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Abstract

Consider the heteroscedastic polynomial regression model Y = /30 + /31 X +... +
/3pXP + yVar(YIX)c, where c is independent of X, and Y is subject to random

censoring. Provided that the censoring on Y is 'light' in some region of X, we

construct a least squares estimator for the regression parameters whose asymptotic

bias is shown to be as small as desired. The least squares estimator is defined

as a functional of the Van Keilegom and Akritas (1999) estimator of the bivariate

distribution P(X ~ x, Y ~ y), and its asymptotic normality is obtained.

KEY WORDS: Asymptotic normality; Asymptotic representation; Bivariate distribu­

tion; Least squares estimator; Nonparametric regression residuals; Polynomial regression;

Right censoring.
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1 Introduction

Fitting regression models with censored data has received considerable attention in

the statistical literature. For the more recent contributions see Tsiatis (1990), Ritov

(1990), Lai and Ying (1991a, 1991b, 1994), Zhou (1992a,b), Fygenson and Zhou (1994),

Fygenson and Ritov (1994), Akritas (1994), Stute (1993, 1996), Akritas, Murphy and

LaValley (1995), LeBlanc and Crowley (1995), Ying, Jung and Wei (1995), Akritas (1996)

and references therein. As outlined in Fygenson and Ritov (1994), the rank estimators of

Tsiatis (1990) and M-estimators of Ritov (1990) suffer from certain computational as well

as theoretical difficulties. In addition, the variance of the resulting estimator depends on

the density of the error distribution which is not estimated well with incomplete data.

These difficulties motivated Wei, Ying and Lin (1990), and Lin and Wei (1992a,b) to

devise inference procedures, similar to those derived from the likelihood ratio statistic in

the parametric case, in an effort to circumvent the difficulty of estimating the variance­

covariance matrix. The recent papers by Fygenson and Ritov (1994), Akritas, Murphy and

LaValley (1995), and Akritas (1996) propose estimators which are generally applicable in

the framework of the homoscedastic accelerated failure time model, are easy to compute,

and obtain variance estimators that bypass the need to estimate the density of the error

distribution.

Though the technology for fitting regression models with censored data is at present

quite advanced, all methods mentioned above pertain to the homoscedastic regression

model. (Zhou 1992a claims that his result also holds for heteroscedastic models; even so,

his derivations require the (very often) unrealistic assumption that the censoring distri­

bution does not depend on the covariate.) Since with uncensored data the least squares

estimator is consistent and asymptotically normal even in heteroscedastic regression mod­

els, we turn our attention to least squares estimation. As remarked in Akritas (1994),

existing methods for extending the least squares estimator to censored data give biased

results when there is heavy censoring at the upper tails of the conditional distribution

of the response given the covariate; see also the expressions of a*, f3* in Theorem 2.1

of Fygenson and Zhou (1994), as well as the simulations (b) reported in their Table 1.

The reason for this is quite simple : the least squares estimator is a moments estimator

and estimation of moments cannot be achieved without information about the tails of the

distribution.
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The least squares estimator we propose in this paper does not restrict to homoscedastic

regression models, but can be used under any heteroscedastic model

where E(c) = 0, Var(c) = a; and c is independent of X. The estimators also have the

advantage that their asymptotic bias can be made as small as desirable, provided there

is a region of X where the censoring of Y is 'light'. The basic idea that leads to this nice

feature is that tail information can be transferred from such a region of light censoring to

other regions where censoring is 'heavy'. In this way we obtain enough information about

the tails of the distribution in order to estimate moments in an accurate way. This idea

was proposed in Akritas (1994).

The present least squares estimator will be a functional of the Van Keilegom and

Akritas (1999) estimator of the bivariate distribution function, which is valid in the context

of any heteroscedastic nonparametric regression model

(1.3)

(1.2)

(1.1)

Y = m(X) + a(X)c,

3

x

F(x, y) = f F(ylt) dFx(t),
-00

Y = f30 + f3IX + ... + f3pXP + y!Var(YIX)c,

where the functions m and a are 'smooth' and c is independent of X. As such it generalizes

the least squares estimators of Akritas (1996), Akritas (1994) and of Cristobal Cristobal et

al. (1987) which include both the ordinary least squares estimator as well as the ordinary

and generalized ridge regression estimators as special cases. See also Remark 2.1 below. (It

is assumed that a transformation, e.g. the logarithmic transformation, has been applied

on the typically positive censored response variable. Thus, (1.2) can be viewed as a

nonparametric and heteroscedastic accelerated failure time model.)

To set the notation, consider a bivariate random vector (X, Y) having distribution

function F(x, y). Let G be a random variable censoring Y. It will be assumed that G

is conditionally independent of Y given X, and also that X is always observable. Thus

the available data are realizations of the i.i.d. random vectors (Xi, Zi, ~i), i = 1, ... ,n,
where Zi = Yi A Gi, and ~i = I(Yi = Zi)'

We describe first the Van Keilegomand Akritas (1999) estimator of F(x, y). Like the

Akritas (1994) estimator, it is based on the relationship
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where Fx is the marginal distribution function of X and F(ylt) is the conditional distri­

bution P(Y ::; ylX = t). Relationship (1.3) suggests the estimator

where F(ylt) is a suitable estimator of F(ylt) and Fx(t) is the empirical distribution

function of the Xi' Noting that model (1.2) implies F(ylx) = Fe (y~(:)x)), where Fe is

the distribution function of c, Van Keilegom and Akritas (1999) used the estimator

(1.6)

(1.5)

(1.4)

A A (y-m(x))
F(ylx) = Fe &(x) ,

x

F(x, y) = JF(ylt) dFx(t),
-00

A JX A (y-m(t)) A

F(x, y) = Fe &(t) dFx(t)
-00

as an estimator for the bivariate distribution. Note that (1.5) will estimate well the tails

of F(ylx), even ifthere is heavy censoring at X = x, provided there is a region of x-values

where the censoring is 'light'. This statement is made more precise in the next section.

The idea for estimating the parameters in a polynomial heteroscedastic regression

model with censored data is to express the ordinary least squares estimator as a functional

of the (bivariate) empirical distribution function of (X, Y), and replace the uncensored

data empirical distribution function with F(x, y). A similar idea was also used in Akritas

(1994), and in Stute (1993, 1996), but these estimators suffer from the disadvantage

that their asymptotic bias increases as the censoring in the upper tails increases. In

addition, the estimator in Stute (1993, 1996) uses the often unrealistic assumption that

the censoring variable is independent from the response variable. As noted above, the

present estimator minimizes the undesirable effects of heavy censoring in the upper tails.

In the next section we give the precise definition ofthe least squares estimator, and we

state the assumptions. The main result on the asymptotic normality of the least squares

estimator is presented in Section 3, while the proofs are given in Section 4. This work is

part of Van Keilegom (1998) where more details can be found.

where m(x), &(x) are nonparametric regression estimators of m and a and Fe is the usual

Kaplan-Meier estimator evaluated from (Zi - m(Xi))/&(Xi). The estimator (1.5) for the

conditional distribution function and relation (1.3) lead to



2 Definitions and Assumptions

(2.2)

(2.1)

1

a-2(X) = JP-l(slx)2J(S) ds - ih2(x),
o

1

(J2(X) = JF-1(slx)2 J(s) ds - m2(x),
o

5

1

m(x) = JF-1(slx)J(s) ds,
o

1

ih(x) = JP-l(slx)J(s) ds,
o

where P is the conditional Kaplan-Meier estimator introduced by Beran (1981)

where J(s) is a given score function satisfying JJ(s )ds = 1, and F-1(six) = inf{t; F(tlx) 2:
s} is the quantile function of Y given x. The motivation behind this choice of location

functional is that by proper choice of J, the right tails of F(Ylx) (which may be poorly

estimated due to the censoring mechanism) are not involved. Natural estimators for m(x)

and (J(x) are

Let (Xi, Yi, Gi, Zi, ~i), i = 1, ... , n, be n independent random vectors as defined in

Section 1 and let (X, Y, G, Z,~) have the joint distribution of each (Xi, Yi, Gi, Zi, ~J

We assume that regression model (1.2) is valid, where m and (J are assumed to be a

location and scale functional, respectively. Note that if in model (1.2) m or (J is replaced

by another location functional m* or scale functional (J*, the resulting error variables ci,
i = 1, ... ,n, are still i.i.d. and each ct is independent of Xi' (The terms 'location' and

'scale' functional are used here in the sense defined, e.g., in Huber 1981, p. 59, 202). We

do not restrict Y to be positive, but allow Y to represent any monotone transformation

(such as e.g. the logarithm) of the survival time of a patient involved in a clinical study.

We will use the abbreviation E for z:(;2~) and the notations F(x, y) = P(X :::; x, Y :::; y),

Fx(x) = P(X :::; x), F(Ylx) = P(Y :::; Ylx), G(Ylx) = P(G :::; Ylx), H(Ylx) = P(Z :::; ylx)

and H1(ylx) = P(Z :::; y, ~ = 1Ix). Assuming conditional independence of Y and G

given X, entails that 1 - H(Ylx) = (1 - F(Ylx))(l - G(Ylx)). Furthermore, set Fe(y) =
P(c :::; y), Ge(y) = P(c:(;2~) :::; y), He(y) = P(E :::; y), He1(y) = P(E :::; y, ~ = 1),

He(Ylx) = P(E :::; ylx) and He1(ylx) = P(E :::; y, ~ = 1Ix). Finally, we use lower case

letters for the probability density functions of the distribution functions defined above.

Throughout the paper we will use the following location and scale functionals, which

are a special case of the general functional for L-statistics (see e.g. Serfling 1980)



(2.4)

(2.3)A JX A (y f\ Tt - m(t)) A

FT(x, y) = Fe a(t) dFx(t),
-00

and

6

n

He(y) = n-l L I(Ei :::; y),
i=l

Wi(x, an) = ( X)'
L:~ K ~

J=l an

where K is a known probability density function (kernel) and {an} is a sequence of positive

constants tending to zero as n ~ 00 (bandwidth).

Let Ei = z;;(1:f;). We estimate the distributions He and Fe by, respectively, the usual

empirical distribution function based on the &'s and the Kaplan-Meier (1958) estimator

based on the (Ei , L1i)'S. Note that EI , . .. ,En are not independent. Thus,

where the Tt :::; Tcy(t) +m(t) for t E Rx and where T < THe' This is actually an estimator

of FT(x, y) = JFe (YAT;{t)*l) dFx(t) , which can become arbitrarily close to F(x, y) if
-00

TFe :::; Tae and Tt, respectively T, is chosen sufficiently close to TCY(t) + m(t), respectively

THe' for all t. The asymptotic properties of FT(x, y), as well as of Fe(y) and F(ylx), have

been studied in Van Keilegom and Akritas (1999). We refer to that paper for details.

Consider now the heteroscedastic polynomial regression model (1.1). Thus we assume

that E(YIX) = X {3, where Y is the n x 1 response vector and X denotes the n x (p + 1)

design matrix whose k-th column contains the elements X i
k , i = 1, ... , n. The least squares

estimator is defined as the value of {3 which minimizes

where E(i) is the i-th order statistic of E I , . .. , En and L1(i) is the corresponding indicator.

This leads to the estimator in (1.6). A sufficient condition under which F(x, y) has no

regions of undefined mass, is that there exists a subset R of the support of X such that

TF(.lx) :::; Ta('lx), for all x in R, where TF denotes the upper bound of the support of any

distribution function F. Indeed, this condition guarantees that TFe :::; Tae and hence Fe(y)

will be well estimated for all y.

Because the asymptotic theory for (1.6) is based on an i.i.d. representation for Fe

which is valid up to any point smaller than TFe f\ Tae , Van Keilegom and Akritas (1999)

worked with the slightly modified version of (1.6),



Note that Fr(x, y) does not use the particular structure of m(x) implied by the model

(1.1). Also, since (1.1) holds, model (1.2) holds for any location functional m and scale

functional CJ. Provided Fe(oo) = 1, the solution to the minimization problem in (2.4) is

(2.5)

This is the same as the uncensored data least squares estimator with Fr(x, y) replacing

the usual bivariate empirical distribution function corresponding to (Xi, Ii). Similarly,

define

(

JxOy dFr(x, y) )
f3r = n[E(X'X)t 1

: .

JxPy dFr(x, y).

Remark 2.1. Direct calculations reveal that in the homoscedastic linear regression model

with uncensored data, the proposed slope estimator is the same as that obtained by least

squares on the pairs (Xi, m(Xi)), i = 1, ... ,n. Compare with Akritas (1996) and Cristobal

Cristobal et al. (1987). In particular, the latter paper shows that a similar class of estima­

tors in the uncensored homoscedastic case inCludes the ordinary least squares estimator

as well as the ordinary and generalized ridge regression estimators as special cases by

appropriate choices for the kernel function and the window.

Of course, ~r estimates f3r which becomes arbitrarily close to the true f3 by suitable

choice of T, provided TFe :S TGe • The results listed below will be shown under the following

conditions. Let Tx(x E Rx ) be such that Tx < TH(.lx) and infxERx (1- H(Txlx)) > O.

(Al)(i) The sequence an satisfies na~ --+ aand na~+2°(loga~1)-1 --+ 00 for some 8 > O.

(ii) The support Rx of X is bounded, convex and its interior is not empty.

(iii) The probability density function K has compact support, JuK(u) du = 0 and K is

twice continuously differentiable.

(A2)(i) The function x --+ Tx (x E Rx ) is twice continuously differentiable and there

exist 0 :S So :S Sl :S 1 such that Sl :S infx F(Txlx), So :S inf{s E [0,1]; J(s) =1= O},

Sl ~ sup{s E [0,1]; J(s) =1= O} and infxERx infso:Ss:Ssl f(F- 1(slx)lx) > O.
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(ii) The function J is twice continuously differentiable, J~ J(8) d8 = 1 and J(8) 2:: 0 for

all 0 ::; 8 ::; 1.

(A3)(i) The distribution Fx is thrice continuously differentiable and infxERx fx(x) > o.
(ii) The functions m and a are twice continuously differentiable and infxERx a(x) > O.

(iii) The error variable c has finite expectation.

(A4) The functions

+00

ry(z, £5lx) = f ~(z, £5, vlx)J(F(vlx)) dva-l(x),
-00

+00

f v - m(x)
(z, £5lx) = ~(z, £5, vlx)J(F(vlx)) a(x) dva-l(x),

-00

are twice continuously differentiable with respect to x, their first and second derivatives

(with respect to x) are bounded, uniformly in x E Rx , z < Tx and £5, and for any £5 = 0, 1,

the first derivatives (considered as functions in z) are of bounded variation and the vari­

ation norms are uniformly bounded over all x.

(A5) The function y ~ P(m(X) + ea(X) ::; y) (y E JR) is differentiable for all e E JR

and the derivative is uniformly bounded over all e E JR.

Let L(ylx) stand for either H(ylx)' Hl(ylx), He(ylx) or Hel(ylx). We will use the nota­

tions l(ylx) = L'(ylx) = :yL(Ylx), L(ylx) = :xL(ylx) and similar notations will be used

for higher order derivatives.

(A6)( i) L(ylx) is continuous.

(ii) L'(ylx) = l(ylx) exists, is continuous in (x, y) and SUPx,y lyL'(ylx)1 < 00.

(iii) L"(ylx) exists, is continuous in (x, y) and SUPx,y ly2L"(ylx) I < 00.

(iv) L(ylx) exists, is continuous in (x, y) and SUPx,y lyL(ylx)1 < 00.

(v) L(ylx) exists, is continuous in (x,y) and SUPx,y ly2L(ylx)1 < 00.

(vi) L'(ylx) exists, is continuous in (x, y) and SUPx,y lyL'(ylx)1 < 00.

(vii) L'(ylx) exists, is continuous in (x,y) and SUPx,y lyL'(ylx)1 < 00.

(viii) L"'(ylx) exists, is continuous in (x,y) and SUPx,y ly3L"'(ylx)1 < 00.

Throughout the paper, the symbol K will be used for any constant, whose value may

differ from line to line.
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3 Main Results

(3.1)

9

( ~'O~h'O) _
f3T,p - f3T,p

{

yAz }dHel(s) I(z:s Y, 8 = 1)
~e(z, 8, y) = (1 - Fe(y)) - -L (1 - He(S))2 + 1 - He(z) ,

{

yAz }dH1(slx) I(z :s Y, 8 = 1)
~(z, 8, ylx) = (1 - F(ylx)) - _£ (1 _ H(slx))2 + 1 _ H(zlx) ,

y y

J he(slx) J dhel(slx)
/"l(ylx) = (1 _ He(s))2 dHel(s) + 1- He(s) , and

-00 -00

y y

( I ) = J she(slx) dH () Jd (shel(slx))
/"2 y X (1 _ He(S))2 el S + 1 - He(s) .

-00 -00

We use the abbreviated notations n- l (X' X) = An = (ars ) and n-l E(X'X) = A =

(ars ). The (k +1, £+ l)-th element of A-I and A~l will be denoted by, respectively, gke(A)

and gkl(An ). Also, let Grs(A) = (gk£(A)) be the matrix of the partial derivative of the

elements gkl(A), k,£ = 0, ... ,p, with respect to ars .

<p(t, z, 8, y) = ~e (z ~~(t), 8, Y) - Se(Y)1](z, 8It),I(Ylt) - Se(Y)((z, 8It),2(Ylt),

where Se(Y) = 1 - Fe(y),

Theorem 3.1 Assume (Al}-(A5), H(Ylx) and H1(ylx) satisfy (A6)(i)-(vi), He(Ylx) and

Hel (ylx) satisfy (A 6)(ii, iii, vi, vii, viii) and the p-variate distribution of (X, X 2, ... ,XP) is

nonsingular. Then,

This section presents the asymptotic theory of the least squares (LS) estimator. The

asymptotic representation for the estimator involves the functions 1](z,8Ix) and ((z,8Ix)

defined in assumption (A4) and



1/2 A dTheorem 3.2 Let the assumptions imposed in Theorem 3.1 hold. Then, n (f3T-(3T)-+

N(O;:E), where:E = (akl) and

akl = Cov {to gki(A)Wi(X, T, ~), to gli(A)Wi(X, T,~) }

+ cov{ to gk'(A)X'JtdFe CAt~~~(X) ) +"E,og;1(A) Jx'tdFT(x, t)X'+O,

tgli(A)Xij tdFe (tI\T;~m(X)) +. t g;:(A) j xitdFT(x, t)XT+S
}.

t=O ( ) t,T,S=O

Proof of Theorem 3.1. Write

(4.1)

10

(

f xOy d(FT(x, y) - FT(x, y)) )
n(X'X)-1 :

f xPy d(FT(x, y) - FT(x, y))
(

~T'O ~ ~r,o) =

f3T,p - f3T,p

where for k = 0, ... ,p,

(

JxOy dFT(x, y) )

+ .to6., (A) : Jx* d(Fx(x) - Fx(x)) +
JxPy dFT(x, y)

(

JXo Jy dFe(yI\T;(x)(x)) d(Fx(x) - Fx(x)) 1
+ n[E(X'X)t 1

:

JxPJy dFe(yI\T;(x)(X)) d(Fx(x) - Fx(x))

j
k jT>: ( y - m(x))wk(t,z,b) = x ydcp t,z,b, (J(x) dFx(x)

Rx -00

k jTt [( Y - m(t)) (y - m(t))]+ t Yd 7](z, bit) + ((z, bit) a(t) fe a(t) .
-00

4 Proofs

The proof of this result is straightforward.



We start with the first term on the right hand side of (4.1).

Jxky d(F'r(x, y) - FT(x, y)) (4.2)

JxkJy d [Fe (y 1\ T;(:)m(x)) - Fe (y 1\ T;(:)m(x))] dFx(x)

+ JxkJydFe (y 1\ T;(:)m(x)) d(Fx(x) - Fx(x)).

Using integration by parts, the first term on the right hand side of (4.2) can be written

as

- JJxkI(y ~ Tx) [Fe (y ~~{x)) - Fe (y ~~{x))] dFx(x) dy (4.3)
Rx

+ JxkTx [Fe (Tx ;(~(X)) _Fe (Tx ~(~(x))] dFx(x).

This is somewhat similar to the first term of equation (5.4) in the proof of Theorem 3.5

in Van Keilegom and Akritas (1999), and a similar derivation shows that (4.3) equals

- n-
1~!Lx'I(y::; Tx )'!' (Xi, Zi, ~i, y ~~t)) dFx(x) dy

- n-
1~7x; [ry(Zi, ~iIXi) + ((Zi, ~iIXi)Y ~~:~i)] j, (y ~~:~i)) dy

-00

-1~J k ( Tx-m(x))+ n tr x Tx'P Xi, Zi, f:l i, a(x) dFx(x)

-1~ k [ TXi - m(xi)] (Txi - m(Xi))
+ n trXiTxi ry(Zi,f:liIXi)+((Zi,f:liIXi) a(X

i
) Ie a(X

i
)

+ op(n-1/ 2 )

and this equals n-1 L:~=l Wk(Xi,Zil f:l i) + op(n- 1
/

2
). For the second term on the right

hand side of (4.1) we have that

11



Since the distribution of (X, X 2, ... ,XP) is nonsingular, it follows that A has full rank

and using similar techniques as in Theorem 17.8 in Arnold (1981), we also have that An

has full rank with probability 1. Hence, a first order Taylor expansion applied to each

gkl(An) - gkl(A) yields that A~1 - A-I is asymptotically equivalent to

P P P P
l: l:Grs(A) (o'rs - ars) = l: l:Grs(A) f xr+sd(Fx(x) - Fx(x)). (4.4)
r=Os=O r=Os=O

Finally, by the use of Bernstein's inequality (Uspensky 1937), it is seen that

n-1 L~=1 Wk(Xi, Zi, ~i) is O(n-1/2(1ogn)I/2) a.s. Therefore, since the second term on

the right hand side of (4.2) and the integral in (4.4) are O(n-1/
2(logn)I/2) a.s., we can re­

place the factor n(X'X)-1 in the first term on the right hand side of (4.1) by n[E(X'X)]-I.

This finishes the proof.
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