

Modelling of an agent based control system for a model
factory with the specification language Chi
Citation for published version (APA):
Zwegers, A. J. R., Schrijver, R. L. J., & Alguacil, A. S. (1997). Modelling of an agent based control system for a
model factory with the specification language Chi. (EUT - BDK report. Dept. of Industrial Engineering and
Management Science; Vol. 88). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1997

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/1debe0f1-5ffc-4ee1-86f4-22cadc8303f8

t
` Research Report

Eindhoven
University of Technology
The Netherlands

F A C U L T Y 0 F T E C H N 0 L 0 G Y M A N A G E M E N T

Modelling of eh agent .
"based control system ~~r ,

amodel, factory-with the
s ped if id ption language _ , X

`Arian ZwegeM, Raymond Schtijver,
Angel SanlanaAtguacil

Report F-UT/BDK/88
ISBN 9p-8860-569•~
ISSN 0929-8479
ÈinMhoven 1997

Modelling of an agent based control system for a model factory
with the specification language x

by

Arian Zwegers, Raymond Schrijver, Angel Santana Alguacil

Report EUT/BDK/88
ISBN 90-3860-569-2
ISSN 0929-8479
Eindhoven 1997

Keywords : Agent based control systems / Manufacturing systems / Simulation

Eindhoven University of Technology
Faculty of Technology Management
Eindhoven, The Netherlands

CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN

Zwegers, Arian

Modelling of an agent based control systems for a model factory with the specification language

x/ by Arian Zwegers, Raymond Schrijver, Angel Santana Alguacil . - Eindhoven : Technische

Universiteit Eindhoven, 1997 . -

(Report EUT/BDK, Eindhoven University of Technology, Department of Industrial Engineering
and Management Science, ISSN Q929-8479 ; 88)
ISBN 90-3860-569-2
NUGI 684

Subject headings : Agent based control systems / Manufacturing systems / Simulation

Summary

This report describes the specification and simulation of an agent based control system for a
model factory. A manufacturing system can be regarded as a set of autonomous, problem
solving agents, which communicate with each other. Each agent is capable of executing one or
more tasks . By means of negotiation, agents see to it that operations are carried out .

The real-time, concurrent programming formalism x is used to specify and simulate the model
factory . The formalism x treats a manufacturing system as a set of simultaneously operating
sequential components . Interaction among components is modelled by send- and receive-
actions along fixed communication lines .

The model factory is a miniaturised model of Printed Circuit Board assembly and test plant . It
consecutively carries out the following operations : releasing empty boards, screen printing,
placing components, reflow & cleaning, and storage . Each workstation is accompanied by an
agent. The workstation agents are connected by a network through which the exchange of
messages takes place . Jobs are passive entities that flow through the system ; they do not have
agent capabilities and therefore they cannot negotiate . The workstation agents negotiate with
each other about the execution of jobs .

The control system is based on a push-approach . A job is taken into the system via the Raw
Material Store. Subsequently, the job seeks its way through the system . The goal of a
workstation agent is to negotiate about the process steps of a job, so that the job will be
completed. The workstation agents announce an operation . Workstations that are able to
execute the operation respond with a bid that contains the point of time at which the operation
could be completed . The job is allocated to the workstation agent that is able to finish the
operation first . A workstation has the opportunity to subcontract operations, i .e . to carry out
part of the process steps itself, and have the other part carried out by another workstation .

The model is kept as generic as possible, for instance by means of the communication network
between the workstation agents . Moreover, new workstations can be added to the system
without modification of the rest of the model . As a result of this genericity, the structure of a
workstation agent is more complicated than strictly necessary .

Experiments have been done with an agent based control system and a similar control system
without negotiation. As for performance, the first system performs slightly better than the
latter. However, the performance and robustness of the agent based control system compared to
other control forms depend mostly on the type and characteristics of the production system .
Furthermore, an agent based control system appears to require a lot of communication .
Especially, the possibility of subcontracting enlarges the number of messages over the network
considerably .

The formalism x imposes hardly any constraints on the implementation of the models . The
basic structure of x is quite clear . However, this does not guarantee the transparency of the
model .

Modelling of an agent based control system for a model factory with the specification language x

Table of Contents

1. INTRODUCTION1
1 .1 AGENT BASED CONTROL SYSTEMS . 1
1 .2 SPECIFICATION LANGUAGE x . 2
1 .3 MODEL FACTORY . 2

1.3.1 Product . 2
1 .3.2 Operations . 3
1 .3.3 Process Layout .. 3

1 .4 PROBLEM STATEMENT. 4
1 .5 EVALUATION CRITERIA 4

2. GLOBAL MODELLING 5

2.1 INTRODUCTION . 5
2.2 SYSTEM BOUNDARIES .. 5
2.3 CONTROL STRATEGY . 6

2 . 3 .1 Push Strategy 6
2.3.2 Negotiation . 7
2.3.3 Negotiation protocol. 7

2.4 WORKSTATIONS . 9
2.5 TRANSPORTATION SYSTEM . 9
2.6 SOME SPECIFIC PROBLEMS AND THEIR SOLUTIONS . 10

3. DETAILED MODELLING13

3.1 NAMING . 13
3 .2 DATA TYPES . 13
3.3 GENERATOR (GEN) . 17
3 .4 NETWORK .. 20
3.4.1 Network Interface (NIN) . 20
3.4.2 Switch Element (SEL) . 22

3.5 WORKSTATION AGENT . 24
3.5.1 Controller (CON) :. 25
3.5.2 Request Handler (REQ). 30
3.5.3 Subcontractor (SUB) 33
3.5. 4 Database (DBS) . 38
3.5.5 Sender (SEN) . 42
3.5.6 Machine Controller (MAC) . 44

3.6 PHYSICAL PART OF A WORKSTATION (PHY) . 46
3.7 COMPONENT STORE (COS) . 48
3.8 CONVEYOR (CVY) AND COMPONENT CONVEYOR (CCO) . 50
3.9 OVERALL PHYSICAL SYSTEM . 51

4. SIMULATION RESULTS AGENT BASED CONTROL MODEL 53

4.1 INTRODUCTION . 5 3
4.2 INFLUENCE OF SYSTEM CAPACITY . 53
4.3 INFLUENCE OF SUBCONTRACTING . 56
4.4 INFLUENCE OF NEGOTIATION . 57

ii Modelling of an agent based control system for a model factory with the specification language x

5. DISCUSSION59

5 .1 THE MODEL OF THE CONTROL SYSTEM .59
5 .2 THE FORMALISM x . : .61

6. REFERENCES63

List of Figures

FIGURE I PRIMARY PROCESS OF THE MODEL FACTORY 3
FIGURE 2 PART OF THE MODEL FACTORY TO BE MODELLED 6
FIGURE 3 AGENTS CONNECTED BY A NETWORK 6
FIGURE 4 NEGOTIATION PROTOCOL 9
FIGURE 5 .TOBS OVERTAKING OLDER JOBS 10
FIGURE 6 JOBS WAITING FOR PROCESSING CAPACITY .. 10
FIGURE 7 OBSOLETE SCHEDULES I 1
FIGURE 8 OBSOLETE SCHEDULES AND THE SECOND SIDE LOOP .. 11
FIGURE 9 ANOTHER BOTTLENECK 12
FIGURE 10 GENERATOR 17
FIGURE 11 NETWORK INTERFACE 20
FIGURE 12 SWITCH ELEMENT 22
FIGURE 13 STRUCTURE OF A WORKSTATION 24
FIGURE 14 CONTROLLER 25
FIGURE 15 REQUEST HANDLER .. 30
FIGURE 16 SUBCONTRACTOR . 33
FIGURE 17 DATABASE . 38
FIGURE 18 SENDER . 42
FIGURE 19 MACHINE CONTROLLER . 44
FIGURE 20 PHYSICAL SYSTEM . 46
FIGURE 21 COMPONENT STORE . 48
FIGURE 22 CONVEYORS .. 50
FIGURE 23 OVERALL PHYSICAL SYSTEM . 51
FIGURE 24 SYSTEM CAPACITY AND THROUGHPUT TIME 54
FIGURE 25 SYSTEM CAPACITY AND CAPACITY UTILISATION 55
FIGURE 26 DEADLOCK .. 55
FIGURE 27 SUBCONTRACTING SITUATION .. 56
FIGURE 28 NEGOTIATION, SYSTEM CAPACITY, AND THROUGHPUT TIME .. 58
FIGURE 29 FREQUENTLY OCCURRING DEADLOCK BECAUSE OF ABSENCE OF NEGOTIATION . 58
FIGURE 30 RETURNING TO THE DEFAULT STATE . 62

List of Tables

TABLEI ADVANTAGES AND DISADVANTAGES OF THE PUSH AND PULL APPROACHES . 7
TABLE II UNIQUE IDENTIFICATION OF WORKSTATIONS 13
TABLE III MESSAGE TYPES .. 14
TABLE IV POSSIBLE OPERATIONS 15
TABLE V OPERATION TIMES AND COMPONENT DELIVERY DURATION (XOP) 16
TABLE VI STANDARD OPERATION TIMES AND COMPONENT DELIVERY DURATION 53
TABLE VII SYSTEM CAPACITY AND THROUGHPUT TIME 54
TABLE VIII SUBCONTRACTING, REPLENISHMENT TIME AND THROUGHPUT TIME . 56
TABLE IX NEGOTIATION, SYSTEM CAPACITY AND THROUGHPUT TIME . 57

Modelling of an agent based control system for a model factory with the specification language x iii

1 . Introduction

Current production management architectures show significant deficiencies in controlling the
complexity and the uncertainty that is typical of manufacturing systems . In manufacturing
systems, the predominant architectural paradigm has up to now been hierarchical . Because of
its mechanistic and deterministic approach, the hierarchical paradigm has numerous defects in
coping with uncertainty and with the rapidly evolving scenario that characterises today's
manufacturing environments. In this report, an approach is adopted that is derived from
Distributed Artificial Intelligence, and that is based on the concept of distributed, autonomous
agents .

This chapter discusses the principles behind agent based control systems . Furthermore, the
specification language x is described . The object of the studies in this report, the model factory,
is presented, and the objective of this report is outlined .

In Chapter 2, the architecture of the agent based control system is outlined . The next chapter
elaborates on the architecture and specifies the control system in x . Chapter 4 gives the
simulation results of the x model, thereby verifying the specified control system . This report
concludes with a discussion of the control system and the specification language x .

1 .1 Agent Based Control Systems
Strong similarities can be found between the characteristics of agents and those of current
manufacturing systems . Manufacturing processes are highly dynamic and unpredictable ; it is
difficult to completely separate the planning and sequencing of required activities from their
execution. Any detailed time plans are often disrupted by unpredictable delays and other
unanticipated events . As a result, a tendency exists within manufacturing systems to decentralise
the ownership of the tasks, information, and resources involved in the various processes . Different
groups within manufacturing systems become relatively autonomous ; how their resources are
consumed, by whom, at what cost, and in which time frame lies within their own prerogative .

Given these characteristics, it is quite natural to model the processes in a manufacturing system as
a collection of autonomous, problem solving agents which interact when they have
interdependencies . In such a context, an agent can be seen as an encapsulated problem solving
entity that exhibits the following properties :
• Autonomy : agents perform the majority of their problem solving tasks without the direct

intervention of other agents ; they control their own actions and their own internal state .
• Social ability : agents interact, when they deem appropriate, with other agents in order to

complete their problem solving and to help others with their tasks . This implies that agents
have, as a minimum, a means by which they can communicate their requirements to others
and an internal mechanism to decide what and when social interactions are appropriate (both
in terms of generating requests and judging incoming requests) .

• Proactiveness : agents take the initiative where appropriate .
• Responsiveness : agents perceive their environment and respond in a timely fashion to changes

that occur in it (Jennings et al ., 1996) .

Each agent is able to perform one or more services or tasks . If an agent requires a service that is
managed by another agent, it cannot simply instruct the other agent to start the service ; agents are

Modelling of an agent based control system for a model factory with the specification language x 1

autonomous, and control dependencies between them do not exist . Instead, the agents must come
to a mutually acceptable agreement about the terms and conditions under which the desired
service will be performed . The mechanism for making these agreements is negotiation, a joint
decision making process in which the parties verbalise their demands and then move towards
agreement by a process of concession .

To negotiate with one another, agents need a protocol that specifies the role of the current
message interchange, e .g. whether the agent is making a proposal or responding with a
counterproposal, or whether it is accepting or rejecting a proposal . A well-known example of
such a protocol is the Contract Net (Smith, 1980) . According to this protocol, agents decide
upon their actions by exchanging demand and offer for services among themselves, together
with varying amounts of status information which depend on the selected implementation
approach. However, Van Brussel (1995) notices that this protocol is often called a negotiation
procedure, but that there is no real negotiation involved. The protocol only defines a set of rules
that state how allocations are to be made .

1 .2 Specification Language X
At Eindhoven University of Technology, department of Mechanical Engineering, a real-time
concurrent programming formalism has been developed, called x . This formalism can be used
for the specification and simulation of industrial systems . It supports modularity and allows
separate descriptions of the structure and of the components' behaviour . A specific feature of x
is the clear representation and unambiguous specification of interfaces between components
(Mortel-Fronczak et al., 1995) .

A system is treated as a collection of concurrently operating sequential components . A system
component is modelled by a process as a sequential program where changes in the state of a
process are accomplished by performing actions . Interaction between components is modelled
by send and receive actions along fixed communication channels . A process is specified by a
program in a CSP-like specification language preceded by Pascal-like declarations of local
variables and statistical distributions . Processes do not share variables - they interact
exclusively by using the communication and synchronisation primitives (synchronous message-
passing) . The reader may find an extensive example of the specification language x in
(Mortel-Fronczak et al., 1995; Chi, 1996) .

1 .3 Model Factory
The model factory is a miniaturised, though still complex, model of a real Printed Circuit
Board (PCB) assembly and test plant . The function of the model factory is to assemble and test
pseudo PCBs . The following subsections describe the product, operations, and process lay-out
of the factory .

1 .3.1 Product
The model factory produces printed circuit boards . Each PCB consists of a board and a
maximum of six components . Currently, two different types of boards and three types of
components are used in the model factory .

2 Modelling of an agent based control system for a model factory with the specification language x

1 .3.2 Operations
The model factory emulates operations which are performed on real PCBs during the
manufacturing process . The operations of the model factory have been derived from case
studies of real PCB manufacturing facilities . These operations are :
• screen printing : the bare PCB is positioned in the workstation, a PCB-specific screen is

selected and moved into position, and a squeegee is reciprocated horizontally over the
screen .

• component placement : the PCB is positioned in the workstation, and components are placed
on the positions according to the component-placement recipes for that product .

• reflow and cleaning : PCBs are passed through an oven and cleaning station
• test and repair: the PCB is inspected to see if it contains the components in the designated

position, and component and functional tests are performed. If the PCB fails, it must be
routed to an off-line diagnosis and repair workstation . Upon successful repair, the PCB is
routed back to the test station .

1 .3.3 Process Layout
In addition to the operations described above, the model factory contains some other features .
Raw material and components are automatically supplied from a centralised raw material store
and component store respectively. The model factory can support mixed model flow
production, where different types of products can be manufactured at the same time . The model
factory is designed for batch production, but the batch size can vary from batch to batch, as
well as product to product. The maximum batch size in the model factory is three .

~ L instore
rsfl o~s
clearing

--0 flow of products
flow of components

Figure 1 Primary process of the model factory

i I
tea

r"r

fi v
~ sWre

The process layout is depicted in Figure 1 . The operations are indicated by square boxes,
whereas stock points are indicated by triangles . The first stock point contains the two different
empty board types. All products pass the screen printer, but alternative routings are possible
between the two component placement stations . After the reflow and cleaning station, the
batches may be stored in the in-process-store which consists of three locations for three
products each . Here, a batch can be split or concatenated with other batches. Then, products are
tested and - if necessary - repaired . In the test and repair cycle, a maximum of one batch can
reside in the buffer. Finally, nine individual products can be stored in the finished-product-
store .

An additional feature is a loop from the in-process-store to the screen printer . This loop is
necessary to manufacture PCBs that have components on both sides . These products have to
pass the process twice, since only one side can be finished in one pass . The buffer in this
second-side loop may contain only one batch (Timmermans, 1993a ; Timmermans, 1993b) .

Modelling of an agent based control system for a model factory with the specification language x 3

1 .4 Problem statement
Shop floor control architectures are studied within the department of Technology Management
at the Eindhoven University of Technology in the Netherlands . The model factory is owned by
the department, and is used as a test site for implementation and evaluation of various control
architectures .

The objective of this report is to present the design of an agent based control system for the
model factory, and to compare the characteristics of the agent based architecture with those of a
previously specified control architecture . The architecture is specified by means of x, since this
formalism is suitable for the specification of distributed control architectures . The agent based
design is subsequently compared to another heterarchical control system, which was previously
designed and implemented in the model factory .

1 .5 Evaluation criteria
The following criteria are used to evaluate the agent based control system :

• performance
• flexibility
• robustness

The performance concerns the (average) completion time of various samples of a large number
of jobs. The (structural) flexibility concerns the `ease' with which the control system can be
extended or modified, if a new workstation is added or changed . Robustness concerns the
ability to deal with disturbances . For the moment, the robustness of the control system has not
been evaluated by means of the x model .

4 Modelling of an agent based control system for a model factory with the specification language x

2. Global Modelling

In this chapter, the architecture of the agent based control system is outlined . The reasons for
choosing a push approach are explained, and the negotiation model and its accompanying
protocols are described. Finally, the modelling of a workstation and the transportation system
are briefly discussed .

2.1 Introduction
Although the model factory is a scale model, and the operations are fake, the control system is
still quite complex. In order to simplify the models, a few assumptions are adopted . Note that
these assumptions do not influence a comparison between the performances of the agent based
control system and other types of control systems :
• The production system is not subject to defects . The only breakdown the system could

handle is that of the component placers, but only one at the same time . In that case, all
operations could still be performed .

• The production system is capable of executing the operations as stated in the recipe for a
product type . In other words, the production system is able to produce the desired product .

• The production system receives orders from some planning system . A job order states how
the product should be manufactured . Issue of the board is the first step . The next step is
screen printing. Then, the recipe states which components have to be placed at the top side
of the board. Subsequently, reflow & cleaning takes place . The next step is either transport
of the board to the final product store or to screen printing for the second side . If the second
side is operated upon, the recipe indicates which components have to be placed . Also in the
second side loop, the board goes to the reflow & cleaning station, after which it goes to the
final product store .

Furthermore, the model factory has a few constraints :
• A workstation does not have an output buffer . The space between two workstations is

considered as the input buffer for the last workstation . The absence of an output buffer
implies that the boards processed by a workstation are moved to the input buffer of the next
workstation. This means that the next workstation has to be known before a workstation
starts processing a batch . Furthermore, the assumption is made that multiple batches may
reside in an input buffer; the workstation is intelligent enough to make a distinction .

• There are only two kinds of product carriers, i .e. two types of boards, and three types of
components . Only the difference in the type of components is taken into account ; the
difference in type of boards is disregarded .

• The workstations are capable of executing only one type of operation . Placing green, red, or
yellow components is one type of operation . Component placement may vary in the number
and position of the components to be placed .

2.2 System Boundaries
Figure 2 presents the system to be modelled . It is the part of the model factory from the Raw
Material Store to the Final Product Store, the loop for second side printed circuit boards, and
the component delivery subline . The In-Process-Store is not used as such, and is therefore
disregarded, just like the Test & Repair loop .

Modelling of an agent based control system for a model factory with the specification language x 5

j aorrpor~ert oorrponert n~lovs
material pdnter pacemert J ~ paccxrert 2 [deaing
stare ~

1 1
second side loop

7

-b flow of products
---o, flow of components

Figure 2 Part of the model factory to be modelled

V
flrished

pmdxt starE

Every workstation consists of a part that is responsible for communication and negotiation on
behalf of the workstation . Figure 3 shows that agents are connected by means of a network that
is used for message exchange . Compared to direct channels between every pair of workstations,
the network significantly reduces the number of channels (Coenen, 1995) .

The workstations negotiate among each other about the execution of the jobs . Batches/jobs are
passive entities flowing through the system . They do not have agent-like capabilities, and
therefore are incapable of negotiation . This choice is made in particular because x assumes
fixed communication channels, so components such as job agents can not be created and
deleted, but have to exist permanently . However, since the number of jobs simultaneously
being operated upon cannot exceed a certain maximum, some tricks might get around this
restriction (see e .g. (Coenen, 1995)) .

The interface between the information flow and the material flow takes place via the physical
parts of the workstations . They receive and send messages from/to the machine controllers and
they receive and send batches from/to the conveyors . The physical parts of the workstations are
interconnected by means of conveyors. These conveyors do not have the capabilities of an
agent .

2.3 Control Strategy

2.3.1 Push Strategy
Batches can be pushed through or pulled out of the factory . With a pull-approach, a planning is
made in advance. The last station in the line, in casu the Final Product Store, is requested to
deliver a batch of finished products at a certain due date . Then, the last station requests the
appropriate batch from its preceding station, which - at its turn - asks for semi-finished batches
to its predecessors, and so on . When a complete planning is made, the order is released and
production starts . For an example of such a system, the reader is referred to (Wiendahl and
Ahrens, 1995) .

In this report, an opportunistic push-approach is chosen . With a push-strategy, the job is
brought into the system at the first point of the line, namely the raw material store .

Figure 3 Agents connected by a network

6 Modelling of an agent based control system for a model factory with the specification language x -

Subsequently, the job finds its way through the system . However, in the model factory a
convergent material flow is present at the component placement stations ; both the boards and
the components lead to these assembly stations . In general, since operations are not planned
before job dispatch, stock points should be created in order to decouple the main stream from
the branches . These buffers can be replenished by means of a pull approach and simple
inventory control heuristics . Just in front of the model factory's component placement stations,
small buffers are located in which two component trays, each containing four components, are
stored. If the first tray in a buffer is out of components, a new tray is ordered from the central
component store . Upon arrival of the new tray with components at the buffer, the empty tray is
removed. In the x model, however, only one buffer for component trays is modelled . New
components are ordered when the number of present components is not sufficient to fulfil a job .

The main advantage of an opportunistic dispatch method is that decisions concerning the
distribution of work on the shop floor are based on the prevailing system status rather than on
some projection of that status (as would be the case with a pull approach) . Disadvantages
include the fact that opportunistic schedulers are myopic, that they may ignore interactions with
other components, and that they may only handle priorities in a rather cumbersome way (Upton
et al., 1991). Advantages and disadvantages of both approaches are displayed in Table I .

Table I Advantages and disadvantages of the push and pull approaches

Advantages Disadvantages
Push • Robust, capable of dealing with • Less suitable for convergent

disturbances material flows
• Opportunistic behaviour, routing • Only short-term vision, possibly

flexibility myopic
Pull • Suitable for convergent material • Excessive planning needed,

flows possibly myopic
• Plans in the future • More sensitive to disturbances

2.3.2 Negotiation
The agent based control system is based on negotiations between entities, in casu the
workstations, in order to coordinate the activities of the physical manufacturing system . The
workstations are supplied with agents that represent the workstations in the negotiation model .
The objective of an agent is to negotiate about the operations of a job in order to execute these
operations. The workstation agents offer other agents tasks to perform an operation consisting
of one or more process steps . Workstations that are capable of execution of the operation reply
with a bid that contains the point of time at which the operation could be finished . The
workstation agent that could finish the process step first is awarded with the job .

2.3.3 Negotiation protocol
As stated above, workstation agents negotiate with each other . A protocol is needed to
coordinate and control these negotiations . The point of departure is that agents only have
information at their disposal about the workstations they represent ; they have no information
about other workstations . A workstation agent has access to the following data that is relevant
to the negotiation model :

• the process steps a workstation has to perform ; this information is passed from one agent to
the other as a batch flows from one workstation to the other ;

Modelling of an agent based control system for a model factory with the specification language x 7

• the physical possibilities of the workstation, namely the operations a workstation is able to
perform, and the operation times ;

• the components available to the workstation, and their replenishment times ;
• the up to date schedule for the workstation .

The workstation agent that is about to execute an operation searches a workstation for
execution of the next operation . After all, a workstation does not have an output buffer, and it
has to put processed boards in the input buffer of the next workstation . All operations together
form the job . An operation might consist of multiple process steps that are all of the same type
of operation . A workstation might execute all process steps in an operation, or it might
distribute execution of the process steps among itself and another workstation . This is called
`subcontracting', and is obviously only possible if an operation contains multiple process steps .

A workstation agent sends a task announcement for the next operation of the job that is about to
be executed by the workstation . This task announcement is sent to all workstation agents
connected to the network, a so-called `broadcast' . Note that a broadcast to all workstation
agents is needed since an agent does not have any information about other workstations in the
system. A workstation agent that receives a task announcement only replies with a bid if the
operation can be performed at that workstation . The message saying that a workstation cannot
perform an operation would only cause more communication via the network, and is not sent .
After a certain period of time, the agent that sent the task announcement chooses the best bid
that has been received up to that moment. The time limit is needed because a workstation agent
cannot know how many agents will react on a task announcement. Another option would be to
choose the agent that has sent the first incoming bid . It is clear that this might cause a
suboptimal overall system performance . Due to the assumption that the production system is
capable of executing the process steps of a job, an agent that sent a task announcement will
always receive at least one bid . After a bid has been selected, a task offer is sent to the
workstation agent with the best bid .

However, subcontracting causes some exceptional situations . A workstation agent expects task
announcements to perform operations . An announcement is replied with a bid if the
workstation is able to perform the operation . If the operation consists of multiple process steps,
the agent sends a subcontracting task announcement by means of a broadcast throughout the
network. The subcontracting task announcement is meant for all combinations of half or less of
the total number of process steps to be contracted . A main contractor never performs less
process steps than a subcontractor . A possible subcontractor cannot try to subcontract the
subcontracted process steps again . The agent receives one or more subcontracting bids . The
workstation agent combines the best subcontract bid (to be executed by another agent) with the
accompanying main contract (to be executed by the agent itself) . The agent compares this bid
containing subcontracting with the bid where it performs all process steps itself . The best bid is
sent to the workstation agent that broadcasted the task announcement . Task offers are only sent
to main contractors . So, if a task offer is received for a bid with subcontracting, the main
contractor notifies the subcontractor with a subcontracting task offer .

Summarised the protocol is as follows :

1. Before a workstation agent A performs an operation on a job, it checks whether the
workstation for the next operation is already determined due to subcontracting .
a. In case the next operation has not been fixed yet, agent A broadcasts a task

announcement for the next operation to all other agents .
If a workstation agent B is able to perform the (next) operation, it might do the
following actions, depending on the number of process steps in the operation .

8 Modelling of an agent based control system for a model factory with the specification language x

If the operation contains multiple process steps, agent B broadcasts a subcontracting
task announcement .
Other agents that are able to perform the subcontracting process steps reply with a
subcontracting bid .
Agent B selects the agent with the best subcontracting bid, and drafts a bid with
subcontracting that might be sent to agent A .

Agent B chooses the best possible bid (with or without subcontracting) and sends it to
agent A .
After a certain period is expired, agent A determines which agent will perform the next
operation, and sends a task offer to that agent .

b. In case the next process steps are already determined by subcontracting, no special
actions are taken .

2. Agent A starts its own operation .
3. When agent A is finished with its operation, it sends the batch and accompanying job

information to the next workstation .

subcontracting

Figure 4 Negotiation protocol

Figure 4 shows the negotiation protocol applied by the workstation agents . Compared to the
original version, the Contract Net Protocol (Smith, 1980), the task offer acceptance is omitted
and subcontracting is added .

2.4 Workstations
Workstations perform operations of one or more process steps on batches . A batch consists of
at most three boards ; the maximum batch size is three . There is one, generic model of a
workstation . The only differences among workstations are their capabilities, their operation
times, possible component supply and its duration, and their place in the manufacturing system
represented by the physical part of the workstation . The processing of an operation is modelled
by waiting a certain time period .

2 .5 Transportation System
A transportation system connects the workstations to each other . This system consists of
conveyor belts that allow multiple batches to be simultaneously transported . The transportation
duration from one workstation to another is proportional to the distance between the two
workstations, i .e. proportional to the absolute difference between the two workstation
identification numbers . Conveyor belts (except the component conveyors) do not allow queuing
of batches; only one batch can be present at the same time .

Modelling of an agent based control system for a model factory with the specification language x 9

2.6 Some Specific Problems and Their Solutions
Due to the peculiarities of the model factory and the negotiation protocol, some difficulties
might occur for which a solution has to be designed. In this section, some of these
problematical situations and their specific solutions are discussed . Concrete examples are given
for the specific configuration of the model factory .

Situation 1 : jobs overtaking older jobs

scP F -4 , » } min S> >
CP1
CP2
RCL 1.4 1 ›l

Figure 5 Jobs overtaking older jobs

In Figure 5, job 2 overtakes job 1 at the Reflow & Cleaning station . Before CPI starts
processing, it broadcasts a task announcement . With the job information in the task
announcement (process steps, batch size, and first possible start time), RCL should be able to
schedule this job before the earlier planned job 1 . A function PLANNING in the Database
makes this possible.

Situation 2 : jobs waiting for processing capacity

SCP
1 .4 5

_
1

CP1
1,4 9 00114 . .

.2

CP2 -i~ 1
o!

RCL 1,41 1101 .4 2 om!

Figure 6 Jobs waiting for processing capacity

In Figure 6, job 2 has to wait in workstation CP1 until RCL has finished processing job 1, and
is ready to receive job 2 . After all, CP1 does not have an output buffer, and it is therefore not
able to process a next job. The dashed line represents a waiting job . Before CP1 starts
processing, this station broadcasts a task announcement . RCL checks its planning and
`provisionally plans' job 2 after job 1 . Note that jobs are only (firm) planned when task offers
are received. RCL issues a bid in which it states the planned end time for job 2 . This is the
criterion for CPI to select the next workstation . However, besides the planned end time, RCL
should also return the planned start time . CPI will not select a workstation with this data, but it
will update its own schedule with it (corrected for transportation times) . After all, job 2 will
stay in CP1 until RCL can receive it . Jobs are sent from one station to the other on the basis of
the (updated) planning .

An additional measure would be to `physically lock' stations when a batch is present, i .e. the
incoming physical channels of a workstation, as represented in Figure 20, would not be ready
to receive a new batch if a batch is already present . However, this measure would not suffice
because of the second side loop (see situation 4) .

Another additional feature would be to make planning more intelligent . For example, at the
moment RCL receives a task announcement for job 2, it has already planned job 1 . In the

10 Modelling of an agent based control system for a model factory with the specification language x

current situation, it will plan job 2 after job 1 . If it had more intelligence, it would plan job 2
before job 1, so that job 1 has to wait in CP2 . Overall performance would be improved, but
RCL has to send a message to CP2 saying that job I has to wait. However, a choice has been
made for fixed schedules, unless jobs have priority (see situation 4) .

Situation 3: obsolete schedules

SCP 3~-
1 00 1, B> l -4CP1 --- -- . .2 .- ---

CP2

RCL

Figure 7 Obsolete schedules

In Figure 7, a problematic situation is outlined at the moment SCP received job 3 . At that
moment, SCP broadcasts a task announcement for job 3 . CPl has to offer a bid for that task
announcement. At the same moment, CPI broadcasts a task announcement for job 2 . Before
CP1 can send a valid bid to SCP for job 3, it has to receive a bid from RCL for job 2, and it has
to update its schedule based on the accepted bid of RCL . Because of the absence of queues,
batches have to reside in a workstation until the next workstation is ready to receive them .
Therefore, it will frequently occur that two batches move from one workstation to the other at
the same time . The model cannot guarantee that a workstation (here : CPl) receives bids, selects
the best bid, and updates its schedule before it itself sends a bid .

A possible solution for this problem is as follows . When the task announcement for job 3
arrives, CPI knows it is about to broadcast (or has just broadcasted) a task announcement for
job 2. After all, CPI's database has recorded that a new batch should arrive at the same
moment. Therefore, CP1 issues a bid with reservation . The Screen Printer will receive two
bids: one with reservation from CP1 and one from CP2. SCP waits until CPI sends its definite
bid, i .e . a bid without reservation . In the meantime, SCP allegedly starts processing the batch,
since the processing time of a board is much larger than the time needed to determine the next
workstation . In the x model, SCP starts processing when it sends a task offer ; during the
negotiation process, the physical part of the workstation is idle .

However, another solution has been chosen : instead of sending bids with reservation, a
workstation sends an invalid bid. In Figure 7, CP1 issues an invalid bid for job 3 . The Screen
Printer will receive two bids: an valid one from CP2 and an invalid one from CPL SCP knows
its task announcement procedure was not correct, and it waits a small period of time . Then, it
tries the whole task announcement procedure again, hoping that it will receive only valid bids
this time. Indeed, if CPI has updated its schedule while SCP was waiting to send the task
announcement for job 3 for the second time, SCP will receive valid bids .

Situation 4: obsolete schedules and the second side loop

SGP 1 mie 1 1» ! .ei§ 9 »wf 21 44 1 1> 1~ 3 9

CPi 2
CP2

RCL 1,4 1 ~ 1 -0 5> 0 .1

Figure 8 Obsolete schedules and the second side loop

Modelling of an agent based control system for a model factory with the specification language x 11

In Figure 8, a similar situation as in Figure 7 is given, but CP2 is left out of consideration for
the sake of discussion . Job 2 has to return to the Screen Printer via the second side loop . In this
situation, all workstations are waiting for each other . When RCL receives job 2, it broadcasts a
task announcement for this job . At the same time, SCP and CP1 broadcast task announcements
for job 4 and 3 respectively . All three stations have to send bids on the basis of incomplete
schedules . With the solution as outlined above, the three stations would be waiting for valid
bids for ever. Note that if job 2 would not return to the Screen Printer via the second side loop,
RCL would receive a valid bid (from the Final Product Store), and there would be no problem .

The best solution would be as follows . It is clear that the bottleneck, or rather the `largest' job,
i .e. the most time consuming job, determines the moment at which the whole system could
perform its next `rotation' . In this case, the largest job is job 2 at RCL. When job 2 would be
finished, RCL could receive job 3, CPI could receive job 4, and SCP could receive job 2 . A
hierarchical controller overlooking all stations could easily determine the bottleneck and
inform the workstations about it . However, this would violate the agents principle . Another
solution would be to have the individual workstations determine suqh a situation by
themselves, and have them determine the bottleneck . This would call for a (very) complicated
solution and a lot of message exchange between agents to find the solution .

Therefore, the following solution is chosen : priority is given to the second side loop . This
means that if a station (here: SCP) receives a task announcement from a station farther down
the line (here : RCL), it gives priority to this job . SCP `preliminarily plans' job 2 as indicated in
Figure 8, and sends a valid bid to RCL . This allows RCL to send a valid bid to CP1, and so on .

This solution would work optimally if Reflow & Cleaning would be the bottleneck . However,
consider the situation in Figure 9 where job 3 at CP1 is the bottleneck . Based on the algorithms
as described above, the Screen Printer would receive job 2 while job 4 would still be present
and waiting for CPL Therefore, when SCP receives a bid from CP1 and updates its planning
for job 4, it will notice a collision with the earlier planned job 2 . If stations would be
`physically locked' when batches were present, there would be no problem . However, then also
batches could not be physically sent to another station for the same deadlock reason . Another
solution would be to assume that Reflow & Cleaning is always the bottleneck . However,
especially due to large varieties in batch sizes, this is most unrealistic .

SCP 9».12 !mg li»!~ 3

00 1 gil `1 M»i 7 CP1 2 0» g

CP2

RCL

Figure 9 Another bottleneck

The solution chosen is to have SCP inform RCL that job 2 has to wait at RCL until SCP can
send job 4 to CPL This would make RCL update its planning; possibly, RCL would have to
inform other workstations about its updated planning, and so forth . It is a 'message-intensive'
solution, but the only right one .

12 Modelling of an agent based control system for a model factory with the specification language x

3. Detailed Modelling

In this chapter, the architecture as outlined in the previous chapter, is elaborated upon and
specified in the formalism x. The x code is given with minimal error detection provisions and
output messages .

3.1 Naming
The names of the various processes are dither written with a capital for the first letter, or are
abbreviated to three capitals. The names of the communication channels are composed of the
three-letter names of the sending process, followed by the names of the receiving process,
written in lowercase . If a process has multiple channels with the same name, then the channels
are indexed . Data types start with a capital `T', followed by a name that indicates the type .
Lists start with a lowercase `x' .

3.2 Data Types
The data types that are used in the specification of the agent based control architecture for the
model factory are enumerated below :

• The agents in the production system are uniquely identified . The type of this
identification is :

Tid = nat

The agents communicate with each other by sending messages via a network. The
address of an agent is identical to its identification . A message sent to address 0 has to
be sent to all agents (broadcast), except to the sender itself . Workstations are identified
as in Table II .

Table II Unique identification of workstations

Workstation Identification
broadcast 0
Generator GEN 1
Raw Material Store RMS 2
Screen Printer SCP 3
Component Placement I (CPI) 4
Component Placement 2 (CP2 5
Reflow & Cleaning (RCL 6
Final Product Store FPS 7
Component Store (COS) 8

• Agents negotiate with each other via a network . Negotiations take place by means of
message exchange. The data in a message concerns amongst others the address of
origin, the target address, and the type of message . The address of origin is the agent
that sends the message . The target address is the identification of the agent to which the

Modelling of an agent based control system for a model factory with the specification language x 13

message has to be sent. A workstation needs to know the type of message in order to
react adequately . Instead, different channels for different message types could be used,
which would result in a tremendous amount of channels between workstations . The
data type of the message type is :

Ttype = nat

All message types are given in Table III .

Table III Message types

Nr Message type From an agent's To other agents'
1 task announcement Sender Request Handler
2 bid without subcontracting Request Handler Sender
3 bid with subcontracting Request Handler Sender
4 task offer without subcontracting Sender Request Handler
5 task offer with subcontracting Sender Subcontractor
6 subcontracting task announcement Subcontractor Request Handler
7 subcontracting bid Request Handler Subcontractor
8 subcontracting task offer Subcontractor Request Handler
9 job information Controller Controller
10 component order Database -
11 planning change Database Database
12 invalid bid without subcontracting Request Handler Sender
13 invalid bid with subcontracting Request Handler Sender
14 invalid subcontracting bid I Request Handler Subcontractor
15 finished job Controller -

• Workstations negotiate with each other about the process steps that have to be carried
out. At a certain moment in time, messages about a certain job are only about one
operation of that job ; it is not possible to negotiate about a certain operation, while
messages about previous operations of the same job are still being sent via the network .
Note that at the same time, messages may be sent about different process steps of one
and only one operation . Each job is uniquely identified by a job number and an
identification for possible subcontracting. These data types are respectively :

Tjob = int

Tsubjob = int

• The next variable in Tmessage is used for the first agent in the line that should receive
the physical batch : either the main contractor or the subcontractor . An agent that sends
a task announcement does not need to know whether bids contain subcontracting orr
not. However, it needs to know to which workstation it has to send the batch, when the
agent is finished with its job . Similarly, in case a main contractor sends subcontracting
task announcements, it needs to inform possible subcontractors if the batch will come
from the main contractor or from the agent that sent the original task announcement .
Therefore, Tid is used for the (first) agent that should receive / send the batch .

14 Modelling of an agent based control system for a model factory with the specification language x

• Besides a job number, a job consists of a batch size and process steps . Batches contain
one, two, or three products . The type of the batch size is :

Tbatchsize = int

A job consists of multiple lines that each represent one process step . Every line
contains the sequence number of the process step, the type of operation that has to be
carried out, and the number of the workstation that should perform the operation . This
last attribute is not used in the agent based control system, but it is used in an
experiment with a control system without negotiation (see next chapter). Note that
there might be several process steps with the same sequence number, e .g. for placing
yellow and green components . The type of a process step is :

Tprocstep = < Tseqnr # Top # Tinfo > = < int # int # int >

All possible operations, Top, are listed in Table IV . The last column shows the
workstations that are able to perform the operation types (see also Table V) .

Table IV Possible operations

To Operation t Workstations
1 board dispatching RMS
2 screen printing SCP
3 placing yellow components CP1, CP2
4 placing ed components CP I, CP2
5 placing green components CPl, CP2
6 reflow & cleaning RCL

• A message might contain zero, one, or two points of time . For a task announcement, a
message contains the moment at which the current operation is finished, and the next
operation could start. For a bid, a message contains the points of time at which the
execution of the operation will start and will be finished . The latter is the criterion on
which the selection of bids is based . For a task offer, both time points are given . In
other messages, such as job information messages (type 9), no time points are given .

Tvalue = real

• The type of (network) messages is :

Tmessage = < Tid # Tid # Ttype # Tjob # Tsubjob # Tid # Thatchsize #
<Tseqnr # Top # Tinfo>* # Tvalue # Tvalue>

The first Tid is the address of origin, the second is the target address, and the third is
the address of either the previous or next agent . The third Tid is used to indicate the
workstation from which a batch will be received or to which a batch will be sent .

• Components are identified at the same manner as their corresponding placement
operations. The components 3, 4, and 5 are related to the operations 3, 4, and 5 .

• A workstation has information about its own capabilities, operation times and the
delivery duration of its components, if applicable . These are recorded in a list of
records with the following type :

Modelling of an agent based control system for a model factory with the specification language x 15

Topdata = <Top # real # real>

Table V Operation times and component delivery duration (xop)

Work-
station

Type of operation (text) Type of
operation
(number)

Variable
operation time

per board

Component
delivery
duration

RMS board dispatching 1 10
SCP screen printing 2 20 -
CP1 placing yellow components 3 20 5

placing ed components 4 20 5
, _placing green components 5 20 5

CP2 placing yellow components 3 20 5
placing red components 4 20 5
lacin reen components 5 20 5

RCL reflow & cleaning 6 20 -
FPS final product store 7 60 -

• In order to negotiate about subcontracting, sets of process steps with the same sequence
number are split, which results in tasks to be carried out by the main contractor and the
subcontractor. The type of a task is as follows :

Ttask = <Tjob # Tsubjob # Tprocstep* # Tprocstep* # Tvalue # Tvalue>
= <Tjob # Tsubjob # < Tseqnr # Top # Tinfo >* # < Tseqnr # Top # Tinfo>* #
Tvalue # Tvalue >

All types discussed above and remaining types are :

• Tid = nat
• Ttype = nat
• Tjob = int
• Tsubjob = int
• Tbatchsize = int
• Tseqnr = int
• Top = int
• Tinfo = int
• Tprocstep = <Tseqnr # Top # Tinfo>
• Tvalue = real
• Tmessage = <Tid # Tid # Ttype # Tjob # Tsubjob # Tid # Tbatchsize # <Tseqnr # Top

Tinfo>* # Tvalue # Tvalue>
• Tplan = <Tjob # real # real # real # Tid # Tbatchsize # < Tseqnr # Top # Tinfo>*>,
• Tcompstock = <int # int>
• Ttask = <Tjob # Tsubjob # Tprocstep* # Tprocstep* # Tvalue # Tvalue>
• Topdata = <Top # real # real>
• Trequest = <Tjob # Tid # Thatchsize # < Tseqnr # Top # Tinfo>* # Tvalue>
• Treply = <Tjob # Tvalue # Tvalue # Tid>
• Tdestin = Tid
• Tbatch = Tjob
• Ttaskoff = Tmessage

16 Modelling of an agent based control system for a model factory with the specification language x

3.3 Generator (GEN)
Function
The function of the Generator is to send jobs into the system . Jobs are either retrieved from a
data file or automatically generated . The Generator connects with the workstation agents via
the Switch Element . There is little communication between the Generator and the agents .
Because of this, and due to the behaviour of the Generator, it does not need a Network
Interface, which acts as a buffer between the Switch Element and agents . However, a design
decision is made to connect the Generator, the Component Store, and all workstation agents to
the network by means of Network Interfaces (see Section 3 .4) .

Figure 10 Generator
Interface
gennin : task announcement, or task offer to the Raw Material Store
ningen : bid from the Raw Material Store to the Generator
genmacrms : physical batch from the Generator to the physical part of the Raw Material Store

Behaviour
(1) Firstly, the Generator is initialised . Jobs might either be read from a data file or are
generated automatically . The total number of jobs is requested from the user or the data file . As
long as the total number of jobs has not been sent into the system, the Generator will be
generating .

(2) If a message is received from the Switch Element, the Generator performs one of the
following actions :
• In case a bid with or without subcontracting (m.2 = 2 or m.2 = 3) is received, the time that

determines the moment at which the next job is sent is updated with the first possible start
time minus the distance between the Generator and the next workstation, the Raw Material
Store (m.8 - 5) . The Generator sends a task offer to the agent that sent the bid, the Raw
Material Store . Note that the Generator knows its next station is the Raw Material Store . All
other stations do not have this kind of knowledge . Obviously, this could easily be changed
by equipping the Generator with Sender-like capabilities . The variable sendnextjob becomes
true; the Generator is able to send the job since a task offer has been sent .

• In case a planning change message (m.2 = 11) is received, the variable timersend is updated
with the value of the first possible start time (m.8) . Note that in planning change messages,

Modelling of an agent based control system for a model factory with the specification language x 17

the first possible start time is updated for the transportation time . In fact, m.8 is not the first
possible start time for the next agent, but the first possible `finish time' for the Generator .

• In case the message is an invalid (subcontracting) bid (m.2 = 12 or m.2 = 13), the Generator
makes the necessary preparations to send the previous task announcement again .

• In case the message is a job finish message (m.2 = 15), the variable nrinsystem is decreased .
If the maximum number of jobs in the system was reached and thus the variable waiting was
set, the variables waiting, generatenextjob, and timergenerate are reset . A new job will be
generated as soon as possible (timergenerate := time) .

(3) If a job is allowed to enter the system (sendnextjob is true and delta (timersend - time)
equals zero), the Generator sends the job information and the batch (nr) to the Raw Material
Store . The job sequence number and the total number of batches in the system are updated . In
case the number of jobs in the system is lower than the maximum number that is allowed, the
next job can be immediately generated (generatenextjob : = true; timergenerate := time) . If the
system is maximally loaded, the next job cannot be generated yet, and the Generator waits for a
`finished job' message (waiting : = true).

(4) If the next job is allowed to be generated (generatenextjob is true, the maximum number of
generated jobs has not been reached yet, and delta (timergenerate - time) equals zero), the
Generator either reads the next job from a data file or generates it automatically, depending on
the variable data . Note that in case jobs are automatically generated, the probability of having a
second side loop is determined by the variable probsec . After the job is read or generated, the
Generator sets the parameters to send the new task announcement .

(5) If the next task announcement may be generated (sendnewtaskann is true and delta
(sendnewttasktimer - time) equals zero), the Generator sends a task announcement to the Raw
Material Store

Code
proc GEN (id : Tid, t : real, maxnr : nat,

gensel : ! Tmessage, selgen : ? Tmessage,
J [ps : Tprocstep,

xps : Tprocstep*,
total, nr2,
bs : int,
nrjobs,
seq, op, info, nr,
batchesfinished,
nrinsystem : int,
data : nat,
d :-> int,
f :-> real,
prob2 : real,
iat :-> real,
sendnewtasktimer,
timersend,
timergenerate :
probsec : real,

real,

sendnewtaskann,
sendnextjob: bool,
generatenextjob: bool,
waiting : bool,

process step
list of process
total number of
batch size
nr of jobs

genmacrms : ! Tbatch, lambda: real) =

steps
components, total second loop

sequence nr, operation, info,
number of batches finished
number of jobs in the system

nr

data file (1) or automatic generation
distribution of a random number

m : Tmessage -- message
I nr := 1 ; nrinsystem := 0 ; iat := nex(lambda) ; probsec := 0 .20 ;
timergenerate := 10 ; sendnextjob := false; generatenextjob := true ;
sendnewtaskann := false ; waiting := false; batchesfinished := 0 ;
!"Maximum number of jobs in the system ", maxnr,nl() ;
!"Jobs in data file (1) or automatically generated (2)??
! "Number of jobs = ; ? nrjobs ; ! nl() ;
*[selgen ? m ->

[m .2

I m .2

= 2 or m.2 = 3 ->
timersend := m.8 - 5 ;
gensel ! <id, 2, 4, nr,
sendnextjob := true ;

= 11 ->
timersend := m .8

? data ;

probability distribution second side loop
sample probability second side loop
inter arrival time distribution
point of time at which a task announcemnt should be sent
point of time at which the next job should be sent
point of time at which the next job should be generated
probability second side loop
should a task announcement be sent?
is next job ready to be sent?
can the next job be generated?
GEN is waiting for a job to be finished
in order to generate the next job

(2)

(type 15)

of jobs

(1)

(2)

0, id, bs, [hd(xps)], m .8, m .9> ;

18, Modelling of an agent based control system for a model factory with the specification language x

m.2 = 12 or m .2 = 13 ->
sendnewtaskann := true ;
sendnewtasktimer := time + 2 * t ;

m.2 = 15 ->
nrinsystem := nrinsystem - 1 ;
!time, " GEN, Job ,m .3," is finished! !",nl() ;
batchesfinished := batchesfinished +1 ;
!time, " GEN, ",batchesfinished," batches are finished",nl() ;
[waiting ->

waiting := false ;
generatenextjob := true; timergenerate := time

~ not waiting ->
skip

l
l

sendnextjob ; delta (timersend -
sendnextjob := false ;
gensel !<id, 2, 9, nr, 0,
genmacrms ! nr ;
nr := nr + 1 ;

I

[] ; op := 0 ;
= 1 ->
? bs ;
* [op /= 7 ->

nrinsystem := nrinsystem + 1 ;
(nrinsystem <= maxnr - 1 ->

generatenextjob := true ;
~ nrinsystem = maxnr ->

generatenextjob := false ;
1

I generatenextjob and nr <= nrjobs ;
generatenextjob := false ;
xps :_
[data

I data

++

d := dun (l,total) ; nr2 := sample d ;

[Psl ;

I sendnewtaskann ; delta (sendnewtasktimer - time) -> (5)

time) ->

0, bs, xps, 0, 0> ;

timergenerate := time

waiting := true

(3)

delta (timergenerate - time) -> (4)

? seq; ? op ; ? info ;
ps :_ <seq, op, info> ;
xps := xps ++ [Ps]

1 ;
/= 1 ->
d := dun (1,4) ; bs := sample d ;
xps := xps ++ [<1,1,0>] ; xps := xps
d := dun (1,7) ; total := sample d ;
f := cun (0,1) ; prob2 := sample f ;
(prob2 < probsec and total >= 2 ->

[<4,6,0>] ;

[<2,2,0>l ;

xps := xps ++ [<5,7,0>] ;
~ nr2 /= 0 ->

xps := xps ++ [<5,2,0>] ;
*[nr2 > 0 ->

d := dun (3,6) ; op := sample d ;
ps :_ <6, op, info> ; xps := xps ++
info := info + 1 ; nr2 := nr2 - 1 ;

] ;
xps := xps ++ [<7,6,0>] ;
xps := xps ++ [<8,7,0>]

]

] ;
xps := xps ++
[nr2 = 0 ->

~ prob2 >= probsec or total < 2->
nr2 := 0

info := 1 ;
*[total - nr2 > 0 ->

d := dun (3,6) ; op := sample d ;
ps := <3, op, info> ; xps := xps ++
info := info + 1 ; total := total -

] ;
sendnewtaskann : = true ; sendnewtasktimer := time ;

sendnewtaskann := false ;
gensel ! <id, 2, 1, nr, 0, id, bs, [hd(xps)], time, 0> ;

Modelling of an agent based control system for a model factory with the specification language x 19

3.4 Network
The network connects the workstation agents, the Generator, and the Component Store . Via a
Network Interface, these processes are connected to the Switch Element of the network .
Although a Network Interface is a generic part of a workstation agent, i .e. each workstation
agent consists of a Network Interface, the Network Interface is described in this section, also
because the Generator and the Component Store have a Network Interface as well .

3.4.1 Network Interface (NIN)
Function
For a connected agent, the Network Interface arranges the message reception from and
transmission to other agents . It decouples the agents from the Switch Element and vice versa .
This way, deadlocks are avoided where the Switch Element and (the Controller of) an agent are
waiting for each other.

Figure 11 Network Interface

Interface
selnin : various types of messages from the Switch Element
ninsel : various types of messages to the Switch Element
connin : various types of messages from an agent
nincon : various types of messages to an agent

Behaviour
A message received from the Switch Element is stored in a list selcon . A message received
from the connected workstation agent and to be sent to the Switch Element is given the id of
the sending agent and is subsequently stored in a list consel . As long as both lists are not
empty, their contents are sent to the Controller and the Switch Element respectively, and the
lists are updated .

Code
proc NIN (id : Tid,

selnin : ? Tmessage, ninsel : ! Tmessage,
connin : ? Tmessage, nincon : ! Tmessage) _

~[m : Tmessage, -- message
selcon, consel : Tmessage* -- lists of messages

20 Modelling of an agent based control system for a model factory with the specification language x

1 selcon :_ [] ;consel :_ [] ;
*[selnin ? m -> selcon := selcon ++ [m]

len (selcon) > 0 ; nincon ! hd(selcon) -> selcon := tl(selcon)
connin ? m -> m .0 := id; consel := consel ++ [m]
len, (consel) > 0 ; ninsel ! hd(consel) -> consel := tl(consel)

Modelling of an agent based control system for a model factory with the specification language x 21

3.4.2 Switch Element (SEL)
Function
The Switch Element makes the messages sent by the Network Interfaces arrive at their
destinations . The destination is part of the message itself . Every workstation is uniquely
identified by a number (see Table II) . The destination 0 is a broadcast throughout the network ;
every connected component receives the broadcasted message, except the Generator, the
Component Store, and the sender of the message . Note that the Component Store does not send
messages to other agents .

NIN NIN NIN NIN NIN NIN NIN NIN

GEN RMS SCP CP1 CP2 RCL FPS

Figure 12 Switch Element

Interface
ninsel(i) : message to the Switch Element from agent i (i = 1, 2, . ., 8 ; see Table II)
selnin(i) : message from the Switch Element to agent i (i = 1, 2, . ., 8 ; see Table II)

Behaviour
The variable address represents a list of possible addressees . If a message arrives via one of the
channels, the Switch Element checks whether it is a broadcast (m.1 = 0) . If it is, address is set
such that every applicable station except the sender will receive the message . Note that
address.0 is not used . If it is not a broadcast, address is set such that only the addressed station
will receive the message . Next, for every station is checked whether its corresponding value in
address is set. If so, the Switch Element sends the incoming message to (the Network Interface
of) that agent .

Code
proc SEL (ninsell, ninsel2, ninsel3, ninsel4, ninsel5,

selninl, selnin2, selnin3, selnin4, selnin5,

I [m : Tmessage,
origin, target : nat,
address : <bool # bool # bool #

I

ninsel6, ninsel7, ninsel8 :
? Tmessage,

selnin6, selnin7, selnin8 :
! Tmessage) =

-- sender, addressee
bool # bool # bool # bool # bool # bool>

list of possible addressees
address .0 is not used

false, false, false, false, false,
~ ninsel3 ? m I ninsel4 ? m ~
ninsel7 ? m I ninsel8 ? m] ;

COS

:=
J

I I

address <false, false, false,
*[[ninsell ? m ninsel2 ? m

ninsel5 ? m ninsel6 ? m
origin := m .0 ;
[m .l = 0 ->

address
address

(m .l /= 0 ->
target

lt
(address .l ->
[address .2 ->
[address .3 ->
[address .4 ->
(address .5 ->
(address .6 ->
[address .7 ->
[address .8 ->

22

false> ;

._ <false, false, true, true, true, true, true, true, false> ;
.origin := false

m .l ; address .target := true

selninl ! m
selnin2 .! m
selnin3 ! m
selnin4 ! m
selnin5 ! m
selnin6 ! m
selnin7 ! m
selnin8 ! m

not address .l
not address .2
not address .3
not address .4
not address .5
not address .6
not address .7
not address .8

-> skip] ; GEN
-> skip] ; -- RMS
-> skip] ; -- SCP
-> skip] ; -- CP1
-> skip] ; -- CP2
-> skip] ; -- RCL
-> skip] ; -- FPS
-> skip] ; COS

Modelling of an agent based control system for a model factory with the specification language x

)
address :_ < false, false, false, false, false, false, false, false, false >

Modelling of an agent based control system for a model factory with the specification language x 23

3.5 Workstation Agent
The processes that together constitute a workstation, their communication channels, and their
environment are represented in Figure 13 . The processes and their main tasks are :
• a controller (CON), which distributes messages within the workstation and to other agents ;
• a request handler (REQ), which prepares (subcontracting) bids ;
• a subcontractor (SUB), which prepares subcontracting task announcements and offers ;
• a sender (SEN), which prepares task announcements and task offers ;
• a database (DBS), which keeps track of the workstation status ;
• a machine controller (MAC), which controls the physical part of the workstation ;
• a network interface (NIN), which makes the connection to other agents ;
• (the physical part (PHY), which performs the operations) .

Note that the network interface is part of the (generic) workstation agent, whereas the physical
part (PHY) is not . The characteristics of the latter are obviously dependent on the workstation .

Figure 13 Structure of a workstation

24 Modelling of an agent based control system for a model factory with the specification language x

3.5.1 Controller (CON)
Function
The Controller is the coordinator of the various processes . It is also the interface of other
processes with the outside world . It stores vital information such as the next destination of the
batch in case of subcontracting .

Figure 14 Controller

Interface
connin : various types of messages to other agents
nincon : various types of messages from other agents
conreq :(subcontracting) task announcement, task offer without subcontracting, or

subcontracting task offer from another agent
reqcon (subcontracting) bid to another agent
consub : task offer with subcontracting, or subcontracting bid from another agent
subcon : subcontracting task announcement, or subcontracting task offer to other agents
condbsl : request for the planning of a newly arrived batch
dbsconl : planning of a batch
dbscon2 : order to the Component Store to replenish components
condbs2 : notification that operation on the present batch is finished
condbs3 : possible changes in the plan
consenl : message with information about the next operation
consen2 : bid from other agents
sencon : task announcement, or task offer to other agents
macconl : notification of arrived batch
conmacl : plan for process execution
maccon2 : notification of end of operation
conmac2 : destination for the current batch

Modelling of an agent based control system for a model factory with the specification language x 25

Behaviour
(la) If a message is received from another agent, the Controller forwards this message to
another process depending on the type of message :
• m.2 = 1 or m.2 = 6 : (subcontracting) task announcements are forwarded to the Request

Handler. In addition, the agent checks whether it is sending (outtaskann) or should be
sending a task announcement itself at the same moment . The agent should be sending a task
announcement if a new job should arrive (plan . l = time) and the destination of that job is
not determined by subcontracting (SELDEST(plan.0, xsubdest) = 0), and the agent is not the
last agent in the line (id /= laststation) .

• m.2 = 2: bids without subcontracting are forwarded to the Sender ;
• m.2 = 3 : bids with subcontracting are forwarded to the Sender ;
• m.2 = 4: task offers without subcontracting are forwarded to the Request Handler ;
• m.2 = 5: task offers with subcontracting are forwarded to the Subcontractor ;
• m.2 = 7 : subcontracting bids are forwarded to the Subcontractor ;
• m.2 = 8: subcontracting task offers are forwarded to the Request Handler . Since this agent is

offered a subcontracting task offer, it is a subcontractor. Depending on the position of the
main contractor, the Controller stores additional information . If the main contractor lies
after this agent (m.0 > id), this agent as the subcontractor will receive the batch first . When
this agent will be finished with its operation, it needs to send the batch to the main
contractor, and it does not need to send a task announcement . Therefore, it stores the id
(m.0) of the main contractor, for application afterwards .

• m.2 = 9: job information is not forwarded to other processes . Controllers of the agents
forward job information to each other . The job information contains the remaining
operations, including the one to be processed at this workstation . Therefore, the Controller
filters the next operation and the rest of the operations out of the job information . Later, a
message with information about the next operation might be sent to the Sender . Based on
the current operation's sequence number, operations are divided into current (ps.0 = seq),
next (ps.0 = seq + 1), and remaining operations (ps.0 > seq + 1) . Current operations are
disregarded, next operations are stored in a list xnext op, and remaining operations are
stored in a list xrest-ps . Note that the list xrest-ps contains all operations except the current
and the next one . In case the next destination is known because of subcontracting (nextdst
/= 0), the list of process steps does not need to be updated . After all, the next agent will
work with the same operation as the current one . If the next destination is not known
(nextdst = 0), the messages with the next and remaining operations are updated . Note that
the message with the remaining operations contains all operations except the current one .

• m.2 = 11 : changes in plans are forwarded to the Database . Based on this message, a plan is
created with which the Database might update the agent's schedule . For this, the Database
needs to know the first possible finish time, i .e . the first possible start time for the next
agent corrected for transportation (m.8) . The Database responds with a new (possibly
updated) schedule for the current job, which is subsequently sent to the Machine Controller .
Note that if a schedule update message is received, a batch is always present. The `next'
workstation sends this message if it updates the planning line of a batch, which is not in that
workstation yet . It sends the message to the workstation at which the batch is present at that
moment.

• m.2 = 12 : invalid bids without subcontracting are forwarded to the Sender . The Sender will
redo the task announcement procedure ;

• m.2 = 13 : invalid bids with subcontracting are forwarded to the Sender . The Sender will
redo the task announcement procedure ;

• m.2 = 14 : invalid subcontracting bids are forwarded to the Subcontractor . The Subcontractor
will send an invalid bid to the agent that sent the `original' task announcement .

26 Modelling of an agent based control system for a model factory with the specification language x

(2) If a task offer (with or without subcontracting) is received from the Sender (m.2 = 4 or m.2
= 5), the destination is set . The fact that a task offer is sent means that there is no outstanding
task announcement anymore(outtaskann :=false) and that the schedule of the agent might need
to be updated (condbs3 ! plan) . The schedule and the task offer are sent to the Machine
Controller and to another agent respectively . If a task announcement is received from the
Sender; the Controller sends it to other agents via the Network Interface .

(3) If a bid is received from the Request Handler, the Controller checks whether the bid is
valid . The bid is valid if it is not made up from invalid subcontracting parts (m .2 /= 12), and if
the outtaskann flag is not set . If the last condition is not fulfilled, the bid is still valid if the
agent lies before the agent that sent the task announcement (second-side loop) . Finally, the bid
is sent to another agent .

(4) If a component order is received from the Database, the Controller forwards it to the
Component Store .

(5) If a subcontracting task announcement (m.2 = 6) or task offer (m.2 = 8) is received from the
Subcontractor, the Controller forwards it to (an)other agent(s) . If it is a subcontracting task
offer, the Controller checks whether it needs to record the next destination . Since this agent
offers a subcontracting task offer, it is a main contractor . Depending on the position of the
subcontractor, the Controller stores the subcontractor's id. If the subcontractor lies after this
agent (m.l > id), this agent as the main contractor will receive the batch first . When this agent
will be finished with its operation, it needs to send the batch to the subcontractor, and it does
not need to send a task announcement. Therefore, it stores the id (m . 1) of the subcontractor, for
application afterwards .

(6) If the Machine Controller notifies that a batch is arrived (macconl ? batch), the Controller
forwards the number of the batch to the Database to obtain a schedule for the arrived batch .
After the plan is obtained, the destination is checked . If no destination has been determined yet
(destin = 0) and the workstation is not the last workstation in the factory (id /= laststation), the
next operation is forwarded to the Sender to make a new task announcement . Otherwise, the
plan is sent to the Machine Controller that starts the operation .

(7) If the Machine Controller notifies that it completed the operation (maccon2 ? batch), the
Controller forwards this information to the Database . The Database will update its schedule by
removing the planning line for the current operation . If necessary, the list of subcontracting
jobs is updated. The Final Product Store sends a`finished job' message to the Generator . If the
job is not yet finished (id /= laststation), the job information, i .e. a message with remaining
operations, is sent to the next agent. Finally, the Machine Controller is informed about the next
destination. This process will forward the next destination to the Physical System .

Code
proc CON (id: nat, laststation : Tid,

nincon : ? Tmessage, connin : ! Tmessage,
conreq: ! Tmessage, reqcon : ? Tmessage,
consub : ! Tmessage, subcon : ? Tmessage,
consenl, consen2 : ! Tmessage,
sencon : ? Tmessage,
conmacl : ! Tplan, conmac2 : ! Tdestin,
macconl, maccon2 : ? Tbatch,
condbsl : ! Tbatch, condbs2 : ! Tbatch, condbs3 : ! Tplan,
dbsconl : ? Tplan, dbscon2 : ? Tmessage, t : real) =

1 [batch : Tbatch, -- arrival of / start / end operation batch
plan : Tplan, -- planning*line
nextdst, destin: Tdestin, -- next destination
m, -- message
m_next op, -- message with next operation (process step(s))
m_rest_ps : Tmessage, -- message with remaining process steps
xm_next op, -- list of messages with next operation (process step(s))
xm_rest_ps : Tmessage*, -- list of messages with remaining process steps

Modelling of an agent based control system for a model factory with the specification language x 27

outtaskann : bool, -- outstanding task announcement?
seq: Tseqnr, sequence number
ps : Tprocstep, -- process step
xps , -- list of process steps
xnext op, -- next operation (= list of next process step(s))
xrest_ps : Tprocstep*, -- list of remaining process steps
xsubdest : <Tjob # Tdestin>*-- list of subcontract destinations

(xsubdest := [] ; xm_next op := [] ; xm_rest_ps := [] ; outtaskann
! time," CON",id," init", nl() ;

*[nincon ? m ->
[m.2

m .2
m .2
m .2
m . 2
m .2
m .2

-- (subcontracting) task announcement

dbsconl ? plan ;
outtaskann := (plan .l = time and id /= laststation and

SELDEST(plan .0, xsubdest) = 0)
~ outtaskann -> skip

I m .2

false ;

(1)
= 1 or m .2 = 6 ->
[not outtaskann ->

condbsl ! 0 ;

! m ;
consen2 ! m
consen2 ! m
conreq ! m
consub ! m
consub ! m

[m .0 > id ->
xsubdest :_

~ m .0 < id -> skip

conreq ! m
9 ->

bid without subcontracting
bid with subcontracting
task offer without subcontracting
task offer with subcontracting
subcontracting bid
subcontracting task offer

-- main contractor after this agent
xsubdest ++[<m.3, m.0>]

-- main contractor before this

-- job information
xps := m .7 ; ps := hd(xps) ;
xnext op :_ [] ; xrest_ps :_
seq := ps .0 ;
*[len(xps) > 0 ->

ps := hd(xps) ;
xps := tl(xps) ;

[] ;

[ps .0 = seq -> skip
~ ps .0 = seq + 1 ->

xnext_op := xnext op
~ ps .0 > seq + 1 ->

xrest_ps := xrest_ps
]

xps := xnext op ++ xrest_ps ;
m_rest_ps := m; m_next op := m ;
nextdst := SELDEST(m .3, xsubdest) ;

++ [Ps]

++ [ps]

[nextdst = 0 -> -- strip
m_rest_ps .7 := xps ;
m_next op .7 := xnext op ;

~ nextdst /= 0 -> skip --

I

receptstappen

subcontracted job

agent

xm_rest_ps := xm_rest_ps ++ [m_rest_ps] ;
mm-next op := xm_next op ++ [m_next op] ;

~ m .2 =,11 -> -- informs about changes in plans
plan :_ < m .3, 0, m .8, 0, 0, 0, m .7> ;
condbs3 ! plan ;
dbsconl ? plan ;
conmacl ! plan

~ m .2 = 12 -> consen2 ! m =- invalid bid without subcontr .
m .2 = 13 -> consen2 ! m - invalid bid with subcontracting
m .2 = 14 -> consub ! m - invalid subcontracting bid

]
sencon ? m -> (2)

[m .2

~ m.2

I reqcon ?

= 4 or m .2 = 5 ->
outtaskann := false ;
destin := m .5 ;
plan := <m .3, 0, m.8
m.5 := id ;
condbs3 ! plan ;
dbsconl ? plan ;
conmacl ! plan ;

= 1 -> skip

connin ! m
m ->
[m.2 = 12 -> skip
~ m.2 /= 12 ->

[outtaskann
[m.2

~ m.2

]

- TRANS(m .5,id), 0, 0, 0, m .7> ;

-- invalid bid (subcontracting part)

=2 or m .2 =3->
[id > m.l ->

m .2 := m .2 + 10 ;
~ id < m.l -> skip

1
= 7 ->
m .2 := 14 ;

(3)

28 Modelling of an agent based control system for a model factory with the specification language x

~ not outtaskann -> skip
]

1 ;
connin ! M

~ dbscon2 ? m ->
connin ! M ;

~ subcon ? M ->
[m.2 = 8 ->

[m .1 > id -> -- subcontractor after this agent
xsubdest := xsubdest ++[<m .3, m.1>]

~ m .1 < id -> skip -- subcontractor before this agent
]

~ m.2 = 6 -> skip

connin ! m
~ macconl ? batch ->

condbsl ! batch ;
dbsconl ? plan ;
destin := SELDEST(batch, xsubdest) ;
m_next op := hd(xm_next op) ; xm_next op := tl()m_next op) ;
[destin = 0 and id /= laststation ->

m_next op .8 := plan .2 ;
consenl ! m_next op

~ destin /= 0 or id = laststation -> -- FPS, end of operations
conmacl ! plan

l
~ maccon2 ? batch ->

condbs2 ! batch ;
m_rest_ps := hd(xm_rest_ps) ; xm_rest_ps := tl()am_rest_ps) ;
[len(xsubdest) > 0 ->

[batch = hd(xsubdest) .O -> xsubdest := tl(xsubdest)
~ batch /= hd(xsubdest) .0 -> skip
1

~ len(xsubdest) = 0 -> skip

[id = laststation ->
connin ! <id, 1, 15, batch, 0, 0, 4, [], 0, 0>

~ id /= laststation ->
m_rest_ps .0 := id ; m_rest_ps .1 := destin; m_rest_ps .2 :_
m_rest_ps .8 := 0 ; m_rest_ps .9 := 0 ;
connin ! m_rest_ps ;
conmac2 ! destin

(6)

(7)

9 ;

Modelling of an agent based control system for a model factory with the specification language x 29

3.5.2 Request Handler (REQ)
Function
The Request Handler handles (subcontracting) task announcements and (subcontracting) task
offers. The Request Handler makes bids for task announcements, and it forwards task offers to
the Database .

Figure 15 Request Handler

Interface
conreq :(subcontracting) task announcement, task offer without subcontracting, or

subcontracting task offer
reqcon : (subcontracting) bid
reqdbsl : request to calculate the start and end time for a (subcontracting) bid
dbsreq : reply with the start and the end time to prepare a (subcontracting) bid
reqdbs2 :(subcontracting) task offer to be incorporated in the schedule
reqsub : request to subcontract process steps
subreq : reply to prepare a bid with subcontracted process steps

Behaviour
(1) If a task announcement (m.2 = 1) is received from another agent, a bid is prepared ; a
request is sent to the Database to calculate when the operation (m .7) would be finished at this
agent, given the batch size (m.6), data needed to calculate the transport time (m.5), and the
finish time of the previous workstation (m .8) for that job (m.3) . If the reply from the Database
indicates that the agent is not capable of fulfilling the task announcement (reply .2 = 0), a bid is
not made. Otherwise (reply.2 /= 0), the addressee of this agent (bid.] := m.0) and the first
possible start and finish time (bid.8 and bid.9) for the bid are set. If the operation contains
several process steps (len(request.3) > 1), i .e. some process steps might be subcontracted, and
if subcontracting is allowed, the same request sent to the Database is forwarded to the

30 Modelling of an agent based control system for a model factory with the specification language x

Subcontractor. In case the operation contains only one process step (len(request.3) = 1) or
subcontracting is not allowed, the remaining information to complete a bid is set : the type
(bid.2 := 2), and the id of the agent that has to receive the batch (bid.5 := id) . The bid is sent to
the Controller by adding it to a list xm .

(2) If a task offer without subcontracting (m .2 = 4) is received, the task offer is forwarded to
the Database that incorporates the new task in the schedule .

(3) The procedure for a subcontracting task announcement (m .2 = 6) is almost similar to the
procedure for a regular task announcement (see (1)) . However, since subcontracting task
announcements cannot be subcontracted again, a prepared subcontracting bid is immediately
forwarded, i.e. added to list xm .

(4) If a subcontracting task offer (m.2 = 8) is received, it is forwarded to the Database that
incorporates the new task in the schedule .

(5) Process steps of a regular task announcement may be subcontracted (see (1)) . If a reply
from the Subcontractor is received, the Request Handler checks whether the reply was valid .
An invalid reply (reply.3 = 0) has two possible causes : either the Subcontracting received
invalid subcontracting bids because of outstanding task announcements (reply.0 = 0), or the
subcontracting and the main tasks did not connect (reply.0 /= 0). In the latter case, the agent
sends a bid without subcontracting . In the former situation, the agent sends an invalid bid .
However, if a valid reply from the Subcontractor is received (reply.3 /= 0), the Request
Handler makes a comparison between a bid with and a bid without subcontracting. Depending
on the outcome of the comparison, the type of the bid is set (initbid.2 := 3, a bid with
subcontracting ; or initbid.2 := 2, a bid without subcontracting) . In case a bid with
subcontracting is better, the planned start and finish time, and the first agent to which the batch
should be sent are set (initbid.5 := reply .3) . Finally, the bid is forwarded to the agent that sent
the task announcement by adding the bid to a list xm .

(6) The list xm decouples the Request Handler from the Controller, just like the Network
Interface decouples an agent from the Switch Element . Without this list, deadlocks would occur
since the Request Handler and the Controller would both want to send messages to each other
at the same time .

Code
proc REQ (id : Tid, subcontracting: bool,

reqsub: ! Trequest, subreq: ? Treply,
reqdbsl : ! Trequest, reqdbs2 : ! Ttaskoff, dbsreq: ? Treply,
conreq: ? Tmessage, reqcon : ! Tmessage, t : real) =

1 [m : Tmessage,
xn: Tmessage*, -- list of messages to CON
request: Trequest, -- request to DBS or SUB
reply: Treply, -- reply from DBS or SUB
bid, subbid, -- (subcontracting) bid
initbid: Tmessage -- initial bid/best bid

~ xm :_ [] ;
*[conreq ? m ->

[m.2 = 1 -> -- task announcement (1)
request := <m .3, m .5, m .6, m .7, m .8> ;
reqdbsl ! request ;
dbsreq ? reply ;
[reply.2 /= 0 ->

bid := m; bid.1 := m .0 ;
bid .8 := reply.l ; bid.9 := reply .2 ;
[len(request .3) > 1 and subcontracting ->

initbid := bid ;
reqsub ! request

~ len(request .3) = 1 or not subcontracting ->
bid .2 := 2 ; bid .5 := id ;
aan := xm ++ [bid]

l
~ reply .2 = 0 -> skip -- operation not possible

]

Modelling of an agent based control system for a model factory with the specification language x 31

I m.2 = 4 -> -- task offer without subcontracting (2)
reqdbs2 ! m

I m.2 = 6 -> -- subcontr . task announcement (3)
request :_ <m.3, m.5, m .6, m.7, m .8> ;
reqdbsl ! request ;
dbsreq ? reply ;
[reply.2 /= 0 ->

subbid := m; subbid .l := m.0 ; subbid.2 := 7 ;
subbid .8 := reply.l ; subbid.9 := reply.2 ;

XT := x
n ++ [subbid]

j reply.2 = 0-> skip -- operation not possible

I m .2 = 8-> -- subcontracting task offer (4)reqdbs2 ! m

~ subreq ? reply -> (5)
[reply .3 = 0-> -- no valid bid from SUB

[reply .0 = 0-> -- invalid subcontracting bids
initbid .2 := 12 ;

~ reply .0 /= 0 -> -- no valid subcontracting bids
initbid .2 := 2 ; initbid.5 := id ;

1
~ reply.3 /= 0 ->

[reply.2 < initbid .9 -> -- subcontracting is better
initbid .2 := 3 ; initbid .5 := reply.3
initbid .8 := reply .l ; initbid .9 := reply .2 ;

~ reply.2 >= initbid .9 -> -- w/o subcontr. is better
initbid .2 := 2 ; initbid .5 := id

]

xm := xm ++ [initbid]
len(xm) > 0; reqcon ! hd(xm) -> (6)

x n := tl(x n)

32 Modelling of an agent based control system for a model factory with the specification language x

3.5.3 Subcontractor (SUB)
Function
The Subcontractor issues subcontracting task announcements and awards the best possible
subcontractors with subcontracting task offers . Clearly, in the present configuration of the
model factory, subcontracting will only take place at the Component Placement stations; only
the process step `component placing' could be needed more than once in an operation, and only
for these functions multiple (two) workstations are present . Nevertheless, for reasons of
genericity and extensibility, every workstation contains a Subcontractor .

Subcontracting takes place in a rather silly way ; the possibility to subcontract every
combination of process steps is investigated . A smarter solution might be to offer a subcontract
for process steps for which an agent does not have the needed components at its local
component store . Other solutions might be to equip agents with knowledge about other agents,
but this would violate the prerequisite of agents not having any knowledge about each other .

Figure 16 Subcontractor

Interface
consub : task offer with subcontracting, or subcontracting bid
subcon : subcontracting task announcement, or subcontracting task offer
subdbsl : request to calculate the end time for the main contracting part of a bid
dbssub : reply with the start and end time to prepare the main contracting part of a bid
subdbs2 : main contracting part of a task offer to be incorporated in the planning
reqsub : request to subcontract process steps
subreq : reply to prepare a bid with subcontracted process steps

Modelling of an agent based control system for a model factory with the specification language x 33

Behaviour
(la) If a request to subcontract process steps is received (reqsub ? request), initial steps are
taken to prepare a bid with subcontracting . After a set of variables is initialised, a number of
subcontracting task announcements are prepared in a loop (*[not end -> J). Two lists,
mainxps and subxps, containing the process steps for the main- and subcontractor are initialised
and filled . The dummies j, k, and l indicate the positions i of the process steps that are
subcontracted in a `cycle' .

(1 b) After this, a request is sent to the Database . In this request, the job only contains the
process steps of the main contractor (mainxps) . When the reply from "the Database is received, a
task is made and stored in a list . A task consists of the job number, the subjob number, the
process steps for the main and subcontractor, and the first possible start and end time . Now,
two situations may occur ; the position of a subcontractor in the model factory might be in front
of or behind the main contractor . Since there is no focused addressing to other agents - task
announcements are broadcasted to all other agents -, both possibilities have to be taken into
account. Therefore, a main contractor sends two subcontracting task announcements for the
same set of subcontracted process steps : one in case the subcontractor is physically in front of
the main contractor (even subjob numbers), and the other in case the subcontractor lies behind
the main contractor (odd subjob numbers) . For the latter case, the first possible start time of the
subcontractor has to be determined by calculating the finish time of the main contractor . A
request is sent to the Database, and a reply is received . The start time for the subcontracting
task announcement is equal to the end time of the main contractor's part plus the transportation
time. Then, the subcontracting task announcement is added to a list in order to be broadcasted
throughout the network .

(1c) A similar task with increased subjob number is added to the list of tasks . A subcontracting
task announcement is defined with a first possible start time equal to the end time of the
previous agent (request.4) . The duration of the main contracting part of the operation is
determined later. The task announcement is sent to possible subcontractors by adding it to the
list xm .

(1d) Finally, some variables are initialised again, and others are reset for the next cycle of the
loop. The precise statements are not important here, although they assume that the maximum
number of process steps that make up an operation is six . After all, only six components can be
placed on a board .

(2a) If a subcontracting bid is received (m .2 = 7), the Subcontncctor compares this bid with the
best bid received so far. Again two situations are possible : a bid is received for a subcontracting
task announcement with an odd or even subjob number. For each situation has to be checked
whether the sender of the bid is indeed located before or after the main contractor. Situations
where agents lying behind the main contractor (m.0 > id) send subcontracting bids with even
subjob numbers (m.4 \ 2 = 0) are ignored . The same holds for situations where agents lying in
front of the main contractor (m.0 < id) send subcontracting bids with odd subjob numbers
(m.4\2=1) .

In case an agent lying in front of the main contractor reacts with a valid subcontracting bid, the
main contractor calculates the duration of his part, given the end time of the possible
subcontractor . First, the function SELTASK retrieves the task concerned from the list of tasks
using the job number (m.3) and subjob number (m.4) . The first possible start time of the main
contractor is calculated from the end time of the subcontractor (m .9). The Database is requested
to calculate the execution duration of the main contractor's process steps (task.2) . Now, the
condition is checked whether the main- and subcontracting parts of the operation are
connected . In other words, it is not allowed that the first part is executed, and that the batch has

34 Modelling of an agent based control system for a model factory with the specification language x

to wait to be transported to the second agent . This condition (reply.] - m.9 = TRANS(m.0, id))
prevents necessary complicated updates later . The answer of the Database is compared with the
best subcontracting bid received so far . The latter is updated if the new bid is better . The
variable bestsubcontr contains the job number, the task stating the distribution of the process
steps between main- and subcontractor, the best subcontractor, the start and end time of the
main part, and the start and end time of the subcontracting part .

(2b) In case an agent lying behind the main contractor reacts with a valid subcontracting bid
(m.4 \ 2 = I and m.0 > id), the main contractor does not need to calculate the duration of its
part of the operation, since this was done before the subcontracting task announcement was
sent. Again, the `connection condition' is checked, and the received bid is compared with the
best subcontracting bid received so far. Again, the latter is updated if the new bid is better.

(3) If a task offer with subcontracting is received (m .2 = 5), the Subcontractor requests the
Database to plan its own part of the task offer, and it sends a subcontracting task offer to the
subcontractor . Both task offers are given the correct values for the process steps
(taskoff.7 := task.2; subtaskoff.7 := task.3) . The addressee and the type for the subcontracting
task offer are set. Then, the start and end time for the main and subcontracted parts of the
process steps are set. The task offers are forwarded to the Database and the subcontractor
respectively .

(4) If an invalid subcontracting bid is received, the variable invalidbids is set.

(5) When the time period in which subcontracting bids are received is over, a reply is sent to
the Request Handler . If invalid subcontracting bids are received, the Subcontractor sends an
empty reply (<0, 0, 0, 0>) to the Request Handler . If only valid subcontracting bids are
received, but if the `connection condition' is not fulfilled for any of these bids, the
Subcontractor sends an empty reply with the job number. If all conditions are fulfilled, the
Subcontractor sends a valid reply consisting of the job number, the first possible (overall) start
time, the first possible (overall) finish time, and the agent that should receive the batch first
(either the main- or subcontractor) . In case this agent will receive the batch first (id <
bestsubcontr.2), the reply contains the job number, the start time of the main part, the end time
of the subcontracted process steps, and the id of this agent. In case the subcontractor will
receive the batch first, the reply includes the job number, the start time of the subcontracting
part, the end time of the main part, and the id of the subcontractor .

(6) The list xm decouples the Subcontractor from the Controller, just like the Network Interface
decouples an agent from the Switch Element . Without this list, deadlocks would-occur since the
Subcontractor and the Controller would both want to send messages to each other at the same
time .

Code
proc SUB (id: nat,

reqsub : ? Trequest, subreq : ! Treply,
dbssub : ? T.reply, subdbsl : ! Trequest, subdbs2 : ! Ttaskoff,
consub : ? Tmessage, subcon : ! Tmessage, t : real) _

([m: Tmessage,
taskoff : Tmessage, -- task offer to DBS
subtaskoff : Tmessage, -- subcontracting task offer to subcontractor
nr_ps : nat, -- number of process steps
end: bool, -- new task, end of possible subcontracts
nr, i, j, k, 1 : nat, -- subjob nr, dummies
ps : Tprocstep, -- process step
xps, xpsbk, -- list of process steps and backup
mainxps, subxps : Tprocstep*, -- main and subcontract lists of process steps
task: Ttask, -- task
xtask : Ttask*, -- list of tasks
xm : Tmessage*, -- list of messages to CON
request : Trequest, -- request from REQ
reply : Treply, -- reply from DBS

Modelling of an agent based control system for a model factory with the specification language x 35

bestsubcontr : <Tjob # Ttask # Tid # Tvalue # Tvalue # Tvalue # Tvalue>,
-- job, task, station, start time and end time main, start and end time sub)

timer: real, timer
invalidbids, -- invalid bids received?
subtaskann : bool -- outstanding subcontracting task announcement?
subtaskann := false ; invalidbids := false ; xtask xm
*[reqsub ? request -> (1a)

bestsubcontr .0 := request .0 ; bestsubcontr .l :_ <0, 0, [], [], 0, 0> ;
bestsubcontr.2 := 0 ; bestsubcontr.3 := 0 ; bestsubcontr .4 := 0 ;
bestsubcontr .5 := 0 ; bestsubcontr.6 := 0 ;
invalidbids := false ; subtaskann := true ; timer := time + t ;
xpsbk := request .3 ; xps := xpsbk ;
nr_ps := len(xps) ;
xtask :_ [] ; nr := 1 ;
i := 1 ; j := 1 ; k := 0 ; 1 := 0 ;
end := false ;
*[not end ->

xps := xpsbk; mainxps subxps
*[i <= nr_ps ->

ps := hd(xps) ; xps := tl(xps) ;
[(i = j) or (i = k) or (i = 1) ->

subxps := subxps ++ (ps] ;
~(i /= j) and (i /= k) and (i /= 1) ->

mainxps := mainxps ++ [ps] ;
]t

+1

-- this agent first (odd nrs) (1b)
subdbsl !<request .0, request .i, request .2, mainxps, request .4> ;
dbssub ? reply ;
task :_ <request .0, nr, mainxps, subxps, reply .l, reply .2> ;
xtask := xtask ++ [task] ;
m :_ <id, 0, 6, request .0, nr, id, request .2, subxps, reply .2, 0> ;
xm := xm ++ [m] ;

-- other agent first (even nrs) (ic)
nr := nr + 1 ;
task := <request .0, nr, mainxps, subxps, 0, 0> ;
xtask := xtask ++ [task] ;
m :_ <id, 0, 6, request .0, nr, request .l, request .2, subxps,

request .4, 0> ;
xm := xm ++ [m] ;
nr := nr + 1 ; (1d)
i := 1 ; j := j + 1 ;
[j > nr_ps -> k := k + 1 ; j := k + 1 ;

[nr_ps <= 3 -> end := true
~ nr_ps > 3 -> skip

(k > nr_ps - 1 ->
1 := 1+ 1 ; k := 1+ 1 ; j := k+ 1 ;
[nr_ps <= 5 -> end := true
~ nr_ps > 5 -> skip

[1 > nr_ps - 2-> end := true
~ 1 <= nr_ps - 2-> skip
]

~ k <= nr_ps - 1 -> skip
l

~ j <= nr_ps -> skip

I

]
]

consub ? m ->
[m.2 = 7 -> -- subcontracting bid (2)

[m.4 \ 2 = 0-> -- even nr, so subcontractor first (2a)
[m.0 < id -> -- subcontractor located before main contractor

task := SELTASK(m .3, m .4, xtask) ;
subdbsl ! <m .3, m .0, m .6, task.2, m .9> ;
dbssub ? reply ;
[reply .l - m.9 = TRANS(m .0,id) ->

[bestsubcontr .4 > reply.2 or bestsubcontr .4 = 0->
bestsubcontr .l := task ;
bestsubcontr .2 := m .0 ;
bestsubcontr .3 := reply .l ;
bestsubcontr .4 := reply .2 ;
bestsubcontr .5 := m .8 ;
bestsubcontr .6 := m .9

~ bestsubcontr .4 <= reply.2 and bestsubcontr .4 /= 0->
skip

l
~ reply .l - m.9 /= TRANS(m .0,id) -> skip
]

~ m.0 > id -> skip -- this agent located before other agent

I

]
~ m.4 \ 2 = 1-> -- odd nr, so main contractor first (2b)

[m.0 > id -> -- main contractor located before subcontractor
[bestsubcontr .6 > m .9 or bestsubcontr .6 = 0->

task := SELTASK(m .3, m.4, xtask) ;
[m.8 - task .5 = TRANS(m.0,id) ->

36 Modelling of an agent based control system for a model factory with the specification language x

I

I

I

m. 0

bestsubcontr .1 := task ;
bestsubcontr .2 := m .0 ;
bestsubcontr .3 := task.4 ;
bestsubcontr.4 := task.5 ;
bestsubcontr.5 := m.8 ;
bestsubcontr .6 := m .9

j m .8 - task .5 /= TRANS(m.0,id) -> skip

bestsubcontr .6 <= m .9 and bestsubcontr .6 /= 0-> skip

< id -> skip -- other agent located before this agent

m.2 = 5 -> -- task offer with subcontracting (3)
taskoff := m; subtaskoff := m; task := bestsubcontr .l ;
taskoff .7 := task .2 ; taskoff .8 := bestsubcontr .3 ;
taskoff .9 := bestsubcontr .4 ;
subtaskoff .l := bestsubcontr .2 ; subtaskoff .2 := 8 ;
subtaskoff .7 := task.3 ; subtaskoff .8 := bestsubcontr .5 ;
subtaskoff .9 := bestsubcontr .6 ;
[subtaskoff .1 < id -> -- subcontractor first

subtaskoff .5 := m.5 ; taskoff .5 := subtaskoff .l
~ subtaskoff .l > id -> -- main contractor first

subtaskoff .5 := id; taskoff .5 := m.5

subdbs2 ! taskoff ;
xn :_ xm ++ [subtaskoff]

m.2 = 14 -> (4)
invalidbids := true ;

I
subtaskann; delta timer - time -> (5)

subtaskann := false ;
[invalidbids ->

I

subreq ! <0, 0, 0, 0> ;
invalidbids := false

not invalidbids ->
[bestsubcontr .6 = 0 -> subreq !<bestsubcontr .0, 0, 0, 0>
~ bestsubcontr .6 /= 0 -> skip

[id < bestsubc~ontr .2 -> -- this agent first
subreq ! <bestsubcontr .0, bestsubcontr .3, bestsubcontr .6, id>

(id > bestsubcontr .2 -> -- other agent first
subreq ! <bestsubcontr .0, bestsubcontr .5, bestsubcontr .4,

bestsubcontr .2>
]

] ;
1 len(xm) > 0; subcon ! hd(xm) -> (6)

xm := tl (3an)

Modelling of an agent based control system for a model factory with the specification language x 37

3.5.4 Database (DBS)
Function
The Database records information about the planning of operations, and about the available
components . With this information, it calculates operation times upon requests by the Request
Handler and the Subcontractor . In addition, it updates the planning and the component data
when a (subcontracting) task offer has to be incorporated in the schedule. Furthermore, it
provides the Controller with plans, for instance for newly arrived batches, and it updates the
planning when operation on a batch is finished. Almost all communication with the Database
takes place by means of synchronisation, i .e. the client that sends a message to the Database
waits for its response before it continues its operation .

Figure 17 Database

Interface
reqdbsl : request to calculate the end time for a bid
dbsreq : reply with the end time to prepare a bid
reqdbs2 : task offer to be recorded in the planning
subdbsl : request to calculate the end time for the main contracting part of a bid
dbssub : reply with the end time to prepare the main contracting part of a bid
subdbs2 : main contracting part of a task offer to be recorded in the planning
condbsl : request for the planning line of a newly arrived batch
dbsconl : planning line of a batch
dbscon2 : order to the Component Store to replenish components
condbs2 : notification that operation on the present batch is finished
condbs3 : possible changes in the plan

38 Modelling of an agent based control system for a model factory with the specification language x

Behaviour
(1) If a request to calculate the end time for an operation is received from either the Request
Handler or the Subcontractor, the channels with these two processes are blocked so that the
statements under (2) are carried out before new messages from these processes are received .
The origin of the request is stored (I = Request Handler, 2 = Subcontractor), and a variable
indicating a new request is set .

(2) If a new request arrived, the variable input stores the request. The Database checks by
means of the function OPPOS whether the agent is capable of performing the requested process
steps (request.3) . In case the requested operation can be executed, the function PLANNING
calculates the start and the end time for the requested operation . This function is quite complex
and takes into account the existing schedule (xplan), the characteristics of the new operation
(input), the available components (xcompstock), the operational characteristics of the
workstation (id, xop, fixedoptime), and the present time (time) . The fourth element indicates
whether it concerns a request or task offer by stating the end time (0, i .e. unknown, or
taskoff.9) . The function PLANNING returns more than just the start and end time (see (3)) .
However, here only these times as stored in plan are needed . In case the requested operation
can not be executed, the reply contains start and end times equal to zero . The reply is sent to the
process that sent the request .

(3) If a task offer is received from either the Request Handler or the Subcontractor, the
channels with these two processes are blocked so that the statements under (4) are carried out
before new messages from these processes are received . A variable indicating a new task offer
is set .

(4) When a new task offer was received, the function PLANNING is invoked again . This time,
all outputs of the function are used except the newly added planning line . After all, this line
was used to calculate the end time in (2) . The schedule for the workstation and the list of
available components are updated (xplan := z.0, and xcompstock := z.3) . To replenish foreseen
shortages of components, a replenishment order (type 10) is sent to the Component Store . The
order is encapsulated in a Tmessage format. Each line in the schedule states the previous agent
(plan.4) . All these agents are notified about the new schedule in this agent if the batch is still
present at these agents (time < plan . l - tin) . The change messages are stored in a list and finally
sent to the Controller . Note that actually only the `previous' agents of modified planning lines
should be notified .

(5) If a new batch arrives in the workstation, the Controller requests the Database for the
planning line for that batch (batch /= 0) . The Database checks if the first planning line concerns
the arrived batch (batch = plan.0), and if there is no time error, i .e . whether the batch arrives at
the appropriate time . If schedules change, `previous' agents are notified about the change,
except for subcontracted jobs, however . Therefore, a time error might be caused by a
subcontracted job of which the schedule was not correctly updated . In that case, the schedule is
updated when the batch arrives, and `previous' agents are notified . Then, the Database sends
the first plan to the Controller . Furthermore, the Controller also asks for the current plan (batch
= 0) to check whether the agent has recently sent a task announcement . In that case, the agent
prepares an invalid bid. Therefore, if no planning lines are present, an empty plan is returned .

(6) The Controller notifies the Database, when processing of a batch is finished. Then, the first
planning line, i .e. the line for the present batch, is removed from the schedule
(xplan : = tl(xplan)) .

(7) If a planning update (nextplan) is received from the Controller, the Database checks the
plan and determines if it is necessary to update the planning. The update concerns the first

Modelling of an agent based control system for a model factory with the specification language x 39

planning line, but for subcontracted jobs, the update might concern the second planning line .
Therefore, the first part of the code checks by means of the job id (plan . 0) if the right planning
line is updated. If it is necessary to update the schedule (plan.2 /= nextplan .2), the function
UPDATEPLANNING is used. If other planning lines were updated besides the one of the job
involved, schedule change messages are sent in order to update the schedules in other agents .
Finally the updated planning line is forwarded to the Controller .

(8) The list xm decouples the Database from the Controller, just like the Network Interface
decouples an agent from the Switch Element . Without this list, deadlocks would occur since the
Database and the Controller would both want to send messages to each other at the same time .

Code
proc bBS (id : Tid,

reqdbsl : ? Trequest, reqdbs2 : ? Ttaskoff, dbsreq: ! Treply,
subdbsl : ? Trequest, subdbs2 : ? Ttaskoff, dbssub: ! Treply,
condbsl : ? Tbatch, condbs2 : ? Tbatch, condbs3 : ? Tplan,
dbsconl : ! Tplan, dbscon2 : ! Tmessage,
xop : Topdata*, xcompstock : Tcompstock*, fixedoptime : real) _

I (chgmes : Tmessage, -- message for changing the plan in the other agent
xm: Tmessage*, -- list of messages
fplan, plan, -- first planning line, planning line
nextplan: Tplan, -- planning line for next job
xplan, xplanbk : Tplan*, -- list of planning lines (backup)
input, -- input data for planning
request : Trequest, -- request from REQ,SUB
reply: Treply, -- reply to REQ,SUB
blocked, -- channels must be blocked?
newrequest, newtaskoff, -- new requests I task offers?
op_poss : bool, -- operation possible?
origin : nat, -- origin of request (1 : REQ, 2 : SUB)
z : <Tplan* # Tplan # Tprocstep* # Tcompstock* # nat>,

-- new xplan, plan for new request, order, component stock, branch
y: <Tplan* # Tplan* # nat>,-- new xplan, changed plans, branch
order : Tprocstep*, -- component order
taskoff : Ttaskoff, -- task offer
batch : Tbatch, -- batch
tin : real -- transportation time

~ xplan :_ [1 ; xplanbk order :_ [] ; xm :_ (] ;
blocked := false ; newrequest := false ; newtaskoff := false ;
*[not blocked ; reqdbsl ? request -> (1)

blocked := true; origin := 1 ; newrequest := true ;
~ not blocked ; subdbsl ? request ->

blocked := true; origin := 2 ; newrequest := true ;
~ newrequest; delta 0 -> (2)

newrequest := false ; input := request ;
op_poss := OPPOS(request .3, xop) ;
[op_poss ->

z := PLANNING(xplan, id, input, 0, xcompstock, xop, time,
fixedoptime) ;

plan := z .l ;
reply :_ <request .0, plan .l, plan.2, 0> ;

~ not op_poss ->
reply := <request .0, 0, 0, 0> ;

(origin = 1 -> dbsreq ! reply
~ origin = 2-> dbssub ! reply

blocked := false
~ not blocked; reqdbs2 ? taskoff -> (3)

blocked := true; newtaskoff := true ;
~ not blocked ; subdbs2 ? taskoff ->

blocked := true; newtaskoff := true ;
~ newtaskoff; delta 0 -> (4)

newtaskoff := false ;
input .0 := taskoff .3 ; input .l := taskoff .5 ; input .2 := taskoff .6 ;
input .3 := taskoff .7 ; input .4 := taskoff .8 ;
z := PLANNING(xplan, id, input, taskoff .9, xcompstock, xop, time,

fixedoptime) ;
xplan := z .0 ;
order := z .2 ;
xcompstock := z .3 ;
*(len (z .0) > 0 ->

plan := hd(z .0) ; z .0 := tl(z .0) ;
tin := TRANS(plan .4, id) ;
[time < plan .l - tin ->

chgmes := < id, plan .4, 11, plan .0, 0, 0, 0, plan .6,
plan .l-tin, plan .2> ;

40 Modelling of an agent based control system for a model factory with the specification language x

xm := xm ++ [chgmes]
~ time >= plan .l - tin -> skip
1

[len(order) > 0 ->
xm := xm ++ [<id, 8, 10, 0, 0, 0, 4, order, 0, 0>]

~ len(order) = 0 -> skip

blocked := false
~ condbsl ? batch -> -- arrival physical batch (5)

[len(xplan) > 0 ->
plan := hd(xplan) ;
[batch /= 0 ->

[batch /= plan .0 ->
!time, "DBS",id," error in planning", nl() ;

~ batch = plan .0 ->
[time /= plan .l ->

!time, "DBS",id," warning, time error in planning,
subcontracting??", n1() ;

y := UPDATEPLANNING3(xplan, time, id) ;
*[len (y .1) > 0 ->

plan := hd(y.1) ; y .1 := tl(y.1) ;
tin := TRANS(plan .4, id) ;
chgmes :_ < id, plan .4, 11, plan.0, 0, 0, 0,

plan.6, plan.l-tin, plan .2> ;
xm := xm ++ [chgmes] ;

xplan := y .0 ; plan := hd(xplan) ;
(time = plan.l -> skip

]
1

~ batch = 0 -> skip

~ len(xplan) = 0 ->
plan := <0, 0, 0, 0, 0, 0, []>

] ;
dbsconl ! plan
~ condbs2 ? batch -> -- operation on batch is finished (6)

xplan := tl(xplan)
~ condbs3 ? nextplan -> -- planning update (7)

plan := hd(xplan) ; xplan := tl(xplan) ; fplan := plan; fplan .0 := 0 ;
[nextplan.0 /= plan.0 ->

[len(xplan) > 0 ->
fplan := plan; plan := hd(xplan) ; xplan := tl(xplan) ;
[nextplan .0 /= plan .0 ->

!time, "DBS",id," error in planning 3", nl()
~ nextplan .0 = plan .0 ->

!time, "DBS",id," warning, subcontracted
job??",nl()

1
~ len(xplan) = 0 ->

!time, "DBS",id," error in planning 3", nl()
]

~ nextplan .0 = plan .0 ->
skip

[plan .2 = nextplan .2 ->
xplan := [plan] ++ xplan

~ plan .2 /= nextplan .2 ->
plan.2 := nextplan .2 ;
xplan :_ [plan] ++ xplan ;
[len(xplan) > 1 ->

y := UPDATEPLANNING(xplan,id) ;
xplan := y .0 ;
*[len (y.1) > 0 ->

plan := hd(y.1) ; y .1 := tl(y .1) ;
tin := TRANS(plan.4, id) ;
chgmes :_ < id, plan .4, 11, plan.0, 0, 0, 0,

plan .6, plan .1-tin, plan.2> ;
xm := xm ++ [chgmes] ;

~ len(xplan) = 1 -> skip

[fplan.0 = 0 -> skip
~ fplan.0 /= 0 -> xplan :_ [fplan] ++ xplan

plan := hd(xplan) ;
dbsconl ! plan

len(xm) > 0; dbscon2 ! hd(xm) -> (8)
xm := tl(xm)

Modelling of an agent based control system for a model factory with the specification language x 41

3.5.5 Sender (SEN)
Function
If the job that is about to be executed is not subcontracted, the agent has to find another agent
that will execute the next operation . Therefore, the Sender issues task announcements,
evaluates incoming bids, and offers a task to the agent that sent the best bid .

Figure 18 Sender

Interface
consenl : message with information needed to prepare the next task announcement
consen2 : bid from another agent
sencon : task announcement, or task offer to (an)other agent(s)

Behaviour
(1) The Controller sends a 'message taskann with information about the operation to be
executed by a subsequent agent. The Sender sets the variables to make a new task
announcement, and it defines the correct task announcement (taskann .2 = 1) to be broadcasted
(taskann.l = 0) to other agents via the Controller .

(2) Agents that are capable of executing the next operation as defined in the Sender's task
announcement reply with bids m . The Sender receives bids from these other agents via the
Controller and channel consen2 . In case the incoming bid is a valid bid (m.2 = 2 or m.2 = 3), it
replaces the best bid received so far if the projected end time for execution of the next
operation lies before that of the best bid (bestbid.9 > m.9) or if the best bid is the initial bid
(bestbid.9 = 0) . In case the incoming bid is an invalid bid (m.2 = 12 or m.2 = 13), the variable
invalidbids is set; there is no need to compare the incoming bid with the best bid .

(3) When the negotiation time for the outstanding task announcement is over (delta (timer
- time)), the best bid has been determined . If, however, invalid bids were received (invalidbids
= true), the whole task announcement procedure has to be redone . If only valid bids were
received, the Sender selects the best bid . Recall that always at least one bid will be received . If
the best bid is a bid without subcontracting (bestbid.2 = 2), a task offer without subcontracting
(taskoff.2 := 4) is sent. If the best bid involves subcontracting (bestbid.2 = 3), a task offer with
subcontracting (taskoff.2 := 5) is sent . The task offer is forwarded (sencon ! taskof,f) to the
agent that issued the bid . This is the sign for the Controller to start execution on the batch .

(4) When the time has come to send a new task announcement or to re-send the previous task
announcement, the best bid and some other variables are defined . Then, the Sender sends the
task announcement to the Controller . Note that there is no list xm needed to decouple the
Sender and the Controller; these two processes do not send messages to each other at the same
moment in time .

Code
proc SEN (id: Tid,

consenl, consen2 : ? Tmessage, sencon : ! Tmessage,
t : real) =

42 Modelling of an agent based control system for a model factory with the specification language x

m,
taskoff,
taskann,
bestbid : Tmessage,
sendnewtaskann,
invalidbids,
outtaskann : bool,
sendnewtasktimer,
timer : real

I outtaskann := false ; sendnewtaskann := false ;
*[consenl ? taskann ->

I

I

I

1

consen2

[bestbid .9 > m.9 or bestbid.9 = 0-> bestbid := m
~ bestbid .9 <= m.9 and bestbid.9 /= 0-> skip

~ m.2 = 12 or m.2 = 13 ->
invalidbids := true ;

sendnewtaskann := true ;
sendnewtasktimer := time ;
taskann .l := 0 ; taskann .2 := l ;
taskann .5 := id; taskann .9 := 0 ;

? m ->
[m.2 = 2 or m .2 = 3 ->

1 :
outtaskann ; delta (timer - time)

outtaskann := false ;
[invalidbids ->

message
task offer
task announcement
best bid
new task announcement needed?
invalid bids received?
outstanding task announcement?

- timer for new task announcement
timer for outstanding task announcement

->

sendnewtaskann := true ;
sendnewtasktimer := time + t ;

~ not invalidbids ->
taskoff := bestbid ; taskoff .l := bestbid .0 ;
taskoff .2 := bestbid.2 + 2 ;
sencon ! taskoff

l
sendnewtaskann; delta (sendnewtasktimer - time) ->

sendnewtaskann := false ;
invalidbids := false ; outtaskann := true ;
bestbid := <0, 0, 0, taskann .3, 0, 0, 0, [], 0, 0> ;
timer := time + 2 * t ;
sencon ! taskann

(2)

(3)

(4)

Modelling of an agent based control system for a model factory with the specification language x 43

3.5.6 Machine Controller (MAC)
Function
The Machine Controller controls the physical manufacturing system . It transports notifications
of batch arrivals detected by sensors of the Physical System to the Controller . It starts
execution of the operation as commanded by the Controller, and makes the Physical System
send the batch to the determined next destination .

Figure 19 Machine Controller

Interface
phymac : notification of arrived batch at the Physical System
maccon] : notification of arrived batch
conmacl : plan for process execution
maccon2 : notification of end of operation
conmac2 ; destination for the current batch
macphy : destination for the current batch

Behaviour
(1) If a notification of a batch arrival is received from the Physical System, the Machine
Controller informs the Controller about it .

(2) If a planning line is received from the Controller, the workstation starts processing (if it was
not doing so already), and the end time is (re-)set .

(3) If process execution is finished, i .e . delta (endtime - time) becomes zero, the status of the
Machine Controller is reset, and the Controller is informed that the operation on the batch is
finished .

44 Modelling of an agent based control system for a model factory with the specification language x

(4) If the next destination for the current batch is received from the Controller, it is sent to the
Physical System that actually forwards the batch to a conveyor.

Code
proc MAC (id : nat,

conmacl : ? Tplan, conmac2 : ? Tdestin,
macconl : ! Tbatch, maccon2 : ! Tbatch,
phymac : ? Tbatch, macphy : ! Tdestin) _

1 [batch: Tbatch, -- batch
endtime : real, -- finish time
destin : Tdestin, -- destination
plan: Tplan, -- plan
inprocess : bool -- in process

~ inprocess := false ;
*[phymac ? batch ->

macconl ! batch
~ conmacl ? plan ->

inprocess := true ; endtime := plan.2 ;
~ inprocess ; delta (endtime - time) ->

inprocess := false ;
maccon2 ! batch

~ conmac2 ? destin ->
macphy ! destin

l

(4)

Modelling of an agent based control system for a model factory with the specification language x 45

3.6 Physical Part of a workstation (PHY)
Function
The Physical System performs the actual operations on batches . It receives batches, performs
the process steps, and sends the batches to other workstations . It is the only (structural) part of
a workstation that is specific for that workstation ; all other processes are generic . The specific
features of a workstation are characterised by the conveyor belts that connect individual
workstations (see section 3 .8) .

Figure 20 Physical System

Interface
phymac : notification of arrived batch
macphy : destination for the current batch
trxyyy : incoming channel number x at station yyy (see section 3 .8)
trxyyy : outgoing channel number x at station yyy (see section 3 .8)
cosphy : supply of components from the Component Store

Behaviour
.

(1) The Physical part of the Component Placer 2 is taken as an example . It receives batches
from two incoming channels : tr2cp2, which is connected to the Conveyor between the Screen
Printer and Component Placer 2, and tr5cp2, which is connected to the Conveyor between the
Component Placer 1 and Component Placer 2. If a batch via either channel arrives, the Physical
System informs the Machine Controller about it .

(2) If a destination is received from the Machine Controller, the batch is sent via an outgoing
channel tó the Conveyor. In this case, batches are always sent via channel tr6cp2, the conveyor
that connects the Component Placer 2 and the Reflow and Cleaning station .

(3) If components are received from the Component Store, nothing happens with them . In
reality, these components would be stored and used during operation . However, in this model
the Database records changes in the (economic) stock level . For the moment, nothing is being
done with the arrived components .

Code
proc PHYCP2 (tr2cp2 : ? Tbatch, tr5cp2 : ? Tbatch, tr6cp2 : ! Tbatch,

macphy: ? Tdestin, phymac : ! Tbatch,

46 Modelling of an agent based control system for a model factory with the specification language x

cosphy: ? Tcompstock) _
batch: Tbatch,
destin: Tdestin,
compstock : Tcompstock
*[tr2cp2 ? batch -> phymac ! batch

tr5cp2 ? batch -> phymac ! batch
macphy ? destin ->

(destin = 6 -> tr6cp2 ! batch
~ destin /= 6-> !time," error in PHYCP2"
~

~ cosphy ? compstock ->
skip

J

I (1)

(2)

(3)

Modelling of an agent based control system for a model factory with the specification language x 47

3.7 Component Store (COS)
Function
The Component Store supplies workstations with components upon request . It always sends
trays of four components each . The type of all four components is the same ; they all are either
yellow, red, or green. The Component Store is only physically connected to workstations that
actually need components to perform their operations (see section 3 .9). Note that the channels
from the Component Store to the Network Interface, and from the Network Interface to the
Switch Element are not used ; the Component Store does not send messages to other
workstations .

Figure 21 Component Store

Interface
nincos : incoming order to replenish components
cosnin : not applicable
tr9cos : outgoing channel to Component Conveyor of Component Placer 1(see section 3 .9)
trl0cos : outgoing channel to Component Conveyor of Component Placer 2 (see section 3 .9)

Behaviour
(1) If a replenishment order is received via the Switch Element and the Network Interface, the
Component Store determines the time it takes to conclude the order (ct), and adds this message
that encapsulates the order to a list delivery . However, workstations do not actually physically
need components to perform their operations ; they only register the number of components in
the Database, whether they are present or not .

(2) When the components for the first order are ready, the components are actually delivered .
The order is stored in a message ordermessage in such way that it may contain multiple lines .
Each order line which consists of a number of components (ordermessage .5) of a specific type
(orderline. 1) is individually sent to the `customer' (ordermessage .0) .

Code
proc COS (id : Tid, Selcos : ? Tmessage, tr9cos, trl0cos : ! Tcompstock, Ct : real)_

1 [ordermessage, -- dummy

48 Modelling of an agent based control system for a model factory with the specification language x

m: Tmessage; -- message
orderline : Tprocstep, -- component order line
order : Tprocstep*, -- component order
delivery : <Tmessage # real>* -- component delivery
order := [] ; delivery
*[selcos ? m -> (y)

delivery := delivery ++ [<m, time + ct>] ;
I len(delivery) > 0 ; delta hd(delivery) .l - time -> (2)

ordermessage := hd(delivery) .0 ; delivery := tl(delivery) ;
order := ordermessage .7 ;
*[len(order) > 0 ->

orderline := hd(order) ;
order := tl(order) ;
[ordermessage .0 = 4 ->

tr9cos ! <orderline .l, ordermessage .5>
~ ordermessage .0 = 5 ->

trlOcos ! <orderline .l, ordermessage .5>
J

I

Modelling of an agent based control system for a model factory with the specification language x 49

3.8 Conveyor (CVY) and Component Conveyor (CCO)
Function
Conveyors transport batches between workstations . Each conveyor connects two workstations .
The transportation duration is determined by the distance between the two workstations, i .e . it
is proportional to the absolute difference between the two workstation identification numbers .
The two Component Conveyors connect the Component Store with the two Component
Placement workstations (see section 3 .9) .

Tbatch CvY Tbatch

Figure 22 Conveyors

Interface
in : incoming batch/components
out : outgoing batch/components

Behaviour
(1) If a batch or component tray is received, the Conveyor waits a certain time period . Then it
sends the batch or component tray to the next station . However, since the component conveyor
might have to transport multiple component trays at the same time, a slightly different
procedure is needed .

Code
proc CVY (in : ? Tbatch, out :! Tbatch, ct : real) _

1 [batch : Tbatch
*[in ? batch -> delta ct; out ! batch] (1)

]

proc CCO (in :? Tcompstock, out :! Tcompstock, ct : real) _
1 [compstock : Tcompstock, xcomp :<Tcompstock # real>*
~*[in ? compstock -> xcomp := xcomp ++ [<compstock, time + ct>] (1)

~ len(xcomp) > 0 ; delta (hd(xcomp) .1 - time) ->
out ! hd(xcomp) .0 ; xcomp := tl(xcomp)

50 Modelling of an agent based control system for a model factory with the specification language x

3.9 Overall Physical System
The way the individual workstations are connected determines the `configuration' of the model
factory. It also greatly determines the suitability of an Agent based control system .
Workstations are connected by means of conveyor belts that transport boards between
workstations . In total, nine conveyor belts for boards and two for component trays are present .
Figure 23 shows the physical system of the model factory . Each arrow represents a conveyor .

IC

tr2

tr9

tr8

tr4

C>1

~

Figure 23 Overall Physical System

Ir1S~

Modelling of an agent based control system for a model factory with the specification language x 51

4. Simulation results Agent Based Control model

4.1 Introduction
Before the simulations are described, it is necessary to explain the following definitions :

• The `throughput time' is the time needed to complete a sample of jobs .
• The `system capacity' is the maximum number of jobs that are simultaneously being

processed by the workstations in the model factory . If the maximum capacity is reached,
the Generator will not dispatch the next job before a job in the system is finished . This way,
a kind of input/output control is realised .

• In all experiments, twenty samples are simulated . In each sample, the number of jobs being
processed is 100 .

This report focuses on the most important experiments . Obviously, many more interesting
experiments could easily be done with small modifications of the models . Especially, readers
interested in the logistical aspects could find easy ways to improve the models .

4.2 Influence of system capacity
In the first experiment, the influence of the system capacity on the throughput time is
determined . The system capacity is varied, and the throughput times are measured . The specific
characteristics of this experiment are as follows :

• The model factory contains the workstations : Raw Material Store, Screen Printing,
Component Placement 1, Component Placement 2, Reflow and Cleaning, and Final Product
Store. In addition, a Component Store and a Generator are present .

• The system capacity is variable .
• The transportation time for batches between workstations is equal to 5 times the absolute

difference between the workstations concerned .
• The component stocks at the component placers are initially completely filled with four

components of each type .
• The probability of a second side loop is 20% .
• Twenty samples of 100 jobs are simulated .
• Table VI displays the appropriate operation and replenishment times .

Table VI Standard operation times and component delivery duration

Work-
station

Type of operation Processing time
per batch

Variable operation
time per

board/component

Component
delivery
duration

RMS board dispatching 0 10
SCP screen printing 0 20 -
CP1 placing components 0 20 5
CP2 placing components 0 20 5
RCL reflow & cleaning 0 20 -
FPS final product store 0 60 -

Modelling of an agent based control system for a model factory with thé specification language x 53

The results of the experiment are shown in Table VII and Figure 24. Obviously, the average
throughput time decreases if the maximum number of jobs in the system increases . However,
there seems to be a minimum at a system capacity of 5 . It is not clear whether this is a purely
random minimum or not. The experiment was probably not large enough to determine whether
Figure 24 should exhibit a non-increasing line, or that indeed five jobs is the optimal number of
jobs in the system.

Table VII System capacity and throughput time

System
ca acit

Average
throughput time

1 ~ 41623 .5
2 22600 .5
3 16965 .8
4 14538.5
5 13831.5
6 13856.8

45000

40000

35000-

30000-

25000-

20000

15000

10000
1 2 3 4

system capacity
5

Figure 24 System capacity and throughput time

The following figure shows the capacity utilisation of the six workstation in the model factory .
Note that in Figure 25 the lines for the Screen Printer and the Reflow & Cleaning station
coincide, since both stations have the same operational characteristics . Only the lines for the
component placers have real meaning. The other lines are proportional to each other, since the
operation times of these stations per board are fixed . The operation `component placement'
takes most time . However, two component placement stations are present, so that jobs are
distributed among them. Therefore, on average the bottleneck is the last station in the line, the
Final Product Store . The lines for the two component placement stations come together . With
low system capacity, the bids from CPI will be better than those from CP2, simply because of
the transportation time . Note that this is a form of suboptimisation . This situation is comparable
to a roadway consisting of two lanes ; if traffic is low, everybody will take the right lane, and if
there is a lot of traffic both lanes will be equally used .

54 Modelling of an agent based control system for a model factory with the specification language x

100%

0%
1 2 3 4

system capacity

5

Figure 25 System capacity and capacity utilisation

6

With increasing system capacity, the risk for deadlocks increases as well. No deadlock
occurred in the samples with a system capacity of four or smaller . However, three and nine
deadlocks occurred with a system capacity of five and six respectively .

Let us have a closer look at the deadlocks . It appears that all deadlocks result from the same
reason: a job A has to wait until it can go to the next station, but since A has to wait B has to
wait, and therefore C has to wait, and finally because of the second-side loop A has to wait, and
so on. Figure 26 shows such a situation. At the moment job 19 arrives in CP2, this station sends
a broadcast to all other stations . RCL replies with a bid, the bid is awarded, and job 19 is
planned at RCL after job 18 . This means that job 19 has to wait in CP2 until job 18 is finished
in RCL, and job 19 can go to RCL. Since job 19 has to wait in CP2, job 20 is postponed, and
has to wait in SCP . Since job 20 has to wait in SCP, job 17 is postponed, and has to wait in
RCL. Finally, since job 17 has to wait, jobs 18 and the newly planned job 19 are postponed .
The result is a deadlock . Obviously, the deadlock could be avoided, for instance by re-
allocating job 20 to CPL A scheduler which would have an overview of the complete process
could easily do this .

RMS

SCP

CP1

CP2

RCL
FPS

da
10%

M 20% {-

ó 50%

+v 40% 1-

é

-+- RMS
~ 90% -W-SCP

a ~r-CP1° 80%
t --K---CP2
ó 70% -M RCL

d 60% -f -FPS

Hill
16

14
r
4»»

I
1,14

!,g 17 i›I ig1810»l

Figure 26 Deadlock

20 • I

In the experiments in this section, there is no difference between a model where subcontracting
is allowed, and a model where it is not . The reason is that the time needed to replenish the
component stock is always-(much) lower than the time needed to process a batch in the Screen
Printing station and to transport it to the next workstation . Consequently, bids with
subcontracting will always be worse than `normal' bids .

Modelling of an agent based control system for a model factory with the specification language x 55

4,3 Influence of subcontracting
In this experiment, the effect of subcontracting is shown . The following changes are made
compared to the previous experiment :

0 The system capacity is four .
. The component replenishment time is variable .

The results of the experiment with the same samples as in the previous experiment are shown
in Table, VIII and Figure 27 . There is not much difference in the results of the experiments with
and without subcontracting . Subcontracting is only better if it prevents the replenishment of
components, and if replenishment is needed in a situation without subcontracting. However, the
replenishment time that is `saved' for a Component Placement station, has to be `used' for one
of the next jobs that is allocated to the same station . Subcontracting or not, the total number of
components and therefore the total number of replenishment times for a sample is roughly
equal for both situations . For a particular sample, the experiment with subcontracting can only
`save' two replenishment times at most, namely one at each component placement station .

The results could be improved by more intelligent algorithms . For example, a certain safety
stock could be used, and components could be ordered if their number drops below a certain
level .

Table VIII Subcontracting, replenishment time and throughput time

Replenishment
time

With
subcontracting

Without
subcontracting

5 14538.5 14538.5
25 14538.5 14538.5
50 14584.8 14624.3
75 14854.1 14980.8
100 15423 .4 15582.5
150 17498.1 17773 .4
200 20394.0 20958.9
250 24980.9 25411.1
500 48368.0 48808.8

0
E:
itst
~~0r.r«

15000

10000

50000

45000

40000

35000

30000

25000

20000

- 0 with subcontracting

--i -without subcontracting

0
--I-
100 200 300 400 500

replenishment time

Figure 27 Subcontracting situation

56 Modelling of an agent based control system for a model factory with the specification language x

The effect of the possibility to subcontract jobs is bipartite : the number of message exchanges
in the system increases tremendously, and the performance is marginally improved . The overall
effect of subcontracting is rather negative .

4.4 Influence of negotiation
In this experiment, the effect of negotiation is shown . The following changes are made
compared to the first experiment :

• There is no negotiation between workstation agents .

Since there is no more negotiation between workstations, it has to be decided which
workstation is going to execute which operation . More precisely, the component placement
operations are allocated to the component placers by the Generator . For this, the third attribute
in type Tprocstep = < Tseqnr # Top # Tinfo > is used .

Other changes that have to be made in the code are :
• Controller: if a job information message is received, the Controller has to extract the

process steps for the next operation, and all remaining operations .
• Sender: if information about the next operation comes in, the Sender constructs a task

announcement and sends it to the agent to which the operation was allocated, instead of to
all agents .

The results of the experiment are shown in Table IX and Figure 28 . The figure also presents the
results with subcontracting (similar to Figure 24), and shows a clear difference in the results
with and without negotiation . Again, the average throughput time decreases if the maximum
number of jobs in the system increases . And again, there seems to be a minimum at a system
capacity of five, although this result is hardly valid due to the large number of deadlocks . With
a system capacity of three or less, no deadlocks occur . Four deadlocks occur with a system
capacity of four . Only four (out of twenty) samples do not lead to a deadlock, if the system
capacity is five or six .

Table IX Negotiation, system capacity and throughput time

System
capacity

With
negotiation

Without
negotiation

1 41623 .5 41623 .5
2 22600.5 23746.3
3 16965 .8 18071 .5
4 14538 .5 15796 .9
5 13831.5 15105 .0
6 13856.8 15115 .0

Again, let us have a closer look at the deadlocks . Again, it appears that most deadlocks result
from the same reasons: a job A has to wait until it can go to the next station, but since A has to
wait B has to wait, and therefore C has to wait, and finally A has to wait because of the second-
side loop, and so on . Figure 29 shows such a situation . It is the first sample which shows a
deadlock with a system capacity of four. At the moment job 22 arrives in CP2, this station
sends a task announcement to RCL . RCL replies with a bid, the bid is awarded, and job 22 is
planned after job 21 . This means that job 22 has to wait in CP2 until job 21 is finished in RCL,
and job 22 can go to RCL . Since job 22 has to wait in CP2, job 23 is postponed, and has to wait

Modelling of an agent based control system for a model factory with the specification language x 57

45000

40000

35000

30000

25000

20000

15000

10000
21 3 4

system capacity
5

Figure 28 Negotiation, system capacity, and throughput time

6

in SCR Since job 23 has to wait in SCP, jobs 24 and 21 are postponed . Thus, job 21 has to wait
in RCL. Finally, since job 21 has to wait, the newly planned job 22 is postponed . The result is a
deadlock. Obviously, the deadlock would not occur if negotiation was applied . Then, job 23
would be allocated to CPL

RMS
SCP

CP1

CP2

RCL

FPS

i id i

4 Pl_7 1 ~

i Z> i i 9k2 i
2i

Figure 29 Frequently occurring deadlock because of absence of negotiation

--#-with, negotiation

-f--without negotiation

58 Modelling of an agent based control system for a model factory with the specification language x

5. Discussion

In this chapter, the design of the model is evaluated . Furthermore, the x formalism is judged on
its suitability for the design and evaluation of an agent based control system for the model
factory .

5.1 The model of the control system
The model of the model factory's control system has been designed with the following
objectives :

• the model has to resemble the model factory ;
• the model's building blocks (i .e. the agents) have to be as generic as possible ;
• the model has to reflect an agent based control system that scores well on the evaluation

criteria, i .e . performance, robustness, and flexibility ;
• the model has to be clear and transparent .

Resemblance of the model with the model factory
Resemblance with the real model factory has not been totally obtained . First and foremost, the
x model only takes a part of the model factory into account ; the test and repair loop and the In-
Process-Store are not considered (see Section 2 .2) .

A few differences between model and reality are in the component placement operations. A
component placement workstation has space for two delivery locations times eight
components . Only the first four components in a delivery location are accessible to the
workstation . The component delivery is modelled as one delivery location of four components
times three types . In addition, the component conveyors are able to transport multiple
component trays at the same time, and even at the same position . A proper solution would be to
model the transportation of trays one after the other, and thereby increasing the total
transportation time . Finally, in the model the component placement operations do not actually
need components. The Machine Controllers do not even have information about the type of
operation they have to perform .

Furthermore, the operation times are fixed in order to obtain fixed schedules . In reality, they
are random . To remedy this flaw,, schedules of both the workstation that performs the operation
and possible other workstations have to be corrected for the real operation times . The planning
update message (type 11) may be used for this .

Generic building blocks
The workstation agents are kept as generic as possible . Communication among workstations
via a network contributes to this . Without major modifications, new workstations can easily be
added to the model . Situation-specific information such as the identification number of the last
workstation in the system are known to Controllers by means of xper parameters. As a
consequence of this genericity, the structure of a workstation agent is more complicated than
strictly necessary . This structure is based on workstations that carry out the most complicated
operations, namely the component placers . In principle, the remaining stations execute
operations straight ahead, but now they possess more comprehensive processes that are not
needed by stations such as Screen Printing and Reflow & Cleaning .

Modelling of an agent based control system for a model factory with the specification language x 59

~yOuqtion criteria
The, evaluation criteria as discussed in Section 1 .5 are robustness, flexibility, and performance .
The robustness of the agent based control system can not be evaluated, since disturbances are
qgt modelled . However, it is expected that robustness in the agent based control system is
increased compared to the distributed system without negotiation, due to the fact that routings
Were fixed in the latter system, whereas they are opportunistically `composed' during operation
ill, the agent based system . However, the effect is largely determined by the possibilities the
inanufacturing system offers . Here, the effect is only marginally, since in the present situation
only the component placers can be interchanged to deal with malfunctions . If another station
breaks down, the complete system will be blocked .

The flexibility, i .e . the modifiability of the agents, and the extensibility of the system, is better
in the agent based system than in the previously implemented heterarchical control system
(Timmermans, 1993b) . Stations in the implemented heterarchical control system have
knowledge about other stations . For instance, each station knows its direct `neighbours' . If the
factory is extended with a new workstation, the information its neighbours have of other
stations needs to be updated. This is not necessary in the agent based system, since the agents
communicate messages via the network. If a new agent is added to the system, the network is
extended with a network interface that is connected to the new agent . Evidently, the switch
component in the communication network of Figure 3 needs to be updated. Note that in the
described heterarchical control model, stations do not have knowledge about each other . The
Generator determines the routing, not the individual workstation .

However, it is hard to compare the two control systems in terms of modifiability . Workstation
controllers in the previously implemented heterarchical control system have information about
other controllers, which hampers extensibility as well as modifiability . However, the
controllers in the agent based control system probably have more states and make more
assumptions about the behaviour of other agents. This is not determined into detail (yet) .

Alternative approaches for a broadcast throughout the system are available . The drawback of a
broadcast to all stations is that an overload of message exchanges may paralyse the system . An
alternative solution would be to apply audience restriction, for instance by giving the agents
local knowledge of other agents' skills . For an example, the reader is referred to (Cantamessa,
1995) .

Another possibility to realise audience restriction is to give intelligence to the network . In the
model factory, workstations communicate with each other via a network. An intelligent Switch
Element might transport messages to appropriate agents only rather than to all agents . This
network construction could easily be extended into a broker . Then, agents report finished jobs
(i .e . idle workstations) and operations to be executed to the broker, so the broker can match
demand and supply of tasks .

The performance of the agent based control system is compared to distributed control systems
without negotiation in the previous Chapter. The throughput times of the agent based system
are only slightly better than the throughput times of the heterarchical system . Whereas the
heterarchical system does not have routing flexibility at all, the possibilities of the agent based
system to avoid a busy station and direct the batch to a less busy station are limited . This is
caused by the absence of alternative workstations, except for placing components .

As compared to hierarchical control systems, studies show that the overall throughput times of
agent based systems are worse than those of hierarchical control systems . After all, hierarchical
control systems do not have the myopic view of agents ; a hierarchical contr.qller overlooks a

60 Modelling of an agent based control system for a model factory with the specification language x

larger area than an individual controller and is capable of making less suboptimal decisions . An
example of such a myopic view and resulting suboptimal decision is Figure 26 in the previous
chapter, where the deadlock could have been prevented by a global system view .

The characteristics of the physical production system cause the agent based control system to
perform only slightly `better' or even worse than other control systems . This leads to the
conclusion that the model factory is not a suitable production system for the application of an
agent based control system, and brings up the question in what situations agent based systems
truly make a difference .

The concept of the routing space is introduced to explain when agent based systems are most
valuable and under which circumstances they can only have limited impact. The routing space
is the set of possible transitions from one workstation to another, and is product specific .
Possible transitions can be specified as ordered pairs of station of origin and destination . The
more the routing space resembles a function, the less the agent based system is applicable . If
the routing space is a function, at each station of origin a batch can only go to one station of
destination . In this case, a deterministic schedule would suffice to exploit the `full width' of the
routing space, because there is no flexibility . That is, when a problem occurs, another station
cannot be chosen. However, the more the number of ordered pairs in the routing space exceeds
the number of process steps, i .e. from a station of origin a product can go to many stations of
destination, the more the possibility to compose a schedule through negotiation at run time is
going to be of value . In other words, agent based systems are more suitable in situations with
many interchangeable workstations . In case of little uncertainty, however, a central scheduler
would give more optimal routings and a better performance (Zwegers et al ., 1996) .

In case the process plan is not fixed, the size of the routing space is also determined by another
factor. The less a certain order between operations is required, the more transitions from one
station to another are possible . The routing space will increase correspondingly . Control in an
'orderless' situation, in terms of process plans, requires extensive memory capabilities to keep
track of batch history . Given the characteristics of agents, they are less suitable for such an
orderless situation .

For the same reason of lack of memory capabilities, agent based systems cannot cope with
situations in which it might be more favourable to group operations and have them performed
at one machine. Agents have a quite myopic view, which might lead to suboptimal routings .

Model transparency
The transparency of the model is enlarged by distributing the various functions over various
processes . Each process has its own task . If information is needed from other processes to fulfil
the assigned task, the process communicates via clearly defined communication channels with
other processes. The negotiation protocol is divided into various elementary tasks . It is not easy
to obtain a good view of this protocol . Design changes in a process necessitate the
reconsideration of the implementation of the negotiation protocol in other processes .
Complications as a consequence of these changes require a good overview of the parallel
processes .

5 .2 The formalism x
The formalism x has been chosen for the simulation of an agent based control system of the
model factory because of its flexibility and simplicity . The language itself enforces hardly any
restrictions in the implementation of the models . However, in x only fixed communication
channels are possible, so that an agent can not be created but has to be `statically' modelled in

Modelling of an agent based control system for a model factory with the specification language x 61

the system . Dynamic execution of a job agent is therefore not possible (Coenen, 1995) .
Especially this restriction has lead to negotiation among workstation agents rather than among
job agents and workstation agents .

The basic structure of x is quite clear. The syntax and structure of the language are easy to
learn. The mathematical background, however, is hard to see through . Constructions such as
`delta 0' may have their origin in this mathematical basis, but understanding their necessity
requires probably more insight in the semantics of guarded command languages .

The tasks that have to be carried out are distributed over various processes, which simplifies
the structure of the processes . However, this does not guarantee the transparency of the model .
After all, modelling is an art (Rooda, 1996) .

Modelling (in x) necessitates to make thoughts explicit . These (often) simple thoughts might
result in complex code . This could be caused by more complex presuppositions that form the
basis of the thoughts, or because of inexperience of the modeller .

A particular strong feature of x is the following construction :
*[a ? 1 -> . . .
I b ? m ->
c ? n -> .

J

This type of construction almost forces a process to return to the default state, as in Figure 30 .
That is, when a message arrives, a few statements are executed, and the process returns
immediately to the default state, waiting for the next message to arrive through the channels a,
b, or c. Returning immediately means that no communication, synchronisation, or delay takes
place that might need time . Due to the asynchronous nature of the agent based control system,
it is most unwise to execute a few commands and stay in some state; problems might occur
when another message arrives .

m

State X

l1
Figure 30 Returning to the default state

The formalism x does not have a graphical user interface at this moment . Having such an
interface might quicken the modelling time and might increase the overview of the model .

62 Modelling of an agent based control system for a model factory with the specification language x
0

6. References

Brussel, H. Van. (1995) . "Navigation" issues in intelligent autonomous systems . In :
Proceedings of the International Conference on Intelligent Autonomous Systems (IAS
'95), (U. Rembold, R. Dillmann, L.O. Hertzberger, and T. Kanade (Eds .)), pp . 42-52.
IOS Press, Amsterdam .

Cantamessa, M. (1995) . A few notes upon Agent-based Modelling of Manufacturing Systems .
In : Proceedings of the CIM at Work conference, (J.C. Wortmann (Ed .)), pp . 301-317 .

Chi . (1996). Example available at the Chi homepage . URL:
http://www.tue.nl/wtb/wpa/se/chi/exam .htm

Coenen, F.W.J. (1995) . A Heterarchical Control structure for Flexible Production Systems (in
Dutch). M.Sc. thesis, Eindhoven University of Technology .

Jennings, N.R., P. Faratin, M .J. Johnson, P . O'Brien, and M .E. Wiegand . (1996) . Using
Intelligent Agents to Manage Business Processes . In : Proceedings of the First
International Conference on the Practical Application of Intelligent Agents and Multi-
agent Technology (PAAM96), pp. 345-360 .

Mortel-Fronczak, J .M. van de, J .E. Rooda, and N .J.M. van den Nieuwelaar . (1995) .
Specification of a Flexible Manufacturing System Using Concurrent Programming .
Concurrent Engineering: Research and Applications, Vol . 3, No. 3, pp . 187-194 .

Rooda, J.E. (1996) . The Modelling of Industrial Systems . Uncorrected preliminary version,
lecture notes, Eindhoven University of Technology .

Smith, R.G. (1980) . The Contract Net Protocol: High-Level Communication and Control in a
Distributed Problem Solver . IEEE Transactions on Computers, Vol. C-29, No . 12, pp .
1104-1113 .

Timmermans, P .J.M . (1993a). Modular Design of Information Systems for Shop Floor Control .
PhD Thesis Eindhoven University of Technology .

Timmermans, P. (1993b). Control architectures and modular information systems : a
comparative experiment . In : Proceedings of the international conference on Advances
in Production Management Systems (APMS '93), (I.A. Pappas and I.P. Tatsiopoulos
(Eds.)), pp. 387-394 . Elsevier Science Publishers .

Upton, D.M., M.M. Barash, and A.M . Matheson . (1991). Architectures and auctions in
manufacturing . International Journal of Computer Integrated Manufacturing, Vol. 4,
No. 1, pp . 23-33 .

Wiendahl, H .-P., and V. Ahrens. (1995). Knowledge-Based Support for Planning and Control
in Distributed Production Systems . In : Proceedings of the IFIP 5.7 Working
Conference on Managing Concurrent Manufacturing to Improve Industrial
Performance, pp. 429-443 .

Modelling of an agent based control system for a model factory with the specification language x 63

Z, y,Fpgets, A.J.R ., H.J . Pels, R.L .J . Schrijver, and R.J. van den Berg . (1996) . An agent based
control system for a model factory. In: Proceedings of Advances of production
management systems (APMS96), (N. Okino, H. Tamura, and S . Fujii (Eds .)), pp. 293-
298 .

64 Modelling of an agent based control system for a model factory with the specification language x

Eindhoven University of Technology
Graduate School of industrial Engineering and Management Science
Research Reports (EUT-Reports)

The following EUT-Reports can be obtained by writing to :
Eindhoven University of Technology, Library of Industrial Engineering
and Management Science, Postbox 513, 5600 MB Eindhoven, Netherlands .
The costs are HFL 5 .00 per delivery plus HFL 15 .00 per EUT-Report (unless
indicated otherwise), to be prepaid by a Eurocheque, or a giro-payment-
card, or a ttansfer to bank account number 52 .82 .11 .781 of Eindhoven
University of Technology with reference to "Bibl .Bdk", or in cash at the
counter in the Faculty Library .

20 LATEST EUT-REPORTS

EUT/BDK/88 Modelling of an agent based control systems for a model factory
with the specification language Chi Arian Zwegers, Raymond
Schrijver, Angel Santana Alguacil

EUT/BDK/87 Managing the strategic process : the impact of
national/corporate culture on the strategic behavior of
European MNC's Rajesh Kumar, Jan Ulijn, Mathieu Weggeman,
Robert van der Ven

EUT/BDK/86 Dealing with risk : beyond gut feeling : an approach to risk
management in software engineering F .J. Heemstra,
R .J . Kusters, R. Nijhuis, Th .M .J . van Rijn

EUT/BDK/85 The development of an incident analysis tool for the medical
field W . van Vuuren, C .E . Shea & T .W . van der Schaaf

EUT/BDK/84 Operations management and financial management information
systems : a design approach for infinite and finite planning
systems P .E .A. Vandenbossche

EUT/BDK/83 Gordian project : final report July 1996 R .J . van den Berg,
A .J .R . Zwegers

EUT/BDK/82 Incidents in accident and emergency & anaesthesia
Wim van Vuuren

EUT/BDK/81 Dada en adviseren geeft dadaviseren Matthieu Weggeman
EUT/BDK/80 Critical success factors in developing 'accepted control loops'

Harris van Tuijl
EUT/BDK/79 Organisatie-diagnose via de kwaliteitsincidenten methode

J .D . van der Bij, T .W . van der Schaaf, P .M. Bagchus
EUT/BDK/78 Kwaliteitsmanagement in de gezondheidszorg : een onderzoek naar

huidige ontwikkeling en onderzoeksbehoeften in ziekenhuizen
T . Vollmar en J .D . van der Bij

EUT/BDK/77 Het ene artikel is het andere niet! : een onderzoek naar de
problemen omtrent de slechte afstemming tussen
artikelstamgegevens in de levensmiddelenbranche B . Vermeer

EUT/BDK/76 Wegtransport : vitaal voor economie, welvaart en welzijn
J .P .M . Wouters e .a .

EUT/BDK/75 Diagnosing the production organisation of SMES M.J . Verweij
EUT/BDK/74 Describing, analysing and designing with the production

description language M .J . Verweij
EUT/BDK/73 Purchasing's development role : the internal and external

integration of purchasing in technological development
processes : intermediate report I J.Y .F . Wynstra

EUT/BDK/72 De problemen van hergebruik gezien vanuit de
stofstromenproblematiek A .J .D . Lambert

EUT/BDK/71 Problemen en knelpunten bij gebruik van MRP in de praktijk :
onderzoeksrapport M .J . Euwe

EUT/BDK/70 De groothandel is dood . Leve de groothandel! : een
branchegericht onderzoek naar de toekomst van de groothandel en
de rol van informatie technologie M .i . Euwe

EUT/BDK/69 Methodologies for information systems investment evaluation at
the proposal stage : a comparative review
Th .J .W . Renkema, E .W . Berghout

Eindhoven l1{ 4versi#y o# Té~,1an,,i,_,-jy
Faculty of Téchoo#ogy Matag gerrrocoC

P.O. box 513
a66:tl MB Eindhoven

"The Netherlands
..Phoqe a-37 40 247 2$73

s.

I

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36
	page 37
	page 38
	page 39
	page 40
	page 41
	page 42
	page 43
	page 44
	page 45
	page 46
	page 47
	page 48
	page 49
	page 50
	page 51
	page 52
	page 53
	page 54
	page 55
	page 56
	page 57
	page 58
	page 59
	page 60
	page 61
	page 62
	page 63
	page 64
	page 65
	page 66
	page 67
	page 68
	page 69
	page 70
	page 71
	page 72

