioms and an extension by rules exists, these two 
extensions of AKt are equivalent in the sense that a term inhabiting the axiom schema can be 
derived in AKt extended with the rule and a term corresponding to the term introduced by the 
import- or export-rule is derivable in AKt extended with the axiom schema. We show this for 
the principle 4p: H <p ::l HH <p. For a formal translation between terms in the rule-extended 
system and terms in the axiom-extended system the reader is referred to [Borghuis 1994]. 

From rule to axiom schema: 
In AKt extended with 4wimport, an inhabitant for the type of the logical axiom C4p : (Va E 

Prop.(Ha::l HHa)) can be derived on the empty context, as can be seen as follows: the ex
ample derivation for the 4-axiom above ended in <p : Prop f- AX: H <p.k H (4 H x) : H <p ::l HH <p. 
It can be continued by abstracting over the propositional variable <p, resulting in c f- A<P: 
Prop.AX : H <p.k H (4H x) : (V<p E Prop.H <p ::l HH <p) in which the term represents a proof of 
the axiom schema (modulo a-equivalence). 

From axiom schema to rule: 
In AKt extended with the logical axiom C4p : (Va E Prop.(Ha ::l HHa)) the 4wimport rule 
can be 'mimicked'; starting from a statement M : H <p in some context G we can obtain a 
statement of type H <p in the subordinate context which has M as a subterm, using K-import 
for H as the only modal rule: 

l. 9 f- M:H<p (assumption) 
2. 9 f- C4p : (Va E Prop.(Ha ::l HHa)) (4p -axiom) 
3. 9 f- 'I' : Prop Start lemma 
4. 9 f- (C4p '1'): H'P::l HH'P (appl. 2,3) 
5. 9 f- (C4p 'P)M: HH'P (appl. 1,4) 

6. 9 [Q] H c f- kH (( C4p <p )M) : H <p (K-import 5) 

4.4. The interaction between past and future 

In the logic K" the basic interaction between the past and future directions of time is given 
by the symmetry between G and H. A Fitch-style analysis of the deductive effects of this 
symmetry in systems for K t and extensions was given in section 3.4. Since MPTSs correspond 
closely to the Fitch-style deduction systems, this analysis carries over to AKt . Hence we cannot 
expect new insights into the effect of symmetry on the level of types. However, on the level 
of terms some aspects of the Fitch-style analysis can be made more precise. 
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In 3.4.1 an informal explanation of the mirror image property for the deduction system 
for K t was given: from a proof of '1'( G, H) we can construct a proof of '1'( H, G) by taking 
the mirror image of all hypotheses occurring in the original proof and then matching all rule 
applications in the original proof step by step with applications of the mirror images of these 
rules in the new proof. Since in AKt terms represent an entire natural deduction proof of 
their proposition type, this operation can be viewed as a substitution on terms which given 
a proof object M of type '1'( G, H) yields a proof object M' inhabiting '1'( H, G). 

PROPOSITION. If the AKt-term M corresponds to a natural deduction proof (L:) of '1'( G, H) 
in Kt (fI; I- M: '1'( G, H)), a AKt-term M' corresponding to a natural deduction proof 
of '1'( H, G) in K t (f~ I- M': '1'( H, G)) can be obtained by simultaneously replacing all 
occurences in M (and fI;) of: 

(i) G by occurrences of H, 
H by occurrences of G, 

(ii) kG by occurrences of kH / kH by occurrences of kG, 
kG by occurrences of kH / kH by occurrences of kG, 
,,(G,H) by occurrences of ,,(H,G) / ,,(H,G) by occurrences of ,,(G,H). 

Clause (i) substitutes the mirror images for the hypotheses of the natural deduction proof 
L:, which occur in the proof object M as the type of a bound variable (if the hypothesis 
is discharged in L:) or as the type of a declaration in the context fI; (if the hypothesis 
is not discharged). The second clause replaces every modal function in M representing an 
application of an import or export rule in L: by the modal function representing an application 
of the mirror image of this import or export rule. 

An example of a pair of proof objects that are each others mirror image under this trans
lation are the inhabitants of the normality axioms: 

AX: G(A ~ B).Ay: GA.kG((kGx)(kGy)): G(A ~ B) ~ (GA ~ GB) 

AX: H(A ~ B).Ay: HA.kH ((k H x)(k H y)) : H(A ~ B) ~ (HA ~ HB) . 

The effects of symmetry on the extensions of Kt highlighted by the examples 1 and 2 of 3.4.1 
are equally present in AKt : 

In AKt plus 4-import for G an inhabitant of H 'I' ~ HH'P can be constructed. 
In AKt plus Dens-export for H an inhabitant of GG'P ~ G'P can be constructed. 

We leave it as an exercise for the industrious reader to actually derive the proof objects 
corresponding to the Fitch-style proofs in Examples 1 and 2. 

For a more general view on the interaction between the past and future direction of time, 
we return to the classification of interaction axioms in categories positive/negative intro
/extraspection. In section 3.4 it was shown how Fitch-style rules can be given for each of 
these categories, and by now the reader will not be surprised that we can match these with 
MPTS-rules. Below We give an overview for introspection and extraspection, showing from 
top to bottom: the interactions axiom, the Fitch-style rule, the MPTS-rule, and an inhabitant 
of the axiom derived by means of the latter rule. 
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Introspection 

X<p 

Y 

positive introspection negative introspection 

. . 9 I- M:X<p:Prop . . 9 I- M:,X<p:Prop 
Pos zntrospectwn" Y neg zntrospectwn 

!1 [gJ £ I- p(X,Y,Z)M : Z<p 9 [gJ Y £ I- iI(X,Y,Z)M : ,Z<p 

AU: X<p.X:Y(p(X,Y,Z)u): X<p:J YZ<p AU: ,X<p.X:Y(iI(X,Y,Z)u): ,X<p:J Y,Z<p. 

Extraspection 

XYT: X'lr:~ 
Z<p ,Z<p 

positive extraspection negative extraspection 

. 9 [gJ X £ I- M: Y <p : Prop 
pos extraspectwn ,(X Y Z) 9 I- p , , M: Z<p 

. 9 [gJ X £ I- M:, Y<p : Prop 
neg extraspectwn ,(X Y Z) 9 I- n ' , M: ,Z<p 

AU: XY<p.j>(X,Y,Z)(kX u) : XY<p:J Z<p 

Note that the proof functions (p, p, ii, il) in these MPTS-rules are indexed with triples of 
operator indices to record all relevant aspects of the application of the Fitch-style rules: the 
modality of the formula to which the rule is applied, the modality of the strict subordinate 
proof and the modality of the resulting formula. As for the Fitch-style rules, all modal 
MPTS-rules defined sofar fit in the classification by identifying or leaving out combinations 
of operators (in the types) and indices X, Y, Z (in the terms), and replacing nand p by 
more mnemonic letters. 

In section 3.4.2, we discussed two cases where an extension of K, with an interaction 
axiom of one category made an axiom of a different category derivable due to the symmetry 
between G and H. Naturally these examples go through for AK,: 
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• in AK, +4-import inhabitants for the preservation axioms, ~G~'P :::l H ~G~'P and ~H ~'P :::l 

G~H ~'P can be constructed . 

• in AK, + 4-import + D-export inhabitants for the actuality axioms, GH'P :::l H'P and 
HG'P :::l G'P can be constructed. 

The details of this are left to the industrious reader who should be able to derive these proof 
objects on the basis of the Fitch-style proofs in 3.4.2. 

4.5. Linear MPTSs 

Given the type theoretical version of the classification of interaction axioms, we can simply 
follow the Fitch-style analysis of section 3.5 in defining MPTSs corresponding to the minimal 
linear tense logic Lin and its extensions. 

4.5.1. The MPTS -'Lin 

The first step in extending AK, to ALin, the MPTS corresponding to the minimal linear tense 
logic, is to include the 4-import rule for G and H, as the ordering of time points is transitive 
in linear logics (4p : H'P:::l HH'P, 4f : G'P:::l GG'P). 

The second step is to add the universal modality, '.', to the set of operators, a = 
{G, H, .}, in order to deal with the linearity axioms Lp : .'P :::l GH 'P, and Lf : .'P :::l HG'P. 
Adding '.' to a automatically gives us K -import and K -export for this operator, which 
supplemented with 4-import and T-export suffices to account for its 'pure' properties: 

AX: .(A :::l B).Ay: .A.k-((k-x)(k-y)) : .(A :::l B) :::l (.A :::l .B) 

AX: .A.k-(4-x) :.A :::l •• A 

AX: .A.i-(k-x) :.A :::l A . 

For the 'mixed' principles relating '.' to 'G' and 'H', we need the type theoretical analogon 
of the positive introspection rules K2-import and U-import proposed in 3.5.1: 

K2-import 

U-import 

9 I- A: 00 B : Prop 
g©l 0' £ I- J(o,o')A: B 

9 I- A: 00 B : Prop 

if 0,0' E O](2-import 

if 0,0', 0" E OU-import . 

The modal function J(o,o') introduced by K2-import records the modal operator of the im
ported type in the index 0, and the modality of the subordinate context in the index a'. The 
function u(o,o',o") introduced by U-import does the same and in addition stores the operator 
prefixed to the imported type in the index a". If we instantiate these rules according to the 
sets aK2-impor' (= {(., G), (., H)}) and aU-impor' (= {(., G, H), (., H, G)}) of the Lin, 
we get two pairs of import rules which immediately give us inhabitants for the mixed axioms 
of '.': 

As in the natural deduction system, the operator '.' is definable in ),.J(t (_<p =def 'Va E Prop.(Hrp :> 
(If' ::> (GIP ::> a») ::> a), but only adding it explicitly yields satisfactory deduction rules for the linearity axioms. 

Cf. section 4.2. 
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K2-import 
9 I- A:.B: Prop 

9 [Q] G £ I- j(.,G)A : B 

AX: .'P.kGj(.,G)x : .'1' :::> Gcp 

U-import 
9 I- A:.B: Prop 

9 I- A : .B : Prop 
9 [Q] H £ I- j(.,H)A: B 

AX: .'P.kHj(.,H)x:.'P:::> H'P 

9 I- A : .B : Prop 
9 [Q] H £ I- u(·,H,G)A: GB 

By adding these two rules, we have covered every way of eliminating the .-operator. For its 
introduction we will have to add a logical axiom, like we did for the Fitch-style system in 
section 3.5.1. In short, the MPTS ALin conesponding to the minimal linear tense logic can 
be described as ADPROP2°, where: 

0= {(G,H,.} 

OB2-import = {( G, H), (H, Gn 
04-import = {G,H,.} 

OK2-import = {(., G), (., H)} 

OU-import = {(., G, H), (., H, Gn 
OT-export = {.} 

ALogi, = {c __ : (Va E Prop.((a:::>.l):::>.l):::> a), c.: (Va E Prop.((Ha:::> (a:::> Ga)):::> .a)} 

4.5.2. Familiar linear structures 

For each of the linear structures presented in section 2.3.2, we can give an MPTS by extending 
ALin with the same combinations of additional rules and additional axioms that were used 
in the Fitch-style systems of section 3.5.2. 

• (iZ, <), the MPTS ALin and 

additional rules: D-export for G 
D-export for H 

logical axioms: czj: (Va E Prop.G( Ga :::> a) :::> (,G,Ga :::> a)) 
Czp : (Va E Prop.H(Ha:::l a):::l (,H,H(){:::l Ha)) 

• (IN, <), the MPTS ALin and 

additional rules: D-export for G 

logical axioms: czf: (Va E Prop.G( Ga :::> a) :::> (,G,Ga :::> a)) 
cwp : (Va E Prop.H(Ha :::> a) :::l Ha) 

• ((2, <), the MPTS ALin and 
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additional rules: D-export for G 
D-export for H 
Dense-export for G 
Dense-export for H 

• (Q, :s:), the MPTS )..Lin and 

additional rules: T -export for G 
T -export for H 

• (JR, <), the MPTS >.Lin and 

additional rules: D-export for G 
D-export for H 
Dense-export for G 
Dense-export for H 

logical axioms: Coon': (Va E Prop.(Ha ::l ,G,Ha) ::l (Ha ::l Ga)) . 

4.6. Subject reduction 

The fact that MPTS-terms correspond to entire natural deduction proofs implies that oper
ations on these terms inside an MPTS correspond to meta-operations on natural deduction 
proofs. More in particular, simplification operations on natural deduction proofs can be ex
pressed type theoretically as reduction rules on terms. For standard typed >.-calculi the most 
important of these 'subject reductions' is ,6-reduction: ,6-reduction on a term representing a 
(Prawitz-style) natural deduction proof corresponds to cut-elimination in that proof. Hence 
the ,6-normal form of the term will represent a cut-free proof of the proposition represented 
by the type of the term. 

For MPTSs, the question arises whether simplifications of modal Fitch-style proofs exist 

which can be specified as subject reduction rules inside the type system. In [Borghuis 1994] 
a number of combinations of import- and export steps that can cause 'detours' in Fitch-style 
proofs have been identified. These detours show up in the MPTS-terms as patterns of import
and export functions, on which subject reduction rules can be defined. Besides the detours 
familiar from general modal logic, the tense logics discussed in this paper also contain new 
ones. 

4.6.1. Reduction in K, 

Because of the symmetry between K -import and J( -export the application of the import rule 
on a proposition immediately followed by an application of the export rule does not have any 
observable effect on that proposition. The proposition has not been used to derive anything 
in the subordinate proof (no rules have been applied to it between import and export) and 
all steps in the proof that could have been taken before this 'detour' can be taken after it. 

Prawitz-style (or 'tree-form') natural deduction rules have an explicit cut-rule, in Fitch-style deduction 
the situation is more complicated, but ,a-reduction also simplifies the proof (see [Borghuis 1994]). 
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GA GA 

~A 
GA 

M 

Type theoretically there is a difference between the occurrences of GA before and after the 
detour. If the original proof object for GA is M, then the inhabitant of GA after the detour 
will be kG(k G M). In this term it is recorded that the original proof (M) of the proposition 
(GA) in the ma.in context which has first been specialized to a proof (k G M) of the proposition 
(A) in the G-subordinate context by means of the function kG and then generalized back into 
a proof of the original proposition (GA) in the main context by kG. 

Given this signature of a detour, we can define a type theoretical reduction rule to formalize 
the idea that a combination of subsequent K-import and K-export for a given normal modal 
operator is pointless in a natural deduction proof. 

4.5. DEFINITION. kkreduction: k'(k'M) ~ M '10 E 0 

Combined with the mappings to and from the natural deduction proofs, kk-reduction allows 
us to eliminate detours in a natural deduction proof in the way depicted above: any sequence 
of K -import and immediate K -export of a formula can be eliminated from the proof. 

In view of the symmetry of the basic modal rules, it is not surprising that we can make a 
similar observation about sequences in the 'reverse order': K-export followed by K-import. 
Given an occurrence of A in a strict subordinate proof, subsequent applications of K-export 
and K-import aga.in yield an occurrence of A in a strict subordinate proof. 

G 

A 

M 

Eliminating this detour does not make a difference for the rest of the natural deduction proof; 
since K-export could be applied to A, we know that the first occurrence of A does not depend 
on any hypotheses of the modal subordinate proof. 

Supposing that the original inhabitant of A is M, the type theoretical signature of such a 
detour is kG(k G M). Hence we can define the following reduction for its elimination. 

4.6. DEFINITION. kk reduction: k'(k' M) ~ M '10 E 0 

We shall call both kinds of reduction 'annihilation'; any time a k'-function meets a k'
function in any order in a term they 'destroy' each other. These reductions are 'compatible', 
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which means that a subterm of the right form (e.g. kH (k H M)) may always be replaced (by 
M), regardless of the structure of the term in which it appears (for instance, an application 
N(k H (k H M))). 

4.6.2. Reduction in Lin 

In extensions by rules for logics above K" new pointless combinations of import and export 
may arise. In the logic Lin this happens for the universal operator '.'; for this operator we 
have 4-import, allowing us to transfer formulas ofthe form '.'P' unchanged to a.-subordinate 
proof, and T-export, allowing unchanged export of any formula out of a .-subordinate proof. 
Immediate subsequent use of these rules leads to detours in the natural deduction proofs of 
Lin: 

M 

• 

M 

In Lin, these detours can be identified as subterms of the form 1-(4- M) or 4-(1- M) 
(where M is of type .'P). Hence we can formalize their elimination by means of the following 
subject reduction rules: 

4.7. DEFINITION. 14 reduction and 41 reduction. 
14 reduction : 1'(4'M) =? M Vo E 0 such that 0 E OT-export and 0 E 04-import 

41 reduction: 4'(1' M) =? M Vo E 0 such that 0 E 04-;mport and 0 E OT-export 

If the logic Lin is strengthened further to accommodate dense flows of time, the above 
detours can also occur with the weaker operators G and H: in Lin we already have 4-import 
for these operators and in extensions for dense logics Dens-export is added. Since Dens-export 
behaves exactly like T-export for formulas of the form G'P and H 'P, subsequent application 
of these rules yields the above detours. In the MPTS, these detours can be recognized by the 
presence of the '4' import function and 'il' export function. 

See [Barendregt 1992]. 
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4.8. DEFINITION. ;'4 reduction and 4;' reduction. 
;'4 reduction: ;"(4' M) =} M '10 E 0 such that 0 E OD,n,,-oxport and 0 E 04-;mport 
4;' reduction: 4'(;" M) =} M VA E 0 such that a E 04-import and 0 E OD,n,,-exp,rt 

Annihilation rules are well-behaved; the combined reductions in an MPTS with fJ-reduction 
and annihilations have the same desirable properties as the fJ-reductions in the original 
MPTS. 

Subject Reduction If 9 I- M: A and M reduces to M' through a number of annihila
tions (and fJ-steps), then 9 I- M' : A: the reduced proof is again a proof of the original 
formula. 

Strong Normalisation For every term M, there is an upperbound to the reductions 
starting from it: the annihilation reductions of proofs terminate. 

Church Rosser If a term M and reduces to different terms M' and M", then M' and 
M" have a common reduct: different reduction paths will eventually lead to the same 
result. 

This was proved for H/kk-reduction and 14/4t-reduction in [Borghuis 1994], these proofs are 
easily adapted to include v4/4;'-reduction. 

Annihilations eliminate pointless combinations of import and export steps, they remove 
simple 'local' detours from modal Fitch-style proofs. For modalities for which T-export holds, 
more interesting operations on proofs are possible: since T -export does not change the form 
of the propositions to which it is applied, it can sometimes be interchanged with propositional 
steps in the proof. An example of this in Lin, where we have T -export for '.', is the exchange 
of =>-elim and T-export: 

.(.A => .B) 

.A 

i .A =>.B 
.A 
.B 

.B 

(K-import) 
( 4-import) 
(=>-elim) 

(T-export) 

.(.A => .B) 

.A 

I{J.A => .B 

I .A 
.A =>.B 
.A 
.B 

(K-import) 
(4-import) 

(T-export) 
( T-export) 
(=>-elim) 

In the proof on the left, two formulas are imported into the .-subordinate proof, > 
elimination is performed and the result is T-exported to the main proof. In the proof on 
the right, two formulas are imported, immediately T-exported and =>-elimination is then 
performed on the results of the export in the main proof. Hence we have shortened the 
.-subordinate proof by permuting the application of =>-elim and T-export. Intuitively this 
operation is justified by the reflexivity of the '.'. Since it quantifies over all time points, 
.-subordinate proofs correspond to arbitrary time points and propositional steps inside such 
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proof involve formulas which are true at all time points. Hence these proof steps could also 
be carried out at the present time point (in the main proof). 

In the MPTS-terms corresponding to the two proofs, applications of T-export are recorded 
as occurrences of 't-'. Hence the permutation of T -export and ::J-elim in the natural deduction 
proof shows up as a distribution of t over application in the terms: t-( (k- M)( 4- N)) =} 

(t-(k-M))(t-(4-N)), assuming that M : .(.A ::J .B) and N : .A. At first glance, it 
may seem that the deduction proof resulting from this reduction is not simpler than the 
original proof: its subordinate proof may be shorter but the main proof has more steps than 
the original. However, a second look reveals a possibility for further simplification in the 
new proof; it is now obvious that the 4-import and T -export of.A is superfluous, we could 
immediately have used the topmost occurrence of .A in the ::J-elimination. This possibility 
is reflected in the proof term which contains the t4-redex t-(4- N). Reducing it in the way 
described above yields a proof that is simpler than the original proof: 

.(.A ::J .B) 

.A 

~.A::J .B 
I .A 

.A ::J .B 

.A 

.B 

(K-import) 
(4-import) 

(T-export) 
(T-export) 

.(.A ::J .B) 

.A 

If.A::J .B 

.A ::J .B 

.B 

(K-import) 

(T-export) 

This example shows how the distribution of t through a proof term can give rise to more 
'global' proof reductions, eliminating detours which are not immediately visible in the natural 
deduction proof. Since defining proper reduction rules for distribution of t over application 
is technically rather involved, we refer the reader to the discussion of these rules in [Borghuis 
1994J. An important conclusion of this discussion is that the set of distribution rules is not 
as well-behaved as that of annihilations: Subject Reduction fails and at best we have Weak 
Normalization. 

The point of this section is to show that the 'separation of concerns' that is enforced in 
Fitch-style systems above K which are extended by rules has advantages for the interpretation 
of these logics in MPTSs. If all modal steps in the deduction proof are coded by import- and 
export functions in the proof term, simplifications of the modal structure of the deduction 
proof can be formalized inside MPTSs in the form of simple subject reduction rules. For 
systems which are extended by axioms, we can find formulations of some annihilation rules 
but these are rather awkward compared to those above. Distribution rules cannot be specified 
for extensions by (T -) axioms. 
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5. Axioms and rules 

In section 3.3, two ways of extending the Fitch-style deduction system for the basic tense 
logic K, were discussed: extension by axioms versus extension by rules. Although it was 
argued that extension by rules is preferred, there were several tense logical principles for 
which an extension by axioms was adopted because there didn't seem to be a Fitch-style rule 
corresponding to them. In this section we take a more systematic look at these cases, to 
see what we can learn with respect to the general (open) question of expressivity of modal 
Fitch-style deduction rules. 

Throughout this paper, a number of axioms has been discussed for which no corresponding 
Fitch-style rule was given: 

• Zj G(G<p::J <p)::J (FG<p::J G<p) Zp H(H<p::J <p)::J (PH<p::J H<p) 

• Wj G(G<p::J <p)::J G<p Wp H(H<p::J <p)::J <p 

• Dumj G(G(<p::J G<p)::J <p)::J (FG<p::J <p) Dump H(H(<p::J H<p)::J <p)::J (PH<p::J <p) 

• Cont .(H<p::J FH<p) ::J (H<p::J G<p) 

• .-int (H <p 1\ <p 1\ G<p) ::J .<p . 

However, with a somewhat more insouciant approach to Fitch-style deduction one could come 
up with rules for these axioms; an import rule for Wt! Wp and .-int, and an export rule for 
Zt! Zp, Dumt! Dump and Cont (for the axiom pairs, we only show the rule for the I-axiom): 
Import rules 

• - int 

Export rules 

As the reader can easily check, adding these rules to K, will make the corresponding axiom 
a theorem of the resulting system. Vice versa, adding one of the axioms to K, will make the 
corresponding rule derivable. The modal rules we had encountered sofar only changed the 
modality which is the main connective of the formula they import or export. The above rules 
change modalities inside the formulas to which they are applied, and some even change the 
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propositional form of these formulas. Intuitively such rules are counterproductive; they seem 
to interfere with the 'separation of concerns' they are supposed to promote. This intuition is 
supported by an observation which has been made both in tense logic and in the meta theory 
of MPTSs. 

In [Prior 1967], Smiley's 'proof of consistency' is mentioned: when a tense logical axiom 
or rule 'survives' the interpretation G'P = H'P = F'P = P'P, it is deemed consistent. The idea 
is that an axiom or rule that turns into a tautology when stripped of its tense operators holds 
in 'instantaneous time', where everything happens simultaneously in a single instant. Of the 
above axioms only W, and Wp fail Smiley's test, they turn into ('P ::J 'P) ::J 'P. In the proofs 
of the meta-theoretical properties of MPTSs ([Borghuis 1994]) this same idea of stripping the 
modal parts comes up. A vital ingredient of these proofs is a mapping that projects MPTSs 
back onto their underlying PTS, by erasing everything that is modal in types, terms and 
contexts. 

5.1. DEFINITION. Erasure Mapping 
Let I I be a mapping of MPTS-terms to PTS-terms: 

i. 10' AI = IAI, I,D',AI = IAI for all 0 E 0 

II. IAIA21 = IAIIIA21, lAx: A.bl = Ax : IAI.lbl, IIIx: A.BI = IIx : IAI·IBI 

Ill. Ir, x: AI = If!, Ix: AI, 19 ©I 'rl = 191, Irl for all 0 E 0 

iv. IA: BI = IAI : IBI, 1[1 = 0, Ixl = x (for x E VaT), lsi = s (for s E S) 

v. Ik' AI = IAI, Ib' AI = IAI, 14' AI = IAI, 15' AI = IAI, 

Ik' AI = IAI, Id' AI = IAI, li'AI = IAI for all 0 E O. 

If we apply this mapping to the standard import and export rules they turn into identities 
for the underlying PTS, for instance K-import 

1 

g f- A: D' l! : Prop 1 

9 ©I '[ f- k' A : B 
r f- IAI: lEI: Prop 

r f- IAI: IBI 

(where r = 19 ©I' 01 = 1(1,[1 = 1(1). This shows that these modal rules do not in any 
way strengthen the underlying non-modal PTS with respect to the derivation of non-modal 
statements. 

However, all of the deduction rules proposed in this section fail this test, with the exception 
of the export rules for Z, / Zp and Cont. The first example is the type theoretical analogon of 
Wi-import, which fails the erasure test in the same way that W, fails Smiley's test: 

1

9 f- M:G(G'P::J'Pll 
(lIQIG[ f- iDGM:'P = 

r I- IMI: I'P ::J 'PI 
r f- IMI: I'PI 

The stripped rule incorrectly strengthens the PTS by stating that a term IMI of type I'P::J 'PI 
on context r is also an inhabitant of type I'PI on that context. The type theoretical test is 
stricter than that of Smiley since it demands that the premiss and the consequence of the 
rule are identical after stripping. This eliminates the rules for the Dum, / Dump and .-in! 
axioms, which pass Smiley's test. For instance, the rule for .-in!: 

1

9 f- M:H'P!,'PIIG'PI 
9 IQI - [ f- i- M : 'P 

r I- IMI: I'P II 'P II 'PI 
r I- IMI: I'PI 
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Although the type of the premiss statement propositionally implies the type of the conclusion 
statement, the stripped rule still strengthens the underlying PTS ()"PROP2). It allows us 
to immediately use a proof object IMI for I'P II 'P II 'PI as proof object for I'PI, whereas the 
PTS-derivation of a term inhabiting I'PI from IMI would require a number of steps changing 
the form of IMI. Hence the erasure mapping leaves us with just the export rules for ZJI Zp 
aud Cont; the stripped form of all of these rules is the harmless 

r f- IMI: I'P :J 'PI 
r f- IMI: I'P :J 'PI 

Although these rules seem unproblematic from a type theoretical point of view, they subtly 
interfere with the separation between modal and propositional steps in Fitch-style proofs. In 
natural deduction a common 'bottom up' strategy for finding a proof for a given formula is to 
decompose it according to its main connective by assuming that the last step in its proof was 
the introduction of this connective. This leaves us a deduction problem for a simple formula 
which can again be decomposed ... , etc. In Fitch-style systems for simple modal logics, like 
K" this strategy continues to work: proving a formula of the form 0' 'P can be simplified to 
proving 'P inside aD' -subordinate proof. Rules like those for ZJ / Zp and Cont undermine such 
local strategies because they act inside a formula rather than on its main connective. If faced 
with the task of proving a formula H'P :J G'P, one would assume that the last step in the 
proof was the introduction of ':J', rather than reducing the problem to proving H'P :J FH'P in 
a .-subordinate proof (Cont). In this case a local strategy for finding proofs would suggest a 
propositional rule where a modal rule is needed. Clearly a further proof-theoretical analysis 
of modal Fitch-style deduction systems is needed to characterize the tense logical principles 
of which an extension by rules is possible. However, the above observations suggest that the 
propositional forms of these principles will be simple. 
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6. Concluding remarks 

This paper shows that the possibilities for temporal reasoning captured by Priorean Tense 
Logics can be brought into type theory by interpreting these logics in MPTSs. Crucial to this 
interpretation are the Fitch-style deduction formulations of these logics: the proofs in these 
modal natural deduction systems correspond directly to term in the MPTSs. Through this 
close correspondence solutions to problems of temporal reasoning found (in the widespread 
applications of) tense logics are now available to type theory, which is of particular interest 
for applications of type theory to knowledge representation. 

In section 3.2 a Fitch-style system for the minimal tense logic Kt is given. This system 
gives a satisfactory deductive account of the fundamental symmetry between the past and 
future direction of time expressed by the Kt-axioms <p =:> GP<p!<p =:> HF<p: the effects of this 
symmetry, both in Kt and its extensions, that were noted in the literature can be reproduced 
in it. The modal rules of the system suggest why the mirror image property holds for Fitch
style Kt; for every modal rule for the G-operator there is a 'mirror image' rule for the H
operator: K-import and K-export hold for both G and H, and the FB-import rules relating 
the operators are each others structural mirror image. Hence, given a deduction proof of 
<p( G, H) a proof of <p( H, G) can be found by taking the mirror images of all hypotheses in 
the proof of <p( G, H), and matching each application of a modal rule in that proof with an 
application of the mirror image of that rule. This meta-construction of 'mirror image'-proofs 
can be formalized in AKt (the MPTS corresponding to the deduction system) as a substitution 
operation on the term representing the proof of <p( G, H). 

Essentially the Fitch-style system for K t and AKt suffice for the type theoretical inter
pretation of any Priorean Tense Logic, since we can trivially accommodate all further tense 
logical principles by adding them to the deduction system and the MPTS as (logical) axioms. 
However, for a number of well-known tense logical principles, such as those expressing tran
sitivity, density, infinity and reflexivity of the flow of time, a more interesting extension of 
the basic systems is possible. Each of these principles becomes derivable by adding one extra 
import or export rule to Fitch-style Kt and AK, (cf. sections 3.3 and 4.3). An advantage of 
these extensions by rules is that all modal steps in the proof consist in exchanging formulas 
between the main and modal subordinate proofs, whereas all propositional steps take place 
inside the main or modal subordinate proof. This separation of concerns manifests itself in 
the structure of the MPTS-terms corresponding to these proofs: modal steps are recorded by 
occurrences of modal functions (k', k', ... ) in these terms, propositional steps are recorded 
as A-abstractions and applications. In proof terms of this kind, certain detours (pointless 
combinations of modal steps) in natural deduction proofs can be identified as subterms pre
fixed by specific combinations of modal functions. The removal of these detours, which is a 
meta-operation on Fitch-style proofs, can be formalized in MPTSs as a set of well-behaved 
subject reduction rules (see section 4.6). 

An interesting family of logics above Kt are the linear tense logics, which are discussed in 
sections 3.5 and 4.5. Initially, the minimal linear tense logic Lin does not seem amendable 
to the kind of Fitch-style treatment applied to K" because of the form of the characteristic 
axioms Lp: P<p =:> H(P<p V <p V F<p) and Lf: F<p =:> G(P<p V <p V F<p). However, using 
the definable universal normal operator '.' (.<p =d'f H<p /\ <p /\ G<p) these axioms can be 
rephrased as Lp: .<p =:> GH<p and Lf : .<p =:> HG<p for which perfectly good Fitch-style 
import rules can be given. All other ways of eliminating the .-operator can also be dealt 
with by modal rules, but its definition cannot be eliminated completely; for some cases of 
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introduction one halfofit is needed, the 'axiom' .-int: H<pfl<pflG<p =:J .<p. By extending the 
Fitch-style system for Lin and the corresponding MPTS )"Lin with further axioms and rules, 
tense logics describing familiar linear conceptions of time can be captured type theoretically. 
From a deductive point of view the systems for 'rational time' (( Q, <) and (Q,:S;)) are of 
particular interest, since they can be obtained from Lin and )"Lin by extending only with 
rules. The discussion in section 5 shows that in general the prospect of capturing a tense logic 
deductively by extending the Fitch-style system for K, with only rules, is limited to tense 
logics which have syntactically simple axioms. 
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Appendix: Interderivability of <)A and ,D,A 

Throughout this paper, all natural deduction rules and type derivation rules were stated using 
only the 'universal' (or '0'-) modalities 'G' and 'H'. The 'existential' (or '<>'-) operators 'F' 
and 'P' were treated as definitional abbreviations of '.G.' and '.H.' respectively. This is 
sufficient for the purpose of this paper, but one may prefer a deduction or derivation sys
tem in which 'F' and 'P' are first-class citizens, bringing the proofs closer to the standard 
presentation of the axiomatics and model theory of tense logics in the literature. However, 
in a system that has both universal and existential operators the equivalences F'P H .G.'P 
and P'P H .H.'P (in general O'P H .D.'P) should be derivable instead of dependent on a 
definition. 

The easiest way to bring the definitions into the deduction proofs would be to introduce 
rules which allow the replacement of an occurrence of the existential operator '0' with that 
of an occurrence of '-,0-,' (and vice versa) in a single step: 

Although completely straightforward, this solution is not in the spirit of the 'separation of 
concerns' advocated earlier. According to this idea propositional reasoning steps in a natural 
deduction proof are carried out inside hypothesis-intervals of the same modal depth, whereas 
modal reasoning steps correspond to the transfer of formulas between hypothesis-intervals 
of different modal depth. The 'replacement rules' given above do not respect this distinc
tion: they code a modal equivalence by means of rules that are carried out inside a single 
hypot hesis-interval. 

If we state the relation between the universal and the existential operator as ,O'P H D.'P, 
a solution can be found that is more in line with what we have done sofar. Given the K
deduction rules for '0', this equivalence becomes derivable by adding an extra import rule 
(def-import) for the direction .O'P::J D.'P and an extra export-rule (def-export) for the di
rection D.'P ::J .O'P' 

l. .O'P 

T''P 

.O'P 

2. (def-import,l) ,O'P ::J D.'P (axiom) 

3. D.'P (K-export,2) 
D.'P 

i~, 4. .O'P ::J D.'P 

(K-import) 

def-import From rule to 'axiom' From 'axiom' to rule 

The intuition behind the rule is that if .O'P holds there is no accessible world (future/past 
time point) when 'P holds, hence ''P has to hold in every accessible world (future/past time 
point), i.e. ''P is true iu the arbitrary accessible world represented by the strict subordinate 
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proof. The export rule formalizes the converse intuition: if ''P holds in an arbitrary world, 'P 
will not be true in any accessible world and hence '0'P holds: 

l. D,'P 

2. T''P (K.import 1) i ~'P 
3. '0'P ( def -export 2) D,'P (K-export) 

4. D,'P ~ '0'P D,'P ~ '0'P (axiom) 

'0'P 
def-export From rule to 'axiom' From 'axiom' to rule 

To show that these two rules are sufficient, we give the deduction proof for the remain
ing cases covered by the definition of '0' by means of '0': 

1. O,A l. ,DA 

2. DA 2. ,O,A 

0 

I~'A 3. 

~ 
3. (def-import 2) 

4. (K-import 2) 4. 

5. ,A 5. DA (K -export 4) 

6. "A 6. ,DA 

7. ,O,A (def -export 6) 7. -,-,O--,A 

8. O,A 8. O,A 

9. ,DA 9. ,DA:::J O,A 

10. O,A ~ ,DA 

This strategy for bringing the definition into the natural deduction system can also be applied 
to MPTSs for tense logics. All that is required for a type theoretical translation of def-import 
and -export is a slight extension of the syntax: we have to allow 'existential modal types' 
(07), and new functions (def, det) that will record the use of the 'definition-rules' in the 
proof object. 

def -import 
9 f- A: ,0 B : Prop 

9 ~ E f- defA: ,B 
def- 9 ~ E f- A: ,B : Prop 

export 9 f- d efA : ,0 B . 

Clearly, these rules enable us to transform any 'D-type' statement into its 'Ootype' counter
part (and vice versa), by means of derivations analogous to the natural deduction proofs above. 

A disadvantage of incorporating the relation between '0' and '0' by means of deduction 
(or derivation) rules is that proofs (derivations) can turn out to contain pointless combina
tions of steps involving the definition rules. The simplest example of such a detour is the 
subsequent application of def-import and def-export to a formula of the form ,OA: 
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,(>A 

The proof on the left turns an oc-

de/(de/M) M 
currence of ,(> A into an occurrence of ,(> A, while every rule that is applicable to the second 
occurrence was already applicable to the first occurrence. Obviously, this proof could be sim
plified to the one on the right by omitting the detour consisting of de/-import and de/-export. 
In natural deduction such simplifications are meta-operations on proofs but, as pointed out 
earlier, type theoretically they can sometimes be expressed as subject reduction rules. The 
signature of the detour in the above proof is a subterm of the form de/( de/M), where M 
represents the proof upto the first occurrence of ,(> A. Since the signature of the simplified 
proof is M, the situation seems to be analogous to that for K -import and K -export discussed 
earlier. Hence we stipulate annihilation for the definition rules: 

de/(de/M) =} M 

de/(de/M) =} M . 

In tandem with the annihilations for K-import and -export, these rules are able to eliminate 
more interesting detours than the one in the example above: 

l. ,(>A 

2. T,A (de/-import 1) 

3. D,A (K-export 2) 

4. T'A (K-import 3) 

5. ,(>A ( de/ -export 4) 

6 . ,(> A ::J ,(> A 

.Ax: ,(>A.de/(k(k(de/x))) .Ax: ,(>A.x 

The proof on the left derives ,(> A from ,(> A via D,A instead of establishing this iden
tity directly as in the proof on the right. In the corresponding proof term this detour is 
recorded as a sequence of K- and de/-functions which can be reduced in the following way: 

.Ax: ,(>A.de/(k(k(de/x))) -"H 

.Ax: ,(>A.de/(de/x) -"d1fd'f 

.Ax: ,(>A.x . 

The resulting proof term is the identity function for x : ,(>A, which corresponds to the proof 
on the right; the combined reduction rules have eliminated the detour. In the same way 
a proof of D,A from D,A via ,(>A can be reduced to an identity proof. However, these 
examples should not lead us to believe that any 'unnecessary' application of the definition 
rules in a proof can be eliminated using K-annihilation, de/-annihilation and j3-reduction: 
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the proofs of O,A from O,A through ,DA and ,DA from ,DA via O,A do not reduce to 
identity. This is caused by the application of ,,-elimination in these proofs (cf. the deduc
tion proof of ,DA :J O,A given earlier). Since MPTSs are by heritage intuitionistic, double 
negation-elimination requires invoking the logical axiom c : Va: Prop ( "a :J a). This leaves 
a 'scar' in the proof object (consisting of the constant c applied to some proposition type) 
which blocks the reduction path leading to the identity function. 

The discussion of import- and export-rules as a means for expressing the definition of '0' 
as ',0,' was started in an attempt to answer the practical question how a deduction or type 
system could be obtained in which the operators 'F' and 'P' are first-class citizens. The 
practical conclusions of the discussion are that for the natural deduction system we only have 
to add the dej-import and dej-export rules relating G to F and H to P, whereas the MPTS 
()..DPROP2) needs to be extended with a couple of things. 

• 'Boxing rules' for F and P, stating that every proposition type may be prefixed with the 
existential modal operators: 

. 9 I- A: Prop 
BoxzngF 9 I- FA: Prop 

9 I- A: Prop 
Boxingp 

9 I- PA: Prop 

• dej-import and -export rules relating F to G and P to H 

dej - importG 

dej-importH 

9 I- A: ,FB : Prop 

9 ~ GEl- dejGA: ,B 

9 I- A: ,PB : Prop 

dej - exportG 

de j - export H 

• Annihilation rules for dej-import/export combinations (optional) 

defG( defGM) =} M 

dejH( dejH M) =} M 

dejG(dejGM) =} M 

dejH( dejH M) =} M . 

9 ~ GEl- A: ,B : Prop 

9 I- dejGA: ,FB 

9 ~ H E I- A: ,B : Prop 

9 I- dejHA: ,PB 

The additional Boxing- and import/export rules have no influence on the meta-theoretical 
properties of the MPTS, the proofs of these properties in [Borghuis 1994J can be extended 
to deal with these rules in a straightforward way. Similarly, the well-behavedness of the 
dej & de! annihilation (by itself and in combination with the K -annihilation) can be shown 
by adapting the proofs for Subject Reduction, Strong Normalization and Church Rosser 
given those for the k & k annihilation. 
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