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1 

Introduetion 

In this chapter we provide some background information on the subjects of the thesis. We 
start with a brief introduetion on neural networks. The basic operatien of neural networks 
is explained and their main features are discussed. The advantages of implcmenting neural 
networks in the optical domain are introduced. In contemporary optical neural networks 
the threshold function, needed for neural operation, is often in the electrical domain. 
For applications in all-optical signal processing, it is preferabie to have a1l-optical neural 
operation. An example of such an application in the area of optical telecommunication 
is presented in this chapter. We conclude the chapter by descrihing the organization and 
contents of this thesis. 



2 1. Introduetion 

1.1 Neural Networks 
Many of the inventions of scientists and engineers are inspired by nature. This is certainly 
the case for the concept of artificial neural networks that was inspired by the operation of 
the human brain about half a century ago. The starting point of the field of artificial neural 
networks is generally believed to be 1943. In that year McCu1loch and Pitts [l] proposed 
to use a model of the biologica! neuron as a circuit component to perform computational 
tasks. Since 1943 the field bas gradually matured and much insight bas beengainedon 
the theory and the operating principles of neural networks. Many applications of neural 
networks have been presented. Today half a dozen dedicated scientific journals is devoted 
to the subject and many textbooks (See e.g. Refs. [2]-[5]) have been published. 

1.1.1 Blo-Inspired Computing 

Artificial neural networks consist of a (preferably large) number of simp Ie computing ele
ments called neurons, that are modeled after the human nerve cell. Each neuron receives a 
number of input signals and performs a simp Ie operation on this set of inputs. The output 
of each neuron is fanned out to the inputs of other neurons. 

0 

(b) 

Figure 1.1 Human nerve cell (a) and its model (b). Weighted ( w) input signals are added. 
The resulting sum is compared to a tbreshold as is depicted with the nonlinear, S-shaped 
neural response function in the cell body. 

In Fig. 1.1 a human nerve cell, or neuron, (a) and its artificial equivalent (b) are sketch ed. 
The neuron receives a set of input signals via a number of tentacles or dendrites. At the 
tip of each dendrite the inputsignalis weighted withafactor w, that can be positive or 
negative. All the signals from the dentrites are added in the cell body to contribute to 
a weighted sum of inputs of the neuron. If a weight is positive the corresponding input 
will have an excitatory influence on the weighted sum. With a negative weight, an input 
decreases the weighted sum and is inhibitory. 

In the cel1 body the weighted sum of inputs is compared to a threshold value. If the 
weighted sum is above this threshold, the neuron sends a signal via its output to all con
nected neurons. The threshold operation is essentially a nonlinear response function as is 
indicated in the figure with an S-shaped, sigmoid, curve. 
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The function of a neuron can be described in mathematica] form with: 

(1.1) 

where 0 is the output signa] of the neuron and /1 are the input signals to the neuron, 
weighted with a factor w1. :Fis some nonlinear function representing the threshold oper
ation on the weighted sum of inputs. 

h Io ft L;Wili 0 
I 0 0 -0.5 0 

/0=0 .. 1 1 0 I -0.2 0 
1 1 0 -0.2 0 
1 1 1 0.1 1 

Figure 1.2 A neural implementation of a logical AND function and the corresponding 
truth table including weighted sum of inputs of the neuron. 

The input-output function that is implemented by a neuron depends on the values of 
the weigbts and on the level of the threshold. As an example, the neuron presented in 
Fig. 1.2 can be used to implement a logica] function on two digita1 input signals. With 
the weights set to the values indicated in the figure, the neuron performs a logica! AND 

function as is explained in the accompanying truth table. Only if both input signals are 
active (I; = l, i = I, 2) the weighted sum of inputs will be higher than the threshold level 
T. Note that the threshold level of the neuron in this example is shifted to 0.5 by use of 
a bias input signa] with a constant level 1 and a corresponding bias weight Wb that is set 
to -0.5. By treating the threshold as an extra weight value, the implemented function of 
a neuron is defined by its weights. Setting the weights of the neuron in Fig. 1.2 to, for 
example, { Wb, wo, Wt} = {0.5, -0.7, -0.6} would define a logica! NOR operation. 

1.1.2 Parallel Distributed Processing 

The input-output function of a single neuron is of limited complexity. A number of these 
neurons, however, can be connected to form a neural networkas shown in Fig. 1.3. Such 
a neural network receives an input vector, or pattern, that consists of a set of input signals. 
The collection of neurons that form the network process an input pattem in a highly 
parallel, distributed fashion and can performa complicated computational task. 

Because the computational task is distributed over all neurons of the network, malfunc
tion of one of the neurons will only have a small influence on the performance of the 
network. The same holds for a defective conneetion between two neurons. Because of 
this immunity to small defects neural networks are robust systems. 
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(a) (b} 

Figure 1.3 Two small neural networks. Circles represent neurons, lines repcesent 
weighted connections. Small circles denote input signals and output signals. (a) A two 
layer feedforward neural network, each layer of neurons receives signals from a previous 
layer. (b) A recurrent neural network. The dotted lines represent connections from the 
output of each neuron to the inputs of all other neurons. 

The high degree of parallelism that is maintained throughout the network enables neu
ral networks to solve probieros such as pattem recognition where data is presented in a 
parallel way. As all data is processed simultaneously, neural networks can have a higher 
operation speed as compared to sequentia! computers. 

1.1.3 Learning ·from Examples 

Another feature of neural networks is their ability to learn from examples. Because the 
computationa1 task of a neural network is determined by the weight values of the inter
connections between the neurons, the task can be adapted simply by changing the weight 
values. The process of adapting the weights to perform a given task is called the training 
phase of the neural network. 

One of the strategies of training is to use a supervised learning algorithm. In this type of 
learning algorithm a set of input-output vector pairs, the training set, is needed that repre
seuts the task to be trained. During each iteration of the learning algorithm, a training su
pervisor shows all the example input patterns to the network and records the correspond
ing output patterns. The recorded output patterns are compared to the output patterns of 
the training set and an error value is computed based on this comparison. Iteratively, the 
weights of the network are changed until the error measure is below a predefined mini
mum value and the learning algorithm stops. After the training phase, the neural network 
performs the computational task defined by the input-output pairs of the training set. 
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1.1.4 Why Opties 

In most cases the artificial neurons are just pieces of code on a sequentia! computer and 
the parallelism is only emulated. Applications of these neural networks are numerous. 
Typical applications are in areas where the problem to be solved is of paraHel nature 
and examples of input-output pattems are abundant. Some of these application areas are 
process con trol, data series analysis, stock market prediction, optica! character recognition 
(OCR), speech recognition etc ... Neural network based software is now commercially 
available. Examples are OCR software (OmniPage package by Caere) and creditcard 
fraud detection, which is a special case of data series analysis (Fa/con system by HNC 
Software Inc.). 

Although software implementations of neural networks have proven to be successful, 
neural networks are essentially degraded to just another computing tooi in this approach. 
A clear disadvantage of software implementation is the severe slowdown of operation 
speed. This is due to the fact that the microprocessor of the computer on which the neural 
network program runs calculates the neuron states one by one. Considerable acceleration 
can be achieved by implementing neural networks in dedicated, parallel hardware. Re
cently a number of productsin OCR (OCR-on-chip by Ligature) and speech recognition 
applications (lnteractive Speech chip by Sensory) have become available. 

As the connections in software are virtual, only existing in a computer program, any 
number of connections is possible. When implementing a neural network on a chip, 
however, the number of connections between the neurons will be physically limited. This 
limitation is essentially due to the fact that connections cannot cross each other within 
the same layer on a chip, and consequent1y they need to be separated in one dimension. 
Because the number of layers on a chip is limited, the number of crossing connections 
also is limited. 

Optiescan help to solve this connectivity problem in two ways. As photons only interact 
with matterand not with each other, the light beams that form the connections in an optica! 
neural network can cross each other without problems. Furthermore the rays of light do 
not need to be guided in free space. As a consequence no predefined paths or wires are 
necessary in an optical neural network. This means that all three dimensions in space can 
be used without "soldering". 

Por these reasons much effort is put in optical neural networks since the rnid 1980's. 
For an overview of optica} neural networks see e.g. Refs. [6]-[8}, a collection of papers 
is given in Ref. [9]. 

Optical Threshold 

In most of these optica! neural networks, the threshold operation is in the electrical or 
opto-electrical domain [8]. In these hybrid neural networks opties is used for its massive 
parallelism and input and output data are defined in the electronic domain. 

In application areas where input and output data are defined in the optical domain it is 
beneficia] ifthe threshold function also operates in the optical domain. The delays arising 
from the conversions between the optical and electrical domain can be avoided in this 
way. An example of an application area where data is represented in the optica) domain 



6 1. Introduetion 

is the field of optical telecommunications. In optical telecommunication systems, data 
is send through optical fibers in a digital fashion where a logical I is represented with a 
certain amount of optical power. Thus the input signals to a processing unit in an optical 
telecommunication system are in the optical domain. 

An Application Example 

An example of a signal processing task in an optical telecommunication network is the 
recognition and routing of a data packet in a packet switched network. Figure 1.4 provides 
a schematic view of a packet switched telecommunication network. The figure shows a 
number of connected network routers. Data packets arrive at one of the routers, separated 
in time. 

A 

D 

[D = data packet 
with header 

Figure 1.4 A packet switched telecommunication network. In each network router data 
packets are routed according to their destination address. 

Each packet contains datafora certain destination A, B, C or D. In a header, at the 
beginning of a data packet, this destination is encoded in a bit sequence. The beginning 
of a header is marked with a header detect sequence for synchronization purposes. 

The task of the network routers in this network is to detect the arrival of a packet by 
detecting the header detect sequence and to route a packet according to its destination 
information. This means that the routersin the network should performa pattem detection 
task on the header detect sequence and classify the packets by their destination address. 

The tasks of pattem detection and destination classification are typical neural network 
tasks. As the information is in the optica] domain, an all-optical neural network is desir
able for this type of application. 

1.2 This Thesis 

In this thesis an all-optical neural networkis investigated. All key neural functions, 
weighted summation, connections and threshold operation are implemenled in the op-
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tical domain. The proposed optical neural network uses the longitudinal modes of a laser 
diode as neurons. The outputs of this Laser Neural Network (LNN) correspond to the light 
intensity contained in the longitudinal modes of the laser diode. The inputs to the neural 
network are implemenled by providing controlled optica] feedback to the laser diode for 
each of the longitudinal modes. For this purpose, the laser diode is coupled to an extemal 
cavity in which inputs and weights are implemented by use of a transmission matrix and 
a number of optica} components. The inputs of this LNN are in the optica] transmission 
domain. 

The advantages of the LNN will be further investigated for use in all-optica] signa) 
processing for the application area of optica) telecommunications [I 0]. 

1.2.1 Thesis Objectives and Outline 

The main objectives ofthis Thesis are: 

• to explain the principles of operation of the proposed optica] neural network, 

• to demonstrate the operation principle of the optica} neural network experimentally, 

• to show the functional capabilities of the optica} neural network concept in relation 
to the envisioned application area, 

• to investigate the operation speed of the optica) neural network and 

• to provide an alternative all-optica} neuron with inputs in the optica! power domain. 

The operation principles of a laser neural network that uses optical feedback to provide 
weighted inputs are explained in Chapter 2. The threshold operation is explained using 
a multimode rate-equation model of the laser diode. Also the weighting of inputs, for 
which an optical vector-matrix multiplier is used, is discussed. 

In Chapter 3 experiments are described that demonstrate the operation principles of 
the laser neural network. An experimental setup and a learning algorithm are presented. 
Simp Ie functions are trained to the network to prove the LNN concept. 

We describe an advanced experimentallaser neural network in Chapter 4. A more so
phisticated external-cavity contiguration and a different transmission matrix are used in 
this setup. The training speed and the network complexity are enhanced. A new learning 
algorithm is used to train the network. Trained functions are chosen towards the applica
tion area of optica) telecommunication data switching. 

Chapter 5 deals with the operation speed of the laser neural network. The transient 
behavior of longitudinal mode switching in an external-cavity laser diode is investigated. 
A model is used to simulate this behavior numerically. The mode switching behavior is 
analyzed experimentally in a two wavelength, double external-cavity laser diode. Both 
theoretica) and experimental results are related to the laser neural network of Chapters 2-
4 and the application area of optica) telecommunications. The simulated and ex perimental 
results are extrapolated for a LNN that is implemented in integrated opties. 

An alternative all-optical neuron is presented in Chapter 6. The neuron consists of 
a laser diode with external optica) feedback that receives injected light as inputs. The 
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external optical feedback is used to control the shape of the threshold function. With this 
neuron we aim atimplementing inputs in the optica) power domain. 

As all the experimental optical neural networks described in this thesis use an external
cavity laser diode with some kind of wavelength selective optical feedback, Chapter 7 is 
devoted to some anomalous effects that can occur in such a setup. Self-pulsating behavior 
and cross-modulation between the output power at two wavelengtbs are presented. It 
is explained that these effects are probably caused by the carrier and thermal induced 
refractive index changes of the laser diode materiaL The effects are related to anomalous 
behavior of the LNN which is reported in Chapter 4. 
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2 

Laser Neural Network 

In the previous Chapter 1 we introduced the necessary ingredients to build a neural net
work. In the major part of this thesis the neural operation is implemented by providing 
controlled optical feedback to a laser diode. In this chapter we explain the principles 
of operation of this approach starting from an introduetion on laser diode theory. We 
introduce the experimental concepts used to build the optica] neural network. 

9 
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2.1 Laser Diodes 
A laser diode basically consists of an active Jayer that is sandwiched between p-type and 
n-type materiaL The electroos and holes that contribute to the current through the diode 
recombine in the active region. 

2.1.1 Optical Gain and Loss and Longitudinal Modes 

The recombination of electrons and holescan result in emission of radiation. As shown in 
Fig. 2.1 this emission of a pboton can be eitber spontaneous (a) .or stimulated (b ), which 
means that it is initiated by another photon. In the latter case the new pboton is exactly in 
phase with the incoming pboton and coherent amplification of light results. 

Apart from this recombination induced optical gain, a pboton in the active region also 
experiences opticallosses. The opticallosses in the active region are caused by absorption 
and scattering of light by the laser diode material 

In the Fabry-Perot type laser diode of Fig. 2.1 two cleaved facets act as mirrors. The 
mirrors reflect a portion of the spontaneous and amplified light generaled in the active 
layer and form a resonator. 

Figure 2.1 A laser diode of length L with two cleaved facets and driving current I. In 
the active layer (gray area), between n-type and p-type material, electroos (-) and holes 
( +) recombine. This can result in spontaneons (a) or stimulated (b) emission of a photon. 

As spontaneous and stimulated emission results from the recombination of electroos 
and holes, the amount of emitted photons is proportional to the amount of charge carriers 
in the active layer and thus to the current through the laser I. If the current is sufficiently 
high, the optical gain will compensate the optical losses of the laser material and the 
mirrors. Now, the round-trip optical gain of a light wave traveling inside the active region 
will be unity. When a pboton is generated in the active layer, the laser can start to emit 
coherent radiation if the wavelength of the generated pboton fits inside the resonator. For 
this it is necessary that an integer multiple of the half wavelength is equal to the length 
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I modes 

(a)À~ 

Figure 2.2 Optica! gain and losses versus wavelength for a nonna! Fabry-Perot laser 
diode (a) and a Fabry-Perot laser diode with controlled opticallosses (b). Longitudinal 
mode wavelengtbs are indicated with dasbed lines. 
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of the resonator L. The wavelengtbs for which this condition is met correspond to the 
longitudinal modes of the laser diode. 

In a normal Fabry-Perot laser diode, the opticallosses y of the mirrors and the laser 
material are practically independent of wavelength. The gain G is wavelength dependent 
as is shown in Fig. 2.2(a). This means that for one of the longitudinal mode wavelengtbs 
the net optica! gain is maximal and the round trip gain of this mode will reach unity first 
when the current is increased. This will be the wavelength at which the laser will oscillate. 

The operation of the optica) neural network presented in this thesis is based on the 
control of the opticallosses of a laser diode by applying external optica! feedback. The 
amount of optica] feedback is controlled for each longitudinal mode individually. As 
shown schematical1y in Fig. 2.2(b) this will result in a different level of opticallosses for 
the individuallongitudinal modes of the laser diode. Thus the oscillation wavelength of 
the laser diode will depend on the spectrum of the light that is reftected back into the laser 
diode. 

2.1.2 Multi Mode Rate-Equations 

To explain the principlesof operatien of the optica] neural network presented in this thesis, 
let us introduce a model of the laser diode in whicb we can incorporate tbe controlled 
opticallosses for eacb longitudinal mode. Fortbis purpose, a set of rate-equations [1],[2] 
can be used for the pboton and carrier density in the active layer of the laser diode. 

Tbe equations describe the time-derivative of tbe pboton density Sm for longitudinal 
mode m, and tbe carrier density N. For the pboton density of mode m we can write: 

(2.1) 

where tbe optica! gain and losses are labeled m to express the fact tbat they are different for 
each mode. Although Eq. 2.1 originates from a field propagation model of an optical field 
inside the active layer [l],[2], the equation can also be understood intuitively. The change 
in the pboton density of a mode is equal to the net optica! gain (Gm - Ym) of the mode 
times the pboton density of the mode plus the number of photons tbat are spontaneously 
generated and contribute to the mode per unit of time Rsp. 
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The opticallosses Ym for each mode are a function of the power reftectivity Rm of the 
cleaved facets for wavelength m via 

Ym = Vg (l!int - ±In (Rm)) (2.2) 

where cx;nr accounts for the internal scattering and absorption losses of the laser material 
and Vg is the group velocity. The optica! losses of the laser diode facets are distributed 
over the length of the active layer with the logarithm and the factor 1 I L. 

As discussed earlier, both the gain G and the spontaneous emission rate for each mode 
Rsp are proportional to the number of charge carriers inside the active region. For the 
purpose of explaining the operating principle of the optica! neural network we assume 
this dependency to be linear. 

The time derivative of the charge carrier density N can be described by: 

N = IlqV- YeN- L GmSm (2.3) 
m 

where I I q V is the density of charge carriers with charge q entering the active region 
with volume V, per unit of time. Of these injected charge carriers, an amount of YeN 
recombines spontaneously per unit of time and volume. The rightmost part of Eq. 2.3 
accounts for the stimulated carrier recombination. 

2.2 An Optical Neural Network 

As the operating principle of the optical neural network described in this thesis is based 
on varying the opticallosses via external optica! feedback for a number of modes, let us 
see what happens in a two mode laser diode. Without loss of generality we assume that 
the two longitudinal modes have approximately the same wavelength and we can write 
Gm = G. We introduce the controlled optica! feedback for the two modes via the facet 
reftectivities R 1 and Rz of the modes that are labeled 1 and 2. We examine the behavior 
of the laser diode as a function of varying Rm. 

2.2.1 Threshold Operation 

To explain the origin of the threshold function we use the steady state solution of the rate
equations of Section 2.1.2. We will use a fixed mirror reftectivity for one mode and we 
will vary the reftectivity for the other mode around this value. 

Neglecting Spontaneous Emission 

For clarity, let us first neglect the spontaneons emission Rsp· In a two mode system in 
steady state this yields: 

(G- Yt) S, = 0 

(G- n)Sz = 0 

I lqV- YeN G (St+ Sz) = 0 

(2.4) 

(2.5) 
(2.6) 
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It can easily beseen that the equations for the pboton densities (Eqs. 2.4-2.5) only have 
solutions { G Y1, Sz = 0} and { G = Yz, S1 = 0} for Yl =f. Y2· This means that the laser 
is either lasing in mode 1 or mode 2, depending on the optica] losses forthese two modes. 
The mode with the lowest amount of opticallosses will be lasing. 

The pboton density of the lasing mode and the carrier density can be found analytically 
by substituting the above solutions in Eq. 2.6 using the linear relation between G and N. 
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Figure 2.3 Normalized pboton S (a) and carrier density N {b) versus mode l facet re
flectivity R1• In Fig. (a) S1 and S2 are plotted witb a dasbed and a drawn line respectively. 
The dasbed line in Fig. (b) corresponds to the solution for S1 # 0, the drawn line to the 
solution for S2 # 0. The actual solution for N, corresponding to Fig. (a) is marked with 
dots. 

With parameters from Ref. [2] and the reflectivity for mode 2, R2 = 0.15, set arbitrary 
to half tbe reflectivity of a normal laser diode facet, we can solve Eqs. 2.4-2.6 for the 
pboton densities S1 and Sz as a function of R1• The results, normalired to tbe value for S2 
when this mode is lasing are presented in Fig. 2.3(a). The normalized pboton density for 
mode l is represented with a dasbed line, that of mode 2 with a drawn line. 

The laseremits at the wavelength with the lowest opticallosses. If R1 < R2, mode 2 
is the mode with the highest reflectivity and therefore the lowest optica! Josses. When 
R1 > Rz, mode 1 experiences the lowest optica) losses and will lase. Tbis results in a 
sbarp threshold in the pboton densities of tbe modes at R1 = Rz. 

The normalized carrier density is plotted in Fig. 2.3(b). The solution for N correspond
ing to { G = y1, S2 0} is plotted with a dasbed line, tbe drawn Iine corresponds to 
{G = Yz, S1 = 0}. The solutions are normalîzed to the value for N for {G = y2, S1 = 0} 
wbich is independent of RI· As expected we see tbat the lower of the two solutions for N 
corresponds to tbe actual solution that is marked with dots. From the tigure it follows tbat 
the switching from mode 2 tomode 1 at R1 = R2 can be explained by the reduction in 
N resulting from the decreasing opticallosses of mode 1. This reduction in N will result 
in a decrease of the optica! gain G. Por mode 2 this means that G = Y2 is no Jonger valid 
and therefore s2 = 0. 
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From the preceding we can conclude that the threshold operation of Fig. 2.3 is essen
tially caused by the coupling between the modes via the carrier density and the depen
dency of the gain on the carrier densîty. 

lncluding Spontaneous Emission 

The salution to Eqs. 2.4-2.6 including the spontaneous emission can be obtained in a 
similar fashion. Now either mode 1 is lasing and mode 2 only contains (amplified) spon
taneous emission or vise versa. The exact salution can be found analytically by solving 
the third order polynomial equation in N that results from substituting the equations for 
St and S2 in the equation for N. Using the same procedure and parameter set that was 
used to produce Fig. 2.3 we obtain Fig. 2.4. 

Figure 2.4(a} shows a softer threshold than Fig. 2.3(a). This softer threshold is caused 
by amplified spontaneous emission that occurs when the gain is only slightly lower than 
the opticallosses fora mode. This happens near the point where Rt = Rz. 

A third solution for N that can be observed in Fig. 2.4 corresponds to the situation when 
none of the two modes would be lasing. This situation will never occur as it would cause 
the optical gain, that is proportional to the carrier density to be much higher then any 
of the opticallosses. As a consequence, the mode with the lowest optical losses would 
immediately start lasing. 

The above analysis for two longitudinal modes is also valid for any number of modes. 
The mode with the highest net gain (Gm- Ym) will be the one that lases. A threshold 
operation is associated with the controlled amount of optical feedback and the pboton 
density for each mode. Making the controlled optical feedback for each mode individually 
proportional to a weighted sum of inputs will result in neural-like operation for each of 
themodes. 
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Figure 2.4 Same as Fig. 2.3 but including spontaneous emission. The spontaneous emis
sion results in a softer tbreshold for tbe pboton densities. A third solution for N can be 
observed (dashed-dotted line) corresponding to tbe situation where modes 1 and 2 only 
exhibit spontaneous emission. Again the actual solution of N is marked with dots. 
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Thus a neural network can be formed with as many neurons as there are longitudinal 
cavity modes in the laser diode. The output of the network is the emission spectrum of 
the laser diode and is in the optical power domain. The inputs and weights are applied via 
the controlled optica} feedback. 

The coupling between the modes via the carrier density can directly be translated to 
connections between the neurons of the optical neural network. Just like in Fig. 1.3(b ), 
the output of each neuron influences the activity of all other neurons. As the influence is 
negative, these connections are inhibitory. As discussed above this coupling results in a 
situation where only one mode, or one neuron, will be active. In neural network literature 
such a neural networkis generally called a winner-take-all network or maxnet [3]. 

2.2.2 Weighted Inputs 

The controlled optica} feedback is provided to one of the laser diode facets. This facet 
is antirefiection coated to enhance the effect of the optica) feedback. In order to control 
the amount of optical feedback for each of the longitudinal modes of the laser diode 
individually, tirst the laser beam exiting the diode at the antireftection coated facet is 
dispersed in space as shown schematically in Fig. 2.5. 

dispersive opties vector- matrix extern al - cavity 
multiplier end mirror 

Figure 2.5 Extemal optica! feedback is provided to a laser diode to control the amount of 
optical losses for each longitudinal mode of the laser diode individually. A vector-matrix 
multiplier is used to make the amount of optica! feedback proportional to a weighted sum 
of input signals. 

This results in a light beam for each of the longitudinal mode wavelengtbs À j ofthe laser 
diode. Each light beam is attenuated by a controlled amount before it is reflected back 
into the laser diode by the external-cavity end mirror. The attenuation for each modallight 
beam is made proportional to a weighted sum of input signals by use of a vector-matrix 
multiplier [5]. 

The vector-matrix multiplier consists of two arrays of controllable transmission ele
ments and some (cylindrical) lenses. A schematic representation, drawn without the 
lenses, is given in Fig. 2.6. A first set of two cylindrical lenses distribute the optical 
power Pj.in contained in each light beam over the rows of a one-dimensional array of 
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transmission elements. With m rows, the amount of power incident on each transmission 
element is P;n,j f m for each light beam j. After an element of the transmission matrix 
is passed, the amount of optical power is attenuated with a factor I; that represents input 
signal i. 

The resulting optical power in each of the m light beams in each column is Pj.inl;/m. 

The Jight beams are further attenuated by a two-dimensional array of transmission ele
ments. Each of these transmission elements is set to a transmission value w;,j that cor
responds to the weight factor for wavelength j and input i. A second pair of cyJindrical 
lenses recombines the optical power of the m light beams of each column. The resulting 
output power of each light beam Pj.our is m L; W;,jli 

Figure 2.6 Optica! vector-matrix multiplier. The optical power at each wavelength Pj,in 

is distributed over a column of a transmission matrix consisting of line elements. The light 
is attenuated by a factor proportional to an input signal/1 in each line i of the transmission 
matrix. For each wavelength j and each input signa! i the light is further attenuated 
by a weight factor w1.j in a second transmission matrix. The light from one column is 
combined resulting in Pj,out oe Pj,in L; w;,j I; . 

As shown in Fig. 2.5, the optical vector-matrix multiplier is placed in an external-cavity 
setup. Thus the portion of optical power returning to the laser diode for each wavelength 
j can be found by comparing Pj.in and Pj,out· As the vector-matrix multiplier is also 
passed in the return path, each light beam experiences the same attenuation factor twice. 
This results in an effective external power reflection R i according to: 

2 ( )2 Pj in 1 
Rj = (-.. -· ) = - L W;,jli 

P1.out m i 
(2.7) 

Thus R i is made proportional to the square of a weighted sumofinput signals. From the 
preceding it is clear that the resulting optical neural network bas its inputs and weights in 
the optical transmission domain. The outputs are represented in the optical power domain. 
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2.2.3 Learning 

In order to train the network (See Chapter 1) weneed a training supervisor that provides 
input patterns to the network and is able to read the neuron output states. The supervisor 
should also be capable of contro11ing the weight matrix. Furthermore the supervisor needs 
a Jearning algorithm to adjust the weight matrix iteratively during the learning phase. The 
supervisor in this thesis is a personal computer (PC). 

Because the weight matrix and the input mask are implemented with a transmission 
matrix they can be combined in a single matrix. The inputs and weights can be superim
posed in the PC. In the experimental optica! neural network presented in this thesis we 
use a liquid crystal display as a variabie transmission matrix. 

To read the output pattem of the optica) neural network, the PC should be able to monitor 
the output spectrum of the laser diode. For this purpose we use an optica] spectrum 
analyzer that is connected to the PC. 

To train the network, a learning algorithm is implemenled on the supervisor PC. In the 
following Chapters 3 and 4 we describe two different experimental implementations of 
the conceptual optica) neural network. The two experimental implementations differ in 
the used transmission matrix, the external-cavity configuration and the learning algorithm. 
Both implementations use the concepts presented in this chapter. 
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Optieal-Mode Neural Network 
by use of the Nonlinear 
Response of a Laser Diode to 
External Optical Feedback 

We present an intelligent all-optical neural network using a single laser diode that is pro
vided with controlled external feedback. The outputs of the laser neural network (LNN) 
are represented in the optica! domain by the ]ongitudinal cavity modes of the laser diode. 
The inputs to the LNN are applied by means of adjusting the external feedback of each 
longitudinal mode through an optica! vector-matrix multiplier. Supervised training of 
some basic input-output mappings is demonstrated by means of a stochastic learning al
gorithm. The stability and reproducibility of the LNN setup is examined. 

The content~ of this chapter bas been published: E.C. Mos, J. J. H. B. Schleipen, and H. de Waardt, "OpticaJ
mode neuraJ network by use of the nonlinear response of a laser diode to extemaJ opticaJ feedback," Appl. Opt. 
36,6654--6663, 1997. 
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3.1 Introduetion 
One of the main characteristics of neural networks is their intrinsically parallel operation. 
Software has played an important role in the development of artificial neural networks; 
however, classical (sequential) computers use the parallelism of computation only as a 
concept. The use of dedicated neural hardware would therefore lead to an increase in 
computational speed. This is the main reason why various neural circuits have been real
ized on silicon (in Ref. [1] an overview of a number of neural chips is given). 

An even more suitable candidate for implementing neural networks is the optical do
main. First, light beams cross each other in free space without interacting. Second, all 
three dimensions can be used, which reduces the problem of interconnectivity and allows 
for largerand more complex networks. Third, optical systems are potentially much faster. 
Weighting and sommation in the optica} domain can be done very quickly, while speed 
limitations caused by charge buildup, as in electronic systems, are not present. These ad
vantages of using opties for processing data are illustrated by the numerous optical neural 
network and optical computing experiments that have been performed in the past 5 to 10 
years [2]-[7]. 

In these systems the neural action, which is the nonlinear response of a neuron to its 
weighted inputs, is usually realized in the electro-optical domain. In this chapter we 
present the results of an optica] neural network experiment in which a single laser diode 
under external optica} feedback is used to provide a set of neurons. The longitudinal 
modes of the laser represent the neuron signals. The optical powers contained in the 
modes respond nonlinearly to the degree of optical feedback. 

In Section 3.2 we explain the basicprinciplesof the laser neural network (LNN). Sec
tion 3.3 describes the experimental setup. InSection 3.4 we demonstrate its neural activ
ity. Some reai-time learning experiments are presented in Section 3.5. Possible areas of 
application considered are optica! data storage or optica! communication. We therefore 
restriet ourselves to training digital input-output mappings to the LNN. InSection 3.6 we 
discuss the performance and some features of our neural network. Finally, inSection 3.7 
we give conclusions and an outlook toward future experiments. 

3.2 Laser Neural Network Operation Principles 
An artificial neuron is a simplified model of a biological neuron-it has a number of 
inputs and one output and it performs some simple arithmetic operations. The inputs to 
the neuron are weighted and summed. This weighted sum is compared with a threshold, 
and, depending on the result, the output of the neuron will be either high or low. Usually 
the threshold is a soft threshold, and the relation between output signal and weighted 
sum is a nonlinear S-shaped (or sigmoid) function. A network consisting of a number of 
neuronscan be trained to perform an input-to-output vector function by the proper setting 
of the weight values of all neurons. This process of adjusting the neural weights is called 
the learning phase. 

The LNN is described in Chapter 2 and in Refs. [8] and [9] in which a detailed theoret
ica] description [81 of the LNN and some preliminary experimental resu1ts [9] are given. 
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In our LNN the complete network is formed by a single laser diode and some additional 
opties. The response of the laser diode to external optica] feedback applied to one mirror 
is used to provide neural action. Sensitivity to external feedback is an unwanted effect in 
most laser diode applications, such as in optica] data storage and optica] communications, 
but in our neural network this nonlinear effect is very useful. The reflectivity of the laser 
diode mirror at the feedback si de is reduced by means of a coating to maximize the effect 
of the external optica! feedback. The amount of external optica! feedback in our setup 
is, however, not sufficient to obtain single-mode external-cavity operation. The speetral 
distri bution of the lasing external-cavity modes is similar to that of a single longitudinal 
mode of the diode cavity. The mode-spacing of the laser diode in our experimental setup 
is therefore determined by the diode cavity length (300 Jlm). 

In the external cavity the laser beam is separated into several beams by means of disper
sive opties. This results in one light beam for each of the longitudinal cavity modes. Each 
of these beams is attenuated individually before being reflected back into the laser diode 
by the end mirror of the external cavity. The amount of attenuation for each beam, and 
thus for each longitudinal cavity mode, is made proportional to a weighted sum of inputs. 
The weighting of inputs is implemented by use of an optica! vector-matrix multiplier. A 
schematic drawing showing this concept is presented in Fig. 3.1. 

W·l 

dispersive opties vector - matrix external - cavity 
multiplier end mirror 

Figure 3.1 Schematic drawing of a laser diode with an external cavity to provide external 
optical feedback. Dispersive opties is used to separate the light beams of the longitudinal 
modes spatially . A vector-matrix multiplier (W · /) is used to make the optical feedback 
for each wavelength À j proportional to a sum of weighted inputs for each of the longitu
dinal modes. In this drawing, W represents the weight matrix and I represents the input 
vector. 

A small amount of external optica! feedback is sufticient to modify the longitudinal 
mode spectrum of the laser diode [10]. The optical output power of the modes of the 
laser will vary nonlinearly with the amount of extern al op ti cal feedback applied [ 11]. 
Cantrolling the feedback of each of the longitudinal modes separately results in the optica! 
power contained in each mode exhibiting neural behavior. In this manner a set of neurons 
is formed in which the optica! powersof the longitudinal cavity modes of the laser provide 
the outputs. Because of the longitudinal mode competition commonly found in multimode 
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lasers [12], connections between the neurons arise. These connections are inhibitory; an 
increase in the optical power contained in one mode will cause a decrease in the optical 
powersof the other modes. In Fig. 3.2 the resulting neural network architecture is shown 
schematically. 
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Figure 3.2 Schematic architecture of an M -input, N -QUtput LNN. The solid lines denote 
weighted connections Wi.i, the dasbed curves denote inhibitory connections caused by 
mode competition, and the open circles circles represent neurons with the corresponding 
longitudinal mode wavelength J.. i. The information flow is from left to right. 

The potenrial speed of this optical neural network is expected to be very high, because 
the response of a laser diode to a change in extemal optical feedback is primarily governed 
by the intra-band relaxation time of the charge carriers inside the laser diode, which is of 
the order of w-12 s [13]. Fora more detailed theoretica} description of the LNN and its 
response time we refer the reader to Ref. [8). The response time will be investigated in 
more detail in Chapter 5. 

3.3 Experiment 

3.3.1 Optical System 

The laser used in our experiment is a multiple-quantum-welllaser diode (Philips Opto
electronics Centre, CQL806 series) with a high-quality (R < 0.1%) antireflection coating 
applied to the facet at the extemal-cavity side. The laser diode is temperature stabi1ized 
to prevent thermal drift of the longitudinal mode wavelengths. A de current with a super
imposed ac current (I peak = 30-40 mA) is fed to the laser. For permitring well-controlled 
external optical feedback, the period of this ac current corresponds to the pboton round
trip time of the extemal cavity (ac frequency of "-'90 MHz, cavity lengthof "'3.3 m). In 
this manner the current through the laser is synchronized with the optica! pul se traveling 
in the extemal cavity. 

The experimental setup is shown in Fig. 3.3. The lenses Ll (f = 4.4 mm, NA = 0.5, 
aspherical) and L2 (f = 200 mm) are used to forma sharp image of the active area of the 
laser chip on the external-cavity mirror M in order to obtain maximum feedback. Two 
gratings Gl and G2 (both are 1200 g/mm; the distance between Gl and G2 is 2.18 m) 
provide the dispersion needed to resolve the longitudinal modes of the laser diode spa-
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tially. The spatîal separation between two adjacent modes matches the spacing of the 
attenuatîon elements (0.88 mm) ofthe optical vector-matrix multiplier. The vector-matrix 
multiplier, a sketch ofwhîch is given intheinset of Fig. 3.3, is formed by the two cylinder 
lenses L3 (f = 25.4) and L4 (f"" 50.0) and a passive-matrix liquid-crystal display (LCD) 
that is used in transmission. A polarizer, that is needed for proper operation of the LCD, 
is not shown in the figure. 

L3 L4 LCD 

Figure 3.3 Schematic drawing of experimental LNN setup: Two lenses Ll and L2 form 
an image of the laser diode exit facet on mirror M. Two gratings G 1 and G2 are used to dis
perse the longitudinal cavity modes (). 1 ... )..5) ofthe laser diode. An optica! vector-matrix 
multiplier is inserted in the external cavity thus formed. A three-dimensional drawing of 
the vector-matrix multiplier is shown intheinset at the upper left-hand side. The cylinder 
Ienses L3 and L4 serve to distribute the optica! power of all light beams over the rows 
of the LCD. Each row corresponds to an input of the LNN. The weight matrix W and 
the input vector I are superimposed in PC-I, and the resulting image is fed to the LCD. 
In this manner the extemal optica! feedback of the diode laser is made proportional to a 
weighted sum of inputs for each longitudinal mode individually. Also shown is the train
ing system of the LNN. The optica! power of the zeroth ()lh order of grating G 1 is coupled 
into a fiber and analyzed by the OMA. PC-I receives the output values of the LNN by 
means of PC-2, which is connected to the OMA. 

On the LCD an image of four rows and five columns is formed, in which each of the 
pixels can be set to one of 31 discrete gray levels. The LCD contains standard twisted 
nematic liquid-crystal material, limiting the switching speed of the display to "-'200 ms 
in this experiment. We use the LCD to adapt the neural weights as well as to provide the 
inputs to the network. For this purpose the input pattem ofhorizontallines and the weight 
mask, a matrix of transmission elements, are superimposed. The resulting pattem is dis
played on the LCD. The number of rows and columns of our LCD limits the number of 
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inputs and neurons tofour and five, respectively. For measuring the neural outputs, which 
are contained in the longitudinal mode pattem of the laser, the optica! power reflected in 
the zeroth order of grating G 1 is coupled into a fiber and fed to an optical multichannel 
analyzer (OMA). The OMA measures the speetral distribution of the longitudinal cavity 
modes that are used as neurons in the experiment. 

3.3.2 Training System 

A supervised leaming algorithm is used to train the LNN to produce a specified output 
at a given input. With such algorithms the supervisor feeds sample input patterns to the 
network and simultaneously monitors the output of the network. The weight matrix of 
the network is changed by means of an algorithm until the supervisor receives the desired 
output pattem for each applied input pattem. 

For such a learning scheme to be applicable in our experiment a supervisor must be able 
to set the inputs and weights of the LNN and measure its output vector. In our setup a 
first personal computer (PC-1 ) is the leaming supervisor and controts the addressing of 
the LCD via its parallel port (See Fig. 3.3). PC-1 provides the network with the four input 
gray levels and the 4 x 5 gray level matrix of neural weights. 

Monitoring the output is done by means of a second PC (PC-2), which receives the 
neural outputs from the OMA in integer counts proportional to the optical power in the 
longitudinal cavity modes. During each learning trial the outputs are read by PC-2 and 
subsequently sent to the supervisor PC-1, on which a stochastic leaming algorithm is 
implemented. In this type of algorithm the weights of the network are changed randomly 
until the difference between the actual and the desired output veetors is below a preset 
level for all input patterns. We chose to use a stochastic algorithm instead of the well
known backpropagationalgorithm [14] because the latter uses theknown response ofthe 
neurons to calculate an estimate of the weight changes. In our case the behavior of the 
neurons is not known exactly and depends on various physical parameters. In addition, 
connections between the neuronsexist in our LNN, whereas the backpropagation metbod 
is designed for feed-forward neural networks without such connections. Finally, it is 
be1ieved that stochastic algorithms will need less computational power [15],[16] and will 
therefore be easier to implementin hardware. 

Our leaming algorithm uses a Cauchy-distributed random disturbance vector [17]. As 
occurs in simulated annealing [18], the amplitude of this vector is controlled by an arti
ficial temperature that slowly decays. In this way the neural network is forced to look in 
increasingly smaller neighborhoods of the last-found optimum. Although our algorithm 
does not use an artificial temperature in exactly the same way that it is used in simulated 
annealing, the term is used throughout this text. To test the algorithm before actuallearn
ing we performed experiments in which the LNN was simulated in software. The use of 
beuristic learning rules, as suggested in Refs. [19] and [20], did not improve the algo
rithm substantially during these simulations, and they were therefore not implemented in 
the experiments. The algorithm is described in the flowchart of Fig. 3.4. 

In this algorithm a trial matrix (WuiaJ) is shown to the network for all input veetors Utr.s) 
during each iteration. The trial matrix is calculated by use of the best matrix so far ( W) and 
a random matrix (W"and), which is scaled by an artificial temperature T that slowly decays 
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lnitialize: 
T Artificial temperature 
'fl Temperature-decay rate 
1,,,. Input training patterns 

Otr.• Output training patterns 
W Weight matrix 

Generata wrand : 
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Figure 3.4 Flowchart of the stochastic learning algorithm: The algorithm searches for a 
weight matrix W for which the LNN input-output mapping is correct. Disturbing W with 
a random matrix w=d is the process used to accomplish this. The disturbance matrix is 
scaled with an artificial temperature T that slowly decays. In this manner the algorithm 
searches in smallerand smaller neighborhoods ofthe last-found optimum. 
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withafactor q in each iteration. The optimization criterion (ERROR, BESTERROR) is the 
sum of the differences between desired output vector ( Otr, s) and the actual output vector 
(Os) for the complete training set. This error Jl Os - Otr.s 11 is defined as 0 if the actual 
output value of the neuron is above the ON or below the OFF value in the case of a desired 
digital 1 or 0 respectively. In other cases this error is equal to the absolute difference 
between the actual output value and the corresponding, desired ON or OFF value. The 
algorithm is said to converge if the optimization criterion equals 0. 

3.4 Laser Sigmoid and Ne u ral Activity 

The neural activity of our setup can be demonstrated by the measurement of the relation 
between the sum of weighted inputs and the output levels of a set of neurons. In the LNN 
the sum of weighted inputs for a specific neuron corresponds to the total transmission of 
its LCD column, whereas the output levels of the neurons are represented by the optica! 
powers contained in the cavity modes. 

The transmission of a LCD pixel varies nonlinearly with the gray level assigned to it 
by PC-1. To correct this we used a subset of all possible gray levels by means of a 
lookup table. The resulting transmission, that is presenled scaled to the maximum value 
in Fig. 3.5, shows an almost linear relation with the applied gray level. 
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0 2 4 6 8 10 12 14 16 18 

Graylevel 

Figure 3.5 Normalizeel measured LCD response as a function of applied gray level. 
The accuracy of the measurements is within 10% of the difference between succeeding 
transmission values. 

With the LCD calibrated in this manner, the sum of weighted inputs for two neurons 
is varied linearly by the adjustment of the gray levels of the two corresponding LCD 
columns. The output of the two neurons is monitored by measuring the optica! power 
contained in the corresponding longitudinal cavity modes. In Fig. 3.6 the results of these 
measurements are given. The optical powersof modes 1 and 2 are plotted versus the gray
level of column 2 (gz) in Figs. 3.6(a) and 3.6(b), respectively. During the measurements 
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gt. the gray level of column l, is used as a parameter: g1= 0, 4, 8, 12, 16, as indicated in 
the figure. 
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Figure 3.6 Optical power contained in two longitudinal cavity modes: (a) mode 1 and 
(b) mode 2, as a function of gray level of the corresponding columns g1 and g2 • In these 
measurements g1 is set to 0, 4, 8, 12, and 16, while g2 is varled from 0 to l 8. The error 
bars indicate the varianee of a series of 20 measurements. The figures show a sigmoidal 
response for both longitudinal cavity modes. 

Figure 3.6(a) shows that the output level of neuron 1 drops dramatically when neuron 2 
starts lasing, demonstraling the mode competition of the two corresponding cavity modes. 
As can beseen from Fig. 3.6(b), the output level of neuron 2 varies nonlinearly withits 
applied sum of weighted inputs for all values of gJ. Figure 3.6 also shows a change in 
the threshold value for neuron 2 when the total sum of inputs for neuron I (gJ) is set 
to a different value. Again, this is a result of the mode competition between the two 
longitudinal cavity modes. When the optical power contained in one mode increases, the 
amount of population inversion will decrease. This results in a decreased optica] gain for 
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all other modes. Thus, a larger amount of optical feedback will be needed by these modes 
to reach the threshold condition for lasing. 

3.5 Training Examples 

3.5.1 Real-Time Learning 

With the setup described in Section 3.3 a neural network with up to four inputs and five 
outputs can be constructed. One of the rows of the input mask is used as a bias, i.e., it is 
always fully transmitting. The corresponding bias weights serve to control the threshold 
values of the neurons as discussed in Chapter 1 (See also Ref. [2I]). The stochastic 
learning algorithm described inSection 3.3 was used to make this network perform some 
( digital) input-output functions of up to three inputs and five outputs. We discuss one of 
the training exainples that is basedon the NOR-XOR-AND function. In this examplethe 
taskof the networkis to provide the input-output mapping of Table 3.1. 

Thble 3.1 NOR-XOR-AND (Outputs OJ, 0 2, 0 3, respectively) truth table. 

0 0 
0 I 
I 0 

1 

1 0 0 
0 1 0 
0 1 0 
0 0 1 

In the learning algorithm the logical ON and OFF levels are preset to 1000 and 4000 
OMA counts respectively, for all wavelengtbs corresponding to the three selected modes. 
The error measure BESTERROR and the artificial temperature T of this training-session 
example areplottedas a function of the iteration count in Fig. 3.7 (See also the flowchart 
of Fig. 3.4). After 142 iterations the algorithm converges to the solution for the weight 
matrix that is presented in Fig. 3.8. 

The input-to-output mapping reproduced by the network with this weight matrix is 
shown in Fig. 3.9. From this tigure it is clear that the network bas indeed learned the 
truth table from Table 3. L The output of the network responds correctly to the set of 
input patterns. 

With the same procedure, some other functions are trained to the network, the truth 
tables ofwhich are presented in Table 3.2. The 1:4 (and 1:5) demultiplexing can be ofuse 
in optical communications where an incoming packet of binary optical data needs to be 
routed to one out of four (or five) output channels. The three-input parity function could 
be used as a simpte form of error detection. It detects odd or even parity on three input 
bits and thus could be used as an error detection fora two-input plus parity digital signal. 

In Table 3.3 the training results for these input-output mappings, as wen as those for 
some other functions, are listed with the number of inputs (number in) and outputs (num
ber out) needed, the average number of iterations and the standard deviation on this av-
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Figure 3.7 Error measure BESTERROR and artificial temperature T versus the iteration 
count ofthe NOR-XOR-AND training-session example. 

0.98 0.60 0.97 
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Figure 3.8 Weight matrix resulting from the example training session in normalized 
transmission value per pixel (left) and the gray shade representation of these transmission 
levels (right). 
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erage. All averages and standard deviations are calculated over 20 training sessions, with 
each training session being a completion of the algorithm shown in Fig. 3.4. The initia! 
matrixforthese experimentsis W;.j = 0.5(Vi, j). The initial temperature is in the range 
of 0.1 to 0.3 and the temperature-decay rate 11 is 0.99. In the training examples three
input AND-NAND and three-input parity, an initial matrix resulting from learning trials 
of a simulated LNN is used with a lowered initia! temperature (T = 0.01) to force the 
network to search in a smal! neighborhood of this theoretica! solution. The combination 
of a long-term stability drift of the setup resulting from the large external-cavity size and 
long training cycles caused by the relatively slow LCD inhibited the network from learn
ing these examples without help from the simulations. With normal initialization these 
Iearning examples did not converge within 5000 iterations. 
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Figure 3.9 Output of the LNN after training of the NOR-x OR-AND example. The output 
of NOR, XOR and AND modes in counts of the OMA are plotted as a function of binary 
input pattems. 

Table 3.2 Truth table for the functions 1:4 demultiplexing, 1:5 demultiplexing, and three
input parity training examples. 

Demultiplexing Demultiplexing Tbree-Input 
Input 1:4 1:5 Parity 0 

000 1000 10000 10000 
OOI 0100 01000 01000 
010 0010 00100 01000 
011 0001 00010 00100 
100 DCh 00001 01000 
101 DC DC 00010 
110 DC DC 00001 
111 DC DC 01000 

a The second (bold) neuron of the three-input parity mapping represents the actual 
output parity bit. 
b DC denotes a don't care result: Tbe conesponding input vector is not trained to the 
netwolk 

3.5.2 Noise Characteristics 

In the setup of this chapter we use a rather long extemaJ cavity. Using a vector-matrix 
multiplier with a smaller spatlal separation between the attenuation elements or with dis-
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Table 3.3 Training results ofthe input-output mappings used in the LNN experiments. 

Number Number Average Standard 
Problem In Out Iterations Deviation 

OR-NOR 2 2 13 8 
AND-NAND 2 2 125 85 
NOR-XOR-AND 2 3 196 128 
1:4 Demultiplexing 2 4 390 157 
3-Input OR-NOR 3 2 37 25 
3-Input AND-NAND 3 2 71 71 
1 :5 Demultiplexing 3 5 326 91 

3 5 369 283 

persive elements with higher dispersion would reduce the length of this cavity. A small 
alignment mismatch in the long cavity of the setup can lead to errors in the operation of 
the LNN. For this reason some stability tests were performed on the trained LNN. After 
each of the 20 training sessions we tested the resulting weight matrix by showing all input 
patterns to the network and checking the resulting outputs. This was repeated 10 times 
for each of the resulting weight matrices. 

The number of mistakes the network makes is a measure of the stability of the LNN. 
In only one of these test examples ( <0.1%) was the digital output pattern different from 
the training output: A binary 0 occurred where a 1 was expected. In less than 5% of all 
the tests the output of the network was notexact for one of the modes. The output of one 
mode, for example, was 1066 counts when a digital 0, and therefore a value below 1000 
counts, was expected. The average deviation from the binary decision levels is 10% in 
these cases. 

To get an estimate of the sensitivity of the LNN to changes in the input values, a weight 
matrix resulting from the learning algorithm (NOR-XOR-AND) is shown to the network. 
Instead of digital inputs, analog values between 0 and 1 are used as inputs. The resulting 
optica} powers of the three selected modes are measured as a function of inputs h and h 
In Fig. 3.10(a) the results of these measurements are plotted for each of the modes. The 
gray shades correspond to the optica! power; a white region denotes a fully lasing mode. 
In Fig. 3.1 O(b) regions are indicated where the optical power is below the level defined as 
OFF or above the level defined as ON in the learning algorithm. The si zes of these regions 
determine the so-called noise margins on the inputs. Figure 3.1 0( c) illustrates the same 
regions in input-outputspace for an optima] digital system with the same NOR-XOR

AND functionality. As can beseen from the tigure the decision regionsof the LNN are far 
from optimal. The output ofthe XOR mode [mode 2; see Fig. 3.10(b)], for instance, is 0 
in a relatively small region near /1 = 0. 
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Figure 3.10 (a) Output of NOR, XOR, and AND modes versus analog inputs h and h, for 
the trained LNN. The brightness is proportional to the optical power contained in a mode. 
(b) Same as (a) but with added decisionregions for digital output values. The corners of 
these graphs correspond to the four 2-bit digital input patterns. The sizes of the logica) 0 
and I regions determine the noise margins on the digital inputs. (c) Depietion of optima! 
regions of the same problem as for (a) that maximize the input noise margins. 

3.6 Discussion 

3.6.1 Noise Margins 
The noise margins of the network should be optimized when the LNN is to be used in a 
practical system. One way of doing this is to alter the training a1gorithm. In its present 
form the algorithm applies only digital input patterns to the network. This means that only 
the corners of Fig. 3.10 are probed. Adding some analog input training veetors and their 
corresponding output veetors to the training set allows some in-p1ane points to be included 
in the optimization. In this way the performance of the LNN should improve. Although 
analog input-output mappings (which can be used, for instance, in image processing) are 
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in principle possible with this network, the LNN preferably should be operated in a binary 
output mode because of the character of mode competition (See Section 3.6.3, below). 

3.6.2 Speed 

Note that just one LCD is used to display the inputs and weights. The weighting and 
summation of inputs are done in the optica! domain, whereas we present the inputs to 
the LNN in software by setting the appropriate weights to zero. Adding, e.g., a second 
LCD with line elements will transfer the multiplication to the optica! domain. The fastest 
LCD's, however, will still be slow when compared with conventional computers. A real 
gain in computational speed will be obtained when the inputs are applied to the network 
by means of a fast electro-optic effect or by use of optica! switching techniques. Speed 
limitations caused by the pboton round-trip time of the extended laser cavity need to 
be minimized in that case by a reduction of the length of the extemal cavity. Only in 
all-optica! systems such as those used for optica! telecommunication would the resulting 
neural network profit from its potential speed. In all other cases the interface between 
electronics and opties will severely limit the speed of operation. 

3.6.3 Effects of Mode Competition 

Although the inhibitory connections arising from mode competition (See Fig. 3.2) cannot 
be controlled easily, they do make the network more versatile. If these connections did 
not exist, it would be impossible to make the network perform the XOR function. One 
can onderstand this quite easily by looking at the arnount of external optica} feedback 
for one mode: It is always higher for the 11 input pattem than it is for the 01 or the 10 
input pattern. This relation implies that an extra mechanism is needed to switch off the 
XOR lasing mode in the 11 input state. By looking at the feedback for two modes, the 
way mode competition provides this mechanism becomes clear. If, in the 0 I and I 0 input 
states, a mode (i.e., the XOR mode) is lasing, its external feedback will be higher than that 
for all other modes. Although the external feedback for this mode will be higher in the 
11 input state, it is possible that another mode receives even more external feedback for 
this Il input This mode would then start lasing, forcing the XOR mode that was already 
lasing to switch off. 

In the examples described in Section 3.4 only one mode of the laser lases at each in
stance. This is the result of the strong mode competition that arises when laser diodes are 
operated well above threshold [22]. For the system depicted in the schematic drawing of 
Fig. 3.2 this means that the lateral inhibition, represented by the dashed curves, that is due 
to mode-competition dominates the behaviour of our neural network. In neural network 
terms the LNN would be called a winner-take-all [2I] networkin this regime, since one 
neuron gains all the optical power. 

A set of inequalities can be formulated for each input-output vector pair for this type 
of network: The sum of weighted inputs for the winning neuron is higher than that of 
all others. For all input-output combinations of a given training set, a set of inequalities 
results. This set of inequalities can be used to determine whether or not a given function 
can be trained to the network. If the inequalities conflict, the input-output mapping cannot 
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be trained to tbe network. If, on tbe other hand, tbe inequalities can be solved, a solution 
to the set of inequalities can be used as an initial weight matrix for the learning algorithm. 
This procedure is useful not only in our LNN but also in· otber types of winner-take-all 
neural networks. 

3. 7 Conclusions 

We have demonstraled a learning neural network that perfarms some basic input-output 
mappings. In tbis neural network tbe longitudinal cavity modes of a diode laser are used 
as neurons. The inputs to the network are presented in an external cavity in which the 
external optical feedback for each Iongitudinal cavity mode is contro1led, providing tbe 
nonlinear behavior neerled for neural action. Not only triviallearning examples such as 
the inverter problem were trained to the network, but also relatively complicated tasks 
such as tbe tbree-input parity problem were trained to our one-layer network by use of a 
simple stochastic supervised learning algoritbm. 

Mode competition plays an important role in the operation of tbe LNN, and some trained 
functions depend on tbis mechanism. The training process is speerled up when a theoreti
cally determined initial weight matrix is applied. The experiments show that tbe network 
can be trained witb good reproducibility. The stability of tbe network is good, altbough a 
relatively long extended-cavity is used. 

In future experiments we plan to train more complicated learning tasks to the network 
in order to examine the performance of the LNN in more practical applications such as 
pattem recognition. First, more inputs and outputs will be needed. This indicates one 
of the ml:\ior shortcomings of tbe LNN setup described in tbis chapter, which is capable 
ofhandling only up to (4x5)- or (5x4)-dimensional input-output problems. The number 
of inputs and outputs can be raised by tbe introduetion of a matrix with more rows and 
columns. The number of outputs will be eventually limited by tbe number of active laser 
modes. With tbe laser used in tbis chapter we were able to activate more tban 100 longi
tudinal cavity modes. The limit on tbe number of inputs strongly depends on tbe quality 
of tbe matrix tbat is used, as well as on tbe sensitivity of tbe laser diode to extemal optical 
feedback. This limit will have to be determined experimentally. 

In addition, tbe speed of tbe system described in this chapter is limited. This not only 
means tbat a training session takes a lot of time but also (and more importantly) tbat the 
rate at which inputscan be processed is limited. Finally, tbe input vector is controUed 
electronically rather tben optically. Future investigations should tberefore focus on us
ing faster and larger matrices and opticaJly addressed modulators. Furthermore, otber 
learning algoritbms, e.g. a modified backpropagation algoritbm, sbould be examined. 
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4 

Loop-Mirror Laser Neural 
Network using a Fast 
Liquid-Crystal Display 

In our laser neural network (LNN) all-optical threshold action is obtained by application 
of controlled optical feedback to a laser diode. In this chapter an extended experimental 
LNN is presented with as many as 32 neurons and 12 inputs. In the setup we use a fast 
liquid-crystal display to imptement an optical vector-matrix multiplier. The display, that is 
basedon ferroelectric liquid-crystal material, enables us to present 125 training examples 
to the LNN per second. To maximize the optical feedback efficiency of the setup, a loop
mirror is introduced. We use a 8-rule learning algorithm to train the network to perform a 
number of functions toward the application area of telecommunication data switching. 

The contentsof this chapter has been published: E.C. Mos, J. J. H. B. Schleipen, H. De Waardtand G. D. 
Khoe,"Loop-mirror laser neural network using a fast liquid-crystal display:' Appl. Opt. 38, 4359-4368, 1999. 
E.C. Mos, J. J. H. B. Schleipen, and H. de Waardt, "Laser neural network demonstrates data switching func
tions:' in Proc. ofthe 8th int. conf on artificial neural networks, Niklasson, Bodén and Ziemke Eds., (Springer
Verlag, Berlin, Germany, 1998), Vol. 2, pp. 1165~ll70. 

37 



38 4. Loop-Mirror Laser Neural Network 

4.1 Introduetion 

Since the resurgence of interest in the field of neural networks in the mid 1980's, many 
optica} implementations have been presented in literature [1]-[3]. This can be explained 
by the highly parallel nature of neural networks and the ease of implementing highly 
parallel systems in (free-space) opties. As indicated by Jutamulia and Yu [3], the threshold 
function of the neurons in these optical neural networks is almost always in the electro
optical domain. 

In our laser neural network (LNN) all key neural operations are realized in the optical 
domain. A liquid-crystal display (LCD) is used to provide a weighted sum of inputs to 
the network. The LCD is placed in an extemal-cavity laser diode setup. The threshold 
function is implemented by use of the sensitivity of a laser diode to extemal optical feed
back. In this way we avoid the electro-optical interface and the inherent speed 1imitations 
of electronics that are due to charge buildup. With the LNN we aim to expand the ap
plication area of optica! neural networks to high speed all-optical systems such as optica! 
telecommunication networks. 

In the previous Chapters 2 and 3 we presented a theoretica! description of the LNN
concept (See also Ref. [4)) and wedemonstrated the principle of operation experimentally 
(See also Refs. [5] and {6]). The trained functions had only up to four inputs and five 
outputs. 

In this chapter we investigate the possible use of an optical neural network in the phys
ical layer of a high-speed optical telecommunication system. Applications can, for ex
ample, be in the routing and switching of data or in the detection of a data packet header 
pattern, which is an inherently parallel problem. 

To experimentally verify whether the LNN can perform functions of sufficient complex
ity for telecommunication applications, we designed an improved experimental setup to 
accommodate more inputs and outputs. The larger number of inputs and outputs is re
alized by use of a smal.ler-pitch LCD. Ferroelectric liquid-crystal material is used in the 
LCD to obtain a fast response time. 

In addition to the use of a fast LCD, the experimental setup described in this chapter was 
designed to obtain a high level of optical feedback. For this reason the linear feedback 
arrangement described in the previous Chapter 3 is replaced with a loop-mirror. 

In Section 4.2 the operation principles of our LNN are explained briefly. Fora detailed 
description of the operation principles we refer the reader to Chapter 2 of this thesis and 
to Ref. [4]. InSection 4.3 we describe the experimental setup of our LNN. The training 
results of a number of functions related to the application area of telecommunications data 
switching are presented in Section 4.4. These results are discussed inSection 4.5. Finally, 
we conclude this chapter in Section 4.6 and discuss future research. 

4.2 Princlples of Oparation 

The principles of operation of the optical neural network described in this chapter are 
introduced. Laser diodes and their longitudinal modes are briefly explained. 
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4.2.1 Laser Diodes and Optical Feedback 

A laser diode consists of an optica! gain medium inside a resonator. The gain originates 
from the stimulated emission of photons at the diode junction. The two cleaved facets 
of the laser diode chip act as mirrors and form tbe resonator. When the optica! gain 
compensates for the opticallosses, which are caused by tbe mirrors and the diode material, 
a light wave can oscillate at wavelengtbs that correspond to the longitudinal cavity modes 
of the resonator. 

The optica} gain of a typicallaser diode is a function of wavelength, as shown in Fig. 4.1. 
Tbe longitudinal mode wavelengtbs are also shown in the figure. The losses can be con
sidered independent of wavelengtb, wbereas tbe gain shows a parabalie dependenee on 
wavelengthand is a function ofthe electrical current through tbe laser diode [7]. 

Figure 4.1 Gain, g, and optical losses, a, as a function of wavelength fora typkal 
laser diode. The verticallines represent wavelength values that match the laser resonator. 
When the electrical current reaches some threshold value, !,h, the gain will compensate 
the losses for the central wavelength Ào and the laser will start to Jase. When the current 
is increased above !,h, the gain will clamp to its threshold value. Also, the shape of the 
gain curve will remain unchanged. 

If tbe current through the laser is sufficiently high, I 11h in Fig. 4.1, the gain will 
compensate the opticallosses for the central wavelength Ào. As aresult the laser will start 
to asciilate at the corresponding longitudinal cavity mode. 

When the current is increased above its threshold value, the gain curve will not shift to 
higher values, since the gain cannot exceed the opticallosses. All excess pboton emission 
will result in an increase in optica! output power. If the current is not too high above 
threshold, the laser exhibits homogenous line broadening [7] which means that the shape 
of the gain curve will not change. 

In simple terms the threshold function, needed for neural operation, is obtained by con
trol of the optica} characteristics of the resonator. First, the opticallosses of the laser diode 
resonator are raised by application of an antireflection coating to the exit facet of the laser 
diode, thus causing the laser to stop lasing. Then external optica! feedback is introduced 
to reduce the opticallosses in a controllable manner for eacb longitudinal cavity mode 
individually. 

The gain- and loss curves for this contiguration are plotted in Fig. 4.2, together with the 
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Figure 4.2 Same as Fig. 4.1 for an anti-reflection coated laser diode with optical feed
back for two modes at wavelength Ào and >..1. The left-hand part of Figs. (aHc) show 
the optical gain and loss spectra for various amounts of optical feedback for mode l, r 1• 

In the right-hand part of Figs. (aHc) the resulting spectrum is indicated. The amount of 
optical feedback for Ào is fixed to ro. (a) When r1 is lower than io, the gain is clamped 
to the fixed amount of losses for >..0 and does not compensate the losses for À 1. The laser 
emits at >..0 . (b) When r 1 is increased, the condition for lasing is restored for >.. 1 and the 
laser starts to emit at >.. 1• (c) With further increase of r1, the gainis clamped to the losses 
for >.. 1• As aresult the laser will only emit at >.. 1• (d) By combining Figs. (a)-(c) we obtain 
a simple qualitative analysis of the output power at wavelengtbs >..0 and Àj, Po and Ph 
as a function of r 1• The curves show threshold functions that are used to obtain neural 
operation in the LNN. 
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corresponding output spectra of the laser diode. In this example, feedback is applied to 
the laser diode for wavelengtbs Ào and À1 only. The feedback for Ào is kept at a constant 
level ro, which is high enough to make the laser oscillate at Ào. At first, reducing the 
losses by increasing r 1 bas no effect as depicted in Fig. 4.2(a). The losses for À1 will still 
exceed the gain for ÀJ, and the laser will continue to emit at wavelength Ào. At a certain 
threshold level of r~. near r0 , the conditions for lasing will be restored for mode ÀI and 
the laser will start to emit at À I· This corresponds to Fig. 4.2(b ). If r1 is increased further, 
the gain curve will be clamped to the lower optica] losses at À1• As a result, the gain for 
Ào will not be sufficient to compensate for the opticallosses at Ào and the laser will emit 
light only at À1, as shown in Fig. 4.2(c). In Fig. 4.2(d) we have sketched the optica! output 
power for the two modes as a function of the controlled feedback for À 1, r1 • 

4.2.2 Longitudinal Modes as Neurons 

We can use the resulting S-shaped, or sigmoid, functions to construct a neural network by 
making the amount of optica! feedback proportional to a weighted sum of inputs for each 
longitudinal cavity mode, as shown in the block diagram of Fig. 4.3. The inputs of the 
resulting neural network are in the optica] transmission domain. The modes of the laser 
represent the neurons of a single layer neural network. The optical output power at the 
longitudinal mode wavelengtbs (ÀI ... Àn) correspond to the neural outputs. 

Figure 4.3 Operation principle of our LNN. Optical feedback is applied toa laser diode. 
For each of the longitudinal cavity modes of the laser resonator (À 1, j = 1 ... n ), the 
arnount of optica! feedback is made proportional to a weighted sumofinputs (W1 · Ï). 
For each mode the output power is a sigmoid function of this optical feedback, as shown 
in Fig. 4.2 

Owing to the mode competition that results from gain damping and homogeneaus line 
broadening, only the mode with the highest amount of optical feedback will be active. 
For all other modes the optîcallosses will exceed the optica] gain. For our neural network 
this means that only the neuron with the highest weighted sum of inputs will be active: A 
so-called winner-take-all neural network. 
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4.3 Experimental Setup 

4.3.1 Overview 

Our experimental setup, shown schematically in Fig. 4.4, is a straightforward implemen
fation of the block diagram of Fig. 4.3. Figure 4.4 shows an antirefl.eetion coated laser 
diode coupled to a loop-mirror setup. The speetral components of the light are dispersed 
in the loop by means of grating G 1. Por each longitudinaJ cavity mode of the laser diode, 
the optica] throughput of the LCD can be made proportional to a weighted sum of inputs. 
These attenuated speetral components are combined, and the resulting beam is directed 
back into the laser by means of some mirrors and polarizing beam splitter PBS. The op
tica] power flow in the loop is managed by use of polarization controL Not shown in 
the tigure are a supervising computer and measurement and control equipment neerled to 
train and test the LNN. 

CL1 LCD Pol. 'JJ2 CL2 

').)2 L5 L4 

Figure 4.4 Schematic drawing of the LNN setup. Optical feedback is applied to a laser 
diode via a loop-mirror setup. In this loop-mirror, the optical power is attenuated propor
tionally to Wi · Ï for each mode j of the laser diode by use of a vector-matrix multiplier. 
This vector-matrix multiplier consists of lenses L2 ... LS, gratings Gl and G2, cylinder 
lenses, CLI and CL2, and the LCD. Optical signal flow is indicated with arrows. The )..j2 
plates, the polarizing beamsplitter PBS and the Faraday rotator Par. Rot. play a role in 
maintaining the direction of the optical signal flow {See also Fig. 4.6). 

4.3.2 Detailed Description of our Setup 

Laser Diode 

The laser diode that is used in our setup is a standard U nipbase CQL-806 series multiple
quantum-well type laser diode with an emission wavelength of "-'675 nm. To enhance 
the sensitivity of the laser to optical feedback, an antireflection coating with a residuaJ 
reflectivity of less than 0.1% is applied to its exit facet. Without this coating, the laser 
diode bas a typical threshold current of 26 mA. In our setup the coated laser diode is 
operated at 70 mA It is below threshold if the optical feedback path is blocked. The 



4.3. Experimental Setup 43 

laser diode is temperature stabilized to prevent thermal drift of the longitudinal mode 
wavelengths. The light emitted by the laser diode is collimared by lens Ll. 

Mode Dispersion 

Grating G 1 (2400 1/mm) is placed in the first focal plane of cylindricallens CLI (f = 300 
mm). In this way the angular dispersion introduced by the gratingis exactly compensated 
for by the cylindricallens. In the second focal plane of CLlline images of the diode facet 
are formed on the columns of the LCD for all modes of the laser. The di stance between 
these line images, the mode pitch, is made equal to the column pitch of the LCD by 
adjustment of the angle of grating G 1. On the other si de of the LCD an identical grating 
G2 and cylindricallens CL2 recombine the speetral components after attenuation by the 
LCD. 

Liquid-Crystal Display 

The LCD in our setup is used to implement both the inputs and the weights of the neural 
network. For each column of the LCD, and thus for each longitudinal mode of the laser 
diode, the total amount of optica! throughput is made proportional to a weighted sum of 
inputs. In Fig. 4.5 this is illustrated schematically for a LNN with an m-element input 
vector and n output wavelengths. 

Figure 4.5 Line images on the LCD. Each longitudinal mode of the laser diode (À J, j = 
1 ... n), is projected on a different column ofthe LCD. The transmission vatue p11 of each 
pixel on row i and column j is set to WiJ 11, with W11 the weight corresponding to neuron 
wavelength j and input element /1• The total transmission of a column is proportional to 
the weighted sum of inputs for the corresponding mode. 

The tigure shows line images on the transmission matrix that correspond to longitudinal 
mode wavelengtbs ÀJ ... Àn projected on the columns of the display. For each column 
j each pixel transmission value Pij is set to the product of the neural weight value Wij 

( corresponding to neuron j and input element i) and the input value /i. The total amount 
of optical transmission for each longitudinal cavity mode is the sum of the optical trans-
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mission of all the pixels that belang to the corresponding column. Thus this part of the 
setup implements an optica] vector matrix multiplier [8] in which the columns of the LCD 
correspond to the neurons and the rows of the LCD to the input elements. 

The number of illuminated rows, and thus the maximum number of inputs of our LNN, 
is determined by the height of the line images and by the row pitch of the LCD. The 
height of the line images depends on the magnification of the beam expanders, L2 + L3 
and L4 + L5, and on the beam diameter after the collimator lens Ll. 

During the learning phase the weights of the network are updated iteratively. To speed 
up this Jearning phase the switching speed of the LCD needs to be maximized. This 
switching speed is primarily limited by the speed of the liquid-crystal material being 
used. In the LNN setup described in this chapter, the LCD is tilled with deformed-helix 
ferroelectric liquid-crystal (DHFLC) material. This material bas a typical switching speed 
of the order of microseconds. The LCD consists of 32 x 32 transmission elements; each 
of these pixelscan be set to one out of 100 gray levels with a contrast ratio of ""'1:30. 
The pixel pitch of the DHF-LCD is 0.24 mm. A detailed description of this DHF-LCD, 
intended for video display, can be found in Ref. [9]. 

A drawback of the fast DHFLC material as compared to the most commonly used 
twisted nematic liquid-crystal material is its lower transmission value. Por the DHFLC 
material this value is typically 55% of that of twisted nematic Jiquid-crystal. The optical 
throughput of the device is further reduced by the thin-film electtonic components needed 
to address each pixel. This results in a total maximum transmittance ofthe LCD of ""'25%. 

The setup presented in this chapter contains a loop-rnirror instead of the linear extended 
cavity that was used in the setup described in Chapter 3 (See also Ref. [5]). In this loop
mirror setup the LCD is passed only once and thus the corresponding losses are reduced 
by a factor of 2. 

Loop-Mirror by Polarizatlon Control 

The direction of optical power flow in the loop-mirror is controlled by use of polarization 
manipulation. This is explained by means of Fig. 4.6 in which the polarization state of 
the light beam is represented by an arrow inside a circle. A horizontal arrow indicates 
light that is horizontally polarized with respect to the plane of the setup; a vertical arrow 
denotes vertically polarized Jight. 

The light emitted by the laser diode is vertically polarized. The Faraday rotator ro
tates the polarization state by 45° in a c1ockwise direction with respecttoa space-fixed 
reference frame. The À/2 plate rotates the polarization state of the laser beam by a con
trollable angle; this rotation is exactly canceled when the light is sent through the device 
in the opposite direction. By proper adjustment of the first )..j2 plate, the laser beam 
is horizontally polarized when it arrives at the polarizing beam splitter. The polarizing 
beam splitter transmits the horizontally polarized laser beam, whereas it deflects a verti
cally polarized beam of light at an angle of 90°. The LCD rotates the polarization state of 
the incoming beams by an angle that depends on the applied gray level. After the LCD a 
polarizer is used to transfarm this rotation of the polarization state into a variabie attenua
tion. The attenuated beam is vertically polarized. The two À/2 plates before and after the 
second grating are added because the efficiency of the grating is higher for horizontally 



4.3. Experimental Setup 

CDFar. rot.0À!2 8 PBS 8 G1 8 LCD (IJ Pol CD 

Figure 4.6 Maintaining one way optica! power flow through polarization controL Polar
izatîon state is indicated with an arrow inside a circle. The initîally vertical polarization 
of the laser beam is converted to a horizontal polarization by the Faraday rotator and the 
first Ä/2 plate. After passing the PBS the polarization is rotated by the LCD and the Ä/2 
plates to a vertical polarization. The resulting beam is directed back into the laser with 
the initia! polarization state by the PBS and the Faraday rotator. 

45 

polarized light than it is for vertically polarized light. Finally, the polarizing beam splitter 
directs the vertically polarized beam back into the laser diode via the first À/2 plate and 
the Faraday rotator. When passed in this direction, the combination of these devices does 
not alter the polarization state of a passing light beam. The beam thus returns into the 
laser with the original, vertical polarization. 

With the loop-mirror contiguration the overall efficiency reaches a level of approxi
mately 9%. With the contrast ratio of the LCD of approximately 1 :30 the total percentage 
of optica! feedback can be controlled between 0.3% and 9%. 

Training Setup 

For the purpose of training and monitoring the LNN a computer can control the inputs 
and weights of the LNN and read its outputs. 

This supervising computer can send images that consist of input veetors and weight 
matrices to the LCD. Although the switching speed of the DHFLC material is of the order 
of microseconds, the rate at which images can be put on the display is limited in the setup 
to ~ 125 images per second. This limit is caused in part by the LCD driver electTonics and 
in part by the interface between this driver and the computer. 

A fast optica! spectrum analyzer was built that is capable of measuring spectra at the 
same rate at which images can be shown on the display. By use of the spectrum analyzer, 
the computer reads the output state of the LNN. The spectrum analyzer consists of a 
grating, some lenses, a 256-element CCD array and an 8-bit analog-to-digital interface 
board. To analyze the power spectrum of the laser diode, light is coupled out of the LNN 
setup just after the polarizing beam splitter by use of a 30/70 beam splitter. The light is 
coupled into a single-mode fiber that is conneeled to the spectrum analyzer. 

In the Jearning experiments, presented in the following section, we used a ö-rule learning 
algorithm, also known as Widrow Hoff learning [ 10]. We adapted the algoritbm for our 
LNN in two ways. Because we are mainly interested in training digital functions to our 
network, that bas analog outputs, digital decision levels have to be defined. These levels 
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correspond to the ON and OFF values of a neuron. lnstead of using fixed values for these 
decision levels, a target extinction ratio Er between these levels is used in the learning 
algorithm. In this way we do not need todetermine the ON and OFF levels for each neuron. 
As an additional advantage, a noise margin can be trained in a rather straightforward 
manner by simply training the network with a larger extinction ratio than needed. 

Initialize: 
Get desired ON-OFF extinction ratio Er, 
Get learning rate q 

Calculate starting matrix Wo 
Repeat 
1: Show all input patterns lp to the netwerk with W 

Measure all corresponding output patterns Op ,meas 

2: Calculate new target output values for each neuron j: 
ON value: Oj.dea-on = Er · maximum of 

Op,j,meaa, all p for which j is losing neuron, 
Op,k.meaa, all p for which j is winning neuron, all k;éj 

OFF value: OJ,d .. -off = {1/Er) · minimum of 
Op,j,moa•, all p for which j is winning neuron, 
Op,k,meas, all p for which j is losing neuron, all k;éj 

3: Calculate error measure, Error= Lp Li IOp,j,dao - Op,j,meas I 
4a:If (Error> 0) then for all inputs, i, and all neurons, j: 

calculate Wi,j := Wi,j + q ~ Ip,i(Op,j,des:: Op,j,meu) 

4b:If (Error 0) then check solution W, N times: 
repeat step 1 and 3, accuruulate error measure 

Until (Error = 0) 

Figure 4. 7 Basics of our modified 8-rule algorithm. The pattem number is denoted p, j 
is the neuron number, the input element is denoted with i. 

The learning algorithm is presented in Fig. 4.7. It starts by calculating an initial guess 
for the weight matrix based on the winner-take-all inequalities (See Section 3.6.3) of the 
function to be trained. Then, iteratively, the weight matrix is updated using a delta rule 
with learning parameter q (in step 4a) until the error measure equals zero. In step 2, the 
digital decision levels are recalculated for each neuron using the target extinction ratio Er 
and the measured output values of the neuron in the ON and OFF states. To account for 
the winner-take-all nature of our network, also the measured output values for all other 
neurons are included in this calculation. When an appropriate weight matrix is found 
the algorithm stops after this solution bas been tested a number of times N to verify the 
stability of the solution. 
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4.4 Results 

4.4.1 Defining Neurons 

Because of imperfections in the experimental setup, not alllongitudinalcavity modes of 
the laser diode can be activated by the applied optica! feedback. Before training the LNN, 
we have to select the longitudinal cavity modes of the laser diode that can be used as 
neurons. Some criteria are formulated for a usabie neuron. With a given number of input 
elements, a usabie neuron should have a high output value when a corresponding weight 
is set to its maximum value, even if only one of the input elements is active. The neuron 
should have alowoutput value when all input elements are set to an inactive state. These 
criteria ensure that the influence of a single input element is enough to switch the neuron 
from an inactive to an active state. 

In our setup we can test the criteria for each neuron by controlling the gray values of 
the pixels in the corresponding LCD column. The laser should lase at the longitudinal 
mode wavelength that corresponds to the neuron when a pixel of the LCD column is set 
to a transparent state. Such a pixel can be used as an element Wijl; in the vector-matrix 
multiplication for neuron j. 

The number of pixels that can be used depends not only on the number of illuminated 
rows as indicated inSection 4.3 but also on the dis tribution of optica] power over the rows. 
This optica] power distribution wiJl equal the Gaussian distri bution of the nondispersed 
laser beam. The distribution remains unchanged because the cy lindricallens CL I focuses 
the beam into verticallines perpendicular to the rows. 

In Fig. 4.8 results of measuring this distri bution over 19lines of the display are shown. 
As can be seen from the figure, some rows have only little optie al throughput; hence pixels 
belonging tothese rows are not suitable as W;jl;-elements. These pixels can, however, be 
used to bring the corresponding mode of the laser closer to threshold when they are set to 

3 5 7 9 11 13 15 17 19 

Rownumber 

Figure 4.8 Power distri bution of the light beam at the LCD in the verticai direction. Bars 
represent the total optica! power after the LCD as measured by switching the respective 
rows of the display. The curve shows an approximate Gaussîan fit to this data. The opticai 
throughput of some rows wiJl oot be suftkient for the pixels of these rows to be used as 
elements wijl;. 



48 4. Loop-Mirror Laser Neural Network 

a fixed, transmitting state. As a result, more of the remaining pixels for the neuron will 
be available as a Wij /i -element, and the number of inputs can be increased. 

We used an automated algorithm to select tbe modes suitable as neurons, the pixels 
suitable for W;jl;-elements, and the pixels that should be settoa permanent transmitting 
state. The resulting number of neurons depends on the alignment of the setup and on the 
target number of inputs. The maximum number of neurons we obtained was 32, each with 
5 or more inputs. Whereas with 12 or more inputs, we could still define a few neurons. 
However, typical values were 25 neurons with 5 or more inputs or 14 neurons with 9 or 
more inputs. 

As an example, a spectrum with 27 neurons, each with 5 or more inputs, is shown in 
Fig. 4.9. All inputs were set to zero when this spectrum was measured. In the tigure the 
27 selected modes have a higher output power than the remaining modes. The higher 
output power is a result of setting the unusable pixels of the columns corresponding to 
these modes to a transmitting state. Of those modes, the ones with the highest output 
power in the active state were selected for the training experiments. 

120~--------------------------~ 
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-80 = .!.. 
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- 40 
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Figure 4,9 Spectrum of tbe LNN before training. The 27 modes of the laser tbat can be 
used as neurons in this example have a higher output power. The corresponding neurons 
are still in tbe OFF state. 

4.4.2 Training Experiments 

With the learning algorithm described in Section 4.3, we trained the network to perfarm 
some digital functions. The particular digital functions were chosen with the application 
of (telecommunication) data switching in mind. 

With the 1 :8 data switch function the goal is to direct one data bit to one out of eight 
output channels. An additional (dump) output channel is added to realize this with our 
winner-take-all neural network. A block diagram of the function is shown in Fig. 4.10. 
lf the data input port is high, the dump output should be high, regardless of the state of 



4.4. Results 49 

the 3-bit input address. All other output channels should be low. If the data input is low, 
the output channel that corresponds to the address information should be the only active 
one. In this way the data bit, or rather its inverse value, is routed to the output channel 
selected by the address data. The resulting truth table is listed in Table 4.1. The first bit 
of the input vector is a bias input; it is always set to a logica! 1. The second bit is the data 
bit, the last three bits represent the address. Table 4.1 can be used as a training set for the 
learning algorithm. 

3-bit { 

Address 

1-bit Data 

} 

8 Output 

Channels 

Dump 

Figure 4.10 Block diagram of a I :8 data switch. The 3-bit address selects the destination 
of the 1-bit data. Bither the dump channel or the channel represented by the 3-bit address 
is active, depending on the state of the input data bit. 

Aiming at a guaranteed minimum ON-OFF ratio (See Section 4.3) of 4, we set the ON

OFF ratio to be trained to 5. The evaluation of the error measure as a function of iteration 
count is presented in Fig 4.11. The tigure shows the error measure of the learning al
gorithm as a function of iteration count for five typical training-sessions of the l :8 data 
switch example. Each training-session is a completion ofthe algorithm of Fig. 4.7. 

In Fig. 4.12 a resulting typical weight matrix for the 1:8 data switch function is pre
sented. The weights in the top row of this figure correspond to the bias weights, needed to 
adjust the neural threshold. The weights in the second row correspond to the data bit in
put. The remaining rows are the weights that correspond to the three input bits containing 
the address information. 

Table 4.1 Truth table of 1:8 data switch function. The fi.rst bit of the input vector is the 
bias input, the second is the data bit, the last three represent the address. 

Input Output Input Output 
Vector Vector Vector Vector 
10000 100000000 11000 000000001 
10001 010000000 11001 000000001 
10010 001000000 11010 000000001 
10011 000100000 11011 000000001 
10100 000010000 11100 000000001 
10101 000001000 11101 000000001 
10110 000000100 11110 000000001 
10111 000000010 11111 000000001 
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Figure 4.11 Error measure as a function of iteration count for five training sessions of 
the 1:8 data switch example. 

Input: 
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Figure 4.12 Typical weight matrix after training the 1:8 data switch, as it would appear 
on the LCD. Black areas denote nontransmitting pixels, white areas correspond to fully 
transmitting pixels. The weight values are indicated in the figure. 

With this weight matrix the LNN correctly responds totheinput pattems presented to it. 
For each input pattem the LNN responds by emitting light at a single wavelength. In Fig. 
4.13 the speetral response ofthe LNN is shown fortheinput veetors 10000 (top graph) to 
11111 (bottom graph). 

By use of training sets similar to that of the 1:8 data switch, the LNN was also trained 
to performa 1:8 decoder (without data), a 1:16 data switch and a 1:16 decoder without 
data. All functions were trained 100 times. In Table 4.2 some statistics of the learning 
behavior of the LNN are presented. In Table 4.2 the average number of iterations and the 
standard deviation on this average are listed. 

In the learning trials presented above, the modes that had the highest output power were 
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Figure 4.13'fYpical output spectra of a trained LNN. The tigure shows the measured 
spectra tor all possible input pattems 10000-11111 of the I :8 data decoder problem 
(Compare Table 4.1 ). 
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Table 4.2 Statistics of training. The average number of iteration and the standard devi
ation on this average are tabulated for a number of trained problems using data from I 00 
training trials. 

Average Standani 
Problem Iterations Deviation 
1:8 Decoder 69 16 
1:8 Data Switch 77 12 
1:16 Decoder 105 27 
1 : 16 Data Switch 85 50 

selectedas neurons. As a result, holes appear in the output spectra of Fig. 4.13. In Fig. 
4.14 the output spectra of the 1:16 data switch function are presented where adjacent 
modes were selected instead of those with the highest output power. In the figure the 32 
spectra corresponding to input patterns 100000-111111 are plotted superimposed. 
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Figure 4.14 Spectra of the LNN after training the 1:16 data switch problem. The roea
sured 32 spectra are plotted superimposed. For each input pattem, the laser ernits at a 
single wavelength. Input veetors are indicated above the corresponding output wave
length. 

After training, we subjected all solutions toa test by providing 10000 example input 
veetors to the trained network. The results of these tests are listed in Table 4.3. The 
fraction of these tests for which the neural network reproduced the trained function with 
the desired ON-OFF ratio of 4 is listed in the second column of Table 4.3 (OK). Por all 
trained functions this fraction was greater than 99%. With a digital decision level set 
ha1fway between the ON and OFF decision level, the bit error rate (BER) of the trained 



4.4. Results 

Th bie 4.3 Test results of trained problems. The percentage of test input veetors for which 
the neural network reproduced the trained output vector within the specified ON·OFF ratio 
of 4, OK, and the bit error rate during these test BER are listed for 10,000 tests. 

Problem OK(%) BER 
1:8 Decoder 99.96 < w-~ 
1:8 Data Switch 99.96 < w-s 
1 : 16 Decoder 99.52 9 x w-s 
1: 16 Data Switch 99.57 < to-5 
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network was measured. Some bit errors occurred during testing of the 1: 16 decoder. For 
the other functions no bit error was observed, resulting in a bit error rate of less than 1 o-5 . 

We can obtain additional information on the reliability of the network by making a 
speetral eye partern. In this speetral equivalent of a normal eye pattern all measured 
spectra are plotted superimposed to estimate the area between the ON and OFF value of aH 
neurons. In Fig. 4.15 the speetral eye patternis presented for the weight matrix salution 
of Fig. 4.12. A white area, or eye, between the high peaks and the low peaks is clearly 
visible for all neural wavelengths. 

679.0 
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678.0 

'A(nm) 

/j u L 
677.0 676.5 

Figure 4.15 Speetral eye pattem of the 1 :8 data switch. The tigure is obtained by plotting 
1600 measured output spectra of the LNN superimposed. A white area is clearly visible 
between the curves and indicates an open eye. 

4.4.3 Varying the Extinction Ratio Er 

We trained the 1:8 data switch funetion with a nurnber of values for the target extinction 
ratio Er (See the algorithm presented in Fig. 4.7). Aiming at a minimum extinction ratio 
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of 4, we trained the network withEr = 4, 5, 6 and 7. After training we tested the behaviour 
of the LNN by showing 1000 input veetors to it. We repeated this for 10 Jearning trials 
for each value of Er. Since noise is obviously present in our setup, the fraction of these 
tests for which the measured extinction ratio was below 4 can be used as an indication of 
the noise margin. The higher this fraction, the smaller the noise margin. WithEr set to 4, 
this fraction was 4.5%, for Er= 5 it was 1.0%, for Er= 6 about 0.3%, and with Er set to 
7 it was below 0.1%. 

4.4.4 Unexpected Neural Response 

The response of the laser to a changing amount of optical feedback is usually a sigmoid 
function, as presented in Section 4.2 [See Fig. 4.2(d)]. In a significant number of mea
surements, however, we observed neural response curves such as presented in Fig. 4.16. 
A dip is visible in the power of the lasing mode Pt in the part of the figure corresponding 
to region (a) of Fig. 4.2{d). The dip is accompanied by an increase in the power of the 
othermode. 
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Figure 4.16 Power of two neurons as a function of weighted sum of inputs for one 
of the neurons. The weighted sum of inputs for neuron 1 is kept constant durlng the 
measurements; that of neuron 0 is varied. A bump occurs in the curve conesponding to 
the neuron with the shorter wavelength P0• At the samepoint a dip in the power curve P1 

of the other mode can be observed. 

In other measurements of the neural response function, we also observed this phe
nomenon in region (c) of Fig. 4.2(d). When this phenomenon occurred, the dip was 
always in the power curve of the mode with the longest wavelength while the increase 
was always in the power curve of the mode with the shortest wavelength. 
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The origin of the anomalous shape of the neural response function is not yet fully un
derstood. The fact that both modes are active when the phenomenon occurs suggests a 
nonhomogenous line broadening and thus at the occurence of some kind of gain satura
tion. The wavelength asymmetry in the effect suggests an asymmetrie nonlinear gain as 
described by Manning et al. [ 11],[12]. In Chapter 7, a nother possible explanation of this 
cross-modulation effect is indicated. 

4.5 Discussion 

4.5.1 Network Functionality 

Although the functions that the network was trained to perfarm did not use all available 
inputs and neurons, they clearly demonstrate the capabilities of the LNN concept. 

The demonstraled functions can be used in a router in a packet switched optical telecom
munication network. In this type of telecommunication network, data is sent in packets. 
Each packet has a header that begins with a bit sequence, called the header detect se
quence, that marks the start of the packet. The header also contains a bit sequence with 
information on the destination of the data in the packet. A router in such a network should 
be able to recognize the header detect sequence, decode the destination information, and 
route the data to the desired destination. 

In Fig. 4.17 a block diagram of an all-optical router concept is presented. In this concept 
an optica) delay line converts the serial incoming data to a parallel format This parallel 
data represents a time window of the optical data stream. The header detector triggers 
the memory to store the destination address when a header is detected in this data stream. 
After passing the delay line, the serial data is sent to the 1 :N data switch. This switch, 
tinally, routes the data to the destination that was stored in the memory. 

Header 
detect 

Optica I 
memory 1----1 

dateet store 1:N data 
switch 

Figure 4.17 Block diagram of an all-optica! router concept using the LNN. Serial data is 
converted to parallel data by means of an optica! delay line. A header detector, possibly an 
LNN, detects the header detect sequence. When a header is detected, the optica! memory 
stores the destination address. The data can then be routed by a l:N data switch, as 
presented in this chapter. 

A part of the routing task was performed by the LNN afterit was trained with the 1 :8 and 
the 1 : 16 data switch functions. The LNN decorled a destination address and, depending 
on this address, redirected one data bit to a destination wavelength. Another part of the 
routing task, the detection of the header detect sequence, is actually a pattem recognition 
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task. Because of their inherently parallel nature, neural networks are good at performing 
such tasks. Therefore we believe that our LNN can also be trained to detect the header 
detect sequence. 

4.5.2 Network Error Performance 

The tests performed aftereach learning trial (See Table 4.3) show a good performance 
of the trained network. Por all trained functions the · fraction of tests with an ON-OFF 

ratio lower than the desired value was below 1%. In most of these cases the value of the 
ON-OFF ratio was only slightly smallerand can he ascribed to noise. In the speetral eye 
pattem of Fig. 4.15 no closing ofthe eye at any wavelength is visible. 

The observed bit errors all occurred in four training trial examples of the 1:16 decoder 
function. The fact that these training trial examples were run closely after one another 
might indicate a temporal instability in the experimental setup that is due to, for example, 
mechanica! vibrations. 

4.6 Conclusions and Further Study 

4.6.1 Network Function 

We demonstraled that the LNN can he trained to perform some data switching functions 
by use of a simpte 8-rule algorithm, adapted for our digital winner-take-all network. The 
demonstrated functions had as many as 17 outputs and 5 digital inputs. A data bit could he 
routed to a selected output wavelength that corresponds to a destination address. Both the 
data bit and the address were presented to the neural network in the optical transmission 
domain. The results indicate the functional usefulness of our neural network concept in 
the area of all-optical data switching for optical telecommunication networks. 

4.6.2 Learning Algorithm 

The modified 8-rule learning algorithm performs well compared to the stochastic learning 
algorithm used in previous experiments (See Chapter 3). Less iterations are required 
although the complexity of the trained problems in terms of numher of inputs and outputs 
is increased. The introduetion of the extinction ratio Er in the learning algorithm enables 
us to control the noise margin of the LNN. 

4.6.3 Network Size 

The neural network presented in this study h~s 32 neurons and up to 12 inputs. Basedon 
our experiments, we can estimate the ultimate network size of an optimized LNN setup. 

The number of neurons in the experiments described in this chapter is limited by the 
numher of columns of our LCD weight matrix. A dedicated LCD can have as many 
columns as desired. For a setup that uses such an LCD the total numher of longitudinal 
laser modes will determine the number of neurons. 
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The laser diode used in the experiments described in this thesis, bas approximately 100-
150 modes. This number is obtained by comparison of the gain bandwidth of the laser, 
typically 10-15 nm wide, with the speetral mode spacing, which is "-0. 1 nm. An even 
higher number of neurons is possible when the Jongitudinal mode spacing of the laser 
diode is reduced by use of a Jonger laser diode cavity. 

A pixel of the LCD can be used as an input according to the definition inSection 4.4.1, if 
the amount of optica) feedback through the pixel is sufficient to activate the corresponding 
longitudinal cavity mode of the laser diode. Hence the number of inputs per neuron 
depends on the minimum optica! feedback level to activate the cavity mode, the total 
optica! feedback, and the distri bution of optica} power over the rows of the LCD. 

The total amount of optica) feedback in our setup is "-'9% (See Section 4.4.1). Consict
ering that approximately ten inputs could be defined, we can assume that the ten rows of 
the LCD with the highest optica} throughput are the ones that can be used as inputs. Using 
Fig. 4.8 to estimate the minimum throughput value of these rows, we obtain a minimum 
feedback level of "-'0.3%. 

To increase the number of inputs, the optica! power can be distributed more evenly over 
the rows of the transmission matrix. A more even distribution can be realized by u se of a 
variabie pixel pitch intheinput direction of the LCD. Fora variabie pixel pitch the number 
of inputs can be made equal to the total amount of feedback divided by the minimum 
feedback level With the feedback efficiency of the setup described in this chapter this 
would result in "-'27 inputs. If the feedback efficiency can be further enhanced, the number 
of inputs will increase accordingly. 

4.6.4 Future Study 

For application of the LNN in optica! telecommunication networks the speed of operation, 
estimated to reach the gigahertz region [4], needs to be verified in future experiments. 

For this application the input vector needs to be optically addressed. Hence it is nec
essary to conven incoming optica} (power) data to optica! transmission information by 
means of some opto-optical modulator. Examples of experimental opto-optical modula
tors can be found in Refs. [ 13] and [ 14]. 

Although bit error rates as low as 1 o-5 have been measured, further improvements are 
required, since telecommunication applications typically require a much lower bit error 
rate. 
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5 

Longitudinal Mode Switching 
Dynamics in a Dual 
Externai-Cavity Laser Diode 

We study the potential speed of an optica} neural network that uses the longitudinal cavity 
modes of an external-cavity laser diode as neurons. For this purpose we use a laser diode 
that is coupled to two external cavities, each corresponding to one longitudinal cavity 
mode. The process of longitudinal mode-switching is investigated for the case of intra
cavity optica! modulation. In this experiment, the feedback for tbe mode in one cavity is 
modulated, tbe Jength of the other cavity can be controlled. Three limitations are imposed 
on tbe switcbing speed. A number of external-cavity round-trips are needed to switch 
from one mode to the other. It is observed that, depending on the amount of optica} feed
back in botb cavities, between 7 and 21 round-trips are needed. When tbe experimental 
results for varying cavity length are extrapolated to zero cavity length, a residual delay 
of a few nanoseconds remains. It is believed that this delay is due to a change in carrier 
density, needed to switch from one mode to another. Modified rate-equations are used to 
model our experiments. The results of numerical simulations are in good agreement with 
the experimental results and predict the residual delay. The model also prediets a turn-on 
delay that is related to relaxation oscillations and imposes a third limitation on the oper
ation speed of our optica] neural network. Implications of our findings on the potcntial 
operation speed of the optical neural network are discussed and suggestions are made for 
optimization. 

The contents ofthis chapter is subrnitted for publication: E.C. Mos, J. J. H. B. Schleipen, H. de Waardt, and 
G. D. Khoe, "Longitudinal mode switching dynarnics in a dual extemal-cavity laser diode," IEEE J. Quanturn 
Electron. 
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5.1 Introduetion 
external-cavity laser diodes have been the subject of many studies. A few examples of 
applications are narrow-linewidth tunable sourees [ 1 ], remote sensing [2], blue light gen
eration by intra cavity frequency doubling [3] and intra-cavity spectroscopy [4]. In the 
laser neural network (LNN) described in this thesis we employ an external-cavity laser 
diode tobuildan all-optical neural network [5]-[8]. 

To build a neural network we need a set of simple computing elements, neurons, that 
receive a weighted sum of inputs [9]. The computing elements should have an active 
output if the weighted sum is higher than a certain threshold level. If the neurons are 
combined to form a network, the resulting device can be used to compute an output vector 
from a vector of input elements. The computation in such a network is done in parallel 
and is distributed over the neurons. The function implemented by the neural network is 
stored in the weights that conneet the neurons with other neurons and the inputs. 

In the LNN each longitudinal cavity mode of the laser diode represents a neuron, and 
the output vector corresponds to the power spectrum of the laser diode. A liquid-crystal 
display (LCD), consisting of a matrix of transmission elements, is placed in an extemal
cavity setup and enables us to control the amount of optical feedback for each longitudinal 
cavity mode individually. We use the LCD to imptement the inputs and weights of the 
network by setting the transmission values of the pixels according to a sum of weighted 
neural inputs. In this way the optical feedback is made proportional to the weighted sum 
of inputs for each longitudinal cavity mode of the laser individually. A longitudinal cavity 
mode starts lasing when the optical feedback exceeds a certain level. This means that the 
corresponding neuron becomes active when the weighted sum of inputs is above a certain 
threshold level. Thus a neural network is formed with inputs in the optical transmission 
domain and outputs in the wavelength domain. 

Applications of the LNN are envisioned in the area of pattem recognition and routing of 
data in high speed(> I Gbit/s) optical telecommunication systems. For this type of appli
cations it is desirabie that the output state of the LNN changes within a nanosecond after 
the input vector is applied. Changing between output states in the LNN implies switching 
between Iongitudinal cavity modes of the laser diode. In this chapter we investigate the 
mode switching transient behavior of an external-cavity laser diode subjected to a change 
in optical feedback. 

To our knowledge the transient response of a laser diode subjected to a change in exter
nal optical feedback has not yet been investigated. Reports have been made on directly 
modulated external-cavity laser diodes [10]-[13]. Olsson and Tsang [10] reported a tran
sient time of a few external-cavity round-trips when an extemal-cavity laser diode was 
driven with a step current excitation. A similar experiment was carried out by Kanjamala 
and Levi [11] fora laser diode that is coupledtoa fiber grating external cavity. 

The LNN setup described in previous Chapters 3 and 4 (See also Refs. [5]-[8]) is un
suited to measure the transient response of the laser diode. The switching time of the LCD 
is in the order of milliseconds, while the round-trip time of our current LNN is in the or
der of microseconds. A dual external-cavity setup with a fast intra-cavity electro-optical 
modulator is built to emulate our LNN. The .modulator is used to emulate the change in 
optical feedback for one longitudinal mode when the input vector is changed from one 
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state to another. With this setup we measure the mode switching transient behavior. 
In Section 5.2 we presentour experimental setup. In Section 5.3 we describe the rate

equation model that is used to compare the measured results with laser theory and to 
estimate the speed of an LNN that is aimed at telecommunication applications. In Section 
5.4 we present experimental results as well as results from numerical simulations that 
use the rate-equation model. We discuss the results and estimate the speed of a feasible, 
integrated opties device based on extrapolated ex perimental data and simulated results in 
Section 5.5. We conclude the paper in Section 5.6 where we make recommendations for 
future workon the LNN. 

5.2 Experiment 

The longitudinal mode switching behavior of an external-cavity laser diode is examined 
for variabie feedback conditions and a range of extemal-cavity lengths. The experimental 
setup is shown in Fig. 5.1. It consists of a 670 nm multiple-quanturn-weillaser diode 
(Uniphase CQL806) coupled to two external cavities A and B by means of a polarizing 
beam splitter PBS. An antireflection coating with a residual reflectivity of approximately 
5 x w-4 is deposited on the front facet of the laser diode. The threshold current before the 
laser was antireflection coated measured "'-'25 mA. With the applied coating the threshold 
current of the laser diode without optical feedback was higher than 70 mA, the driving 
current in our experiments. The laser diode is temperature stabilized to prevent thermal 
drift of the internallongitudinal mode wavelengths. 

M4 

~-----.JE.:: :::::::~;::l _. ____ , 8 

det.3 

EO-Modulator )J2 PBS /../2 Laser diode 

A 

Figure 5.1 Schematic drawing ofthe experimental setup. A laser diode is coupled to two 
wavelength selective cavities A and B via a polarizing beam splitter PBS. With mirrors 
MI and M2 the cavities are tuned to J..l and U. The time varying optical output power 
at these two wavelengtbs is monitored via grating G3 with detectors (det. 1 and 2). The 
feedback for cavity A is modulated with an electro-optical modulator. The lengthof cavity 
B can be controlled by moving mirror M4. M2-plates are inserted to control the power 
flow. The zerothorder of gratings Gl and G2 are used to monitor the temporal behavior 
of the electro-optical modulator (det. 3) and the speetral behavior of the laser diode. 
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To obtain wavelength selective feedback, both external cavities are built according to the 
Littman configuration [14] that is formed by diffraction gratings 01 and 02 and mirrors 
Ml and M2. The wavelength selectivity of the two external cavities is approximately 
1 o-2 nm. By rotating a mirror the corresponding cavity A orB can be tuned to an internal 
longitudinal cavity mode wavelengthof the laser diode. Intherest of this text we will refer 
to these modes as mode A and B. The intemal-cavity modes are spaeed at 0.1 nm. A M2-
plate is placed between the laser diode and the PBS to enable us to direct a controllable 
portion of light to the two cavities, thereby controlling the amount of optical feedback 
for both cavities. By measuring the optical power at the end mirrors, we estimate the 
maximum feedback efficiency for both cavities to be approximately 10%. By use of a 
ray-tracing program we estimated the overall power efficiency of the extemal-cavity setup 
to be 20%. The resulting maximum feedback levels for modes A and B are approximately 
2%. 

An amplitude modulator, placed in cavity A, switches the feedback efficiency of this 
cavity between two levels. The modulator (Coherent, model 20/317) bas rise and fall 
times of approximately 8 nanoseconds. It is driven with a 50% duty-cycle square wave 
of "'-'3 MHz. The length of cavity A is 1.05 m corresponding to a round-trip time of 
approximately 7 ns. 

The length of cavity B can he controlled by changing the position of the retroreflect
ing mirror M4. In this way we are able to set the round-trip time of this cavity to any 
value between approximately 2 and 16 nanoseconds. The M2-plate in cavity Bis inserted 
to control the polarization state of the laser beam in this part of the setup for optimal 
reflection at grating 02. 

We measured the temporal response of the laser diode with a number of high speed 
detectors, det. 1-3 (Opto Electtonics Inc., PDlO). To measure the optical power of the 
two longitudinal cavity modes, a part of theintra-cavity optica} power is coupled out by 
a beam splitter and dispersed by a third gr;1ting 03. The resulting, speetrally resolved, 
beams are imaged onto detectors l and 2. For timing calibration purposes the zeroth 
order reflection of grating 0 I is used to monitor the op ti cal response of the electro-optic al 
modulator with detector 3. The electrical signals from detectors 1 and 2 are amplified 
and subsequently recorded with a sampling oscilloscope (Tektronix, 11802 with SD-26 
sampling heads). The amplifiers (HP-8447) limit the detection bandwidth toa frequency 
range of 0.1-1300 MHz. 

We monitored the intemal mode power spectrum of the laser diode on a nm scale with 
an optical multichannel analyzer (EO&O, OMA 1460). The extemal-cavity mode power 
spectrum is measured with a 1.5 OHz freespeetral range Fabry-Perot spectrum analyzer 
(Tropel model 240), with a resolution of approximately 10 Mhz which corresponds to 
"-'l0-5 nm. 

5.3 Theory 
In this section we derive a theoretica! description of our external-cavity laser diode to 
predict the time dependent output power of the diode laser at the two wavelengtbs selected 
by the external cavities. The behavior of the laser diode will be dominated by the two 
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external cavities because the reflectivity of the external mirrors is much higher than the 
residual retlectivity of the antireflection coated front facet. 

A theoretica! description of the dynamic behavior of a laser diode subjected to weak 
external optica! feedback has been introduced by Lang and Kobayashi [ 15]. Although the 
feedback in our setup can hardly be referred to as weak, the same metbod with a slight 
modification can be used to describe our experiments. In an analysis for weak feedback, 
a one-dimensional model of a laser with external optica! feedback as presented in Fig. 5.2 
is used. In the tigure R1 and R2 denote the power reflectivity ofthe back and front facets 
of the laser diode. An external reflector with power reflection Rext is placed at a di stance 
Lexr. Since Rexr is assumed to be weak in the original model, multiple reflections in 
the external cavity can be neglected. In our case the reflectivity of the coated front facet 
of the laser diode R2 is small, which means that this is also a valid assumption for our 
experiment. 

Figure 5.2 One-dimensional model for an external-cavity laser diode. R1 is the un
coated back facet reflectivity. R2 is the reflectivity of the antireflection coated front facet 
and is approximately 5 x l o-4• Rext represents the refiectivity of an extemal mirror at a 
distance Lw away from the laser diode. Multiple reflections can be ignored because of 
the antireflection coating. 

With this assumption a set of rate-equations [ 16],[ 17] can be forrnulated for the electro
magnetic field of the compound -cavity modes inside the external-cavity laser diode. For 
this purpose, an effective facet (amplitude) retlectivity r eff ,m can be introduced for each 
compound-cavity mode, to replace the retlectivity of the front facet in the expression for 
the distributed mirror losses. Fora compound-cavity modem we find: 

(5.1) 

In this equation exp (-i Wm Tm) represents the phase delay caused by the external-cavity 
round-trip time Tm of the reflected electromagnetic field of a compound-cavity mode m 
with frequency Wm, and Rext.m is the external reflectivity formode m. The real part ofEq. 
5.1 is: 

lreff.ml = ~(1 +Km cos(WmTm)) 

with Km the coupling coefficient for mode m according to: 

(5.2) 

(5.3) 
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Using Eq. 5.2 in the rate-equation for the modal electromagnetic field [16],[17] we find 
for the pboton density Sm(t) of compound-cavity modem: 

Sm(t) = (G Yo) Sm(t) + Rsp + 
&ymJSm(t)Sm (t- 'tm) cos(1>m(t) -1Jm(t 'tm)) (5.4) 

where Gis the modal gain and Rsp the spontaneons emission as defined in Table 5.1 and 
a dot denotes time derivative. In Eq. 5.4(/>m(t) is the phase ofthe modal optica! field. The 
opticallosses yo of the diode laser without feedback are given by: 

(5.5) 

with CX.int the internat materiallosses, v8 the speed of light inside the laser diode and Ln 
the length of the laser diode chip. 

Lang and Kobayashi used an approximate solution for the external mirror induced 
change in opticallosses &ym, basedon the assumption that the external reflection adds a 
small disturbance to the front facet reflectivity R2. In our case the external mirror dom
inates the behavior of the laser diode and thus the influence of this mirror on the optical 
losses needs to be included without approximation. The change in opticallosses caused 
by the extemal reflection for mode m is: 

V . 

Aym = - 8 ln(l +Km COS(Wm'tm)) (5.6) 
Ln 

In this equation cos (Wm T:m) is a constant descrihing the phase matching between the 
internat and external optica! fields. For a number of compound-cavity modes with a fre
quency around an internat mode frequency of tbe laser diode, the pbase matching constant 
in Eq. 5.6 approximately equals unity. 

To find the time dependent optica! output power at the two wavelengtbs selected in 
cavity A and B, the rate-equations for the pboton densities of all compound-cavity modes 
selected in cavity A and B can be solved logether with tbe corresponding phase equations. 
The resulting pboton densities can be summed to find the output power at the two selected 
wavelengths. The selectivity of the gratings is such that, depending on the length of the 
cavity, a group of approximately 10 to 100 compound-cavity modes will be selected in 
eacb cavity. 

In this chapter we are not concerned with finding the power distribution of tbe compound 
cavity modes within the group of selected modes in each cavity; we are merely interested 
in the averaged pboton density of the compound-cavity modes in each group. Assuming 
the number of compound-cavity modes to be large enough, at each point in time a mode 
will exist for whicb 1>m(t) -1>m(t 'tm) is an integer multiple of2H. This will be the 
lasing mode because the eosine in Eq. 5.4 is maximal for this mode. 

Noise induced changes in the phase of the compound-cavity modes will result in mode
hopping between the compound-cavity modes. The total pboton density contained in a 
group of compound-cavity modes will only change if a mode hop occurs from a mode 
inside a group to a mode outside a group or vise versa. This means that the effect of 
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the phase changes on the total pboton number in a group di sappears when the number of 
compound-cavity modes in the group is large enough. Therefore we neglect the influence 
of the phase term in Eq. 5.4. 

Including a rate-equation for the carrier density inside the active region N ( t), this results 
in the following set of equations: 

N(t) = I jqV YeN(t) G(SA(t) + SB(t)) (5.7) 

SA(t) (G Yo) SA(t) + Rsp + LlyA(t)JSA(t)SA(t- TA) (5.8) 

SB(t) = (G- Yo) SB(t) + Rsp + LlyB(th/SB(t)SB(t- TB) (5.9) 

where SA (t) and S8 (t) are the group averaged pboton densities in mode A and B, I is the 
electrical current, q the elementary charge, V the active volume of the laser diode and Ye 
the carrier recombination rate. 

The parameter values in Table 5.1 are estimated for our multiple-quanturn-weB laser 
diode emitting in the red. In our estimate of the spontaneous emission factor f1sp we took 
into account the enhancement factodor antireflection coated laser diodes [ 1 8],[ 19]. 

Table 5.1 Parameters used in simulations, their symbols and their values. 

Parameter Symbol Value 
Modal Gain G aov8r (N -No) 

Gain Constant ao 4x w-16 cm2 

Group Speed Vg 0.75x w-IO cm s-1 

Confinement Factor r 0.02 
Transparency Carrier Density No 2x1018 cm-3 

Modal Spontaneous Emission Rate Rsp ff1spYeN 
Spontaneous Emission Factor f3sp 1 x w-3 

Carrier Life Time {1/ye) Te 1 xi0-9 s 
Internal Material Losses a int IOcm-1 

Back Facet Reftectivity R1 0.32 
Coated Front Facet Reftectivity R2 5x10-4 

Active Region Volume V LvWD 
Length, Lv 500 x to-4 cm 
Width and w 1 x w-4 cm 
Thickness of Active Region D 0.04 x w-4 cm 

5.4 Measured and Simulated Transient Responses 

With the ex perimental setup described in Sec ti on 5.2 the transient behavior of the external
cavity laser diode was studied under various conditions. We varied the amount of feed
back for the mode selected in cavity A. For the mode selected in cavity B we varied the 
cavity round-trip time. In this sectien the measurement results are presented for the time 
varying optica] power of the two corresponding modes, mode A and mode B. 
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The wavelength corresponding to these modes was 683 nm and 679 nm respectively. 
These wavelengtbs were chosen around the gain maximum of the laser diode to make the 
modal gain for mode A and B approximately equal. When the feedback path for mode B 
is blocked and the modulator is continuously open, the laser operates in a single external 
cavity (A} mode, as measured with the etalon spectrum analyzer. The same holds if the 
feedback path for mode A is blocked. Thus the external feedback is sufficiently high to 
dominate the behavior of the laser diode and the laser is operated in the strong feedback 
regime [20]. 

Also presented in this section are the results of computer simulations using the rate
equations 5.7-5.9. The rate-equations were numericaHy solved with a fourth order Runge 
Kutta routine with a two picosecond step size. In Table 5.1 the used parameter values are 
listed. To match the simulation results to the experimental result we used the reflectivity 
values for cavity A and B as fitting parameters. 

5.4.1 Varying the Feedback Level for Cavity A 

In a first measurement we adjusted the .V2-plate in such a way that the estimated feedback 
for mode A is about 2% when the modulator is open. Consictering the extinction ratio of 
the modulator, the feedback for this mode is about 2x w-6 when the modulator is closed. 
The maximum feedback level for mode A was varied by inserting neutral density filters 
in cavity A. 

The estimated feedback for mode B was about 0.5% for all measurements. The length 
of cavity A and B was fixed and corresponded to a round-trip time of 6 ns and 7 ns 
respectively. In Fig. 5.3 the measured transient response ofboth modes is shown. At t=O, 
the modulator opens; the transmission is then at 50% of its maximum value. In Fig. 5.3(a) 
the measured results are plotted for mode A without neutral density filter (ND=O) and 
with neutral density filters (ND=O.l and ND=0.2). The corresponding estimated feedback 
levels for mode A are 2%, 1.3% and 0.8% respectively. The transient response for mode 
B, that switches off due tomode competition, is presented in Fig. 5.3(b). Depending on 
the amount of feedback for mode A, it takes between 7 and 21 round-trip times of cavity 
A for the power to switch from mode B to mode A. 

In Fig. 5.4 the simulation results forthese experiments are presented. Again, the modal 
response of mode A and B are presented. The value for the extemal reflectivity of cavity 
A in the open state of the modulator was 2.0% (ND=O). In order to match the simulation 
results to the experimental data we had to assume an extra loss due to the insertion of 
the neutral density filters. This extra loss was estimated at 10% and can be due to mis
alignment and phase front distortion caused by the neutral density sheets. The resulting 
external reflection values are 1.0% for ND=O.l and 0.65% for ND=0.2. In the closed state 
of the modulator the external reflection for mode A was a factor Hf lower than in the 
open state. As with the modulator used in the experiment, the simulated modulator bas a 
transient time of 8 ns; at t = 0 it reaches 50% of the maximum transmission value. For 
mode B the extemal reflectivity was constantly 0.3% in aU cases. 
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Figure 5.3 Measured transient response ofthe two selected modes.( a) Mode A, (b) mode 
B. The modulator opens at t=O, resulting in a switching-on of mode A. Mode B switches 
of due to mode-competition. Neutral density filters are inserted in the mode A cavity to 
vary the extemal refiection for this mode. The value of the neutral density filter (ND) 
is inserted in the figure for each curve. The estimated extemal optica! feedback is 2% 
(ND=O), 1.3% (ND=O.l) and 0.8% (ND=0.2) in the open state of the modulator for mode 
A. The extinction ratio of the modulator measures approximately 104• The feedback for 
modeBis estimated at 0.5%. 

5.4.2 Varying the Round-Trip Time of Cavity B 

67 

In a next experiment, the round-trip time of cavity B was set to ten different values be
tween 2.1 ns and 15.4 ns. The round-trip time for cavity A was 7.0 ns in this experiment. 
The estimated reftectivity for cavity A in the open state of the modulator was 2%, the 
reftectivity for mode B measured approximately 0.5%. The transient response of mode B 
toa closing ofthe modulator in cavity A was recorded for all ten cavity lengths. 
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Figure 5.4 Simulation results corresponding to tbe experimental results presented in 
Fig. 5.3. (a) Mode A, (b) mode B. In tbe simulations the following extemal optical feed
back levels were used: 2.0% (ND=O), 1% (ND=O.l) and 0.65% (ND=0.2) in the open 
state of the modulator for mode A, 0.3% for mode B. In the closed state of the modulator, 
the feedback for mode A is a factor 104 lower than in the open state. 

In Fig. 5.5, the transient behavior of mode B is shown for five of these external-cavity 
lengtbs conesponding to r=2.1 ns, r=4.3 ns, r=7.0 ns, r=12.3 ns and r=15.4 ns. Por 
clarity, the measured results for other cavity lengtbs are not included. Steps in the time 
evolution of the intensity for mode B can be clearly distinguished in the figure. The 
duration of these steps is approximately equal to the round-trip time. Also visible are 
relaxation oscillations that gradually build up during the transient and mark the beginning 
of each step. A steady state is reached after about ten round-trip times of cavity B. 

The response of mode A was the same for all the measurements; the mode switches 
off within one round-trip time of cavity A after the modulator is fully closed. Por time 
reference, the transient response of this mode is included in the figure. 
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Figure 5.5 Measured transient response of mode A and B for various values of the 
round-trip timer of cavity B. The round-trip time in cavity A is about 7 ns, the modulator 
closes at t = 0. The transient response of mode A does notdepend on the cavity round-trip 
time of mode B. Steps are visible in the transient response of mode B. The duration of the 
steps is approximately equal to the round-trip time of cavity B. Also visible are relaxation 
oscillations that gradually build up and mark the beginning of each step. 
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The simulation results corresponding to this experiment are shown in Fig. 5.6. In the 
model the external reflectivity for mode A is switched from 2% to 2 x 1 o-6 at t ;;;:: 0 in the 
same way as in the previous simulations. The external reflectivity for mode B is set to 
a constant value of 0.4% to obtain an optima] fit with the experimental data. Just like in 
the ex perimental results, steps and a gradual buildup of relaxation oscillations are visible. 
Again a steady state is reached after approximately 10 round-trip times. 

The operating current of the laser diode was 70 mA during the measurements presented 
in tbis section. The measurements were repeated with a driving current of 50 mA and 
60 mA with similar results. Also the selected wavelengtbs of mode A and B were varied. 
Again similar results were obtained. 

When the reflectivity for mode A is modulated, a multi external-cavity mode spectrum 
is observed with the Fabry-Perot spectrum analyzer. This means that the laser is hopping 
between external-cavity modes during the transient. The simulations are in good agree
ment with the experimental results and tbus we can deduce that the mode-hopping only 
influences the distribution of optical power within the selected group of external-cavity 
modes, as assumed inSection 5.3. 
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Figure 5.6 Simulated transient response of mode A and B for various values of the 
round-trip timeT of cavity B, the modulator doses at t = 0. The simulated transient curves 
show the same features as the experimentally obtained curves presented in Fig. 5.5. 

5.5 Discussion 
In this section we examine the implications of our measurements and simulation results 
on the operation speed of the experimental LNN of Chapters 2-4 and a proposed LNN 
using integrated opties devices [21]. The proposed LNN bas an opticallength of a few 
cm that corresponds to a cavity round-trip time of 0.1 ns. With the proposed integrated 
opties LNN we aim, among other things, at increasing the operation speed of the LNN. 

5.5.1 Round-Trip Delay 

The experiments with varying external reflection show that, depending on the difference 
in external reflection between the two modes, up to 21 round-trips are needed to switch 
the optical power from one mode to the other. The highest number of round-trips were 
needed with the lowest difference in opticallosses for mode A and B. This occurred when 
the feedback for mode A and B was about 0.8% and 0.5% respectively. 

Olsson and Tsang measured the transient behavior of a single mode external-cavity 
laser diode [10]. They reported that a steady state was reached in three round-trips ofthe 
extemal cavity near the gain peak of the laser. When the gain was reduced by shifting the 
feedback from the gain peak, they reported 20 or more round-trips before a steady state 
was reached. Although they modulated the driving current instead of the external optical 
losses, these findings are in agreement with our experimental results. 

In the LNN setup of Chapter 4 the maximum feedback per mode measures approxi
mately Rext = 9%. Each ofthe neurons receives six or more inputs. This means that for 
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each input the external reflectivity fora mode can be changed by about D..Rexr = 0.015. 
To estimate the number of round-trips needed to switch from one output state of the LNN 
to another output state we assume that the change in output state is caused by switching 
only one input element. In this worst case the amount of feedback for a mode will change 
by less than D..Rext = 0.015 consictering the weighting of inputs by a factor smaller than 
unity. This results in a difference in feedback approximately equal to that for the transient 
with ND=O.l reported above, where ""'12 round-trips were needed to reach a steady state. 
The number of round-trips needed to reach a steady output state after a change of input 
state in our current experimental LNN will therefore be 12 or higher. 
If the feedback level of the proposed integrated opties LNN is the same as in our cur

rent experimental LNN, the fastest transient response will be about 12x0.1 = 1.2 ns. In 
order to reach a computational speed higher than 1 GBit/s the difference in the amount 
of external feedback between two input states needs to be increased. This can simply be 
achieved by reducing the number of inputs, which is undesirable from a functional point 
of view. A better salution would be to optimize the design of the integrated opties devices 
for maximum feedback efficiency. For this it might be necessary to introduce extra gain 
regions in the design. 

5.5.2 Residual Delay 

The measurements with varying round-trip time were used to extrapolale the experimen
tally recorded transient curves for zero cavity Iength. For this purposes the time tx at 
which the optica! power of mode B reaches a given amount x is extracted from the mea
surement data presented in Section 5.4.2 as a function of cavity round-trip time. By use of 
a linear fit [22] on tx we extrapolated the time at which this amount of power would have 
been reached if the cavity length for mode B was zero. In this fit we used the round-trip 
time of the cavity as an estimate on the uncertainty of the tx-values. The results are plotted 
in Fig. 5.7 using the ten recorded transient curves discussed in Section 5.4.2. The hori
zontal error bars in these plots indicate the 95% confidence intervals of the extrapolated 
data. For reference, the intensity development of mode A and B with a cavity B round-trip 
time of 2.1 ns are included in the figure. 

The extrapolated transient curves for a zero round-trip time of cavity B clearly show 
a residual delay between the switching off of mode A and the switching on of mode B. 
The delay is in the order of nanoseconds and will put an additionallimit on the operatien 
speed of the LNN on top of that imposed by the number of needed round-trips. We believe 
that the residual delay is due to the fact that the total external reflectivity before and after 
the transient is different. As a result the total emitted optica} power will be different. 
Consequently the number of charge carriers needs to change. Since the optical feedback 
for mode B is lower than that for mode A, the change in the number of charge carriers is 
also needed to reach the threshold condition for mode B. 

To test our hypothesis on the origin of the residual delay, and to estimate the operation 
speed of the proposed integrated opties LNN device [21 ], we carried out simulations with 
a cavity round-trip time of 0.1 ns for both cavities. As a transient time of the modulator we 
choose 0.1 ns, a modest value for integrated opties modulators [23]. Although the rate
equation model (See Eqs. 5.7-5.9) was derived fora large group of compound-cavity 
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Figure 5. 7 Extrapolated transient response curve for cavity B with a zero round-trip time 
using data of Fig. 5.5. The points are obtained by linear extrapolation of the time at which 
the intensity of mode B reaches a certain level for various round-trip times, to a round
trip time of 0. Error bars indicate 95% confidence intervals of the linear fit. Measured 
response curves of mode A and B fora cavity B round-trip time of 2.1 ns are included for 
comparison. 

modes, we will also use the model for this cavity length with just one compound-cavity 
mode per group. If the mode spacing is sufficiently large, changes in the modal phase are 
not expected to cause a mode hop to another compound-cavity mode and therefore also 
in this case the phase term in Eq. 5.4 can be neglected. 

In a first simulation we switched off the external reflectivity for mode A at t = 0 while 
keeping the external feedback for mode B constant. In a second simulation the external 
reflectivity values for mode A and B were interchangedat t = 0. We used the sarne values 
for the external reflectivities as in the simulations of Section 5.4.2, so we expect a delay 
of approximately l 0 round-trip times. 

The results of these simulations are presented in Fig. 5.8. Figure 5.8(a) corresponds to 
the situation with a constant feedback level for mode B, in Fig. 5.8(b) results are shown for 
the simulated interchanging of the external reflectivity of mode A and B. The figures show 
the optical intensity of the modes, mode A and B, and the carrier density normalized to 
the transparency value NO. The steady state of the optical intensity of mode B is indicated 
with a dotted line. 

In Fig. 5.8(a) a difference in the carrier density before and after the transient is visible. 
The time delay between the complete extinction of mode A and the point at which the 
intensity of mode B first reaches the steady state value is about l. 7 ns. This is more than 
10 round-trip times. In Fig. 5.8(b} this time delay is about 1.1 ns, approximately equal to 
the expected 10 round-trips. The carrier densities before and after the transient are equal 
in Fig. 5.8(b}. Thus we can conclude that the change in charge carrier density introduces 
a delay of about 0.6 ns. This value is in reasonable agreement with the measured residual 
delay. 
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Figure 5.8 Results of simulation of the time development of optical power for both 
modes with a cavity round-trip time of 0.1 ns. The light intensity of mode A and B are 
plotted. together with the normalized carrier density N/NO. The steady state of mode B 
is indîcated with a dotted line. (a) At t = 0, the modulator closes with a transient time of 
0.1 ns. Relaxation oscillations and a delay of a bout I. 7 ns can be observed in the transient 
response of mode B. The carrier density is different before and after the transient. (b) At 
t = 0 the optical feedback levels of mode A and B are interchanged. The carrier density is 
the same before and after the transient. The delay is reduced to 1.1 ns or approximately 
10 round-trip times of the extemal cavities. 
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The simulations of Fig. 5.8(b) show that the delay can be avoided by controlling the 
total external reflectivity in such a way that it is equal before and after the transient. To 
avoid the residual delay, the total amount of external reflectivity should be the same for 
each state of the LNN. Although this should be possible, it will considerably complicate 
implementations of the LNN. The resulting constraint on the input veetors and the weight 
matrix will reduce the functional capabilities of the LNN. 

5.5.3 Relaxation Oscillations 

In Fig. 5.8 relaxation oscillations can be observed. These relaxation oscillations originate 
from the change in charge carrier density during the transient which in turn is caused by 
the temporary change in total emitted light intensity. Compared to the oscillations that 
are visible in the measurements and simulations with Jonger cavity round-trip times, the 
oscillations are more pronounced in these simulations with a round-trip time of 0.1 ns. 
With still lower round-trip times, the relaxation oscillations will dominate the behavior 
during the transient. This is illustrated in Fig. 5.9 where we show simulation results fora 
zero cavity length. 
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Figure 5.9 Simulated time evolution of the intensity of mode B for zero cavity length 
of both cavities. Steady state is indicated with a dotted line. Relaxation oscillations in 
the intensity of mode B can be observed. The oscillation frequency is about 1. 7 Ghz. A 
switch-on time of -0.3 ns can be observed. 

The relaxation oscillation frequency is proportional to the square-root of the optical 
output power of the laser and has a typical value of ...... 5 GHz [16],[17] for laser diodes 
operated well above threshold. The frequency of the relaxation oscillations in Fig. 5.9 is 
a bout f, = 1. 7 GHz. This relatively low value is caused by the fact that the laser diode in 
the experiments and simulations is operated close to threshold. 
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A switch-on time ton can be associated with the relaxation oscillation frequency accord
ingto[16]: 

.Ji [ ( S011 
)]

1

/

2 

ton=- In --
(J)r Sof.f 

(5.10) 

with 5 011 I Soff the intensity ratio of the considered mode and (J)r the angular relaxation 
asciilation frequency. The value of t011 resulting from Eq. 5.10 is about 0.35 ns and is 
in agreement with the simulation results of Fig. 5.9. The bandwidth of the system will 
essentially be limited by the relaxation oscillation frequency [16],[17], hence the current 
LNN will be bandwidth limited toabout 1.7 GHzeven if the round-trip delay is zero. 

5.6 Conclusions 

In condusion we have studied the mode switching behavior of an external-cavity laser 
diode under optica! modolation conditions to estimate the feasible operation speed of a 
LNN implemented with integrated opties. In our experiments the feedback level for one 
mode of the external-cavity laser diode was kept at a constant value, while the feedback 
level for another mode is switched by means of an optica} modulator. The round-trip 
delay for one of the modes is varied. 

It was found, both experimentally and theoretically, that depending on the amount of 
external optica! feedback between 7 and 21 round trips of an external cavity are needed 
to reach a steady state. Switching between two states in our LNN is expected to take 
more than 12 round-trips consiclering the feedback level of our experimental LNN setup. 
To obtain switching times <1 ns in an integrated opties LNN with a cavity Iength of a 
few cm, the amount of opticallosses needs to be reduced or extra optical gain should be 
introduced. 

For a zero cavity length a residual delay of a few nanosecond is identified by extrapo
lation of experimentally obtained transient curves for various cavity lengths. Simulations 
indicate that this delay is due to a change in charge carrier density, needed to reach the 
threshold condition for the initially nonlasing mode. Simulations indicate that this delay 
can be a avoided by ensuring an equal feedback level in each state of the LNN. 

A third limitation on the operation speed of the LNN is imposed by the occurrence of 
relaxation oscillations. This limits the bandwidth of the current LNN toabout 1.7 GHz. 
To increase the relaxation oscillation frequency of the laser diode, the feedback efficiency 
can be increased to operate the laser diode further above threshold in the on state. 
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Optical Neuron by use of a 
Laser Diode with lnjection 
Seeding and External Optical 
Feedback 

We present an all-optical neuron by use of a multimode laser diode that is subjected to 
external optical feedback and light injection. The shape of the threshold function, that 
is needed for neural operation, is controlled by adjusting the external feedback level for 
two longitudinal cavity modes of the laser diode individually. One of the two modes 
corresponds to the output of the neuron; light injection at the wavelength of this mode 
provides excitatory input. Light injection in the other mode provides inhibitory input. 
When light corresponding to two input signals is injected in the same mode, summation 
of input signals can be achieved. A rate-equation model is used to explain the eperating 
principle theoretically. The proposed injection seeding neuron is built using free-space 
opties to demonstrate the concept experimentally. The results are in good agreement 
with predictions from the rate-equation model. Some ex perimental results show threshold 
functions that are preferabie from a neural network point-of-view. These results agree 
well with injection locking theory and experiments reported in literature. 

The contents of this chapter is submitted for publication: E. C. Mos, J. J. L. Hoppcnbrouwers, M. T. Hill, 
M. W. Blüm, J. J. H. B. Schleipcn and H. de Waardt, "Optical neuron by use of a laser diode with injection 
seeding and external optical feedback:' IEEE Trans. Neural Networks. 
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6.1 lntroduc·tion 

The optica] domain is attractive for hardware implementation of neural networks because 
of the high degree of parallelism that can be achieved in optica! systems. An optica] neural 
network was first presented by Psaltis and Farat [1]. Since then, optica] implementation 
of neura1 networks has been the subject of many studies (for an overview see e.g. [2],[3]). 

As pointed out by Jutamulia and Yu [3 ], the threshold function needed for neural opera
tion is realized in the electrical domain for most of the proposed optical neural networks. 
In this chapter we describe a metbod to apply inputs and provide threshold operation in 
the optica] domain. The threshold operation is implemented by use of the sensitivity of 
a multimode laser diode to extemallight injection. The threshold can be controlled by 
applying extemal optica1 feedback to the laser diode. The work presented bere is closely 
related to the laser neural network (LNN) discussed in Chapters 2-5 of this thesis (See 
also Refs. [4]-[6]) in which we use external optical feedback to imptement the threshold 
operation. The inputs in the LNN are implemenled in the optica] transmission domain. 

With the work presented in this chapter as well as with the LNN we aim at applications 
in optical telecommunications. For this application area it is especially important to have 
all-opticàl neura1 operation. The inputs and outputs of such a neura1 network should 
preferably be in the optica1 power domain. The all-optical neuron presented in this chapter 
has inputs as well as output in the optica] power domain. 

Laser souree Laserdiode 

Figure 6.1 Schematic drawing of the injection seeding neuron concept. A laser diode 
I is provided with extemal optical feedback for two wavelengtbs ()..1 and ).2) to control 
the net optical gain at these wavelengths. By use of a tunable laser souree ll, light can be 
extemally injected in laser diode I to switch the laser to one of the selected wavelengths. 

The concept ofthe all-optica) neuron is explained in Fig. 6.1 andrelies on the injection 
of light from a souree laser (11) into a laser dio<Je (I). This technique, commonly known as 
injection seeding or injection lockingis well documented [7]-[16] and has applications 
such as frequency conversion for telecommunication applications [11),[12]. With our 
optica] neuron, we combine injection seeding and optical feedback to obtain neural-like 
operation. The laser that receives the injected light will represent a single neuron. This is 
in contrast with the LNN where a single laser diode provides a multitude of neurons. 

The principle of operation of the proposed injection seeding neuron is illustrated in 
Fig. 6.2. By use of controlled extema1 optical feedback laser diode I can only operate 
in one of two longitudinal modes. The figure shows conceptual drawings of the power 
spectra of the laser diode in two states. The left part of the figure shows the spectrum of 
the laser diode that is lasing in a certain mode 1, at wavelength ). 1 , and c.orresponds to 
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Figure 6.2 mustration of the operating principle of our injection seeding neuron. The 
left part of the figure shows the spectrum of a laser emitting at wavelength À 1 (mode l) 
without injection seeding. By injecting light in mode 2 theemission spectrum of the laser 
can be locked to À2, the output wavelength of the neuron. The output power at À 2 will 
vary nonlinearly with the amount of injected power yielding neural-like behavior with an 
excitatory input. When the neuron is active, the laseremits at À2 , as shown in the middle 
part of the figure. In this state injection of light at )..1 can force the laser back to emit at 
À 1• Again a nonlinear, neural-like function is associated yielding an inhibitory input. The 
resulting state is shown in the right part of the figure. 
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the state of our laser neuron without external light injection. Mode 2, corresponding to 
wavelength À2, is just below threshold and its optical power is defined as the output of our 
injection seeding neuron. Laser diode I can be made to emit this spectrum by carefully 
cantrolling the amount of external optica] feedback for wavelengtbs ÀJ and À2. 

If the souree laser 11 operates at À2, and the amount of injected optica) power is high 
enough, laser diode I will be locked to the injected light at wavelength À 2 . The power 
spectrum of the resulting state is shown in the middle part of Fig. 6.2. The optica] power at 
wavelength À2. and thus the output of our injection seeding neuron, will vary nonlinearly 
with the amount of externally injected light at wavelength Àz. lt is this nonlinear response 
that is used to obtain neural-like action. The injectèd signa! at wavelength Àz corresponds 
to an input signa] of the neuron. From the preceding it is clear that this input signal causes 
the output of the neuron to increase and hence it is excitatory. 

Inhibitoryinputs can be obtained by injecting light at wavelength ÀJ. lnjection oflight 
at this wavelength can cause laser diode I to go back to the original state where mode 1 
dominates over mode 2 as drawn in the right part of Fig. 6.2. Again a nonlinear, neural
like response is associated with the amount of injected light and the output power of the 
neuron. In the case of injection in mode 1 the input bas a decreasing effect on the output 
of the neuron. 

The shape of the nonlinear threshold function and the level of the threshold will depend 
on the amount of optical gain and losses of laser diode I at wavelengtbs À1 and À2. By 
cantrolling the external optica! feedback conditions for laser diode I, the optica] losses 
can be controlled for each wavelength of the laser diode independently. This can be used 
as a way to control and shape the threshold function of our injection seeding neuron. 

Summation of inputs can be obtained by simultaneous injection of several optical input 
signals. Excitatory inputs should be injected at wave]ength À2, inhibitoryinputs at wave
length À 1. Weights can be assigned to the inputs by attenuating the optical signals prior 
to injection into the laser diode. 
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The operating principle will be theoretically verified in Section 6.2 where we use a rate
equation analysis to model our laser diode with light injection and optica] feedback. In 
Section 6.3 we present the experimental setup used to demonstrate the injection seed
ing neuron. The results are presented inSection 6.4 and discussed in Section 6.5. We 
conclude the chapter in Section 6.6 by giving recommendations for future work. 

6.2 Theory 

Injection locking of semiconductor lasers bas been studied extensively in literature [7]
[ 16]. A laser diode can be locked to an extema11y injected signal if the wavelength of the 
injected signal is inside a wavelength range around a fundamental wavelengthof the laser 
diode. The size of this locking range depends on the arnount of externally injected power 
and the linewidth and power of the originally lasing mode. 

6.2.1 Rate-Equation Analysis 

In this section, we exarnine the combined effect of injection seeding and extemal optical 
feedback theoretically. To verify the concept of the injection seeding neuron, we model 
the laser as having two longitudinal modes with externallight injection and extemal opti
cal feedback for both of the modes. 

As will be described in subsequent sections, the ex perimental injection seeding neuron 
consists of an antireflection coated laser diode that is coupled to an external cavity. How
ever, for simp1icity we model the system as a solitary laser diode with two longitudinal 
modes. The external reflectivity will be incorporated in the model as the effective reflec
tivity of the laser diode facet facing the external cavity. The simplified model is valid 
in our situation because the external-cavity reflectivity is much larger than the residual 
reflectivity of the antireflection coated laser diode facet. In other words, the laser diode 
operales in the strong feedback regime [ 17]. 

The two longitudinal modes of the laser are labeled mode 1 and mode 2. As mentioned 
previously, the output of our neuron corresponds to mode 2 of the laser. Light can be 
injected in mode 1 and 2. The laser diode subjected to external light injection can be 
described by a set of rate-equations [ 18] for t;he complex optica] field and the number of 
carriers inside the active region. 

To simplify the analysis we constrain the problem to externally injected light with a 
frequency that is inside the stabie part ofthe locking range for both modes [13]. Further
more we assume a constant phase difference between the externally injected optica) field 
and the internal optical field. With these simplifications the pboton phase can be omitted 
from the rate-equation model and instead of the complex field equations we can use the 
equations for the pboton number of the two modes. The pboton number Pm (t) of the two 
modes m = 1, 2 can bedescribed with [18]: 

(6.1) 

The first term in the right part of Eq. 6.1 represents the net gain, where Gm is the 
wavelength dependent optical gain and Ym is the pboton decay rate for a mode. In this 
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theoretica} description we assume that both modes have approximately the same wave
length and thus experience the same optica} gain, G. The second term in the right part of 
Eq. 6.1, Rsp• is the rate of spontaneous emission in modem. Both gain and spontaneous 
emission are Iinear dependent on the carrier number [18]. 

In the injection seeding neuron, external feedback is used to control the net modal gain 
via the pboton decay rate Ym· Por modem we can write: 

(6.2) 

where Vg is the speed of light inside the laser material, CXint is the internat cavity loss and 
L the cavity length. R0 is the facet refiectivity of the uncoated laser diode back facet 
and Rext.m is the effective facet reftectivity controlled by the external optica} feedback for 
modem. 

Externallight injection is represented in the model by the injected pboton number for 
mode m, P//Y. The coupling between the externally injected photons and the photons 
inside the active region is accounted for by a coupling constant kc [18]. 

The rate-equation model is completed with an equation for the carrier number N(t) 
given by: 

dN(t) I 2 

dt =-- YeN(t)- L GmPm(t) 
q m=l 

(6.3) 

The first part of the righthand side of Eq. 6.3 accounts for the electrically injected 
carriers in the active region, the second part for the spontaneous carrier decay and the 
third part for the stimulated carrier decay. 

In this section we are concerned with finding the laser output power in the two modes as 
a function of the power injected into one ( or both) of the modes. We now define this non
linear function of output power versus externally injected power as the threshold function 
for the laser. This threshold function can be found from the steady state solution of the 
pboton rate-equation 6.1 for modes m = 1, 2, and the carrier rate-equation 6.3. The 
steady solution can be found by solving the following equations for N, P1 and P2: 

6.2.2 Numerical Simulations 

(6.4) 

(6.5) 

(6.6) 

A set of threshold functions for the laser was found by numerically solving Eqs. 6.4-6.6 
for N, P1 and P2. The amount of light injected into each mode was varied. Furthermore 
the amount of external feedback for mode 2, Rw.2 was varied. For the parameter values 
used in these simulations, we refer to Ref. [18] 
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Figure 6.3 Simulation results of the pboton number in the two modes 1 and 2, as a 
function of injected pboton nurnber in mode 2. The opticallosses for mode 2 is Iower in 
(a) then it is in (b). In Fig. (a) Rexr,r= 30%, in Fig. (b) Rw.2= 25%. Both figures show 
a nonlinear relation between the amount of injected photons in mode 2 and the pboton 
number of mode 2, the output of our proposed neuron. 

Let us first consider injection of light in mode 2 to verify excitatory input. The output 
of the neuron versus injected pboton number in mode 2 is shown in Fig. 6.3 for different 
valnes of Rexr.2· The tigure shows two threshold functions with reflectivity Rext.2 set to 
30% (a) and 25% (b). The laser diode back facet reflectivity for both modes, R0, was 
set to 32%, which is the reflectivity for the uncoated laser diode facet. The front facet 
reflectivity for mode 1, Rexr,l• was arbitrarily set to same value. As can beseen from 
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Fig. 6.3, increasing the injected light power causes mode 1 to be switched off and mode 
2 to start Iasing, as expected. Note that for a lower external reflectivity for mode 2, more 
power is required to switch the laser from mode 1 over to mode 2. This can be used to 
control the shape of the threshold function. The slope of the threshold function deercases 
with decreasing Rexr.2· 
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Figure 6.4 Simuiatien results of the pboton numbers in two modes l and 2 as a function 
of injected pboton number in mode I witb a constant injection of 1200 photons in mode 
2. The pboton number of mode 2 is a nonlinear, decreasing function of the number of 
injected pbotons in mode 1. 

The results presented in Fig. 6.4 demonstrate an inhibitory input signal. A constant 
amount of photons, 1200 in our simulations, is injected into mode 2, so that mode 1 is 
initially turned off and the laser is in the state corresponding to the middle part of Fig. 6.2. 
To turn mode 1 on again light is injected into mode 1, the inhibitory input. The results 
were obtained with Rexr.2 at 25% and Rext,l set to 32%. Due to the constant injection in 
mode 2, this mode does not switch off completely. 

In order to re late the results of this section to the ex perimental results, it should be noted 
here that the pboton number is directly proportional to optica! power. From Figs. 6.3 and 
6.4 it can be seen that injection of about 1% of the optical power is sufficient to switch 
the laser between modes 1 and 2. 
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6.3 Experimental Setup 

In order to experimentaUy verify the concept of the all-optica! neuron a laser diode is 
needed with controllable optica! feedback and extemal light injection for at least two 
longitudinal modes. 

6.3.1 Optical Feedback 

A setup is shown in Fig. 6.5. It consistsofa laser diode (laser diode I, U nipbase CQL806, 
À ~ 680nm) coupled via beam splitter BSl to two external cavities, one for each mode. 
For each cavity the l st order reflection of a diffraction grating (G 1 and G2, 2400 1/mm) is 
coupled back into the laser. The optica} feedback is wavelength selective in this way and 
gratings G 1 and G2 are tuned to wavelengtbs À 1 and Àz corresponding to modes 1 and 2. 

The exit facet of the laser diode facing the external cavity is provided with an antireflec
tion coating with a residual reflectivity of approximately 5 x l o-4 . If the external optical 
feedback is sufficiently high, laser action wi11be dominated by the extemal cavity instead 
ofthe internat cavity ofthe laser diode [17]. Consequently, the laser will oscillate at the 
wavelength selected by the external cavity with the highest reflectivity. Neutral density 
filters can be inserted in the external cavity corresponding to G2 to set the amount of opti
cal feedback for this cavity. The laser is temperature stabilized to prevent thermal drift of 
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Figure 6.5 Experimental setup to demonstrate the proposed injection seeding neuron. 
Laser diode I is coupled to two extemal cavities, wavelength tunable by use of gratings G 1 
and G2. A neutral density filter ND controls the feedback efficiency for one cavity. Light 
from two continuously tunable laser sourees n• and IIb is injected via a beam splitter, 
BS2, and an isolator, ISO. Light from laser souree n• can be variably attenuated by use 
of a liquid-crystal light valve LC, and monitored via BS3 with a photodiode detector. A 
neutral density filter attenuates the light from laser souree Ilb by a fixed amount. )../2-
plates are inserted to match polarization states for optimum optical throughput. 
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the mode wavelengths. A À/2 plateis inserted to tune the polarization angle for optimal 
reflection at the gratings. 

6.3.2 Light lnjection 

The output of two tunable laser sourees na and Ilb (Saeher Laserteehuik TEC500 series) 
is injected in the external-cavity laser diode via beam splitter BS2. An isolator is used to 
prevent coupling of the light from laser diode I to the tunable laser sources. A ),.j2 plate 
is added to match the polarization state of injected light to that of the laser diode. For 
one source, na, the amount of injected power is made continuously variabie by use of a 
liquid crystallight valve. With a photodiode detector we measure the amount of injection 
from this souree. We ean set the amount of injected power from the second souree IF to 
discrete values by use of neutral density filters. The amount of injected power from this 
souree is measured by inserting a photodiode detector in the light path (not shown in the 
figure). 

The wavelength of the injected light must be inside the locking range, that increases 
with deereasing cavity length [7],[9],[10]. For this reason, the external cavities are kept as 
short as possible. The resulting locking range is estimated at"" 10 MHz. The wavelength 
stability of the tunable laser sourees is wîthin this range with unchanged drive current. 
Centrolling the amount of injected light by changîng the drive current of the tunable laser 
diodes would cause an unaeceptable wavelength change. 

6.3.3 Measurements 

To monitor the speetral behavior of laser diode I the 01h order reftection of one of the 
gratings is directed to two spectrum analyzers. An optica] muitkhannel analyzer (OMA) 
is used to measure the output spectrum of the laser at a coarse wavelength scale (resolution 
0.25 nm, range 26 nm). This analyzer is used to measure the output power in the modes 
of the laser diode. The laser spectrnm is also monitored at a finer scale by a Fabry Perot 
etalon (resolution 10 MHz, free speetral range 1.5 GHz), to verify whether the laser is 
lasing at a single external-cavity mode. 

With the setup of Fig. 6.5 the threshold functions can be measured by monitoring the 
output power in the two external-cavity modes of laser diode I (via the OMA) while the 
amount of power injected by laser souree 11 is varied. Sinee both injection sourees na and 
Ilb can be tuned to either one of the modes at ),.1 and À2, excitatory and inhibitoryinputs 
as well as the adding of input signals can be experimentally demonstrated. 

6.4 Experimental Results 

With the setup described in Section 6.3, the threshold functions predicted by theory are 
experimentally verified. In aH measurements presented in this section, the wavelength 
separation between the two modes was about 1.5 nm to ensure equal gain for the modes. 
The driving current of the laser diode was in the range of 60-70 mA. The total optica} 
output power of the laser diode at this driving current measured "-'5 mW. 
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6.4.1 Excitatory Input 

In a first experiment an excitatory input is demonstrated. By controlling the feedback 
for both modes, mode 1 is made to lase in the absence of injected power. Next, light is 
injected at the wavelength corresponding to mode 2 with tunable laser souree na only. 
The results are shown in Fig. 6.6. The amount of power injection in mode 2 is gradually 
increased from 0 fL W to about 15 fL W. The tigure shows two nonlinear functions for 
different levels of the external feedback efficiency for mode 2. In Fig. 6.6(b) the feedback 
level for mode 2 is a factor of rv2lower than that in Fig. 6.6( a). Figure 6.6 shows the basic 
threshold function as well as the possibility to change the shape of the threshold function. 

In the measurements corresponding to Fig. 6.6, the wavelength of the injected signal 
was adjusted to obtain optimal injection locking. If the wavelength is slightly changed 
("" 10 MHz) from this optimal wavelength, different results are obtained. These results are 
shown in Fig. 6.7 where much steeper threshold functions can be observed. Compared to 
the measurements of Fig. 6.6 more injected power is needed to switch on mode 2. 

6.4.2 lnhibitory Input 

To demonstrate inhibitoryinputs the laser is first made to lase at wavelength ÀJ by setting 
the extemal reflectivity for the two modes 1 and 2. Now, 25 fL W of optical power is 
injected in mode 2 by use of tunable laser souree IJh. As a result, the laser oscillates at 
wavelength À2 as is expected. Figure 6.8 shows the optica] powers in both modes when 
power is injected in mode 1 by use of tunable laser souree na with simultaneons constant 
injection in mode 2. If sufficient power is injected in mode 1, the laser switches to this 
mode and the power of mode 2 decreases. 

Again, the experiments were repeated with a slight detuning of the injection souree 
wavelength (laser souree na). The results, presented in Fig. 6.9, show a much sharper 
threshold function. 

6.4.3 Input Summation 

To demonstrate the sommation of two input signals we tuned both laser sourees u a and Ilb 
to wavelength À2 eorresponding to mode 2. By controlling the external feedback, mode 1 
at À 1 was made to lase. 

First we measured the threshold funetion with injection by laser souree Ifl only. The 
results are represented by the drawn lines in Fig. 6.10. Next, laser souree If is used to 
inject an additional 5.6 fL W in mode 2. Again the amount of power injected with laser 
souree na is varied and the optieal power in the two modes is measured. The results are 
plotted with dotted curves in Fig. 6.10. The dotted lines can be considered a leftward 
shifted version of the drawn lines. The shift is due to the extra injection into mode 2 and 
is "-'4 fL W. Note that only the linear part of the threshold curve is visible. This is due to 
the fact that the amount of losses for mode 2 were higher then those in the measurements 
presented in, for example, Fig. 6.6. 
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Figure 6.6 Measured optica! power in the two selected modes as a function of injected 
optica! power in mode 2. (a) Without neutral density filter, (b) with neutral density filter. 
The power of mode 2 increases nonlinearly with increasing injection power in this mode. 
The power in mode 2 increases more rapidly as a function of injected power without the 
neutral density filter (Compare Fig. 6.3). 
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6.5.1 Basic Neural Operatien 
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The experimental results on the excitatory and inhibitory input, presented in Figs. 6.6 and 
6.8, are in close agreement with the theoretically predicted curves of Figs. 6.3 and 6.4. 
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Figure 6. 7 Same as Fig. 6.6. but with a slight wavelength detuning of the injected signa!. 
Much steeper threshold functions can be observed. More power is needed to switch the 
active mode. 

The results of simulations and experiments demonstrate that the output ofour proposed 
injection seeding neuron exhibits neural-like behavior as a function of injected optical 
power. The shape and the level of the threshold can be varied by changing the amount of 
optical feedback for the two modes of the laser diode. 

The ratio between the neuron output power and the injected optical power was about 
103 in the measurements. In the simulations this ratio was about 102. This discrepancy 
can be due to differences between the used laser parameters, obtained from literature [ 18], 
and the actual laser parameters for our laser diode. Also the estimated optical feedback 
level and coupling efficiency will differ from the actual parameters. 
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Figure 6.8 Measured optica! power in the two selected modes as a function of injected 
optica! power in mode 1 with a constant injection of 25 1-t W in mode 2. The power in 
mode 2 shows a nonlinear decrement as a function of light injection in mode I (Compare 
Fig. 6.4). 
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Figure 6.9 Same as Fig. 6.8 but with a slight detuning of the injected signa! in mode 1. 
A much steeper thre&hold functions can be observed. 
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Figure 6.10 Measured optical power in the two selected modes as a function of injected 
optical power in mode 2 (source Il") with and without a constant injection of 5.6 ~-tW 
in mode 2 (source Ilb). The drawn Iines correspond to the measurements without the 
additional injection, the dotted lines to the measurements with the additional injection. 
The dotted lines can be considered a shifted version of the drawn lines. 

6.5.2 Steep Threshold Functions 

More discrepancy can be observed between the simulation results of Figs. 6.3 and 6.4, 
and the results presenled in Figs. 6.7 and 6.9. The measured threshold functions have a 
much steeper transition region than the simulated ones. The measured results presented in 
these figures were obtained with a slightly detuned injection source. We believe that the 
differences are caused by this detuning and the shape of the locking region. The locking 
range, in this context, is the area in the detuning • injected power plane in which the 
laser locks to the injected signal. Various shapes of the locking range have been reported 
[9],[10],[13],[14]. Figure 6.11 shows a schematic drawing of one of the reported shapes 
for the locking range (after Ref. [13]). The curves in the tigure represent the edges ofthe 
locking range. The area within the solid lines is the stabie locking range, the area between 
the solid line and the dasbed line is the unstable locking range. 

In our theoretica! model we assume that light is injected within the locking range of 
the laser diode. This proved to be a valid assumption for the measurements of Figs. 6.6 
and 6.8. Hence, the trajectory of the light injection corresponding tothese figures can 
be represented by arrow A in Fig. 6.11. When, however, the frequency of the injection 
souree is detuned, as was the case for the measurements presented in Figs. 6.7 and 6.9, the 
injection is not always inside the locking range. This situation is indicated with trajectory 
arrow B in Fig. 6.11. Now, the locking range is only reached when the power exceeds a 
certain value. This explains why more injected power is needed to switch the active mode 
of the laser. 
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Figure 6.11 Plot of frequency difference between injected signa! and free running signa! 
of a laser diode showing various locldng ranges (after Ref. [13]). Stabie locldng occurs 
in the range within the solid lines. The area between the dashed and the solid line corre
sponds to the unstable locking range. Solid arrows indicate measured trajectories. Arrow 
A corresponds to Fig. 6.6, arrow B to Fig. 6.7. The dashed arrow Cis the trajectory of 
Refs. [7],[15] and [16] 
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The sharp transition in the laser output power from the unlocked to the locked condition 
on this side ofthe lock.ing range was already reported by a number of groups [7],[15],[16]. 
These groups investigated the locking properties of injected light having a varying optical 
frequency as indicated by the dasbed trajectory arrow C. They explain the sharp transition 
by the carrier induced refractive index change caused by the injected signal. 

From a neural network point-of-view, the experimentally obtained threshold functions 
ofFigs. 6.7 and 6.9 are preferabie to the experimental results ofFigs. 6.6 and 6.8 and the 
theoretically predicted curves ofFigs. 6.3 and 6.4. A smaller change in externally injected 
light is needed in the results ofFigs. 6.7 and 6.9 to switch the neuron from an inactive to 
an active state. As the amount of injected light corresponds to the weighted sum of inputs 
of our proposed neuron, a higher number of inputs would be possible with the threshold 
functions of Figs. 6.7 and 6.9. Furthermore, the shape of the threshold function of Figs. 
6.7 and 6.9 is closer toa sigmoid (S-like) shape that is commonly used in neural networks 
[19]. 
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6.5.3 AII-Optical Bipolar Inputs 

As demonstraled both in theory and experiment. excitatory as well as inhibitory inputs 
are possible with our conceptual all-optical neuron by simply injecting the input signals 
at selected wavelengths. In other optical neural networks, inhibitoryinputs are usually 
implemented by electronic subtraction (See e.g. Refs. [0, [20]-[22] ). The advantage of 
our approach is that no conversion from the optical to the electrical domain is necessary. 
Another all-optical way of implementing bipolar inputs uses interferometrical methods 
[23]. This metbod requires a high level of optical coherence and mechanical stability. 

Although both phase and frequency of the two injection sourees were not exactly equal 
in our experiment, sommation of input signals by simultaneous injection is demonstrated. 
A 5.6 tt W additional injection by a second souree shifted the neural response by 4tt W. 
Although the addition is not exact (a shift of 5.6 J.tW would be expected), for neural 
operation it is quite adequate as the neural weights can be adapted to equalize the effect 
of each input signal. The results indicate that the two injection signals do not need to 
be coherently added to obtain summation. This eases the constraints on the design of an 
all-optical neuron constructed from a number of injection seeding neurons. The signals, 
however, need to be injected inside the locking range of the laser diode. 

In the laser neural network described in Chapters 2-5, the inputs are implemented in the 
optica! transmission domain. In the all-optical neuron presented in this chapter, the inputs 
are transferred to the optica! power domain which is advantageous for the application area 
of optical telecommunications. · 

6.5.4 Optical Neural Network 

To build a neural network, a number of injection seeding neurons should be intercon
nected. In Fig. 6.12(a) a single injection seeding neuron with a number of connections 
is depicted. An input signal can either come from outside of the network or from a an
other injection seeding neuron in the neural network. Because in a general neural network 
both positively (w+) and negatively (w-) weighted inputs are required, the input signals 
lo ... h at Ào are copied to wavelength À 1 by means of a set of wavelength converters 
(See e.g. Refs. [11],[12]). As presented in this chapter the light at Ào and ÀJ can be used 
to provide excitatory and inhibitory input signals to an injection seeding neuron operaring 
at Ào. This output signa! of the neuron 0 can serve as an input signal for other neurons 
to form a neural network. The weighted interconnection between the injection seeding 
neurons in the network can be achieved by use of a free-space optical vector-matrix mul
tiplier [24] for each layer of the neural network. Any network topology is possible with 
this concept. 

Altematively, other wavelengtbs of the laser diode could be used to form a neural net
work with just one laser diode. This is shown schematically in Fig. 6.12(b). Now, all 
the input signals are copied to a number of wavelengtbs Ào .•. À2 corresponding to out
put signals 0 0 •.. 0 2 . The resulting signals can be used to provide excitatory inputs for 
the corresponding output. Due to mode competition only the wavelength with the high
est amount of summed excitatory input will lase, soppressing laser action at any other 
wavelength. Thus the resulting neural network will be limited to a winner-take-all neural 
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Figure 6.12 Conceptual drawing of injection seeding neuron with some connections. (a) 
With a number of weighted inputs and one output. Wavelength converters (À __,. À) are 
used to copy the input signals at Ào to À 1 in order to provide excitatory as well as inhibitory 
weighted (w+ and w-) input signals. (b) Injection secding neuron with a number of 
weighted inputs and a number of outputs. The input signals are copied to a Ào ... À 2 

corresponding to outputs 0 0 ••• 0 2• The wavelength witb the highest sum of weigbted 
(w+) inputs will be the only one lasing, resulting in a winner-take-all neural network. 

network that closely resembles the laser neural network. 
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Applications of the proposed all-optical neural network are envisioned in data process
ing for the field of optica! telecommunications. An example is the header processing task 
in a network switch of a packet switched telecom network (See also Chapter 4). For such 
applications sufficient operation speed and functional complexity are required. The speed 
of the injection loeking concept is already demonstraled to be compatible with the field of 
optica] telecommunications [11],[12]. The functional complexity ofthe proposed winner
take-all injection seeding neural networkis expected to be equal to that of the laser neural 
network. With the laser neural network we already demonstrared training of functions 
toward the packet switching task. 

The injection secding neuron, presented in this chapter consisted of a laser diode with 
controlled optica] losses for two modes. The controlled losses do not necessarily have 
to be implemented with an external-cavity setup. From a practical point of view and 
considering the size of the locking range, it is preferabie to come to a compact, integrated 
opties, injection seeding neuron. 

6.6 Conclusions 

We have presented a11-optical neural operation by use of light injection in a laser diode. 
External optica] feedback is used to control the shape of the threshold function. By injec
tion of light at different wavelengtbs excitatory as well as inhibitory inputs are possible 
with this concept. Summation of input signals can be achieved by simultaneons injection 
of different input signals at the same wavelength. 
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The injection seeding neuron is theoretically demonstrated by. use of a rate-equation 
model. An experimental setup is used to confirm the operating principle of the proposed 
all-optical neuron. We demonstrated basic threshold operation, excitatory and inhibitory 
inputs as well as sommation of input signals with the experimental setup. The numerical 
results, predicted by the model, are in good agreement with the measurements. Under 
eertaio injection conditions a threshold function is observed that is preferabie for neural 
operation. These results were obtained with a detuned injection frequency and can be 
explained by consirlering the shape of the injection locicing range. 

To examine the feasibility of the all-optical neuron, it will be necessary to build a (mod
est size) neural network. In such a neural network the interconnection of neurons and the 
weighting of these connections needs to be tested. Conneering the output of one injec
tion seeding neuron to the input of another injection seeding neuron will require a eertaio 
level of wavelength stability of the extemal-eavity laser diodes as the characteristics of 
the injection seeding neurons depend on the injected wavelength. The needed level of 
wavelength stability should be investigated before starting experiments on a neural net
work. 

For the proposed application area of optical telecommunications it is of great importance 
that the operation speed of the neural network is sufficiently high. Although previous 
work indicates the possibility of using injection seeding for telecom applièations, this 
issue should be addressed in future work. 
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Chaotic Self-Pulsation and 
Cross-Modulation in a 
Wavelength Selective 
Externai-Cavity Laser Diode 

Chaotic self-pulsation in a single wavelength external-cavity laser diode is observed. lt 
is shown that the self-pulsation is caused by interdependencies between the optical out
put power and the compound cavity losses through the refractive index of the laser diode 
materiaL On the one hand, a change in optical output power results in a change of the 
refractive index via the carrier density. On the other hand, it results in a change of re
fractive index via temperature changes. Compared to the carrier induced refractive index 
change, the temperature induced refractive index change is opposite in sign and factor of 
""102 smaller. The switch-on and switch-off time of the self-pulsation is governed by the 
carrier life-time. The repetition rate of the self-pulsation is govemed by the therm al time 
constant and is in the megahertz region. Cross-modulation resulting from the thermal 
induced refractive index change is demonstrated. In a two wavelength double external
cavity laser diode optical power at one wavelength affects the optical power at the other 
wavelength. This cross-modulation is shown to be related to previous experiments on a 
laser neural network. A novel technique is introduced to measure the thermal impedance 
of a laser diode that is basedon the cross-modulation. 

The contents of this chapter is to be published. 
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7.1 Introduetion 

Grating tuned external-cavity laser diodes are widely used as narrow linewidth tunable 
sourees for many applications. These sourees consist of a laser diode that is coupled to an 
external wavelength selective resonator. Although the facet of the laser diode facing the 
external resonator is usually antireflection coated, the reflectivity of the facet is fini te and 
thus the laser should be treated as a compound cavity laser diode. 

externally selected wavelength 

lnternal modes 

shifted lnternal modes 

Wavelength-+ 

Figure 7.1 Interna1longitudina1 mode spectrum and externally reflected wavelengthof 
a compound cavity laser diode with wavelength selective external optical feedback. Be
cause of changes in the refractive index of the laser diode material, the internal mode 
spectrum can shift. An increase in the refractive index will cause the spectrum to shift to 
longer wavelengths. 

As a result, changes in the longitudinal cavity mode spectrum of the laser diode wilJ in
fluence the behavior of the compound cavity laser diode. In Fig. 7.1 the longitudinal cav
ity modes spectrum of a laser diode is plotted together with the externally selected wave
length (External-cavity modes are spaeed at a much smaller distance and are not shown). 
lf, for some reason, the internallongitudinal mode wavelengtbs shift, the externally se
lected wavelength will go in and out of resonance with one of the internal longitudinal 
cavity modes. This will cause an increase in optical output power when the externally 
selected wavelength becomes cJoser to the nearest longitudinal mode wavelength. When 
the nearest longitudinal mode shifts out of resonance, the output power of the compound 
cavity laser diode will decrease. These effects will be more pronounced when the laser 
diode is operated close to threshold and small changes in the laser characteristics have a 
large influence on the optical output power. 

The shift of the longitudinal cavity modes can be caused by a change in refractive index 
of the laser diode materiaL A change in refractive index changes the effective cavity 
length and therefore the longitudinal mode wavelengths. 

The index of refraction depends on the carrier density of the active region [ 1] as well as 
on the device temperature [2]. The carrier density and the device temperature are related 
to the optica! output power of the laser diode via the carrier rate-equation and the thermal · 
conductivity of the laser diode respectively. This means that refractive index depends on 
the optical output power of the laser diode and vise versa. 
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This can cause interesting phenomena in a single external-cavity setup. In particular the 
carrier induced refractive index change bas received considerable attention [3]-[6]. Op
tica! bistability [2]-[5] and self-pulsation at a repetition rate determined by the external
cavity length [6] have been reported. The effects of the optical power induced thermal 
refractive index change, however, bas not received much attention. Even in temperature 
stabilized laser diodes this effect will be present due to the finite thermal resistance be
tween the laser active layer and the heatsink. The influence of the optical output power 
bas often been negleeled in the determination of the thermal properties of a laser diode 
[7],[8]. 

In a double external-cavity setup, where each cavity corresponds to one selected wave
length, modulation of the optica] power at one wavelength can cause the longitudinal 
modes to shift. As a consequencc, the optical output power at the second selected wave
length will vary. This cross-modulation can be either positive or negative, depending on 
the direction of the mode shift and the relative position of the second externally selected 
wavelength to the nearest internat Iongitudinal mode wavelength. 

In this chapter self-pulsation at a megahertz repetition rate in a single external-cavity 
setup is reported. It is explained by the combined effect of carrier and temperature induced 
refractive index changes. With a double external-cavity setup, operating at two wave
Iengths, we show cross-modulation that is caused by the thermal refractive index change 
that results from switching the external feedback for one of the selected wavelengths. The 
latter setup can be used in a novel technique to measure the thermal impcdanee of a laser 
diode. 

In Section 7.2 the mode-shift caused by the refractive index changes that result from 
variations in optica! output power is analyzed. The thermal and carrier induced refractive 
index changes are compared. Section 7.3 describes experimental observations of self
pulsation in a single external-cavity setup, and cross-modulation in a double external
cavity setup. The results are discussed in Section 7.4 where we also relate the findings of 
this chapter to anomalous behavior of a laser neural network that were reported in Chapter 
4. We summarize this chapter inSection 7.5. 

7.2 Theory 

In this section we investigate the influence of the optica! output power of a laser diode 
on the index of refraction. In Section 7.2.1 the influence of the optical power P on the 
refractive index n via the carrier density Nis analyzed. Section 7.2.1 is devoted to optical 
output power induced changes in the refractive index via the device temperature T. 

The total change in refractive index caused by a change in optical power P can he 
written as: 

dn 
dP 

= 

= 

an aN an aT 
aN aP +aT aP 

( an) ( an) 
aP N + aP r 

(7.1) 

where (an) I (a P)N and (8n) 1 (8P)r are the optica] power induced changes in refractive 



102 7. Chaotic Self-Pulsation and Cross-Modolation 

index via the carrier density and the device temperature respectively. 
In the last part of this section the longitudinal mode shift and the resulting changes in 

effective mirror losses are analyzed. In a pertubation analysis it is shown that the carrier 
indoeed refractive index change can lead to instabilities. 

7.2.1 lnfluence of the Optlcal Power on the Refractive Index 
via the Carrier Denslty 

For a fixed injection current, changes in optica] output wi1l cause changes in carrier den
sity according to 

(7.2) 

with Te the carrier life-time, 1'/d the differential quanturn efficiency of the laser diode (in 
WA - 1 ), q the elementary charge and V the volume of the active region. The value of the 
carrier indoeed refractive index change on 18 N can be found in literature and lies in the 
range of -(5-11)x w-21cm3 [1]. 

For the laser diode used in our experiment we estimate Te ~ 1 ns, 1'/d ~ 0.2 WA - 1 and 
V ~ 2 x w-11 cm3• This results in (on 1 a P) N in the range of 8-17 w-1• As we consider 
the intJoenee on the speetral mode structure of the laser diode, the effective refractive 
index change rather then the total refractive index change should be considered. The 
effective refractive index change for a mode is reduced by the optical confinement factor 
of the laser diode as only the carrier density in the active region changes [9]. The optica! 
confinement factor for our MQW laser diode is estimated at f' ~ 0.02. Thus we find for 
the power induced refractive index change via carrier density: 

( an) -1 oP =0.16-0.34W . 
N,eff 

(7.3) 

Changes in the carrier number can occur on a time scale equal to or greater than the 
carrier life-time Te. This means that the carrier induced change in refractive index can 
occur at a time scale larger than a nanosecond. 

7.2.2 lnfluence of the Optical Power on the Refractive Index 
via the Device Tempersture 

The temperature of the active region of a laser diode depends on the amount of electrically 
injected power that is dissipated in the laser. This equals the injected electrical power 
minus tbe total optical power. With reference to the equivalent circuit diagram of Fig. 7.2 
we can estimate the change in active region .temperature that is caused by a change in 
optical output power. 

For typical laser diodes the thermal impedance Rrh = aT I a P is in the range of 30-
140 KW-1 [7],[10],[11]. This means that changes in optical output power of a few mili
watts can result in a temperature change of 0.1-1 K. Note that, with a fixed electrical 
current through the laser, an increase in optical output power will result in a decrease of 
device temperature. 



7.2. 

cact 

Figure 7.2 Equivalent circuit diagram descrihing the thermal characteristics of a laser 
diode with electrically injected power P,1, and optical output power Popt· The thermal 
capacity of the active layer is Cact. The active layer is thermally connected to the heatsink 
at temperature Tsink via a thermal impedance R,n. 
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A change in temperature will result in a change in refractive index via iJnfàT. For GaAs 
a value fora ln(n);ar is reported "-'5.6x w-5 K-1 [2]. Using this value and the value 
for aT I a p' a refractive index n of "-'4 results in a value for the power induced refractive 
index change via temperature: 

(!.!!_) = -(2.2- 22) x w-3 w-1 

oP T 
(7.4) 

A typical time constant can be associated with changes in the temperature of the active 
region of the laser diode. This time constant is determined by the thermal capacity of 
the active region and the thermal impcdanee between the active region and the heatsink 
(See Fig. 7.2). For typical laser diodes values in the order of 0.01-3 f.lS have been re
ported [8],[12],[13]. 

7.2.3 Stability Analysis 

Comparing the results of the previous two subsections (Eqs. 7.3 and 7.4), we find that 
the thermal and carrier effect have an opposite sign. We also find that the carrier effect 
is much stronger than the thermal effect. By use of a perturbation analysis we will in
vestigate the stability of the laser diode coupled to an external cavity. In this analysis 
we will neglect the thermal effect. The carrier induced refractive index change is intro
duced phenomenologically in the effective mirror losses a of the compound cavity via 
a'= äaféJN = (äafàn) (änj(JN). 

To relate changes in the effective optica] losses a of an external-cavity laser diode to 
changes in the refractive index n of the laser diode material, we consicter the compound 
cavity model of Fig. 7.3. The tigure shows a laser diode with back facet reftectivity Ro = 
rg and front facet reflectivity R1n1 r~ 1 • The oscillation frequency of the laser diode 
wo is determined by the wavelength selective external optica) feedback with reflectivity 

Rext rixt· 
It is obvious that the effective amplitude reflectivity of the facet facing the external mir

ror reaches a maximum when the internal reflection is in phase with the optical wave 
reflected back from the external-cavity end mirror. In other words, when a longitudinal 
cavity mode wavelength is equal tö the externally selected wavelength. Neglecting mul
tiple reflections in the external cavity and considering an antireftection coated laser diode 
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~---------L----------~ 

Figure 7.3 Compound cavity model of laser diode with wavelength selective external 
optical feedback. A laser diode with cavity length L has back facet power reftectivity R0 . 

The front facet with antireftection coating of reftectivity R;nt faces an extemal cavity with 
reflectivity Rexr at frequency WQ. 

( R;n1 :::::: 0) this maximum can be estimated at r elf = rw + r;nt. Accordingly a minimum 
value of rext - r;n1 can be calculated for the effective amplitude reflectivity of the laser 
diode front facet when the internally and externally reflected light is exactly 180° out of 
phase. In this case the externally selected wavelength is exactly in the middle of two lon
gitudinal cavity wavelengths. A more rigarous approach using a parametrie salution of 
the phase and amplitude equations of a laser diode [3} yields the same result. 

The opticallosses of the compound cavity corresponding to the minimum and maximum 
effective reflectivity of the front facet can be evaluated using 

1 
ct = ct;nt L In (rolretrD (7.5) 

where ct;m represents the opticallosses of the laser diode materiaL By use of this equation 
we can estimate the minimum and maximum optica! losses for the laser diode that is 
used in our experiments. The reflectivity of the antireflection coated front facet measures 
Rint :::::: 5 x 10-4, the internallosses for our MQW laser diode are estimated at ct;nz = 
10 cm-1 and the back facet reflectivity is typically Ro :::::: 0.3. The feedback efficiency of 
the external cavity including coupling lossesis estimated at Rext :::::: 0.02. The maximum 
value for the opticallosses using these parameters is "-'65 cm-1, the minimum value is 
"-'58 cm-1• 

To change the effective opticallosses from a minimum to a maximum or vise versa, a 
mode shift of 0.5 speetral mode distance is sufficient. The needed change in refractive 
index can be calculated using [14] 

d). dn 
(7.6) -= 

À n 

For our laser diode operating around 675 nm with a cavity length of 500 J.Lm, which 
corresponds to a speetral mode spacing of "'-'0.1 nm, we find that the needed change in 
refractive index is ll.n :::::: 3.4 x w-4• 

Using this value of ll.n, and ll.a from the preceding paragraph we obtain a value of 
loafonl in the order of 104 cm-1• When the externally selected wavelength is on the 
short wavelength side of the nearest internat cavity mode, the effective optica! losses 
increase as a function óf n. The nearest longitudinal mode wavelength moves further 
away from the externally selected wavelength. Decreasing optica! losses occur on the 
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long-wavelength side. With this value of 8af8n and the value for 8nf8N from literature 
[I] we can calculate ja'! = (0.5 -1.1) x w-16 cm2• Note that ct' is positive on the 
long wavelength side whereas it is negative on the short wavelength side of an internal 
longitudinal mode. 

Starting from the carrier and pboton rate-equations, the stability of the compound cavity 
laser diode can be analyzed using a pertubation analysis. In these rate-equations a' is 
introduced to account for the change in effective mirror losses resulting from the carrier 
indoeed refractive index change. We obtain fora disturbance in the pboton density l:!.S 
(See the appendix to this chapter): 

l:!.S' = C ( -ao +a') l:!.S (7.7) 

with C a positive constant and ao the differential gain coefficient. It is easily seen from 
Eq. 7.7 that disturbances grow exponentially when ( -a0 +a') > 0. Recalling that the 
value for a 1 is in the order of I o-16 cm2 we find it is in the same order of magnitude as the 
estimated value for ao ~ 4 x 10-16 cm2. This means that instahilities are possible when 
ex' is positive. As discussed earlier, this occurs when the externally selected wavelength 
is on the long wavelength side of an internallongitudinal mode wavelength. At this side 
of an internat mode, disturbances can grow with a typical time constant governed by the 
carrier Iife-time as carrier density induced refractive index changes are the cause of the 
effect. 

7.3 Experimental 

In this section we present experimental observations that demonstrate the combined ef
fect of carrier and temperature induced refractive index changes in a compound cavity 
laser diode. Sec ti on 7.3 .1 deals with a single external-cavity laser diode that exhibits self
pulsating behavior. In Section 7 .3.2 we present results of experimentsusinga double cav
ity, two-wavelength laser diode showing cross-modulation between the two wavelengths. 

7.3.1 Single Cavity Setup 

With the single external-cavity laser setup of Fig. 7.4 we measured the temperature depen
dent shift of the cavity resonance frequencies of a laser diode. The laser diode (U nipbase 
CQL806, À ~ 680 nm) is antireflection coated and operales below threshold without 
feedback. Wavelength se]ective feedback is provided by use of grating G 1 (2400 1/mm). 
The amount of optica] feedback is made such that the laser is still below threshold if the 
(fixed) wavelength selected in the external cavity is between two internal longitudinal 
mode wavelengths. The temperature of the laser diode chip is controlled and measured 
by use of a thermo-electric temperature controller and a thermistor. A part of the laser 
beam is coupled out and is used to measure the optica} power and the spectrum of the 
externa1-cavity laser diode output. 

In Fig. 7.5 the time-averaged output power of the laser diode is plotted as a function of 
temperature. The tigure shows two peaks that occur when an internallongitudinal mode 
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Figure 7.4 Single extemal-cavity laser diode setup. A temperature controlled, antire
flection coated laser diode is coupled to a wave1ength selective extemal cavity consisting 
of grating G 1 and mirror M 1. The temperature can be controlled to shift the internal 
longitudinal mode spectrum of the laser diode. The output light intensity and the output 
wavelength are monitored. · 

wavelength coincides with the externally selected wavelength. In the figure circles indi
cate measurement points with stable, single external-cavity mode operation. Crosses indi
cate measurements with unstable, self-pulsating behavior. The self-pulsation occurs when 
the externally selected wavelength is on the long wavelength side of the nearest internat 
longitudinal mode wavelength. The internallongitudinal mode spacing is approximately 
0.1 nm. 
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Figure 7.5 The output light intensity as a function of diode temperature . .Temperature 
values are calculated by u se of the cal i bration table of a thermistor equal to the one used 
in the measurements. Circles represent measurement points with stabie operation, crosses 
represent measurement points with self-pulsating behavior. 
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Various regimes of self-pulsation are shown in Fig. 7.6. The figure shows the light in
tensity of the laser diode as a function of time for various levels of detuning between 
the external feedback frequency and the nearest internallongitudinal mode wavelength. 
Chaotic transitions from a lasing to a non-lasing state and back can be observed. The top 
graph corresponds to a small difference between the externally selected wavelength and 
the nearest internallongitudinal mode, a cross somewhere near a peak in Fig. 7.5. The bot
torn graph is measured with a large wavelength difference, near a valley in Fig. 7 .5. Other 
graphs show measurements with intermediate wavelength differences. With increasing 
wavelength difference, the laser tends to stay Jonger in the non-lasing state . 
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Figure 7.6 Various regimes of self-pulsation. Top curve, self-pulsation when the ex
temally selected frequency is almost equal to an intemal Iongitudinal mode frequency. 
Bottom curve, extemal and longitudinal mode frequencies are far apart. Other curves 
show measurements with intermediate frequency differences. 

7.3.2 Double Cavity Setup 

To demonstrate cross-modulation we have build a setup according to Fig. 7.7. The figure 
shows a laser diode that is coupled to two external cavities. In each external cavity a 
different longitudinal mode is selected by use of gratings Gl and G2, and mirrors MI and 
M2. A À/2-plate and a polarizing beam splitter enable us to direct a controllable portion 
of light to the two extemal cavities. 

In one cavity an electro-optical modulator is inserted to modulate the feedback for one 
selected wavelength, À 1· Wh en the modulator is open, the laser emits at wavelength À 1. 

When it is closed the laser can emit at wavelength À2, selected in the second external 
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EO-Modulator PBS M2 Laser diode 

Figure 7. 7 Double external-cavity setup to demonstrate cross-rnodulation. In each ex
ternal cavity a different wavelength is selected. A polarizing beam splitter PBS and a 
.A./2-plate control the feedback levels for the two cavities. The feedback for one cavity is 
modulated with an electro-optical modulator. 

cavity, if the level of feedback provided by this cavity is sufficiently high. 
Part ofthe intra-cavity optical power is coupled out and analyzed. Detectors (Opto Elec

tronics Inc. PD I 0) and a sampling oscilloscope (Tektronix 11802 with SD-26 sampling 
heads) are used to monitor the optica! power at the two selected wavelengths. 

By tuning mirror M2 we are able to set the frequency mismatch between wavelength 
À2 and the nearest cavity resonance frequency. In a first experiment À2 is tuned halfway 
between two intemal longitudinal mode wavelengths. The extemal optica] feedback at 
this wavelength is controlled such that it is insufficient to make the laser lase. Now the 
feedback for À 1 is modulated and consequently the laser emits at À 1 when the modulator is 
open. The average output power of the laser diode measures 2.8 mW. When the modulator 
is closed, however, the laser starts lasing at À2. 

The transient behavior of the light emission at À2 is presented in Fig. 7 .8. Before t ~ 
1 JLS, the modulator is open and the laser is lasing at À1• Emission at À2 is suppressed. 
When the modulator closes, a sharp increase in the light intensity at À2 can he observed. 
Gradually the light intensity at À2 decreases to the spontaneons emission level until the 
modulator opens again at t ~ 13 JLS and lasing starts again at À 1 . 

The temporal increase in light intensity at À2 after t ~ 1 JLS can be explained by the 
mode shift resulting from the emission of light at À 1• The mode shift results in a decrease 
of effective opticallosses for À2. The feedback for ÀI. however, is much stronger and 
lasing action at À2 is suppressed. At t ~ 1 JLS theemission at ÀJ stops and the internat 
longitudinal mode wavelengtbs relax to their original speetral positions. 

The time scale at which the light intensity at À2 deercases is in the order of JLS, the 
tbermal time constant. This leads us to believe that the effect is caused by a temperature 
change due to the emission of optica} power at À 1 before t ~ 1 JLS. To estimate the 
temperature change, the feedback path for À 1 is blocked and the temperature of the laser 
diode is actively decreased by use of the temperature controller until the light intensity at 
À2 reaches the maximum level of Fig. 7 .8. The temperature change amounts ""0.5 K. 

The temperature trajectory corresponding to the measurement of Fig. 7.8 is indicated 
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Figure 7.8 Time dependent light intensity at wavelength Àz showing cross-modulation. 
At t ::::: 1 ms the modulator closes and the lasers stops lasing at À 1• From this point the 
laser emits at À 2 due to the decreased temperature. As the temperature increases to a 
steady state, the optica! output power at Àz slowly decreases. The laser is in a stabie state 
during the temperature relaxation. The corresponding temperature trajectory is indicated 
by arrow A in Fig. 7.5. 
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with arrow A in Fig. 7.5. Arrow A has a length corresponding to 0.5 K. The laser operates 
in a stabie regime and the difference between the selected wavelength and the nearest chip 
mode wavelength increases as a function of time. 

By rotating mirror M2 the wavelength difference between À2 and the nearest internal 
longitudinal mode wavelength is changed. With the same output power at À! as in the 
measurements of Fig. 7.8, the results of Figs. 7.9 and 7.10 were obtained. The corre
sponding temperature trajectories are indicated with arrows Band C in Fig. 7.5. 

Figure 7.9 shows an initially stabie operation that turns into an unstable operation at t ~ 
3 JlS. After this point the light intensity at À2 is similar to that of the bottorn graph of Fig. 
7.6 which is measured with an ordinary oscilloscope. The seemingly damped sinusoidal 
oscillation in Fig. 7.9 is an artefact of the measurement resulting from the random phase 
of the chaotic pulsation and the averaging mechanism of the sampling scope. A number 
of waveforms like the one of the bottorn graphof Fig. 7.6 are averaged by the sampling 
scope. Due to the random phase of the chaotic pulsation, the pulsation averages out as a 
tunetion of time. 

In Fig. 7.10 laser operation at À2 starts in an unstable region near the resonance peak, 
within a few microseconds the temperature relaxes to a steady state and the laser operates 
in a stabie regime from this point. 
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Figure 7.9 Same as Fig. 7.8 but tbe laser goes from a stabie to an unstable state. Tem
perature trajectory is indicated by arrow B in Fig. 7.5. 
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Figure 7.10 Same as Fig. 7.8 but the laser goes from an unstable (1 f.lS < t <2 JlS) toa 
stabie (t >3 f.lS) state. Temperature trajectory is indicated by arrow C in Fig. 7.5. 
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7.4 Discussion 

7.4.1 Self-Pulsation 

The results of Section 7.3 showed self-pulsation when the externally selected wavelength 
is on the long wavelength side of the nearest internal longitudinal mode. The self
pulsations can be explained by the instahilities resulting from the carrier induced refrac
tive index change in this wavelength region, that were discussed inSection 7.2.3. 
If the externally selected wavelength is on the long wavelength si de of an intemallon

gitudinal mode, any disturbance will cause the chip mode spectrum to shift until a stabie 
region is reached. Depending on the sign of the disturbance this can result either in a 
Iasing or a non-lasing state. 

The time the system needs to reach a stabie state will depend on the rate at which initia! 
disturbances grow and the way these disturbances affect the effective optica] losses of 
the compound cavity. As disturbances will grow with a time constant in the order of the 
carrier life-time (See Section 7.2.1) the results of Fig. 7.6, where a steady state is reached 
at a time-scale of ""'Û.l JLS, are in reasonable agreement with these considerations. 

When the stabie state is reached the temperature of the active region will change as the 
output power of the laser diode is altered. Because the temperature induced refractive 
index change bas an effect opposite to that of the carrier induced change, it will cause the 
chip mode spectrum to shift back towards the unstable region. As discussed in Section 
7.2.2, the temperature induced effect is much slower with a typical time scale in the order 
of microseconds. 

The temperature of the active layer will oscillate around some average temperature as 
the laser switches on and off during the self-pulsation. This average temperature depends 
on the average optica! output power of the laser diode and the heatsink temperature (See 
the equivalent circuit diagram of Fig. 7.2). At a given externally selected wavelength, 
the effective optical losses and thus the optica] output power are related to the active 
layer temperature. This means that the average optica] output power is a function of the 
heatsink temperature. 

From the preceding we can conclude that the laser diode switches on and off with a 
switch-on and switch-off time determined by the carrier effect. The repetition rate of 
the pulsation is governed by the thermal time constant of the laser. The average output 
power, and thus the duty-cycle of the pulses, depends on the heatsink temperature at a 
given externally selected wavelength. 

7.4.2 Cross-Modulation 

The fact that the temperature induced change in refractive index plays a role in the be
havior of the laser diode on a JLS time-scale cao also be seen from the results of Section 
7.3.2. This is in agreement with our explanation of the self-pulsation effect. Also the 
time scale at which the thermal effects influence our experimental results agrees with the 
explanation of the self-pulsation effect as well as with values of the characteristic thermal 
time constant reported in literature [8],[12],[13]. 

The results of Section 7.3.2 showthermal cross-modulation. The optica! output power 
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at wavelengtb )..2 is (temporarily) changed by tbe emission of optical power at À1• The 
decreasein temperature resulting from theemission at J..1 causes the internallongitudinal 
modes to shift. When À2 is on the long wavelengtb side of tbe nearest internal Jongitudinal 
mode, tbe shift caused by the decreased temperature will be towards À2. On tbe otber side 
of an internalmode the shift wiJl be away from À2. 

This means that tbe tbermal cross-modulation effect between À 1 and À2 is eitber positive 
or negative depending on tbe position of À2 relative to an internat Iongitudinal mode. 
Thus tbe effect shows resemblance witb asymmetrie nonlinear gain [15), that is caused 
by tbe beating of two wavelengtbs in tbe active region, and also exhibits a wavelengtb 
asymmetry. The asymmetrie nonlinear gain however only plays a role when tbe two 
wavelengtbs are less tban a few internal longitudinal modes apart. The cross-modulation 
reported in this chapter occurs throughout tbe whole spectrum of the laser diode. 

The cross-modulation effect will be visible only if tbe light at one of tbe wavelengtbs 
exhibits pulsation. When it doesn't, tbe internat modes might be shifted but lasing action 
at tbe non-lasing wavelengtb will be suppressed by mode competition. Note tbat tbe 
carrier induced refractive index change is much larger than tbe tbermal induced change 
and hence one would expect that tbis effect would play a dominant role in tbe cross
modulation. This, however, is not tbe case in our external-cavity setup as tbe cavity 
round-trip time (""' 10 ns) is much larger than the carrier life-time. Therefore changes in 
refractive index caused by variations in carrier density have disappeared before tbey have 
an effect on the optical output power. 

In our laser neural network (LNN), tbat operates by applying controlled optica! feedback 
fora number of wavelengths, anomalous behavior has been reported in Chapter 4, tbat can 
be explained by tbe cross-modulation as described in tbis chapter. When increasing tbe 
level of optical feedback for one wavelengtb, tbe time averaged optical output power for a 
second wavelength also increased (See Fig. 4.16 around Wo Ï =0.5). This increase can be 
due to a shift in tbe internat mode spectrum tbat results from tbe increase in optical output 
power (Po in Fig. 4.16) of tbe first wavelength. Altbough we did not measure tbe time 
development of tbe light intensity in tbe LNN, it is very well possible tbat self-pulsation 
occurred in tbe LNN as the setup of tbe LNN essentially is equal to tbat of Fig. 7 .4. 

7.4.3 Determination of Thermal Parameters 

The measurements of Section 7.3 can be used to determine some of the tbermal param
eters of our laser diode. The temperature change needed to shift tbe longitudinal mode 
spectrum one mode spacing can be used to calculate anjaT. Witbamode spacing of 
"-'0.1 nmandacorrespondingtemperaturechangeof2.4 K(SeeFig. 7.5 weobtain 8)..j8T 
= 0.042 nmK-1. The relative change in wavelength dÀ/À is equal to the relative change 
in optical cavity lengtb d(nL)j(nL). Thus we can write: 

8(nL) 8).. nL 
--=--ar ar À 

(7.8) 

This leads to a normalized temperature induced effective optical cavity length change, 
ö In(nL)jaT, of6.2 x 10-5 K-1• The cavity lengthalso depends on tbe temperature with 
a ln(L)jaT = 5.7x w-6 K-1 [2]. This results in a temperature derivative oftbe refractive 
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index of a ln(n)joT = 5.6x 10-5 K-1 which is in good agreement with the value for GaAs 
of 5.4-5.8x 10-5 K-1 reported in literature [2]. 

The thermal impcdanee Rrh can be calculated using the measurements of Sectien 7.3.2. 
We measured a time averaged optica) output power of 2.8 mW. The duty cycle of the 
optica) modulator was 50%. Thus the optica] output power at À1 in the open state of the 
modulator was "'-'5.6 mW. A change in active layer temperature of "-'0.5 K was needed in 
a null metbod to adjust the optical power at À2 (See Sectien 7.3.2). These values of d P 
and dT yield a thermal impcdanee Rrh of 90 KW-1. This value for Rrh is within the range 
reported in literature [7],[1 0],[11 ]. 

Compared to other methods to measure the thermal impcdanee of a laser diode the 
metbod proposed bere uses the optica] power instead of the electrical power [7],[1 0],[ 11 ]. 
These other methods measure the thermal impcdanee from the area where the electrical 
power is dissipated, to the heatsink. The method presented above can be used to measure 
the thermal impedance from the area where the optical power is generated, to the heatsink. 
The area where the electrical power is dissipated is in general extended beyoud this region. 

7.5 Conclusions 
We have analyzed the influence of the optica] output power on the refractive index in
duced shift of the intemal mode spectrum of a compound-cavity laser diode. The therm al 
and carrier induced changes in refractive index have been examined. The thermal in
duced refractive index changes are expected to be of the order of 1 o2 smaller than the 
carrier induced refractive index changes and have an opposite sign. The time scale of the 
temperature effect is in the order of J.LS. The carrier induced refractive index changes will 
occur on the time scale of the carrier life-time which is ,...._, 1 ns. 

In a single wavelength external-cavity setup self-pulsing behavier is observed. The self
pulsation is shown to he caused by the combined effect of the carrier and temperature 
induced changes in refractive index. The carrier induced refractive index causes unstable 
regions to occur in the tuning curve of the external-cavity laser. This effect delermines the 
switch-on and switch-off time of the self-pulsation. The thermal refractive index change 
causes reentrance in the unstable area and determines the repetition rate. 

In a double wavelength external-cavity setup cross-modulation is observed that is caused 
by the temperature induced refractive index change. The effect will only be visible when 
the laser output power is modulated. In the experiments presented in this chapter this mod
ulation is caused by switching the optica) feedback for one wavelength. In our laser neural 
network experiments the self-pulsation effect can be responsible for the cross-modulation, 
that was reported as an anomalous effect in the laser neural network experiments (see 
Chapter4). 

The measurements are used todetermine the thermal impcdanee and the temperature 
induced change in refractive index. The thermal impcdanee is obtained using a novel 
technique that uses the optica] output power of the laser diode. The results are in agree
ment with values found in literature. 
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Appendix 

In this appendix we derive an expression to examine the stability of a compound-cavity 
laser diode with effective optical losses that depend on the carrier density via carrier 
induced refractive index variations. Let us consider the rate-equations for the carrier 
density N and pboton density S of a single mode laser diode: 

fJ 
I 

= --y.N-GS 
qV e 

(7.9) 

s = GS- YpS 

where I is the electrical driving current, Ye = 1/Te is the carrier decay rate. G is the 
optical gain equal to G = rvgao (N- N1 ) with Vg the group velocity in the active region, 
Nt the carrier density at transparency and ao the differential gain constant. The pboton 
decay rate, Yp· is equal to vga. with a the effective opticallosses ofthe compound cavity 
laser diode. 

Using a perturbation analysis and introducinga = a0 +ra' l!.N, with a'= fJajoN we 
can write: 

!iN = -rv8ao (So!!.N + No!!.S)- YeliN (7.10) 

as = rvgao (Sol!.N + No!!.S)- Vgaol!.S- rvga1 l!.NSo 

withSo and No the steady state solutions ofEqs. 7.9. 
Consictering changes in the carrier density to be slow compared to changes in the pboton 

density we can set !iN = 0 resulting in 

(7.11) 

With C = (rv8aoN0 So) I (rvgaoSo + Ye). a positive constant, we obtain Eq. 7.7. 
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8 

Conclusions and Further 
Research 

In the final chapter of this thesis general conclusions are drawn. We discuss capabilities 
and lîmitations of the proposed optica! neural network. We relate these capabilities and 
limitations to the possibilities for using the optica! neural network in optica] telecom
munication systems. Recommendations are made for improvement of the optica! neural 
network and future research topics are indîcated. 

117 
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8.1 Conclusions 

With. the work presented in this thesis we investigated the operation, optimization and 
application of an all-optica! neural network that uses the longitudinal modes of a laser 
diode as neurons. The main conclusions of this research are listed below. 

• It is possible to use the longitudinal modes of a laser diode as the neurons of a 
neural network. This is done by actively controlling the optical feedback provided 
to a laser diode. The optical feedback for each longitudinal mode of the laser diode 
is made proportional to a weighted sum of input signals. The outputs of the network 
are the optical powers contained in the modes, the inputs are applied in the optical 
transmission domain. As the optical feedback can only be positive, input signals 
can only have excitatory influence on the weighted sum. The resulting all-optica! 
laser neural networkis a single-layer winner-take-all neural network. 

• This laser neural network can perform functions that are applicable in optical tele
communication systems. We have successfully demonstraled training of simple and 
more complicated computational tasks. A data bit belonging to an input vector was 
routed according to an input address, also contained in the input vector. 

• The operation speed of the experimental LNN is at present not sufticient for the 
application area of optical telecommunications. A theoretica} and experimental 
analysis of the mode-switching behavior of an external-cavity laser diode showed 
that a number of speed limitations exist. A first limitation is due to the round-trip 
time of the external cavity. If the total optica! power of the laser diode before and 
after the transient is not the sarne, a second limitation will result from the fact that 
the charge carrier density needs to change. A third, more fundamental limitation 
arises from the switch-on time of an initially non-lasing longitudinal mode. 

• It is possible to use optica] power as input signals in an alternative optica] neuron. 
By injecting light into an external-cavity laser diode we are able to demonstrate 
neural operation. Both inputs and outputs of the resulting injection seeding neu
ron are represented in the optica] power domain. An additional advantage of this 
approach is the possibility to obtain excitatory as well as inhibitory input signals. 

• A wavelength selective external-cavity laser diode, such as used in the laser neural 
network, can exhibited self-pulsating behavior and cross-modulation. The self
pulsation is shown to be caused by the combined effect of carrier and thermal in
duced refractive index changes. The cross-modulation is visible on the time scale 
of the thermal refractive index changes. It is believed that the carrier and thermal 
induced refractive index changes are responsible for observed anomalous shapes of 
the neural response function of the laser neural network. 

8.2 Recommendations 

Research on the use of longitudinal modes of a laser diode as neurons will be continued 
and therefore this thesis marks a starting point for further investigations. Below sugges-



8.2. Recommendations 119 

ti ons are made for future research topics. 

• For a general neural network it would be beneficia} if the input signals could also 
have an inhibitory influence on the weighted sum of inputs. For the laser neural 
network this means that it would be necessary for an input signal to have a positive 
as well as a negative influence on the amount of optica} feedback. This could be 
achieved in opties by using the phase of the light wave that is reflected back into the 
laser. Rays of light cortesponding to an excitatory input should have a 180° phase 
difference with those cortesponding to an inhibitory input signal. Excitatory and 
inhibitory input signals would then interfere destructively. 

• To overcome limitations caused by the winner-take-all behavior of the laser neural 
network, alternative laser types should be considered. With these lasers it should 
be possible to have multiple lasing modes at the same time. Examples of such 
lasers are glass lasers that exhibita type of inhomogeneons line broadening, which 
is essential to obtain multi-frequency operation. 

• The number of neurons in the laser neural network is curtently limited to 32 by 
the experimental setup. This number can be enlarged by using more longitudinal 
modes of the laser diode. With the curtently used laser diode we can estimate 
the number of neurons to be higher than 100. This number is only limited by 
the gain bandwidth of the used laser and the speetral distance between the neural 
wavelengths. Therefore a much larger number of neurons can be achieved with a 
proper choice of laser gain bandwidth and a lower speetral distance between the 
neural wavelengths. 

• The number of inputs that can be used in the experimental laser neural network 
presented in this thesis was,..__, 12. With the optica] feedback more evenly distributed 
over the input signals, the number of inputs is estimated at rv27. A larger number 
of inputs can be achieved by increasing the level of controlled optica! feedback. 

• Two different types of supervised learning algorithms were used in this thesis to 
train the neural network. A stochastic learning algorithm was used in an initia] 
experiment to train simple tasks to the network. A modified 8-rule algorithm, that 
anticipates on the winner-take-all behavior of the laser neural network, was used 
in a more actvaneed experiment. Although the tasks trained with the 8-rule learn
ing algorithm were more complex than the simple tasks trained with the stochastic 
learning algorithm, less iteration steps were needed. Further optimization of the 
learning algorithm is possible by incorporating more knowledge of the optica] neu
ral network in the algorithm. 

• Two of the speed limitations of the laser neural network can be overcome by minia
torizing the experimental setup and ensuring an equal optica! output power in each 
state of the neural network. A third limitation, that results from the relaxation 
oscillations of a laser diode, cannot he avoided in this way. Although a more ef
ficient optical feedback or a higher optica! gain will somewhat alleviate the speed 
limitations, it remains questionable if the optical neural network will be usabie in 
applîcations that require a transient time lower than ""'1 ns. 
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• Applications of the optical neural network are envisioned in the area of optical 
telecommunication systems. In typicaJ telecommunication a bit-error-rate (BER) 
as small as ,...., 1 o-9 is required. In our ex perimental optical neural network we were 
able to demonstrate a BER of < w-5• Although this figure is an upper limit of 
the actual BER, further investigations of the error behaviör of the optical neural 
network are in order. 

• To be more compatible to the field of optical telecommunications, the possibilities 
of building a fiber-optics based optical neural network should be investigated. As 
a free space optical setup is abandoned in this way, the ease of imptementing a 
vector-matrix multiplier no longer applies. Such a fiber-optic neural network should 
operateat wavelengtbs that are currently being used in telecommunication systems. 

• For the proposed packet-switched router some fundamental building blocks are still 
missing. An important building block is the optical memory that will be needed to 
store the destination address during the time a packet passes the router. Ideas are 
being developed in this direction at the Eindhoven University of Technology. They 
will play an important research role in the realization of an all-optical packet router. 

• For optical telecommunication applications, and for other possible application ar
eas where data is represented in the optical domain, it is preferabie to apply inputs 
to the optical neural network in the optical power domain. As the inputs of the 
optical neural networks are currently represented in the optical transmission do
main, optically controlled modulators, such as multiple-quantum-well modulators, 
should be introduced in the neural network setup. Research on these devices will 
be necessary. 

• As an alternative to using optically controlled optical modulators, an injection seed
ing neuron is proposed. The feasibility of the injection seeding neuron remains a 
topic for future research. Problems can arise in connecting a number of injection 
seeding neurons as this will require a stabie osci11ation wavelength for each laser 
diode. 



Summary 

In this thesis we describe an optica} neural network that uses the longitudinal modes of a 
laser diode as neurons. The threshold that is needed for neural operation originates from 
the nonlinear response of a laser diode to external optica) feedback. The optical power 
contained in each longitudinal mode of the laser diode exhibits a threshold as a function 
of the level of optica! feedback for that mode. Thus the longitudinal modes can be used 
to define neurons by controlling the amount of optica! feedback as a function of neural 
inputs and weights. All key neural functions are implemented in the optica) domain. 

In Chapter 1 we provide an introduetion to neural networks. We introduce the basic 
requirements and features of neural networks and discuss the classical reasons for imple
menting neural networks by means of opties. An additional reason to build an optica] 
neural network, being the possibility to use neural networks in optical telecommunication 
systems in this way, is introduced. For this application area it is important that the thresh
old is in the optical domain. In most of the optica} neural networks that are presented in 
literature to date the threshold is implemenled in the opto-electronic domain. 

We analyze the operation principle of the all optica] neural network that is proposed 
in this thesis in Chapter 2. The way laser diode physics provides threshold operation 
is clarified by use of a rate-equation model of a multimode laser diode with controlled 
optical feedback. It is explained that the resulting neural network will be of the winner
take-all type, in which only one neuron will be active for each input. The experimental 
concepts that are used throughout the thesis to imptement neural inputs and weights are 
introduced. 

In Chapter 3 we describe experiments that demonstrate the operation principles of the 
all-optica} neural network. The experimental setup is presented that consists of an an
tireflection coated laser diode coupled to a linear cavity. In the cavity a set of gratings, a 
number of lenses and a standard liquid-crystal-display are placed. With the liquid-crystal
display the feedback for each longitudina1 mode is controlled separately to provide inputs 
and weights. The Iiquid-crystal-display is controlled by a computer on which a simple 
stochastic learning algorithm is implemented. Learning of a number of functions with 
up to three inputs and up to five outputs is demonstrated. One of these functions is the 
NOR-XOR-AND tunetion that can only be trained to our single layer neural network by 
virtue of its winner-take-all nature. 

More ad vaneed experiments are presented in Chapter 4. A loop-mirror is introduced in 
the experimental setup and a more sophisticated liquid-crystal-display is used. The dis
play enables us to speed up the learning phase by allowing us to feed more input patterns 
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to the network per unit of time. The number of inputs and neurons is enhanced in this setup 
toabout 12 and 32 respectively. By use of an improved learning algorithm we trained the 
experimental optical neural network some functions toward the application area of optical 
telecommunications. With these experiments we demonstrate the functional capabilities 
of the laser neural network. 

To examine whether the operation speed of the optica} neural network is sufficient for 
optical telecommunication applications, we examined the transient behavior of longitu· 
dinal mode switching in a dual external·cavity laser diode. Simulations and experiments 
are presented in Chapter 5. Three speed limitations are indicated. One is the number of 
cavity round-trip times needed to switch from one longitudinal mode to another. A sec· 
ond limitation arises from the change in carrier number that is due to a change in total 
optical feedback. These limitations can be avoided by reducing the size of the setup and 
constraining the input veetors of the network respectively. A third speed limitation, that 
originates from the switch·on time of an originally nonlasing longitudinal mode, cannot 
be easily avoided. It remains to be seen whether this third limitation wiJl prevent the 
optica! neural network from being applicable in optical telecommunication systems. 

In the optica! neural network discussed in Chapters 2-5 the inputs are implemenled in 
the optical transmission domain by use of a liquid·crystal-display . Por applications in 
a1l-optica1 systems it is preferabie to have the inputs implemented in the optical transmis· 
sion domain. A possible solution is presented in Chapter 6. We use a laser diode that is 
provided with controlled optical feedback thus forcing it to lase at one of two selected Ion· 
gitudinal modes. The inputs are implemented via the injection of light. When the amount 
of injected light at the wavelength of one of the two longitudinal modes reaches thresh· 
old, the laser wilt start to lase in this mode. The shape of the resulting threshold tunetion 
can be controlled by changing the amount of optical feedback for the two longitudinal 
modes. The operating principle is verified theoretically by use of a rate·equation model 
of a multi-mode laser diode with controlled external optical feedback and light injection. 
We demonstrate basic neural operation experimentally. 

During the measurements on the operation speed, presented in Chapter 5, anomalous 
behavior was observed. This anomalous behavior is the subject of Chapter 7, in which 
we present and analyze experimental results. We show observations of self-pulsating be· 
havior in a single wavelength external-cavity laser diode. We show that the self·pulsation 
is caused by the combined effect of carrier and thermal induced refractive index changes 
in the laser diode. These refractive index changes cause a shift in the longitudinal mode 
spectrum. It is believed that the carrier induced effect causes unstable regions to occur in 
the tuning curve as any initial disturbance will grow exponentially. As the temperature 
and carrier induced changes have an opposite effect on the wavelength shift, the ther
mal refractive index change can result in a reentrance in the unstable region. Thus the 
switch-on and switch-off times of the self-pulsation are determined by the carrier effect 
and the repetition time by the thermal effect as is observed in the experiments. In a two 
wavelength double external-cavity setup in wbich the feedback for one wavelength is ac
tively modulated we observe cross-modulation effects at the other selected wave]ength. 
The cross-modulation is explained by the thermal refractive index change and is used in 
a novel metbod to de termine some of the thermal characteristics of the laser diode. 



Samenvatting 

Dit proefschrift behandelt een neuraal netwerk dat is opgebouwd met behulp van een 
laser-diode. Om de lezer enig idee te geven waar dit proefschrift over gaat is in dit hoofd
stuk een en ander samengevat. 

Zenuwcellen, Computers en Licht 

Kunstmatige neurale netwerken zijn afgekeken van het neurale netwerk van de mens, 
dat beter bekend is als ons zenuwstelsel. Deze netwerken bestaan uit een (liefst groot) 
aantal neuronen die met elkaar verbonden zijn. Net als de zenuwcellen in ons zenuwstelsel 
ontvangen de neuronen in een neuraal netwerk prikkels uit hun omgeving. Als de sterkte 
van de som van alle signalen die een neuron ontvangt boven een bepaalde drempel komt, 
gaat het neuron zelf ook signalen sturen naar de neuronen waarmee het verbonden is. 
Deze drempelfunctie stelt de neuronen in staat simpele beslissingen te nemen en geeft zo 
het neurale netwerk zijn rekenkracht 

Het interessante van neurale netwerken is dat ze van huis uit goed zijn in het doen van 
parallelle berekeningen. Doordat veel neuronen met elkaar verbonden zijn, gebeuren veel 
berekeningen gelijktijdig ofwel parallel. Een voorbeeld hiervan is het herkennen van een 
gezicht door ons zenuwstelsel. Alle beeldpuntjes die samen het beeld vormen van een 
gezicht worden tegelijk ontvangen als prikkels op het netvlies van ons oog. Deze prikkels 
worden parallel verwerkt en het resultaat van de berekening in dit voorbeeld is het wel of 
niet herkennen van het gezicht. 

De berekening die een neuraal netwerk uitvoert hangt af van de sterkte van de verbin
dingen tussen de neuronen. Hoe sterker een verbinding, of wegingsfactor, des te meer 
beïnvloedt een signaal dat via deze verbinding bij een neuron aankomt de activiteit van 
het neuron. In feite vormen de wegingsfactoren het geheugen van het neurale netwerk. 

Net als de mens kan een neuraal netwerk leren van voorbeelden. Hiertoe is een leeral
goritme nodig dat de wegingsfactoren instelt. In zo'n leeralgoritme worden voorbeelden 
van invoerpatronen en uitvoerpatronen aan het neurale netwerk aangeboden en worden 
de wegingsfactoren net zo lang veranderd totdat het neurale netwerk het juiste uitvoerpa
troon geeft bij ieder invoerpatroon. Het neurale netwerk heeft dan geleerd welke uitvoer 
bij welke invoer hoort. 

De meeste huidige kunstmatige neurale netwerken bestaan in de vorm van een com
puterprogramma. Als een neuraal netwerk op deze manier wordt gerealiseerd, voert de 
computer de berekeningen van elk van de neuronen in het netwerk één voor één uit. Het 
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kan allemaal veel sneller als de berekeningen van de neuronen door aparte rekeneenheden, 
en dus echt tegelijkertijd, uitgevoerd worden. Er zijn tegenwoordig neurale netwerken die 
bestaan uit geïntegreerde elektronische circuits. Op deze chips zijn de neuronen verwe
zenlijkt met behulp van transistoren en de verbindingen bestaan uit elektrische contacten. 

Wanneer verbindingen in een neuraal netwerkelkaar kruisen, moeten op een chip de 
draden over elkaar heen gelegd worden om kortsluiting te voorkomen. In een neuraal 
netwerk dat gebruik maakt van licht is dit niet nodig. De verbindingen in zo'n optisch 
neuraal netwerk bestaan uit lichtstralen die elkaar zonder problemen kruisen. 

Om deze reden zijn er dan ook vele beschrijvingen van optische neurale netwerken 
te vinden in de literatuur. De drempelfunctie in. deze optische neurale netwerken wordt 
vrijwel altijd verwezenlijkt in elektronica. In toepassingen waarin de invoer en de uitvoer 
bestaan uit licht zou het beter zijn als ook de drempelfunctie in het optische domein zou 
plaatsvinden. Een dergelijke toepassing is glasvezeltelecommunicatie waarbij informatie 
wordt verstuurd door het verzenden van lichtpulsjes door een glasvezel. Meer over neurale 
netwerken en de voordelen van een realisatie met licht kunt u vinden in Hoofdstuk 1 van 
dit proefschrift. 

Prikkels en Kleuren 
In dit proefschrift wordt een optisch neuraal netwerk beschreven waarbij ook de drem
pelberekening in het optische domein plaatsvindt. Hiertoe gebruiken we een laser-diode. 
Dit is een elektronische component die licht uitzendt met een zeer zuivere kleur. De laser
diode die wij gebruiken is een multimode laser-diode; een laser-diode die licht van ver
schillende kleuren kan uitzenden. Het licht dat uit de laser-diode komt wordt bewerkt en 
vervolgens teruggekaatst in de laser-diode. Als de hoeveelheid weerkaatst licht voor één 
van de kleuren die de laser uitzendt boven een bepaalde waarde komt, gaat de laser licht 
van die kleur uitzenden. Op deze manier ontstaat er een drempelfunctie voor iedere kleur 
van de laser-diode. Overigens zien die kleuren er voor de mens allemaal hetzelfde uit: zij 
liggen in het kleurenspectrum ongeveer duizend keer dichter bij elkaar dan rood en blauw 
in de kleuren van de regenboog. 

Iedere kleur van de laser-diode, dus ieder neuron, ontvangt invoergegevens via de hoe
veelheid teruggekaatst licht van die kleur. Hoe sterker een invoersignaal, des te meer licht 
wordt weerkaatst naar de laser-diode. Door voor iedere invoer het teruggekaatste licht 
gecontroleerd te verzwakken maken we de wegingsfactoren voor ieder neuron. Door de 
drempelfunctie bij iedere kleur ontstaat op deze manier een laser neuraal netwerk waar
van het uitvoerpatroon gelijk is aan het kleurenspectrum van de laser-diode. Een typische 
multimode laser kan meer dan 100 kleuren licht uitzenden; het is dus in principe mogelijk 
met een laser-diode een neuraal netwerk te realiseren met meer dan 100 neuronen. 

Theorie en Experiment 
In Hoofdstuk 2 beschrijven we de werking van een laser neuraal netwerk met behulp van 
een wiskundig model voor de laser-diode. In dit model is er voor de hoeveelheid licht 
van iedere kleur van de laser-diode een vergelijking. Samen met een vergelijking voor 
het aantalladingdragers (elektronen en gaten) in de laser-diode kunnen we een oplossing 
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vinden voor het kleurenspectrum van de laser-diode. Het blijkt dat er een drempelfunctie 
is voor iedere kleur van de laser-diode en dat de laser-diode slechts één kleur tegelijk zal 
uitzenden. 

Met een experimentele opstelling die bestaat uit een laser-diode en een aantal standaard 
optische componenten (bijvoorbeeld spiegels, lenzen en rasters) is voor het eerst de wer
king van een laser neuraal netwerk aangetoond. In deze experimentele opstelling worden 
eerst de diverse kleuren van de laser-diode van elkaar gescheiden in de ruimte. Vervolgens 
wordt de hoeveelheid licht van iedere kleur afzonderlijk op een gecontroleerde manier ver
zwakt. Uiteindelijk voeren we, door middel van een spiegel, het licht weer via dezelfde 
weg terug in de laser-diode. 

We brengen invoerpatronen aan in het experimentele neurale netwerk door middel van 
een vloeibaar kristal display. Met dit display verzwakken we de hoeveelheid teruggekaatst 
licht voor iedere kleur van de laser afzonderlijk. Deze verzwakking is een produkt van de 
invoer en de wegingsfactoren. Om de uitvoer van het neurale netwerk te bepalen, meten 
we het kleurenspectrum van de laser-diode. 

Met een computer die in staat is de wegingsfactoren te sturen, de invoer aan te bieden 
en de uitvoer te lezen, hebben we het experimentele neurale netwerk een aantal func
ties geleerd. Met het gebruikte leeralgoritme worden in iedere stap de wegingsfactoren 
willekeurig veranderd. Lijken de uitvoerpatronen hierdoor meer op de voorbeelden, dan 
worden de nieuwe wegingsfactoren onthouden in de volgende stap. Is het resultaat slech
ter, dan gebruiken we de vorige wegingsfactoren. Zo wordt doorgegaan totdat het laser 
neuraal netwerk de gewenste functie correct heeft geleerd. 

Op deze manier zijn functies met ten hoogste drie invoerelementen en ten hoogste vijf 
uitvoerelementen geleerd aan het netwerk om het werkingsprincipe ervan aan te tonen. In 
Hoofdstuk 3 kunt u een gedetai1leerde beschrijving vinden van deze experimenten. 

Een meer geavanceerde opstelling wordt beschreven in Hoofdstuk 4. In deze opstelling 
gebruiken we een experimenteel display dat gevuld is met een speciaal type vloeibaar 
kristal. Met dit display zijn we in staat veel meer veranderingen van de wegingsfactoren 
te realiseren per tijdseenheid. Ook kunnen we grotere invoerpatronen aan het laser neuraal 
netwerk aanbieden en zijn we in staat om maximaal 32 neuronen te definiëren. 

Om de hoeveelheid weerkaatst licht te vergroten, en daarmee het aantal invoerelementen 
te optimaliseren, hebben we in dit experiment gebruik gemaakt van een speciale ringop
stelling. In de ring kan het licht maar één kant op en door dit eenrichtingsverkeer wordt het 
vloeibaar kristal display slechts één maal gepasseerd. Hierdoor gaat minder licht verloren 
en wordt er dus meer licht teruggekaatst in de laser-diode. 

Met een verbeterd leeralgoritme heeft het neurale netwerk functies geleerd in het toe
passingsgebied van glasvezelcommunicatie. We hebben daarmee aangetoond dat het laser 
neurale netwerk in staat is om niet alleen triviale maar ook zinnige functies te leren. 

Snelheid 

In huidige telecommunicatiesystemen gaan meer dan een miljard bits per seconde door 
een glasvezel. Voor dit toepassingsgebied is het dan ook van belang dat de berekeningen 
door het laser neuraal netwerk uitgevoerd worden met een voldoende hoge snelheid. 



126 Samenvatting 

Om te onderzoeken of het laser neuraal netwerk snel genoeg is voor deze toepassing 
hebben we het schakelgedrag onderzocht van een laser-diode met veranderende licht
weerkaatsing. Deze verandering moet er voor zorgen dat de laser-diode van één kleur 
naar een andere schakelt. 

Met behulp van een wiskundig model voor de laser-diode en zijn kleuren, hebben we 
dit gedrag gesimuleerd. Met een experimentele opstelling, waarbij licht van twee kleu
ren door een spiegel wordt teruggekaatst in de laser-diode, hebben we het schakelgedrag 
ook gemeten. In deze experimentele opstelling wordt de hoeveelheid licht voor één kleur 
veranderd terwijl die voor een ander kleur hetzelfde blijft. 

Uit zowel de simulaties als de experimenten blijkt dat het licht een aantal keren heen en 
weer gekaatst moet worden tussen de laser-diode en de spiegel alvorens de laser van kleur 
wisselt. Het aantal keren hangt af van het verschil in de hoeveelheid teruggezonden licht 
voor de twee kleuren. 

Door experimenten uit te voeren met verschi11ende afstanden tussen de spiegel en de 
laser-diode, en vervolgens de meetresultaten te extrapoleren naar een oneindig kleine af
stand, kunnen we een schatting maken van de schakelsnelheid voor een geminiaturiseerd 
neuraal netwerk. Het blijkt dat er een schakelvertraging optreedt van enkele nanosecon
den. Deze vertraging wordt deels veroorzaakt doordat het aantal ladingdragers tijdens 
het schakelen verandert. Uit simulaties blijkt dat een andere oorzaak van deze vertraging 
niet gemakkelijk voorkomen kan worden. Het is dan ook nog niet zeker of de snelheid 
van het laser neurale netwerk voldoende zal zijn voor de beoogde toepassing in optische 
telecommunicatie. 

Het onderzoek naar de schakelsnelheid van het laser neurale netwerk wordt beschreven 
in Hoofdstuk 5. 

Een Alternatief Optisch Neuron 
In het laser neuraal netwerk zoals dat in de Hoofdstukken 1 tlm 5 van dit proefschrift 
wordt beschreven, is de invoer geïmplementeerd door de hoeveelheid weerkaatst licht 
te regelen. Dit betekent dat de informatieoverdracht niet plaatsvindt via een hoeveelheid 
licht maar via een hoeveelheid lichtverzwakking. Om dit optische neurale netwerk bruik
baar te maken in toepassingen waar informatie gerepresenteerd wordt door een hoeveel
heid licht, zal er een conversie nodig zijn van een hoeveelheid licht naar een hoeveelheid 
lichtverzwakking. 

Als een alternatief op deze werkwijze presenteren we in Hoofdstuk 6 een geheel optisch 
neuron waarbij de hoeveelheid licht de invoer vertegenwoordigt. Weer maken we gebruik 
van een laser-diode. Deze is, door toevoeging van gecontroleerde optische terugkoppe
ling, zó ingesteld dat hij slechts licht kan uitzenden van twee kleuren. 

Wanneer de laser licht uitzendt van de ene kleur kan hij door het instraJen van licht met 
een andere kleur gedwongen worden om deze kleur uit te gaan zenden. Daartoe moet de 
hoeveelheid ingestraald licht boven een bepaalde drempel komen. De laser zal dan geen 
licht meer uitzenden van zijn oorspronkelijke kleur. Deze drempelfunctie kan gebruikt 
worden om een neuron te definiëren door één van de kleuren te kiezen als de uitvoer van 
het neuron. 
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Dit principe is theoretisch geverifieerd door een model van de laser-diode te gebruiken. 
In een experimentele opstelling is de werking van dit geheel optische neuron voor het 
eerst aangetoond. 

Zelf Pulserend Gedrag en Kleur Overspraak 

Tijdens het meten van de snelheid van het laser neurale netwerk zijn enkele interessante 
fenomenen waargenomen. Een van deze fenomenen is het vanzelf aan- en uitgaan van 
de laser-diode dat we zelf pulserend gedrag noemen. Op willekeurige tijdstippen stopt de 
laser met het uitzenden van licht om na enige microseconden, wederom willekeurig, weer 
te beginnen. 

We verklaren dit merkwaardige gedrag door een subtiel samenspel van temperatuur
schommelingen en veranderingen in de hoeveelheid ladingdragers. Deze schommelingen 
hebben tot gevolg dat de brekingsindex van het laser-diode materiaal varieert. Dit heeft 
weer tot gevolg dat de kleuren waarop de laser kan uitzenden veranderen. Als het terug
gekaatste licht slechts één kleur bevat kan het gebeuren dat de laser-diode instabiel wordt 
en er zelf pulserend gedrag optreedt. 

Het andere waargenomen fenomeen is hier nauw mee verbonden. In een opstelling 
waarin een laser-diode twee kleuren kan uitzenden waarvan er één aan- en uitgeschakeld 
wordt, treedt overspraak op tussen de twee kleuren. Als de laser-diode gedwongen wordt 
te stoppen met het uitzenden van de ene kleur, verandert zijn temperatuur. Dit heeft tot 
gevolg dat de kleuren die de laser kan uitzenden verschuiven in het kleurenspectrum. Op 
deze manier wordt ook de hoeveelheid licht van de andere kleur die de laser kan uitzenden 
beïnvloed. 

De waargenomen fenomenen worden beschreven en verklaard in Hoofdstuk 7. Het 
proefschrift wordt afgesloten in Hoofdstuk 8 waarin de conclusies van het onderzoek 
samengevat worden en we suggesties aandragen voor verder onderzoek. 
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Stellingen 
behorende bij het proefschrift 

Optical Neural Network based on Laser Diode Longitudinal Modes 

door Evert C. Mos 

1. Het is mogelijk om met behulp van één laserdiode een optisch neuraal 
netwerk te construeren met meerdere neuronen. 

Dit proefschrift 

2. Op een laserdiode kun je rekenen. 
Dit proefvchrift. 

3. Door het combineren van injection seeding en optische terugkoppeling 
is het mogelijk een geheel optisch neuron te construeren waarbij zowel 
de invoer- als de uitvoersignalen in het optische vermogensdomein ge
definieerd zijn. 

Dit proefschrift, hfJojdstuk 6. 

4. Met de verwachting dat het verwezenlijken van neurale netwerken met 
behulp van optische methoden pas tot toepassingen zal leiden bij 1000 
of meer verbindingen per neuron wordt voorbijgegaan aan toepassings
gebieden als optische telecommunicatie waarin de te bewerken signalen 
in het optische domein worden aangeboden. 

S. Jutamulia en F.TS. Yu, "Overview ojhybrid optica/ neuralnetworks," 
Opties and Laser Technology, Vol. 28, pp. 59-72, 1996 

5. Golflengte selectieve optische terugkoppeling bij een laserdiode kan tot 
merkwaardig gedrag aanleiding geven. 

Dit proefschrift, hoofdstuk 7. 

6. hOew ElhEtmEnsEiiJkbRelnaLsnEuraAlnEtweRko VerhEtaLgemEenvo 
ORtReFfelljkiNstAatispAtronENzoaLswOoRdeNenzlnNenteherKenne 
nluKtdiTeensTukmAKkelljkeRalsJeHetNietTeZeerTegenwerkt. 

7. Aangezien de meeste platenspelers al lang verdreven zijn door de CD
speler mag het merkwaardig heten dat "grammofoonnaald" wel en 
"laserdiode" niet in het woordenboek voorkomt. 

Van Dale groot woordenboek der Nederlandse taal, n•editie. 



8. Het ongegeneerd gebruiken van ontwerpen uit vroeger tijden, ook wel 
retro-design genoemd, spreekt niet erg voor de fantasie van de ontwer
pers in kwestie maar verfraait over het algemeen wel het straatbeeld. 

Zie bijvoorbeeld de wijk Dierdonk in Helmond of de Rover 75. 

9. Met de recentelijke hausse in plannen voor woonwijken om het water 
en (recreatie) meren en plassen in landbouwgebieden is de uitpoldering 
van Nederland begonnen. 

10. Goede architectuur lekt. 
Zie bijvoorbeeld het Rietveld-Schröder huis, het Groninger Museum of 
dè nieuwe Reichstag. 

11. Een beetje stelling haalt het NRC. 

12. Omdat gravel niet groeit is het interessanter om naar een tenniswedstrijd 
op gras te kijken. 


