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Asymptotics of subcoercive semigroups

on nilpotent Lie groups

Nick Dungey�� A�F�M� ter Elst�� Derek W� Robinson� and Adam Sikora�

Abstract

Let G be a nilpotent Lie group and H a pure m�th order subcoercive
operator constructed from a weighted basis of the Lie algebra g of G�
We construct asymptotic approximates G� and H� of G and H by
a scaling limit which ensures that g � g� as vector spaces and that

G� and H� are automatically scale invariant� We then compare the
asymptotic orbits of the semigroup S generated by H with those of
the corresponding semigroup S��� generated by H�� In the simplest

case� G � G�� we prove that on the spaces Lp�G� one has

lim
t��

kSt � S
���
t kp�p � �

for all p � 	
���� But if G �� G� then we show that the analogous

result fails for all p � 	
���� Nevertheless� on the spaces Lp�g� one has

lim
t��

kMf�St � S
���
t �kp�p � �

for all p � 	
��� where Mf denotes the operator of multiplication by
any bounded function which vanishes at in�nity�
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� Introduction

The local structure of subelliptic semigroups acting on Lie groups is now well understood
but many questions remain concerning the global behaviour� Our aim is to analyze the

asymptotic properties of the semigroup generated by a pure m�th order weighted subcoer�
cive operator H acting on a nilpotent group G� where m � �� Subcoercivity is here de�ned
in terms of a free group of which G is a factor group� Following Nagel� Ricci and Stein
	NRS� we construct asymptotic approximates G� and H� of G and H by a scaling limit�

The group G� and the operator H� are automatically homogeneous� i�e�� scale invariant�
We then compare the asymptotic orbits of the semigroup S generated by H in the left
regular representation of G and the corresponding semigroup S��� generated by H�� If
G � G� then the semigroups S and S��� can be compared on the spaces Lp�G� but even

if G �� G� one can still compare S and S��� by pulling back to the Lp�spaces over the Lie
algebras g and g� because these coincide as vector spaces� One of our principal results
is that the di�erence of the pulled back semigroups converges to zero uniformly on Lp as

t � � if� and only if� G � G�� The interest in this conclusion lies with the uniform
convergence� It follows from kernel bounds that each of the semigroups converges strongly
to zero as t � � and hence the di�erence obviously converges to zero� But the uniform
convergence is a much stronger statement about the comparability of the asymptotic orbits

of the two dynamical semigroups� Even if G �� G� the asymptotic orbits are uniformly
close locally� but not globally� More speci�cally� if the di�erence of the pulled back semi�
groups is multiplied with a bounded measurable function which vanishes at in�nity then
the product tends to zero uniformly as t�� on any Lp�space� In order to formulate our

results more precisely it is necessary to introduce some de�nitions and notation�

Let G be a connected� simply connected� d�dimensional nilpotent Lie group with Lie

algebra g and a�� � � � � ad� an algebraic basis of g� i�e�� a set of linearly independent elements
which together with there multi�commutators span g� Moreover� let w�� � � � � wd� � N be
weights associated with the di�erent directions in g� The algebraic basis with these weights
is called a weighted algebraic basis� For further details of these and subsequent de�nitions

we refer to 	ElR�� and 	ElR���
We need the following multi�index notation for commutators and products� If N � N

set

J�N� �
��
n��

f
� � � � � Ngn and J��N� �
��
n��

f
� � � � � Ngn �

Then for � � �i�� � � � � in� � J�d�� set the unweighted length j�j � n� the weighted length
k�k � wi� � � � �� win and� if n � 
� introduce the multi�commutator

a��� � 	ai�� 	� � � 	ain��� ain� � � ���

of weighted order k�k� Next for each k � N let

g�k� � spanfa��� � � � J��d��� k�k � kg �
�

be the ideal spanned by all multi�commutators of order at least k� Since g is nilpotent�
there exists a unique r � N such that g�r� �� f�g� but g�r��� � f�g� We call r the weighted

rank of the Lie algebra g given the weighted algebraic basis a�� � � � � ad��






For k � N let ak be a vector subspace of g such that g�k� � g�k��� � ak and hence
g �

Lr
k�� ak� Next for all t � � introduce the linear maps �t� g� g such that �t�a� � tk a

for all a � ak and k � N� Moreover� de�ne the Lie bracket 	 	 � 	 �t� g
 g� g by

	a� b�t � ���t 	�t�a�� �t�b�� �

Then the Lie bracket 	 	 � 	 �� � limt��	 	 � 	 �t exists and

	ak� al�� � ak�l

for all k� l � N� The Lie algebra �g� 	 	 � 	 ��� is homogeneous with respect to the group of di�
lations used in the construction and the graded subspaces ak correspond to the eigenspaces
of the dilations� We use the shorthand notation g��a� for �g� 	 	 � 	 ��� and call g��a� an
asymptotic Lie algebra� The de�nition of g��a� clearly depends on the choice of the

family a of subspaces ak but di�erent choices lead to isomorphic asymptotic Lie algebras�
If the particular choice of g��a� within the set of asymptotic Lie algebras is not signi�cant
we simplify the notation by writing g��

Next let b�� � � � � bd be a vector space basis for g passing through a�� � � � � ar and with

order respecting the order of the ak� i�e�� if dkl � dimal then b�� � � � � bk� is a basis of a��
bdk���� � � � � bdk��k� a basis of a	 etc�� Assign weights v�� � � � � vd where vi � k if bi � ak� Then�
by de�nition�

	bi� bj�� � �vi�vj �	bi� bj��

for all i� j � f
� � � � � dg� where �k� g� ak is the projection onto the k�th component of the
decomposition g �

L�
l�� al� We de�ne the modulus j 	 j on g by

��� dX
i��

�i bi
���	v � dX

i��

j�ij
	v�vi �

where v � lcm�
� � � � � r�� Finally� if b �
Pd

i�� �i bi � g and � � �i�� � � � � in� � J�d� set

b� � �i� � � � �in
Let U be a continuous representation of G in a Banach space X � If a � g let dU�a� be

the generator of the one�parameter group t �� U�exp��ta��� Then set Ai � dU�ai� for i �
f
� � � � � d�g and use the multi�index notation A� � Ai� � � � Ain for � � �i�� � � � � in� � J�d���

For each n � N� set X �
n � X �

n�U� �
T
k�k�nD�A�� with norm

kxk�n � kxk�U�n � max
��J�d��
k�k�n

kA�xk �

Further set X� �
T�
n�� X

�
n� The left regular representation of G on a function space is de�

noted by L� or LG� and the spaces and norms associated with the left regular representation
on Lp�G� are denoted by L�p
n and k 	 k�p
n� etc��

Let m � N� Then a form of order m is a function C�J�d�� � C such that C��� � �
for all � � J�d�� with k�k � m and� moreover� there exists an � with k�k � m and
C��� �� �� The form is called homogeneous of order m if� in addition� C��� � � for all �

with k�k 	 m�
The adjoint form Cy is de�ned by Cy��� � C���� where �� is the reverse of �� i�e�� if

� � �i�� � � � � in� then �� � �in� � � � � i�� and the bar denotes complex conjugation� Moreover�
C is called self�adjoint if C � Cy� In the sequel we write c� � C����

�



Given the representation U we consider the m�th order operator

dU�C� �
X

��J�d��

c�A
�

with domainD�dU�C�� � X �
m� The formC is called a G�weighted subcoercive form and the

operator dU�C� a G�weighted subcoercive operator if �rst m � �wiN for all i � f
� � � � � d�g
and secondly there exist 
 � � and � � R such that

Re��� dLG�C��� � 
 �k�k�	
m�	�
	 � � k�k		

for all � � C�
c �G�� i�e�� the operator dLG�C� satis�es a G�arding inequality on L	�G�� �For

many equivalent descriptions of G�weighted subcoercive forms we refer to 	ElR��� Sections �

and 
��� It then follows from Theorem 
�
 of 	ElR�� that the closure dU�C� generates a
holomorphic semigroup on X � Moreover� this semigroup has a smooth� rapidly decreasing
kernel�

Unfortunately� we need a slightly stronger condition on the coe�cients of the opera�

tor� Let �g � g�d�� r� w�� � � � � wd�� be the weighted nilpotent Lie algebra with d� generators
�a�� � � � � �ad� and weights w�� � � � � wd� which is free of step r� i�e�� it is equal to the quotient
G
I where G is the free Lie algebra in d� generators� with the i�th generator given the
weight wi� and I is the ideal spanned by the multi�commutators of weighted order strictly

larger than r� �See also 	NRS� and 	ElR��� Example ����� Let eG be the connected� sim�
ply connected� Lie group with Lie algebra �g� Throughout the sequel we assume that C
is a homogeneous m�th order eG�weighted subcoercive form� Then it follows from 	ElR���
Proposition 

��� that C is also a G�weighted subcoercive form� Let K be the kernel of the

semigroup S generated by the closure of the operator H � dLG�C�� Then K is a smooth
rapidly decreasing function on G�

Next we need analogous concepts associated with the asymptotic Lie algebra g���

g��a��� Let G� be the connected� simply connected� Lie group with Lie algebra g��
De�ne H� by

H� �
X

��J�d��

c� dLG��a
��

where dLG��a
�� � dLG� �a�� � � � dLG��an� if � � �i�� � � � � in� and ai � �wi�ai� for all

i � f
� � � � � d�g� The domain of H� equals D�H�� �
T
k�k�mD�dLG� �a���� Since the ai do

not necessarily form an algebraic basis of g�� e�g�� some of the ai could be zero� one has to
exercise some caution� We shall show in Section � that the operator H� is a G��weighted
subcoercive operator with respect to a di�erent form and weighted algebraic basis in g��

It then follows from 	ElR�� that the closure of H� generates a holomorphic semigroup S���

with a smooth kernel K��� on G��
The �rst theorem compares the kernels K and K��� together with their subelliptic

derivatives� For i � f
� � � � � d�g set A
���
i � dLG� �ai� � dLG� ��wi�ai��� Moreover� set

D �
Pd

i�� vi�

Theorem ��� For all � � J�d�� there exist c� � � � such that����A�Kt��exp a�� �A
����

K
���
t ��exp� a�

��� 
 c t��D�k�k��mt���me���jaj
mt������m���

uniformly for all t � 
 and a � g�

�



Here exp�� g� � G� is the exponential map and the estimates are valid for all possible
choices of g�� Moreover� we assume that the Haar measure on G and G� is normalized

such that it is the image measure of the Lebesgue measure on g � g� under exp and
exp�� respectively� For a special class of g��a� �see Section �� Nagel�Ricci�Stein 	NRS�

showed that a �� �A
����

K
���
t ��exp� a� is the �rst term in the asymptotic expansion of

a �� �A�Kt��exp a� in powers of t���m� Theorem 
�
 establishes that the di�erence of these
kernels is bounded by a Gaussian times t���m for all large t�

If g � g� this immediately implies that the semigroup St converges uniformly to S����

Theorem ��� If for a particular choice of a one has g � g��a� as Lie algebras then the

semigroup S��� corresponding to this choice satis�es limt�� kSt � S
���
t kp�p � � for all

p � 	
���� More speci�cally� there exists a c � � such that

kSt � S
���
t kp�p 
 c t���m

uniformly for all t � 
 and p � 	
����

We next consider the general case in which the Lie algebras g and g��a� are distinct�

Since g � g��a� as vector spaces for all possible choices of a one can use the exponential

maps to compare S and S���� De�ne bSt� bS���
t �Lp�g� � Lp�g� for each t � � and p � 	
���

by

� bSt���a� � �
St�� � log�

�
�exp a�

� bS���
t ���a� �

�
S
���
t �� � log��

�
�exp� a�

for all � � Lp�g�� Here log and log� are the inverse of exp and exp�� respectively�

Theorem ��� If g �� g� as Lie algebras then there is a b � � such that

lim inf
t��

k bSt � bS���
t kp�p � b

for all p � 	
���� Moreover� if C is self�adjoint� or if p � �� one may choose b � 
�

It follows immediately from these results that

lim
t��

k bSt � bS���
t kp�p � �

if� and only if� g � g��a� as Lie algebras� Nevertheless the uniform convergence of S
to S��� is very nearly true� For any bounded measurable function f � g � C de�ne the

multiplication operator Mf on Lp�g� by

�Mf���a� � f�a���a� �

We say that f vanishes at in�nity if for each � � � there exists a compact set � � g such

that jf�a�j 	 � for all a � gn��

Theorem ��� If f � g � C is a bounded measurable function which vanishes at in�nity

then

lim
t��

kMf� bSt � bS���
t �kp�p � �

uniformly for all p � 	
����

�



The asymptotic estimates on the semigroup S will be deduced from estimates on the
kernel K� The initial kernel estimates are derived from an asymptotic expansion of K� in

terms of the kernel K��� of S���� given by Nagel� Ricci and Stein 	NRS�� Their procedure
is based on comparison of G and G� with the larger free group eG� A similar method was
used in 	ERS� to obtain Gaussian bounds on K and its derivatives in the unweighted case
via transference� The Nagel�Ricci�Stein analysis uses a particular type of asymptotic Lie

algebra which has an extra form of homogeneity� Analysis of the general situation requires
examination of the isomorphism relating the various asymptotic algebras� Combination of
these techniques establish Theorem 
�
� The estimates of Theorem 
��� when g �� g��a�� go

beyond simple bounds on the di�erence of the kernels and require more detailed analysis
of the algebraic structure� The relative di�culty of the two cases is analogous to the
complexity of analysis of elliptic operators with variable coe�cients in contrast to operators
with constant coe�cients�

In Section � we introduce the algebraic concepts required and recall various essential
results from 	NRS�� In Section � we give the full de�nition of the operator H� and derive
the estimates on the associated semigroup kernels� Then in Section � we give the detailed
proofs of Theorems 
�� and 
��� We also discuss some similarities with the limit t� ��

� Algebraic structure

In this section we �rst examine a special choice of the ak which gives an intrinsic description

of g��a� particularly suited to the derivation of asymptotic Gaussian kernel bounds� The
de�nition is given in x� of Nagel� Ricci and Stein 	NRS�� We repeat their construction and
relate these special algebras to the general asymptotic Lie algebras� For the convenience
of the reader we give new proofs for some of their results� Subsequently we discuss some

properties of general asymptotic Lie algebras� their relation with the special Nagel�Ricci�
Stein class and the possible equality g � g��a� which is signi�cant for the asymptotic
behaviour of the subcoercive semigroups�

Set �d � dim�g� Let ���t�t�� be the canonical dilations on the homogeneous Lie algebra
�g and for all k � N set �ak � f�a � �g � ��t��a� � tk �a for all t � �g � spanf�a��� � k�k � kg�

Then if �g�k� are de�ned by �
� relative to �g one has �g�k� � �g�k��� � �ak for all k � N� Let
��k� �g � �ak be the projection� If �� �g � g is the Lie algebra homomorphism such that

���ai� � ai for all i � f
� � � � � d�g then it is not hard to see that

g�k� � ���g�k�� ���

for all k � f
� � � � � rg� Let i � ������ and de�ne

i� �
rM

k��

��k�i � �g�k�� �

Since the restriction ��k
���
i��g�k�

of ��k has kernel i��g�k��� and image ��k�i��g�k�� it follows that

�



dim ��k�i � �g�k�� � dim�i � �g�k��� dim�i � �g�k���� for all k � N� Therefore

dim i� �
rX

k��

dim�k�i � �g�k��

�
rX

k��

dim�i � �g�k��� dim�i � �g�k���� � dim�i � �g���� � dim i � ���

Lemma ��� �	NRS�� The space i� is an ideal in �g�

Proof Let j� k � f
� � � � � rg� w � �aj and v � i � �g�k�� Then 	w� ��kv� � i� by the
following argument� Obviously 	w� ��kv� � �a�j�k� and 	w� v� � i � �g�j�k� since i is an ideal
in �g� Moreover� since v � ��kv � �g�k��� one has 	w� v� � 	w� ��kv� � �g�j�k���� Therefore

	w� ��kv� � ��j�k	w� ��kv� � ��j�k	w� v� � ��j�k�i � �g�j�k�� � i�� �

Lemma ��� �	NRS�� If k � N then ���k�i � �g�k�� � g�k����

Proof Let v � i � �g�k�� Since �v � � and v � ��kv � �g�k��� it follows from ��� that
���kv � ����kv � v� � g�k���� �

Next� for all k � f
� � � � � rg let �hk be a vector subspace of �ak such that

�ak � �hk � ��k�i � �g�k��

and set �h �
Lr

k��
�hk� Then dim�h � d by ���� since obviously

�g � �h��i� �

The second statement of the next lemma states that the same decomposition is also valid

for the ideal i instead of i��

Lemma ��� �	NRS��

I� The restriction �j�h�
�h� g is a bijection�

II� �g � �h� i�

III� g�k� �
Lr

l�k ���hl� for all k � f
� � � � � rg�

Proof We �rst show that

g�k� � ��
rM
l�k

�hl� ���

for all k � N� This equality is trivial if k � r � 
� Moreover� ��
Lr

l�k
�hl� � ���g�k�� � g�k�

for all k � N� Now let k � f
� � � � � rg and suppose that g�k��� � ��
Lr

l�k��
�hl�� Since

�g�k� � �hk � ��k�i � �g�k�� � �g�k��� it follows from Lemma ��� and the induction hypothesis
that

g�k� � ���g�k�� � ���hk� � ����k�i � �g�k��� � ���g�k����

� ���hk� � g�k��� � g�k���

� ���hk� � ��
rM

l�k��

�hl� � ��
rM

l�k

�hl�

�



and ��� follows by induction� Setting k � 
 in ��� gives ���h� � g� Since dim�h � dim�g�
dim i� � dim�g� dim i � dimg� Statement I follows�

Since � is injective on �h and i � ker� one has �h � i � f�g� Therefore Statement II

follows from a dimension consideration�
Finally� the injectivity of � on �h together with ��� yield Statement III� �

Now the appropriate choice of the ak is evident� Set a
�I�
k � ���hk� for each k � f
� � � � � rg�

Then g�k� �
Lr

l�k a
�I�
l � De�ne ��I�t � 	 	 � 	 ��I�t � 	 	 � 	 ��I�� and g��a�I�� with respect to the family

of subspaces a�I�k � We call g��a�I�� an ideal asymptotic Lie algebra�

De�ne the linear map ��� �g� g��a�I�� by

��j�h � �j�h and ��ji� � � �

Next introduce the projections �
�I�
k � g� a

�I�
k for all k � f
� � � � � rg�

One has the following connection between � and ���

Lemma ��� If k � f
� � � � � rg and �a � �ak then �
�I�
k ��a � ���a�

Proof If v � �hk then �v � ���hk� � a
�I�
k � Therefore ��I�

k �v � �v � ��v� Alternatively�

if v � ��k�i � �g�k�� then �v � g�k��� by Lemma ���� Hence ��I�
k �v � � � ��v� Now the

lemma follows by linearity� �

Proposition ��� �	NRS�� The map �� is a Lie algebra homomorphism from �g onto

g��a�I��� Hence each g��a�I�� is isomorphic to �g
i� as Lie algebras�

Proof Let j� k � f
� � � � � rg� v � �aj and w � �ak� Then it follows from Lemma ��� that

	��v���w�
�I�
� � 	��I�

j �v� ��I�
k �w��I�� � �

�I�
j�k	�

�I�
j �v� ��I�

k �w� � �
�I�
j�k	�v��w� �

where the last equality follows because 	�
�I�
j �v� �

�I�
k �w�� 	�v��w� � g�j�k���� Since � is a

homomorphism it follows that

	��v���w�
�I�
� � �

�I�
j�k��	v�w�� � ���	v�w��

by another application of Lemma ���� Thus �� is a homomorphism from �g to g��a�I���
But ����g� � ����h� � ���h� � g by Lemma ����I� So �� is onto� The second statement is

easy� �

The next result establishes that there are asymptotic Lie algebras which are not ideal�
The ideal asymptotic algebras are characterized by additional homogeneity properties�

Lemma ��	 Let g��a� be an asymptotic Lie algebra� The following conditions are equiv�

alent�

I� g��a� is an ideal asymptotic Lie algebra�

II� ak � spanfa��� � � � J�d��� k�k � kg for all k � N�

�



Proof First note that

���ak� � spanfa��� � � � J�d��� k�k � kg

for all k � N� But a�I�k � ���hk� � ���ak� for all k and hence Condition I impliesCondition II�
Next assume Condition II holds and let k � N� Then ak � ���ak� by assumption�

Hence there exists a subspace h
�
k � �ak such that dimh

�
k � dimak and ��h�k� � ak� Then

the restriction �j
h
�
k
is injective� So if we can prove that h

�
k � ��k�i � �g�k�� � f�g then

h
�
k � ��k�i � �g�k�� � �ak and g��a� is an ideal asymptotic Lie algebra�
Let k � N and a � h

�
k � ��k�i � �g�k��� Then ��a� � ��h�k� � ak� Moreover� ��a� �

���k�i � �g�k�� � g�k��� by Lemma ���� Hence ��a� � ak � g�k��� � f�g� Since �j
h
�
k
is

injective one deduces that a � �� So h
�
k � ��k�i � �g�k�� � f�g� �

The general asymptotic Lie algebra g��a� constructed in the introduction and the ideal
asymptotic Lie algebra g��a�I�� are automatically isomorphic� In particular the linear map
�� g��a�I�� � g��a� de�ned such that

��a� � �k�a�

for all k � N and a � a
�I�
k is an explicit isomorphism� This is established in the next

lemma�
Now introduce a�I�i � ��I�

wi
ai for all i � f
� � � � � d�g and de�ne a linear map �� g � g to

be super�homogeneous if ��g�k�� � g�k��� for all k � N�

Lemma ��


I� The map � is a Lie algebra isomorphism�

II� The map a �� ��a�� a is super�homogeneous�

III� �����ai� � ��a
�I�
i � � ai for all i � f
� � � � � d�g�

Proof For the super�homogeneity� it su�ces to show that ��� I��a
�I�
k � � g�k��� for each

k � N� If k � N and v � a
�I�
k then ��v� � v � �k�v� � v � g�k��� since v � g�k�� This

proves Statement II� Moreover� � is surjective�
Let j� k � f
� � � � � rg� v � a

�I�
j and w � a

�I�
k � Then

	��v����w��� � 	�jv� �kw�� � �j�k�	�jv� �kw�� � �j�k�	v�w��

where the last equality holds because 	v�w� � 	�jv� �kw� � g�j�k���� On the other hand�

	v�w��I�� � a
�I�
j�k and therefore

��	v�w��I�� � � �j�k�	v�w�
�I�
� � � �j�k�	v�w��

using the fact that 	v�w�� 	v�w��I�� � g�j�k���� This shows that � is a homomorphism from
g��a�I�� to g��a�� Since � is surjective it follows that � is an isomorphism�

Next we prove Statement III� The �rst equality follows from Lemma ���� Let i �
f
� � � � � d�g� Since a�I�i � a�I�wi

and ai � a
�I�
i � ai � ��I�

wi
ai � g�wi��� one deduces that

��a�I�i � � �wi�a
�I�
i � � �wi�ai� � ai

�



and the second equality of Statement III is proved� �

The ai used in the de�nition of the limit operator H� do not form an algebraic basis as
they are not necessarily independent� This problem can be circumvented as follows� Since
ai �

Sr
k�� ak for all i � f
� � � � � d�g there exist d�� � f
� � � � � d�g and linearly independent

a
���
� � � � � � a

���
d�� �

Sr
k�� ak such that

spanfa
���
� � � � � � a

���
d�� g � spanfa�� � � � � ad�g �

For all i � f
� � � � � d��g set w
���
i � vk if a

���
i � ak� Then �t�a

���
i � � tw

���
i a

���
i for all t � ��

Lemma ��� a
���
� � � � � � a

���
d�� is an algebraic basis for g��a��

Proof Let h be the smallest Lie subalgebra of g��a� which contains a
���
� � � � � � a

���
d�� � Then

�����ai� � ai � h for all i � f
� � � � � d�g and hence g��a� � �����g� � h� Therefore

a
���
� � � � � � a

���
d�� is a weighted algebraic basis for g��a� with weights w���

� � � � � � w
���
d�� � �

Finally we make three remarks about the possible identi�cation g��a� � g of Lie
algebras�

Lemma ��� Let a � �ak� be a family of subspaces of g such that g�k� � g�k��� � ak for

k � f
� � � � � rg� The following are equivalent�

I� The subspaces a are a graded family of g� i�e�� 	aj� ak� � aj�k for all j� k � N�

II� g � g��a� as Lie algebras�

Proof It follows by construction that a is a graded family of g��a� and hence Condition II
implies Condition I� Conversely the grading property of a implies 	a� b�t � 	a� b� for all
a� b � g and all t � �� Hence 	a� b�� � 	a� b� for all a� b � g and Condition II is valid� �

There are� however� examples for which no choice of a ensures g � g��a� as Lie algebras�

Example ���
 Let g be the three�dimensional Heisenberg algebra with basis a�� a	� a�
satisfying 	a�� a	� � a� and all other commutators zero� Consider the algebraic basis
a�� a	� a� with weights 
� 
� �� Then g��� � g and g�	� � g��� � spanfa�g� Hence for
any possible choice of a there exist �� 
 � R such that

a� � spanfa� � �a�� a	 � 
a�g �

a	 � � and a� � spanfa�g� Then 	a�� a�� �� a	 so no choice of a is graded� Thus there is no
choice of a such that g � g��a� as Lie algebras� Another way of verifying this is by the

observation that the g��a� are Abelian�

Even if one can choose a such that g � g��a� as Lie algebras it is not necessarily the
case that g��a� is an ideal asymptotic Lie algebra�






Example ���� Let g be the Lie algebra of dimension �ve with basis b�� � � � � b
 satisfying
	b�� b	� � b�� 	b�� b�� � b� and all other commutators zero� Consider the algebraic basis

a� � b�� a	 � b	 and a� � b� � b
 with all weights equal to one� Then g��� � g� g�	� �
spanfb�� b�g� g��� � spanfb�g and g�k� � f�g for k � �� Choosing a� � spanfb�� b	� b
g�
a	 � spanfb�g� a� � spanfb�g and ak � f�g for k � � one has 	ak� al� � ak�l for all k� l � N

and hence g � g��a� as Lie algebras� But g��a� is not an ideal asymptotic Lie algebra

because a� �� spanfa��� � j�j � 
g� i�e�� the criterion of Lemma ��� is not satis�ed�
Now let fakg satisfy the equivalent conditions of Lemma ��� and consider the associated

asymptotic Lie algebra g��a�� Since a� � spanfa�� a	� a�g and dima� � � one must have

a� � spanfa�� a	� a�g� Then

	a�� a��� � �	�	a�� a��� � �	�b�� �

But b� � g��� so �	�b�� � �� Hence

	a�� a��� � � �� b� � 	a�� a��

and consequently g �� g��a� as Lie algebras�

� Kernel estimates

In this section we derive the asymptotic estimates on the semigroup kernels� i�e�� we es�
tablish Theorem 
�
� First� however� we have to give a proper de�nition of the operator
H� which implies that the semigroup S��� and kernel K��� exist� We use the notation
of Sections 
 and �� Let G�� G�I�

� and eG be the connected� simply connected� Lie groups

with Lie algebras g��a�� g��a�I�� and �g� We denote the exponential maps by exp�� exp�I��
and gexp� respectively� with similar notation for the logarithms�

Introduce the unitary representation U of eG in the Hilbert space L	�G�� by U�gexp �a� �
LG��exp� ����a�� Note that dU��ai� � dLG� �ai� for all i � f
� � � � � d�g by Lemma ����III�

Therefore H� � dU�C�� Let d��� a���
i and w

���
i be as in Section �� Then a

���
� � � � � � a

���
d�� is

a weighted algebraic basis for g��a� by Lemma ���� Hence �L	�G�����U� � L	
��G���

By the construction of the a���
i there exist c���

� � C such that

dU�C�� �
X

��J�d���
k�k

w����m

c
���
� A���� �

for all � � L	
��G��� where A
���
i � dLG� �a���

i � and k�kw��� � w
���
i�

� � � � � w
���
i�

if

� � �i�� � � � � in� � J�d���� De�ne the m�th order form C����J�d��� � C by C������ � c
���
� �

Then dU�C�� � dLG� �C����� for all � � L	
��G��� Since U is a unitary representation

it follows from 	ElR��� Theorem 
���III� that there exist 
� � � � such that

Re��� dLG��C
������ � Re��� dU�C��� � 
 �k�k�U�m�	�

	 � � k�k		

for all � � L	
��G��� But by inspection one deduces that �L	�G����m�	�U� � L�	
m�	�G���

where the last space is with respect to the weighted algebraic basis a���
� � � � � � a

���
d�� � More�

over� there exists a c � � such that

c k�k�LG� �m�	 
 k�k�U 
m�	


�



for all � � L�	
m�	�G��� Hence

Re��� dLG��C
������ � 
 c	 �k�k�LG� �m�	�

	 � � k�k		

for all � � L	
��G�� and C��� is a G��weighted subcoercive form� Thus it follows from
	ElR�� that H� generates a holomorphic semigroup S��� and that S��� has a smooth

kernel K��� on G�� De�ne in a similar manner the operator

H�I�
� �

X
��J�d��

c� dLG
�I�
�

�a�I��� �

the semigroup S�I��� and the kernel K�I��� on G�I�
� �

At this point the asymptotic operators and kernels are well�de�ned and we start with
the proof of the Theorem 
�
� This is based on the splitting����A�Kt��expa�� �A

����
K

���
t ��exp� a�

���


����A�Kt��exp a�� �A

�I����
K

�I���
t ��exp�I�� a�

���
�
����A�I����

K
�I���
t ��exp�I�� a�� �A

����
K

���
t ��exp� a�

��� � ���

where A
�I���
i � dL

G
�I�
�

�a
�I�
i � for all i � f
� � � � � d�g� The two terms are estimated separately�

The estimate on the �rst term establishes the theorem for an ideal asymptotic Lie algebra�
Its proof is based on a lemma which can be extracted from 	NRS�� The bounds on the
second term are a consequence of the super�homogeneity of ��

Let fH � dLeG�C� and let fK be the kernel of the semigroup eS generated by the closure offH� Let �b�� � � � ��bd be a basis for �h passing through �h�� � � � � �hr with order respecting the order
of the �hk� Set �dk � dim i � �g�k� for each k � f
� � � � � r � 
g� Since i � i � �g��� there exists a
basis  bd��� � � � � b �d for i such that  b �d� �dk��

� � � � � b �d is a basis for i � �g�k� for all k � f
� � � � � rg�

If �d � �dk � 
 
 i 
 �d � �dk��� i�e�� if  bi � �i � �g�k��n�i � �g�k���� de�ne �bi � ��k bi� Then�

 bi � �bi � �g�k��� � ���

Note that �bi �� �� As a result �bd��� � � � ��b �d are independent and form a basis for i�� Hence
�b�� � � � ��bd� � � � ��b �d is a basis for �g� Set �vi � k if �bi � �ak� Since dim�hk � dima

�I�
k � dimak for

all k it follows from the ordering of the basis bi and the fact that the weights of bi depend
only on the dimg�k� that �vi � vi for all i � f
� � � � � dg� De�ne the modulus j 	 j on �g by

��� �dX
i��

�i �bi
���	v � �dX

i��

j�ij
	v��vi �

Moreover� set fD �
P �d

i�� �vi� Since
fH is a homogeneous operator on the homogeneous groupeG it follows from 	ElR��� Proposition ���� that for all � � J� �d� there exist c� � � � such

that
j� eB�fKt��gexp �a�j 
 c t�

eD�mt�k�k�v�me���j�aj
mt������m��� ���

uniformly for all t � � and �a � �g� where eBi � dLeG��bi� and k�k�v � �vi� � � � � � �vin if

� � �i�� � � � � in�� Set b
�I�
i � ���bi� for all i � f
� � � � � dg� Then b

�I�
� � � � � � b

�I�
d is a basis for g�I�� �







Using the bases b�I�� � � � � � b
�I�
d and �b�� � � � ��b �d we �x the Lebesgue measure on the vector

spaces g � g��a�I�� and �g� Then the Haar measures on G� G�I�
� and eG are normalized such

that the exponential maps are measure preserving� Note that the restrictions of the maps
� and �� to �h have Jacobian equal to one� De�ne the linear map �� �g� �g such that

���bi� �

��
�

� if i � f
� � � � � dg �

 bi � �bi if i � fd � 
� � � � � �dg �

Then i � f�b����b� � �b � i�g� Moreover� the map � is super�homogeneous� by ����
The basic lemma relates the kernels fK� K and K�I����

Lemma ��� If t � � then

�A�Kt��exp��a� �
Z
i
d�b � eA�fKt��gexp��a��b��

�
Z
i�

db � eA�fKt��gexp��a��b����b��� ���

and

�A
�I����

K
�I���
t ��exp�I�� ���a� �

Z
i�

d�b � eA�fKt��gexp��a��b�� �
�

for all �a � �h� t � � and � � J�d���

Proof The result for the kernels� without derivatives� is stated in x
 of 	NRS� but it is
not explicitly proved although its proof is implicit in the discussion of x�� Note that the
integrals in the lemma exist by the Gaussian bounds ����

We only prove ���� the proof of �
� is similar� It follows as in 	ERS�� Lemma ���� that

Z
G
dg ��g� �A�Kt��g� �

Z
eG d�g ��exp�glog �g� � eA�fKt���g�

for all � � Cc�G�� � � J�d�� and t � �� Hence

Z
�h
d�a����a� �A�Kt��exp��a� �

Z
�g
d�a����a� � eA�fKt��gexp �a�

�
Z
�g
d�a�����a����a��� � eA�fKt��gexp��a����a���

for all � � Cc�g�� t � � and � � J�d��� since � is super�homogeneous� Therefore

Z
�h
d�a����a� �A�Kt��exp��a�

�
Z
�h
d�a
Z
i�

d�b �����a��b����a��b��� � eA�fKt��gexp��a��b����a��b���

�
Z
�h
d�a
Z
i�

d�b ����a� � eA�fKt��gexp��a��b����b���

because �b � ���a � �b� � �b � ���b� � i for all �a � �h and �b � i�� Now the statement of the
lemma follows easily� �


�



For all i � f
� � � � � �dg and � � C���g� de�ne Di� � C��g� by �Di����a� �
d
dt
���a� t�bi�

���
t��

�

Moreover� if �a �
P �d

i�� �i
�bi and � � �i�� � � � � in� � J� �d� de�ne �a� � �i� � � � �in � �Although we

also use the notation �a� for an element in the complex universal enveloping algebra� the
meaning will be clear from the context�� Note that j�a�j 
 j�ajk�k�v�

To bound the �rst term in ��� we need one more lemma�

Lemma ��� For all � � J�d�� there exist c� � � � such that

j
�
Di�� eA�fKt� � gexp����a�j 
 c t��

eD�k�k��mt��vi�me���j�aj
mt������m���

for all i � f
� � � � � �dg� t � � and �a � �g�

Proof It follows from the Campbell�Baker�Hausdor� formula that there exist cij� � R

such that

� eBi���gexp �a� � �
�
Di�� � gexp����a� �

�dX
j��

X
�	k�k�v��vj��vi

cij� �a
�
�
Dj�� � gexp����a�

for all i � f
� � � � � �dg� � � C�� eG� and �a � �g� If one temporarily orders the basis �b�� � � � ��b �d
such that �v� 
 � � � 
 �v �d then the transition matrix from the Di to the eBi is triangular�
with �
 entries on the diagonal� Then one can solve for the Di and it follows that there
are polynomial functions Pij � �g� R such that

�
Di�� � gexp����a� � �� eBi���gexp �a� �

�dX
j��

Pij��a� � eBj���gexp �a� �
��

for all i � f
� � � � � �dg� � � C�� eG� and �a � �g� Then by scaling it follows that the Pij are
homogeneous of degree �vj � �vi�

By ��� there exist c� � � � such that

j� eBi
eA�fK���gexp �a�j 
 c e�� j�aj

m��m���

for all i � f
� � � � � �dg and �a � �g� Then by an elementary estimate one deduces from �
��
that there exists a c� � � such that

j
�
Di�� eA�fK�� � gexp����a�j 
 c� e�	

��� j�ajm��m���

for all i � f
� � � � � �dg and �a � �g� The statement of the lemma follows by scaling� �

Now we prove Theorem 
�
 for an ideal asymptotic Lie algebra by bounding the �rst
term in ����

Fix � � J�d��� By ���� �
� and the Duhamel formula one has

�A�Kt��exp��a�� �A
�I����

K
�I���
t ��exp�I�� ���a�

�
Z
i�

db � eA�fKt��gexp��a��b����b���� � eA�fKt��gexp��a��b��

�
Z
i�

d�b
Z �

�
d�

�dX
i��

�dX
j�d��
�vj	�vi

cij 	�b�j
�
Di�� eA�fKt� � gexp����a��b� ����b��


�



for all �a � �h� where the cij � R are such that ���b� �
P �d

i��

P �d
j�d�� cij 	�b�j �bi for all �b � i�

and 	�b�j denotes the j�th coordinate of �b with respect to the basis �b�� � � � ��b �d� Hence the
bounds of Lemma ��� together with the estimate j	�b�jj 
 j�bj�vj give����A�Kt��exp��a�� �A�I����K

�I���
t ��exp�I�� ���a�

���

 c t��

eD�k�k��m

�dX
i��

�dX
j�d��
�vj	�vi

jcijj
Z �

�
d�
Z
i�

d�b j�bj�vj t��vi�me���j�a�
�b�
���b�jmt������m���

for all t � 
 and �a � �h�
Since the map �� is super�homogeneous� by ���� there exists an M � 
 such that

j���b�j 
 ���j�a��bj for all �a � �h and �b � i� with j�a��bj �M � Then

j�a��bj	v 
 �	vj�a��b� ����b�j	v � �	vj����b�j	v 
 �	vj�a��b� ����b�j	v � ��	vj�a��bj	v

and

j�aj	v � j�bj	v � j�a��bj	v 
 �	v��j�a��b� ����b�j	v

for all � � 	�� 
�� �a � �h and �b � i� with j�a � �bj � M � Then j�ajm��m��� � j�bjm��m��� 


� j�a��b� ����b�jm��m��� if j�a��bj �M � So

j�ajm��m��� � j�bjm��m��� 
 
� j�a��b� ����b�jm��m��� � �M	

for all � � 	�� 
�� �a � �h and �b � i�� Therefore����A�Kt��exp��a�� �A
�I����

K
�I���
t ��exp�I�� ���a�

���

 c e�M

�t����m��� t��
eD�k�k��m

�dX
i��

�dX
j�d��
�vj	�vi

jcijj
Z �

�
d�
Z
i�

d�b �j�bj t���m��vj t���vi��vj��m 	

	 e���
����j�ajmt������m���e���

����j�bjmt������m���


 c e�M
�
t��D�k�k��mt���me���

����j�ajmt������m��� 	

	
�dX

i��

�dX
j�d��
�vj	�vi

jcijj
�Z

i�

d�b t��eD�D��m�j�bj t���m��vje���
����j�bjmt������m���

	

for all �a � �h and t � 
� Since the factor between the brackets is �nite and independent of
t and ���a � ��a for all �a � �h there exists a c� � � such that����A�Kt��exp a�� �A

�I����
K

�I���
t ��exp�I�� a�

��� 
 c� t��D�k�k��mt���me
�������jajm

�I�
t������m���

�

�

uniformly for all a � g and t � 
� where j 	 j�I� is the modulus on g de�ned by

��� dX
i��

�i b
�I�
i

���	v
�I�

�
dX

i��

j�ij
	v�vi �

So it remains to replace j 	 j�I� by j 	 j� The two moduli j 	 j�I� by j 	 j are equivalent for large
distances�


�



Lemma ��� There exists a C � � such that C�� jaj�I� 
 jaj 
 C jaj�I� for all a � g with

jaj � 
�

Proof For all i� j � f
� � � � � dg there exist cij � R such that b�I�i �
P

j
 vj	vi cij bj for all

i � f
� � � � � dg� Let a �
Pd

i�� �i b
�I�
i � g and suppose that jaj�I� � 
� Then

a �
dX

i��

X
j
 vj	vi

�i cij bj �
dX

j��

� X
i
 vi�vj

�i cij

	
bj �

Therefore

jaj	v �
dX

j��

���� X
i
 vi�vj

�i cij

����	v�vj 

dX

j��

d	v max
i
 vi�vj

jcijj
	v�vj j�ij

	v�vj



dX

j��

d	v max
i
 vi�vj

jcijj
	v�vj �
 � j�ij

	v�vi�



� dX

j��

d	v max
i
 vi�vj

jcijj
	v�vj

	
�
 � jaj	v�I�� 
 �

� dX
j��

d	v max
i
 vi�vj

jcijj
	v�vj

	
jaj	v�I� �

Hence there exists a C � � such that jaj 
 C jaj�I� for all a � g with jaj � 
� The other
estimate follows similarly� �

It follows from Lemma ��� that there exists a C � 
 such that jaj 
 
 � C jaj�I� for all
a � g� Then �jajmt������m��� 
 �C	�jajm�I�t

������m�����t����m��� 
 �C	�jajm�I�t
������m�����

for all a � g and t � 
� Hence it follows from �

� that

����A�Kt��exp a�� �A
�I����

K
�I���
t ��exp�I�� a�

��� 
 c� e� t��D�k�k��mt���me��	
���C���jajmt������m���

uniformly for all a � g and t � 
� This is the required estimate for the �rst term in ����
The estimate of the second term in ��� requires the following lemma�

Lemma ��� If t � � then �A
�I����

K
�I���
t ��exp�I�� a� � �A

����
K

���
t ��exp���a�� for all

a � g and � � J�d��

Proof Since � is a Lie algebra isomorphism from g��a�I�� onto g��a� it follows from
Lemma ����III that H�I�

� �� � �� � �H��� � � for all � � C�
c �G��� where � � exp� �

� � log�I�� is the lifted Lie group isomorphism from G�I�
� onto G�� Then S

�I���
t �� � �� �

�S���
t �� �� for all t � �� Hence K�I���

t �g� � K
���
t ���g�� for all t � � and g � G�I�

� � This

proves the lemma if j�j � �� The lemma for general � then follows by di�erentiation and
Lemma ����III� �

Now we are prepared to prove Theorem 
�
�

Proof of Theorem ��� Fix � � J�d��� Arguing as in the proof of Lemma ��� it follows
that there exist c� � � � such that

j
�
Dj��A

����
K

���
t � � exp��

�
�a�j 
 c t��D�k�k��mt�vj�me���jaj

mt������m���


�



for all j � f
� � � � � dg� t � � and a � g� Since � � I is super�homogeneous by Lemma

����II there exist cij � R such that ��b�I�i � � b
�I�
i �

P
j
 vj�vi cij bj for all i � f
� � � � � dg� Let

a �
Pd

i�� �i b
�I�
i � g� Then it follows from Lemma ��� and the Duhamel formula that

j�A
�I����

K
�I���
t ��exp�I�� a�� �A

����
K

���
t ��exp� a�j

� j�A
����

K
���
t ��exp���a��� �A

����
K

���
t ��exp� a�j



X
i�j

vj�vi

Z �

�
d� j�ij jcijj

����Dj��A
����

K
���
t � � exp��

�
�a� ����a�� a��

���


 c t��D�k�k��m
X
i�j

vj�vi

Z �

�
d� jajvi�I� t

�vj�m jcijje
���ja�
���a��a�jmt������m���

for all t � �� By Lemma ����II there exists an M � 
 such that j��a�� aj 
 ���jaj for all

a � g with jaj �M � Then jajm��m��� 
 
� ja� ����a�� a�jm��m��� �M	 for all a � g and
� � 	�� 
�� If C is as in Lemma ��� then

j�A
�I����

K
�I���
t ��exp�I�� a�� �A

����
K

���
t ��exp� a�j


 c eM
�
t��D�k�k��m t���m e���

����jajmt������m���
X
i�j

vj�vi

�
 � C jaj t���m�vi jcijj


 c� t��D�k�k��m t���m e��	
����jajmt������m���

for a suitable c� � �� uniformly for all a � g and t � 
� This bounds the second term in
��� and the proof of Theorem 
�
 is complete� �

As a consequence of Theorem 
�
 one has the following kernel bounds for Kt�

Corollary ��� For all � � J�d�� there exist c� � � � such that

j�A�Kt��exp a�j 
 c t��D�k�k��me���jaj
mt������m��� �
��

for all t � 
 and a � g� Hence there exists an M � 
 such that kA�Stkp�p 
 M t�k�k�m

uniformly for all t � � and p � 	
����

Proof It follows from 	ElR��� Proposition ���� applied to the group G�� that there exist
c� � � � such that

j�A
����

K
���
t ��exp� a�j 
 c t�D�mt�k�k�me���jaj

mt������m���

uniformly for all t � � and �a � g�� The �rst statement of the corollary then follows for

t � 
 from Theorem 
�
�
Finally� one has kA�Stkp�p 
 kA�Ktk� and the right hand side of �
�� can be estimated

on L��g��� Using the dilations one sees that
R
g da t

�D�me���jaj
mt������m��� is independent

of t� Obviously t �� tk�k�mkA�Stkp�p is bounded on h�� 
� uniformly for p � 	
��� �see
	ElR�� Corollary ����II�� �

The kernel bounds have immediate implications for strong convergence of the semi�
group�


�



Corollary ��	 If p � h
��i then limt�� St � � strongly on Lp�

Proof Let � � Cc�G�� Then

kSt�k
	
	 �

Z
G
dg
Z
G
dh�

Z
G
dh	 ��h��Kt�gh

��
� �Kt�gh

��
	 ���h	�



Z
G
dg
Z
G
dh�

Z
G
dh	 j��h��j jKt�gh

��
� �j jKt�gh

��
	 �j j��h	�j

for all t � �� Arguing as in the proof of Lemma ��� of 	ElR
� there exist c�� � � � � such
thatZ

G
dg jKt�gh

��
� �j jKt�gh

��
	 �j


 c	 t�	D�m
Z
g
da e���j log�h� exp��a��j

mt������m���e���j log��expa�h��j
mt������m���


 c� t�D�me��
��j log�h�h

��
� �jmt������m���

uniformly for all t � � and h�� h	 � G� Hence

kSt�k
	
	 
 c� t�D�m

Z
G
dh�

Z
G
dh	 j��h��j j��h	�j e

�� ��j log�h�h
��
� �jmt������m���


 c� t�D�m
Z
G
dh�

Z
G
dh	 j��h��j j��h	�j

and limt�� kSt�k	 � �� Next� for all p � h
� �i one has

kSt�kp 
 kSt�k
�	�p��p
� kSt�k

�	p�	��p
	

and as kStk��� is uniformly bounded� it follows that limt�� kSt�kp � �� Similarly� since

kStk��� is uniformly bounded one deduces that limt�� kSt�kp � � for all p � h���i�
Finally� since the kStkp�p are uniformly bounded it follows that limt�� St � � strongly on
Lp for all p � h
��i� �

The values p � 
 and p � � are truly exceptional for the strong convergence of S to

zero� For example� if H is an unweighted sublaplacian then kSt�k� � kKtk�k�k� � k�k�
for each positive � � L� and kSt�k� � k�k� for each constant � � L��

One can also give a new proof of Theorem ��� in 	ERS� which deals with unweighted
operators�

De�ne the modulus j 	 j� on G by

jgj� � supfj��g�� ��e�j � � � C�
b �G��

d�X
i��

j�Ai��j
	 
 
� � realg �

where Ai� denotes the left derivative in the direction ai� Moreover� for all � � � set
V ��� � jfg � G � jgj� 	 �gj� the Haar measure �volume� of the ball of radius ��

Corollary ��
 Suppose all weights wi equal one� Then for all � � J�d�� there exist c� � � �

such that

j�A�Kt��g�j 
 c V �t����mt�k�k�me����jgj
��mt���

���m���

�
��

for all t � � and g � G�


�



Proof The estimates �
�� are always valid for t 
 
 for suitable constants c and � by
	ElR�� Theorem 
�
� Therefore we have to concentrate on bounds uniform for all t � 
�

By the proof of Proposition IV���� in 	VSC� there exists a �� � 
 such that j exp aj� 


�
�m����m
� jaj for all a � g such that j exp aj� � 
� Then it follows from Corollary ��� that
there exist c� � � � such that

j�A�Kt��g�j 
 c t�D�mt�k�k�me���
��
� ��jgj��mt���

���m���

�
��

for all t � 
 and g � G with jgj� � 
� But �jgj��mt�� 
 
 for all t � 
 and g � G with

jgj� 
 
� Hence� by enlarging c if necessary� one can assume that �
�� is valid for all t � 

and all g � G� Therefore the estimates �
�� are valid for all t � 
 since there is a c� � �
such that V �t� 
 c� tD for all t � 
 �see 	VSC�� Theorem IV������ �

� Semigroup estimates

In the previous section we showed that the kernel Kt converges to the kernel K
���
t as t

tends to in�nity� If g � g��a� this immediately implies that the semigroup S converges
uniformly to the corresponding asymptotic semigroup S����

Theorem ��� If g � g��a� then there exists a c � � such that

kSt � S
���
t kp�p 
 c t���m

uniformly for all t � 
 and p � 	
���� Hence limt�� kSt�S
���
t kp�p � � for all p � 	
����

Proof Since one has the estimate kSt�S
���
t kp�p 
 kKt�K

���
t k� the theorem is a direct

corollary of Theorem 
�
� �

The convergence of S to S��� on L	�G ! dg� immediately yields information about the
corresponding semigroups in each irreducible unitary representation of G �� G��� Let U
be an irreducible unitary representation of G on a Hilbert space H� Then

SU
t � U�Kt� �

Z
G
dg Kt�g�U�g�

is the strongly continuous semigroup with generator

HU � dU�C� �
X

��J�d��

c� dU�a�� �

Similarly S
U����
t � U�K

���
t � is the strongly continuous semigroup with generator

HU
� � dU�C���� �

X
��J�d��

c� dU�a�� �

Proposition ��� If G � G� then in each irreducible unitary representation �H� G� U� one
has

lim
t��

kSU
t � S

U����
t kHS � �

where k 	 kHS denotes the Hilbert�Schmidt norm on the space of Hilbert�Schmidt operators

on H�


�



Proof Suppose t � 
 then

kSU
t � S

U����
t kHS 


�
kSU

� kHS � kSU����
� kHS

�
kSU

t�� � S
U����
t�� k

where k 	 k denotes the norm on B�H�� But it follows from Theorem 
�
 that there exists

a c � � such that

kSU
t�� � S

U����
t�� k 
 kKt�� �K

���
t�� k� 
 c �t� 
����m

uniformly for all t � 
� Therefore limt�� kSU
t � S

U����
t kHS � �� In fact this estimate

establishes bounds
kSU

t � S
U����
t kHS 
 cU t

���m

for all t � �� �

Example ��� Let g be the Heisenberg Lie algebra� of Example ��
� and choose the alge�
braic basis a�� a	� a� with all weights equal to one� Then choosing a� � span�a�� a	� and
a	 � span�a�� one has g � g��a�� Hence if H � �

P�
i��A

	
i is the Laplacian in the left

regular representation H� � �
P	

i��A
	
i is the sublaplacian and the di�erence between the

respective semigroups converges uniformly to zero on each of the Lp�spaces�

We next consider the situation for which g �� g��a� as Lie algebras� Since g � g��a�

as vector spaces one can� however� compare the semigroups bSt and bS���
t on Lp�g�� One

might expect that limt�� k bSt � bS���
t kp�p � � but this is too optimistic�

Theorem ��� If g �� g��a� as Lie algebras then there is a b � � such that

lim inf
t��

k bSt � bS���
t k	�	 � b �

Moreover� if p � �� or if the form C de�ning S is self�adjoint one may choose b � 
�

Proof Since g �� g��a� as Lie algebras there exist j� k � f
� � � � � dg such that

	bj� bk� �� 	bj� bk�� �

Let � � �� For t � � de�ne �t � L	�g� by

�t�a� � kcK���
�t k��	

cK���
�t �a �� t� bj� �

where � � �r	� cK���
t � K

���
t � exp� and a �� b � log��exp� a exp� b� for all a� b � g�

Then k�tk	 � 
 by right invariance of the Haar measure on G��

The starting point for the proof is the estimate

k� bSt � bS���
t ��tk

	
	 � k bS���

t �tk
	
	 � �Re� bSt�t� bS���

t �t�

for all t � ��
Since

� bS���
t �t��a� � kcK���

�t k��	
cK���
�����t�a �� t� bj� �
��







for all t � � and a � g one has k bS���
t �tk		 � ���
 � �����D�m by scaling� uniformly for all

t � �� So if we can show that

lim
t��

� bSt�t� bS���
t �t� � � �
��

then

lim inf
t��

k bSt � bS���
t k		�	 � ���
 � �����D�m

and the �rst part of the theorem follows for p � �� Moreover� one may arrange that b � 

for p � �� But for dual variables p� q � 	
��� there is a � � h�� 
i such that

k bSt � bS���
t k	�	 
 �k bSt � bS���

t kp�p�

�k bSt � bS���

t kq�q�
���
� �

Moreover� bS and bS��� are uniformly bounded on each Lp�space� by the Gaussian bounds of
	ERS�� Therefore the �rst statement of the theorem then follows for all p � 	
���� Finally

the self�adjointness of C implies

k bSt � bS���
t kp�p � k bSt � bS���

t kq�q

for dual exponents p� q and therefore


 
 lim inf
t��

k bSt � bS���
t k	�	 
 lim inf

t��
k bSt � bS���

t kp�p

for all p � 	
���� Thus the proof of the theorem is reduced to establishing �
���
First for all a � g one has

kcK���
�t k	 � bSt�t��a� �

Z
db cKt�a � ��b��cK���

�t �b �� t� bj�

�
Z
db cKt�a � �t

� bj �� ��b���cK���
�t �b�

for all t � 
� where cKt � Kt � exp and a � b � log�exp a exp b� for all a� b � g� Hence by

�
�� and Corollary ��� there exist C� � � � such that

kcK���
�t k		 j�

bSt�t� bS���
t �t�j

�
��� Z da

Z
dbcKt�a � �t

� bj �� ��b���cK���
�t �b�cK���

�����t�a �� t� bj�
���

�
��� Z da

Z
dbcKt��a �� ��t� bj�� � �t

� bj �� ��b���cK���
�t �b�cK���

�����t�a�
���



Z
da
Z
dbGt��a �� ��t� bj�� � �t

� bj �� ��b��� jcK���
�t �b�j jcK���

�����t�a�j

for all t � 
� where

Gt�a� � C t�D�me���jaj
mt������m��� �

Then using the scaling law

cK���
st �a� � t�D�mcK���

s ��t���m�a��

��



and a subsequent change of variables a� � �t���m�a�� b
� � �t���m�b� one �nds

kcK���
� k		 j�

bSt�t� bS���
t �t�j



Z
da
Z
dbG���a �� ��t��vj�m bj�� �t��m �t��vj�m bj �� ��b��� jcK���

� �b�j jcK���
����a�j

for all t � 
� where a �t b � ���t ��t�a� � �t�b��� Therefore if we can show that

lim
t��

j�a �� ��tm��vj bj�� �t �t
m��vj bj �� ��b��j ��

for almost all �a� b� � g 
 g then �
�� follows by the Lebesgue dominated convergence
theorem and the proof of the theorem is complete�

De�ne P � g
 g
 g� g by

P �a� b ! c� � �a �� ��c�� � �c �� ��b�� �

Then it follows from the Campbell�Baker�Hausdor� formula that

P �a� b ! c� � �a� c� �
	
	a� c�� � � � �� � �c� b� �

	
	b� c�� � � � ��

� a� b� �
	 	a� b� c�� � �

	 	a� b� c�� �
		a� b� � � � �

� a � ��b�� �
		a� b� c�� � �

	 	a� b� c� � � � �

where the dots denote a sum of multi�commutators in a� b� c of order at least � and
the multi�commutators may be mixed in 	 	 � 	 � and 	 	 � 	 ��� Since the weighted rank of g

equals r it follows that P is a polynomial of unweighted order at most r� Hence there exist
ci��
 � R such that

P �a� b ! c� � a � ��b�� �
	
	a� b� c�� � �

	
	a� b� c� �

dX
i��

X
����
�J�d�

��j�j�j�j�j
j�r

ci��
 a
� b� c
 bi

for all a� b� c � g�
Next� for all t � 
 and a� b� c � g one has

�a �� ��c�� �t �c �� ��b��

� ���t

�
�t�a �� ��c�� � �t�c �� ��b��

�
� ���t

�
��t�a� �� ���t�c��� � ��t�c� �� ���t�b���

�

� a �t ��b��
�
		a� b� c�� � �

	 	a� b� c�t �
dX

i��

X
����
�J�d�

��j�j�j�j�j
j�r

ci��
 t
k�k�k�k�k
k�vi a� b� c
 bi �

Substitute c � tm��vj bj in the previous identity� Then

�a �� ��tm��vj bj�� �t �t
m��vj bj �� ��b�� �
��

� a �t ��b��
�
	t

m��vj
�
	a� b� bj�� � 	a� b� bj�t

�

�
dX
i��

X
����J�d�
p�N�

��j�j�j�j�p�r

ci��
p t
k�k�k�k�mp��pvj�vi a� b� bi �

�




where �p � �j� � � � � j� is the multi�index with p indices equal to j� Let ciq � R be such that

	bi� bj� �
X
q

vq	vi�vj

ciq bq

for all i � f
� � � � � dg� Then there exists an n � f
� � � � � dg with vn � vj � vk such that

ckn �� �� since 	bk� bj� �� 	bk� bj���
For each a� b � g the right hand side of �
�� is a Laurent polynomial in t� Consider the

coe�cient of
tm��vj tvj�vk�vn � tm��vk�vn �

Since � � �r	 one obviously has

m� � m� � vk � vn � m� � r � �r	 �

But if p � � and j�j � j�j 
 r then k�k � k�k�mp� � p vj � vi 
 �r	� Alternatively if
� 
 p 
 r then k�k � k�k � mp� � p vj � vi � �mr	 � r	 � r � �mr	� Therefore the
only possible contribution of the last term in the right hand side of �
�� occurs with p � 
�

Since in addition � 
 j�j � j�j � p this implies that in each of the contributions one has
j�j� j�j � �� Moreover� limt�� a �t ��b� � a �� ��b� exists� so the term a �t ��b� gives no
contribution to the coe�cient of tm��vk�vn � Therefore there exist ci�� � R such that the
coe�cient of tm��vk�vn equals

X
i�q

vi�vq�vk�vn
vq�vi�vj

�
	��i � �i� ciq bq �

dX
i��

X
	�j�j�j�j�r

ci�� �
� �� bi

if a �
Pd

i�� �i bi and b �
Pd

i�� �i bi� where �
� � a� and �� � b�� This is an element of g

with the coe�cient of bn equal to

Q�a� b� �
X
i

vi�vk

�
	
��i � �i� cin �

X
	�j�j�j�j�r

cn�� �
� �� �

Since ckn �� �� one has Q�a� b� �� � for almost all �a� b� � g
 g� Thus

lim
t��

j�a �� ��tm��vj bj�� �t �t
m��vj bj �� ��b��j ��

for almost all �a� b� � g
 g and the proof is complete� �

Although Theorem ��� precludes the uniform convergence of S�S��� to zero whenever
G �� G� the next result shows that this is very nearly true�

Theorem ��� If f � g � C is a bounded measurable function which vanishes at in�nity

and S��� the semigroup associated with a general asymptotic Lie algebra then

lim
t��

kMf � bSt � bS���
t �kp�p � � � lim

t��
k� bSt � bS���

t �Mfkp�p

uniformly for all p � 	
����

��



Proof For all a� b � g de�ne a�b � log�exp a exp b� � g and a��b � log��exp� a exp� b� �

g�� Moreover� set cKt � Kt � exp and cK���
t � K

���
t � exp��

Let ��� � C�
c �g� and t � 
� Then

j��� � bSt � bS���
t ���j �

����
Z
da
Z
db��a���b�

�cKt�a � ��b��� cK���
t �a �� ��b��

�����


Z
da
Z
db j��a�j j��b�j

���cKt�a � ��b��� cK���
t �a � ��b��

���
�

����
Z
da
Z
db��a���b�

�cK���
t �a � ��b��� cK���

t �a �� ��b��
�����

where all integrals are over g� We estimate the two terms separately�
For the �rst term we can use Theorem 
�
� Let c� � � � as in Theorem 
�
 for the

� � J�d�� with k�k � � and de�ne Gt� g� R by Gt�a� � t�D�me���jaj
mt������m���� One hasZ

da
Z
db j��a�j j��b�j

���cKt�a � ��b��� cK���
t �a � ��b��

���

 c t���m

Z
da
Z
db j��a�j j��b�jGt�a � ��b��

� c t���m �j� � log j� �Gt � log� � j� � log j�


 c t���m k� � log kLq�G� kGt � log kL��G� k� � log kLp�G� � c� t���m k�kq k�kp

since kGt � log kL��G� � kGtkL��g�� is independent of t by scaling� Here q is the dual
exponent of p�

The second term is more elaborate� Note that it arises if g �� g��a� as Lie algebras�
Hence a � b �� a �� b for some pair a� b � g�

It follows from the Campbell�Baker�Hausdor� formula that there exist ci�� � R such
that

P �a� b� � a � b� a �� b �
dX
i��

X
�� �

k�kv�k�kv	vi

ci�� a
� b� bi

for all a� b � g �see also 	NRS��� Then the Duhamel formula givesZ
da
Z
db��a���b�

�cK���
t �a � ��b��� cK���

t �a �� ��b��
�

�
dX
i��

X
�� �

k�kv�k�kv	vi

ci��

Z �

�
d�
Z
db
Z
da��a���b� a� b� �Di

cK���
t ��a �� ��b� � �P �a��b�� �

where Di denotes the partial derivative in the direction bi� Next� the Campbell�Baker�
Hausdor� formula establishes the existence of constants cij�� such that

T
�b�a� � a �� ��b� � �P �a��b� � a� b�
dX
i��

�X
j��

X
k�kv�k�kv�vi

k�kv	vi

cij�� a
� b� �j bi

for all a� b � g and � � 	�� 
�� Then for each � � 	�� 
� and b � g the map T
�b is a bijection
from g onto g with Jacobian equal to one� Moreover� by induction it follows that there

��



exist �cij�� � R such that

T��

�b �a� � a� b�

dX
i��

rdX
j��

X
k�kv�k�kv�vi

k�kv	vi

�cij�� a
� b� �j bi

uniformly for all a� b � g and � � 	�� 
�� Then by Leibniz" rule for all �� � � J��d� with
k�kv � k�kv 	 r there exist cj��
� � R such that

�T��

�b �a��

� b� �
X

� �

k
kv�k�kv�k�kv�k�kv

rd��X
j��

cj��
� a

 b� �j

uniformly for all a� b � g and � � 	�� 
�� Arguing as in the proof of Lemma ��� it follows
that there exist c� � � � such that

j�Di
cK���
t ��a�j 
 c t�D�mt�vi�me���jaj

mt������m���

for all i � f
� � � � � dg� t � � and a � g� Then

����
Z
da
Z
db��a���b�

�cK���
t �a � ��b��� cK���

t �a �� ��b��
�����

�

����
dX

i��

X
�� �

k�kv�k�kv	vi

ci��

Z �

�
d�
Z
db
Z
da��T��


�b �a����b� �T
��

�b �a��

� b� �Di
cK���
t ��a�

����


 c
dX

i��

X
�� �

k�kv�k�kv	vi

X

� �

k
kv�k�kv�k�kv�k�kv

rd��X
j��

jci��j jcj��
�j
Z �

�
d�
Z
db
Z
da j��T��


�b �a��j j��b�j 	

	 ja
j jb�j j�j j t�D�mt�vi�me���jaj
mt������m��� �

Note that k�kv � k�kv 
 k�kv � k�kv 	 vi� Therefore an elementary estimate gives

Z �

�
d�
Z
db
Z
da j��T��


�b �a��j j��b�j ja

j jb�j j�j j t�D�mt�vi�me���jaj

mt������m���



Z �

�
d�
Z
db
Z
da j��T��


�b �a��j j��b�j t
�D�mt��vi�k
kv�k�kv��m 	

	 �jaj t���m�k
kv�jbj t���m�k�kve���jaj
mt������m���


 c� t���m
Z �

�
d�
Z
db
Z
da j��T��


�b �a��j j�Nt���b�j t
�D�me�	

����jajmt������m���

� c� t���m
Z �

�
d�
Z
db
Z
da j��a�j j�Nt���b�jG

�
�
t �a� b�

uniformly for all t � 
� where �Nt���b� � �
 � �jbj t���m�r���b� and

G
�
�
t �a� b� � t�D�me�	

����ja����b��
P �a�b�jmt������m���

��



for all � � 	�� 
�� Using the transformation T
�b once again it follows that

c� � sup

������

sup
b�g

sup
t��

Z
daG

�
�
t �a� b� 	� �

Similarly�

c	 � sup

������

sup
a�g

sup
t��

Z
dbG

�
�
t �a� b� 	�

and then� by interpolation�Z
db
Z
da j��a�j j�Nt���b�jG

�
�
t �a� b� 
 c

��p
� c

��q
	 k�kq kNt�kp

uniformly for all � � 	�� 
� and t � �� Since all sums have a �nite number of terms� one
deduces that there exists a c � � such that

j��� � bSt � bS���
t ���j 
 c t���mk�kq kNt�kp

for all t � 
 and ��� � C�
c �g�� Hence

k� bSt � bS���
t �N��

t �kp 
 c t���mk�kp

for all t � 
 and � � Lp�
Next let f � g� C be a bounded measurable function which vanishes at in�nity� Then�

with Dt � bSt � bS���
t � one has

k� bSt � bS���
t �Mfkp�p 
 kDtN

��
t Mfkp�p � kDt�I �N��

t �Mfkp�p


 kDtN
��
t kp�pkMfkp�p � kDtkp�pk�I �N��

t �Mfkp�p


 c kfk� t���m � �M sup
a�g

�t���mjaj�r


 � �t���mjaj�r
	 jf�a�j

for all t � 
� where M is as in Corollary ���� But f is bounded and

lim
t��

sup
a�g

�t���m jaj�r


 � �t���m jaj�r
	 jf�a�j � lim

t��
sup
a�g

jajr


 � jajr
	 jf��t��m�a��j � �

since f is bounded and vanishes at in�nity� Therefore k� bSt � bS���
t �Mfkp�p � � as t��

and kMf � bSt � bS���
t �kp�p � � by duality� �

Finally we note that there is an analogue of the behaviour of the semigroups as t� �
with the asymptotics for t � �� For each weighted algebraic basis on a nilpotent Lie

algebra one can construct a contraction g� of g as t � � and then proceed as before to
obtain H�� S���� K��� etc� �see 	NRS� 	Heb� 	ElR���� For small t one has good bounds on
the semigroup kernels�����A�Kt��exp a�� �A����K

���
t ��exp� a�

��� 
 c t��D
��k�k��mt���me���jaj

mt������m���

for all t � h�� 
� and a � g� where D� is the local dimension and j 	 j the appropriate modulus

on the Lie algebra adapted to g�� Bounds of this type can be proved similarly to the proof
of Theorem 
�
 or� alternatively� from the proof of Theorem ��� in 	ElR���

Nevertheless� the uniform convergence of the semigroups as t � � is valid only in a
special case�

��



Theorem ��	 If p � 	
��� then limt�� k bSt � bS���
t k��� � � if� and only if� g � g� as Lie

algebras�

Proof The proof is a repetition of the arguments in the proofs of the previous two
theorems� �
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