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Abstract

The problem of simultaneous (partial) feedback linearization and input-output lin
earization for SISO nonlinear control systems is considered. It is shown that the problem
of existence of a linear subsystem of a certain dimension may be reduced to a well-known
problem from real algebraic geometry.

1 Introduction and problem statement

In this paper we consider a smooth SISO nonlinear control system ~ of the form

~ {± = j(x)+g(x)u
y = h(x)

,x E JRn, u E JR
,y E JR

(1)

around a point Xo E JRn. Further, consider a linear SISO system :E of the form

,~ E JRn, it E JR
,TfEJR

(2)

where n :::; n. We will call :E a (linear) subsystem of ~ around Xo if for ~ around Xo there exist a
regular static state feedback Qs : u = a(x)+.B(x)v and new coordinates x(x) = (Xl(X),X2(X))
such that in the new coordinates x( x) the system ~ 0 Qs around Xo takes the form

(3)

In this paper we answer the question whether, given n E {1, .. " n}, the system ~ has a con
trollable linear subsystem of dimension n around xo. Note that if ~ has a controllable linear
subsystem around Xo, then around Xo one may partially feedback linearize ~ by means of
regular static state feedback and coordinate transformation, while at the same time achieving
a linear input-output behavior. In this respect the problem considered in this paper may be
seen as a combined (partial) feedback linearization problem and input-output linearization
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problem. The problem offeedback linearization was first solved independently in [10],[8]. In
[14], the maximal feedback linearizable subsystem of a nonlinear control system was charac
terized. The problem of input-output linearization was first tackled in [13] (see also [11]).
For a further overview of the literature on (partial) feedback linearization and input-output
linearization we refer to [12],[15] and the references therein.

The problem considered in this paper has received some attention in the literature. In [3] the
question whether a MIMO system has a linear subsystem of dimension n has been addressed.
In [9], SISO systems were studied, and sufficient conditions were given for the existence of a
linear subsystem of dimension larger than the relative degree. In [19], the authors character
ized for MIMO systems the maximal linear subsystem after an input-output linearizing static
state feedback has been applied.

The organization of the paper is as follows. In the next section we will introduce some nota
tion, concepts and results that will be used in the rest ofthe paper. In Section 3 necessary and
sufficient conditions for the existence of a controllable linear subsystem of a given dimension
will be derived. Starting from these conditions, it will be shown in Section 4 that the problem
under consideration may be reduced to a well known problem from real algebraic geometry.
In Section 5, we give an example, and in Section 6 some conclusions are drawn.

2 Preliminaries

2.1 Relative degree of one-forms

In this subsection we give a differential-geometric treatment of the relative degree of one
forms. The concept of relative degree of a one-form was introduced in [2] in an algebraic
framework. Define the manifold Mo := IRn with local coordinates x, and the manifolds
Mk:= Mk-l X IR with local coordinates (x,u, ... ,u(k-l») (k = 1, .. ·,2n+ 1). Clearly, Mk
is an embedded submanifold of Ml (k = 0"", 2nj f = k +1"", 2n +1), with the natural
embedding ikl : Mk - Afl defined by

ikb(X U ••• u(k-l») - (x u ... u(k-l) 0 ... 0)
(. ", -", ", (4)

Let =k denote the codistribution span{dx} on Mk (k = 0,···,2n+ 1). On M 2n+l, we define
the extended vector field

a 2n a
r:= U+gu)-+ Lu(i+l)-.

ax. au(t)
t=O

(5)

For a one-form w on Mk (k = 0, ... , n +1), we define w(l) on M2n+l by

w(l):= .c}e«ik2n+d.w ) (w E Mkjk = O, .. ·,n+ 1ji = 0, .. ·,2n+ 1- k) (6)

Then w(l) may be interpreted as a one-form on on Mk+l, in the sense that

(ik+l2n+l).(ik+l2n+d·w(l) = w(l) (w E Mkjk = 0,···,n+1jf = 0," ·,2n+1-k)(7)

Let w E =k (k = 0" .. , n), and assume that there exists an f E {1,· .. , n} such that w(l) ~

=2n+l' Then the smallest such f is called the relative degree of w, to be denoted by Tw • If
for all f E {1, ... , n} we have that w(l) E =2n+b we define Tw +00. For a function 4>
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satisfying d4> E 3k, we define its relative degree by T4J := Td4J. Define the codistributions 1tt
(k = 1 ... n' £ = k - 1 ... 2n + 1 - k) by, " "

1tt:={wE3lITw~k} (8)

Using (7), it may then be shown that 1t1 may be identified with 1tZ-t, in the sense that

(ik-ll)*( ik-ll)*1tt = (ik-ll)*1tZ-1 (k = 1, ... , nj £= k - 1, ... , 2n +1 - k) (9)

We further define the codistribution 1t~ on Mn by

1t~ := {w E 3 n I Tw = +oo}

Next, define

1tk:= (ik-12n+d*1tZ-1 (k = 1,···,n)

We then have the following properties (for a proof, see (mutatis mutandis) [2]).

(10)

(11)

(12)

Lemma 2.1 Let Xo E IRn be given, and assume that the codistributions 1tk (k E {I", ., n, oo})
have constant dimension around (xo, 0"",0). Then around Xo these codistributions have the
following properties.

(i) 1t1 ::> 1t2 ::> ••. ::> 1tn ::> 1t00 •

(ii) 1t00 is integrable.

(iii) ~ is strongly accessible if and only if1too = {O}.

(iv) 1tk = {w E 1tk-l I ((ik-22n+d*w)(I) E 1td (k =1,,,,, n).

(v) 1t00 = {w E 1tn I ((in- 12n+d*w)(I) E 1tn }.

(vi) Define

(J := n + 1 - dim(1too )

Then

dim(1tk) = n +1- k (k = 1", ',(J)

and

1tk = 1t00 (k = (J, ••• , n)

(vii) Let AE 1t(1-1 \1t00 • Then we have for k E {I", .,(J -I}:

1tk =1t00 EB span{((in_22n+d*A)U~) 1£= 0,,' ',(J -1- k}

3
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2.2 Parametrized post compensated system

In the sequel, the notion of a parametrized post compensated system will be of key importance.
In this subsection we introduce this notion, and give some properties. Consider a smooth SISO
system ~ of the form (1), and let d E IN be given. Let SI,"', Sd be parameters that take
their values in JR. We then define a parametrized post compensated system ~P(s},"" Sd) by

± f(x)+g(x)u
.il = Z2

(17)

d
.id h(x)- L:SkZk

k=1

Similarly to what has been done in the previous subsection, one may define a sequence of
parametrized codistributions 1tk(S}"", Sd) for ~P(s},"" Sd). Define M := M2n+}, where
M2n+l has been defined in the previous subsection, and define MP := JRn x JRd x JR2(n+d)+I
with local coordinates (x, z, u,"', u(2(n+d))). Define the embedding i : M -+ MP by

i(x u ... u(2n))._ (x °U ••• u(2n) °... 0)", .-, ", ",

Further, let B, BP denote the codistribution span{dx} on M and MP respectively. For
~P(s},"" Sd), we define the codistributions

1tk := i*1tk (k = 1,···,n)

It then follows from the form of ~P(s},· .. , Sd) that

VS1 ,.··,SdER VkE{I,. ..,n} 1tk C 1t~(s}, ... , Sd)

VS1 "",SdER VkE{n+l, ...,n+d,oo} 1t~ C 1t~(s}, .. "Sd)

VS1 ,.··.SdER VkE{I,. ..,n} 1t~(SI,···,Sd) nBP = 1tk

VS1 "",SdER VkE{n+l •...•n+d.oo} 1t~(s}, ... , Sd) n BP = 1t~

(18)

(19)

(20)

(21)

(22)

(23)

We now show that the codistributions 1t~(SI'" ',Sd) (k = 1,"',0') may be parametrized in
a polynomial way. Let S denote the ring of smooth functions of (x, u,"', u(2n)), and define
the polynomial ring n := S [SI , ... , Sd].

Lemma 2.2 Consider the parametrized post compensated system ~P(s},' .. , Sd) and the se
quence of parametrized codistributions 1t~(s}, .. 'Sd) (k = 1"",0'), where 0' is defined in (13).
Let xo E JRn be given, and assume that the codistributions 1tk (k = 1,"" n) have constant
dimension around (xo, 0"",0). Let.x E 1tn\1too satisfy

(in-12n+I)*(in- 12n+I)*.x =.x
Define r:= rho Then around (xo,O,"',O) we have that

dim(1t~(s},'''' Sd)) = dim(1tk) +d (k = 1,"',0')

4
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and there exist <Pkf E 'R (k = 1", ·,d; l = 0", ',(7 - T - d - 2 + k) such that

1i1(st, ... , Sd} =1i~ EEl span{i.Wk(St,···, Sd} - dZk I k = 1,,'" d}
(26)

(k=I,"',(7)

where
u-r-d-2+k

Wk := E <PkfA(f)
f=O

(27)

Proof Equality (25) follows straightforwardly from Lemma 2.1 and (20)", ,,(23). It then
follows from (21),(23),(25) that there exist parametrized one-forms Wk(S}," "Sd) E 3 P (k =
1, ... , d) such that

1i~ (s}, ... , Sd} = 1i~ EEl span{Wk(S}' ... , Sd} - dZk Ik = 1,''''d} (28)

From Lemma 2.1. (i) and (20),(22),(28) it then follows that

1i~(Sl"'" Sd} = 1i~ EEl span{wk(s}'"" Sd} - dZk I k =1"", d}
(29)

(f= 1,''',(7)

What remains to be shown is that Wk = i.Wk (k = 1"", d), where the Wk are of the form
(27). We give the prooffor d = 2. The prooffor d > 2 is analogous. Since Th = T, there exist
aD, ..• , au-l-r E S such that au-l-r =/: 0, and

u-l-r

dh = L afA(f)
f=O

From Lemma 2.1. (iv) and (29) it follows that

61 - dZ I = 61 - W2 + (W2 - dz2) E 1i~_1 (s}, S2}

and

(30)

(31)

(32)
Sl(Wl - dzI) - S2(W2 - dz2) E 1i~_1 (st, S2)

Let SP denote the ring of smooth functions of (x, z, u,···, u(2(n+d»). With Lemma 2.1. (vii) it
follows from (31),(32) that there exist parametrized functions Ih(s},S2},.B2(St,S2} satisfying
.Bl(St,S2},.B2(St,S2} ESP, (VSt,S2 E lR) and parametrized one-forms 1I"1(St,S2},1I"2(St,S2}
satisfying 11"1 (s}, S2}, 1I"2(St, S2} E 1i~, ('Is}, S2 E lR) such that

61 = W2 + .Bl(i.A) + 11"1

62 = dh - SlWl - S2W2 +.B2(i.A) + 11"2

(33)

(34)

From (33),(34) it follows in particular that T W1 = T + 2, TW2 = T + 1, and hence there exist
parametrized functions ¢>kR.(S},S2} (k = 1,2; f = 0,"',(7 - 4 - T + k) and parametrized
one-forms 111 (St, S2), 112(S}, S2} such that

VS1 ,S2ER 111(S},S2},1]2(Sl,S2} E 1i~ (35)
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u-4-r+k

Wk = L ~H(i*,\)(l) + 17k (k = 1,2)
[=0

Comparing (30),(33),(34),(37) we then obtain:

~1O - ~20 = /31

~1l + ~1l-1 - ~2l = 0 (l = 1" . ',0' - 3 - r)

~lu-3-r - ~2u-2-r = 0

From (40),(44) it follows that

~lu-3-r = ~2u-2-r = Qu-l-r ESC R

Equalities (43),(45) then give

Using an induction argument, it then follows from (39),(42),(45),(46) that

~k[ER (k=I,2jl=I,"',0'-4-r+k)

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)

(47)

It further follows from (38),(41) that ~1O' ~20 are arbitrary. Together with (47), this estab
lishes our claim. _

3 Necessary and sufficient conditions

In this section we derive necessary and sufficient conditions for the existence of a linear
subsystem of dimension fi E {I" .. , n} for a strongly accessible SISO system E. We consider
a smooth SISO system E of the form (1) around a point Xo E IRn. We assume throughout
that the relative degree r := rh of h is well-defined around Xo, and that the codistributions 1tk
(k E {I"", n, oo}) have constant dimension around Xo. We start with some (rather trivial)
observations.

Lemma 3.1 Consider a SISO system E of the form (1) around Xo. Let n E {I"", n} be
given. Then E has a linear subsystem of dimension fi around Xo only if fi ~ r.
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Proof Follows immediately from (3) and the fact that the relative degree of h is invariant
under regular static state feedback and coordinate transformations. _

Lemma 3.2 Consider a S1S0 system E of the form (1) around xo. Then E has a linear
controllable subsystem of dimension r around xo.

Proof As is well known (see e.g. [12],[15]), the differentials dy(k) (k = 0, ... , r -1) are linearly
independent around xo, and y(r) = a(x) +b(x )u, where b(x) =J 0 around xo. The result then
follows by defining Xlk = y(k-l) (k = 1"", r) and v := a(x) +b(x )u. _

We next state and prove our main results.

Proposition 3.3 ConsideraS1S0systemE of the form (l)aroundxo. Letii E {r+1,···,n}
be given, and define d := ii - r. Then E has a controllable linear subsystem of dimension ii
around Xo if and only if around Xo there exist a function </> : IRn -+ IR and al, ... , ad E IR
such that

and

rrjl = ii

d

h = L ak.c}-l</> + .c;</>
k=l

(48)

(49)

Proof (necessity) Assume that E has a controllable linear subsystem ~ of dimension ii. Since
~ is controllable, one may assume without loss of generality that the matrices A, iJ in (2)
are in Brunovsky canonical form. Let Ci (i = 1" .. , n) denote the entries of C in (2). Since
the relative degree of h is invariant under coordinate transformations and regular static state
feedback, we have that Cd+l =J 0, and Cd+2 = ... = cn = O. Define

Ck
ak:= -_- (k = 1, .. ·,d)

Cd+l

and

</> := Cd+! xn
We then have

(50)

(51)

h=
d+l d+l d
" - - " - £k-l - " -.EL£k-l", + I'd '"LJ ckXlk = LJ ck J xn = LJ Cd 1 J 'f' LJ'f' =
k=l k=l k=l +

(52)

which establishes (49). Further, it follows from the fact that A, iJ in (2) are in Brunovsky
canonical form, that

rx1k =ii-k+1 (k=1,· .. ,n)

7
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which establishes (48).
(sufficiency) Assume that there exist a function </> : JRn - JR and al,' . " ad E JR satisfying
(48),(49). Since the relative degree of </> is finite, we have that the differentials d</>, .. " d£j-l</>
are independent. Further, we have

£1</> = a(x) +b(x)u (54)

(55)

where b(x) 'f; O. Defining Xlk := £1-l </> (k = 1,,,,, n) and v ;= a(x) + b(x)u, we then obtain
that I; has a linear controllable subsystem of dimension n. •

Remark 3.4 The constants al, .. " ad E JR appearing in the formulation of Proposition 3.3
may be given an interpretation in terms of the zeros of the linear subsystem in the following
way. Note that the transfer function of the linear subsystem constructed in the sufficiency-part
of the proof of Proposition 3.3 is given by p(s) / Sfi, where

d

pes) = sd +L aksk- l

k=l

Conversely, using the same kind of arguments as in the proof of the necessity-part of Propo
sition 3.3, it may be shown that the existence of a controllable linear subsystem of dimension
n, where the numerator of the transfer function is given by (55), implies the existence of a
function </> ; JRn _ JR satisfying (48),(49).

From Proposition 3.3 we obtain the following upper bound for the maximal dimension of a
controllable linear subsystem of I;.

Corollary 3.5 Consider for I; around XQ the sequence of codistributions 1tk, and let 1t'k
denote the maximal integrable codistribution contained in 1tk (k = 1"", n). Assume that 1t'k
has constant dimension around XQ (k = 1"", n), and define

k:= max{k E {1,···,n} 11t'k 'f; {On

Assume that I; has a controllable linear subsystem of dimension n around XQ. Then

(56)

(57)

Proof Assume that I; has a controllable linear subsystem of dimension n. It then follows
from Proposition 3.3 that there exists a non-zero exact one-form w E 1tfi' This implies that
1t~ 'f; {O}, which establishes (57) •

Remark 3.6 In fact, it may be shown that k defined in (56) is the dimension of the maximal
linearizable subsystem of I; around XQ. In this respect, Corollary 3.5 is a rephrasement of the
main result of [14].
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Now consider the following set of parametrized PDE's:

d

£14> = h - L sk£1-1 4>
k=1

(58)

(59)

Proposition 3.7 Consider a 8180 system E of the form (1) around XQ. Let n E {r+ 1, .. " n}
be given, and define d := n - r. Then E has a controllable linear subsystem of dimension n
around XQ if and only if there exist all"', ad E JR such that the set of PDE's (58), (59), with
Sk = ak (k = 1", ',d), has a solution around XQ.

Proof (necessity) Assume that E has a controllable linear subsystem of dimension n. Then
clearly there exists a 4> such that (58), with Sk = ak, holds. Further, it follows from (48) that

£g£14> = 0 (k = 0, ... , n - 1) (60)

which establishes (59).
(sufficiency) Assume that there exist all"', ad E JR such that the set of PDE's (58),(59),
with Sk = ak has a solution. Then clearly (49) holds. To establish (48), we first show by
induction that

£g£1H 4> = £g£)h = 0 (i = 0,,,,, r - 2)

For i = 0 we have:

(61)

(62)
d

£g£14> (~) .eg(h - L ak.e1-1 4» (~) .egh = 0
k=l

and hence (61) holds for i = O. Next, assume that (61) holds for i = 0,"',1) -1, where
I) E {1,· ",r - 2}. then

d

£g£1+ 11 4> (~) .eg.e'f(h - L ak.e1-1</» (~) .eg£'fh = 0
k=1

which establishes (61). Further, we have by definition of r,

d

0:1 £g£,/lh = £g£,/I(.e14> +L ak.e1-1 </» (~) £g£j-l4>
k=1

From (61),(64) it then follows that (48) holds.

(63)

(64)

•
From Propositions 3.3 and 3.7 it follows that the question whether E has a controllable
linear subsystem of dimension n E {r +1, .. " n} is equivalent to the question whether there
exist parameter values such that the parametrized set of PDE's (58),(59) has a solution.
The following theorem gives the integrability conditions for these PDE's in terms of the
parametrized post compensated system EP(Sl,"" Sd} for a strongly accessible system E.
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Theorem 3.8 Consider a strongly accessible SISO system of the form (1) around XQ. Let
n E {r+1, ... , n} be given, and define d := n- r. Consider the parametrized post compensated
system ~P(Sll" ., Sd} and the sequence of parametrized codistributions 1l~ (Sll ..• , Sd). Then
~ has a controllable linear subsystem of dimension n around XQ if and only if there exist
aI, ... , ad E IR such that around XQ we have

(65)

Proof (necessity) Assume that ~ has a controllable linear subsystem of dimension n. By
Proposition 3.3, there exist all"', ad E IR and a function </J : IRn ~ IR such that (48),(49)
hold. For the post-compensated system ~P(all"" ad}, we consider new coordinates (x, ~),

where

~k := Zk - £1-1</J (k = 1,,, ·,d)

We then have

• k
~k = Zk+I - £j</J = ~k+I (k = 1", ·,d -1)

and

d d d
~d = (h - L akzk) - (h - L ak£1-1 </J) = - L akek

k=l k=l k=l

From (67),(68) it follows that

rek = +00 (k = 1,· .. ,d)

From Lemma 2.1. (i) and (21),(23) it then follows that

1l~(al,' . " ad} = 1l~ EfJ span{d6,"" d~d} =

(66)

(67)

(68)

(69)

(70)
1l~+I EfJ span{d6,"" d~d} = 1l~+1 (all"', ad)

which establishes (65).
(necessity) Assume that there exist all' .. , ad E IR such that (65) holds. It then follows from
Lemma 2.2 that there exist one-forms WI, ••• , Wd E span{dx} such that

and

dWi E span{11" 1\ P 111", P E span{dx, du,' ", du(2n)}} (i = 1"", d)

From (71), Lemma 2.1. (v) and the form of ~P(aI,· .. ,ad} it follows that

Wi = Wi+I (i = 1, ... , d - 1)

and

d

dh = Wd +L akwk
k=l

10
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(75)

Combining (73) and (74), we obtain

d
dh = w~d) +l: akw~k-I)

k=I

Analogously to what has been done in the proof of Proposition 3.7, it may be shown that

(76)

We next show that WI is exact. From Lemma 2.1.(ii) we know that 1i~(at,·· ·,ad} is inte
grable. By the Frobenius Theorem, this implies in particular that

0= d(WI - dzI) /\ (WI - dzI ) /\ ... /\ (Wd - dZd) =
(77)

dWI /\ (WI - dzI ) /\ ... /\ (Wd - dZd)

From (72),(77) it then follows that dWI = 0, and hence, by Poincare's Lemma, there locally
exists a function </> : lRn _ lR such that WI = d</>. It then follows from Proposition 3.3 and
(74),(76) that ~ has a controllable linear subsystem of dimension n. •

Remark 3.9 Note that in the necessity-part of the proof of Theorem 3.8, we did not use the
assumption that ~ is strongly accessible. Thus, the existence of at,·· ., ad E lR such that (65)
is satisfied is also a necessary condition for the existence of a linear subsystem of dimension
n when ~ is not strongly accessible. However, it is not a sufficient condition. In fact, it may
be shown that (65) is equivalent to the existence of functions </>, 'l/J : lRn - lR satisfying

d

h = 'l/J +l: ak.c1- I</> + .c;</>
k=I

(78)

(79)

(80)

This raises the question what extra integrability conditions are needed in the case of not
necessarily strongly accessible systems. This remains a topic for future research.

4 Reduction to an algebro-geometric problem

In this section we show that the question whether there exists a linear subsystem of dimension
n > r is equivalent to a well-known problem from real algebraic geometry. For reasons of
clarity of exposition, we first restrict to the case n = r + 1. At the end of the section we
make some remarks about the case n > r + 1. Let Xo E lRn be given, and assume that ~
is strongly accessible around Xo. Further, assume that the codistributions 1ik (k = 1,"" n)
have constant dimension around (xo, 0,,, ,,0), and that the relative degree r := rh of h is
well-defined around Xo. Let A E 1in - {O} be such that (16),(24) hold. Then there exist
ao,"', a n - r E S such that a n - r # 0 and

n-r

dh = l: alA (i)

l=O

11
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Consider the parametrized post compensated system ~P(s}. It then follows from Lemma 2.2
that there exist <PI. En (l = 0"", n - r - 1) such that

n-r-1
Ji~+! (s) = span{ E <Pi(S}>.(i) - dz}

i=O

Define tPo, ... ,tPn-r E n by

tPo := 4>0 + s<po - ao

tPi := 4>i +<Pi-1 +S<Pi - ai (l = 1", " n - r - 1)

tPn-r := <Pn-r-1 - an- r

Let Os denote the zero-function. We now have the following result.

(82)

(83)

(84)

(85)

Theorem 4.1 Consider a strongly accessible 8180 system ~ of the form (1) around Xo. Let
tPo,' . " tPn-r be defined by (83), (84), (85). Then E has a linear subsystem of dimension r +1
around Xo if and only if tPo, ... , tPn-r have a common real zero, i.e.,

(86)

Proof From Theorem 3.8 it follows that E has a linear subsystem of dimension r + 1 if and
only if there exists an a E IR such that Jin+! (a) = Jioo(a}. It is straightforwardly shown that
this is equivalent to the existence of an a E IR such that

d n-r-1 n-r-1
-( L <Pi(a}>.(i)) +a( E <p.e(a}>.(.e») = dh
dt i=O 1.=0

It then easily follows that this is equivalent to (86).

(87)

•
We next show how (86) may be checked by reducing it to the question whether a set of
polynomials in IR[s] has a common real zero. Define e:= col(x, u,···, u(2n») E IR3n+\ and let
v denote the maximal degree in s of the polynomials tPo, ... , tPn-r. Then there exist functions
tP; E S such that

v

tPi(S}(e) = L tP;(e)sk (f = 0"", n - r)
k=O

(88)

Define the (n - r + 1, v + 1)-matrix P(e) with entries Pij{e) := tP{ (e) (i = 0, .. " n - r; j =
0", " v). Further, define for s E IR the vector Vs := col(1, S,' ", Sll). Then the question to
be considered is whether there exists a real solution to the equation P(e)vs == O. Obviously,
there exists a real solution to this equation only if there exists a v E IR II+! - {O} satisfy
ing the equation p(e)v == O. Note that this equation may be extended by the equations
(a / aei(P(e)))v == °(i = 1"", 2n) and equations obtained by taking higher-order partial
derivatives. Consider the following algorithm that performs this extension in a controlled
way. The algorithm was suggested by [18], and is reminiscent of the Structure Algorithm
([12],[15]).

12



Algorithm 4.2

Step 0

Define pI := n - r +1, ql := v + 1, pICe) := pce).

Step k

Define Pk := rankpkCe). There exist an invertible Cpk,pk)-matrix QkCe) and a Cqk,qk)
permutation matrix Rk such that

(89)

•

(90)

where pk is a CPk, qk - pk)-matrix. If either Pk =qk, or pkCO is a constant matrix, we STOP.
Otherwise, define pk+l := C3n +1)Pk, qk+l := qk - Pk, and

(

8Pk )86
pk+l := :

8Pk
86n+l

and go to Step k +1.

It may be shown that Algorithm 4.2 terminates in a finite number, say k* of steps. We have
the following results.

Lemma 4.3 Assume that qk* - Pk* > O. Let for k = 1"", k* the Cqk,Pk)-matrix ilk and the
Cqk, qk - Pk)-matrix ilk be such that

R k = (ilk ilk) Ck = 1,···,k*)

and define the matrices

SkCO := ilk - ilk pkCO Ck = 1,"', k*)

Then the matrix SCe) defined by

Sce):= SICe)S2Ce)·· .Sk*ce)

is constant and left-invertible.

Proof See Appendix.

(91)

(92)

(93)

•
Lemma 4.4 Assume that there exists a v E JRI/+l - {O} such that Pce)v = O. Define the
matrices

TkCe) := Slce) ... SkCe) Ck = 1,,,,, k*)

Then there exist iik E JRqk - Pk - {O} Ck = 1, ... , k*) such that

v =TkCe)ri Ck = 1, .. ·,k*)

13
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Proof See Appendix. •
Proposition 4.5 There exists a v E lR lI+! -{O} such that P({)v == 0 if and only if qP -PkO >
O. Moreover, if lO - PkO > 0, then

{v E lR lI
+! IP(Ov == O} = ImS (96)

Proof Assume that qk
O

- PkO = O. Then it follows from Lemma 4.4 that v = 0, which gives a
contradiction. Conversely, if qk

O
- PkO > 0, it immediately follows from Lemma 4.4 that there

exists a v E lR lI+! - {O} such that P({)v == O. We next prove (96). It follows from Lemma
4.4 that

{v E lR lI+! IP({)v == O} C Imrko
({) = ImS

Conversely, let v ElmS, say v = Sv, where v E lR
qkO

-PkO• We have

QI({)P({)SI(e) = QI(e)pl(O(RI - illPI(e)) =

QI(O [( pIJe) ) - ( ~ ) PI(O] = 0

and hence P(OSI(O = O. This gives

p(e)v = P(OSv = p(e)SI(e)·· ·Sp(Ov == 0

which yields

ImS C {v E lR lI+I Ip(e)v == O}

Together with (97) this establishes (96).

(97)

•
We now return to our original problem. Assume that qk

O
- PkO > 0, and let the matrix S be

defined by (93). Let P be a right-invertible matrix such that ImS = KerF, and define the
polynomials PI, ... ,PqkO E lR[s] by

11+1

pieS) := L Pijsj-l (i = 1", .,qk
O

)

j=l

It then follows from Proposition 4.5 that a E lR satisfies (86) if and only if FVa = 0, i.e., if
and only if a is a common zero of the polynomials Pi (i = 1, .. " qP). Let (Pb' . " PqkO) denote
the polynomial ideal in lR[s] spanned by Pb'" ,PqkO. Since lR[s] is a principal ideal domain,
there exists a polynomial p E lR[s] with the property that (PI,' . " PqkO) = (p) (see e.g. [17]).
Thus, we have reduced our problem to the problem whether a monovariable polynomial has
a real root. This is a well-known problem from real algebraic geometry, that has received
attention since the times of Newton and Descartes. Obviously, there exists a real root when
the polynomial p is of odd degree. When p is of even degree, one can check whether p has a
real zero (in fact one can even determine the number of real zeros) using the so called Newton
sums and Hankel forms associated with the polynomial. We refer to [6] for details on this
topic.
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In case one is trying to answer the question whether ~ has a real subsystem of dimension
n > r + 1, one can proceed roughly in the same way as above. In this case, it may be
shown that there exists a linear subsystem of dimension n if and only if a set of polynomials
1f;o,"',1f;"Y E 8[S1,"" Sd], where d := n- r, has a common real zero. Applying the same kind
of algorithm as indicated above, the problem may then reduced to the problem whether a
set of polynomials iit,· .. ,pq E JR[S1,"" Sd] has a common real zero. This problem has first
been solved by Tarski ([16]). Later on, the problem has been considered by Collins ([4], see
also [1],[5]) by using the concept of Cylindrical Algebraic Decomposition (CAD) of JR1/,. By
now, MAPLE-implementations of the algorithm for Cylindrical Algebraic Decomposition are
available. A drawback, however, is that the complexity of existing algorithms is doubly expo
nential. Further, with the method of CAD one can also tackle problems in which polynomial
equalities as well as polynomial inequalities playa role. By using the polynomial inequalities
obtained from the Routh-Hurwitz test, it follows from Remark 3.4 that this also allows to
check whether there exist linear subsystems with stable zero dynamics.

5 Example

Consider on {x E JR3 I X2 ~ O} the nonlinear SISO system ~ given by

(98)

(99)

We have r := rh = 1, and hence ~ has a linear subsystem of dimension 1. We next check
whether ~ has a linear subsystem of dimension 2. To this end, we consider the post compen
sated system ~P(s). Define the one-forms W1,W2,W3 by

WI .- dx~

W2 := d(XIX3)
W3 := d(XIX2)

The one-forms WI and W2 satisfy

For ~P(s) we find

1{~(s) = span{(s + I)WI - (s +2)W2 - dz}

(100)

(101)

From (99),(100),(101) it follows that a E JR satisfies 1{~(a) = 1{~(a) if and only if it satisfies
a2 +3a +2 = 0, and hence a = -1 or a = -2. We have

(102)

Defining new coordinates Xl := X~, X2 := 1t(x~) = 2x~ - XIX2, X3 := X3, and choosing u in
an appropriate way, we then obtain the form (3) for ~. We further have

1{~(-1) = span{ -W2 - dz}
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(104)

(105)

If we now define new coordinates Xl := XIX3, X2 := 9t(XIX3) = -XIX2 +XIX3, X3 := X2, and
choose u in an appropriate way, we also obtain the form (3) for I:.

We next check whether I: has a linear subsystem of dimension 3. Considering the post
compensated system I:P(8b 82), we obtain

1t~(8b82) = span{W2 - WI - dZb (82 - 2)(W2 - WI) - WI - dzd

It then follows from (99),(100),(104) that 1t~(aba2) = 1t~(aba2) if and only if

a2 = 3
a~ + a2 +al - 2 = 0

a~ - a2 - 2 = 0

Clearly, the first and last equation in (105) are contradictory. Hence I: does not have a linear
subsystem of dimension 3. Note, however, that by choosing new coordinates Xl := X~ - XIX2,

X2 := 2x~ - XIX3, X3 := 4x~ - XIX3 - XIX2, and by choosing u in an appropriate way, we may
feedback linearize the state equations of I:.

6 Conclusions

In this paper we have characterized the linear subsystems of a nonlinear SISO system. Further,
it has been shown that the existence of a linear subsystem of a given dimension can be checked
by reducing the problem to a well known problem from real algebraic geometry, that can be
tackled by means ofthe so called Cylindrical Algebraic Decomposition (CAD). A drawback of
using CAD is that the complexity of existing algorithms is doubly exponential. This brings up
the question whether the use of CAD could be circumvented. One way to do this might be to
investigate whether or not the polynomial equations obtained have some special (preferably
triangular) structure that can be employed. This remains a topic for future research. A more
practically oriented way is to come up with an "educated guess" of the possible zeros of a
linear subsystem by using the linearization of the system around an equilibrium point. This
will be the topic of a forthcoming paper ([7]). In this paper, we have restricted ourselves on
the one hand to SISO systems, and on the other hand to regular static state feedback. We
expect that an extension of the results in the paper to MIMO systems (using regular static
state feedback) is possible. Also an extension to the regular dynamic feedback case (at least
for square systems having an invertible decoupling matrix) seems possible. This last extension
would be useful in the solution of the model matching problem by means of minimal order
dynamic state feedback. These remain topics for future research.
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Appendix

Proof of Lemma 4.3

Note that Sko (~) is constant. We then have for i = 1"", 3n + 1:

kO 1 k
as = t Sl(~) .. .Sk-l(Oas (~)Sk+l(~)... SkO(~)
a~i k=l a~i

From (92) we have

8SIcSk+l _ _ R"k8PIc Sk+l
8ei - ae;

(106)

(107)

It then follows from (106),(107) and the fact that Sko is constant that S is constant. Since
Rk is invertible, there exists a left-inverse (ilk)- of ilk satisfying

(ilk)- ilk = 0

This gives by (92):

(ilkr Sk(~) = (ilk)- ilk = Iqlc_ plc

(108)

(109)

which implies that Sk(~) is left-invertible. This immediately implies that also S is left
invertible. •

Proof of Lemma 4.4

By induction. First consider the case k = 1. Since pI (~) == 0, we also have

Let vI E IRPl, VI E JRl-Pl be such that

v = illf} + il1vl

Then

(110)

(111)

and hence

VI = -!H(Oii1

From (111) and (113) it then follows that

v = SI(~)Vl
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and hence (95) holds for k = 1. Next, assume that (95) holds for k = 1"", i - 1, where
i E {2,···, k*}. We then have in particular that there exists a 1;£-1 E JR/ such that

Analogously to the proof of Lemma 4.3 it may be shown that

8~i (Tt-2(~)(ki-1- fli - 1Pi-1(~») =

_Ti-2(~)fli-18~~~1(e) (i = 1,···,3n+ 1)

It then follows from (90),(115),(116) that

0== _Ti- 1(Ofli- 1pi(e)i/-1

From the fact hat T i - 2 and fl i - 1 are left-invertible, it then follows that

pi(Ovi- 1 == 0

Let f/ E IRPl, vi E IRql_Pl be such that

vi- 1 = flif/ +kivi

It then follows from (118),(119) that

0== Qi(e)pi(e)Ri ( ~; ) = (~ piJO) ( ~; )

(115)

(116)

(117)

(118)

(119)

(120)

Together with (119) this implies that

vi- 1 = SiCe)vi

Combining this with (115), we conclude that (95) holds for k = i. This establishes (95) for
all k E {1, ... , k*}. •
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