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ABSTRACT - Expressions for the mass burning rate derived recently with the
Integral Analysis are compared with well-known expressions by Joulin, Clavin and
Williams, based on Large Activation Energy Asymptotics. Equivalent results are
found for the asymptotic behaviour of the mass burning rate in the burnt-and un-
burnt gases for the special case in which the flame is subject to a flow with a constant
value of the flame stretch rate K in the flame zone. This applies to the case where
gas expansion is neglected as well as when it is taken into account properly. It is
shown that the Integral Analysis does not only predict identical Markstein numbers
in the asymptotic regions of the flame as the asymptotic methods do, but also de-
scribes the mass burning rate in the complete internal flame structure.

Key Words: Flame stretch, Large Activation Energy Asymptotics, Integral
Analysis

1 Introduction

Flame stretch is an important quantity in the understanding of flame phenomena such as
extinction and the local structure of turbulent flames. Stretch effects were first studied
by Karlovitz et al. (1953) and Lewis and von Elbe (1961) to study flame extinction and
flame stabilization. Markstein (1964) investigated the influence of stretch on flame front
instability. Since these early publications, significant progress has been made in the un-
derstanding of flame stretch and in particular the structure, propagation and dynamics
of stretched flames has been studied in numerous papers using Large Activation Energy
Asymptotics (LAEA), see e.g. Buckmaster (1979), Matalon and Matkowsky (1982) and
Matalon (1983). Clavin and Williams (1982) and Clavin (1985), for instance, rigorously
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derived expressions for the mass burning rate, taking into account density variations in
the flame. This theory has been used for instance in laminar flamelet models for turbulent
premixed flames, see e.g. Peters (1992). Chung and Law (1988) used another approach,
the Integral Analysis (IA), to study stretched flames. Identical phenomena are predicted
with their theory, although the resulting expressions are different and have lead, so far, to
different results. An analysis of differences between the LAEA and ITA theories has never
been performed so far.

In some recent papers, de Goey et al. (1996), (1997a), (1997b) and ten Thije Boonkkamp
et al. (1997a), (1997b) used the IA method to study the mass burning rate of stretched
flames with multiple-species transport and chemistry. A mass-based flame stretch field
has been introduced and expressions containing integrals of the stretch field through
the flamelet are derived describing the flame respons. The mass burning rate of lean
methane/air flames has been computed for the case in which the flame is stabilised in a
flow with a constant value for the density weigthed stretch rate p° K. In the present paper
we will use this approach to show that the LAEA results of Joulin and Clavin (1979) are
recovered with the IA method to lowest-order in the Zeldovich number for constant K
and when density variations are neglected. Furthermore, the same results as Clavin and
Williams (1982,1985) are found to lowest order in the Zeldovich number when density
variations due to the gas expansion are included, i.e. when the stretch rate K is taken to
be constant instead of p°K.

The paper is organized as follos. In Section 2, we summarize the approach of de Goey
and ten Thije Boonkkamp. Expressions are presented for the mass-burning rate my in the
burnt gases of stretched flames. In Section 3, we study the mass burning rate m; for the
special case of a constant stretch rate K and constant density p° in the flame, described
by a one-step irreversible reaction. The analysis shows that the Markstein number M,
found by Joulin and Clavin (1979) is recovered in this case. Variations in the density
p°® caused by gas expansion are studied in the subsequent section. Different results are
found for the Markstein number in the burnt (M,) and unburnt (M,) gases. For the
burnt gases, the result M, of Clavin (1985) is reproduced. The mass burning rate in the
unburnt gases m, is analysed subsequently in Section 5 and the Markstein number M,
of Clavin and Williams (1982) is found in the limit of an infinitely thin flame thickness.
The behaviour of the local mass burning rate in the internal flame structure, predicted
with the TA method, is studied in the final section. It is shown that the IA method
describes the structure of the mass burning rate m(s) in the complete domain of the
flame s, < s < s, between the unburnt (s,) and burnt (s;) flame boundaries. The results
show the equivalence of the LAEA and IA theories and that the LAEA asymptotic results
are recovered from the IA results for infinitely thin flames.

2 Mass Burning Rate of Stretched Flames

A premixed flame is defined as the region in space, where a scalar variable ) assumes
values between the unburnt (),) and burnt (}}) values. For ) we may use for instance
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one of the species mole numbers, which obeys | V) |# 0. In this paper, however, we
choose Y = T. A ’flame surface’ is defined as an iso-plane of Y, i.e. a surface where
Y(x,t) = constant. A local orthogonal coordinate system 5 = (£,(,n) (see Figure 1) is
defined in terms of these flame surfaces. The coordinates £, { constitute an orthogonal
system in each flame surface and 7 is the coordinate perpendicular to the flame surfaces.
The factors he =| ‘Z—’E‘ |, ¢ =] %% | and A, =| -g% | are scale factors, defining the arc-lengths
in the n-coordinate system.

In this coordinate system, a set of quasi-1D stationary flamelet equations for the mass
burning rate m = psg, the N, species mole numbers @; and the temperature 7' can be
derived from the set of 3D combustion equations (de Goey, 1996, ten Thije Boonkkamp,
1997a,b):

0
5-8-(0 m) = —o pK,
0 0 d¢; _ f 1
53—(0m¢1) _8—8(0 pDzm 58—)—0"‘)1 = -0 p.[&QS,, (l— 13 7Ns)’
0 a, X oT
a(a mT)— a(a o 5;) —owr = —opKT, (1)

where the coordinate s is the arc length through the flame, defined by ds = hydn, and
o=|& 3¢ ¥ o v = h{h( is a measure of the local flame surface area. In (1), w; is the chemical
source term of species ¢ and wr 1s the source term of the temperature. Furthermore, A, ¢,
and Dy, denote the thermal conductivity, specific heat and diffusion coeflicient of species
¢ in the mixture, respectively. The set is closed with an equation of state, which, for
constant pressure p, (describing low Mach number deflagarations) may be written as:

N,
i=1

To derive Eq.(1), it has been assumed that terms associated with diffusion fluxes along

the flame iso-planes are negligible compared to the stretch terms, proportional to K (ten

Thije Boonkkamp, 1997a). Although the set (1) describes the internal flame structure

properly, it will be interesting to study the equations for the ’conserved scalars’ without

chemical source terms, i.e. the specific enthalpy H = 3 H;M;$; and the N, element mole
1

numbers ¥; = 3 pjidi:

0, XNOoH
(amH) ER (02;53— -
ZM ( - 1) —(a ——H- %) = —opKH
pa e; ds* ¢, ' Os ’
9 V0 A9y
as(“m¢’)_as(a?p¥ B
9, A 0¢ :
Zﬂ]' —e 83( c a(.i = —0 pK;, (lea""Ne)’ (3)
=1 t 14
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where Le; = pD’\ - is the Lewis number of species ¢, M; the molar mass of species ¢ and p;;
m

the stoichiometry factor indicating the number of atoms of type j in a molecule of type .
In the remainder it will be assumed that the specific heats of all species are equal and con-
stant (cp; = ¢p), so that the specific enthalpy of species i is given by H; = H} +¢,(T' —T%),
H being the enthalpy of formation of species ¢ at reference temperature T*. Then, the
H;’s in equation (3) may be replaced by H}’s, as the thermal contributions to H; then
drop out.

The definition of the stretch rate K, introduced above, is an extension of the usual
definition (Williams, 1975) for flames with a finite thickness and was introduced in de
Goey (1997a) for 2D stationary flames and in de Goey (1997b) for 3D instationary flames.
It is defined as the relative rate of change of the mass M(t) = fy(;p dV(¢) in a small
volume V(t) in the flame, which moves with velocity v of the flame surfaces:

1 dM
K= 4
M dt *)
Note that the flamelet equations in Eq.(1-3) describe transport in the flame perpendicular

to the flame surfaces.

Expressions for the change in flame enthalpy Hy — H, and the element mole numbers
Y;p — ¥ju, caused by flame stretch, can be derived by integrating the corresponding
equations in (3) through the flamelet from the boundary s, in the unburnt gases to the
boundary s; in the burnt gases. In the weak stretch limit the results are given by (de
Goey 1996, ten Thije Boonkkamp, 1997a,b):

Sb

N Ka; 0
_ — ¢ — = — - H* LK iy — Piu h ta
H, — H, (am)bs/a,oI&(H H,)ds ;M,Hz (Le,» Kar) (6% — i) + ho
(5)
and
-1 7 : Ka;
Vit= b = s / OPK (%i=thjn)ds = Zuﬂ (Tor—Kax) (1=:a) + hot, (6)

where the Karlovitz numbers Ka; and Kar are defined by:

Le; 07 70
;= d
Ka CEon o / op K ¢;ds,
sp
= O 70 7
Kar C O)bS/O‘p ds, (M)

with é? and T° the normalized mole fraction and temperature, respectively, defined by

¢? - ¢i,u To _ T° — Tu

50 _
bl
tBY — i Ty — T

. (8)
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The terms kot in Eqs.(5,6) indicate higher-order Karlovitz number terms and the super-
script © denotes quantities, undisturbed by flame stretch.

The mass burning rate m, of stretched flames can be derived using a similar IA procedure.
The analysis leads to the following expression for the mass burning rate in the weak stretch
limit (de Goey 1996,1997a, ten Thije Boonkkamp 1997b):

my a
mp = 1Koz 4 (o~ Ho) g (Inm)
N, P
+ Z(I/)j,b—lﬁj,u)%o— (InmJ) + hot. (9)
5=1 b

Eqgs.(5-9) are quite generally applicable to flames with multiple-species transport and
chemistry models, with K(s) being an arbitrary function in the flame area, as long as
1t remains small enough to neglect second-order Karlovitz terms. Note that it is not
necessary to introduce restrictions with respect to the magnitude of the Lewis numbers
as in the asymptotic theories, where it is been assumed that Le — 1 is small (of order of
the reciprocal Zeldovich number).

3 Comparison with the LAEA theory

The results of this IA approach will now be compared with the results of the LAEA method
of Joulin, Clavin and others. The analysis will be restricted to flat flames (o(s) = 1),
so that mY = m9 Consider a one-step irreversible reaction F — P, with one rate-
determining lean species F and a single constant Lewis number Lexr = Lep = Le. The
coeflicient A\/c, is also treated as a constant. Note that the single element mole number
Y = ¢r + ¢p = ¢r, is constant as F and P have identical Lewis numbers, so that the
last term with the summation in Eq.(9) vanishes. The term with the factor containing
Hy — H, in Eq.(9) can be simplified by evaluating Eq.(5) to yield:

I{a}'
Le

In the derivation of 10) we have used that both species have the same Lewis number, so
that ¢%(s) = ¢%(s) and consequently Kar = Kap. Furthermore, using the chain rule

1 0
)= am

H,-H, = (M}' H_*g_- (15}',1‘ — Mp H;; qS%,b) ( - KaT) + hot. (10)

——(lnm; InmJ) (11)

oH?

for this one-step irreversible reaction together with the relation M Hy ¢ru—Mp Hp ¢, =
cp(TY — T.,) for enthalpy conservation, we can derive from Eq.(9):

my Kar Zel
_m_g =1- I{G,T + ( Te - I{aT)——z— + hot. (12)

The dominant behaviour of m? with respect to the flame temperature TP, given by
my o« exp(—E,/2RT?) has been used here and the Zeldovich number is given, as usual,
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by Ze® = -T(;’r:};—o)zi E, being the activation energy.

In this section, the special case of a constant p°K = (p°K), will be treated. For an
infinitely thin reaction layer (in the limit of infinite activation energy) we may solve the
stretchless 1D equations for the fuel mole number ¢%(s) and the temperature T°(s) from
Eq.(1) in the preheat zone, fixing s, = 0 to the reaction layer without loss of generality
and assuming that s, — —oo:

B(s) = explle s/,
T%s) = exp(s/é;), (13)

where we introduced the flame thickness §; = A\/(m®,). Using this solution for T9(s)
and ¢%(s), the expressions for the Karlovitz numbers in Eq.(7) may be evaluated to give

Kay, = (%)b és for Kar and Kar. Then, Eq.(12) can be rewritten as:

T _ 1 — Kay My + O(Kad), (14)

my
with M the Markstein number, given by:

Le—1 Ze°
T 2 (15)

In 1979 Joulin and Clavin studied the dynamic flame respons with constant density,
leading to a Markstein number for the unburnt and burnt gases equal to

My=1+

My=1+(Le—1) Z; (16)

They assumed that (Le — 1) Ze® = O(1), so that deviations of the Lewis number from 1
are of order z=5. To lowest-order in Ze°, Eqgs.(15) and (16) are therefore equal.

4 Comparison with LAEA: Variable Density

In this section we will repeat the above analysis, but now for the case that K = K, = K,
is constant, while the density p° in the expressions (7) for the Karlovitz numbers varies
as in a non-stretched deflagaration wave with neglegible pressure variation:

’U.T’U. u
p(s) = e = £

T°(s) 1+ 7 exp (%)’ 4"

- —-p0 o
where we introduced the thermal expansion coefficient 7 = Zgni = ﬂ*_pg_”u_ Now, substi-
tuting Eqs.(13) and (17) into Eq.(7) for Kar gives:

exp [ &
Kar ”“Kb/ p(%) ds = ”“K"‘Sf/ dy—ICab< T+l )1(1+7)
mb_ 1+Texp( ) myT l+y T
(18)
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where the relation p, = p)(1 + 7) has been used in the last step.

The expression for Kar can be derived in the same way. Eq.(13) for ¢% and Eq.(17) for
p°(s) is substituted into Eq.(7) for KT“C?-, which gives

Kar p | oo (52) pu K5 Pyt
== / - ds = o T 15w dy. (19)
Le mb B 1 + T exp (E) mb 3 +
This last integral 7 = f yl y dy can be rewritten as follows, using partial integration:
A yLe—l T
I= Ty dy =77 In(1 + 7) — (Le — 1) /yLe_z In(1 + y) dy. (20)
0 0
Note that 7 is convergent for all Le > 0. We thus find
K J In(1 Le
tar = Kar — Kay (Le — 1) (1 + 1) /M—) (y) dy. (21)
Le y? T

0

Combining Eqs.(18) and (21) for the Karlovitz numbers with Eq.(12) then gives for the
Markstein number in the burnt gases:

sz(T_:l) In(147) + ZTO(Le—l) 147) /M(E)Ledax. (22)

T
0

Clavin found the following result in 1985:

Ms = (F22) 1n(1+r)+%6—0( e-1)(1+7)/ln(1”)dx. (23)

x

Clavin assumed in his analysis that (Le—1) is of order 5. To lowest order in the Zeldovich

number, Eq.(22) is therefore equal to the result of Clavin (1985) for My, derived using
LAEA.

5 The mass burning rate in the unburnt mixture

For the mass burning rate m, in the unburnt mixture, an equation equivalent to Eq.(9)
can be derived. This can be done by following the same procedure as for m;, which has
been described in ten Thije Boonkkamp (1997a,b). This procedure then yields

My . 0
—— 1-Kap + (Hb"Hu)a_I{_l? (Inm3)
+ Z(% Pju) ¢° (lnmy) + hot. (24)
i=1
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Kax is given by

Sp Sb

/apOK T° ds = /apOK (T° — 1) ds, (25)

(avmo)us (o0 m9), J

* —
Kap =

u

~ 70 .
with 7° = %"0— the normalized temperature with respect to the burnt mixture instead of
u b

the unburnt mixture, as used in Eq.(7). The results of the IA approach will be compared
again with those of the LAEA theory, so we assume that o(s) =1 and K(s) = K, = K;
is constant. The preferential diffusion terms in Eq.(24), which are proportional to Ze° as

in the previous section, have the same contribution to m,/m? as to my/m{. Instead of
Eq.(12) we thus have

Ka Ze°
=1-Kd} + ( Lef ~ Kar) =~ + hot. (26)
Note that Karlovitz numbers in the preferential diffusion term might be normalised with
respect to the burnt mixture as well, because Kar/Le — Kar = Ka%/Le — Ka}. Using

p°(s) from Eq.(17) and T°(s) from Eq.(13) we obtain for KaZ:

My

0
my,

9 exp(2) -1 -
w=le f W) Z0 o, faot, (27)
m mrexp(%)-}-l J Ty + Y

u_

where the Karlovitz number Ka, = (fnio) 8 = (1 4+ 7) Kay in the unburnt mixture

is introduced. Note that this integral diverges logarithmically as y = exp(s/65) — 0.
This divergence originates from the fact that m, is defined at the unburnt boundary of
the flame, i.e. for s, — —oo. However, K is constant everywhere in the flame area
—00 < § < oo, so the local mass burning rate m(s) keeps on changing for decreasing
s — —oo (this follows from the continuity equation in (1)). The origin of the problem
associated with this divergence is that there is no specific position in the preheat zone,
except at s, — —o0, to define the unburnt boundary of the flame. To tackle this problem,
let us first separate the term responsible for the logarithmic divergence of Ka%. The
consequences hereof will be studied furtheron. We thus write for the integrand in Eq.(27):
y — 1 1+7 1

- S 28
Ty  +y Ty +1 oy (28)

where the integral of the first term converges and the one of the second term leads to the
logarithmic divergence. For a positive value of y,, (or a finite value of s, = é;1n y), we
thus find for Eq.(27), when Eq.(28) is used:

147 Sy

T (1 47) + —), (29)
T 6f

where s, now denotes the position in the unburnt mixture where the unburnt flame

boundary is chosen. It is now possible to evaluate the Markstein number M, in the

unburnt gases from Eq.(26) and the relation

Kar(s,) = Ka, (

My (Sy)

0
m,

= 1 — Kau(sy) My(s.) + O(Kdl). (30)
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Using Eqgs.(29) and (21) in Eq.(26) then gives :

u 1
Ma(sy) = Su g T+

In(1 + z)
5f v T (

z2 T

T

In(1 +7) + %63 (Le — 1) / e dz. (31)

This equation is equivalent to the equation of Clavin and Williams (1982) up to order
Ze% when Le = 1+ O(1/Ze®) is substituted into the integral and when the equation is
evaluated at s, = 0.

6 Discussion

Some of the results, presented in the previous section are studied in more detail to identify
their origin and consequences. First of all, it should be noted that the constant stretch
rate K = K, = K, applied in the last three sections in combination with o(s) = 1, means,

according to the mass conservation equation in Eq.(1), that the ’local’ mass burning rate
m(s) behaves like

m(s) — m(0) = — K / p(s)ds. (32)

A typical example of the behaviour of p°(s)K (continuous line) and m(s) (dashed line) is
presented in Figure 2 for a flat stagnation flame as a funtion of s/6;. When the reaction
layer is infinitely thin and located at s = 0, we may substitute p(s) = p, in the burnt
gases (s > 0), so that Eq.(32) gives for s > 0:
m(s) — m(0) = — K pys=-m®Kas 6i (33)
f
It should be noted that this result for m(s) in the burnt gases, in fact, also follows from

Eq.(12). Evaluating m(s) with Eq.(12) at position s, and subtracting the result m(0) of
Eq.(12) at s = 0 gives

m(sy) — m(0) = —m® (Kar(sy) — Kar(0)) = — K ps /ds = —m®Ka %, (34)
0

where we used that H°(s) — HY is constant for s > 0 so that the contributions induced
by preferential diffusion cancel when Eq.(12) is used to evaluate Eq.(34). Furthermore,
it has been used that 7°(s) = 1 for s > 0 in the equation for Kar. The equivalence of
Eqgs.(33) and (34) shows that Egs.(9) and (12) correctly take into account the dependence
of the result for m; on the position s, in the burnt gases where the burnt flame boundary
is defined. Furthermore, from the equivalence of Eq.(22) for M; and the result found by
Clavin, it becomes clear that Clavin defines the burnt flame boundary to be at s, = 0
where the reaction layer is positioned (see Fig.2).

Let us now study m(s) in the region s < 0. For s < 0 a similar reasoning can be applied.
However, the correct dependence of p(s) has to be used in Eq.(32) and this equation
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cannot be simplified as easy now. However, outside the preheating zone, for s — —oo, we
again find a linear asymptotic behaviour of m(s):

s
;577
where m*(0) denotes the extrapolated value of the linear asymptotic behaviour of m(s) to
s = 0. As in the burnt gases, Eq.(26) for m(s,) describes the same asymptotic behaviour

in the unburnt gases as Eq.(35). Furthermore, it is interesting to note that the linear
dependence of M, on s,, described by the term ?f‘- in Eq.(31) has exactly the same origin

as the linear dependence of Eq.(35). This explains the origin of the divergence, observed
in the previous section once more. Clavins’ result is equal to Eq.(31) for s, = 0. This
means that Clavin et al. in their theory use the position s = 0 of the reaction layer to
indentify the unburnt mass burning rate m,, as well as the burnt mass burning rate ms;.
What they in fact implicitly do is computing the asymptotic behaviour of m(s) in the
(un)burnt gases and extrapolate linearly to the position s = 0 to identify the reported
results for my and m, (see Fig.2). Or, alternatively, they take the limit of an infinitely
thin flame 6; — 0 (reaction layer including preheating zone).

m(s) — m*(0) = — K p, s = —m? Ka, (35)

Fig.2 shows, in our opinion, that the mass burning rate m; in the burnt gases gives a
more accurate representation of the mass burning rate of stretched flames, because the
extrapolated value m, might be quite far away from the m(s) curve. It should be realized,
though, that the reaction layer, is, in practice, also not infinitely thin. The value for m;
then describes again the asymptotic value of m(s) in the burnt gases, extrapolated to the
heart of the reaction layer. In this case, mj; is not on the m(s) curve of Fig. 2 either.
However, as the reaction layer is much thinner than the preheating zone, it is expected
that m, is always closer to the m(s)-curve than m,,.

7 Conclusions

The mass burning rate of stretched flames described by a single irreversible reaction has
been studied. It has been shown that the results of the Integral Analysis, first introduced
by Chung et al.(1988) and elaborated further by de Goey and ten Thije Boonkkamp
(1996,1997), leads to the same results for the Markstein numbers as the theory of Joulin
and Clavin (1979) and Clavin et al. (1982,1985) in case of a constant stretch rate K
through the flame to lowest order in the Zeldovich number. This is true for a constant
density in the flame as well as for a density p°(s) varying according to the gas law. This
analysis shows that the expressions (9) and (24) for the mass burning rate of stretched
flames describe the mass burning rate in the full flame area —oco < 8 < oo and the
asymptotic values are equal to the asymptotic values for the mass burning rate, found
by the LAEA theory. The mass burning rate m; in the burnt gases, seems to be more
appropriate to identify the mass burning rate in stretched flames. It remains to be seen
whether the assumption that the stretch field K(s) can be described by a constant value
K, through the flame is accurate enough to describe the behaviour of real laminar and
turbulent flamelets. In principle it is possible to study the effect of variations in the
stretch rate K(s) as a function of s using the Integral Analysis, presented here.
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Figure Captions

Figure 1: Generalized coordinate system 7 = (£,{,n) in a 3D instationary flame. The
surfaces with constant n are the 'flame surfaces’.

Figure 2: Density p°(s) from Eq.(17) (continuous line) and the mass burning rate m(s)
according to the continuity equation of Eq.(1) (dashed line) as a function of the scaled
distance s/8; from the reaction layer in the flame for a constant stretch rate K. Extrap-
olations m; and m, of the asymptotic behaviour of m(s) for s/é; > 0 and s/6; << —1
to the reaction layer at s = 0 are also indicated.
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