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Electric Field Domains in p-Si/SiGe
Quantum Cascade Structures

Zoran Ikonić, Paul Harrison, Senior Member, IEEE, and Robert W. Kelsall

Abstract—The formation of domains in quantum cascade struc-
tures is one of the mechanisms strongly affecting the operation
of quantum cascade lasers, quantum-well infrared detectors, and
other devices. In this paper, we consider the problem of domain
formation in p-doped Si/SiGe quantum cascades, using a carrier
scattering transport framework. In effect, the hole flow along the
cascade is described via scattering between quantized states be-
longing to neighboring periods, caused by phonons, alloy disorder,
and carrier–carrier interactions. The generation of either periodic
or of nonperiodic domains is studied in uniformly doped cascades,
as well as the influence of modulation doping of cascades on the
domain formation.

Index Terms—Domain formation, quantum cascade structures,
SiGe.

I. INTRODUCTION

B
IASED semiconductor quantum-well cascade structures,

as are used nowadays in intersubband infrared photode-

tectors [1], [2], lasers [3], and Bloch oscillator type devices [4],

[5] are well known to be susceptible to the formation of elec-

tric field domains. The homogeneous electric field in a struc-

ture is broken, due to charge redistribution over individual wells

and the appearance of the associated space-charge contribution

to the potential. The effect is related to the existence of nega-

tive differential resistivity (NDR) of the heterostructure, and is

detrimental for the normal operation of devices. The problem

of domain formation has been addressed in a number of papers

[2], [6]–[17], and methods of avoiding it have also been consid-

ered recently [18]. The NDR is usually ascribed to resonant tun-

neling between quantized states in neighboring wells. However,

current thought puts scattering, rather than resonant tunneling,

as the dominant mechanism of carrier transport in quantum cas-

cade lasers [19]. This can nethertheless bring about NDR, be-

cause various scattering mechanisms depend strongly on rela-

tive alignment of relevant states (depending on the scattering

mechanism), and a suitable bias can considerably enhance the

total scattering rate, and hence the current. Such current peaks

are much broader than those predicted by resonant tunneling. In

this work we consider the formation of stationary periodic do-

mains in p-type Si/SiGe quantum cascade structures.
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II. THEORETICAL CONSIDERATIONS

Hole transport is described via “upstream” and “downstream”

scattering between quantized subbands in neighboring wells,

which are calculated using the 6 6 method including

the full anisotropy of the heavy hole and light hole subbands.

The scattering mechanisms taken into account are deformation

potential (acoustic and optical phonons), alloy disorder, and car-

rier-carrier scattering. Various details of the hole transport cal-

culation in uniformly biased cascade structures have been de-

scribed previously [20], [21], and here we give a brief outline.

All the subbands found in a cascade are grouped into sets which

“belong,” i.e., are formally assigned to its individual periods.

This is based on the wavefunction localization properties: if a

larger fraction of a wavefunction is in a particular period than

in any other, then the state is assigned to that particular period.

This certainly does not imply that a state is fully localized in

the period it is assigned to: The wavefunctions are frequently

spread to some extent over a few neighboring periods, and this

overlap with neighboring states is of crucial importance for the

existence of scattering transport. The formal assignment is im-

portant in order to avoid overcounting or leaving out some of the

states that exist in a long cascade. More technical details on how

this assignment is performed for hole states are given in [20].

The states in a uniformly biased cascade have the translation

invariance property, i.e., by a spatial shift of the wavefunction

by one period and an energy shift by the potential drop per pe-

riod, one gets another real state of the cascade. This property en-

ables one to (re)construct all the states in a cascade, starting with

those assigned to one period and performing the above replica-

tion procedure. By the same token, all periods of a uniformly

biased cascade have identical carrier distributions, so it suffices

to consider explicitly just one period and its interaction with

the (nearest) neighbors, and therefore to handle a small number

of states, rather than all the states of a long cascade simultane-

ously. In order to find the current and carrier distribution over

states in a uniformly biased cascade, one solves the system of

rate equations describing the in- and out-scattering of holes from

the states involved, Fig. 1. These in turn require the scattering

rates between all states, either assigned to the same period or to

neighboring periods. While only the latter type of scattering di-

rectly contributes to the current, the intraperiod scattering takes

part in establishing the hole distribution over the available states,

and thus also affects the current indirectly. The dependence on

scattering rates on both the lattice and carrier temperatures, as

well as on subband populations, are included. The carrier tem-

peratures in each subband are calculated using the energy bal-

ance approach [21], i.e., by solving simultaneously the particle

number and energy balance rate equations. The only assumption

0018-9383/$20.00 © 2006 IEEE
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Fig. 1. Scattering transport model of the quantum cascade structure.

made in this method is that the hole distributions within indi-

vidual subbands are Fermi–Dirac like, with their individual tem-

peratures and Fermi levels; our Monte Carlo simulations [20]

indicate that this is a reasonable approximation for calculating

the current–voltage dependence.

In order to explore domain formation the system of rate equa-

tions, as given in [21], has been modified here to account for

inhomogeneous electric fields in the cascade. The scattering co-

efficients between different pairs of states each depend differ-

ently on the bias field [7]. Here, we make the approximation

of discretizing the Poisson equation, using only the values at

the central points of the wells. The electric field is then piece-

wise-linear. The scattering coefficients between two states be-

longing to neighboring wells depend on the electric field be-

tween these wells. On the other hand, the coefficients between

states in the same well depend on the field inside it, but since

this is not defined within the discretized-Poisson model we use

the average of the fields to the left and to the right (it should be

noted, though, that this dependence is quite weak, in contrast to

the case of interwell scattering coefficients). Taking the set of

states per period, so that labels states within a

particular ( th) period, and labels

states in its right or left neighbors, the rate equations

read

(1)

where the subscripts , and run over all states of the pe-

riod, while denotes the particular well ( and denote the

electric fields to the right or to the left), is the 2-D density

of holes in quantized state of the th well, is the transi-

tion rate from state into state due to all single-hole scattering

rates, and are the transition rates due to

carrier-carrier scattering. Note that only two of the latter type

of processes are given explicitly in (1), others may be written in

the form analogous to the single-hole scattering terms. As dis-

cussed previously [21], due to the translational invariance in a

homogeneous cascade it is sufficient to calculate the scattering

coefficients within a well and toward its right-hand neighbor,

and substitute, e.g., by in (1), but the field at

which this is taken (denoted as “ ”) remains unchanged.

The discretized Poisson equation reads [7]–[13]

(2)

where is the two-dimensional (2-D) acceptor doping density

in the th well, the dielectric permittivity, and the struc-

tural (growth) period, which we hereafter call the unit cell. In

writing (2) the distributed nature of the space charge, which

arises from extension of the wavefunctions over several het-

erostructure layers, is ignored. This widely used approxima-

tion holds well for holes, which generally have more strongly

localized wavefunctions than electrons, and is consistent with

the way in which the wavefunctions are used in the calculation.

A fully self-consistent solution with the delocalized wavefunc-

tions and the interwell potential would be prohibitive here, be-

cause for holes the wavefunction localization is strongly depen-

dent on in-plane wave vector [20].

To solve these equations one may set appropriate boundary

conditions at the contacts [6]–[11]. The potential difference at

the boundaries is simply equal to the applied voltage, but the

contact charge densities (or the current density components

versus bias dependence at the contacts) are not very well

known. There have been a few different approaches in choosing

the contact conditions. For example, in [7] the contacts have

been assumed (i.e., forced in the calculation) to be equivalent

to the adjacent real wells. Despite its approximate nature, it

offers computational simplicity, with carrier injection/extrac-

tion being modeled in the same way as the carrier transport

inside the cascade. A much more sophisticated model, used in

[11], allows for both the neutral and charged region inside the

contact, the boundary between which is determined from an

elaborate self-consistent calculation that considers the cascade

and the contacts simultaneously, but its implementation within

the scattering transport framework would be too complicated.

Simple “Ohmic” contact boundary conditions have also been

employed, with the value of contact conductivity unrelated to

any real conductivity, but rather chosen so to fit the experi-

mental data [10]. This last approach would, within the transport

model used here, require individual contact conductivities for

all the states, and cannot be used because of insufficient experi-

mental data. In any case, the properties of the contact influence

the precise criteria for the domain formation [11], although one

may expect this to be more pronounced in short cascades than

in long ones. In our calculations, therefore, we have used the

first of these approaches [11]. Two different cases for the carrier
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distributions in the contact well were investigated: 1) carrier

distributions set equal to those in the immediately adjacent

wells, and 2) carriers assumed to occupy only the ground

subband of the contact wells. In both cases, the bias-dependent

scattering rates used inside the cascade were also employed for

calculating the scattering into or out of the contacts.

Numerical simulations of domain formation in a cascade

structure conducted in [7] involved finding the steady-state

solution to the system of time-dependent rate equations upon

increasing the bias in small increments, and the initial state

of the system was taken as the steady state at the previous

bias point. The picture of domain formation and evolution

was consistent with earlier views gained by physical insight,

e.g., [2]. These show that a cascade has one low-field and

one high-field region, and the increasing bias expands the

high-field portion at the expense of the low-field one, as one by

one each well switches from the low-field into the high-field

state. More recently there have been detailed studies [12]–[16],

reporting that a homogeneous carrier and field distribution in

an n-type multiple quantum-well photodetector evolves into

a period-doubled configuration, so as to form space-charge

(and field) domains that are periodic and include two structural

periods of the cascade. These results, which appear at odds

with the low/high field domain picture, were also obtained

by evolving the system in time, but under somewhat different

conditions than in [7]: the carrier density was increased (by

illumination) abruptly in the region where domain formation

became possible. Periodic domains may generally include any

number of unit cells, although only the two-cell periods have

actually been found by numerical simulations [12]–[16].

The approach we use in this work to investigate the domain

formation relies on solving the system of nonlinear equations,

(1) and (2), in the steady state. This is computationally more

demanding than tracking the time evolution of the system, but

enables one to find all the solutions and avoid getting trapped

in the first stationary point that the evolving system encounters.

The price to pay is that the size of the system which can be

handled is limited: for more than 12 or so periods it becomes

difficult to find solutions that are remote from the starting point,

which effectively precludes the “finding all solutions” feature.

Certainly, both periodic and nonperiodic domains can be inves-

tigated by this approach.

We consider the periodic case first, and let denote the

number of unit cells per period. The periodicity implies that

and in (1), and similar translations apply

for the scattering coefficients. In the steady-state ,

then, out of the total of algebraic (1) one is linearly depen-

dent on the others, and is replaced by the particle conservation

law: . There are also equations of type

(2), which completes the full system. If the carrier temperatures,

and hence the scattering rates, are known, these may be solved

for unknowns. Since the system is nonlinear, it will

have more than a single solution. Depending on the parameters

(values of the scattering coefficients, bias and doping) all except

one of them may be unphysical (i.e., give negative values for one

or more densities), while the only physically acceptable solu-

tion is the homogeneous one, with each well having an identical

distribution of holes over its quantized states, and with all the

space-charge-induced contributions to the potentials equal to

zero. Alternatively, more than one physical solution may some-

times be found, and this denotes domain formation. It is inter-

esting to note that the charge neutrality (within one period) im-

plicitly appears in the model via the particle conservation law

given above. It is not possible to equate the total density of free

carriers to anything else but the total doping , because the

excess charge would then induce global bowing of the poten-

tial; the domain periods would cease to be identical; hence the

periodic model would fail.

The situation is different for the nonperiodic case. With a set

of fixed boundary conditions all equations in the system (1) are

independent. Moreover, the system (1)–(2) is complete, so in

fact there is no place in it for a constraint which would be equiv-

alent to the charge neutrality: whether or not neutrality occurs

can only arise from the calculation. In a real device, any de-

parture from charge neutrality within the heterostructure itself

would be balanced by the formation of a space charge region

within the semiconductor contact layer, which is not included

in our model.

In actual calculations the scattering coefficients are tabulated

at a number of electric field and hole density values, and these

are then used, via interpolation, to solve the system (1)-(2).

This is because the evaluation of scattering coefficients is com-

putationally very demanding, and root-finding routines require

many function calls, which makes it impossible to execute the

full self-consistent energy balance calculation as many times

as is needed by the root-finding procedure. Technically, dif-

ferent solutions are found by running the root-finder many times

– with a randomly generated starting point in each

run. For each solution found, we note that with the solution(s)

found, the current density is evaluated by accounting for all car-

riers which pass through some reference plane; e.g., the inter-

face between a particular ( th) period and the adjacent, th

period [21].

An approximate “macroscopic” model of domain formation

may be constructed by considering only the field dependence of

the current density , for each period. The latter should be

calculated for different values of carrier density, and it is implic-

itly assumed that the carrier distribution over quantized states

remains the same as in the homogeneous cascade; it is only

the total carrier density in a well that may vary. This approach

greatly reduces the number of equations. In the period-doubling

case, for instance, there are just two equations (one of which is

linear), regardless of the actual number of states in a well

(3)

where is the excess hole charge density in a particular well,

and is its forward field. A comparison between this approx-

imate model and our full, microscopic scattering model is given

in the following section.

III. NUMERICAL RESULTS AND DISCUSSION

In this Section results are presented for a simple cascade

structure having 16 monolayer (4.41 nm) Ge Si wells
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Fig. 2. Current density J versus bias field F calculated for the homogeneous
cascade described in the text, for different values of doping density per period.

and 8 monolayer (2.15 nm) wide Si barriers, grown on a

Ge Si virtual substrate. It has just two low-lying subbands

per period, the ground HH1 and the first excited, LH1 subband;

the next, HH2 subband may be ignored because it is much

higher in energy and almost empty. The LH1-HH1 energy

spacing of 28 meV is primarily determined by the strain in the

quantum-well layers. At a field of 42 kV/cm the HH1 subband

from the preceding (higher) well and the LH1 subband of the

next (lower) well at are aligned. However, for finite

the alignment appears at different fields, because of the

different dispersions of the HH and LH subbands, so the phe-

nomenon of resonance is not so strong as in the case of n-type

heterostructures. As the bias field varies, the spacing between

the LH1 and HH1 subbands of the same well changes only

slightly, and most of the potential drop per period manifests

itself in the displacement of the sets of subbands belonging to

adjacent periods.

The calculated current-voltage characteristics for this struc-

ture, assuming a homogeneous field, is shown in Fig. 2 for dif-

ferent values of doping (i.e., hole) density per period. The cur-

rent depends nonlinearly on the density (and this dependence

varies with the bias), because it is partly due to hole-hole scat-

tering which does not scale linearly with the carrier density. The

NDR occurs between 60 and 70 kV/cm, away from where one

would expect it, based on the simple considerations of align-

ment at and resonant tunneling, and is more prominent

at higher carrier densities.

Nonperiodic domains (one high and one low field portion of

the cascade) were found at the doping level of approximately

cm , with slight variations depending on the

type of contact boundary conditions used. In Fig. 3 we plot the

population of the two subbands around the domain boundary,

which separates the low- and high-field regions. It is interesting

to note that this boundary is not very sharp, but actually ex-

tends over a region covering a few structural periods. This tran-

sition region becomes narrower as the doping increases from

its threshold value, as can be seen by comparing Fig. 3(a) and

(b). The population of the upper subband, from which the

holes scatter more easily into the subsequent period, is consider-

ably smaller in the high-field region. The opposite applies to the

Fig. 3. Charge density in the hh1 and lh1 subbands of quantum-wells
around the domain boundary in the nonperiodic case (dashed), and
in the period-doubled cascade (solid line), with the doping density of
(a) P = 2:5� 10 cm , and (b) 3:5� 10 cm per period.

ground subband, although the relative modulation depth

is smaller. The configurations in which the domains formed did

not have strict charge neutrality, but did not deviate much from

it, either: the charge accumulation at the domain boundary was

partly compensated by a slight depletion elsewhere.

We then searched for periodic domains, as described above,

allowing for a domain periodicity of two or more (up to eight).

For a homogeneously doped cascade, only domains with a pe-

riod of two unit cells were found: imposing a periodicity of, for

example six, produced only three identical two-cell domains,

and the homogeneous solution; on the other hand, imposing a

periodicity that includes an odd number of unit cells delivers

only the homogeneous solution. The two-cell domains occurred

at approximately the same density as the contact-related do-

mains, at cm , as shown in Fig. 4. This is not

surprising, since either type of domain may be viewed as orig-

inating from the modulational instability of the homogeneous

solution. It is interesting to notice in Fig. 3, where the popula-

tion of the two subbands in the periodic case is also shown, that

the variation of subband population for the two types of domain

is quite different: For periodic domains, it is the ground sub-

band population which is more strongly modulated than that of

the upper subband.

Questions which naturally arise, then, are whether periodic

domains may exist in a realistic, contact-terminated structure
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Fig. 4. Range of parameters of a homogeneous cascade where domain
formation of the period-doubling type occurs (crosshatched area). The size of
the electric field redistributed over the two unit cells within the domain period
is also shown (dashed line). The prediction of the simple model (3) is shown
by the dotted line.

of finite extent; can periodic domains arise if periodicity is not

explicitly imposed; and can both types coexist in a sufficiently

long cascade? It is not possible to give definite answers, because

of limitations upon the length of the cascade we can realisti-

cally consider by the present method. In the simulations we per-

formed without the assumption of periodicity, we did find pe-

riodic domains if the upper subband in the contact wells

was populated. On the other hand, if the contacts had only the

ground subband populated we never find a periodic do-

main structure inside the cascades of limited length considered

here. In this respect the existence of periodic domains in a finite

length structure appears to be more sensitive to the properties of

contacts than is the case for the nonperiodic domains.

There is a simple approximate criterion for the critical doping

density (per period) necessary for the formation of stationary

depletion type domains [6]

(4)

where and are the field and current den-

sity corresponding to the peak and valley of the NDR part of

the dependence. Although is not linearly dependent on

, as (4) assumes, the ratio is reasonably

constant, and one may estimate that domain formation would

require cm . There is a similar criterion for accu-

mulation type domains ( is replaced by in the numer-

ator of (4)), and this gives a similar value for the critical density,

because is not too different from in the cascade con-

sidered (see Fig. 2).

The agreement of the above criterion with the critical car-

rier density that we found necessary for domain formation is

very good (in contrast to the simplified model (3) which makes

a considerable error in its prediction (see Fig. 4). Indeed, a better

agreement could hardly be expected, because the model we use

does not assume the equilibrium form of the carrier distribution

over subbands in a period—the actual distribution is in fact quite

remote from equilibrium, with quite different values of carrier

temperatures [21]. The fact that only the 2-cell domains were

Fig. 5. Current density versus field dependence in the homogeneous
configuration and in the case of two-cell periodic domains.

found as stationary solutions agrees with the results obtained

previously [12]–[16] by tracking the time evolution of an ini-

tially homogeneous electron distribution in multiple quantum-

well based photodetectors, with a quite different model from the

one used here. It appears that in realistic cascades the two-cell

domain structure is not just the solution which is most easily

found by the simulation, but is the only possible stationary pe-

riodic configuration (except the homogeneous one) that may

exist under appropriate conditions. This is a consequence of the

screening of the local perturbation in space charge, provided by

the dielectric response of the semiconductor layers. Indeed, if

the permittivity in (2) is artificially reduced to (to be precise,

below 2.3 in the example considered) we find that (1) and (2) de-

liver more complex domain structures than just the uniform and

period-doubled cases. The reduced permittivity, and hence re-

duced screening, means that the influence of the space charge

perturbation extends over greater distances. Under such condi-

tions we do find domain structures comprising three unit cells,

with the structure or , or four unit cells with the

structure or , etc.

[where denotes cells with low field, with high field, and n de-

notes cells with approximately unchanged, external bias field].

Finally, it is worth noting that the two-cell domains may show

long-range modulation instability, which could lead to oscilla-

tory or chaotic behavior [13]–[16], but these aspects of domain

behavior will not be considered here.

As the carrier density increases beyond the critical value, the

range of biases where domain formation is possible gets wider,

as shown in Fig. 4. The perturbation of the local field from the

homogeneous value also increases, with half of the two-cell

period acquiring a smaller field , and the other half

a larger field , where typically ranges between

5%–10% of , as shown in Fig. 4. It is also interesting to note

that the dependence in the period-doubled case becomes

almost flat, though with a mild NDR retained, as shown in Fig. 5.

We have further explored the influence of modulation doping

[unequal ’s in (2)] on periodic domain formation. Here we in-

troduce the doping “super-period” which may be times

larger than the structure unit cell, and also allow for different

distributions of dopants in this super-period. For the case of
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Fig. 6. Range of parameters of the modulation doped cascade (doping
periodicity equal to 2, modulation depth 20%) for which periodic domains
occur.

Fig. 7. Same as in Fig. 6, but for a modulation depth of 100%, for which period
doubling occurs (only the upper branchis shown). The average perturbation of
the electric field in the period 4 domains, with respect to the “homogenous,”
period 2 case, is also shown by the dashed line. The inset shows the well-to-well
electric fields in the (dashed) period 2 and (solid) period 4 cases, at doping where
their relative deviation is the largest.

modulation doping with a periodicity of two wells, we impose

a domain periodicity of four wells. We find two branches of

parameters for which domain formation may occur, as shown

in Fig. 6 for the case of a doping modulation depth of 20%,

meaning that alternate wells are doped to 80% and 120% of the

average value. In the rest of the parameter space only the “homo-

geneous” solution is found, but it should be noted that the field

and charge density in such a solution also alternate in every other

quantum-well, due to the periodic variation of doping density.

Whilst increasing the modulation depth reduces slightly the

range of parameters for which domain formation occurs (Fig. 7),

such domains also become milder, with a much smaller differ-

ence between the electric fields in the initial and period-dou-

bled field configurations than is the case with homogeneous

doping (Fig. 2). The same conclusion applies when increasing

the period of modulation doping. In this respect, the modula-

tion-doped structures may be considered to be less sensitive to

domain formation, at the expense of having a space-charge elec-

tric field already built-in, see the inset in Fig. 7. If the cascade

is designed to have such a large difference between the high

and low field portions acceptable for its operation (i.e., every

other well is “sacrificial”), then it hardly makes any difference

whether domain formation has occured or not.

IV. CONCLUSION

The problem of domain formation in p-doped Si/SiGe

quantum cascades was considered within the carrier scattering

transport framework. Hole transport along the cascade is de-

scribed via scattering between quantized states belonging to

neighboring periods, caused by phonons, alloy disorder, and

carrier-carrier interactions. The influence of modulation doping

of cascades on the formation and properties of domains was

also studied. The model predicts the formation of both periodic

and nonperiodic domains, although the latter only occured with

a periodicity of two quantum-wells, and then only under par-

ticular contact boundary conditions. We found that increasing

the modulation depth does not prevent the domain formation,

but makes it progressively more irrelevant whether domain

formation has occured or not. This is an important point in the

design of p-Si/SiGe quantum cascade laser structures, in which

the number of wells per period is preferably low, and doping is

required to provide a sufficient carrier density for emission.
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