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Abstract

Insurance companies pursue the objective of increasing their technical profit, but in
doing so, they expose themselves to more risks, increasing the variability of their
result. In order to balance the potential profitability deriving from the underwriting
activity with the related risks, insurers typically resort to reinsurance treaties. In
this context arises the problem of finding the optimal treaty which jointly satisfies
multiple objectives, typically represented by risk and return metrics. The classical
approaches consider only the characteristics of the treaty, neglecting the ones of
the reinsurance provider. However, this approach could lead to sub-optimal choices,
since it does not consider counterparty default risk.

The purpose of this thesis is threefold. Firstly, we extend classical formulas of
technical profit of an insurance company to a partial internal model of Solvency
II, including the potential default of the reinsurance counterparty. Secondly, we
develop a stochastic simulation approach that includes counterparty default risk
and potentially other features, for estimating the efficient frontier of reinsurance
strategies for a non-life insurance company. Finally, we propose the application
of a neural network model for finding the efficient frontier in a multi-objective
optimization problem, requiring limited observations and preserving the possibility
of deriving the strategies which generate the Pareto front.

Numerical applications are performed assuming a multi-line non-life insurer with
parameters from the Italian market. The results show the importance of the rating of
reinsurers, i.e. counterparty default risk, for the assessment of the optimal reinsurance
strategies. Moreover, we show how this risk could become an opportunity in case
the reinsurer with high risk offers a discounted price that more than compensate the
potential default effect. Finally, the neural network model offers another perspective
for determining optimal reinsurance strategies, which can be especially useful in case
of high number of potential combinations defining each strategy.
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Chapter 1

Introduction

The choice of optimal strategies in an uncertain setting is a topic object of extensive
academic and professional studies in many different areas. The general objective
consists in finding the strategies which maximize or minimize a certain metric. The
complexity of this analysis increases when the interest is in the joint maximiza-
tion/minimization of more than one metric, defining a multi-objective optimization
(MOO) problem. The reason is that typically there is a trade-off between the multi-
ple objectives, which move in different directions. This kind of problem has been
addressed also in the actuarial sector, where one relevant field of application is in
the definition of optimal reinsurance strategies. The standard approach for dealing
with this problem considers reinsurance treaties as a separate “object” with respect
to their reinsurer provider, neglecting the characteristics of the firm. In this context,
this thesis has the objective of analyzing optimal reinsurance in a coherent framework
which considers both the characteristics of the treaties and also of the reinsurers. The
thesis addresses the problem under multiple aspects and contribute to the literature
in a threefold way. In particular, presenting advantages and drawbacks for each
method, we start from extending closed formulas of non-life insurance stochastic
capital calculation in a context which considers reinsurance treaties and counterparty
default risk. Then, we develop a stochastic model which permits to calculate the
efficient frontier of reinsurance strategies considering default risk in a multi-objective
optimization framework. Finally, we present a neural network approach allowing to
obtain the efficient frontier in the same multi-objective optimization framework, but
that is general enough to be employed also in other contexts.

The thesis is organized as follows. Chapter 2 provides a general overview of the
area and topics object of this thesis. The chapter is divided in three sections, each
one focusing on a specific topic, object of the analysis. We start from a global
presentation of reinsurance treaties, their characteristics and the most common
pricing methodologies. Then we move to the description of counterparty default
risk, starting from the general framework and then moving to two approaches for
modeling this risk, one related to the financial/banking sector and the other to the
insurance one. Finally, we present the current legislative framework which regulates
the insurance sector in EU and its approach to the calculation of risks, with a focus
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on underwriting, reinsurance and counterparty, since it will be a benchmark for our
model. Hence, in this chapter we give all the instruments for understanding the
models developed in the following chapters and the related innovations.

The following chapters present the original research results developed in this thesis.
Chapter 3 describes the general framework of the risk reserve equation and the main
results under classical assumptions. Hence, we present three extensions of the risk
reserve equation accounting for reinsurance treaties, and considering the counterparty
default risk of the reinsurance provider. These extensions are developed in detail for
the case of excess of loss reinsurance, considering specifically an insurance working
in a single segment with a single reinsurer, working in multiple segments with a
single reinsurer and working in a single segment with multiple reinsurers. After
developing and describing the main two moments of these closed formulas for the
extended model, we present a numerical analysis showing some practical empirical
applications of the models. In this way we show how a non-life insurance company
could use these closed formulas for analyzing different reinsurance strategies in a
risk/return framework, enabling to obtain a result in a complex setting without the
need of simulations.

Chapter 4 presents a simulating approach for the estimation of efficient frontier of
reinsurance treaties in a risk/return framework. We present, step by step, a general
framework for simulating the different stochastic components of the extended version
of risk reserve equation and the approach for computing the efficient frontier of
reinsurance strategies under different scenarios. Departing from classical approaches
we consider both the characteristics of reinsurance treaties and their reinsurance
providers. Hence, we present a numerical analysis showing how the general framework
developed in this chapter can be employed in a practical context for efficient strategies
selection.

In Chapter 5 we propose a strategy which takes advantage of Artificial Neural
Network (ANN) in order to estimate the efficient frontier of reinsurance strategies in
the same setting defined in the previous chapter, but requiring a much lower amount
of data. The neural network developed in this chapter provides a feasible approach
for finding efficient combinations in a multi-objective optimization problem, relying
on a much lower amount of data, compared to the stochastic approach of previous
chapter, keeping a high precision. The simplicity and advantages of this model are
then presented in a numerical analysis.

Finally, the Conclusion chapter summarizes the results obtained and the future
potential extensions of this work.
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Chapter 2

Reinsurance, counterparty
default risk and Solvency II

2.1 Reinsurance

2.1.1 General characteristics and main reinsurance contracts

A typical definition of reinsurance is “insurance for insurance companies”. Indeed,
reinsurance is a contract where one party, the insurer, transfers a portion of the risk
related to its activity to another party, the reinsurer. There are many reasons that
justify the use of a reinsurance contract by an insurer. The most relevant are:

• Increase underwriting capacity: an insurer can decrease its technical risks
by means of reinsurance treaties. In this way the insurance company can
increase its underwriting capacity at the same or at a lower risk compared to
the “gross” situation.

• Substitute the equity capital: connected to the previous point, the insurer
can exploit reinsurance for decreasing its equity capital constraint. Indeed,
insurance companies are required to hold a certain amount of capital connected
with their specific riskiness. By means of reinsurance, the insurer can decrease
its risks and consequently free up part of its capital (e.g. the effect of reduction
of underwriting risk under Solvency II is described in Section 2.3.6).

• Stabilize the variability of technical result: the technical result of the
insurance entity is affected by a certain degree of uncertainty. Thanks to
reinsurance it is possible to reduce this uncertainty, at the cost of a lower
expected result.

• Reduce the unearned premium reserve: the technical liability of the
insurance entity is reduced by the quota of risk ceded to the reinsurance
company.

• Provide protection against a catastrophic loss: in case the insurer works
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in some specific lines of business1, where it is exposed to the risk of impact
of catastrophic losses on its result, reinsurance is able to provide a protection
against these extreme events.

Traditionally, it is usually made a distinction of reinsurance contracts depending
on some of their characteristics. A first way for dividing reinsurance contracts is
according to their “type”. Under this categorization we distinguish facultative and
treaty reinsurance.

In facultative reinsurance the parties negotiate and agree on the specific terms for
each of the risks offered by the insurer. In treaty reinsurance the parties negotiate
and agree on a given set of policies which are in the scope of the contract. In this
case it is possible that only one of the two party has the “obligatory” condition as in
the “facultative-obligatory” reinsurance, which permit the insurer to choose which
kind of risk to cede, with the reinsurer obligated to accept.

Another relevant distinction in reinsurance context is according to methods used for
sharing the losses between the two parties. Under this categorization, as reported in
the following list, we distinguish two main categories:

• Proportional reinsurance: contract under which the reinsurer undertakes to
reimburse the insurer a percentage of the cost of claim, equal to the percentage
of risk transferred.

• Non-proportional reinsurance: contract under which the reinsurer under-
takes to reimburse the insurer for losses over a certain amount and up to a
certain limit, according to the conditions defined in the contract.

Under proportional reinsurance the two most relevant treaties employed in the
market are Quota Share (QS) e Surplus (SP).

Definition 1. A quota share is a proportional reinsurance contract, through which
the primary insurance cedes premiums and losses with a cession rate (1 − α) ∈ [0, 1]
to the reinsurer.

In a QS treaty the insurer cedes a constant percentage of premium and losses for
each of its risks. Hence, given α the quota of risk retained by the insurer and (1 − α)
the cession rate, the amount of gross premium ceded from the insurer to the reinsurer
is:

Bre =
∑

k

Bre
k =

∑
k

(Bk(1 − α)) = B(1 − α)

where B denotes the premium earned by the insurer and the sum over k considers
all the contracts in the scope.

Similarly, the amount of ceded claims is:

X̃re =
∑

k

X̃re
k =

∑
k

(
X̃k(1 − α)

)
= X̃(1 − α) . (2.1)

where X denotes the claims borne by the insurer and the sum over k considers all
the claims in the scope.

1In this thesis we use interchangeably the term line of business and segment.
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The second form of proportional reinsurance is represented by the surplus.

Definition 2. A surplus contract is a proportional reinsurance contract, where the
cession rate (1 − αk) ∈ [0, 1] varies by policy k. The share (1 − αk) is a function
of the insured sum SIk, the Retention R > 0 and the number of lines of cover NL
(usually integer, > 0) :

(1 − αk) = 1
SIk

min (max(SIk − R, 0), NL R)

In surplus reinsurance the insurer cedes a specific percentage of premium and losses
for each of its risks. Hence, given αk the quota of risk retained by the insurer for
risk k and (1 − αk) the corresponding cession rate, the amount of gross premium
ceded from the insurer to the reinsurer is:

Bre =
∑

k

Bre
k =

∑
k

Bk (1 − αk)

and the amount of ceded claims is:

X̃re =
∑

k

X̃re
k =

∑
k

X̃k (1 − αk) .

A fundamental element in pricing of proportional reinsurance is the ceded commission,
which represents a quota of premium that is returned from the reinsurer to the
insurer. From a theoretical point of view the ceded commission Cre reimburses
the insurer for the expenses that the firm incurred, in particular those arising from
the acquisition of the contracts. Indeed, the proportional reinsurer is granted a
percentage of the whole gross premium, which includes both a safety and an expense
loading. However, since the reinsurance company actually did not incur in the
acquisition expenses it should not be entitled of that portion of gross premiums. In
practice, the ceded commission works as the main negotiation element in proportional
reinsurance, determining the expected profitability of the contract for the reinsurer.

The simplest method of setting the ceded commission is by means of a Fixed
Commission rate cre. Under this approach, as reported in Formula (2.2), the ceded
commission is deterministic and it is obtained by applying the fixed commission rate
to the ceded claims, irrespectively of the (future) actual amount of claims

Cre = creBre . (2.2)

In this way, both insurer and reinsurer know already at the inception of the contract
the final amount of ceded commission.

An alternative method, much more used in practice, is the Sliding Scale Commission.
This approach is a way to link the ceded commission with the performance of the
treaty. Indeed, the commission is a function of the actual loss ratio (LR) experience
of the portfolio object of reinsurance. The ceded commission is then defined as a
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random variable c̃re, whose value will be known only at the settlement of all the
claims2. In Formula (2.3) the equation of stochastic commission rate is reported:

c̃re = cre

[
1 +

(
1 − L̃R

E[L̃R]

)]
(2.3)

where L̃R represents the stochastic loss ratio and cre the “base” commission rate,
obtained in case the observed loss ratio is equal to the expected one.

In a practical perspective, the following conditions represent a more common structure
of stochastic commission:

c̃re =


cre

1 if L̃R ≤ LR1

cre
1 +

(
cre

2 −cre
1

LR2−LR1

) (
L̃R − LR1

)
if LR1 < L̃R ≤ LR2

cre
2 if L̃R > LR2

(2.4)

where cre
1 and cre

2 represent the minimum and maximum commission rate, respectively.
Similarly, LR1 and LR2 represent two thresholds for the loss ratio. In practice,
under this structure, commission rate is obtained by means of a linear interpolation
of the minimum and maximum commission rate over the corresponding loss ratio
interval. Instead, in case the loss ratio is below (above) the minimum (maximum)
threshold the corresponding minimum (maximum) commission rate is selected.

As reported in Formula (2.5), regardless of the chosen structure, under this approach
the commission is not deterministic, but function of the technical performance of
the insurer.

C̃re = c̃reBre . (2.5)

Another possible alternative methods for defining the ceded commission, often used
in the insurance practice also together with fixed or sliding commission, is the Profit
Commission, which represents a fixed quota of the reinsurer technical result that
is given back to the insurer. In the base case where the commission is established
by only the profit commission we have a deterministic commission rate, applied to
a stochastic quantity, the technical performance, which depends on the stochastic
claims amount.

C̃re = cre max
((

Bre − X̃re
)

, 0
)

. (2.6)

Under non-proportional reinsurance the two most relevant treaties employed in the
market are Excess of loss (XL) and Stop loss (SL).

Before describing these two non-proportional treaties it is useful to define a funda-
mental element for describing non-proportional reinsurance contracts.

2In practice at periodic dates (usually quarterly or yearly) insurer and reinsurer adjust the
commission according to the observed performance at the date.



2.1 Reinsurance 7

Definition 3. Given a random loss X̃, the layer function L(·) with deductible3 d
and limit4 l is defined as:

Ld,l

(
X̃
)

= min
(
max

(
X̃ − d, 0

)
, l
)

= min
(
X̃, d + l

)
− min

(
X̃, d

)
. (2.7)

It is possible to notice that the layer function summarizes the case of modification
of random variables, where a lower and upper limit is imposed (see for instance [52]
for details on effect of coverage modification on claims amount random variable).
Indeed we can write (2.7) as:

X̃d,l =
(
X̃ ∧ (d + l)

)
−
(
X̃ ∧ d

)
=


0 X̃ ≤ d

X̃ − d d < X̃ ≤ d + l

l X̃ > d + l .

(2.8)

In non-proportional reinsurance the loss paid by reinsurer is commonly defined by
means of the layer function, with specific differences according to the contract.

Definition 4. Given a random loss X̃, the “per risk” excess of loss contract, with
deductible d and limit l, is defined as:

X̃re =
∑

r in risk

Ld,l

(
X̃r

)
(2.9)

where the sum over r in risk indicates that the reinsurance layer is applied to each
of the risks in the treaty. For this characteristic it is particularly useful for protecting
against large losses generated from a higher number of exposures.

Definition 5. Given a random loss X̃, the “per event” excess of loss contract, with
deductible d and limit l, is defined as:

X̃re =
∑

e in event

Ld,l

 ∑
loss by event e

X̃e,i

 (2.10)

where the first sum over e in event indicates that all the events included in the
treaty are considered, while the second sum over the loss by event e indicates that
the reinsurance layer is applied to all the losses caused by the same “event” e.

This type of contract is often defined as CAT XL, since the insurer seeks a coverage
against the effects (in term of claims) caused by catastrophic events. The treaty ap-
plies to claims aggregated by event and is useful for protecting against accumulations
originating from catastrophic events, whatever their origin.

3For describing the same element it is often used the term “priority” or “retention”. In this thesis
we will use these names indifferently.

4For describing the same element it is often used the term “cover”. In this thesis we will use
these names indifferently.
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Definition 6. Given a random loss X̃, the stop loss contract, with deductible d and
limit l, is defined as:

X̃re = Ld,l

(∑
k

X̃k

)
(2.11)

where the sum over k considers all the claims of the portfolio in the scope of the
treaty.

This treaty applies to the whole portfolio and is then useful for protecting against
accumulations of losses, whatever originated from large losses or accumulation of
small losses, at portfolio level. Under this contract, since we are considering the
whole portfolio and the corresponding aggregated losses, the values of deductible
and limit are typically defined as a function of loss ratio. The deductible is usually
set at the level of loss ratio (multiplied by gross premium) that the insurer expect
to be able to afford, while the limit is set to a value such that the probability of
incurring in a higher loss is considered “small enough” by the insurer5.

An important characteristic of stop loss treaty is that they could be considered, in
a general sense, optimal. Indeed, in [64] it is shown theoretically that any optimal
reinsurance is such it applies directly to the aggregate claim amount, as a SL treaty
does.

For all the treaties that we have defined above, but in particular for stop loss
reinsurance (due to the size of the risk underwritten), a common practice in the
market is that the risk is underwritten by a pool of reinsurers rather than a single
firm. In practice, a common approach for the insurer that wants to transfer (part
of) its underwriting risks consists in employing a broker for finding the potential
reinsurers interested and the share of risk in which they are interested. Hence, after
the usual negotiation, the insurer, depending on the number of reinsurers and their
conditions, can finalize the treaty. Under this contract each reinsurance company is
liable for the specific layer of risk it has underwritten.

The pricing of non-proportional reinsurance is much more complex compared to
proportional reinsurance. Indeed, for instance in per risk excess of loss, the reinsurer
has to estimate at least the expected value of a part of the distribution of the single
claim amount, but clearly it will be interested also in the higher-order moments.
For these reasons in practice there are some specific methods that can be used for
pricing non-proportional contracts that will be described in detail in Section 2.1.4.

An additional complexity in the pricing of XL reinsurance is related to the typical
presence of specific clauses which modifies the base structure described in Definition
(4)-(5). Annual Aggregate Deductible (AAD) and Annual Aggregate Limit (AAL)
are two of the most common clauses employed in this context. These features modify
the base structure of excess of loss coverage by adding another layer function, as
described in Formula (2.12):

X̃re = LAAD,AAL

(
N∑

i=1
Ld,l

(
X̃i

))
(2.12)

5It shall be noted that a higher limit comes also with a strong increase in the price of the stop
loss treaty. Hence, the insurer has to also consider this constraint when choosing the value.
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where LAAD,AAL is the “external” layer function of AAD and AAL at aggregate
level, Ld,l is the layer function of deductible and limit at single claim level and N
the number of claims.

In practice, the name of these clauses already explains their functionality in a XL
treaty. They limit the coverage offered by the insurance in the year by a certain
level of cumulative deductible and cumulative limit. As expected, since these clauses
limit the exposure of the reinsurance company they result in a reduction of the price
required for the coverage. Simulation approaches are the typical methods for an
insurance company to evaluate the potential advantages and drawbacks of AAD and
AAL, eventually including only one of the two.

Reinstatements are another typical clause present in most of the XL reinsurance
treaties. They represent the number of times that the cover (i.e. limit) offered
by the treaty can be used. In practice a XL treaty with deductible d and limit l
offering no reinstatement implies that the aggregate cost of claims that are ceded to
the reinsurer could be at maximum l. After then, the reinsurance company does
not cover any other claim exceeding the deductible. Actually, a common approach
consists in having the “first” premium (i.e. the premium paid at the inception
of the contract) working as first time for the aggregate cost to exceed the limit.
Then, it is possible to “reinstate” the coverage by paying additional premium, called
reinstatement premium. More precisely, it possible to reinstate just a portion of the
whole cover by paying the proportional quota of reinstatement premium. Regarding
the specificity of this clause it is common practice to have a limited number of
reinstatements that can be bought by the insurance company but, especially for
“low” layers they could also be unlimited. In some countries (e.g. UK), instead,
it is common to have unlimited free reinstatements for some contracts, like motor
third-party liability (MTPL) [62].

2.1.2 General description of pricing of non-life policies

A non-life insurance contract requires the policyholder to pay a premium for the
services offered by the insurer. It could be a single premium, paid upon the signing
of the contract, or consists in multiple premium, paid at fixed dates over the coverage
period. The payment in installments usually takes into account the time value of
money and the probability of insolvency during the following payments, thus being
higher than the corresponding single premium.

In the context of non-life business we typically use three different definitions of
premium depending on the specific element considered: fair premium, pure premium
and tariff premium.

Fair premium is the expected value of the claims that the insurer shall reimburse to
his policyholders, pure premium is the risk premium from the point of view of the
insurer and tariff premium is the amount asked by the insurer for issuing the policy.

More detailed, fair premium represents the amount that the insurer expects to pay,
on average, for a given contract. In practice, no insurer could ask a premium equal
to only its risk component. Indeed, for the “gambler ruin theory” an insurance
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company which sells policies at fair premium would go bankrupt with probability
equal to 1 (see for instance [29] for the mathematical details). Hence, the insurance
company requires an additional amount over fair premium, defined safety loading,
in order to avoid certain ruin. Safety loading can be seen, nomen omen, as this
additional margin needed for covering the cost of claims in excess of the expectation,
in case of an unfavorable development. At the same time, it can also be interpreted
as a “premium for the risk”, i.e. the amount of profit required by the insurer in
order to undertake the risk from the policyholder. Pure premium is then obtained
as the sum of fair premium and safety loading.

Actually, an insurance company bears also expenses connected to its activity, where
the most relevant are acquisition, collection and management costs. Acquisition
and collection expenses are connected with the activity of selling the policies, in
particular the first is linked with the remuneration of the agents selling insurance
contracts and the latter with the costs for the emission of the contract. Finally,
management expenses are connected with all the costs of the insurance activity from
the issuing to the expiration of a policy. For this reasons, an insurance company
requires an additional amount, on top of pure premium, defined expense loading, in
order to have enough resources for covering the expenses it bears. Tariff premium is
defined as the sum of risk premium, safety loading (i.e. pure premium) and expense
loading.

Finally, there is a last premium, which represents the amount actually paid by the
policyholder, and consists in the sum of taxes and other contributions (e.g. road
victim fund) to tariff premium.

Computation of fair premium

There are two main methods for calculating fair premium: empirical approach and
theoretical approach. The first one is based on the empirical observations of a
given portfolio of policies, premiums and claims, in order to calibrate the premium.
The second one is based on the selection and application of a theoretical model for
describing the distribution of the aggregate amount of claims of a given portfolio of
risks.

Hence, under the empirical approach, taking advantage of the historical claim
information, the insurer can compute the fair premium according to:

P E =
∑m

i=1 Zi

E
= m

E︸︷︷︸
expected

frequency

1
m

m∑
i=1

Zi︸ ︷︷ ︸
severity

(2.13)

where m represents the observed number of claims, Zi the cost of the i-th claim and
E the exposure of the whole portfolio of policies. The two terms of the product
represent (observed) frequency and (observed) average cost of claim.

Hence, Formula (2.13) shows that it is possible to decompose the fair premium P E

according to its components of frequency and severity, where the first term represents
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the expected number of claims for unit of exposure and the second one the expected
cost of the single claim.

The theoretical approach assumes that the (random variable) aggregate claim amount
can be described according to a collective risk model (see for instance [29] for details).

This approach makes the following assumptions:

(i) The claim sizes are independent of each other: Z̃i ⊥ Z̃j∀i, j.

(ii) The claim sizes are identically distributed: F (Z̃i)
d=F (Z̃)∀i

(iii) The number of claims and the claim sizes are independent: K̃ ⊥ Z̃i.

in order to describe the aggregate claim amount according to:

X̃ =
K̃∑

i=1
Z̃i .

Under these hypotheses it is possible to obtain the moments of the aggregate claim
amount. In particular, remembering the definition of fair premium, we have that
the first moment (i.e. the mean) of this random variable corresponds to the fair
premium under the theoretical approach, and is obtained as reported in Formula
(2.14).

P T = E
[
X̃
]

= E
[
K̃
]
E
[
Z̃
]

. (2.14)

Under this modelling assumptions it is also possible to derive the other moments.
In Formula 2.15 and 2.16 two of the most relevant moments are reported: variance
and skewness

V ar
[
X̃
]

= E
[
K̃
]

V ar
[
Z̃
]

+ V ar
[
K̃
]
E
[
Z̃
]2

, (2.15)

γ(X̃) =
E
[
K̃
]

V ar
[
Z̃
]3/2

γ
[
Z̃
]

+ 3V ar
[
K̃
]
E
[
Z̃
]

V ar
[
Z̃
]

+ V ar
[
K̃
]3/2

γ
[
K̃
]
E
[
Z̃
]3

V ar
[
X̃
]3/2 .

(2.16)

Risk measure and premium principles

In order to describe the premium principles that can be used to price a risk, we need
to give a proper definition of risk measure. Following the work of Artzer et al. [7]
we can give a proper definition.

Definition 7. A risk measure of the random loss X̃, denoted by ϱ(X̃) is a real-valued
function ϱ : X̃ → ℜ where ℜ is the set of real numbers.
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Moreover, [7] suggest four axioms that a risk measure is required to satisfy in order
to be a coherent measure of risk. These are:

• Translational invariance: given a loss variable X̃ and a (non-negative)
constant a, ϱ

(
X̃ + a

)
= ϱ

(
X̃
)

+ a.

• Subadditivity: given loss variables X̃ and Ỹ , ϱ
(
X̃ + Ỹ

)
≤ ϱ

(
X̃
)

+ ϱ
(
Ỹ
)
.

• Positive homogeneity: given loss variable X̃ and a (non-negative) constant
a, ϱ(aX) = aϱ

(
X̃
)
.

• Monotonicity: given loss variable X̃ and Ỹ such that X̃ ≤ Ỹ under all states
of nature, ϱ

(
X̃
)

≤ ϱ
(
Ỹ
)
.

We can now present the most common premium principles, namely expected value,
standard deviation and variance6.

Under the expected value premium principle, the pure premium is computed as
the sum between the expected value of the random variable and a safety loading,
where also the latter is a function of the mean. In Formula (2.17) it is reported the
expression

πev

(
X̃
)

= (1 + λev)E
[
X̃
]

(2.17)

where the parameter λev represents the safety loading coefficient.

In general, this approach can be used in traditional insurance, but it is not practicable
for a reinsurer. Indeed, using only the first moment of the random variable we do
not consider the variability and the other characteristics of the distribution. This is
critical for reinsurance companies, especially in non-proportional treaties, where the
variability of random loss is a fundamental element.

It shall be noted that, in case we set λev = 0, we obtain a risk measure that return
the mean of the random variable. This special case, where the premium correspond
to the expected loss, represents the fair premium.

Under the standard deviation premium principle, the pure premium is function of
two moments of the random variable: expected value and the squared root of the
variance. Hence, in this case, the safety loading depends on the standard deviation
of X, σ

[
X̃
]
. In Formula (2.18) it is reported the expression

πsd

(
X̃
)

= E
[
X̃
]

+ λsdσ
[
X̃
]

(2.18)

where the parameter λsd represents the safety loading coefficient.

Finally, the variance premium principle is function of mean and variance of the
random variable. In Formula (2.19) it is reported the expression

πvar

(
X̃
)

= E
[
X̃
]

+ λvarσ2
[
X̃
]

(2.19)

6Another relevant premium principle, especially in the reinsurance context, is the one presented
in [80] and based on the Wang transform.
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where the parameter λvar represents the safety loading coefficient.

In practice, we can observe that the premium principles presented above are all
function of the same random variable. Hence, it is possible to derive the equivalent
safety loading coefficient according to different risk measures. This can be useful in
case we want to charge the same loading according to different premium principles.

These premium principles are all based on the moments of the same distribution,
then if we choose one premium principle we can find the loading parameters of the
other principles that return the same premium. In Formula (2.20) we show the
relationship between each safety loading coefficient of the three premium principles

πev

(
X̃
)

= πsd

(
X̃
)

= πvar

(
X̃
)

E
[
X̃
]

(1 + λev) = E
[
X̃
]

+ λsdσ [X] = E
[
X̃
]

+ λvarσ2 [X]

λevE
[
X̃
]

= λsdσ
[
X̃
]

= λvarσ2
[
X̃
]

λev = λsdCoV (X) = λvar

σ2
[
X̃
]

E
[
X̃
]

λsd = λev

CoV (X̃)
= λvarσ

[
X̃
]

λvar = λsd

σ
[
X̃
] = λev

E
[
X̃
]

σ2
[
X̃
] .

(2.20)

In practice it is possible to obtain the same pure premium under the three different
premium principles presented by modifying the safety loading coefficients accordingly.
These equivalences will then be used in the numerical part of Chapter 4 in order to
calibrate the reinsurer safety loading coefficient using a different premium principle
compared to the insurer one.

An important analysis that shall be made on these premium principles regards how
they are affected by changes in the aggregate claim amount X̃. If we compute the
derivative of each premium principle with respect to E [X] we obtain the effect that
a change in the expected value of the random aggregate loss has on the charged
premium. If we instead compute the derivative of the premium principle with respect
to V ar [X] we obtain the effect of a change in the variance on the charged premium.

It follows that the effect of a change in expected value and variance on the expected
value premium principle are:

dπev(X̃)
dE
[
X̃
] =

d (1 + λev)E
[
X̃
]

dE
[
X̃
] = (1 + λev) ,

dπev(X̃)
dσ2

[
X̃
] =

d (1 + λev)E
[
X̃
]

dσ2
[
X̃
] = 0
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which means that the price increases linearly for an increase in the expected loss,
but it is unaffected by changes in variance.

Finally, the effect of a change in expected value and variance on the standard
deviation premium principle are:

dπvar(X̃)
dE
[
X̃
] =

dE
[
X̃
]

+ λsdσ
[
X̃
]

dE
[
X̃
] = 1 ,

dπvar(X̃)
dσ2

[
X̃
] =

dE
[
X̃
]

+ λsdσ
[
X̃
]

dσ2
[
X̃
] = 1

2λsd .

Conversely, the effect of a change in expected value and variance on the variance
premium principle are:

dπvar(X̃)
dE
[
X̃
] =

dE
[
X̃
]

+ λvarσ2
[
X̃
]

dE
[
X̃
] = 1 ,

dπvar(X̃)
dσ2

[
X̃
] =

dE
[
X̃
]

+ λvarσ2
[
X̃
]

dσ2
[
X̃
] = λvar .

We can observe that the expected value premium principle increases linearly with
the mean (with a slope of 1 + λev). Similarly, also the other two premium principles
increase linearly with the mean, but at a lower slope (1). However, more importantly,
we observe that the expected value premium principle is not affected by changes in
the standard deviation/variance of the random variable. In practice, a change in the
value of the standard deviation do not provide any change in the expected value
premium principle. The standard deviation and variance premium principle, instead,
increase linearly for changes in the variance by 1/2λsd and λvar respectively.

These results show why for an excess of loss reinsurer, whose risk is much more
related to the variability of the random loss rather than the mean, it is much more
coherent to apply a standard deviation/variance premium principle.

2.1.3 Pricing of a quota share treaty

The main element used in the pricing of a quota share treaty is the ceded commission.
Indeed, since QS works through a proportional cession of premium and claims, ceded
commission is the only element for creating a discrimination in the pricing.

In general we can assume that the reinsurer has a certain target of technical profit
from the treaty. In order to compare different possible treaties, the “monetary”
technical profit can be expressed as a margin on premium. The reinsurer can then
calibrate the ceded commission as a function of this margin. Since we are dealing
with random variables this will be more precisely an expected margin, and will be
obtained as reported in Formula (2.21).
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E [M ] =
E
[
Bre − X̃re − C̃re

]
Bre

=
E
[
Bre − X̃re − Brec̃re

]
Bre

=
Bre − E

[
X̃re

]
− BreE [c̃re]

Bre

= 1 −
E
[
X̃re

]
Bre

− cre,∗

(2.21)

where M is the margin.

In previous formula we have assumed the most general case of stochastic ceded
commission, but clearly the same logic holds also for the fixed commission case. At
this point, as reported in Formula (2.22), it is possible to derive the ceded commission
as a function of the required margin:

cre = min

0, 1 −
E
[
X̃re

]
Bre

− E [M ]

 (2.22)

which also includes a constraint, imposing a non-negative value.

It shall be noted that this formula does not consider any “external” expense to pay,
for instance, for the brokerage activity. Anyhow, these eventual costs do not change
the logic of the formula, but simply add other elements reducing the technical profit.

Differently, in practice a QS treaty could include some additional loss sensitive
features (e.g. profit commission, loss corridor, etc.) which modify the base structure.
In those cases, it is not always possible to express the commission rate directly in a
closed form, but it could be necessary to perform a numerical simulation. In [26]
some examples of pricing of a quota share treaty with stochastic ceded commission
and other features are reported.

2.1.4 Pricing of an excess of loss treaty

Differently from quota share, the pricing of an excess of loss treaty requires a much
more technical analysis. Indeed, as already explained in Section 2.1.1 a XL treaty
covers the risks related to the tail of the single claim distribution. As a consequence,
an incorrect pricing could have huge impacts on the reinsurer technical result and
then on its capital.

Typically, the pricing of a XL reinsurance contract is based on the following two
approaches7:

• Experience pricing: it based on the use of past observations to calibrate
the premium.

• Exposure pricing: it is based on the use of the so-called “exposure curves”
to calibrate the premium.

7In the reinsurance terminology these approaches are more often reported as experience rating
and exposure rating. In this thesis we use the terms interchangeably.
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Experience rating, coherently with its name, is an approach for pricing reinsurance
treaties based on the assumption that future expectation can be predicted by means
of past experience (properly adjusted). For instance, assuming that the reinsurer
calibrates the premium according to a traditional “premium principle” approach,
it shall calculate the moments of the random variable “cost of single claim” (also
called claim size) Z̃ in the layer where reinsurance operates. More specifically,
remembering the definition of layer and Formula (2.8), for a layer of range (d, d + l),
with d deductible and l limit respectively, the random variable describing the cost of
single claim borne by the reinsurer is defined as:

Z̃d,l = min
(
max

(
Z̃ − d, 0

)
, l
)

=


0 Z̃ ≤ d

Z̃ − d d < Z̃ ≤ d + l

l Z̃ > d + l

Hence, expected value and variance of the aggregate claim amount borne by the
reinsurer can be derived using the decomposition between number of claims and
severity, as reported below:

E
[
X̃d,l

]
= E

 K̃∑
i=1

Z̃i,d,l

 = E
[
K̃
]
E
[
Z̃d,l

]
,

V ar
[
X̃d,l

]
= V ar

 K̃∑
i=1

Z̃i,d,l

 = E
[
K̃
]

V ar
[
Z̃d,l

]
+ V ar

[
K̃
]
E
[
Z̃d,l

]2
.

At this point, the reinsurance company can choose the premium principle for
calibrating pure premium to charge to the insurer for underwriting its risks. In
practice, the reinsurer requires past observations in order to fit the appropriate
frequency and severity model necessary for estimating the mean and variance of the
aggregate claim amount and consequently the required premium

Exposure pricing does not rely on previous experience history, but on the so-called
“exposure curves”, which are based on the severity curves of a large number of insurer.
In practice the reinsurer takes advantage of the past information obtained from all
its “clients” and use them to calibrate these curves. Hence, it applies this approach
in particular when the data of the specific insurer is not sufficient or enough reliable
to be used for experience pricing.

Formally, exposure curves indicate the quota of retained risk by the insurance
company for each level of the deductible, expressed in percentage of the insured sum.
The construction of exposure curves and the strength of their application relies on
the fact that there is a relation between these and severity curves which permits to
calculate one given the other. In particular, defined with x the percentage of loss
respect to the insured sum (maximum value), in Formula 2.23 it is described the
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relationship between exposure and severity curves:

G(u) =

u∫
0

(1 − F (x)) dx

E
[
X̃
] (2.23)

where G(u) and F (x) are the cumulative distribution function (c.d.f.) of exposure
and severity respectively (for a more detailed description of the relation between
exposure curve and severity curve and how these curves are constructed refer to [62]).
Hence, it is possible to exploit this relation for pricing non-proportional treaties.

It shall be noted that, similarly to QS, even more in non-proportional treaty as
XL could be present some specific clauses that modify the result and for which it
is not always possible to develop a closed model. Hence, it is usually necessary to
take advantage of Monte Carlo simulation approaches in order to estimate the effect
of the many possible clauses present in the contract (e.g. reinstatement, annual
aggregate limit, etc.) and compute the premium accordingly. See for instance [56]
for an explicative description of excess of loss pricing with loss sensitive features in
the context of exposure rating.

Effect of reinsurance layer segmentation

We now analyze the effect of segmenting a given reinsurance layer into multiple sub-
layers. In practice, we move from a case where there is only one reinsurer covering
a loss layer to the case where there are multiple reinsurers covering “together” the
same layer. According to the premium principle chosen by the reinsurer there will
be a different effect on the cost of coverage charged to the insurer.

In order to describe these differences on the pure premium, first of all we show
that fair premium is not affected by the number of reinsurers. Indeed, since we are
simply dividing the same layer into multiple sub-layers, we have no impact on the
total premium. Formula (2.24) shows that the sum of the expected aggregate claim
amount of N sub-layer is equivalent to the expected aggregate claim amount of the
layer as a whole.

N−1∑
h=0

E
[
X̃re

d+h l
N

, l
N

]
= E

[
N−1∑
h=0

X̃re
d+h l

N
, l

N

]
= E

[
X̃re

d,l

]
(2.24)

where, for simplicity, we have assumed that each layer has the same limit.

However, as anticipated, the cost of XL premium in presence of multiple reinsurers
compared to the single reinsurer case depends on the used premium principle. For
the case of the expected value premium principle and a single reinsurer for the whole
layer the premium is obtained according to Formula (2.25).

Bre = E
[
X̃re

]
+ βE

[
X̃re

]
(2.25)

where β represents the safety loading coefficient.



18 2. Reinsurance, counterparty default risk and Solvency II

Instead, if there are R reinsurers, each one covering a portion of the whole layer,
and all applying the expected value premium principle, the total premium paid by
the insurer is obtained according to Formula (2.26)

Bre =
R∑

r=1

(
E
[
X̃re(r)

]
+ βE

[
X̃re(r)

])

=
R∑

r=1
E
[
X̃re(r)

]
+ β

R∑
r=1

E
[
X̃re(r)

]
= E

[
X̃re

]
+ βE

[
X̃re

]
.

(2.26)

This result shows that, for the properties of the expectation, the segmentation of
the layer has no effect in case the reinsurance companies apply the expected value
premium principle.

For the case of the standard deviation premium principle and a single reinsurer for
the whole layer, the premium is obtained according to Formula (2.27)

Bre = E
[
X̃re

]
+ βσ

[
X̃re

]
. (2.27)

Instead, if there are R reinsurers, each one for a portion of the whole layer, and all
applying the standard deviation premium principle, the total premium paid by the
insurer is obtained according to Formula (2.28)

Bre =
R∑

r=1

(
E
[
X̃re(r)

]
+ βσ

[
X̃re(r)

])

=
R∑

r=1
E
[
X̃re(r)

]
+ β

R∑
r=1

σ
[
X̃re(r)

]

= E
[
X̃re

]
+ β

R∑
r=1

σ
[
X̃re(r)

]
.

(2.28)

Hence, the two approaches lead to a different “total premium”. It is possible to show
that, in this case, segmenting the layer creates an increase in the premium charged
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to the insurer equal to:

β
R∑

r=1
σ
[
X̃re(r)

]
− βσ

[
X̃re

]
≥ 0

R∑
r=1

σ
[
X̃re(r)

]
− σ

[
X̃re

]
≥ 0

R∑
r=1

σ
[
X̃re(r)

]
− σ

[
R∑

r=1
X̃re(r)

]
≥ 0

R∑
r=1

σ
[
X̃re(r)

]
−

√√√√√ R∑
r=1

σ2
[
X̃re(r)

]
+
∑
r ̸=s

cov
[
Xre(r), Xre(s)] ≤ 0

(2.29)

where the equivalence is reached only in case the correlation coefficient between the
aggregate claim amount of reinsurer r and s is ρr,s = 1, ∀r, s.

For the case of the variance premium principle and a single reinsurer for the whole
layer, the premium is obtained according to Formula (2.30).

Bre = E
[
X̃re

]
+ βσ2

[
X̃re

]
. (2.30)

Instead, if there are R reinsurers, each one for a portion of the whole layer, and all
applying the variance premium principle, the total premium paid by the insurer is
obtained according to Formula (2.31)

Bre =
R∑

r=1

(
E
[
X̃re(r)

]
+ βσ2

[
X̃re(r)

])

=
R∑

r=1
E
[
X̃re(r)

]
+ β

R∑
r=1

σ2
[
X̃re(r)

]

= E
[
X̃re

]
+ β

R∑
r=1

σ2
[
X̃re(r)

]
.

(2.31)

Hence, the two approaches lead to a different “total premium”. It is possible to show
that the segmentation of the layer creates a decrease of cost for the insurer equal to:

β
R∑

r=1
σ2
[
X̃re(r)

]
− βσ2

[
X̃re

]
≤ 0

R∑
r=1

σ2
[
X̃re(r)

]
− σ2

[
X̃re

]
≤ 0

R∑
r=1

σ2
[
X̃re(r)

]
− σ2

[
R∑

r=1
X̃re(r)

]
≤ 0

R∑
r=1

σ2
[
X̃re(r)

]
−

R∑
r=1

σ2
[
X̃re(r)

]
−
∑
r ̸=s

cov
[
Xre(r), Xre(s)

]
≤ 0
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where the equivalence is reached only in case ρr,s = 0, ∀r, s.

2.2 Counterparty default risk

2.2.1 General description of counterparty default risk

All the time an agent enters in a contractual agreement it is exposed to the risk
that the other party will not fulfill their contractual obligations. In a more economic
context, we usually refer to this situation when the agent is exposed to a “monetary”
risk, like a receivable, a bond, a load, etc. and consequently the breach of the deal
or the default of the counterparty generates a loss to the agent. This kind of risk
is evidently present in all the business, but it has a major relevance for a financial
institution, and indeed, most of the models for describing and assessing it comes
from financial literature. Generally, the aim of these models is to measure the loss in
case of the occurrence of the default event. There exist also some specific approaches
with other additional objectives, but the main elements for modeling counterparty
risk are typically the same. In the following we will briefly present these elements
and then explore in more detail a financial and an insurance model for counterparty
default risk.

A quite general formula for describing the loss related to counterparty default is
expressed Formula (2.32) and presents the three main elements of this risk:

Loss = EAD (1 − RR) p = LGD p (2.32)

where EAD represents the Exposure At Default, p the Probability of Default and RR
the Recovery Rate in case of default. Sometimes, instead of using the first equality,
it is used directly the second formulation, which considers together the exposure at
default and the percentage not recovered in the Loss Given Default (LGD) term.

The starting point of counterparty risk consists in a monetary exposition against
another party, which could default on its obligations. In practice, we are not
interested in the exposition in general but only on the exposure at default, which
represents the exposition that the agent has against the other party at the moment
of default.

In the financial context, the exposure is often the residual value of a financial
instrument. In the insurance context, the exposition is represented by the credit
that the insurer holds against the reinsurer, which, in turn for the premium received,
shall indemnify the insurer for claims in the scope of the reinsurance treaty8.

The probability of default, indicated with p can be generally defined as the probability
that the borrower or debtor defaults on its payment obligations. This element has
a fundamental importance for estimating the expected loss that could derive from
a credit position against a single or a group of counterparties, and consequently

8In this context we are limiting our analysis to the main counterparty risk for a non-life insurance
company. Clearly, an insurer holds a credit and then a counterparty risk also against other subject,
like agents or other providers, but these are typically less relevant.
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also impacts the pricing of the loan/credit. However, it is not easy to estimate the
value of this quantity for a generic firm. Some of the most relevant reasons are
the limited number of events for building a model, the change in the “definition of
default” over time (making past data less comparable) and unavailability of specific
firm information.

There are three main methodologies which have been developed in literature for the
estimation of probability of default: “accounting analytic approach” (rating agencies),
statistical methods and option-theoretic approach. The first approach, as suggested
by the name, consists in the analysis of the accounting information of a firm in order
to assess its credit quality. In particular, the approach uses financial ratios, coming
from accounting/financial data (e.g. leverage ratio, stability of earning and cashflows,
etc.) and complement the evaluation with the judgement of industry experts, in
order to derive a rating which takes into account also human expertise. Rating
agencies, whose main activity consists in the evaluation of the credit quality of firms,
typically follow an approach based on the accounting analytic one (with much more
elaborated procedures) for assigning the rating based on their estimated probability
of default. The outcome of this approach is a label (usually connected with an
alphabetic ordering) which identify the credit quality of a firm, where a “low” letter
(e.g. AAA) corresponds to a low probability of default. However, a rating purely
based on a qualitative (categorical) element could not be applicable for instance
for the simulation of default events. Hence, in practice the main rating agencies
(e.g. Moody’s Investor Service, Standard & Poor’s and Fitch Ratings) publish
historical data on the default probability for each of their rating, creating then
a matching between the (qualitative) rating and the corresponding (quantitative)
probability of default. Moreover, they also provide data on the transition probability
to different ratings classes, at different time horizons. In a multi-year perspective
this transition matrix is particularly helpful, since we are able to analyze the possible
migration from the initial credit rating and the consequent change in the probability
of default over time. For instance, in the context of corporate bond it could be a
really relevant element, since a change of rating would also impact the price of the
financial instrument.

The rationale behind the creation of a matrix of transition probabilities is that
a firm, as a normal consequence of the randomness of its business, could change
its financial performance (in better and worse), consequently impacting its rating.
Indeed, in general the rating of a firm is not fixed forever, but it changes according
to the outlook of the firm. This element can be seen exactly as a transition matrix
of a Markov chain representing the probability that a firm with a certain rating at
time t would move to another rating at time t + 1. An example of this transition
matrix, as developed by Standard & Poor’s [76], is reported in Table 2.1.

Coming back to the methodologies for estimating the probability of default, the
statistical methods, differently from rating, are quantitative models which aim at
estimating the default “likelihood” of a firm. In general, these models use past
information in order to “understand” which elements are the main drivers that
determine a default. In the literature there are many approaches developed for
estimating the probability of default of a firm, based on historical data. Linear
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Table 2.1. Average One-Year Corporate Transition Rates (1981-2021) - Europe (in %), as
from [76].

AAA AA A BBB BB B CCC/C D NR
AAA 87.13 9.11 0.46 0.11 0.00 0.00 0.11 0.00 3.08
AA 0.26 86.27 9.49 0.52 0.00 0.00 0.00 0.00 3.46
A 0.01 1.75 88.02 5.24 0.14 0.03 0.00 0.03 4.78
BBB 0.00 0.08 3.91 85.70 3.34 0.26 0.08 0.06 6.56
BB 0.00 0.00 0.09 5.05 74.88 6.86 0.37 0.34 12.40
B 0.00 0.00 0.02 0.20 4.77 73.52 5.06 1.96 14.47
CCC/C 0.00 0.00 0.00 0.20 0.00 12.55 44.33 25.91 17.00

discriminant analysis was one of the first developed and consists in a classification
model with the objective of identifying the variables that are better able to classify
firms according to the occurrence of default event. The most famous example is
represented by the Z-score developed by Altman in [1], which proposes a score,
based on a linear function of the relevant firm variables, which can be used for
obtaining default likelihoods. Other approaches consist in principal components
analysis, logistic regression, hierarchical classification models, etc., all of these aiming
at grouping firms according to their degree of default likelihood. More recently,
models based on neural network and other machine learning approaches started to
be developed also in this context. However, one of the most relevant limit in their
application is connected with the fact that they perform the best when there is an
high amount of data to be feed. Consequently, while these models are generally
developed successfully in “customer” credit risk (where more data is available), the
limited amount of data at firm level reduces their potential applicability in this
context.

Finally, the last most relevant element in the context of counterparty default risk is
recovery rate, which represents the quota of exposure that is recovered in case of
occurrence of the default event. The estimation of this element for modeling purposes
is considered even more difficult than probability of default. In practice, one of
the most relevant problem related to their estimation is that there are usually no
“objective valuations” of recoveries. Moreover, the recovered value could change in
the time between the “announcement of default” to the full settlement (which could
take a relevant amount of time), increasing the complexity in creating an estimate
based on homogeneous data. In general, the empirical analysis on the recovery rates
of corporate bonds (see for instance [22] or [2]) show that there is a correlation
between the expected recovery and the seniority of the bond. In particular, a higher
bond seniority also implies a higher expected recovery. The volatility, measured by
the standard deviation, instead does not seem to show a clear dependence. Regarding
the distribution of recovery rate, Beta distribution is typically the most appropriate,
since it assures a support between 0 and 1 (coherently with the constraint of loss
rates) and its parameters can be defined according to mean and standard deviation.
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2.2.2 CreditMetrics: a financial model for counterparty default risk

Most of the models for credit risk derives from financial literature, since it is the area
where this kind of risk has the most relevance. Indeed, financial institutions, like
banks, lend money to different counterparties with a certain (unknown) probability of
default, which in turn could not return them back. For an insurance company instead
this risk, in principle, is less relevant for its main business, since, thanks to inversion
of the economic cycle, it finds themselves in the situation of borrower, rather than
lander, against policyholders. In practice, however, counterparty default risk has
a certain relevance also for insurance companies because, in their management of
business, they also find themselves in the situation of lenders, for instance when they
cede premiums to a third-party (e.g. a reinsurance company) in order to reduce part
of their risks. CrediMetrics is one of the many methodology developed for assessing
counterparty default risk.

The two main risks of a financial institution are market risk and credit risk, where
the first one is defined as “the risk of losses arising from movements in market prices”
and the second one as “the potential that a bank borrower or counterparty will fail
to meet its obligations in accordance with agreed terms” [15].

Indeed, historically CrediMetrics follows the logic of another model also developed
by JP Morgan, RiskMetrics, which had the objective of estimating the exposure
to market risk. However, while the logic underlying the two models is similar, the
approach followed for the development of CreditMetrics is different, because of the
characteristics of counterparty risk compared to other risks, like the market one.
Indeed, for assessing market risk there is “an abundance of daily liquid pricing data
on which to construct a model of conditional volatility”, while for counterparty risk
the data is “relatively sparse and infrequently priced data on which to construct a
model of unconditional volatility” [41]. Hence, the necessity of building a model
which depends on characteristics not directly observable.

In the Technical Document of CreditMetrics the procedure employed by the model
for assessing the counterparty risk is summarized as reported below: “looks to a
horizon and constructs a distribution of historically estimated credit outcomes (rating
migrations including potentially default). Each credit quality migration is weighted by
its likelihood (transition matrix analysis). Each outcome has an estimate of change
in value (given by either credit spreads or studies of recovery rates in default). We
then aggregate volatilities across the portfolio, applying estimates of correlation” [41].

Regarding the rating of firms and their related probability of default, CreditMetrics
does not make any assessment, but it applies the credit quality provided by the
specific rating providers.

At this point, having the possibility to associate a rating to each firm, CreditMetrics
construct a “transition matrix” for rating, based for instance of the available from
Standards&Poor’s [76]. This matrix reports the transition probability of a firm from
a given rate to another, with default being just of the possible states. It should be
noted that this transition matrix is estimated in such a way to guarantee coherence
between the time interval of the matrix and the horizon over which to estimate
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the event (change in rating, default). CreditMetrics, by means of transition matrix
rather than just probability of default, assures to consider not only the risk related
to the default event, but also the one from downgrades.

Using the empirical evidences of the relation between bond seniority and recovery
rate reported in [22] and [2], the model determines the parameters of the Beta
distribution of recovery rate as a function of the seniority of the bond.

A last analysis necessary in order to perform a valuation of counterparty risk at
portfolio level consists in the assessment of the correlation between counterparty at
credit quality level. CreditMetrics, following Merton option theoretic mode, proposes
an approach which bases the changes in credit rating with asset value. Indeed, in
a broad sense, the value of a firm assets is connected with the ability to pay debit
(actually it depends on many factor, first of all the type of asset, their liquidity,
etc.). Hence, it is assumed that the distribution of the assets value of a firm can
be divided in many ranges, each one representing a credit rating, where the values
of the thresholds are linked with the probabilities of the transition matrix. In this
way, given an appropriate model describing the change in asset value over the time
horizon of interest it is possible to determine the credit rating of a firm. In the
specific case of CreditMetrics the assumption for modeling the asset value is that
the asset return is normally distributed.

2.2.3 Common shock approach: a counterparty default risk model
in insurance

In the insurance context, a great part of the literature on counterparty risk derives
from the works developed in the different Quantitative Impact Studies (QIS) for the
definition of the structure of Solvency II. The approaches developed can be divided
in three macro-areas: derived from bank credit risk modeling, based on dynamic
financial analysis (DFA) and based on common shock.

To the first category belongs the work developed in [79], which was also one of the
first approaches proposed for the default risk module of Solvency II during QIS3
and QIS4. This work, following the credit risk modeling developed for banks under
Basel II (see [14]) was based on the Vasicek portfolio model, which, however has the
strong drawback of being a limiting form. Hence, while it proves to be valid in case
of a large number of firms, it shall not be applied in the insurance case, where the
number of reinsurer is small and heterogeneous.

One example of the second approach for modeling the reinsurance default risk, the
dynamic financial analysis, is represented by the work developed in [17], which
propose a unifying stochastic approach to modeling the reinsurance credit risk in a
DFA environment.

Here, coherently with the model chosen already from QIS5 and, with some modifica-
tion, in the final version of the Standard Formula (SF) of the counterparty default
risk module, we will present the common shock approach. The seminal work behind
its application in Solvency II consists in the work of ter Berg in [78].

The logic of the common shock approach in a certain sense comes from studies



2.2 Counterparty default risk 25

of default likelihood at macro-economic level. Indeed, some studies have shown
that there exists a correlation between the aggregate default likelihood and some
macro-economic measure, like business cycle, GDP, etc.

Following the empirical finding which relates the probability of default with macroe-
conomic variable, the common shock approach assumes that there exists a common
shock that affects the probability of default of the reinsurers and that, being common
to all the market, also their correlation.

More formally we describe the common shock, which affects all the reinsurers in the
scope, as a random variable distributed according to a distribution with domain
from 0 to 1. Hence, the approach suggested in [78] is to model the common shock
variable as a special case of Beta distribution with monotone decreasing probabilities,
with the implicit assumption that shocks of increasing size are less and less likely.
Mathematically, this is expressed by the probability density function (pdf) reported
in Formula (2.33)

f(s) = αsα−1 0 < s < 1 0 < α < 1 . (2.33)

The practical meaning of this formulation, as anticipated, is that small shocks have
(a certain) high probability, which declines for shocks of greater intensity. The
parameter α governs the speed of decay of the probability.

Having defined the common shock as an element affecting all reinsurers, the effect
is that the probability of default of each reinsurer is driven by the common shock,
creating in this way a dependence between the reinsurers.

In order to formally define this connection, in [78] it is proposed to assume that each
insurer has a “baseline” probability of default (connected with its characteristics) and
that the common shock influences the “shock-modified default probability” according
to the modeling defined in Formula (2.34)

p(s) = b + (1 − b)sτ/b 0 < b < 1 τ > 0 (2.34)

where b represents the baseline probability of default and τ is a shape parameter
governing the intensity of the shock impact.

It is possible to notice that, under this modeling approach, the shock effect depends
on b. In particular, the lower b, the lower the shock. This characteristic is well-
explained by ter Berg, saying that “reinsurance companies with low baseline default
probabilities will be rather immune to shocks as long as these remain non-extreme,
whereas large baseline levels increase the sensitivity for shocks even if these are of
modest size.” [78]. Moreover, the ratio α/τ determines the difference between the
observed and baseline probability of default, increasing the difference for higher
ratios.

At this point it is possible to calculate the expected default probability as the
expected value of the “shock-modified default probability” over the shock sizes.
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p = E
[
p(S̃)

]
=
∫ 1

0
p(s)f(s)ds = (τ + α)b

τ + αb
= (τ/α + 1)b

1 + τ/αb

where S̃ is the random variable defining the shock size, with pdf defined in Formula
(2.33).

The idea at this point is that the value of p can be obtained from external rating
agencies and consequently the baseline default probability derived according to
Formula (2.35)

b = τp

α(1 − p) + τ
= τ/αp

(1 − p) + τ/α
. (2.35)

Formula (2.35) shows that, under these modelling assumptions, the baseline default
probability of a firm depends on three elements: the observable (from rating agencies)
probability and two parameters governing the intensity of the impact of shocks, α
and τ . Consequently, these will be the elements that will also affect the variability
of the loss in a multiple reinsurance case.

Indeed, an insurer is typically exposed to counterparty default risk not just from
one, but from many reinsurers. Hence, it is possible to define the total loss, arising
from the whole credit portfolio, according to the following equation:

L̃ =
R∑

r=1
LGD(r)Ĩ(r)

where R represents the number of reinsurers to which the insurer is exposed to
counterparty default, LGD(r) the loss given default of the r-th reinsurer and Ĩ(r)

the random variable governing the default event of the r-th reinsurer.

The first two moments of the credit portfolio loss are equal to Formula (2.36) and
Formula (2.37):

E
[
L̃
]

= E
[

R∑
r=1

LGD(r)Ĩ(r)
]

=
R∑

r=1
LGD(r)E

[
Ĩ(r)

]
=

R∑
r=1

LGD(r)p(r) , (2.36)

V ar
[
L̃
]

= V ar

[
R∑

r=1
LGD(r)Ĩ(r)

]
=

R∑
r=1

R∑
s=1

LGD(r)LGD(s)σr,s (2.37)

with
σr,r = p(r)

(
1 − p(r)

)
(2.38)

and

σr,s =
α
(
1 − b(r)

) (
1 − b(s)

)
α + τ

(
b(r))−1 +

(
τb(s))−1 −

(
p(r) − b(r)

) (
p(s) − b(s)

)
. (2.39)
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Here, having determined mean and variance of the loss distribution, it is possible
to use some approximations in order to determine the capital requirement for
counterparty default risk. In his work, ter Berg suggests that the simplest assumption
would be to use the moments obtained from the model and apply the 99.5% quantile
of the normal distribution for determining the capital requirement for Solvency II
scopes

RCdef = Φ−1 (99.5%)
√

V ar
[
L̃
]

.

In practice, this is a “first-order approximation”, which assumes a normal distribution
of this variable. This assumption was then refined during QIS5, where, in Appendix
A.10 of [28], was specified that:

“The capital requirement charge for counterparty default risk is the product
of a quantile factor q and the square root of the variance, whereby the
results is subject to a ceiling by the sum of the loss given default.”

SCRdef = min
(

k∑
i=1

yi, q
√

V

)

where yi represents the loss given default of the i-th counterparty and V the variance
of the credit portfolio loss9.

In the Standard Formula of Solvency II, it has undergone a further change, leading
to the approach reported below:

SCRdef =


3σ σ ≤ 7%
5σ 7% < σ ≤ 20%
LGD σ > 20%

In addition to the approach defined in the Standard Formula of Solvency II for
estimating the capital requirement for default risk, we can propose 2 alternatives,
one based on a distributional assumption and the other on a simulative approach10:

(i) LogNormal distributional assumption of total losses.

(ii) Simulation of default (and eventually recovery) events.

Under approach (i) we follow the same procedure described in the common shock
approach for the estimation of the mean and variance parameters of the loss random
variable. Then, instead of using the approach described in Solvency II Standard
Formula, we assume a LogNormal distribution and derive the capital requirement
accordingly, as reported in the formula below.

9Note that here we have also reported the formula with the notation used in [28], that is why it
is not coherent with the one used in the rest of the thesis.

10Starting from the models presented in QIS and Standard Formula of Solvency II, in [44] the
authors propose other approaches for the estimation of the loss due to counterparty default risk,
based on both closed formulas and simulation approaches.
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SCRdef = q99.5%
(
L̃
)

− E
[
L̃
]

where q represents the quantile function of LogNormal distribution.

Also in this case it is appropriate to constraint the capital required such that it is at
most equal to the sum of the loss given default.

Approach (ii) is based on Monte Carlo simulation, so it does not make any distribu-
tional assumption on total loss, but it uses the data of each counterparty to simulate
a high number of scenarios and consequently estimate the capital requirement. In
particular, we use the probability of default of each counterparty to simulate their
default events. Then, in case we assumed that also the recovery rate is a stochastic
variable, we simulate the random recovery rate in the event of default to derive the
corresponding loss given default. Summing the total LGD in each simulation provides
us the empirical distribution of the total loss due to default of the counterparty.
Hence, the capital required is derived by means of the formula below, where the
estimators of quantile and mean of the distribution are obtained by means of the
Monte Carlo simulation approach just described

SCRdef = q̂99.5%
(
L̃
)

− Ê
[
L̃
]

.

2.3 Solvency II

2.3.1 General framework of Solvency II

Solvency II is the latest regulation on the European insurance sector. The legislative
reference is the Legislative Decree 138/2009 (in force from 1/1/2016) [34], which was
subsequently modified in some of its aspects until reaching the current version of
30/06/2021. Its main objective is the protection of policyholders and beneficiaries,
with financial stability and fair and stable markets as secondary objectives, which
shall be reached without prejudice of the main one. This new regulation drastically
modifies the previous system in force, with the objective of solving its drawbacks and
trying to give harmonized rules, at European level, for the regulation and supervision
of insurance and reinsurance companies.

The general framework of Solvency II is based on a three-pillar approach consisting
of: Quantitative Requirements, Governance requirements and Supervisory review
process and Reporting and disclosure requirements.

The first pillar deals with the quantitative requirements which an insurance company
has to comply to. One of the main elements of this pillar consist in the definition of
Solvency Capital Requirement (SCR) and Minimum Capital Requirement (MCR).
These two elements represent the required and the minimum11 capital that the
company shall hold in order to be able to pursue the activity, calibrated ensuring
that all quantifiable risks to which the firm is exposed are taken into account.

11They are to be intended as the minimum capital necessary under normal circumstance and the
minimum capital necessary before the activation of the supervisory authority.
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Another important element is represented by the definition of a specific balance
sheet, the so-called Solvency II Economic Balance Sheet, necessary for the calculation
of the capital, according to Solvency II regulation. In this way it is possible to assess
the solvency position of the insurance company through the Solvency Ratio (SR).

The second pillar regards to the qualitative aspects of the insurance business. In
fact, it is not enough to look only at the quantitative aspects, but it is also necessary
to look at the qualitative elements. The aim is to improve the internal aspects of
an insurance company, such as management, etc. The main aspect of this pillar
regards the definition of four key functions and their respective activities, which
are necessary for the pursuing of the insurance activity and the requirements for
the management of the company. Moreover, it also sets out a new process for the
internal assessment of the own risks and solvency, called Own Risk and Solvency
Assessment (ORSA). This process must be an integral part of the business strategy,
shall be performed periodically and after any significant change in the risk profile.

The third pillar regards the requirements of reporting and disclosure both to the
market and to the Supervisory Authority, in the form of periodic or extraordinary
information. In particular, one of the main public report is the Solvency Financial
Condition Report (SFCR), published yearly with a relevant number of detailed
information on the insurance business, performance, governance and solvency position.
The rationale of Pillar III is to improve the transparency and push companies to a
better management of the risks in order to not decrease their market image.

2.3.2 The Economic Balance Sheet and valuation of technical pro-
visions

The Economic Balance Sheet prescribed by Solvency II aims at a market consistent
valuation of assets and liabilities, which means evaluating assets and liabilities by
means of their market value. More specifically, Articles 75, 1.(a) and 1.(b) of the
Solvency II Directive [36] establish that:

“Assets shall be valued at the amount for which they could be exchanged
between knowledgeable willing parties in an arm’s length transaction”

“Liabilities shall be valued at the amount for which they could be trans-
ferred, or settled, between knowledgeable willing parties in an arm’s length
transaction”

The most relevant elements in the liability side of the balance sheet are the technical
provisions. However, for these elements it is not possible to directly apply the
definitions of Articles 76, 1.(b) for their valuation. Hence, Article 76, 2 of the
directive states that:

“The value of technical provisions shall correspond to the current amount
insurance and reinsurance undertakings would have to pay if they were
to transfer their insurance and reinsurance obligations immediately to
another insurance or reinsurance undertaking”

This definition is coherent with the current exit value, which means that the technical
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provision is the price that an insurer would have to pay to another party in order to
transfer the risk related to the liability. Hence, it means that the market consistent
valuation of a technical liability can be quantified by mean of its current exit value.

In the context of Solvency II we have different methodologies for the valuation of
liability depending if they are hedgeable, and then can be replicated reliably using
financial instruments, or not.

In case of hedgeable liabilities, since they can be fully replicated by means of financial
instruments, it is possible to use their market value for the valuation. However only
a limited portion of liabilities are hedgeable, and mostly in the life business (e.g.
unit and index-linked, in particular when they do not provide any guarantees).

Non-hedgeable liabilities are the greatest portion of liabilities. For them, Solvency
II directive, in Article 77, 1. [34], prescribes that: “The value of technical provisions
shall be equal to the sum of a best estimate and a risk margin [...]”

Best estimate

The first element of technical provision, best estimate, is defined in Article 77, 2.
[34] as:

“The best estimate shall correspond to the probability-weighted average of
future cash-flows, taking account of the time value of money (expected
present value of future cash-flows), using the relevant risk-free interest
rate term structure. The calculation of the best estimate shall be based
upon up-to-date and credible information and realistic assumptions and be
performed using adequate, applicable and relevant actuarial and statistical
methods.[...]”

In practice, the best estimate shall consider all the cash inflow and outflow related
to the insurance obligation over all its lifetime.

A general formula for describing the best estimate can be represented by (2.40):

BE =
∑
t≥1

E [CFt]
(1 + r(0, t))t (2.40)

where CFt represents the cashflow at time t and r(0, t) is the spot (risk-free) rate
between time 0 and time t.

This formula, as anticipated, represents the expected present value of the future
cash flows, related to the insurance obligation. Indeed, the numerator represents
the expected value of the cashflows at each future time and the denominator the
discounting effect for each time period.

The valuation of best estimate shall be performed gross of reinsurance, with these
elements calculated separately, and taking into account the counterparty default
probability. The best estimate net of reinsurance then is simply obtained by the
difference between the gross best estimate and the expected recoverables from
reinsurance:

BEnet = BEgross − recoverables
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with the latter adjusted for taking into account also the expected losses due to
default of the counterparty.

In non-life business, the element at numerator of Formula (2.40), the expected
cashflows, consists simply in the expectation of the future (stochastic) amounts
related to the insurance obligation.

For the denominator of (2.40), consisting of the discounting component of the best
estimate, it is necessary to provide a more detailed description, since it is specifically
described in the regulation.

In Solvency II framework discounting rates are provided every month by the European
Insurance and Occupational Pensions Authority (EIOPA) at market level, which
means that all the insurers apply the same curve for discounting their cashflows.
More specifically, there is a different curve for each currency and the insurers are
required to apply the currency-specific curve depending on the currency of their
assets/liabilities.

The three main elements of Solvency II discounting rates are represented by: Basic
risk-free interest rates term structure, Volatility adjustment (VA) and Matching
adjustment (MA).

The first element represents the basic risk-free curve, while the others represent
two possible adjustments that can be applied to the base curve in order to obtain
the curve for discounting cashflows. The adjustments consist in a spread added to
the basic risk-free rate, which aims at reducing the artificial volatility caused by a
stressed situation in the financial market. The theoretical justification is that, when
the market is stressed, there could be a situation of low liquidity which typically
leads to an increase in the interest rates. Hence, the adjustment tries to replicate
this effect also on the liability side by introducing a liquidity spread. An insurer can
decide to use either volatility or matching adjustment, but it cannot use both for
the same portion of business. Instead it is possible to use volatility adjustment for a
portion of the business and matching for the others.

As described in “Technical documentation of the methodology to derive EIOPA’s
risk-free interest rate term structures” [33] the calibration of the basic risk-free
interest rate term structure is based on swap rates. The decision of using swap rates
instead of government bonds was taken in order to avoid possible macroeconomic
effects, but it requires additional adjustments in order to remove the effect of credit
risk in swap rates and obtain the risk-free component.

The procedure for defining the basic risk-free interest rate term structure is composed
of three steps. The first one consists in calibrating the risk-free rate by using the
financial swap available in the market until a given maturity, called last liquid point
(LLP), which represents the last maturity where there is a significant amount of
swap in the market in order to have a calibration that is consistent form a statistical
point of view.

Hence, in order to define the term structure also for maturities where there are not
swap rates available in the market, two other steps are necessary.
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The second step consists in the definition and calculation of the ultimate forward
rate (UFR), the convergence point and the convergence tolerance.

Then, it is used an extrapolation procedure, based on Smith-Wilson methodology,
for estimating the rates for the periods after the last liquid point until convergence
to the ultimate forward rate.

The market consistent methodology for the valuation of technical provision introduced
by Solvency II also creates an additional volatility in their estimation, which affects
both Solvency Capital Requirement and Own Funds. In this way, we have a full-fair-
value balance sheet, but with Solvency Ratio (both numerator and denominator)
that could vary over time in a significant way just due to a change in the discounting
curve. Clearly, this change will be strictly related to the duration of the liabilities.

The volatility adjustment aims at mitigating the effect of a stressed situation in the
financial market by providing the same, or a similar, effect in the discounting curve
used to discount liabilities.

The volatility adjustment is provided by EIOPA and is updated over time according
to the financial conditions, increasing in stressed situations and decreasing in stable
periods. Differently from the basic risk-free rate interest rate term structure, volatility
adjustment depends on both currency-specific spread and country-specific spread.
The general procedure for obtaining the volatility adjustment is described in [33].
This adjustment is added to the liquid part of the risk-free rate curve, which is
the part up to the last liquid point. After that also the curve obtained adding the
volatility adjustment converges to the same ultimate forward rate of the risk-free
rate one.

The matching adjustment is a parallel shift applied to the entire basic risk-free term
structure and serves the same purpose as the volatility adjustment. It is an entity
specific adjustment, not based on a reference portfolio but on the specific portfolio
of the insurer, and requires approval from the supervisory authority. Similarly to
the volatility adjustment, also in this case it depends on a risk adjusted spread,
but the two components are the annual effective rate of the portfolio of assigned
assets and the annual effective basic risk-free rate. It is then adjusted by applying
a risk correction, provided by EIOPA, that takes into account the credit spread.
Differently from volatility adjustment, it is applied to all the basic risk-free curve
without any distinction between periods before and after the last liquid point.

In order for a company to apply the matching adjustment, it is necessary that the
portfolio satisfies several very strict constraints. In particular, Article 77b [35] defines
a list of conditions that shall be met in order to apply for matching adjustment.
Among these conditions, letter (e) establishes that: “The only underwriting risks
connected to the portfolio of insurance or reinsurance obligations are longevity risk,
expense risk, revision risk and mortality risk” which, in practice, excludes the
application of matching adjustment for non-life technical provisions. Also for life
policies the application is limited to a very low portion of the business of the
insurer, which generally correspond to annuities and in particular to only with-profit
annuities.
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Risk margin

Articles 77, 3. and 5. of Solvency II Directive [34] provide the definition of risk
margin as:

“The risk margin shall be such as to ensure that the value of the technical
provisions is equivalent to the amount that insurance and reinsurance un-
dertakings would be expected to require in order to take over and meet the
insurance and reinsurance obligations. Where insurance and reinsurance
undertakings value the best estimate and the risk margin separately, the
risk margin shall be calculated by determining the cost of providing an
amount of eligible own funds equal to the Solvency Capital Requirement
necessary to support the insurance and reinsurance obligations over the
lifetime thereof.[...]”

From this definition, we derive that the general criterion for computing risk margin is
based on the cost of capital approach. Article 37 of the Delegated Acts [36] provides
an explicit formula for its computation:

RM(P ) =
∑
t≥0

CoC
SCRRM

t

(1 + r(0, t + 1))t+1 (2.41)

where P indicates that the risk margin is calculated at portfolio level.

The elements present in the formula represent CoC the cost of capital rate, SCRRM
t

the Solvency capital requirement at time t and r(0, t + 1) the risk-free rate between
0 and t + 1. In practice, we have a sum of the expected discounted value of cost
of capital over the future years. In Formula (2.41) it is not specified the last year
of computation of the SCR since it will depend on the year in which we have the
complete settlement of all the existing liabilities.

The current percentage of cost of capital rate CoC provided by EIOPA, and equal
for all the market, is 6% (Article 39 [35]). It shall be noted that in the calculation
of risk margin we discount only by means of the risk-free rate, without applying
any volatility/matching adjustment. Another important point is that the value of
the SCRRM

t is discounted by using a discounting factor at t + 1, which implicitly
assumes that the capital requirement is due at the end of the year, and leads to a
lower RM respect to the case of requirement at the beginning of the year (in case of
positive risk-free rate).

The Solvency capital requirement SCRRM
t present in the formula is different from

the one used for capital requirement purposes since it considers only a specific subset
of risks, as prescribed in Article 38 (i) of the Delegated Regulation [36]:

“the Solvency Capital Requirement of the reference undertaking captures
all of the following risks:

(i) underwriting risk with respect to the transferred business,
(ii) where it is material, the market risk referred to in point
(h), other than interest rate risk,
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(iii) credit risk with respect to reinsurance contracts, arrange-
ments with special purpose vehicles, intermediaries, policyhold-
ers and any other material exposures which are closely related
to the insurance and reinsurance obligations,
(iv) operational risk;”

The insurer should compute the risk margin separately for each liability. However,
in order to reduce the complexity, Guidelines 63 [32] establish the possibility of
computing the risk margin considering the whole SCR and then splitting it between
lines of business (LoB), obtaining an implicit diversification benefit. The only
diversification that is not allowed is between life and non-life business.

Hence, the total risk margin computed as a whole is split according to the different
lines of business, in order to obtain the total amount of technical provision for each
line of business. As a general approach, the allocation of risk margin can be done in
proportion of the SCR, as illustrated in Formula (2.42), or, as an extreme case, in
proportion of the best estimate

RM(LoB) = SCRRU,LoB(0)∑
LoB

SCRRU,LoB(0)RM(P ) . (2.42)

Article 58 of the Delegated Acts [36] specify that it is possible to use simplified
approaches for the calculation of risk margin in order to avoid the complexity coming
from the computation of future solvency capital requirements as follow:

“Without prejudice to Article 56, insurance and reinsurance undertakings
may use simplified methods when they calculate the risk margin, including
one or more of the following:

(a) methods which use approximations of the amounts denoted
by the terms SCR(t) referred to in Article 37(1);
(b) methods which approximate the discounted sum of the
amounts denoted by the terms SCR(t) as referred to in Article
37(1) without calculating each of those amounts separately.”

In particular, Guideline 61 and Technical Annex IV of EIOPA guidelines on valua-
tion of technical provisions [32], transposed into Ivass regulation [47], defines four
simplified approaches, ordered by degree of simplification, for the calculation of risk
margin. In practice they consist in:

• Method 1: Approximate the individual risks or sub-risks within some or all
modules and sub-modules to be used for the calculation of future Solvency
Capital Requirements.

• Method 2: Approximate the whole Solvency Capital Requirement for each
future year by using the ratio of the best estimate at that future year to the
best estimate at the valuation date.

• Method 3: To approximate the discounted sum of all future Solvency Capital
Requirements in a single step without approximating the Solvency Capital
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Requirements for each future year separately by using the modified duration
of the insurance liabilities as a proportionality factor.

• Method 4: To approximate the risk margin by calculating it as a percentage
of the best estimate.

In non-life business Method 2 is the most used, which can be written in formula as:

SCRt = SCR0
BEnet

t

BEnet
0

where BEnet represents the best estimate of liabilities, net of reinsurance.

The underlying assumption of this method is that the future SCR of existing business
reduces over time with the same pattern of best estimate.

Non-life technical provisions: premium and claims reserve

The two technical provisions of a non-life insurance company are premium and claims
provisions12.

Premium reserve is the amount that an insurance company needs to hold in order
to cover future claims for existing contracts.

As already explained, in Solvency II the computation of best estimate depends on
the discounted expected value of the future cash in- and out-flows related to the
specific provision.

The three main cash outflows that the insurer needs to evaluate in order to compute
the premium reserve are: future claims for existing policies, loss adjustment expenses
and management costs.

The main cash inflows that the insurer needs to evaluate in order to compute the
premium reserve are future premiums (net of acquisition costs) for existing annual
and multi-annual contracts.

In [32] Technical Annex III is described also a simplified formula for the calculation
of premium reserve under Solvency II, similar to the approach used under Italian
globally accepted accounting principles (GAAP) balance sheet, defined as:

BE = CR · V M + (CR − 1)PV FP + AER · PV FP

where CR represents the Combined Ratio (without the run-off effect), V M is the
Volume measure for unearned premiums (gross of acquisition expenses), PV FP
is the Present Value of Future Premiums (for existing contracts) and AER is the
Acquisition Expenses Ratio.

The best estimate of claims reserve is obtained as the discounted expected value
of payments and expenses for claims already incurred at the valuation date. The
general approach consists in the application of claims reserving methods on a run-off

12In this thesis we use the term provision and reserve indifferently when referring to these two
elements.
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triangle in order to estimate ultimate cost and claims reserve. Hence, the approach
used in Solvency II is similar to the Italian GAAP one, with the two main differences
concerning discounting and recoverables. In fact, following the definition of best
estimate, explicated in Formula (2.40), claims reserve is computed as the discounted
expected value of the future cashflows, net of reinsurance recoverables.

According to the discounted cash outflows the insurer has to estimate the lower
triangle using a deterministic method. In particular, in order to introduce the
discounting effect, the insurer needs to have at his disposal the lower triangle of
incremental payments.

According to the discounted expected value of cash inflows it is necessary to compute
the recoverables that are the amounts that the insurer can recover from the policy-
holders. A recoverables is typically a phenomenon observed in motor; for instance,
if the amount of the claim is greater than the policy limits, retention, usually the
insurer pays all the claims. Then it has a credit to the policyholder whose amount
is the recoverables. The same logic applies in case of deductible where the insurer
pays and then asks the portion back to the policyholder. Since Solvency II asks for
a valuation net of recoverables it is necessary to include this cash-outflow in the
estimation of claims reserve.

2.3.3 Solvency Capital Requirement and Standard Formula

From the valuation of the elements in their Economic balance sheet, according to the
prescriptions outlined in Section 2.3.2, insurance companies derive the value of their
own funds. Own funds can be considered an element corresponding to the capital of
a classic balance sheet. Insurance companies are required (Article 100 of [34]) to have
enough eligible own funds to cover the Solvency Capital Requirement. This element
represents the capital required, considering all the risks to which the company is
exposed, for assuring the solvency of the company under a certain confidence level.

More formally, Article 101 3. of [34] provides the definition of Solvency Capital
Requirement as follows:

“[...] It shall correspond to the Value-at-Risk of the basic own funds of
an insurance or reinsurance undertaking subject to a confidence level of
99,5 % over a one-year period”

Article 101 4. of [34] states that:

The Solvency Capital Requirement shall cover at least the following risks:

(a) non-life underwriting risk;
(b) life underwriting risk;
(c) health underwriting risk;
(d) market risk;
(e) credit risk;
(f) operational risk.

Insurance companies have different alternatives for calculating the SCR:
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• Standard Formula: risk map, aggregation approach, modules and parameters
as established in the regulation.

• Standard Formula with Undertaking Specific Parameters (USP):
as under Standard Formula approach, but with the application of company-
specific parameters instead of standard ones, according to the prescriptions
reported in Article 218 of [35]. Requires supervisory authority approval.

• Partial Internal Model: Internal Model developed for the calculation of the
capital requirement for some specific modules, as under one of the previous two
approaches for all the other modules. Requires supervisory authority approval.

• Full Internal Model: calculation of capital requirement fully based on
Internal Model developed by the insurance company. Requires supervisory
authority approval.

More specifically, the insurer has to calculate a specific SCR for each sub-module
using a scenario-based approach or a factor-based approach, as established in the
directive. Then, the sub-modules are aggregated by means of specific correlation
matrices, defined in the directive, which then give rise to a diversification benefit.
The modules obtained are then aggregated again by means of a correlation matrix,
which also this time leads to a diversification benefit, obtaining the Basic Solvency
Capital Requirement (BSCR). Finally, the “global” SCR of the insurance company
is obtained as the sum of the BSCR, Operational risk OPrisk and the adjustment
for the loss-absorbing capacity of technical provisions and deferred taxes Adj, as
reported in Formula (2.43)

SCR = BSCR + OPrisk + Adj . (2.43)

It is possible to observe that the capital requirement for operational risk is not
diversified with any other module, but it is added on top to the BSCR.

The first term is the most relevant and consists of the capital requirement for all the
modules except operational risk. It is computed according to Formula (2.44).

BSCR =
√∑

i,j

Corri,jSCRiSCRj + SCRintangibles (2.44)

where SCRi and SCRj are the solvency capital requirements of modules i and j
and Corri,j is the correlation matrix between the two modules i and j as reported
in Table 2.2. SCRintangibles represents the capital requirement for intangible asset
risk, which is simply added to the other risks, and then does not provide any benefit
in term of diversification.

In the analysis for the estimation of the multi-objective optimal reinsurance the
two main risk modules that we will consider are non-life underwriting risk (focusing
only on the premium and reserve risk sub-module) and counterparty default risk
(focusing on the type 1). We will study the capital requirement both according
to the Standard Formula approach and according to a Partial Internal Model for
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Table 2.2. Correlation matrix between risk modules for BSCR, according to Annex IV of
[34].

Corri,j Market Default Life Health Non-life

Market 1 0.25 0.25 0.25 0.25
Default 0.25 1 0.25 0.25 0.5
Life 0.25 0.25 1 0.25 0
Health 0.25 0.25 0.25 1 0
Non-life 0.25 0.5 0 0 1

Table 2.3. Correlation matrix between sub-modules of Non-life underwriting risk, according
to Article 114 of [36].

Non-life premium
and reserve risk

Non-life
catastrophe risk

Non-life
lapse risk

Non-life premium
and reserve risk 1 0.25 0

Non-life
catastrophe risk 0.25 1 0

Non-life
lapse risk 0 0 1

underwriting risk (premium and reserve risk component) and counterparty default
risk.

2.3.4 Non-life underwriting risk

The non-life underwriting risk considers the risks arising from the underwriting of
non-life insurance and reinsurance contracts. It is composed by three sub-modules:
non-life premium and reserve risk, non-life catastrophe risk and non-life lapse risk.

The capital requirement is calculated as:

SCRnon−life =
√∑

i,j

(
CorrNL(i,j)SCRiSCRj

)

where SCRi and SCRj denotes the capital requirements for the sub-modules i and
j and CorrNL(i,j) denotes the correlation parameter between sub-modules i and j
as reported in Table 2.3.

Non-life premium and reserve risk

Premium and reserve risk sub-module estimates “the risk of loss, or of adverse
change in the value of insurance liabilities, resulting from fluctuations in the timing,
frequency and severity of insured events, and in the timing and amount of claim
settlements” (Article 105 2. (a) [34])
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The capital requirement is calculated as reported in Formula (2.45) (Article 115 of
[35]):

SCRnl prem,res = 3σnlVnl (2.45)

where σnl represent the standard deviation parameter and Vnl the volume measure.

The volume measure for non-life premium and reserve risk Vnl is defined as the sum
of the volume measures for premium risk and reserve risk of all the segments set out
in Table 2.4, where the volume measure of a generic segment s is defined as:

Vs = (V(prem;s) + V(res;s)) ∗ (0.75 + 0.25 ∗ DIVs) (2.46)

with V(prem;s) the volume measure for premium risk, V(res;s) the volume measure for
reserve risk and DIVs the factor for geographical diversification.

As defined in Article 116 3. of [35]:

For all segments set out in Annex II, the volume measure for premium
risk of a particular segment s shall be equal to the following:

V(prem;s) = max[Ps; P(last;s)] + FP(existing;s) + FP(future;s)

where:

(a) Ps denotes an estimate of the premiums to be earned by the
insurance or reinsurance undertaking in the segment s during
the following 12 months;
(b) P(last,s) denotes the premiums earned by the insurance or
reinsurance undertaking in the segment s during the last 12
months;
(c) FP(existing,s) denotes the expected present value of premiums
to be earned by the insurance or reinsurance undertaking in the
segment s after the following 12 months for existing contracts;
(d) FP (future, s) denotes the following amount with respect to
contracts where the initial recognition date falls in the following
12 months[...]

The volume measure for reserve risk of a particular segment s is instead defined as
the net best estimate of the provision for claim outstanding.

The standard deviation for non-life premium and reserve risk is defined in Article
117 1. of [35] as:

σnl = 1
Vnl

√∑
s,t

CorrS(s,t)σsVsσtVt

where Vnl represents the volume measure for non-life premium and reserve risk,
CorrS(s,t) the correlation parameter for non-life premium and reserve risk for segment
s and segment t as defined in Table 2.5, σs and σt the standard deviations for non-life
premium and reserve risk of segments s and t depending on the aggregation between
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Table 2.4. Segmentation of Non-Life insurance lines of business, according to Annex II of
[36].

Number Segment
1 Motor vehicle liability insurance and proportional reinsurance
2 Other motor insurance and proportional reinsurance
3 Marine, aviation and transport insurance and proportional reinsurance
4 Fire and other damage to property insurance and proportional reins.
5 General liability insurance and proportional reinsurance
6 Credit and suretyship insurance and proportional reinsurance
7 Legal expenses insurance and proportional reinsurance
8 Assistance and its proportional reinsurance
9 Miscellaneous financial loss insurance and proportional reinsurance
10 Non-proportional casualty reinsurance
11 Non-proportional marine, aviation and transport reinsurance
12 Non-proportional property reinsurance

Table 2.5. Correlation matrix between Non-Life premium and reserve risk, according to
Annex IV of [36].

Corr 1 2 3 4 5 6 7 8 9 10 11 12
1 1.00
2 0.50 1.00
3 0.50 0.25 1.00
4 0.25 0.25 0.25 1.00
5 0.50 0.25 0.25 0.25 1.00
6 0.25 0.25 0.25 0.25 0.50 1.00
7 0.50 0.50 0.25 0.25 0.50 0.50 1.00
8 0.25 0.50 0.50 0.50 0.25 0.25 0.25 1.00
9 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 1.00
10 0.25 0.25 0.25 0.25 0.50 0.50 0.50 0.25 0.25 1.00
11 0.25 0.25 0.50 0.50 0.25 0.25 0.25 0.25 0.50 0.25 1.00
12 0.25 0.25 0.25 0.50 0.25 0.25 0.25 0.50 0.25 0.25 0.25 1.00
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Table 2.6. Market-wide volatility factors for the Non-Life premium and reserve risk sub-
module, according to Annex II of [36].

Segment Premium risk
volatility factors

Reserve risk
volatility factors

Motor vehicle liability insurance
and proportional reinsurance 10% 9%

Other motor insurance
and proportional reinsurance 8% 8%

Marine, aviation and transport
insurance and proportional reinsurance 15% 11%

Fire and other damage to property
insurance and proportional reinsurance 8% 10%

General liability insurance
and proportional reinsurance 14% 11%

Credit and suretyship insurance
and proportional reinsurance 12% 19%

Legal expenses insurance
and proportional reinsurance 7% 12%

Assistance and its
proportional reinsurance 9% 20%

Miscellaneous financial loss insurance
and proportional reinsurance 13% 20%

Non-proportional casualty reinsurance 17% 20%
Non-proportional marine, aviation
and transport reinsurance 17% 20%

Non-proportional property reinsurance 17% 20%

premium and reserve risk that will be detailed below, and Vs and Vt the volume
measures for premium and reserve risk of segments s and t as defined in 2.46.

For a generic segment s the standard deviation for non-life premium and reserve
risk is defined in Article 117 2. of [35] as:

σs =

√
σ2

(prem,s)V
2

(prem,s) + σ(prem,s)V(prem,s)σ(res,s)V(res,s) + σ2
(res,s)V

2
(res,s)

V(prem,s) + V(res,s)

where σ(prem,s) and σ(res,s) represents the standard deviations for non-life premium
risk and reserve risk respectively, as defined in 2.6, V(prem,s) and V(res,s) the volume
measure for premium risk and reserve risk respectively.

Non-life catastrophe risk

Catastrophe (CAT) risk is “the risk of loss, or of adverse change in the value of
insurance liabilities, resulting from significant uncertainty of pricing and provisioning
assumptions related to extreme or exceptional events” ((Article 105 2. (b) [34])
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The capital requirement is calculated as reported in Formula (2.47) (Article 119 of
[35]):

SCRnl CAT =
√

(SCRnat CAT + SCRnp property)2 + SCRmm CAT + SCRother CAT

(2.47)

where SCRnat CAT represents the SCR for risks related to natural catastrophe,
SCRnp property to non-proportional property reinsurance catastrophe, SCRmm CAT

to man-made catastrophe and SCRother CAT to other non-life catastrophe.

It is possible to observe that in Formula (2.47) we have an underlying assumption
of full correlation between SCRnat CAT and SCRnp property and full independence
between the resulting SCR and SCRmm CAT and SCRother CAT .

The approaches for computing each capital requirement are described from Article
120 to Article 135 of [35].

Non-life lapse risk

The lapse risk is the risk of negative impact on the insurance company related to
policyholders’ options eventually included in non-life policies, as the option to lapse
the contract before maturity. In general it is really marginal or totally absent in non-
life business, because it mainly regards multi-annual policies. In practice, this risk
is negligible in lines like motor, while can be relevant in specific accident/property
contracts.

The capital requirement for lapse risk is based on a scenario-based approach, where
the insurer is asked to calculate the loss of basic own funds resulting from the
combination of two instantaneous events (Article 118 [34]):

“(a) the discontinuance of 40% of the insurance policies for which dis-
continuance would result in an increase of technical provisions without
the risk margin;
(b) where reinsurance contracts cover insurance or reinsurance contracts
that will be written in the future, the decrease of 40% of the number of
those future insurance or reinsurance contracts used in the calculation of
technical provisions.”

2.3.5 Counterparty default risk

According to Article 105 6. of [34] the counterparty default risk module “shall reflect
possible losses due to unexpected default, or deterioration in the credit standing, of
the counterparties and debtors of insurance and reinsurance undertakings over the
following 12 months.[...]”.

The main elements considered by the counterparty default risk module are rein-
surance treaties, securitisations, derivatives and receivables, but also all the credit
exposures not covered in the spread risk sub-module. Moreover, it is specified that
the undertaking shall consider the overall risk exposure towards his counterparty
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irrespective of the legal form of the contractual obligation. It means that the insurer
has to consider the “substance” of the treaty rather than its “form”, when assessing
if it exposes him to a counterparty risk.

The capital requirement for counterparty default risk module is calculated as reported
in Formula (2.48):

SCRdef =
√

SCR2
(def,1) + 1.5SCR(def,1)SCR(def,2) + SCR2

(def,2) (2.48)

where: SCRdef,1 represents the capital requirement for counterparty default risk on
type 1 exposures and SCRdef,2 on type 2 exposures.

Points 3.21 and 3.22 of [28] report the characteristics of the exposure for which they
should be considered under type 1 or type 2. Specifically type 1 exposure should
consist of “exposures which may not be diversified and where the counterparty is
likely to be rated”, while type 2 of “exposures which are usually diversified and where
the counterparty is likely to be unrated”. As for the rating, Solvency II admits only
the use of an external credit assessment “only where it has been issued by an External
Credit Assessment Institution (ECAI)” (Article 4 of [32]).

Articles 189 2. and 3. of [35] translates these definitions in the list of exposure which
shall be considered type 1 or type 2. In particular, the most relevant exposures of type
1 are represented by risk-mitigation contracts, including reinsurance arrangements,
special purpose vehicles, insurance securitisations and derivatives, cash at bank
and deposits with ceding undertakings. For type 2 exposures instead we have all
the exposure not reported as type 1, where the most relevant are receivables from
intermediaries, policyholder debtors and mortgage loans.

As reported in Article 200 of [35] the capital requirement for type 1 exposure is
determined according to Formula (2.49).

SCRdef,1 =


3σ σ ≤ 7%
5σ 7% < σ ≤ 20%
LGD σ > 20%

(2.49)

where the standard deviation σ is equal to the squared root of the variance, which
is in turn equal to the sum of two components, as reported in the following formula

σ =
√

V =
√

Vinter + Vintra .

This decomposition of the total variance between two components derives from the
assumption of dependence from a common shock of the probability of default of each
counterparty (see Section 2.2). Vinter and Vintra represent respectively the variance
among counterparty having different rating and the variance between counterparty
with the same rating.

In Formula (2.50) the first variance term is reported.
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Table 2.7. Probability of default for each credit quality step by a nominated ECAI,
according to Article 199 2. of [36].

Credit quality step 0 1 2 3 4 5 6
Probability of default (%) 0.002 0.01 0.05 0.24 1.20 4.20 4.20

Vinter =
∑
(j,k)

PDk(1 − PDk)PDj(1 − PDj)
1.25(PDk + PDj) − PDkPDj

TLGDkTLGDj (2.50)

where, as anticipated, we have a sum covering all possible combinations of different
probabilities of default, with TLGDk and TLGDj representing the sum of LGD
on type 1 exposures from counterparties with probability of default PDk and PDj

respectively.

In Formula (2.51) the second variance term is reported.

Vintra =
∑

j

1.5PDj(1 − PDj)
2.5 − PDj

∑
PDj

LGD2
i (2.51)

where we sum, for each group of probability of default, the variance of the given
group.

For these type 1 exposures the approach prescribed by the regulation for calculating
the probability of default consists in using the credit quality step (CQS) of the coun-
terparty and derive the corresponding PD by means of the specific correspondence,
as reported in Table 2.7. In case the counterparty is an insurance or reinsurance
company, but for which it is not available a credit assessment by a nominated ECAI,
then the approach suggested by the regulation consists in assigning a probability of
default function of its Solvency Ratio, where the relation is reported in Table 2.8.

As reported in Article 202 of [35] the capital requirement for type 2 exposures shall
be equal to the loss of basic own funds that would result from an instantaneous
decrease in value of type 2 exposures by the amount defined in Formula (2.52).

SCRdef,2 = 90%LGDreceivables> 3month + 15%
∑

i

LGDi (2.52)

where the first term, LGDreceivables> 3month, denotes the total LGD on all receivables
from intermediaries which have been due for more than three months. The second
term denotes instead the sum of LGD for all type 2 exposures other than receivables
from intermediaries which have been due for more than three months.

LGD = max [50% (REcoverables + 50%RMre) − F Collateral, 0] . (2.53)
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Table 2.8. Probability of default for each Solvency Ratio when CQS by a nominated ECAI
is not available, according to Article 199 3. of [36].

Solvency Ratio (%) 196 175 150 125 122 100 95 75
Probability of default (%) 0.01 0.05 0.1 0.2 0.24 0.5 1.20 4.20

2.3.6 Reinsurance effect in Solvency II Standard Formula

Solvency II Standard Formula takes into account the effect provided by reinsurance
contracts in both technical provisions and capital requirement.

For the technical provisions, as explained in Section 2.3.2, both premium and claims
provision are evaluated net of reinsurance. In this way we have a decrease of technical
provisions, which produces an increase of the own funds and then a benefit for the
solvency of the insurance company.

For the capital requirement, in Article 101 5. of [34] it is explicitly stated that:

“When calculating the Solvency Capital Requirement, insurance and
reinsurance undertakings shall take account of the effect of risk- mitigation
techniques, provided that credit risk and other risks arising from the
use of such techniques are properly reflected in the Solvency Capital
Requirement”

which means that it is necessary to calculate both the positive effects of risk transfer
and the negative effect of counterparty risk generated by risk-mitigation techniques,
like reinsurance.

Considering a non-life company, the two main modules affected by reinsurance
contracts are non-life underwriting risk module and counterparty default risk module.

In non-life underwriting risk module we have a relevant impact on the premium
and reserve risk sub-module. In fact, we have that both the volume measure and
standard deviation measure of SCRnl prem,res = 3σnlVnl are reduced by reinsurance
treaties.

In particular, volume measure is computed net of reinsurance for both its premium
and reserve component, as stated in Article 116 5. and 6. of [35]:

“For the purposes of the calculations set out in paragraphs 3 and 4,
premiums shall be net, after deduction of premiums for reinsurance
contracts[...]”

“For all segments set out in Annex II, the volume measure for reserve
risk of a particular segment shall be equal to the best estimate of the
provisions for claims outstanding for the segment, after deduction of
the amounts recoverable from reinsurance contracts and special purpose
vehicles[...]”

The reduction of these volume measures is independent on the kind of reinsurance
treaty, holding for both proportional and non-proportional reinsurance.
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For the standard deviation measure, Article 117 3. of [35] states that:

“For all segments set out in Annex II, the standard deviation for non-life
premium risk of a particular segment shall be equal to the product of the
standard deviation for non-life gross premium risk of the segment set out
in Annex II and the adjustment factor for non-proportional reinsurance.
For segments 1, 4 and 5 set out in Annex II the adjustment factor
for non-proportional reinsurance shall be equal to 80 %. For all other
segments set out in Annex the adjustment factor for non-proportional
reinsurance shall be equal to 100 %.”

It means that the standard deviation measure of the indicated segments for the
premium risk is reduced by 20% in case the insurer has a non-proportional reinsurance
treaty for those segments.

The rationale behind this adjustment factor is that non-proportional reinsurance
removes a part of risk related to extreme events (usually the tail part of the
loss distribution), decreasing in this way the volatility of the net-of-reinsurance
distribution of the insurer and then its standard deviation parameter. Proportional
reinsurance treaties, instead, as explained in Section 2.1.1, do not modify the
moments of the loss distribution and then do not provide any benefit in term of
volatility.

Another important characteristic of this adjustment is that regards only premium
risk, since in practice it is not feasible to estimate the reduction of volatility in
claims reserve from the presence of a non-proportional reinsurance treaty.

Reinsurance treaties also affect another module of the Solvency II Standard Formula,
counterparty default risk, but in a opposite direction. In fact, the insurer, transferring
a portion of its premiums to the reinsurer, becomes exposed to the risk of default
of its counterparty. Hence, while it benefits from the reduction of the capital
requirement related to underwriting risk, at the same time it also is impacted by
the increase of capital requirement related to counterparty default risk.
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Chapter 3

Risk reserve in presence of
defaultable reinsurers

3.1 Introduction

In this chapter we present closed formulas for the first two moments of the risk
reserve equation for a non-life insurer in a one-year time horizon. These closed
formulas extend the results available in the literature to the case of an insurance
company which cedes part of its risks to defaultable reinsurers, under the usual
framework described for instance in [72]. In particular, we present three results which
differentiates for the assumptions on the number of segments in which the insurance
company underwrites business and the number of reinsurance counterparties to
which risks are ceded.

More precisely, we start from a model which consider just the possibility for the
insurer to underwrite risks in a single line of business and to cede risks to a single
reinsurer. Then we extend this simple initial version to two possibilities: cede the
risk of a single LoB to multiple reinsurers or cede the risks of multiple LoBs to a
single reinsurer. The first extension permits to analyze the effect of the number
of reinsurer, and their rating, on the risk reserve of the insurance company, given
the single LoB in which it underwrites business. The second extension permits to
analyze the effect of the lines of business, in term of number and “type”, on the risk
reserve of the insurance company, given the single reinsurer to which it cedes the
risks.

It shall be noted that there should be a final model, which considers the possibility
for the insurance company to underwrite business in multiple LoBs and to cede risks
to multiple reinsurers. In practice, however, we do not treat this case in the chapter,
since it is not easily manageable in a theoretical setting. Indeed, given the multiple
combinations of LoBs, reinsurers, ratings, threshold of the XL treaties, etc. it is
more manageable in a simulative setting. Hence, we treat it, and actually extend it,
in the following chapter, where we develop a simulative approach for the analysis of
the risk reserve of an insurance company in presence of defaultable reinsurers.
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Finally, we propose some numerical analyses for showing how these closed formulas
can be used for evaluating different reinsurance strategies and derive an empirical
efficient frontier, without the computational burden coming from simulations.

3.2 General modeling of risk reserve in non-life insur-
ance

3.2.1 Risk reserve equation

In order to present the extended models developed in this thesis it is first necessary to
provide a description of the general modeling of risk reserve and the main assumptions
used.

Following the approach also employed in Solvency II, we are interested in modeling
the stochastic capital1 of an insurance company in a one-year time horizon. We start
from defining in Formula (3.1) the “base” equation of this stochastic process, which
considers only the randomness deriving from claims and do not allow for reinsurance
treaties

Ũt+1 = Ut(1 + j) +
[(

Bt+1 − X̃t+1 − Et+1
)]

(1 + j)1/2 . (3.1)

In practice, we can observe that the risk reserve at the end of year t + 1 depends
on two components: the initial risk reserve (risk reserve at the end of year t) and
the total “technical result” of the year. The first component is defined as the initial
capital Ut invested at the deterministic rate j for one year. The second component
is defined as the difference between earned premium Bt+1 and claims X̃t+1 and
expenses Et+1 (both paid and reserved), invested at deterministic rate j for half a
year.

The only random variable present in this equation is the stochastic aggregate amount
of claims. This means that, as shown for instance in [29] or [72], in this initial model
(where we are implicitly assuming that the insurance company operates in a single
segment) we can obtain the moments of Ũt+1 from the corresponding moments of
X̃t+1.

More specifically, the mean, variance and skewness of the risk reserve at time t + 1
are reported in (3.2)

E
[
Ũt+1

]
= Ut(1 + j) +

[(
Bt+1 − E

[
X̃t+1

]
− Et+1

)]
(1 + j)1/2 ,

V ar
[
Ũt+1

]
= V ar

[
X̃t+1

]
(1 + j) ,

Skew
[
Ũt+1

]
= −Skew

[
X̃t+1

]
.

(3.2)

1In this thesis we use the term capital and risk reserve interchangeably.
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3.2.2 Collective risk model for aggregate claim amount

The random variable2 X̃ is defined by means of a collective risk model. This model
assumes that the aggregate claim amount can be described according to Formula
(3.3) (see for instance [29] for details):

X̃ =
K̃∑

i=1
Z̃i (3.3)

based on the following assumptions:

(i) The claim sizes are independent of each other: Z̃i ⊥ Z̃j∀i, j.

(ii) The claim sizes are identically distributed: F (Z̃i)
d=F (Z̃)∀i.

(iii) The number of claims and the claim sizes are independent: K̃ ⊥ Z̃i.

Under these hypotheses it is possible to obtain the moments of the aggregate claim
amount. In particular, recalling the definition of fair premium, we know that the
first moment (i.e. the mean) of this random variable corresponds to the fair premium
under the theoretical approach, and it is obtained as reported in Formula (3.4)

E
[
X̃
]

= E
[
K̃
]
E
[
Z̃
]

. (3.4)

Variance and skewness are equal to Formula (3.5) and Formula (3.6)

V ar
[
X̃
]

= E
[
K̃
]

V ar
[
Z̃
]

+ V ar
[
K̃
]
E
[
Z̃
]2

, (3.5)

γ(X̃) =
E
[
K̃
]

V ar
[
Z̃
]3/2

γ
[
Z̃
]

+ 3V ar
[
K̃
]
E
[
Z̃
]

V ar
[
Z̃
]

+ V ar
[
K̃
]3/2

γ
[
K̃
]
E
[
Z̃
]3

V ar
[
X̃
]3/2 .

(3.6)

Making some specific assumptions on the distributions of number of claims and
single claim amount it is possible to find a more compact version of the moments
reported above. For instance, as shown in [29], assuming an over-dispersed Poisson
distribution for number of claims and a LogNormal distribution for claim amount,
in Formula (3.7) we report the first three moments of the aggregate claim amount:

2From now on we remove the time reference in the random variables in order to lighten the
notation.
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E
[
X̃
]

= E
[
K̃
]
E
[
Z̃
]

,

V ar
[
X̃
]

= E
[
K̃
]
E
[
Z̃2
]

+ E
[
K̃
]2

E
[
Z̃
]2

V ar
[
Q̃
]

,

γ
[
X̃
]

=
E
[
K̃
]
E
[
Z̃3
]

+ 3E
[
K̃
]2

E
[
Z̃
]
E
[
Z̃2
]

V ar
[
Q̃
]

+ E
[
K̃
]3

E
[
Z̃
]3

γ
[
Q̃
]

V ar
[
Q̃
]3/2

V ar
[
X̃
]3/2

(3.7)
where Q̃ represents a structure variable for describing short-term fluctuation in the
number of claims.

Regarding the other elements of Formula (3.1), the gross premium earned by insurer
in the year t + 1, Bt+1, is obtained as the sum of fair premium, safety loading and
expense loading, as reported in Formula (3.8)

Bt+1 = Pt+1(1 + λt+1) + ct+1Bt+1

= E
[
X̃t+1

]
(1 + λt+1) + Et+1

(3.8)

where, as explained in Section 2.1.2, fair premium Pt+1 is the expected value of the
aggregate claim amount random variable, λt+1 represents the safety loading rate
and ct+1 the expense loading rate, assumed to be equal to the actual expense rate.

3.2.3 Risk reserve equation in presence of reinsurance

In case we allow for the possibility of purchasing reinsurance, the equation described
in (3.1) becomes:

Ũt+1 = Ut(1 + j) +
[(

Bt+1 − X̃t+1 − Et+1
)

−
(
Bre

t+1 − X̃re
t+1 − Cre

t+1

)]
(1 + j)1/2

(3.9)
where the new terms Bre

t+1, X̃re
t+1, Cre

t+1 represent ceded premium, ceded claims
and ceded commission respectively. The difference between these terms can be
interpreted as the “technical result” of the reinsurer, which corresponds to the profit
ceded by the insurance company.

In a general case, the gross premium ceded to the reinsurer is composed by the sum
of ceded premium for the different possible reinsurance treaties. Considering only
QS and XL reinsurance, we obtain the element reported in Formula (3.10)

Bre = Bxl + Bqs . (3.10)

The gross premium of an excess of loss treaty, as described in Section 2.1, can be
obtained by means of experience or exposure rating. Assuming that the reinsurance
company employs experience pricing and that calibrates safety loading by means of
the standard deviation premium principle, the gross premium is obtained according
to Formula (3.11)
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Bxl = E
[
X̃xl

]
+ βxlσ

[
X̃xl

]
. (3.11)

As described in Section 2.1, gross premium of a quota share reinsurance can be
obtained as reported below:

Bqs = (1 − α)B (3.12)

while the (deterministic) ceded commission is defined as:

Cqs = Bqscqs = (1 − α)Bcqs . (3.13)

Regarding the aggregate claim amount borne by the reinsurer, X̃re
t+1, we recall the

formulas presented in Section 2.1 for excess of loss and quota share treaties. In
particular, following the usual proportional approach, for a QS treaty the aggregate
claim amount ceded to reinsurer is equal to:

X̃qs = (1 − α) X̃ . (3.14)

Mean, variance and skewness of this random variable are reported in Formula (3.15),
(3.16) and (3.17) respectively.

E
[
X̃qs

]
= (1 − α)E

[
X̃
]

, (3.15)

V ar
[
X̃qs

]
= (1 − α)2 V ar

[
X̃
]

, (3.16)

γ
[
X̃qs

]
= γ

[
X̃
]

. (3.17)

In Formula (3.18) it is instead reported the aggregate claim amount borne by the
reinsurer for a XL treaty.

X̃xl =
K̃∑

i=1
Z̃xl =

K̃∑
i=1

min
(
max

(
Z̃i − d, 0

)
, l
)

(3.18)

with d deductible, l limit and where Z̃xl is distributed according to:

Z̃xl = Z̃d,l =
(
Z̃ ∧ l

)
−
(
Z̃ ∧ d

)
=


0 Z̃ ≤ d

Z̃ − d d < Z̃ ≤ d + l

l Z̃ > d + l .

Under the assumption of LogNormal distribution of Z̃ we can derive the moments
of this random variable in a closed form.
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For instance, as already reported in Section 2.1 the mean of Z̃xl is equal to:

E
[
Z̃d,l

]
=
∫ d+l

d
(z − d)fZ(z)dz + l

∫ ∞

d+l
fZ(z)dz

=
∫ d+l

d
zfZ(z)dz − d

∫ d+l

d
fZ(z)dz + l

∫ ∞

d+l
fZ(z)dz

= eµ+ σ2
2
[
Φµ+σ2,σ2 (ln(d + l)) − Φµ+σ2,σ2 (ln(d))

]
−

d
[
Φµ,σ2 (ln(d + l)) − Φµ,σ2 (ln(d))

]
+ l

[
1 − Φµ,σ2 (ln(d + l))

]
(3.19)

where fZ(z) represents the probability density function (p.d.f.) of the claims amount
r.v. and Φµ,σ2(·) the cumulative distribution function (c.d.f.) of a Normal distribution
with mean µ and variance σ2.

As a general result, it is possible to prove that the k-mean of Z̃xl (i.e. the k-th
moment about the origin) can be expressed as reported in Formula (3.20):

E
[(

Z̃d,l

)k
]

=
∫ d+l

d
(z − d)kfZ(z)dz + lk

∫ ∞

d+l
fZ(z)dz

=
∫ d+l

d

k∑
i=0

(
k

i

)
zidk−ifZ(z)dz + lk

∫ ∞

d+l
fZ(z)dz

=
k∑

i=0

(
k

i

)(
eiµ+ (iσ)2

2 − d(k−i)
) [

Φµ+(iσ)2,σ2 (ln(d + l)) − Φµ+(iσ)2,σ2 (ln(d))
]

+

l
[
1 − Φµ,σ2 (ln(d + l))

]
.

(3.20)

Consequently, we can derive the formula of the variance of single claim amount
borne by the reinsurer as:

V ar
[
Z̃d,l

]
= E

[(
Z̃d,l

)2
]

−
(
E
[
Z̃d,l

])2
(3.21)

and eventually all the other moments.

Mean, variance and skewness of the aggregate claim amount of the XL reinsurer are
reported in Formula (3.22), (3.23) and (3.24) respectively.

E
[
X̃xl

]
= E

 K̃∑
i=1

Z̃i,d,l

 = E
[
K̃
]
E
[
Z̃d,l

]
(3.22)

where E
[
Z̃d,l

]
is equal to (3.19).

V ar
[
X̃xl

]
= V ar

 K̃∑
i=1

Z̃i,d,l

 = E
[
K̃
]

V ar
[
Z̃d,l

]
+ V ar

[
K̃
]
E
[
Z̃d,l

]2
(3.23)
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where E
[
Z̃d,l

]
is equal to (3.19) and V ar

[
Z̃d,l

]
to (3.21).

γ
[
X̃xl

]
=

E
[
K̃
]

V ar
[
Z̃d,l

]3/2
γ
[
Z̃d,l

]
+ 3V ar

[
K̃
]
E
[
Z̃d,l

]
V ar

[
Z̃d,l

]
+ V ar

[
K̃
]3/2

γ
[
K̃
]
E
[
Z̃d,l

]3
V ar

[
X̃xl

]3/2 .

(3.24)

In case we assume that QS reinsurance is the only applicable treaty, Formula (3.9)
simplifies to:

Ũt+1 = Ut(1 + j) +
[
α
(
Bt+1 − X̃t+1

)
−
(
Et+1 + αBt+1c̃re

t+1
)]

(1 + j)1/2 .

On the other hand, if we instead assume that XL reinsurance is the only applicable
treaty, Formula (3.9) becomes:

Ũt+1 = Ut(1 + j) +
[(

Bt+1 − Bre
t+1
)

−
(
X̃t+1 − X̃re

t+1

)
− Et+1

]
(1 + j)1/2 .

3.3 Risk reserve with one segment and one reinsurer

Following the theoretical approaches developed in previous section, we start our
extensions of the risk reserve equation allowing for default of the reinsurance company.

Hence, in Formula (3.25) we define a new random variable “aggregate claim amount
returned from reinsurer to insurer”, which considers this possible event.

X̃re,d = X̃re − (1 − q)X̃reĨ =
{

X̃re 1 − p

X̃req p
(3.25)

where Ĩ represents an indicator variable for the realization of the default event,
with probability p, and q the recovery rate in case of default, assumed deterministic.
In particular, the default event is modeled as a binomial random variable, with
probability of default equal to p. Moreover, it is possible to interpret (1 − q)X̃re as
a (stochastic) loss given default.

The three main moments of this random variable are reported in Formula (3.26),
(3.27) and (3.28).

E
[
X̃re,d

]
= E

[
X̃re

] (
1 − E

[
Ĩ
]

(1 − q)
)

(3.26)
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V ar
[
X̃re,d

]
= E

[(
X̃re,d

)2
]

− E
[
X̃re,d

]2
= V ar

[
X̃re

] (
1 − E

[
Ĩ
]

(1 − q2)
)

+ E
[
X̃re

]2
V ar

[
Ĩ
]

(1 − q)2

= V ar
[
X̃re

]
+ (1 − q)

(
(1 − q)E

[
X̃re

]2
V ar

[
Ĩ
]

− (1 + q) V ar
[
X̃re

]
E
[
Ĩ
])
(3.27)

γ
[
X̃re,d

]

=
E
[(

X̃re,d
)3
]

− 3E
[
X̃re,d

]
E
[(

X̃re,d
)2
]

+ 3E
[
X̃re,d

]2
E
[(

X̃re,d
)]

− E
[
X̃re,d

]3
V ar

[
X̃re,d

]3/2

=
E
[(

X̃re,d
)3
]

− 3E
[
X̃re,d

]
V ar

[
X̃re,d

]
− E

[
X̃re,d

]3
V ar

[
X̃re,d

]3/2 .

(3.28)

An important assumption that we made in this context is that we assumed inde-
pendence between the default event and the aggregate claim amount borne by the
reinsurer. The rational of this choice is that the aggregate claim amount borne by
the reinsurer deriving by the specific insurance company are just a portion of its
whole exposure. Hence, we assume that the effect of the single insurance company
is negligible compared to the size of the portfolio of the reinsurer and then there is
independence between the two random variables.

It shall be noted that, from the assumptions we made regarding the collective risk
model for describing the aggregate claim amount, we are able to compute these
moments for both quota share and excess of loss cases. Indeed, we simply have to
substitute the generic Xre random variables with the corresponding one for the two
reinsurance cases, for which we have already reported the main moments above.

At this point we can define the equation of the risk reserve in a scenario where the
insurer operates in a single segment and with only a (defaultable) reinsurer. In
Formula (3.29) it is reported this equation.

Ũ1 = U0(1 + j) +
[(

B − X̃ − E
)

−
(
Bre − X̃re,d − Cre

)]
(1 + j)1/2

= U0(1 + j) +
[
(B − Bre) −

(
X̃ − X̃re,d

)
− (E − Cre)

]
(1 + j)1/2 .

(3.29)

In Formula (3.30) it is reported the mean of this random variable.
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E
[
Ũ1
]

= U0(1 + j) +
[
(B − Bre) −

(
E
[
X̃
]

− E
[
X̃re,d

])
− (E − Cre)

]
(1 + j)1/2

= U0(1 + j) +
[
(B − Bre) −

(
E
[
X̃
]

− E
[
X̃re

] (
1 − E

[
Ĩ
]

(1 − q)
))

− E
]

(1 + j)1/2

(3.30)

where we simply apply Formula (3.26).

As expected, the mean of this equation differentiates from Formula (3.9) just for the
presence a term accounting for the potential non-payment by the reinsurer in case
of default. Indeed, the expected claims borne by the reinsurer is multiplied by one
minus the expected probability of default multiplied by the eventual non-recovered
quota.

In Formula (3.31) it is reported the variance of this risk reserve:

V ar
[
Ũ1
]

= V ar
[
U0(1 + j) +

[
(B − Bre) −

(
X̃ − X̃re,d

)
− (E − Cre)

]
(1 + j)1/2

]
=
{

V ar
[
X̃
]

+ V ar
[
X̃re,d

]
− 2Cov

[
X̃, X̃re,d

]}
(1 + j) .

(3.31)

Appendix A.1 reports in detail the steps for obtaining the variance and the derivation
of the elements of Formula (3.31).

Clearly, from a theoretical point of view we have two extreme possible situations.
In case the reinsurer has probability of default equal to 0, then we come back to
the results of the model reported in Formula 3.9. The opposite situation occurs if
we assume that the reinsurer will surely default (i.e. probability of default equal
to 1) and will not return any amount (i.e. recovery rate equal to 0). In that case,
the variance of capital at end of time 1 is equal to the gross of reinsurance case.
However, the expected capital is lower due to the payment of reinsurance premium.
Hence, this strategy will never be pursued due to its inefficiency.

3.3.1 Numerical application

At this point we can present some practical case studies showing the application
of the model just described for a non-life insurance company. Table 3.1 shows the
parameters of segment, assumed GTPL, where the insurance company carries out
its underwriting activity. The other necessary parameters for calculating the risk
reserve are instead reported in Table 3.2. From these information we can derive that
this line of business has a quite high volatility of single claim amount, indicated
by the coefficient of variation (CoV), which represents the ratio between standard
deviation and mean of the random variable, equal to CoV (Z̃) = 10. Moreover, the
LoB provides on average a positive technical result, with an average loss ratio below
60%. The characteristics of this line of business are well suited for the use of an
excess of loss reinsurance. Indeed, the expected loss ratio is quite low, but the
insurance company is exposed to a strong variability in the single claim amount,
which could be reduced by means of a non-proportional reinsurance treaty. As for
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Table 3.1. Parameters of the line of business.

LoB E
[
K̃
]

σ
[
Q̃
]

E
[
Z̃
]

CoV
[
Z̃
]

pl ER LR CR

GTPL 15, 000 15.39% 6, 000 10 10, 000, 000 32.7% 59.6% 92.3%

Table 3.2. Parameters of the insurance company, market interest rate and reinsurance
deductible.

P λ c B U j d

90, 000, 000 12.9% 32.7% 150, 980, 681 15, 098, 068 1% 1, 000, 000

the remaining parameters of the case study, we assume an initial capital of the
insurer equal to 10% of the gross written premium of the year, an annual interest
rate of 1% and a deductible of the excess of loss reinsurance equal to 1 million (M).
The value of the reinsurance limit is not defined, since it will be the element that we
will analyze for choosing the optimal contract.

Finally, Table 3.3 shows the parameters of reinsurer for different values of the credit
quality step. In particular, in order to present more distinct results, we have assumed
a quite strong discount in the safety loading and a strong impact on the recovery
rate for worse values of the credit quality step. In practice, however, the insurance
company should use the actual information available for the price offered by the
reinsurer of different ratings and its expectation for the recovery rate.

In Figure 3.1 are reported the mean and coefficient of variation of the risk reserve
for different values of limit l, fixed all the other parameters. Moreover we compare
these metrics for different ratings of the reinsurance company.

We can observe that, for all the values of CQS, there is a decreasing trend in
the expected capital at year-end as the limit increases. Indeed the explanation is
straightforward: for a fixed deductible, a higher limit implies a higher expected cost
for the reinsurer, which would lead to an increase in the price of the XL treaty,
reducing the insurance technical result. Comparing the expected risk reserve for
different reinsurer CQSs we can observe that the worse the reinsurer rating the
higher the insurer result. This is in line with the theoretical expectation, since a

Table 3.3. Parameters of the reinsurance company for different credit quality steps.

CQS Probability of default Discount factor Recovery rate
0 0.002% 87.5% 60.0%
1 0.01% 75.0% 51.4%
2 0.05% 62.5% 42.9%
3 0.24% 50.0% 34.3%
4 1.2% 37.5% 25.7%
5 4.2% 25.0% 17.1%
6 4.2% 12.5% 8.6 %
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Figure 3.1. Expected value and coefficient of variation of the risk reserve for different
values of XL limit. The colors represent the value of CQS of the reinsurance company,
ranging from green for a CQS of 0 to red for a CQS of 6.

reinsurer with a worse rating should offer a lower price, at the same conditions,
to compensate for its higher probability of default. Moreover the difference in the
expected risk reserve for different reinsurer CQSs amplifies as the limit increases.
In Figure 3.1 these effects are quite marked, due to the specific assumptions on the
reinsurer parameters, reported in Table 3.3.

Analyzing the coefficient of variation of the risk reserve for the different values of
the limit of the XL reinsurance we can observe that the general effect is a decrease
in the relative variability for an increase in the limit. The reason is that increasing
the limit produces a higher reduction of the standard deviation of the risk reserve
compared to the expected value. However, we can observe that in case of a reinsurer
with CQS equal to 0 the reduction of the CoV of the insurance company is limited
to a certain value of limit after which there is an increase. In practice, that specific
value corresponds to the limit which minimizes the coefficient of variation of the risk
reserve in case the insurance company underwrites a treaty with a reinsurer with
CQS equal to 0. Instead, in all the other cases, the minimization of the coefficient
of variation is reached at the maximum value of limit, i.e. when the reinsurance
operates on all the losses above the deductible. The specific trends of the CoV as
function of limit for each CQS value are analyzed in more detail in the following
figure.

In Figure (3.2) it is reported the coefficient of variation of the risk reserve for
different values of limit l and for each CQS of the reinsurance company. If we are
interested in a single objective optimization, consisting for instance in choosing the
limit that minimize the coefficient of variation of the risk reserve (fixed the CQS
of the reinsurance company) we could analyze these figures. We observe that in
case we have a reinsurance with probability of default equal to 0 (CQS = −1) the
optimal limit corresponds to 1, 000, 000. After that value the CoV starts increasing,
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Figure 3.2. Coefficient of variation of the risk reserve for different values of XL limit for
each credit quality step. Credit quality step of −1 indicates the theoretical reinsurer
with probability of default equal to 0.

even more than the gross of reinsurance case3. The reason is that, assuming these
parameters, the reduction of premium deriving from the purchase of reinsurance is
less than compensated by the corresponding reduction of the standard deviation. A
similar situation occurs for the case of reinsurance company with CQS equal to 0,
for which the insurer reaches the minimum value of CoV for a limit of 2, 500, 000.
For all the other CQSs, there is a decreasing trend of the coefficient of variation for
increasing limit. This means that in these cases the optimal value of the limit is
reached at its maximum, which corresponds to the difference between the contractual
limit and the deductible.

A final interesting result that we can derive from these analyses is that, under the
specific parameters assumptions that we made, the optimal choice of reinsurance
strategy for the insurance company consists in ceding the risk to a reinsurer with
CQS equal to 6. Indeed, because of the strong discount that we assumed compared
to the relative low probability of default, the reinsurer with the worst credit quality
step leads to the highest expected risk reserve and lowest coefficient of variation for
the insurance company compared to the other alternatives, for each value of the
limit.

Hence, the insurance company shall limit its analysis to the CQS-6 reinsurer only,
for finding the value of the limit that optimizes its objectives. One classical multi-

3It should be noted that the difference between smallest and the highest values of the coefficient
of variation is less than 0.6%.
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objective optimization problem consists in jointly maximizing the expected value
and minimizing the coefficient of variation. By limiting the analysis to the case
of reinsurer with CQS equal to 6 we can already observe in Figure 3.1 that the
optimization problem would not lead to a unique solution. Indeed, while the expected
value decreases for increasing limit, the coefficient of variation shows the opposite
trend. Hence, as in most multi-objective optimization problems we do not have a
unique solution, but a set of efficient solutions determining a so-called Pareto frontier.
Given the set of optimal solutions the insurance company should then choose the
value which better describes its trade-off preference between the two metrics.

3.4 Risk reserve with one segment and multiple reinsur-
ers

At this point we can extend the model to allow for the presence of more than one
reinsurance company. Hence, as reported in Formula (3.32), we develop the risk
reserve equation in a scenario where the insurer operates in a single segment and
with many (defaultable) reinsurers.

Ũ1 = U0(1 + j) +
[(

B − X̃ − E
)

−
(
Bre − X̃re,d − Cre

)]
(1 + j)1/2

= U0(1 + j) +
[
(B − Bre) −

(
X̃ − X̃re,d

)
− (E − Cre)

]
(1 + j)1/2

= U0(1 + j) +
[
(B − Bre) −

(
X̃ −

R∑
r=1

X̃re,d(r)
)

−
(

E −
R∑

r=1
Cre(r)

)]
(1 + j)1/2

(3.32)
where the sums are over the R reinsurers.

In Formula (3.33) and (3.34) the mean and variance of this risk reserve are reported.

E
[
Ũ1
]

= U0(1 + j) +
[
(B − Bre) − E

[
X̃ −

R∑
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X̃re,d(r)
]
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[
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R∑
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Cre(r)
]]

(1 + j)1/2

= U0(1 + j) +
[
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(
E
[
X̃
]

−
R∑

r=1
E
[
X̃re,d(r)

])
− E

]
(1 + j)1/2

= U0(1 + j) +
[
(B − Bre) −

(
E
[
X̃
]

−
R∑

r=1
E
[
X̃re(r)

] (
1 − E

[
Ĩ(r)

] (
1 − q(r)

)))
− E

]
(1 + j)1/2

(3.33)

where I(r) represents the default event of the r-th reinsurer, modeled as a binomial
random variable, with probability of default p(r). The term q(r) is instead the quota
of credit (assumed deterministic) that the insurer holds against the reinsurer r which
is recovered in case of default. The dependence between reinsurers is assumed to
follow the “common shock approach” described in Section 2.2.3.
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Table 3.4. Parameters of the line of business.

LoB E
[
K̃
]

σ
[
Q̃
]

E
[
Z̃
]

CoV
[
Z̃
]

pl ER LR CR

GTPL 15, 000 15.39% 6, 000 10 10, 000, 000 32.7% 59.6% 92.3%
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(
1 − q(r)

))}
(1 + j) .

(3.34)

Appendix A.2 reports in detail the steps for obtaining the variance and the derivation
of the elements of Formula (3.34).

3.4.1 Numerical application

Similar to what we did for the model with one line of business and one reinsurer,
also in this case we present some practical case studies showing how this second
model could be employed for estimating the main moments of the risk reserve and
for choosing the optimal reinsurance strategy. Table 3.4 shows the parameters of the
GTPL line of business, which we assume being the segment in which the insurance
company carries out its underwriting activity. The other necessary parameters for
calculating the risk reserve are instead reported in Table 3.5. They are based on the
same assumptions of the numerical analysis of the previous chapter, so the comments
are valid also in this case. Here, we have also defined the value of the reinsurance
limit, because for this model we will analyze the number of reinsurance companies
as the variable for optimization.

Also for the reinsurance companies, as reported in Table 3.6, we used the same
parameters described in the numerical analysis of the previous section.
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Table 3.5. Parameters of the insurance company, market interest rate and reinsurance
deductible and limit (amounts in k).

P λ c B U j d l

90, 000 12.9% 32.7% 150, 980.7 15, 098.1 1% 1, 000 2, 000

Table 3.6. Parameters of the reinsurance company for different credit quality steps.

CQS Probability of default Discount factor Recovery rate
0 0.002% 87.5% 60.0%
1 0.01% 75.0% 51.4%
2 0.05% 62.5% 42.9%
3 0.24% 50.0% 34.3%
4 1.2% 37.5% 25.7%
5 4.2% 25.0% 17.1%
6 4.2% 12.5% 8.6 %

Figure 3.3 reports the mean and coefficient of variation of the risk reserve for different
values of the number of reinsurers R, fixed all the other parameters. Moreover we
compare these metrics for different ratings of the reinsurance company.

We can observe that, for all the values of CQS, there is a decreasing trend in the
expected capital at year-end for an increasing number of reinsurance companies.
Indeed, for this analysis we have assumed that the reinsurers use the standard
deviation premium principle to calibrate the premium to be charged to the insurer.
Hence, as proved in Formula (2.29), segmenting the same layer into multiple sub-
layers (as in this case with multiple reinsurers), leads to an increase in the premium.
In line with the theoretical expectation, comparing the expected risk reserve for
different values of the CQS it is possible to observe that a worse rating implies a
higher result. In this case, the marginal reduction in the expected risk reserve for an
increase in the number of reinsurers is the same for each value of the CQS. Hence,
differently from the trend observed in Figure 3.1 for increasing limits, the difference
in the expected risk reserve for different reinsurer CQSs remains constant as the
number of reinsurers increases.

Analyzing the coefficient of variation of the risk reserve for different number of
reinsurers, we can observe an interesting dynamic. There is a decrease in the relative
variability when we move from the gross of reinsurance case to the scenario with one
reinsurer. After then, increasing the number of reinsurers also produces an increase
in the CoV, in some cases even higher than the gross case. This effect is present
for all the CQS values4, but it is particularly relevant for the CQS-6 reinsurer. In
practice, when we move from the gross of reinsurance case to the single reinsurer case,
we have a reduction in the standard deviation that is greater than the corresponding
reduction in the expected value of the risk reserve. However, this effect is limited to
the transition from zero to one reinsurer. At that point, under the specific parameter

4In Figure 3.1 the red line hides the other ones
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Figure 3.3. Expected value and coefficient of variation of the risk reserve for different number

of reinsurance companies. The colors represent the value of CQS of the reinsurance
company, ranging from green for a CQS of 0 to red for a CQS of 6.

assumptions that we made, the diversification of risk produced by the increase in
the number of counterparties is more than offset by the reduction in expected value.

Also in this case, since we used the same parameters as in the previous section, the
optimal choice of reinsurance strategy for the insurance company consists in ceding
the risk to a reinsurer with CQS equal to 6. In particular, in Figure 3.4 we show the
frontier of reinsurance strategies for the different CQS according to the expected
value and the coefficient of variation of the risk reserve. Here, it possible to observe
that, as anticipated, the reinsurer with CQS equal to 6 is the optimal choice in all the
cases. Moreover, the reinsurance strategy that minimizes the coefficient of variation
is reached with a single reinsurer with CQS equal to 6 and the value obtained is
0.54. In Figure 3.4 it is also possible to observe that the strategies determining
an expected value lower than 24.5 are always inefficient, except for the cases with
CQS equal to 0 and 1. Indeed, combinations to the right of 24.5 produce a higher
expected value for the same values of the coefficients of variation. For the cases of
reinsurers with CQS equal to 0 and 1, however, this is only partially true.

Finally, in order to present the importance of considering the actual counterparty de-
fault risk and how the specific assumptions affect the choice of reinsurance strategies,
in Figure 3.5 we report the same analysis of Figure 3.3, but under the assumption
that the reinsurance companies offer the same price, regardless of their rating.

Under this setting, the reinsurer with CQS equal to 0 is clearly the preferred one,
since in that case the insurance company obtains the highest expected capital and
the lowest relative variability. On the other hand, the reinsurer with the highest
probability of default (CQS = 6) provides the worst results, since in this case to
the insurance company always reaches the lowest expected value and the highest
coefficient of variation. This result is exactly in line with what we expect from the
discount removal of lower rated reinsurers. Indeed, if all the reinsurers offer the
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Figure 3.4. Combinations of expected value and coefficient of variation of the risk reserve
for difference reinsurance strategies. The colors represent the value of CQS of the
reinsurance company, ranging from green for a CQS of 0 to red for a CQS of 6.
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Figure 3.5. Expected value and coefficient of variation of the risk reserve for different

values of XL limit. The colors represent the value of CQS of the reinsurance company,
ranging from green for a CQS of 0 to red for a CQS of 6.

same price regardless of their rating, the only effect that modifies the risk reserve of
the insurance company is the probability of default of the reinsurance companies.

3.5 Risk reserve with multiple segments and one rein-
surer

In general an insurance company does not underwrite business of just one insurance
segment, but it operates in multiple lines of business. Hence, we extend the base
model to allow multiple lines of business. In Formula (3.35) we report the risk
reserve equation in a scenario where the insurer operates in multiple segments, with
only one (defaultable) reinsurer.

Ũ1 = U0(1 + j) +
[(

B − X̃ − E
)

−
(
Bre − X̃re,d − Cre

)]
(1 + j)1/2

= U0(1 + j) +
L∑

l=1

[(
Bl − X̃l − El

)
−
(
Bre

l − X̃re,d
l − Cre

l

)]
(1 + j)1/2

= U0(1 + j) +
L∑

l=1

[
(Bl − Bre

l ) −
(
X̃l − X̃re,d

l

)
− (El − Cre

l )
]

(1 + j)1/2

(3.35)

where the sums are over the L lines of business.

In Formula (3.36) and (3.37) are reported the mean and variance of this risk reserve.
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Table 3.7. Parameters of the lines of business.

LoBs E
[
K̃l

]
σ
[
Q̃l

]
E
[
Z̃l

]
CoV

[
Z̃l

]
pll ERl LRl CRl

MTPL 50,000 7.47% 4,500 6 10,000,000 21.4% 77.7% 99.1%
MOD 25,000 7.01% 1,500 2 1,000,000 31.6% 61.9% 93.5%
GTPL 15,000 15.39% 6,000 10 10,000,000 32.7% 59.6% 92.3%
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(3.37)

Appendix A.3 reports in detail the steps for obtaining the variance and the derivation
of the elements of Formula (3.37).

3.5.1 Numerical application

In the following we present some practical case studies showing the application of
this model for estimating the main moments of the risk reserve in case the insurance
company pursues its activity in more than one segment and an empirical approach
for choosing the optimal reinsurance strategy. Table 3.7 reports the parameters of
the 3 LoBs in which the insurance company carries out its underwriting activity.
The other necessary parameters for calculating the risk reserve are instead reported
in Table 3.8, while regarding the correlations between lines of business we assume
the same parameters as in Standard Formula of Solvency II (see Table 2.5).

Regarding the characteristics of the reinsurer for different CQS, we assume the same
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Table 3.8. Parameters of the insurance company, market interest rate and reinsurance
deductible and limit (amounts in k).

P λ c B U j d l

90, 000 12.9% 32.7% 150, 980.7 15, 098.1 1% 1, 000 2, 000

parameters reported in the previous two models (see Table 3.3). Hence, also in this
case, we assume that the reinsurance company prices the treaty accounting for its
probability of default and consequently discounting the technical price according to
its rating. Finally, the value of the limit l that we reported in the table refers only
to the MTPL line of business. For MOD we assume that there is no reinsurance,
while the limit of GTPL is the object of the optimization problem.

Figure 3.6 shows the mean and coefficient of variation of the risk reserve for different
values of the number of the XL limit, for the GTPL line of business, fixed all the
other parameters. Moreover we compare these metrics for different ratings of the
reinsurance company.

As expected, for all the values of CQS, increasing the limit of the GTPL XL treaty
results in a reduction of the expected risk reserve, mainly driven by the higher cost
of reinsurance. As already explained for the previous cases, the specific choice of the
parameters leads to a situation where the reinsurance with CQS equal to 6 provides
the highest expected capital compared to the other CQS for all the values of the
limit. Moreover, we can observe that increasing the limit amplifies the difference in
the expected risk reserve for different reinsurer CQS.

Analyzing the coefficient of variation of the risk reserve for increasing GTPL XL
limit we can observe a specific dynamic for each CQS. The cases of CQS equal to 0,
1 and 2 show a decreasing trend up to a minimum value, which is then followed by
an increase. In particular, for the CQS equal to 0 we can observe that high values
of the limit correspond to a coefficient of variation even higher than the gross of
reinsurance one. Due to the use of the same parameters as in previous examples, also
in this case the optimal choice of reinsurance strategy for the insurance company
according to the minimization of the coefficient of variation consists in ceding the
risk to a reinsurer with CQS equal to 6.

Figure 3.7 shows the detail of coefficient of variation of the risk reserve for different
limit of the XL reinsurance for the GTPL segment. This analysis can be used in
case we are interested, for instance, in the optimization of this single metric. We
can observe different dynamics according to the specific rating of the reinsurance
company. For CQSs from −1 to 2 there is a decrease of the CoV to a minimum
followed by a subsequent increase. For CQSs from 3 to 6, instead, there is a decrease
that reaches its minimum at the extreme of the limit domain. More specifically,
for the case of the non-defaultable reinsurer the minimum CoV is reached with a
limit of 600, 000. For the defaultable reinsurers the minimum CoV is reached with
a value of limit equal to 1, 300, 000, 2, 500, 000 and 5, 300, 000 for CQS of 0, 1 and
2 respectively. As anticipated, in all the other cases the minimum coefficient of
variation is reached for the maximum value of the limit, equal to 9, 000, 000.
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Figure 3.6. Expected value and coefficient of variation of the risk reserve for different
values of XL limit for the GTPL line of business. The colors represent the value of CQS
of the reinsurance company, ranging from green for a CQS of 0 to red for a CQS of 6.
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Figure 3.7. Coefficient of variation of the risk reserve for different values of XL limit for the
GTPL line of business, for each credit quality step. Credit quality step of −1 indicates
the theoretical reinsurer with probability of default equal to 0.
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Appendix A

Proofs of risk reserve equations

A.1 Model 1: Risk reserve with one segment and one
reinsurer

Ũ1 = U0(1 + j) +
[(

B − X̃ − E
)

−
(
Bre − X̃re,d − Cre

)]
(1 + j)1/2

= U0(1 + j) +
[
(B − Bre) −

(
X̃ − X̃re,d

)
− (E − Cre)

]
(1 + j)1/2

Variance of risk reserve with one segment and one reinsurer. In the following for-
mula it is reported the variance of the risk reserve:

V ar
[
Ũ1
]

= V ar
[
U0(1 + j) +

[
(B − Bre) −

(
X̃ − X̃re,d

)
− (E − Cre)

]
(1 + j)1/2

]
=
{

V ar
[
X̃
]

+ V ar
[
X̃re,d

]
− 2Cov

[
X̃, X̃re,d

]}
(1 + j)

where we have simply applied the properties of the variance, in order to write the
variance of the difference between two dependent random variables as the sum of
the variances minus 2 times the covariance.

At this point there are the following variables:

(i) V ar
[
X̃
]
: Variance of the aggregate claim amount X̃, see Formula (3.5).

(ii) V ar
[
X̃re,d

]
: Variance of the aggregate claim amounted paid back by the

(defaultable) reinsurer X̃re,d, see Formula (3.27).

(iii) Cov
[
X̃, X̃re,d

]
: Covariance between the aggregate claim amount and the

aggregate claim amount paid back by the (defaultable) reinsurer.

Since we have already developed the first two elements, we can focus only on the
last one. Moreover, for this last element, because of the assumption of independence
between the aggregate claim amount (gross of the reinsurer) and the default event,
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we can write the covariance term as follow:

Cov
[
X̃, X̃re,d

]
= Cov

[
X̃, X̃re

(
1 − Ĩ (1 − q)

)]
=
(
1 − E

[
Ĩ
]

(1 − q)
)

Cov
[
X̃, X̃re

]
=
(
1 − E

[
Ĩ
]

(1 − q)
) [

E
[
X̃X̃re

]
− E

[
X̃
]
E
[
X̃re

]]
.

At this point we know all the elements except for the first term of the squared
bracket, which consists in the expected value of the product between the “gross”
aggregate claim amount and the aggregate claim amount borne by the reinsurer.
Focusing on this term we have:

E
[
X̃X̃re

]
= E

 K̃∑
i=1

Z̃i

K̃∑
j=1

Z̃re
j

 = E

 K̃∑
i=1

K̃∑
j=1

Z̃iZ̃
re
j


where we write both X̃ and X̃re according to their collective risk theory formula
(3.3). Finally, we rearrange the product of the sum as the “double-sum” of the
products.

E

 K̃∑
i=1

K̃∑
j=1

Z̃iZ̃
re
j

 = E

 K̃∑
i=1

Z̃iZ̃
re
i +

K̃∑
i=1

K̃∑
j=1,i ̸=j

Z̃iZ̃
re
j


= E

 K̃∑
i=1

Z̃iZ̃
re
i

+ E

 K̃∑
i=1

K̃∑
j=1,i ̸=j

Z̃iZ̃
re
j


= E

[
K̃
]
E
[
Z̃iZ̃

re
i

]
+
(
E
[
K̃2
]

− E
[
K̃
])

E
[
Z̃iZ̃

re
j

]
= E

[
K̃
]
E
[
Z̃iZ̃

re
i

]
+
(
E
[
K̃2
]

− E
[
K̃
])

E
[
Z̃
]
E
[
Z̃re

]
.

First of all, we decompose the double sum in the sum of element with the same
index and element with different index. The interpretation of the two elements is
straightforward: the first sum represents the products of same random variables,
while the double-sum represents the products of different random variables. From
this considerations it is possible to further decompose the second term. At first
stage we use the law of iterated expectations to separate the number of claims from
the claims amount. Then we observe that we are dealing with different random
variables for Z̃i and Z̃re

j and consequently, for the independence between Z̃i and Z̃j

(and consequently with Z̃re
j ), we can write the expected value of the product as the

product of the expected values.

For the first expectation, instead, we can just split between the random variables
number of claims and claims amount, but we cannot directly decompose further the
expectation of the product between Z̃i and Z̃re

i , since there exists a dependence.

Anyhow, under the assumption of LogNormal distribution of claim amount, we can
still derive a closed expression of this expectation (dependent on the c.d.f. of the
Standard Normal distribution), as reported in the following formula:
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E
[
Z̃iZ̃

re
i

]
=
∫ ∞

0
zzref(z)dz

=
∫ d

0
z0f(z)dz +

∫ d+l

d
z(z − d)f(z)dz +

∫ ∞

d+l
zlf(z)dz

=
∫ d+l

d
z2f(z)dz − d

∫ d+l

d
zf(z)dz + l

∫ ∞

d+l
zf(z)dz

= e2µ+2σ2 [Φµ+2σ2,σ2 (ln(d + l)) − Φµ+2σ2,σ2 (ln(d))
]

− deµ+ σ2
2
[
Φµ+σ2,σ2 (ln(d + l)) − Φµ+σ2,σ2 (ln(d))

]
+ leµ+ σ2

2
[
1 − Φµ+σ2,σ2 (ln(d + l))

]
.



A.2 Model 2: Risk reserve with one segment and multiple reinsurers 71

A.2 Model 2: Risk reserve with one segment and multi-
ple reinsurers

Ũ1 = U0(1 + j) +
[(

B − X̃ − E
)

−
(
Bre − X̃re,d − Cre

)]
(1 + j)1/2

= U0(1 + j) +
[
(B − Bre) −

(
X̃ − X̃re,d

)
− (E − Cre)

]
(1 + j)1/2

= U0(1 + j) +
[
(B − Bre) −

(
X̃ −

R∑
r=1

X̃re,d(r)
)

−
(

E −
R∑

r=1
Cre(r)

)]
(1 + j)1/2

Variance of risk reserve with one segment and multiple reinsurers.

V ar
[
Ũ1
]

= V ar

[
U0(1 + j) +

[
(B − Bre) −

(
X̃ −

R∑
r=1

X̃re,d(r)
)

−

(
E −

R∑
r=1

Cre(r)
)]

(1 + j)1/2
]

= V ar

[
X̃ −

R∑
r=1

X̃re,d(r)
]

(1 + j)

= V ar

[
X̃ −

R∑
r=1

(
X̃re(r) − X̃re(r)Ĩ(r)

(
1 − q(r)

))]
(1 + j)

= V ar

[
X̃ − X̃re +

R∑
r=1

X̃re(r)Ĩ(r)
(
1 − q(r)

)]
(1 + j)

=
{

V ar
[
X̃
]

+ V ar
[
X̃re

]
+ V ar

[
R∑

r=1
X̃re(r)Ĩ(r)

(
1 − q(r)

)]
−

2Cov
(
X̃, X̃re

)
+ 2Cov

(
X̃,

R∑
r=1

X̃re(r)Ĩ(r)
(
1 − q(r)

))
−

2Cov

(
X̃re,

R∑
r=1

X̃re(r)Ĩ(r)
(
1 − q(r)

))}
(1 + j) .

At this point we have the following elements, which for some cases are already
known:

(i) V ar
[
X̃
]
: Variance of the aggregate claim amount X̃, see Formula (3.5).

(ii) V ar
[
X̃re

]
: Variance of the aggregate claim amounted transferred to the

reinsurer X̃re, see Formula (3.23).

(iii) V ar
[∑R

r=1 X̃re(r)Ĩ(r)
(
1 − q(r)

)]
: Variance of the loss (related to the default

event of the counterparty).

(iv) Cov
(
X̃, X̃re

)
: Covariance between the aggregate claim amount and the ag-

gregate claim amount transferred to the reinsurer, see result in Appendix
A.1.
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(v) Cov
(
X̃,
∑R

r=1 X̃re(r)Ĩ(r)
(
1 − q(r)

))
: Covariance between the “gross” aggre-

gate claim amount and the total loss variable of the defaultable reinsurers.

(vi) Cov
(
X̃re,

∑R
r=1 X̃re(r)Ĩ(r)

(
1 − q(r)

))
: Covariance between the reinsurer ag-

gregate claim amount and the total loss variable of the defaultable reinsurers.

At this point we analyze the elements not yet known. Here, we start developing
the element (iii) of the list. First of all we can observe that this term consists in
the variance of the loss of the insurer related to the possible default event of the
counterparties. Indeed, this formula

V ar

[
R∑

r=1
X̃re(r)Ĩ(r)

(
1 − q(r)

)]
= V ar

[
R∑

r=1
L̃GD

re(r)
Ĩ(r)

]

is exactly as Formula (2.37) with the only difference that in this case we are also
dealing with a stochastic loss given default. Hence, we expect to obtain a result
connected with the variance of loss from counterparty risk (see Formula (2.37) of
Section 2.2), but with an additional element to account for the variability of loss
given default.

First of all we decompose the initial formula as follow:

V ar

[
R∑

r=1
X̃re(r)Ĩ(r)

(
1 − q(r)

)]
=

R∑
r=1

V ar
[
X̃re(r)Ĩ(r)

(
1 − q(r)

)]

+
R∑

r=1

R∑
s=1,r ̸=s

Cov
(
X̃re(r)Ĩ(r)

(
1 − q(r)

)
, X̃re(s)Ĩ(s)

(
1 − q(s)

))
(A.1)

where we just split the variance of the sum in two components: the sum of the
variances and the double sum of covariances except for r = s (or equivalently the
double sum of covariances).
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Studying the variance term of Formula (A.1) we derive:

R∑
r=1

V ar
[
X̃re(r)Ĩ(r)

(
1 − q(r)

)]
=

=
R∑

r=1

[
V ar

(
X̃re(r)

)
V ar

[
Ĩ(r)

(
1 − q(r)

)]
+ V ar

[
X̃re(r)

] (
E
[
Ĩ(r)

(
1 − q(r)

)])2
+

(
E
[
X̃re(r)

])2
V ar

[
Ĩ(r)(1 − q(r))

]]

=
R∑

r=1
V ar

[
X̃re(r)

] (
1 − q(r)

)2
V ar

[
Ĩ(r)

]
+

R∑
r=1

V ar
[
X̃re(r)

] (
1 − q(r)

)2 (
E
[
Ĩ(r)

])2
+

R∑
r=1

(
E
[
X̃re(r)

])2
(1 − q(r))2V ar

[
Ĩ(r)

]

=
R∑

r=1
V ar

[
X̃re(r)

] (
1 − q(r)

)2
[
V ar

[
Ĩ(r)

]
+ E

[
Ĩ(r)

]2]
+

R∑
r=1

(
E
[
X̃re(r)

])2
(1 − q(r))2V ar

[
Ĩ(r)

]

=
R∑

r=1
V ar

[
X̃re(r)

] (
1 − q(r)

)2
E
[
Ĩ2(r)

]
+

R∑
r=1

(
E
[
X̃re(r)

])2 (
1 − q(r)

)2
V ar

[
Ĩ(r)

]

where we use the decomposition of variance of the product of independent random
variables1 at first step and then algebra.

Studying the covariance term of Formula (A.1) we derive:

R∑
r=1

R∑
s=1,r ̸=s

Cov
(
X̃re(r)Ĩ(r)

(
1 − q(r)

)
, X̃re(s)Ĩ(s)

(
1 − q(s)

))

=
R∑

r=1

R∑
s=1,r ̸=s

(
1 − q(r)

) (
1 − q(s)

)
Cov

(
X̃re(r)Ĩ(r), X̃re(s)Ĩ(s)

)
.

(A.2)

Focusing only on the covariance term we have:

Cov
(
X̃re(r)Ĩ(r), X̃re(s)Ĩ(s)

)
= E

[
X̃re(r)Ĩ(r)X̃re(s)Ĩ(s)

]
− E

[
X̃re(r)Ĩ(r)

]
E
[
X̃re(s)Ĩ(s)

]
= E

[
X̃re(r)X̃re(s)

]
E
[
Ĩ(r)Ĩ(s)

]
− E

[
X̃re(r)

]
E
[
Ĩ(r)

]
E
[
X̃re(s)

]
E
[
Ĩ(s)

]
= E

[
X̃re(r)X̃re(s)

]
E
[
Ĩ(r)Ĩ(s)

]
− E

[
X̃re(r)

]
E
[
Ĩ(r)

]
E
[
X̃re(s)

]
E
[
Ĩ(s)

]
+

E
[
X̃re(r)

]
E
[
X̃re(s)

]
E
[
Ĩ(r)Ĩ(s)

]
− E

[
X̃re(r)

]
E
[
X̃re(s)

]
E
[
Ĩ(r)Ĩ(s)

]
= Cov

[
X̃re(r), X̃re(s)

]
E
[
Ĩ(r)Ĩ(s)

]
+ Cov

[
Ĩ(r), Ĩ(s)

]
E
[
X̃re(r)

]
E
[
X̃re(s)

]
.

1Given two independent random variables X and Y the variance of the product between X and
Y is equal to: V ar [XY ] = V ar [X] V ar [Y ] + V ar [X]E [Y ]2 + V ar [Y ]E [X]2.
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Putting this result in Formula (A.2) we have:
R∑

r=1

R∑
s=1,r ̸=s

(
1 − q(r)

) (
1 − q(s)

)
Cov

[
X̃re(r), X̃re(s)

]
E
[
Ĩ(r)Ĩ(s)

]
+

R∑
r=1

R∑
s=1,r ̸=s

(
1 − q(r)

) (
1 − q(s)

)
Cov

[
Ĩ(r), Ĩ(s)

]
E
[
X̃re(r)

]
E
[
X̃re(s)

]
.

Hence, we can observe that we have obtained again the formula of the variance of
the loss (see Formula (2.37)) with the additional term accounting for the variability
in the loss given default. We can then rewrite the previous results as:

V ar

[
R∑

r=1
X̃re(r)Ĩ(r)

(
1 − q(r)

)]

=
R∑

r=1

R∑
s=1

(
1 − q(r)

) (
1 − q(s)

)
Cov

[
X̃re(r), X̃re(s)

]
E
[
Ĩ(r)Ĩ(s)

]
+

R∑
r=1

R∑
s=1

(
1 − q(r)

) (
1 − q(s)

)
E
[
X̃re(r)

]
E
[
X̃re(s)

] [
Cov

[
Ĩ(r), Ĩ(s)

]]
.

The last two elements that we need to develop in previous formula are Cov
[
X̃re(r), X̃re(s)

]
and E

[
Ĩ(r)Ĩ(s)

]
. For the second one, since we already know from Formula (2.39) the

covariance term, we just need to rewrite the formula as: E
[
Ĩ(r)Ĩ(s)

]
= Cov

[
Ĩ(r), Ĩ(s)

]
+

E
[
Ĩ(r)

]
E
[
Ĩ(s)

]
.

For Cov
[
X̃re(r), X̃re(s)

]
we need to study the term for the expectation of the product

between the two random variables. The steps are a bit more elaborated and are
reported below:

E
[
X̃re(r)X̃re(s)

]
= E

 K̃∑
i=1

Z̃
re(r)
i

K̃∑
j=1

Z̃
re(s)
j

 = E

 K̃∑
i=1

K̃∑
j=1

Z̃
re(r)
i Z̃

re(s)
j


= E

 K̃∑
i=1

Z̃
re(r)
i Z̃

re(s)
i +

K̃∑
i=1

K̃∑
j=1,i ̸=j

Z̃
re(r)
i Z̃

re(s)
j


= E

 K̃∑
i=1

Z̃
re(r)
i Z̃

re(s)
i

+ E

 K̃∑
i=1

K̃∑
j=1,i ̸=j

Z̃
re(r)
i Z̃

re(s)
j


= E

[
K̃
]
E
[
Z̃

re(r)
i Z̃

re(s)
i

]
+
(
E
[
K̃2
]

− E
[
K̃
])

E
[
Z̃

re(r)
i Z̃

re(s)
j

]
= E

[
K̃
]
E
[
Z̃

re(r)
i Z̃

re(s)
i

]
+
(
E
[
K̃2
]

− E
[
K̃
])

E
[
Z̃re(r)

]
E
[
Z̃re(s)

]
.

(A.3)

Hence, we analyze the first expectation of Formula (A.3), assuming that the layer of
the s-th reinsurer is above the r-th. In particular, we assume that the reinsurer r
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covers the claims in layer (d1, d1 + l1) and the reinsurer s in layer (d2, d2 + l2), with
d2 ≥ d1 + l1.

E
[
Z̃

re(r)
i Z̃

re(s)
i

]
=
∫ d1

0
00f(z)dz +

∫ d1+l1

d1
(z − d1)0f(z)dz+∫ d2

d1+l1
l10f(z)dz +

∫ d2+l2

d2
l1(z − d2)f(z)dz

∫ ∞

d2+l2
l1l2f(z)dz

= l1

(∫ d2

0
0f(z)dz +

∫ d2+l2

d2
(z − d2)f(z)dz

∫ ∞

d2+l2
l2f(z)dz

)
= l1E

[
Z̃re(s)

]
.

Consequently, we have:

E
[
X̃re(r)X̃re(s)

]
= E

[
K̃
]
E
[
Z̃

re(r)
i Z̃

re(s)
i

]
+
(
E
[
K̃2
]

− E
[
K̃
])

E
[
Z̃re(r)

]
E
[
Z̃re(s)

]
= E

[
K̃2
]
E
[
Z̃re(r)

]
E
[
Z̃re(s)

]
+ E

[
K̃
]
E
[
Z̃re(s)

] (
l1 − E

[
Z̃re(r)

])
.

At this point we analyze the (v) element. We study the covariance between the
“gross” aggregate claim amount and the loss term.

Cov

(
X̃,

R∑
r=1

X̃re(r)Ĩ(r)
(
1 − q(r)

))
=

E
[
X̃

R∑
r=1

X̃re(r)Ĩ(r)
(
1 − q(r)

)]
− E

[
X̃
]
E
[

R∑
r=1

X̃re(r)Ĩ(r)
(
1 − q(r)

)]
R∑

r=1
E
[
X̃X̃re(r)Ĩ(r)

(
1 − q(r)

)]
− E

[
X̃
] R∑

r=1
E
[
X̃re(r)Ĩ(r)

(
1 − q(r)

)]
R∑

r=1
E
[
Ĩ(r)

] (
1 − q(r)

)
E
[
X̃X̃re(r)

]
− E

[
X̃
] R∑

r=1
E
[
Ĩ(r)

] (
1 − q(r)

)
E
[
X̃re(r)

]
R∑

r=1
E
[
Ĩ(r)

] (
1 − q(r)

) [
E
[
X̃X̃re(r)

]
− E

[
X̃
]
E
[
X̃re(r)

]]
.

Hence, we know all the elements, since the development of E
[
X̃X̃re(r)

]
is reported

in Appendix (A.1).

At this point we study the element (vi) of the list, which represents the covariance
between the reinsurer aggregate claim amount and the total loss variable of the
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defaultable reinsurers.

Cov

(
X̃re,

R∑
r=1

X̃re(r)Ĩ(r)
(
1 − q(r)

))
=

E
[
X̃re

R∑
r=1

X̃re(r)Ĩ(r)
(
1 − q(r)
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The last element that we need to develop is the expected value of the product
between Z̃re and Z̃re(r) for the same claim. The general formulation is reported
below:
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which, under the assumption of LogNormal distribution of claim amount, reduces to:
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A.3 Model 3: Risk reserve with multiple segments and
one reinsurer
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(A.4)

Variance of risk reserve with multiple segments and one reinsurer.
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At this point we have the following elements, which for some cases are already
known:

(i) V ar
[
X̃
]
: Variance of the aggregate claim amount X̃, see Formula (3.5).

(ii) V ar
[
X̃re

]
: Variance of the aggregate claim amount paid back by the (default-

able) reinsurer X̃re,d, see Formula (3.27).

(iii) Cov
[
X̃l, X̃m

]
: Covariance of the gross aggregate claim amount between two

different lines of business.

(iv) Cov
[
X̃re,d

l , X̃re,d
m

]
: Covariance between aggregate claim amount borne by the

reinsurer for different segments.

(v) Cov
[
X̃l, X̃re,d

m

]
: Covariance between “gross” aggregate claim amount of seg-

ment l and aggregate claims borne by reinsurer of segment m.

In order to be able to develop the remaining elements, first of all we shall remark
some concept regarding correlation and covariance of aggregate claim amount and
add an additional assumption on the correlation between lines of business.

The base hypothesis used for modeling the correlation between different segments
is that there exists a dependence at aggregate claim amount level. For instance,
in Solvency II this assumption is developed in the use of a correlation matrix
for aggregating the lines of business. In practice we have ρ

(
X̃LoBi , X̃LoBj

)
= c.
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However, from this approach we do not know the implicit correlation that there
exists at number of claims and severity level. Hence, for being able to subsequently
decompose these dependences we shall make an additional hypothesis. In particular,
we assume that there is independence in the severity of different lines of business,
which means X̃LoBi ⊥⊥ X̃LoBj . In this way we implicitly assume that there is a
dependence in the number of claims of different lines of business (in order to preserve
the dependence at aggregate claims level), which means ρ

(
K̃LoBi , K̃LoBj

)
= k.

An important consequence of this additional assumption is that now the correlations
at number level and at aggregate claim amount level are strictly dependent each
other, since all the other terms present are “fixed”. In this way it is possible to
explicit the correlation at aggregate claim level (for instance using the correlation
structure of Solvency II) and obtaining the connected correlation at number level.

In this way we can develop the element (iii) as reported below:
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Moreover, we observe that if we know the correlation between lines of business at
aggregate claim amount level, we can derive the covariance and correlation between
lines of business at number of claims level, and viceversa.
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Consequently we are able to determine the covariance between the reinsurer aggregate
claim amount of different segments (element (iv)) as reported below.
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Finally, we determine the covariance between the reinsurer aggregate claim amount
and the insurer aggregate claim amount of another segment (element (v) of the list)
as reported below:
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Chapter 4

A simulative approach for
estimating optimal reinsurance
strategies

4.1 Introduction

In the actuarial literature, the first works on the topic of optimal reinsurance can
be considered the seminal papers of Borch [16] and Arrow [6]. Since then, this
field has been object of an intense activity of research. The many contributes,
coming from both academics and practitioners, range from closed formulas, under
general and specific settings, to simulating approaches. Regarding closed results,
optimal reinsurance under mean and variance premium principles is analyzed in [50]
which derives closed formulas for a quite general structure and in [25], which use
as optimization criterion the minimization of a general two-dimensional function
of the mean and variance of the insurer’s total risk exposure. Optimal reinsurance
under general risk measures is instead studied in [13], where are provided necessary
and sufficient conditions for a wide family of risk measures. Quantile-based risk
measures are instead employed in the analysis of optimal risk transfer to multiple
reinsurer in [9]. The developed methodology allows to analyze high-dimensional
problems in which the insurance company diversifies its risk with multiple reinsurance
counterparties, where the insurer risk position and the premium charged by the
reinsurers are functions of the underlying risk quantile. Closed form solutions are
elaborated for some particular settings.

Optimal retention for a stop-loss reinsurance, with the objective of minimizing the
value-at-risk (VaR) and the conditional tail expectation (CTE) of the total risks of an
insurer is analyzed in [20]. Necessary and sufficient conditions for the existence of the
optimal retentions are analyzed in both individual and collective risk model, showing
that the optimal retention depends only on the assumed loss distribution and the
reinsurer’s safety loading factor. These results are then extended in [21] for a class of
increasing convex ceded loss functions, under the expected value premium principle.
The problem of minimization of VaR and CTE of the insurer retained risk by means
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of quota share and stop loss treaties is investigated also in [84]. Explicit forms are
obtained under a constrained reinsurance premium in the case of quota-share after
stop-loss reinsurance and viceversa. Considering optimal reinsurance for both parties
is also a topic analyzed in the literature, as in [12], where the decision variable is
the sensitivity of the retained (ceded) with respect to the total claims.

The relatively recent development of the European framework of Solvency II moved
the focus of analysis of optimal reinsurance also in this context. In [11] optimal
reinsurance strategies aiming at the minimization of risk exposure under Solvency
II are analyzed. Two optimal reinsurance problems are formulated, depending on
approach used for calculating the risk margin. In [27] the authors develop a Partial
Internal Model based on the Solvency II framework, extending the classical collective
risk model to also consider expense volatility. It is analyzed the effect of quota share
and excess of less treaties on the exact moment of the distribution of technical result
and investigated the effect of QS commission rates on the variability of distribution.

Following the interest in analyzing optimal reinsurance in the context of Solvency
II, we also propose a stochastic model coherent with this framework. However,
rather than focusing on a single objective, we base our model on a multi-objective
optimization problem. This kind of problems aims at finding the solutions that
optimize two or more objectives, typically conflicting. In the context of optimal
reinsurance, most of the approaches used for solving a multi-objective problem are
based on evolutionary strategies. Under the objective of maximizing the expected
value of profit and minimizing the risk of retained losses, [69] follows this paradigm
by building an evolutionary strategy (ES) that approximates the efficient frontier
using a combination of four classical reinsurance structures: surplus, quota share,
excess of loss and stop loss. [83], instead, approaches the topic in a different way,
by introducing a flexible and efficient multi-objective simulation-based optimization
framework for a multiline non-life insurance company under the Solvency II Directive,
with the objective of jointly maximizing the solvency ratio and the profitability
under specific constraints. A Pareto frontier is then employed to delete inefficient
reinsurance treaties.

The use of Pareto frontier in the context of optimal reinsurance has been employed
also in other research. In [49] Pareto-optimal reinsurance is studied in a framework
that considers both insurer’s and reinsurer’s risks and return. The approach assumes
to employ distortion risk measures with different distortion operators for determining
the risks of insurer and reinsurer, as well as the reinsurance premium. Explicit
expressions for the optimal reinsurance policies are derived with some constraint on
reinsurance policy. Simple numerical methods are found for constructing insurance
contracts that are Pareto and robust optimal in [10]. In this work, departing from
classical formulation of reinsurance problem assuming that the underlying risk
distribution is known, the authors aim at identifying a robust optimal contract that
is not sensitive to the chosen risk distribution, obtaining closed-form solutions for
the VaR and Worst-case scenario cases.

In our model we employ a simulative approach for the multi-objective optimization
framework as in [83]. However, we differ from the existing literature by extending the
analysis to consider the effect of default of the reinsurer in the simulative environment.
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Moreover, we allow for the presence of multiple lines of business for the insurance
company, multiple reinsurance treaties by multiple reinsurance companies and with
potentially different ratings. In this way the result of the proposed optimization
problem will not be limited to the characteristics of the reinsurance treaty, but it
will take into account also the number of counterparties for each treaty and their
respective credit rating. Moreover, the extended approach developed is enough
general to be potentially extended to also consider additional characteristics of the
different parties involved.

In [8] the optimal reinsurance arrangement is identified considering the presence
or not of counterparty default risk. Closed form solutions are elaborated when the
insurer’s objective function is set via some well-known risk measures. In this work is
found that optimal reinsurance contract does not usually change if the counterparty
default risk is taken into account, unless buyer and seller have very different views
on the reinsurer’s recovery rate. [19] investigates the problem of optimal reinsurance
from an insurer point of view, under a setting with presence of regulatory initial
capital and counterparty default risk. Optimal reinsurance strategies that maximize
the expected utility of an insurer’s terminal wealth or minimize the VaR of an
insurer’s total retained risk are derived.

The following sections of this Chapter are organized as follows. In Section 4.2 we
describe the general framework of the risk reserve equation and the algorithms
for simulating the different elements of the equation. Moreover, we describe the
multi-objective optimization framework for the selection of efficient reinsurance
strategies. In Section 4.3 we present the numerical application of the simulative
framework described before. We start from the description of the parameters used
and the methodological choice for the various steps of the simulating procedure.
We then propose a numerical analysis, developed for a multi-line non-life insurance
company in order to describe the approach proposed. In this part we analyze the
multi-objective efficient frontier under both a unconstrained and a constrained case,
providing numerical and graphical evidence of the results. We compare the efficient
frontier according to the Solvency Ratio obtained by means of the partial internal
model we developed and according to the Standard Formula of Solvency II. Finally
we refer to the Appendix for additional graphical analysis and sensitivities.

4.2 Stochastic approach for modeling risk reserve

In the previous chapter we showed the use of closed formulas in order to estimate the
first two moments of the risk reserve distribution. These formulas have the advantage
of not requiring any approximation derived by simulating approach. However, on the
other hand, they limit the potential structure of reinsurance treaties, because of the
complexity inherit in their modeling. For instance, we did not explore the possibility
of having the presence of quota share and excess of loss treaties together or multiple
lines of business and multiple reinsurers. Finally, while we could use distributional
approximations (e.g. Normal approximation) for describing the distribution of risk
reserve, in practice this assumption would be generally not respected. Moreover,
being an approximation not precise for the tail of the distribution, it should not be
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employed for estimating the Solvency Capital Requirement of the firm. Simulating
approaches, on the other hand, while requiring appropriate modelling assumptions
and a much higher amount of computational resources, are able to derive the
empirical distribution of risk reserve also for complex combinations of treaties with
multiple features.

In the following we present an extension of the risk reserve equation, which considers
the presence of multiple treaties for multiple lines of business and taking into account
the default risk of reinsurance companies.

Hence, we describe a simulative approach for estimating the distribution of the risk
reserve in a one-year time horizon and consequently the estimation of the metrics of
risk and return related to this random variable. Finally, we show how this approach
can be used for computing the efficient frontier of optimal reinsurance strategies.

In Formula (4.1) it is described this complete risk reserve equation:

Ũ1 = U0(1 + j) +
L∑

l=1

[
(Bl − Bre

l ) −
(

X̃l −
R∑

r=1
X̃

re,d(r)
l

)
−
(

El −
R∑

r=1
C̃

re(r)
l

)]
(1 + j)1/2 .

(4.1)

4.2.1 Pricing of insurance contracts

In our modeling we assume that the insurer determines the premium according
to the theoretical pricing approach described in Section 2.1.2. Assuming that the
insurer uses the expected value premium principle (for the safety loading) and a
loading for the expenses equal to their expectation we derive the usual formula for
gross premium reported below

B = E
[
X̃
]

(1 + λ) + cB = E
[
K̃
]
E
[
Z̃
] (1 + λ)

(1 − c)

where the elements are explained in Section 2.1.2.

Under this approach, the insurer only needs the first central moment of the aggregate
claim amount, which means (remembering collective risk theory approach) the first
central moment of number of claims and claims amount random variables.

In our model we follow the approach described in Algorithm 1 for defining the gross
premium of the insurer, necessary for calculating the risk reserve of Formula (4.1).

4.2.2 Pricing of reinsurance contracts

For the reinsurance company, the premium is obtained according to the approaches
described in Section 2.1.3 and 2.1.4. In particular, the pricing of QS is based on
ceded commission, while XL on experience pricing.

For the QS treaty, we assume that the reinsurer wants to achieve a certain margin
on the ceded premium and sets the ceded commission accordingly. In the general
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Algorithm 1 Pricing of insurance contracts.
L: number of segments
for l = 1 to L do

Calculate the mean of random variables: number of claims K̃l and single claim
amount Z̃l

Calculate the gross premium of segment l as: Bl = E
[
K̃l

]
E
[
Z̃l

]
(1+λl)
(1−cl)

end for

case, where the reinsurer uses a sliding scale commission, the pricing is still based
on the same approach. However, in this case the reinsurer shall define an upper
and lower threshold such that the expected ceded commission is equal to the ceded
commission which assures the achievement of the desired margin.

The use of experience pricing in XL reinsurance is described in Section 2.1.4. As
already explained, using the expected value principle could lead to a underestimation
of the risk, since it neglects the variability. For this reason, we assume that the
XL reinsurer bases its pricing on the standard deviation principle. In particular,
since we are in a simulative framework and do not have at disposal the real pricing
structure of the reinsurers, we assume that all the firms calibrate their safety loading
coefficient by means of the “equivalent loading” approach described in Formula
(2.20) under the standard deviation premium principle.

It shall be noted that we are assuming a pricing separate for each reinsurer. An
important consequence is that, in case there is a “layer segmentation”, since we
assumed the standard deviation premium principle, there is an increase in the total
price of reinsurance with an increase of segmentation of the total layer (see Formula
(2.28) in Section 2.1).

A last important point concerns the effect of default risk in pricing of QS and
XL treaties. Indeed, the possibility that the reinsurance company will default
represents a risk for the insurer, which reduces the potential benefit deriving from
the reinsurance contract. For this reason a coherent reinsurance pricing should
account for its probability of default in the price charged to the insurer.

For defining the reinsurance pricing structure in presence of default we start from
these considerations:

• An “ideal” reinsurer which has a probability of default equal to 0 should set
its pricing in line with the theoretical approach described.

• A reinsurer with a probability of default lower than 1 should set its pricing in
order to have a positive (> 0) technical result1.

Related to the second point, we assume that it is not possible to have a treaty with
a reinsurer with a probability of default equal to 1. Indeed, if it were possible, it

1In practice, both insurer and reinsurer could price a contract with an expected loss, for instance
in case of expansion in a new line of business, commercial reasons, etc. However this approach
should be followed for a limited time/scope since, as described in [30], it would lead to a default
with probability 1.
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would have no cost since it is equivalent to a no-reinsurance case from the point of
view of the insurer.

Hence, we build a pricing for reinsurer in order to satisfy the constraints described
above. In particular, we create a connection between the rating of the reinsurer (and
its probability of default) with the discount applied in pricing.

The pricing of an excess of loss treaty for a defaultable reinsurer is described in
Formula (4.2).

Bre =

E
[
X̃re

]
+ βσ

[
X̃re

]
p = 0

E
[
X̃re

]
+ δβσ

[
X̃re

]
p ∈ (0, 1)

(4.2)

where p represents the probability of default of the reinsurance company and δ ∈ (0, 1)
the “discount factor” for compensating for the probability of default. In practice,
we assume that in case the XL reinsurer has a probability of default greater than 0
then the loading component is decreased accordingly.

The main element in the pricing of an quota share treaty is the ceded commission,
or equivalently the ceded commission rate. In our model, we assume that the QS
reinsurer wants to achieve a certain margin from the contracts, then as described in
Formula (2.22), the corresponding ceded commission (for a non-defaultable reinsurer)
is reported below.

cre∗ = min

0, 1 −
E
[
X̃re

]
Bre

− E [M ]


Instead, for the general case of a defaultable reinsurer, in Formula (4.3) it is reported
the corresponding pricing of ceded commission.

cre =


cre∗ p = 0

min
(

0, 1 − E[X̃re]
Bre − δE [M ]

)
p ∈ (0, 1)

(4.3)

where cre∗ represents the “base” ceded commission of the non-defaultable reinsurer
case and δ ∈ (0, 1) the “discount factor” for compensating for the probability of
default. In practice, we assume that in case the QS reinsurer has a probability of
default greater than 0 then the reinsurer technical margin component is decreased
accordingly.

It shall be remarked that we allow the insurer to underwrite both XL and QS
treaties in the same line of business. Following the usual market practice, we build
our model assuming that the order of application of the treaties consists in quota
share following excess of loss. Hence, the pricing of quota share treaties modifies as
reported Formula (4.4)-(4.5)-(4.6).
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Bqs
l = (1 − αl)

(
Bl − Bxl

l

)
(4.4)

cqs∗
l = min

0, 1 −
E
[
X̃qs

l

]
Bqs

l

− E [Ml]

 (4.5)

cre =


cqs∗ p = 0

min
(

0, 1 − (E[X̃]−E[X̃xl
l ])

(Bl−Bxl
l ) − δE [Ml]

)
p ∈ (0, 1) .

(4.6)

In our model we follow the approach described in Algorithm 2 for defining the gross
premium of the reinsurers, necessary for calculating the risk reserve of Formula (4.1).

There are many possible ways for defining the discount factor δ as a function of the
probability of default/rating of the counterparty. In our model we choose to link the
δ factor with the CQS of the reinsurance company, in order to be consistent with
the metric used in the Standard Formula of Solvency II. The function we choose for
linking these elements is described in Formula (4.7).

δpd = f(CQS) = (1 − (CQS + 1) Q)D (4.7)

where Q < 1 is the discount quota and D > 0 is a power function for modeling the
strength of the increase in discount for an increase in CQS. For D = 1 we have a
linear decrease of the delta factor. For D > 1 we have a decrease of the delta factor
more than proportional to the increase in CQS, while the opposite holds for D < 1.
Hence, we can set the parameters Q and D in order to create the effect we want.

Simulation of the aggregate claim amount

Since we are developing a stochastic model for the risk reserve, our main interest
is focused on modeling the random variables of Formula (4.1) and subsequently
computing numerical estimations of their moments.

The aggregate cost of claims, as described in detail in Section 3.2.2, is modeled
through a collective risk model depending on two other random variables: number
of claims and cost of single claim.

Once we have chosen an appropriate distribution for the two random variables,
we can follow the approach described in Algorithm 3 for retrieving the vector of
simulations of the aggregate claim amount.

It shall be noted that if we follow this approach we lose the information on the cost
of single claim, which is necessary for the subsequent application of reinsurance
treaties. At the same time, however, it would be inefficient to store the information
on each claim, since a QS treaty (using the same proportion on each claim) can
be applied directly to the aggregate claim amount and XL works only for claims
over the deductible. For these reasons, in addition to aggregate claim amount, we
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Algorithm 2 Pricing of reinsurance contracts.
L: number of segments
R: number of reinsurers
for l = 1 to L do

for r = 1 to R do
if Reinsurer r provides a XL treaty for the segment l then

Apply Formula (4.2) using the specific credit quality step (or the probability
of default) of the reinsurer CQS(r) for calibrating δpd

(
CQS(r)

)
end if

end for
for r = 1 to R do

if Reinsurer r provides a QS treaty for the segment l then
Calculate the ceded commission to return to insurer in order to satisfy the
required margin, according to Formula (4.5)
Apply Formula (4.4) and (4.6) using the specific credit quality step (or the
probability of default) of the reinsurer CQS(r) for calibrating δpd

(
CQS(r)

)
end if

end for
end for

Algorithm 3 Simulation of the aggregate claim amount.
L: number of segments
nsim: number of simulations
for l = 1 to L do

for s = 1 to nsim do
Simulate the number of claims of the l-th line of business K̃s

l from its distri-
bution, obtaining a certain number ks

l

for i = 1 to ks
l do

Simulate the cost of the i-th claim Z̃s
l,i from its distribution, obtaining a

certain amount Zs
l,i

end for
Calculate the aggregate claim amount of the s-th simulation as: Xs

l =∑ks
l

i=1 Zs
l,k

end for
end for
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can store just the information on the claims whose cost is higher than a certain
threshold, set as the lowest deductible that could be applied for an XL treaty.

Hence, in Algorithm 4 we present a modified version of Algorithm 3 for simulating
the random variables and storing information of large claims and aggregate claim
amount.

Algorithm 4 Simulation of the aggregate claim amount and storing of results.
L: number of segments
nsim: number of simulations
threshold: threshold from which consider a claim as large
output: list for storing output from the simulations
large: list for storing large claims
for l = 1 to L do

for s = 1 to nsim do
Simulate the number of claims of the l-th line of business K̃s

l from its distri-
bution, obtaining a certain number ks

l

for k = 1 to ks
l do

Simulate the cost of the i-th claim Z̃s
l,i from its distribution, obtaining a

certain amount Zs
l,i

if Zs
l,k > threshold then

largel,s = c(largel,s, Zs
l,k)

end if
end for
Calculate the aggregate claim amount of the s-th simulation as: Xs

l =∑ks
l

i=1 Zs
l,k

outputl,s = Xs
l

end for
end for

At this point we have obtained the simulations of claims for the different lines of
business where the insurer operates. However, the modeling described up to this
point makes an implicit assumption which was empirically observed not correct.
The simulation of claims is performed separately for each lines of business, which
means that the aggregate claims cost of each line of business is independent of the
others. In practice, both conceptual and empirical evidences show that there is a
positive correlation between non-life segments, with a specific, different, intensity.
In Solvency II, for instance, is defined a correlation matrix (calibrated on impact
studies based on market data) for describing the dependence between the claims of
each line of business (see Annex IV of [36] and the corresponding table for Premium
risk reported in 2.5).

Copula function is one of the approaches most used in practice for creating a
dependence structure between random variables. It is an instrument for describing
multivariate distributions, with strong flexibility on the modeling of the dependence
between marginals. The wide diffusion of copulas is mostly related to the results of
Sklar theorem [75], which is described below.
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Theorem 4.1. Every multivariate cumulative distribution function F (x1, ..., xd) can
be expressed in terms of its marginals F (xi) (i = 1, ...d) and a copula function C.
The cumulative distribution function of a generic multivariate distribution can be
expressed as:

F (xi, ..., xd) = C (F (xi), ..., F (xd)) . (4.8)

The converse is also true: for any copula C and marginals Fi(x) then the function
C (F1(x1), ..., Fd(xd)) defines a d-dimensional cumulative distribution function with
margins Fi(x).

The importance of Sklar theorem depends on the fact that it allows a simple approach
for simulating a multivariate distribution, needing just its marginal distributions
and a copula function.

In literature there are many types of copulas, which can be divided in two categories:
elliptical (or Gaussian) and Archimedean.

The first group is represented by copulas “related with multivariate normal distribu-
tion”, which includes Gaussian and Student’s t copula. The characteristic of this
family is that the dependence between marginals is described by means of a single
“correlation matrix” which holds for the whole distribution.

Archimedean copulas are more “flexible”, in the sense that they allow the modeling
of dependence in specific areas of the distributions, for instance in the tails. However,
differently from elliptical copulas, the dependence can be defined only between two
marginals.

In the actuarial context copulas are often applied for the aggregation of dependent
risks. In our specific case we are interested in the application of copula for modeling
the dependence between claims of different (but dependent) lines of business. Having
already the marginal distributions of each segment from the simulations described
in Algorithm 4 it is now necessary to choose an appropriate dependence structure.

As already explained, a Gaussian copula needs just a correlation matrix between the
segments, but it assumes the same dependence for all the distribution. On the other
hand, an Archimedean copula requires the definition of the “area of dependence”
(e.g. whole distribution, right tail, left tail, etc.) and create a hierarchical flow of
dependence for couple of segments.

In our model we choose to use a Gaussian copula for defining the dependence between
claims of different lines of business. In this way we need just a single correlation
matrix and we avoid the needs for choosing the order of aggregation between LoBs,
as would be necessary in case of Archimedean copulas.

In Algorithm 5 is described the approach that shall be followed for creating a
dependence structure between the aggregate claim amount of the lines of business
by means of a Gaussian copula with a given correlation matrix.

At this point we have obtained all the elements necessary for assessing the risk
reserve of the insurance company in the gross of reinsurance case. Hence, we can
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Algorithm 5 Creation of dependence by means of Copula.
L: number of segments
nsim: number of simulations
corrMatrix: correlation matrix for describing the dependence between lines of
business
Simulate a Gaussian Copula C by means of the correlation matrix corrMatrix
for l = 1 to L do

Extract the vector of rank of the l-th column of C
Sort the outputl object (containing the figures of simulation of l-th line of
business) in ascending order according to the value of the aggregate claim
amount Xs

l

Reorder the sorted elements according to the vector C[, l]
end for

now move to the description of the algorithms for simulating the elements related to
the reinsurance companies.

Simulation of reinsurer claims, default and recovery event

Having at disposal the simulations of the aggregate claim amount, in Algorithm 6
we describe the approach for computing the aggregate claim amount borne by each
reinsurance company. As expected, we have two different approaches for XL and
QS treaties, where the first requires the single claims for each simulation (saved
in the large object as described in Algorithm 4) while the latter only needs the
total amount and the claims paid by XL reinsurers just derived. Indeed, as for the
premium, also the claims are regulated with QS net of XL, i.e. it is first necessary
to apply all the excess of loss treaties before the quota share ones.

In the event of default, the reinsurance company is no more able to meet its
contractual obligations, meaning that the insurer could not receive back all the
credits it holds. Indeed, usually just a portion of the whole credit is recovered in
case of default of a counterparty. This percentage, called recovery rate, is typically
very volatile since it depends on many circumstances and it is not easily modeled.
Standard Formula of Solvency II, for instance, assumes the recovery rate as a
deterministic quantity and implicitly equal to 50%, regardless of the rating of the
counterparty (see Formula (2.53) of Section 2.3.5).

In the literature, also due to the low number of observations, there is not a standard
assumption on the link between recovery rate and other elements of the (defaulted)
firm, especially in the insurance sector. In the banking sector it is common practice
to link the recovery rate with the “quality” of a financial instrument, represented by
its seniority. In CreditMetrics, for instance, it is assumed a Beta distribution for
the recovery rate, whose parameters are linked with the seniority of the financial
instrument. This assumption is based on the results of the analysis reported in [22]
and in [2] which report the recovery statistics as a function of the seniority class of
corporate bonds. These results indeed show the (empirical) existence of a relation
between the quality of a bond (measured by seniority) and the expected recovery
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Algorithm 6 Simulation of the aggregate claim amount borne by the reinsurer.
L: number of segments
R: number of reinsurers
nsim: number of simulations
output: list storing output from the simulations
large: list storing large claims
for l = 1 to L do

for s = 1 to nsim do
for r = 1 to R do

if Reinsurer r provides a XL treaty for the segment l then
Apply Formula (2.9) for calculating the cost of claims for the excess of
loss reinsurance: Xxl,(r)s =

∑
min (max (0, larges

l − d) , l)
end if

end for
for r = 1 to R do

if Reinsurer r provides a XL treaty for the segment l then
Apply Formula (2.1): for calculating the cost of claims for QS reinsurer
after the XL cession: X

qs,(r)s
l = α

(r)
l

(
Xs

l −
∑R

r=1 Xxl,(r)s
)

end if
Obtain the total amount of claims due to reinsurer r according to: X

(r)s
l =

X
xl,(r)s
l + X

qs,(r)s
l

end for
end for

end for
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rate in case of default. In our context, however, we do not have an element similar
to the seniority of a bond to define a functional dependence with the recovery rate,
so we seek a different relation.

Another possibility that we could explore is the link between probability of default
and recovery rate. This dependence, although not present in most of the credit
models, included CreditMetrics, is empirically suggested by an increasing number of
research. Among others, [42] shows evidences of the presence of a negative correlation
between probability of default and recovery rate, while [3] provides an extensive
review of the findings regarding this relationship and the impact of the different
modeling choices on procyclicality of regulatory capital. Finally, the more recent
work [18] proposes an econometric model in which default rates and recovery rate
distributions are modeled by means of the same underlying process, interpreted as
the “credit cycle”. Hence, we also follow these findings and model the recovery rate
as a stochastic variable with a negative dependence with the probability of default.

In the context of our model we extend Formula (3.25) of the risk reserve equation
for including this additional stochasticity, as reported in Formula (4.9):

X̃re,d = X̃re − (1 − q̃)X̃reĨ =
{

X̃re 1 − p

X̃req̃ p
(4.9)

where q̃ is a random variable describing the recovery rate by means of an appropriate
distribution conforming to the assumed support between 0 and 1

Similarly to the “discount factor”, also in this case we create a functional (negative)
dependence between the mean of recovery rate and the probability of default/CQS
of the reinsurance company. We report the relation in Formula (4.10)

δq = f(CQS) = baseq (1 − (CQS + 1) Q)D (4.10)

where baseq represents the base value of recovery rate that we want to set for a
firm with CQS = 0, Q < 1 is the discount quota and D > 0 is a power function for
modeling the strength of the decrease of recovery rate for an increase in CQS. It is
possible to observe that the modeling we chose to employ for describing the relation
between recovery rate and probability of default has the same structure of the one
used for modeling the discount connected with the CQS.

An important remark about the assumption of negative dependence between proba-
bility of default and recovery rate is that this hypothesis could have a strong impact
on the selection of the reinsurer by the insurance company. Indeed, this modeling
“amplifies the extremes”, since it creates a double penalization to the reinsurance
company with a high probability of default, for which it also assumes a low recovery
rate, and the opposite effect for firms with a low probability of default.

In Algorithm 7 we describe the approach for simulating the default event and the
recovery rate event in case of default. One relevant point is that we should underline
is that, for a given simulation, the probability of default of all the reinsurance
company shall be based on the same common shock. Indeed, in the algorithm we
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have an initial simulation of the common shock variable and only after then the
definition of the “shocked” probability of default of each reinsurer.

Algorithm 7 Simulation of default event and recovery rate.
R: number of reinsurers
nsim: number of simulations
b: baseline probability of default
for s = 1 to nsim do

Simulate the common shock variable, using the distribution function defined in
Formula (2.33): f(c) = αcα−1

for r = 1 to R do
Calculate the probability of default of the r-the reinsurer under common
shock variable c, by means of Formula (2.34): p(c)(r) = b(r) + (1 − b(r))cτ/b(r)

Simulate the default event of r-the reinsurer in the s-th simulation: Ĩ(r)s ∼
Bernoulli

(
p(c)(r)

)
if I(r)s = 1 then

Apply Formula (4.10) to the credit quality step (or the probability of
default) of the reinsurer to calibrate the expected value parameter of its
recovery rate distribution
Derive the parameters α and β of the Beta distribution from the calibrated
expected value and standard deviation of recovery rate
Simulate the recovery rate of the corresponding default event: q̃(r)s ∼
Beta

(
α(r), β(r)

)
end if

end for
end for

4.2.3 Risk/return metrics, multi-objective optimization and Pareto
frontier

Following the risk reserve equation of Formula (4.1) we are now able to compute its
value for the different reinsurance strategies considered. Hence, we can propose the
metrics of risk and return for the evaluation of the result of the insurance company
under the different choice of reinsurance strategies (both from treaty perspective
and counterparty quality).

Regarding the metrics of return, the most common one that we are interested in
analyzing is the expected Return on Equity (RoE), as reported in Formula (4.11)

E
[
R̃oEt+1

]
=

E
[
Ũt+1

]
Ut

− 1 . (4.11)

Regarding risk there are two main metrics that we can propose, which are connected
each other. The first one is the ruin probability (RP), which represents the probability
that the insurance company goes bankrupt in the specific (in our case one-year) time
horizon. As reported in Formula (4.12) it is computed as the probability that the
insurer capital goes below 0.
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RP = 1 − FUt+1(0) (4.12)

where FUt+1(u) represents the c.d.f. of the Ũt+1.

The other metric is the Solvency Capital Requirement, which represents the capital
that the company has to hold for being solvent at 99.5% confidence level in a one-year
time horizon. This metric can be computed both at an “internal model” level, using
the estimate of the risk reserve equation that we defined or at “standard formula”
level, using the approach prescribed by Solvency II Standard Formula and outlined
in Section 2.3. In practice, we propose a transformation of the SCR which is more
interpretable and permits the comparability between different insurance entities
which is the solvency ratio. It represents the ratio between the initial capital and
the SCR and is computed as reported in Formula (4.13) or Formula (4.14), in case
of internal model or standard formula respectively.

SRIM = Ut

SCRIM
= Ut

−q0.5%
(
Ũt+1 − Ut

) (4.13)

SRSF = Ut

SCRSF
. (4.14)

The objective of our multi-objective optimization framework is to find the reinsurance
strategies that maximize/minimize all the chosen metrics simultaneously. In order to
do so, we define a preference structure for choosing between the different strategies.
We say that strategy S1 dominates another strategy S2 and indicate it with S1 ⪰ S2
if it is at least better in one objective function and equal in all the others:

O1(S1) ≥ O1(S2)
O2(S1) ≥ O2(S2)
· · ·
On(S1) ≥ On(S2)

where Oi(Sk) represents the value of the i-th objective function in case of application
of strategy Sk.

More formally, defining M the set of possible reinsurance strategies and m a generic
strategy, we have the optimization problem reported in (4.15).

max
m

(O1, O2, ..., On) (4.15)

subject to:



m ∈ M

f1(m) ∈ [l1, u1]
f2(m) ∈ [l2, u2]
· · ·
fk(m) ∈ [lk, uk]
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where fi(·) represents the i-th constraint function, while li and ui the lower and
upper bound of the i-th constraint.

The strategies that are not dominated by any other are called efficient and define
the Pareto Frontier.

In Algorithm 8 we report the procedure for obtaining the efficient frontier.

Algorithm 8 Efficient frontier.
M : matrix containing all the combinations of input (reinsurance treaty) and
corresponding output (metrics of risk and return)
Risk: vector containing all the risk values for each combination of inputs
Return: vector containing all the return values for each combination of inputs
rowM : number of combinations (rows) in the matrix M
for i = 1 to rowM do

Extract the subset of treaties Mi where Risk = Riski

Among the subset of treaties select the one which has the highest return:
max(Return|Mi)

end for
Order the vector of treaties obtained by Risk in increasing order
M∗: matrix containing all the combinations of input (reinsurance treaty) and
corresponding output (metrics of risk and return) after previous step
row∗

M : number of combinations (rows) in the matrix M∗

for j = 1 to row∗
M do

if Riskj ≤ Riskj−1 then
Remove the corresponding treaty M∗

j from the list of the efficient treaties
end if

end for
The remaining elements in the list correspond to the optimal treaties

At this point the insurance company can choose one of the strategies on the efficient
frontier. In practice, another relevant aspect concerns the criteria for choosing the
preferred strategy. Typically, insurance companies have a certain risk appetite which
could help in choosing the best trade-off between risk and return. Here, we propose a
simple approach that could be employed in case of “agnostic” preference. In Formula
(4.16) we report the equation of the marginal increase (MI) in Solvency Ratio for a
marginal reduction in the expected Return on Equity with respect to the gross of
reinsurance scenario.

MI =

(
SR(m)−SR(gross)

SR(gross)

)
(

E
[
R̃oE(gross)

]
−E
[
R̃oE(m)

]
E
[
R̃oE(gross)

] )

= SR(m) − SR(gross)
E
[
R̃oE(gross)

]
− E

[
R̃oE(m)

] E
[
R̃oE(gross)

]
SR(gross) .

(4.16)

Hence, the criterion which we propose is to choose the reinsurance strategy with the
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maximum marginal increase in SR for a marginal reduction in the expected RoE
with respect to the gross of reinsurance case.

4.3 Numerical application

4.3.1 Description and calibration of insurer parameters

We calibrate the parameters of our “average” insurer by means of the market data
available from a report [4] of the “Associazione Nazionale fra le Imprese Assicuratrici”
(ANIA).

First of all, for each of the L segments where the insurer operates, we calculate
the “market” combined ratio (CR) and expense ratio (ER) from historical data,
according to Formula (4.17)-(4.18).

More specifically, we estimate these figures as weighted average of the observations
of the last 5 years, with weights equal to the gross premium of the year2.

ĈR =

yn∑
y=y1

ByCRy

yn∑
y=y1

By

(4.17)

ÊR =

yn∑
y=y1

ByERy

yn∑
y=y1

By

. (4.18)

where y1, ..., yn indicate the years used for estimating the two metrics.

The estimate of loss ratio is then obtained as the difference between the previously
estimated combined ratio and expense ratio: L̂R = ĈR − ÊR.

Hence, remembering the relation P + λP = B(1 − c) the safety loading coefficient λ
is obtained according to Formula (4.19), using the estimates of combined ratio and
loss ratio obtained at previous stage.

λ̂ = 1 − ĈR

L̂R
. (4.19)

The last elements that we need for simulating the claims of the segments we are
interested in is the standard deviation of the over-dispersion parameter. In order to
estimate this element by means of market data, remembering the relation described
in Formula (4.20), first we need to estimate the standard deviation of the loss ratio.

lim
k→∞

σ
[
L̃R

]
= lim

k→∞
σ

[
X̃

B

]
= lim

k→∞
σ

[
X̃

P

]
P

B
= lim

k→∞
σ
[
Q̃
] P

B
(4.20)

2In order to have a coherent value of these figures we excluded accounting year 2020 from the
analysis since it was strongly affected by the Covid effects.
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Table 4.1. Parameters of the lines of business.

LoBs E
[
K̃l

]
σ
[
Q̃l

]
E
[
Z̃l

]
CoV

[
Z̃l

]
pll ERl LRl CRl

MTPL 50,000 7.47% 4,500 6 10,000,000 21.4% 77.7% 99.1%
MOD 25,000 7.01% 1,500 2 1,000,000 31.6% 61.9% 93.5%
GTPL 15,000 15.39% 6,000 10 10,000,000 32.7% 59.6% 92.3%

Table 4.2. Correlation matrix between lines of business.

Corr MTPL MOD GTPL
MTPL 1.00
MOD 0.50 1.00
GTPL 0.50 0.25 1.00

σ
[
Q̃
]

= σ
[
L̃R

] B

P
= σ

[
L̃R

] (1 + λ)
(1 − c) .

Hence, we used the observed loss ratio in the last 15 years in order to estimate its
standard deviation. In this way, using the elements previously estimated, we derive
the standard deviation of the over-dispersion parameter as reported in Formula
(4.21).

σ̂
[
Q̃
]

= σ̂
[
L̃R

] (1 + λ̂)
(1 − ĉ) . (4.21)

Following the approach just described we can derive the parameters of all the
lines of business of the Italian market. However, in order to keep the focus of our
numerical analyses on the specific problem covered in this chapter, we assume an
insurer operating in only three segments. In particular, we assume a non-life insurer
operating in the motor third-party liability (MTPL), motor own damage (MOD) and
general third-party liability (GTPL) lines of business. The parameters of these three
LoBs we are interested in, obtained according to the methodology described above,
are then reported in Table 4.1. In addition to the elements we commented before
there are two additional terms: the coefficient of variation of the severity random
variable CoV

[
Z̃l

]
and the policy limit pll. These elements cannot be estimated by

means of the data available in ANIA report, so were derived from more general
market reports and following the assumptions used by other papers on the same
subject (see for instance [27] and [83]).

The dependence structure between lines of business is obtained by means of a
Gaussian copula, where the parameters are chosen to match the correlation matrix
of Solvency II Standard Formula. In our specific context, the dependence matrix
between the lines of business is reported in Table 4.2

At this point, we shall define the size of the insurer of our analysis. We assume it is
an “average insurer” in the Italian market, setting its volume measures (number of
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Table 4.3. Parameters of the insurance company.

LoBs Pl λl cl Bl

MTPL 225,000,000 1.10% 21.4% 289,408,397
MOD 37,500,000 10.5% 31.6% 60,581,140
GTPL 90,000,000 12.9% 32.7% 150,980,681

claims, premium, etc.) in the range between the 10-th and 15-th insurer of each line
of business. Table 4.3 reports the parameters of the modeled insurer (premium and
safety/expense loading) used for the simulations.

Finally, regarding the initial capital available by the insurance company we set it
equal to 15% of the gross earned premium of next year: Ut = 15%Bt+1.

4.3.2 Simulation of the aggregate claim amount

Given the equation of aggregate claim amount of a generic line of business l, reported
in Formula 4.22, we have to make specific assumptions on the distribution of the
random variable K̃ and Z̃ in order to apply Algorithm 4 for the simulation.

X̃l =
K̃l∑

k=1
Z̃l,k . (4.22)

Regarding number of claims a usual assumption is that they are distributed according
to a Poisson distribution. However, simply using a Poisson distribution has the
disadvantage of the implicit assumption that the variance is equal to the mean. In
practice, it has been empirically shown that the variance is greater than the mean,
and that this variability is strictly connected with the line of business. Hence, we
accordingly move from a standard Poisson process to a compound Poisson process,
assuming that the parameter of Poisson distribution is itself a random variable.

More precisely, we assume that there is a perturbation (over-dispersion) parameter,
governing the volatility of risk propensity, which is applied to the number of claims
parameter of the Poisson distribution.

The assumption is that the random variable number of claims is distributed as an
over-dispersed Poisson with parameter nQ̃ as reported in (4.23).

K̃ ∼ Poisson
(
nQ̃
)

(4.23)

where n represents the expected number of claims and Q̃ the perturbation parameter.

This last random variable is assumed to be distributed as a Gamma. In particular,
as reported in (4.24), we assume a Gamma distribution of equal parameters, which
does not change the expected number of claims, since E

[
Q̃
]

= 1, but it creates a

“non-diversifiable variability” σ
[
Q̃
]
.
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Figure 4.1. Distribution of simulated number of claims distribution (values in k).

Q̃ ∼ Gamma (h, h) . (4.24)

Figure 4.1 shows the distribution of number of claims obtained by simulation
assuming the over-dispersed Poisson distribution with the parameters reported in
Table 4.3. We can notice the effect of the over-dispersion parameter on the three
distributions, with the GTPL one having a relevant spread despite the lower expected
value for this reason.

Regarding the random variable “cost of single claim”, a usual assumption, that
we follow in the numerical application, is to describe it by means of LogNormal
distribution, as in Formula (4.25).

Z̃ ∼ LogNormal (µZ , σZ) . (4.25)

At this point we just need to choose the threshold value from which to consider a
claims as large. Then, we are able to apply Algorithm 4 for simulating the aggregate
claim amount according to the collective risk model approach, by means of the
distributional assumptions that we made and using the parameters reported in Table
4.1. We set thresholdlarge = 500.000 since it could be considered an amount “big
enough” for the presence of an XL treaty, despite usually in the market it is more
common to have an XL treaty with deductible of 1M .

We follow the steps outlined in previous section and, after obtaining the lists of
simulations of aggregate claim amount and large claims, we follow Algorithm 5 and
create a dependence in the segments simulated via a Copula function. In particular
we use a Gaussian Copula and set the dependence matrix between the lines of
business equal to the correlation matrix of Solvency II Standard Formula reported
in Table 4.2 for the segments of interest.
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Figure 4.2. Distribution of simulated aggregate claim amount distribution (values in M).

In Figure 4.2 we report the distributions of the aggregate claim amount of the three
LoBs, obtained using the parameters reported in Table 4.3, before the application of
the Copula function to modify their correlation. As already expected looking at their
parameters, we can observe that the MTPL line of business has the highest expected
loss. Hence, we expect that the risk of this LoB will be quite relevant in defining the
optimal reinsurance strategies. However, another LoB that the insurer adequately
consider is the GTPL one. Indeed, this line of business shows a distribution ranging
from 40M to more than 160M, due to the strong volatility of both the number
of claims and the single claim amount distributions. The MOD line of business
shows instead a quite small expected loss and low variability, compared to the other
distributions. Moreover, since we already know from its parameters that the LR is
also quite low, we expect that in most efficient strategies the insurer will keep most
of the risk coming from this LoB.

Figure 4.3 reports the distributions and correlation coefficients between the three
lines of business of the insurance company after the application of the Copula
function, using the parameters reported in Table 4.3 and 4.2. In practice, we can
observe that there is no change in the distributions of the aggregate claim amount
of the three lines of business. Indeed, the Copula function “modifies the order of
the simulations” underlying the distributions, affecting only the overall distribution,
composed by the sum of the three.

4.3.3 Description of reinsurer parameters and simulation of default
and recovery event

Similarly to what we did for the insurance company, we also have to define the
characteristics of the potential reinsurance counterparties. In particular, in the
context of the framework that we presented, the parameters of the reinsurers are a
function of their credit quality step. In Table 4.4 we report these parameters, where
discount factor and recovery rate are obtained by means of Formula (4.7) and (4.10)
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Figure 4.3. Aggregate claim amount distribution and correlation between lines of business
after the application of Copula function (claims amount in M).
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Table 4.4. Parameters of the reinsurance company for different credit quality steps.

CQS Probability of default Discount factor Recovery rate
0 0.002% 91.7% 60.0%
1 0.01% 83.3% 54.5%
2 0.05% 75.0% 49.1%
3 0.24% 66.7% 43.6%
4 1.2% 58.3% 38.2%
5 4.2% 50.0% 32.7%
6 4.2% 41.7% 27.3%

with baseq = 60%, Q = 1/12 and D = 1.

At this point, in order to determine the price charged by the reinsurance companies
we apply the approach described in Algorithm 2 using the parameters just reported
in previous table.

Having determined the pricing elements, the last remaining element related to
reinsurance companies that we shall calculate is the aggregate claim amount borne
by the reinsurer that is returned to the insurer. Regarding the cost of claims borne
by reinsurer, it can be easily determined by applying the specific conditions of the
treaty to the aggregate claim amount, as described in Algorithm 6. This element
represents just the amount of claims that the insurer cedes to the reinsurer. However
it does not consider the potential default of the counterparty and consequently the
negative effect on the risk reserve of the insurance company. In order to determine
the distribution of the risk reserve, described in Formula (4.1), we have to determine
X̃re,d, hence taking into account the potential default in the calculation of the claims
ceded to the reinsurers.

Following the common shock approach described in Section 2.2.3 we model the
default event by means of a Bernoulli variable with probability of default dependent
on the common shock. Numerically, we use the approach of Standard Formula of
Solvency II and model the “observed probability of default” according to the CQS
of the firm. Then, we set the parameters of common shock variable α and τ equal
to 0.8 and 0.2, respectively, as suggested in QIS5 [28]. In this way it is possible to
derive the corresponding “baseline probability”, from which to apply Algorithm 7
for the simulation.

Regarding the recovery rate we assume a stochastic model. For the definition of its
distribution, a classical assumption that we follow is to use of a Beta distribution,
since it is coherent with the constraint of having a support between 0 and 1 (as the
recovery rate should). The parameters of the Beta distribution are calibrated in order
to have a mean equal to the expected recovery rate, which is assumed to be function of
the probability of default/CQS of the reinsurance company. The standard deviation
is instead assumed fixed, regardless of the rating of the counterparty, coherently
with the results reported in [22] and [2] and the more recent paper [18].
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Numerically, we assume that the expected recovery rate of a counterparty with CQS
equal to 0 is 60%, then we apply Formula (4.10) with Q = 1/12 and D = 1 for
computing the recovery rate associated with the other values of CQS. Regarding the
standard deviation of the recovery rate, we assume a fixed value irrespectively of
the CQS and equal to 25%.

4.3.4 Combination of reinsurance strategies and multi-objective
optimization

In order to find the optimal reinsurance strategies the approach that we propose
consists in the estimation of all the possible combinations of the reinsurance treaty
characteristics, number and rating of the reinsurance companies. In practice we
apply the algorithms described in Section 4 and by means of Formula (4.1) we
compute the risk and return metrics for each combination.

Table 4.5 shows the variables that will be used for creating the different combinations
of reinsurance strategies that we will be evaluated in the risk/return framework.
The table describes the minimum, maximum and step for each of the variables. The
specific choices are in line with the characteristics of potential reinsurance strategies
that could be employed by an insurance company. The only constraint that we
impose in the case study is to have the same credit quality step for all the reinsurers
of the same segment. This choice is done to simplify the analysis of the results
and because, given already this setting we arrive at a total of more than 2, 000, 000
combinations of different reinsurance strategies to evaluate.

In Appendix B.1 are reported the characteristics of the different input variables and
the histograms of the risk and return output metrics.

At this point we shall define the risk and return metrics that we want to use for
evaluating the different reinsurance strategies. Regarding the risk metric we choose
to use the Solvency Ratio according to the partial internal model developed by
means of the general formula of the risk reserve reported above. This choice is in
line with the interest of the insurance company of having a risk metric which best
catches its actual solvency position. The return metric chosen for the analysis is
the return on equity, since it is one of the most common metrics for evaluating the
performance of the company in the year.

At this point we have all the instruments for applying Algorithm 8 and select the
efficient frontier of reinsurance strategies from the list of all the possible combinations
of strategies.

4.3.5 Efficient frontier analysis considering expected RoE and SR

In Figure 4.4 it is reported the combination of expected Return on Equity and Sol-
vency Ratio for the different reinsurance strategies considered. All these combination
of RoE and SR are obtained by applying the algorithms described in Section 4.2. In
particular, the efficient frontier, indicated in red, is obtained by means of Algorithm
8.
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Table 4.5. Description of the reinsurance variables used for defining the different strategies.

Variable Minimum Maximum Step Description

DMT P L 1, 000, 000 3, 000, 000 1, 000, 000 Deductible value of XL treaty
for the MTPL segment

LMT P L 2, 000, 000 10, 000, 000 2, 000, 000 Limit value of the XL treaty
for the MTPL segment

DGT P L 1, 000, 000 3, 000, 000 1, 000, 000 Deductible value of XL treaty
for the GTPL segment

LGT P L 2, 000, 000 10, 000, 000 2, 000, 000 Limit value of the XL treaty
for the GTPL segment

αMT P L 20% 100% 10% Retention quota for
the MTPL segment

αGT P L 20% 100% 10% Retention quota for
the GTPL segment

αMOD 20% 100% 10% Retention quota for
the MOD segment

multiRE 0 1 1 Indicator for single/
multiple reinsurer

CQSMT P L 0 6 1 CQS of the reinsurer(s)
for the MTPL segment

CQSGT P L 0 6 1 CQS of the reinsurer(s)
for the GTPL segment

CQSMOD 0 6 1 CQS of the reinsurer(s)
for the MOD segment
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As already explained, we do not have a single solution but a set of optimal combi-
nations. The efficient frontier represents this set of optimal strategies, also called
Pareto efficient, which maximize/minimize the selected metrics. In this case, the
efficient frontier is composed by the treaties which provide the highest RoE for a
fixed SR (or analogously the highest SR for a fixed RoE). In the figure it is possible to
observe the well-known trade-off effect between the optimization of the two metrics:
the more we try to maximize the RoE the more we have to reduce the SR and
conversely, the more we try to maximize the SR the more we have to reduce the
RoE.

Clearly, a portion of these efficient strategies are optimal according to the formal
definition, but they could be not interesting in a practical context. For instance,
looking at the efficient frontier reported in Figure 4.4, in practice no insurance
company would choose a strategy producing an expected RoE of less than −10%
with a SR of around 300%, while being formally efficient according to the optimization
criterion. Indeed, an insurance company typically has a certain “risk appetite” which
broadly represents the amount of risk that it is willing to assume in order to reach its
performance objective and that limits the choice of possible combinations. In practice,
the insurance company choose the reinsurance strategy, among those efficient, that
is most in line with its preference structure.

In this context, however, we do not make any assumption on the risk appetite
of the insurance company, but we propose a simpler approach for determining a
single optimal solution among different efficient strategies. This approach consists
in the maximization of the marginal increase described in Formula 4.16 and the
corresponding solution is indicated by the green dot in Figure 4.4. It shall be noted
that this approach implicitly assumes that the current situation is represented by the
gross of reinsurance case and the objective of the insurance company is to find the
reinsurance strategy with the best marginal improvement in the SR for a reduction
in the RoE. In practice, if the current situation of the insurance company were
different, it should be appropriate to consider that specific situation as the starting
point of the marginal increase approach. In that case, however, the insurer should
also choose between the marginal increase in the SR, at the cost of RoE, or viceversa,
the marginal increase in the RoE, at the cost of SR.

In Table 4.6 it is reported a subset of the efficient strategies, determined by the
application of Algorithm 8. The first efficient strategy is represented by the gross of
reinsurance case. Indeed, given the parameters of the three LoBs and the assumptions
that we made on the pricing of the reinsurance treaties, this strategy is optimal
since it is not possible to achieve a higher return on equity by means of reinsurance.
This result is also in line with the theoretical description of reinsurance treaties as
a way for reducing the risk at the cost of a decrease in the profitability. However,
it shall be underlined that with different LoB parameters and pricing assumption
it would have been possible to have a reinsurance strategy with the highest RoE
and consequently that the gross of reinsurance case would have been inefficient. For
instance, in case the asymmetry in the information between insurer and reinsurer
lead to different pricing assumption and the expected LR were greater than 100%.
Indeed, ceding risks of a unprofitable LoB at a profitable cost would improve both
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Table 4.6. Subset of the efficient strategies maximizing expected Return on Equity and
Solvency Ratio.

DMTPL LMTPL DGTPL LGTPL αMTPL αGTPL αMOD multiRE CQSMTPL CQSGTPL CQSMOD SR RoE

− − − − 100% 100% 100% − − − − 118.9% 25.7%
100, 000 600, 000 − − 20% 20% 30% 0 3 3 3 293.1% −10.6%
100, 000 800, 000 − − 30% 20% 60% 0 3 3 3 291.1% −8.9%
100, 000 800, 000 − − 50% 20% 80% 0 3 3 3 220.2% −0.0%
100, 000 600, 000 200, 000 200, 000 100% 80% 100% 0 4 4 4 133.0% 22.0%
100, 000 400, 000 100, 000 200, 000 10% 70% 100% 1 4 4 4 138.5% 20.4%
100, 000 200, 000 − − 100% 100% 100% 0 4 4 4 120.9% 25.5%

the solvency position and the technical performance of the insurance company.

The following two efficient solutions reported in the table are evident examples
of strategies which a company would not follow in practice. Indeed, as already
explained, these strategies lead to an excessively high SR at the cost of a strongly
negative RoE. Moreover, while they could seem prudent approaches in the short term,
they could actually become riskier in the medium/long term, since each year they
produce a negative result which reduces the capital and consequently the following
SR.

The fifth and sixth solution reported in the table could be considered appropriate
also in a practical perspective. Indeed, they lead to a SR higher than 130% and
a positive RoE of more than 20%. Interestingly, it is possible to observe that,
while these two solutions are quite close, they are obtained with two quite different
reinsurance strategies.

Finally, the last strategy reported in the table consists in the optimal solution
according to the marginal increase approach. We can observe that the combination
of SR and RoE obtained following this strategy is quite close to the gross of
reinsurance one. Indeed, the only reinsurance treaty present in this case consists in
the 2M xs 1M (2 million limit in excess of 1 million deductible) for the MTPL line
of business.

Another important possibility offered by the methodology that we developed for
estimating the efficient frontier consists in the possibility of making inference on the
characteristics of the efficient treaties for assessing the relations between variables and
other characteristics. In Figure 4.5 it is reported a partial dependence plots between
the variables related to the reinsurance treaties. In this way we can understand the
relations between variables for the reinsurance strategies on the efficient frontier.

Regarding the deductible for MTPL we observe that it is mostly concentrated on 1M,
while the limit is more uniform in its range. Interestingly, the correlation between
deductible and limit for MTPL is negative. This effect could actually depend on the
fact that there is a policy limit and consequently a coverage on the entire right-hand
tail is associated with a lower limit if we increase the deductible. Regarding the
deductible for GTPL we observe that it is mostly concentrated on 1M. The limit
is instead concentrated in 0M, meaning that there is mostly no XL reinsurance for
GTPL.

Regarding QS treaties we can observe that in almost all the efficient strategies the
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Figure 4.4. Efficient frontier of alternative reinsurance strategies in terms of expected
Return on Equity and Solvency Ratio. In black are reported expected RoE and SR for
all the combinations of reinsurance strategies, in red the efficient treaties, in blue the
no-reinsurance case and in green the optimal solution according to the marginal increase
approach.
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Figure 4.5. Partial dependence plot between the quantitative variables for determining the
characteristics of the quota share and excess of loss treaties (deductibles and limits in
M).

insurance company retains all the risks related to the MOD line of business. Indeed,
it is in line with the expectation since the LR of this LoB is relatively low. Also
for the MTPL line of business we can observe a quite similar result, with most
of the strategies prescribing a high retention of the risk. On the opposite side is
instead the GTPL line of business. Indeed, for this LoB we observe that there is a
higher number of strategies suggesting to cede most of the risk to the reinsurance
companies. In a certain sense this could be expected, since we had observed almost
no XL reinsurance for this LoB, but we know from its parameters that it actually
has a quite high loss ratio and volatility. Hence, one possible explanation is that
the pricing of the QS treaty for GTPL is more efficient for the insurance company
compared to the XL one.

Typically, an insurance company is not interested in determining the “unconstrained”
efficient frontier of the reinsurance strategies, since some of these combinations could
be actually not viable. Indeed, as anticipated, some extreme solutions would be
actually “inefficient” in a practical sense. For instance, it would be sub-optimal to
have a SR too high at the cost of a low or negative expected RoE. The reason is
that a too high SR could be considered an inefficient allocation of capital. Moreover,
the low or negative return amplifies the inefficiency of the strategy, despite its
efficiency from a mathematical point of view, since the shareholders are allocating
more capital than the company needs but “losing money”. On the other hand, it
would be problematic, even just considering the regulatory aspect, aiming at a too
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Table 4.7. Constraints for the variables of the multi-objective optimization model.

Variable Minimum Maximum
SR 150% +∞

RoE 1% +∞

high return while having a low solvency ratio. In practice the insurance company
has the objective of choosing the efficient strategies under some constraint, which
could come from its risk appetite framework, from regulatory requirements or other
needs.

Table 4.7 shows the constraints that we assumed for the analysis of a constrained
case. Under this approach the insurance company wants to obtain a return on equity
at least equal to the market interest rate, so 1%, while keeping its solvency ratio at
a level above 150%. The rationale behind these constraints is that the insurer seeks
a return greater than the interest rate (typically risk-free in the context of a non-life
insurance company) for remunerating the allocated capital. At the same time, for
ensuring an adequate solvency against adverse scenarios and potentially also due to
supervisory requirements, it aims at a Solvency Ratio greater than 150%.

In Figure 4.6 this is indicated by representing in gray all the reinsurance strategies and
in black only the admissible combinations according to the constrained conditions. It
is possible to observe that the range of SR narrows from approximately (30%, 300%) to
(150%, 220%). At the same time, also the range of RoE narrows from approximately
(−30%, 30%) to (0%, 15%). The efficient frontier is reported in red and is limited to
the constrained strategies.

Also in this case there are many possible approaches for selecting the optimal
reinsurance strategies, from which the company has to choose the optimal one
according to its risk/return preference structure. Considering also here the approach
employed for the unconstrained case we obtain the combination indicated as green
dot in Figure 4.6.

4.3.6 Efficient frontier comparison between Standard Formula and
Partial Internal Model

Another interesting analysis that it is possible to perform thanks to the simulating
framework developed in previous section consists in the comparison of the efficient
strategies between the partial internal model and the standard formula. Following
this interest, in Figure 4.7 we report the combination of expected Return on Equity
and Solvency Ratio, where this latter metric is computed according to both Standard
Formula and the partial internal model that we developed by means of Formula (4.1).
In particular, the combinations of RoE and SR obtained according to the Standard
Formula of Solvency II and our Partial Internal Model are reported in Figure 4.7 in
grey and orange, respectively. Finally, in black and red are represented the Pareto
Frontiers for the Standard Formula and Partial Internal Model respectively.

We can observe that the structure of the combination of treaties is quite different in
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Figure 4.6. Constrained efficient frontier of alternative reinsurance strategies in terms of
expected Return on Equity and Solvency Ratio. In gray are reported expected RoE
and SR for all the combinations of reinsurance strategies, in black the constrained
combinations, in red the efficient treaties, in blue the no-reinsurance case and in green
the optimal solution according to the marginal increase approach.
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Figure 4.7. Efficient frontier of alternative reinsurance strategies in terms of expected
Return on Equity and Solvency Ratio. The SR metric is calculated according to both
Standard Formula and Internal Model. In grey are reported the combinations considering
SF, while in orange considering IM. The corresponding efficient frontier is reported in
black and red, respectively.

case we assume to estimate the SCR, and consequently the SR, according to standard
formula or partial internal model. The reason is that the two approaches are based
on completely different methodologies for the estimation of the capital requirement.
In particular, standard formula approach estimates the capital requirement of a firm
by means of factor/scenario-based approaches, calibrated in specific impact studies
on market data, with the objective of an applicability to all the companies of the
market. For this reason they could be not always appropriate to adequately describe
the actual risk position of a firm. Partial internal model approach is instead based
on the specific information of the company and it estimates the capital requirement
by means of value-at-risk at 99.5% quantile, determined by means of simulated
scenarios.

Regarding the efficient frontier for the two approaches there are 2586 Pareto optimal
reinsurance strategies in case we use as risk metric the Standard Formula SR and 404
if we use the Partial Internal Model SR. Moreover there are 70 cases where the same
strategy is efficient under both the approaches, which represents 3% and 17% of
efficient strategies under standard formula and partial internal model, respectively.

As we partially showed with the previous analysis, it shall be remarked that for an
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insurance company it could be particularly useful to consider both the risk estimated
from the application of Standard Formula and internal approach, like the partial
internal model of our case. Indeed, an insurance company could be in the situation
where it still needs to employ the Standard Formula for the assessment of its solvency
position, but it has already implemented some methodologies for calculating its
actual riskiness, based on its specific characteristics. In this case, the insurer could
be interested in finding the optimal reinsurance strategy according to the partial
internal model, since it better represents its actual risk position, but constraining
the result on the compliance with some thresholds calculated according to standard
formula, as it is the measure used by the supervisory authority.

For instance, in Figure 4.8 we analyze the case of multi-objective optimization of
expected Return on Equity and Partial Internal Model SR, constrained on the
SR from Standard Formula greater than 130%. It is possible to observe that the
constraint condition on SF also reduces the combinations on partial internal model
to cases where the SR is greater than 130%. However, there are still some cases
where the SR according to the partial internal model is even less than 100%, but
none of them are efficient.

Looking at the figure we can observe that only a couple of combinations guarantee a
positive technical result, while most reinsurance strategies produce a SR greater than
200%, but with a negative RoE. In this case, if we apply the simple MI approach,
described in Formula (4.16) and already applied in previous analyses, we obtain as
optimal solution the reinsurance strategy which produces a RoE of −6.71% and a
SR of 286.79% (indicated by the green dot in the figure). Finally, the no-reinsurance
case, indicated in the figure by the blue dot, in this case is a combination which
does not satisfy the constraint on the SR from Standard Formula and consequently
cannot be an efficient solution.

4.3.7 Efficient frontier comparison by rating of reinsurers

The framework developed in this model also allows to perform a separate analysis of
the reinsurance strategies according to the rating (expressed in term of CQS) of the
counterparties.

Indeed, Figure 4.9 reports the combinations of expected return on equity and solvency
ratio derived by different reinsurance strategies, assuming that the risks from all the
lines of business are ceded to a single reinsurer. We can observe that the specific
parametric assumptions lead to a situation where the reinsurer with CQS equal to 0
(dark green dots) shall never be chosen, since none of its combinations lies on the
efficient frontier. In particular, the only values of credit quality step for which there
is no combination of treaties on the efficient frontier are 0 or 1. Indeed, the efficient
frontier is composed only by treaties from reinsurers with a CQS from 2 to 6, with
the value of 3 taking up most of its part. The reason is connected with the specific
assumptions that we made on the discount connected with the credit quality step.
In particular, the combination of discount and implied probability of default for
reinsurers with credit quality step equal to 3 results in the best trade-off most of the
time for the insurance company.
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Figure 4.8. Constrained efficient frontier of alternative reinsurance strategies in terms of
expected Return on Equity and Solvency Ratio. In gray are reported expected RoE
and SR for all the combinations of reinsurance strategies, in black the constrained
combinations, in red the efficient treaties, in blue the no-reinsurance case and in green
the optimal solution according to the marginal increase approach.
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Figure 4.9. Combinations of expected Return on Equity and Solvency Ratio for different
reinsurance strategies in case of a single reinsurer for all the segments. The colors
represent the CQS of the reinsurance company, ranging from green for a CQS of 0 to
red for a CQS of 6.

Another interesting characteristic that we can observe is that many combinations
can be obtained indifferently by means of strategies using reinsurers with different
CQS. However, it shall be noted that here we are analyzing only these two metrics.
In practice, the insurer could be interested in considering also other metrics, like the
coefficient of variation of the technical result or the ruin probability.

In Figure 4.10 it is reported the same analysis described above, but considering the
case where there is a different reinsurer for each line of business, but all with the
same rating. We can observe a different shape of the combinations of strategies
especially for reinsurers with CQS greater than or equal to 4. In general it is not
possible to identify a single effect in the combination of SR and RoE with respect to
the single-reinsurer case. Actually, we know that, given a reinsurance strategy, the
RoE obtained by ceding the risks to a single reinsurer or to multiple reinsurer with
the same rating gives the same result. However, the effect of splitting the risk to
3 different reinsurers (one for each LoB) on the SR is not so direct, and actually
depends on the specific CQS of the counterparty, as we will show in the following
analysis.

Regarding the structure of the efficient frontier also in this case most of the area is
taken up by the combinations of treaties from reinsurers with CQS equal to 3. It
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Figure 4.10. Combinations of expected Return on Equity and Solvency Ratio for different
reinsurance strategies. The colors represent the CQS of the reinsurance company, ranging
from green for a CQS of 0 to red for a CQS of 6.

is possible to observe that, while in the single-reinsurer case the strategy of ceding
risk to a reinsurer with CQS equal to 2 did not provide any optimal solution, in this
case it is part of the efficient frontier.

The comparison between the case of single and multiple reinsurers with the same
CQS is presented in more detail in Figure 4.11, with the combinations of SR and
RoE according to the two cases indicated by black and red dots, respectively. Here
it is possible to observe more clearly the different effect of the two cases on the SR
depending on the CQS. We can observe that for CQS equal to 4, 5 and 6 ceding
the risks to more reinsurers give a higher SR compared to the single-reinsurer case.
The reason is that, for these values of the probability of default, the diversification
produced by the higher number of counterparties provides an improvement in the
extreme scenario (V aR99.5%). On the other hand, we can observe that for the lower
values of CQS the effect is the opposite, with the case of CQS equal to 3 the most
evident. Indeed, in these cases we notice that the single-reinsurer case produces
a higher SR for the same level of RoE. The reason is that, for these values of the
probability of default, the increase in the likelihood of a default event produced by
the higher number of counterparties leads to a worsening in the extreme scenario
(V aR99.5%).

In general, we have two main effects when we increase the number of reinsurer
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Figure 4.11. Combinations of expected Return on Equity and Solvency Ratio for different
reinsurance strategies, for each CQS. The black dots represent the single reinsurer case,
while the red ones the multiple reinsurers case.

keeping fixed their probability of default. They are represented by the increase in
the number of default events and in the reduction of the total loss (in case of a
default event) due to the split of the total amount (under risk) to multiple parties.
It is possible to notice that these effects move the total loss in the extreme scenario
in opposite directions. Hence, depending on the specific probability of default of the
counterparty we have the prevalence of one or the other effect and consequently the
benefit or disadvantage from increasing the number of counterparties.

Finally, we can observe that in most of the cases there is a quite small difference
between the single and multiple reinsurer(s) case, especially when the probability
of default is low. However, the more we move to high CQS the more we observe a
difference in the efficient frontier.
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Appendix B

Efficient frontier

B.1 Characteristics of inputs and outputs

In Figure B.1 we report the distribution of XL deductible and limit for MTPL and
GTPL. It is possible to observe that these distributions are exactly the same. Indeed,
as reported in Table 4.5, we have assumed the same minimum, maximum and step
size.

Regarding the deductible we can observe that the threshold of 1M is the most
represented compared to the other ones. The reason is that, given the chosen step
size for the limit, this deductible has an additional combination. For the same reason
explained for deductible, also the distribution of limit is not uniform, but it depends
on the specific number of possible combination, given the step size assumed for
this numerical analysis. Finally, the value of l = 0 represents the absence of a XL
reinsurance for the specific line of business.

In Figure B.2 we report the distribution of QS retention for MTPL, GTPL and MOD.
It is possible to observe that these distributions are exactly the same. Indeed, as
reported in Table 4.5, we have assumed the same minimum, maximum and step size
for the three lines of business. In this case we have exactly a uniform distribution
between 20% and 100%, where the right-hand extreme represents the case of full
retention, i.e. the absence of a QS treaty.

In Figure B.3 we report the distribution of expected value, standard deviation and
skewness of the risk reserve obtained from the simulated scenarios. Regarding the
expected risk reserve we clearly have a distribution with a quite large range, due to
the different effect of each reinsurance strategy on the technical result. The peak of
the distribution is close to the initial value of the risk reserve, meaning that most
strategies produce a technical result close to 0. Finally, looking at the shape of
the distribution we can observe that it presents a negative skewness, having more
extreme negative results compared to the positive ones.

Regarding the distribution of the standard deviation of the risk reserve we observe a
positive skewed distribution with the mode at approximately 2.5M.
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Figure B.1. Distribution of input parameters for the excess of loss reinsurance (values in
M).
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Figure B.2. Distribution of input parameters for the quota share reinsurance.

The distribution of the skewness of the risk reserve is instead mostly concentrated
around 0, determining that on average the distribution of the risk reserve has a low
asymmetry. However, it is also possible to observe the presence of a fat left tail
which reaches quite extreme values, like −15.

In Figure B.4 we report the distribution of the SCR and SR according to the Standard
Formula of Solvency 2 and the Partial Internal Model that we proposed in this chapter,
obtained from the simulated scenarios. Comparing the two distributions of SCR it
is possible to observe that they are quite different. In particular, the partial internal
model one shows a positive skewed distribution with peak at approximately 50M
and it reaches a capital requirement of more than 250M in some extreme strategies.
On the other hand, the standard formula one shows a bimodal distribution with
peaks at approximately 80M and 110M, but it reaches a much lower extreme capital
requirement.

Regarding the distributions of SR we can observe that under both approaches the
range is approximately the same, between 0% and 350%. In this case, the one
obtained by applying the partial internal model is bimodal, with peaks at 50% and
150%. The distribution obtained by applying the standard formula instead shows a
sort of LogNormal distribution shape. The reason for these quite different shapes
is related to the difference in how these approaches measure the same risks. In
particular, as already described in the respective sections, the capital requirement
obtained by means of the standard formula is based on a modular approach where
the risk of each module is obtained by means of a factor/scenario-based approach.
The capital requirement obtained by means of the partial internal model developed
in this chapter is instead based on a VaR measure at 99.5% quantile, calculated by
means of the simulated scenarios which consider the risks to which the company is
exposed.
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B.2 Efficient frontier analysis considering expected RoE
and CoV

The insurance company could also be interested in using other metrics of risk and
return as drivers for choosing the optimal reinsurance strategies. In Figure B.5, for
instance, it is reported the set of combinations obtained using the expected RoE as
return metric and the Coefficient of Variation of the risk reserve as risk metric. It is
possible to observe that the shape of the combinations is quite different compared
to the case where the optimization metrics were the RoE and SR. Moreover, in this
case, the objective of the insurance company is not to maximize both the metrics,
but it aims at maximizing the expected RoE, while minimizing the CoV of the risk
reserve. For this reason we can also observe that the efficient frontier, reported in
red in the figure, is on the “south” part of the figure.

Similarly to the previous analysis, also here we indicate in blue the combination of
the two metrics obtained in case the insurance company decides to not purchase any
reinsurance. Clearly, this strategy produces the highest RoE, but also the highest
CoV among the combinations on the efficient frontier.

Regarding the choice of a single optimal strategy, we propose also in this case the
simple approach already used in the previous analysis and based on the choice of the
strategy with the highest marginal increase of SR for a reduction in the expected
RoE. However, we need to make a slight modification to Formula 4.16, since we
are interested in the “marginal decrease” of the CoV. Hence, in Formula B.1 it is
reported the modified formula to be maximized in case the insurance company is
interested in the optimal strategy according to the marginal decrease of the CoV.

MICoV =

(
CoV [Ũt+1(gross)]−CoV [Ũt+1(m)]

CoV [Ũt+1(gross)]

)
(

E
[
R̃oE(gross)

]
−E
[
R̃oE(m)

]
E
[
R̃oE(gross)

] )

=
CoV

[
Ũt+1(gross)

]
− CoV

[
Ũt+1(m)

]
E
[
R̃oE(gross)

]
− E

[
R̃oE(m)

] E
[
R̃oE(gross)

]
CoV

[
Ũt+1(gross)

] .

(B.1)

In Figure B.5 this optimal treaty is reported in green and we can observe that
it is quite close to the no-reinsurance case. Interestingly, this is in line with the
result obtained considering expected RoE and SR and reported in Figure 4.4. This
means that there is consistency in the marginal increase/decrease of the SR and
CoV compared to the gross-of-reinsurance case.

In practice, an insurance company has many possible alternative metrics for defining
the efficient frontier and choose the optimal strategy. Among the many alterna-
tives some of the most easily obtainable from the framework here developed are
ruin/survival probability, TVaR-based measures and risk-adjusted measures (e.g.
RAROC). Moreover, rather than focusing on the optimization of two metrics, the
insurer could aim at jointly optimizing three or more objectives.
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Figure B.5. Efficient frontier of alternative reinsurance strategies in terms of expected
Return on Equity and Coefficient of Variation of the risk reserve. In black are reported
the combinations of RoE e CoV for all the reinsurance strategies, in red the efficient
frontier, in blue the no-reinsurance case and in green the optimal solution according to
the marginal increase approach.
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Chapter 5

A neural network approach for
selecting efficient reinsurance
strategies

5.1 Introduction

In the last decades, the application of statistical and machine learning algorithms has
seen a strong increase in many different fields, boosted by the improved processing
capacity of modern computer. Neural networks, in particular, are one of the most
versatile machine learning algorithm, being employable in supervised, unsupervised
and reinforcement learning tasks, and have provided many successful results in
different areas of research. Relatively recently also the actuarial science community
has started to increase the use of this algorithm in many of its areas of application.
In [66] and [67] is reported an extensive review of the main machine learning models
developed and employed in actuarial science.

In the non-life sector we find an increasing literature on neural network models
in both pricing and reserving. In the context of ratemaking, in [77] are compared
different machine learning approaches, among which neural network, in a pricing
optimization framework, showing their advantages and disadvantages against classical
GLM. In [73] it is developed a neural network, based on classical Generalized Linear
Model (GLM) approach, in order to provide an improvement in the performance of
non-life insurance pricing. [82], instead, after showing the limit of neural networks
in providing an unbiased estimate at portfolio level, presents two techniques for
overcoming this issue.

Regarding reserving one of the first works that started showing the strength of
machine learning technique in this area has been [81], which illustrates how these
technique can be employed in individual claims reserving. In the context of neural
network, [31] applies a modeling architecture, based on six different neural networks
with specific modeling purpose, to individual claims data. Using as benchmark classi-
cal Chain-Ladder method shows the potential improvement given by neural network
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approaches. [37] brings an improvement of classical over-dispersed Poisson model
in claims reserving, by embedding it in a neural network architecture. [55] propose
DeepTriangle, an approach based on triangular data, in which are jointly modeled
paid and outstanding claims by a deep neural network architecture incorporating
additional heterogeneous inputs.

Also in the context of life insurance we have seen the development of many approaches
based on machine learning and neural network, in particular in the modeling of
mortality and lapses. Regarding mortality modeling, in [61] it is proposed a deep
learning integrated Lee-Carter model, in which the ARIMA process used to describe
the mortality trend over time is modeled by means of a recurrent neural network. [63]
develops a generalization of the structure of Lee-Carter model by means of a shallow
convolutional neural network mortality rates forecasting. Moreover, it shows that in
the specific case the use of a deep network does not provide any significative improved
compared to shallow case. In [68] the extension of the Lee-Carter model to multiple
population is instead developed using neural network, showing an improvement in
forecasting performance, while [74] introduces a neural network approach for fitting
the Lee-Carter and the Poisson Lee-Carter models. Finally, [51] describes theoretical
models for surrender risk in life insurance, analyzing the performance of different
machine learning approaches.

Finally, the use of neural network is employed also for the development of synthetic
dataset. Indeed, in [38] the authors use neural networks to developed a stochastic
simulation machine for generating individual claims simulation, based on a real
non-life insurance dataset.

Here we differentiate from these approaches since our objective is to apply the neural
network in the context of reinsurance treaties selection. In this area of actuarial
science, there is much lower literature on the application of neural networks. [24]
studies deep learning approaches to find optimal reinsurance and dividend strategies,
in an infinite-horizon optimal control problem. Our objective is instead to analyze
the problem of optimal reinsurance selection in a finite time-horizon, specifically in
a one-year time-horizon, and with multiple objectives.

Regarding multi-objective optimization and neural network the literature is quite
limited and mainly focused on approaches for building a single network that is
able to have a good performance on multiple objective metrics (e.g. trade-off in
the accuracy of multiple outputs predicted by the same neural network). Most
of the approaches to the problem of multi-objective optimization in deep learning
are based on optimizing a new network for every point on the Pareto front, or by
using hypernetworks conditioned on modifiable preferences [60]. [71] deals with this
problem in a different way, by conditioning the network directly on the preferences
by augmenting them to the feature space. Moreover, using a penalization based on
cosine similarity penalty is ensured a well-spread Pareto front.

Here, we still employ neural network in the context of multi-objective optimization,
but for a different scope. Indeed, we are interested in determining the combinations
of inputs which maximize multiple outputs jointly.

The following sections of this Chapter are organized as follows. In Section 5.2 we
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Figure 5.1. Illustrative representation of Perceptron.

provide a general description of neural network, focusing on the aspects most relevant
for our problem. In Section 5.3 we present the problem and the theoretical description
of the model developed for its solution. We start from describing the limits of the
stochastic approach presented in the previous chapter. Hence, we describe our
proposal, based on a neural network approach, for managing the problem, focusing
on each of its parts. In Section 5.4 we present a numerical analysis, based on the same
data as the one developed in the previous chapter. We start from the description
of the parameters used and the methodological choice for the various components
of the neural networks. We then show the application of the model in the specific
context and the result, providing numerical and graphical evidences. Finally we
refer to the Appendix for additional sensitivities.

5.2 General description of neural networks

Artificial Neural Networks are one of the most popular machine learning algorithms.
They are directed graphs consisting of nodes (also called neurons or units) connected
by links, inspired by the biological system of neurons of the human brain (nodes and
links are the corresponding analogous of neurons and synapses). Neural networks
were described for the first time in the seminal work of McCulloch and Pitts [57].
Then, following the theoretical system presented in that work, Rosenblatt proposed a
“learning” model for neural networks in his paper on perceptron [70]. The structure
of this model is reported in Figure 5.1.

Here, in order to provide a better understanding of the elements related to perceptron,
and in general to neural network models, we briefly describe the terminology and
meaning connected to the layers of a neural network.

• Input layer: it is the first layer of the neural network. It passes the inputs
and a bias term to the next hidden layer. The elements contained in the
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input layer can be interpreted in the same way as the “explanatory variables”
of linear regression models, with the bias representing an analogous of the
“intercept term”.

• Hidden layer: it consists of all layers in the middle between the first and the
last one. In each hidden layer are weighted the inputs coming from previous
layer and is applied a non-linear transformation by means of an activation
function. The weights can be interpreted as the coefficients of linear regression,
so are the elements which are “modified” in order to obtain the minimization
of the loss function.

• Output layer: it is the last layer of the neural network. It receives the
elements of the previous hidden layer as input and apply an activation function.
The elements of the output layer are the dependent/response variable of the
model (using the jargon of linear regression).

From these descriptions we derive that perceptron is composed by just one input
and one output layer, not having any other (hidden) layers between the two. This
operator is applied on binary a classification problem, performing the operations
described below. Computationally, as reported in Formula (5.1), the first step
consists in taking the vector of explanatory variables and calculating their weighted
linear combination adding a bias.

z = wT x + b =
n∑

i=1
wixi + b (5.1)

where x = (x1, ...xn) represents the vector of inputs, w = (w1, ...wn) the vector of
weights and b the bias term.

Then, as reported in Formula (5.2), the output f(x) is derived by applying the
activation function ϕ(z) to the previously calculated value

f(x) = ϕ(z) = ϕ
(
wT x + b

)
= ϕ

(
n∑

i=1
wixi + b

)
. (5.2)

The activation function used in the context of Perceptron is called the Heaviside (or
unit step) function and it is reported below.

ϕ
(
wT x + b

)
=
{

1 if wT x + b ≥ 0
0 otherwise

(5.3)

which, as evident from Formula (5.3), returns a binary output1.

Activation functions are one of the most relevant components of a neural network and
consist in a function which is applied to a node given the set of inputs received. The
importance of this element lies in the possibility of using non-linear functions, which

1A more detailed description of Perceptron and artificial neural network, with a focus on their
relationship with statistical models can be found in [23].
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give the possibility to the network of “learning” non-linear dependencies between
variables.

Feed-forward neural networks are the natural evolution of perceptron. Their name
derives from the fact that information is “fed” to each layer only in a forward
direction. The evolution consists in the use of an activation function that returns
a continuous value, rather than a binary value. In this way the output is more
sensitive to changes in weights respect to the other alternatives. Moreover, in its
general formulation, this network could have one or more hidden layers.

One of the most relevant theoretical findings related to neural network, which had a
strong impact on the increase of interest in this operator, is the so-called “Universal
approximation theorem”. Indeed, in [45]-[46] it is proved that a single hidden-layer
feed-forward neural network can approximate any measurable function arbitrarily
well regardless of the activation function, the dimension of the input space and the
input space environment.

The modeling of a neural network can be summarized by two main components:

• Architecture: it is the “graph structure” of the network. It encompasses the
choice on the number of layers and number of neurons, how they are connected,
which is the formulation of activation functions, but also how the information
flow withing the network.

• Learning algorithm: it is a procedure that update iteratively the set of
parameters of the network in order to find the combination that minimize the
chosen loss metric.

Regarding the architecture of a neural network, in the literature many other alterna-
tives have been proposed for each of the element defining its structure. We briefly
give an outline of the most relevant concepts. Regarding the number of hidden
layers, a neural network is called “shallow” when there is only one hidden layer,
while it is called as “deep” when there are more than one. In general there is not
an “optimal” number of hidden layer for a given problem. Indeed, while input and
output layer are determined by the dimension of input and output vectors, there
is not a rule for setting the number of hidden layers and the number of nodes. In
practice, a common approach for these choices consists in the use of a grid search,
where the network is trained on a limited size of data (typically the validation set)
for different values of parameters. The network with the best performance is then
selected.

Regarding the “flow of information”, a feed-forward neural network, as explained
above, allows only a forward flow of information. A recurrent neural network,
instead, also permits the flow of information backward between nodes. In the
financial/actuarial sector, this characteristic of recurrent neural networks makes
their application especially useful in the context of time series forecasting and related
problems.

Once we have defined the structure of a neural network, it is necessary to determine
the learning algorithm, i.e. the approach for calibrating the parameters in order
to minimize the loss function. In the context of neural network, the most used
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learning algorithm is the so-called backpropagation. This approach consists in
an efficient computation of the gradient of the loss function with respect to each
of the parameters of the neural network. The name derives from the fact that
this approach “propagates” the error of the loss function backward, calculating its
gradient respect to each of the weights by means of the chain rule. The necessity of
this operation is related to the fact that the gradient of a function at a given point
defines the direction where its increase is maximized and the relative “speed”; as
a consequence, moving in the opposite direction leads to its minimization. Hence,
in the context of neural network, where the objective is the minimization of a loss
function, backpropagation employs the gradient in order to update the weights in
the opposite direction with respect to them. The gradient of loss function can be
calculated according to many different approaches, with gradient descent being one
of the first optimization algorithms to be employed for finding the (local) minimum
of the loss function of a neural network. An important characteristic of the “base”
version of gradient descent is that it requires the observation of the whole training
set before updating the set of parameters. Consequently it comes with a strong
computational burden, especially with large datasets, due to the fact that it is
necessary to pass through the whole training set in order to perform a single update
of the parameters. In order to solve this important drawback many extensions
have been developed with stochastic gradient descent being one of the most known.
This optimization algorithm has the opposite behavior of “base” gradient descent,
since it updates the set of parameters after iterating a single sample of the whole
dataset. In this way, at the cost of an initial higher uncertainty, the learning speed
of the algorithm is strongly increased. Moreover, theoretical results assure that
also stochastic gradient descent converges to a (local) minimum, usually making a
preferred approach. Among the many extensions developed, an approach coming
as a sort of compromise between gradient descent and stochastic gradient descent
is the so-called batch gradient descent. Under this approach the gradient of the
loss function and the consequent update of the parameters is computed against
a set of observations, called mini-batch, at each step. In this way, the update of
parameters will be faster than gradient descent and more stable than stochastic
gradient descent2.

In the following, in order to show more clearly all the elements of neural networks
described until this point, we present an illustrative example. We base this example
on a shallow (one hidden layer) feed-forward neural network, as depicted in Figure
5.2.

This network consists of one input layer, composed by i = 1, ..., n inputs, one hidden
layer, composed by h = 1, ...H hidden nodes and one output node. The objective is
to apply a learning algorithm in order to find the set of weights W that minimizes
the loss function.

Basing our approach on stochastic gradient descent, one iteration of the learning
algorithm can be described by the following steps. We start from a certain input
vector x and with the value of the set of weights as obtained from previous iteration

2It shall be noted that many other evolution have been developed. A detailed reference of these
approaches can be found in [40].
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Figure 5.2. Illustrative representation of a shallow feed-forward neural network.

or according to their specific initialization in case of the first iteration3.

As explained in the context of perceptron, each neuron h of the hidden layer is
obtained as a weighted sum of the input neurons of the previous layer (in this case
the input layer) to which an activation function is applied. In Formula (5.4) we
have:

ϕ1 (zh) = ϕ1
(
wT

h x
)

= ϕ1

(
n∑

i=0
wihxi

)
, ∀h = 1, ...H (5.4)

where wh = (wh,0, ...wh,n) is the vector of weights connecting the input nodes to the
node h of the hidden layer, and x0 represent the bias term.

At this point the intermediate outputs of the hidden layer are forward propagated
to the next layer (in this case the output layer). As in previous step the forward
propagation consists in the application of a weighted sum of the inputs to which a
new activation function is applied. In Formula (5.5) we have:

f (x, W) = ϕ2
(
wT ϕ1 (z)

)
= ϕ2

(
H∑

h=0
whϕ1 (zh)

)
(5.5)

where w represents the set of weights connecting the nodes of the hidden layer to
the output node.

Hence, this result consists in the estimate of the output of the neural network for
the specific set of input with the weights value at the specific iteration. It is then
possible to compare the estimate of the model with the actual value. As usual, we
employ a loss function, whose formulation is strictly connected with the problem,
for measuring the error/loss between the estimated and actual value. As reported in

3For an extensive review on the approaches employed for weights initialization refer to [59].
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Formula (5.6), the loss is then computed according to

L = L (y, f (x, W)) (5.6)

where L (·, ·) denotes the loss function.

At this point, the objective of learning algorithm is to move the weights in such a
way to minimize the loss, calculated according to the specific loss function. The
basic approach for adjusting the weights of the neural network, which we also report
below, is the backpropagtion by means of gradient descent approach. We are then
interested in back-propagating the error from the output layer and updating the
weights according to the gradient of the loss with respect to them. In practice, the
update of the weights according to the gradient descent approach can be described
as reported in Formula (5.7):

w
(i)
h = w

(i−1)
h + ∆w

(i)
h

= w
(i−1)
h − γ∇w

(i)
h

(5.7)

where ∇w
(i)
h represents the gradient of the loss function with respect to the weight

wh, γ the learning rate and (i) the iteration index. It means that the initial weights
are adjusted by a certain amount, indicated by ∆w

(i)
h , in order to reduce the loss

function. According to the gradient descent approach, the generic delta term is
substituted by the term −γ∇w

(i)
h . Hence, the weights are moved in the opposite

direction (negative sign) of a portion γ of the gradient of the loss function ∇w
(i)
h .

Regarding the computation of the gradient of the weights, we follow the back-
propagation approach. Hence, we start from the error obtained in the output layer
and calculate the gradient of the weights from hidden to output layer as reported in
Formula (5.8) for a generic node h:

∇wh = ∂L

∂wh
(y − f(x, W)) ϕ

′
2

(
H∑

h=0
whϕ1(zh)

)
ϕ1(zh) . (5.8)

The errors are then back-propagated, adjusting the weights of previous layer propor-
tionally to their contribution to the whole error, according to the approach described
in Formula (5.9).

∇wih = ∂L

∂wih

= ∂L

∂ϕ (zh)
∂ϕ (zh)
∂wih

= (y − f(x, W)) ϕ
′
2

(
H∑

h=0
whϕ1(zh)

)
whϕ

′
1

(
n∑

i=0
wihxi

)
xi .

(5.9)

Once the gradient of all the weights is obtained it is possible to apply the update
rule described in Formula (5.7) until convergence. Regarding the update rule it
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shall be remarked the importance of the learning rate parameter γ, governing the
speed in which the algorithm learns from observations. In practice the setting of
this hyper-parameter4 plays a crucial role in the converge of the algorithm to the
minimization of the loss and its speed.

It shall be noted that the application of gradient descent assures the convergence to
a global minimum solution only in case the loss function is a convex function. In
the general case this is not true, which means that the solution reached is assured
to be just a local minimum. In complex applications of neural network reaching a
local minimum solution could be considered sufficient, since it could mean that it is
not overfitting the training set. On the other hand, saddle points, which are another
possible solution reached by the learning algorithm, are more problematic. Indeed,
similar to a local minimum point also saddle points have a gradient close to 0, which
imply that the weights will be stuck in that region.

In case the network is composed by more hidden layers the procedure would still be
the same, with the only difference of having a backward propagation of the error
along all these layers in order to arrive at the input layer.

The last relevant point is related to the potential overfitting of the training set,
which would lead to a reduced performance of the test set. For solving this problem
many different techniques have been developed. Regularization techniques have
the objective of improving the performance of the neural network by reducing the
variance at the cost of a slightly increase in the bias. Indeed, given the universal
approximation theorem, a neural network could learn any relation on the set of
observations, meaning that the error in the training set can be made as small as
possible (small bias). However, the resulting model obtained in this way would not
generalize well, because it has overfitted the training set. Hence it would lead to bad
performance on non-observed data (high variance), explaining the necessity of using
regularization techniques. The most common regularization techniques employed in
this context are called L1 and L2 regularization. They derive from Ridge and Lasso
regression, which add a penalty term to a regression problem aiming at reducing the
variance at the cost of a small bias. The general formulation of the loss function
subject to a regulation technique based on norm penalty term is reported in the
following formula:

Lreg = L − λ||w||p

where ||w||p = (
∑N

n=1 ||wn||p)1/p is the norm of order p and λ is a hyper-parameter
governing the intensity of the regularization penalty5. Note that L1 and L2 are indeed
the regularization technique were the penalty term is based on the absolute value
(order-1 norm) and squared value (order-2 norm) of the weights. Other common
regularization technique employed in the context of neural network are dropout and

4It is called hyper-parameter since it is not a parameter updated during the training step as
are the weights, but it is fixed from the beginning. Usually it is estimated in a previous phase on
the validation set (a set of observations held out from training and test ones) on a grid search of
possible values.

5As for the other hyper-parameters, also λ is determined in a procedure before the training phase
and based on a separate set. As evident, the higher the value of λ, the higher will be the penalty to
big changes of weights.
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early stopping6. The first one consists in a stochastic transformation of the structure
of the network which randomly drops some of the connections. The latter instead
consists in the employment of a stopping criterion for the selection of the moment
in which to terminate the learning algorithm, in order to avoid overfitting.

5.3 Neural network model for efficient frontier
The starting point of the neural network model for obtaining reinsurance strategies
on the efficient frontier that we propose in this section is the stochastic simulation
approach described in Chapter 4. The approach developed in the previous chapter
takes as input all the possible combinations of reinsurance strategies, considering
both treaties and reinsurers’ characteristics, and return as output the metrics of
risk and return that the insurance company typically considers in order to define
optimal strategies. By comparing these metrics for all the combinations, it can be
easily obtained the efficient frontier and the corresponding strategies. However, one
drawback of this stochastic simulation is that it could become impracticable in case
we use a too small step size for quota share and excess of loss treaties or if we consider
a high number of additional components or characteristics of the counterparties.
Indeed, in order to obtain the optimal reinsurance strategies, the model needs to
compute all the possible combinations between the considered variables. Hence,
while the application of the functions for estimating the metrics of risk and return
on the basis of the characteristic analyzed could be so efficient to not require a
computational burden, the problem relies on the allocation of a high amount of
memory in order to manage a vector of so many combinations. Aside from the
technical details, it is evident how the number of combinations scales up really
quickly with an increase in the details, etc. As an example considering only quota
share treaties and a company underwriting in three lines of business, if we choose
a step size of 10%, starting from a minimum retention of 20%, we have 9 different
values of quota share retention for each line of business. Hence, the combinations of
reinsurance strategies to consider are 93 = 729. However, if we just increase the level
of detail and choose a step size of 1% we have 81 different values for each segment,
which means 813 = 531, 441. Finally, just to show how much this scales up, if we
consider a step size of 0.1% we have 801 different values of quota share retention for
each segment, meaning that the number of possible combinations between the three
segments become 8013 = 513, 922, 401. Clearly, this level of detail is not something
we are interested in a practical perspective, but it is just to show how considering
all the possible combinations could lead to some problem, since we still need to
account for the different excess of loss treaties, credit quality steps of the reinsurance
companies and number of reinsurance companies covering these risks.

Indeed, while the stochastic approach developed in the previous chapter assures to
reach the optimal reinsurance strategies at the chosen step size, it could become
a solution not practicable if we are interested in a level of detail too high, since it
requires the computation of all the possible combinations. At the same time, in case
we just want to obtain the reinsurance strategies on the efficient frontier and are not

6For a detailed taxonomy and description of regularization techniques in deep learning refer to
[54].
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interested in the details, relationship and other characteristics of the “sub-optimal”
treaties, this approach is inefficient. Indeed, considering all the possible combinations
of reinsurance strategies, we also analyze a high number of combinations that are
already expected to be sub-optimal.

For the reasons described above, we propose a different approach for estimating the
efficient frontier and the corresponding reinsurance strategies. This approach comes
with many important advantages as will be presented in the following. It employs
two neural networks and requires a much lower number of combinations, making it
efficient and easily extendable also in case we have a high number of input variables
which defines the different strategies.

In this context, compared to other machine learning approaches, the characteristics
and properties of neural networks make them the most appropriate model for many
reasons. One of their useful characteristics is the ability to approximate also complex
functions, thanks to the discovery of potential non-linear relations between variables.
Moreover, a single neural network model is able to minimize the loss related to more
than one metric, hence returning more than one output. Finally, while they are still
considered a black-box model, especially compared to classical statistical approaches
when it comes to the interpretation of parameters7, their structure allows to derive
the values in all the nodes, for a given input vector. These characteristics will be of
fundamental importance in the model we are going to define in the following.

In practice, in order to obtain the efficient frontier of the reinsurance strategies for
the insurance company, the approach that we develop requires the following four
steps:

(i) Simplified simulation approach: Define an approach for simulating a low
number of input variables with low computational burden, while preserving an
adequate exploration of the input space.

(ii) Neural network model 1: Build a function approximation of the relation be-
tween inputs (characteristics of the reinsurance treaties and of the reinsurer(s))
and outputs (corresponding metrics of risk and return).

(iii) Neural network model 2: Build a model which, by means of previous neural
network, takes as input one objective metric and returns the same metric while
maximizing the other one(s).

(iv) Efficient strategies determination: Find the parameters of reinsurance
strategies on the efficient frontiers defined by previous neural network.

5.3.1 Simplified simulation approach

Differently from the model developed in the previous chapter, in this case we do not
need to consider all the possible combinations between input variables for determining
the corresponding outputs. Indeed, we will employ a neural network for constructing
a functional approximation of the relation between inputs and outputs. For this

7Actually, it shall be noted that a relevant research area is related to Explainable AI (XAI),
which has the objective of making machine learning models interpretable.
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Table 5.1. Input variables defining the reinsurance strategies.

Variable Type Support Description

DMT P L Numerical [100, 000; 1, 000, 000] Deductible value of XL treaty
for the MTPL segment

LMT P L Numerical [1, 000, 000; 10, 000, 000] Limit value of the XL treaty
for the MTPL segment

DGT P L Numerical [100, 000; 1, 000, 000] Deductible value of XL treaty
for the GTPL segment

LGT P L Numerical [1, 000, 000; 10, 000, 000] Limit value of the XL treaty
for the GTPL segment

αMT P L Numerical [0, 1] Retention quota for
the MTPL segment

αGT P L Numerical [0, 1] Retention quota for
the GTPL segment

αMOD Numerical [0, 1] Retention quota for
the MOD segment

multiRE Categorical {0, 1} Indicator for single/
multiple reinsurer

CQSMT P L Categorical {0, 1, 2, 3, 4, 5, 6} CQS of the reinsurer(s)
for the MTPL segment

CQSGT P L Categorical {0, 1, 2, 3, 4, 5, 6} CQS of the reinsurer(s)
for the GTPL segment

CQSMOD Categorical {0, 1, 2, 3, 4, 5, 6} CQS of the reinsurer(s)
for the MOD segment

reason we need a much lower number of combinations, just sufficient for the neural
network to have an adequate predictive capacity.

Hence, we fix the total number of combinations of input variables at 100, 000, just to
ensure an adequate coverage of the input space. Regarding the input variables which
defines the different reinsurance strategies we have the same elements of previous
model and we report them in Table 5.1. In practice, we have the first 7 variables
describing the characteristics of the excess of loss and quota share treaties for each
line of business. Then, we have the remaining 4 variables which defines the presence
of single/multiple reinsurer(s) and the credit quality step of the reinsurer(s) for each
line of business.

It is possible to observe that these variables are both numerical and categorical,
each one defined on a specific support. In order to cover adequately the input space
we employ a straightforward approach. For numerical variables we simply sample
100, 000 values from the respective support by using a uniform distribution. In this
way it is guaranteed that the sample of each variable cover the specific support. For
categorical variables we simply sample 100, 000 values from a so-called generalized
Bernoulli distribution with equal probability for each element. At this point, since the
sampling of each variable has been obtained randomly, we can define a “dataframe”
built in such a way that the s-th input vector consists in the s-th sample from each
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input variable. In this way it is possible to obtain the corresponding metrics of risk
and return for each of the 100, 000 samples, by means of the Algorithms described
in Chapter 4.

Having defined the dataframe of inputs/outputs we can now move to the description
of the first neural network.

5.3.2 Neural network model 1

The objective of the first neural network (from now on called NN1) is to model the
dependence between inputs and outputs, where the former represent the charac-
teristics of reinsurance strategies and the latter the corresponding metrics of risk
and return. In practice, NN1 aims at approximating, as accurately as possible, the
relation connecting inputs and outputs. In this way it allows us to estimate risk and
return also for non-observed combinations of reinsurance strategies in the training
set.

The architecture of this network is composed as depicted in Figure 5.38. It is a
deep neural network with 30 input nodes, 3 hidden layers, each one consisting of
64 nodes, and 2 output nodes. The setting of the hyper-parameters for number
of hidden layers and number of nodes in the different layers were not object of a
specific assessment. They were set using some knowledge of the domain, in order to
still have a deep neural network, since it usually guarantees better performance, but
without having too many parameters, since the task should not be too complex.

At this point we provide a description of the pre-processing and some remarks
regarding the management of input variables. As in most of the statistical and
machine learning models, also in case of neural network it is possible to have
both numerical and categorical variables. In our context, as anticipated, the input
variables of the neural network model are reported in Table 5.1.

Regarding numerical variables, a common operation typically performed in the
set-up of a neural network, before the training phase, consists in the scaling of input
variables such that their magnitude is similar. Actually, this operation is not strictly
necessary from a theoretical point of view, but in practice it helps the convergence
of loss function toward its minimum in a lower time and without potential problems
related to the backpropagation procedure (e.g. vanishing gradient). In our model,
following this logic, we scale the numerical variables according to the min-max
scaling approach. Given the vector of observations from a given input variable x, in
Formula (5.10) we describe the rescaling according to the min-max approach.

x′
i = xi − min(x)

max(x) − min(x) (5.10)

where xi is a generic observation of the input vector x and x′
i is the corresponding

rescaled element. It is possible to observe that, applying this normalization procedure
to all the numerical input variables, the range of their scaled correspondences becomes
[0, 1] for all of them.

8It shall be underlined that the neural network depicted in the figure is just an illustrative
representation, especially considering the number of nodes.
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Figure 5.3. Illustrative representation of NN1.

In practice, there are many possible alternative for scaling approaches, each one
with advantages and drawbacks. We choose min-max scaling for its simplicity and
also because it returns elements in a bounded interval between 0 and 1, with 0 for
the minimum observation and 1 for the maximum one. Indeed, since the sampled
observations for each variable include their minimum and maximum we are ensuring
a correspondence between the minimum and maximum of each variable and 0 and 1
of their scaled version.

Also regarding categorical variables we have many possible approaches for managing
them in the context of neural network (an extensive description of the techniques
employed for representing categorical variables in neural network is reported in [43]).
One of the first possibility, also employed in statistics, is the “one-hot encoding”.
This approach consists in “encoding” the categorical variables in a new set of vectors
where 1 indicates the presence and 0 the absence of the categorical variable (as
the creation of “dummy variables” in regression analysis). Hence, this solution
transforms the input vector of categorical variables in a matrix with number of
columns equal to the number of unique variables. Another approach for managing
categorical variables, developed specifically in the field of neural network, is the so-
called embedding layer. This approach consists in the creation of a layer between the
one-hot encoded variables and the hidden layers, with a lower cardinality compared
to the number of levels of the categorical variable and whose weights are also “learned”
during the training phase. Embedding layers were borne in the context of natural
language processing, but they are useful in any context where the number of levels
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of categorical variables is so high that one-hot encoding creates a high dimensional
sparse vector, with the potential problem of the “curse of dimensionality”. In our
context, since the number of levels for each categorical variable is not so high, we
employ directly one-hot encoding. However, it shall be noted that in this way
we have that the variable multiRE is now represented as two separate vectors the
first one with 1 in case of single reinsurer and 0 in case of multiple reinsurers and
viceversa for the second one. Similarly, also the other three categorical variables
one-hot encoded are now composed of seven separate vectors. Hence, compared to
the list of variables described in Table 5.1, after the pre-processing phase, input
layer is actually composed by 30 variables, of which 7 numerical and 23 encoded
representations of categorical variables.

At this point, having defined the structure of neural network and the pre-processing
of input features, we can move to the description of the other elements of the neural
network. In particular, we shall define the activation function for each layer. In
this context we choose to employ a non-linear activation function, specifically the
rectified linear unit (ReLU). This activation function, together with its variants (e.g.
Leaky ReLU, Parametric ReLU) is one of the most commonly employed non-linear
functions in deep neural networks. As reported in Formula (5.11) it is simply defined
as the maximum between 0 and its argument:

ϕ(x) = max(0, x) =
{

0 x ≤ 0
x x > 0 .

(5.11)

Finally, the last and fundamental element of NN1 is represented by the loss function.
As anticipated, we are interested in a neural network that takes as inputs the
variables defining the reinsurance strategies, returning the corresponding metrics of
risk and return. Hence, we want to adopt a loss function that considers the errors
with respect to both the outputs. Indicating with y and ŷ the vector of true and
predicted outputs respectively, in Formula (5.12) we define the loss function as:

L = L (y, ŷ)

= L
(
y, f

(
x, Ŵ

))
= p1L1 (y1, ŷ1) + (1 − p1)L2 (y2, ŷ2)

(5.12)

where p1 is the weight associated to the error respect to the first metrics and (1 − p1)
respect to the second one. As expected, for high values of p1 we will have a neural
network predicting more precisely the first metric, since the relative error would
have an higher weight. On the other hand, for small values of p1 the neural network
will produce a more precise outcome for the second metric. In practice, there is
typically a trade-off between the precision of multiple outputs and consequently it is
necessary to choose the weight according to the required compromise and taking
into account also the relative scale of the different outputs.

In this specific case we choose to employ as error measure the mean absolute error
(MAE), obtaining the loss function described in Formula (5.13):

L = p1
1
n

n∑
i=1

|y1,i − ŷ1,i| + (1 − p1) 1
n

n∑
i=1

|y2,i − ŷ2,i| . (5.13)
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Figure 5.4. Illustrative representation of NN2. The part surrounded by red dots consists in
a concatenation layer of separate inputs, while the part surrounded by blue dots consists
in NN1.

The parameters of NN1 are calibrated by means of a training set, representing
90% of total observations. During the training phase 10% of the observations are
used as validation set to ensure that the model is generalizing also on non-observed
data. In order to avoid overfitting of training data early stopping rule is included,
while learning rate schedule is employed for trying to avoid that the model learning
“stagnates”.

The generalization ability of the model is then assessed by measuring its performance
on the test set, built on the remaining 10% of total observations.

5.3.3 Neural network model 2

The objective of the second neural network (from now on called NN2) is to estimate
the efficient frontier of the multi-objective optimization problem. In practice, NN2
takes as input one of the output metrics and aims at returning the same value of
the input and the maximum possible value of the other metric. In this specific case,
it takes as input a value of the expected RoE and return two outputs; where the
first should be the same value of the expected RoE metric and the other one the
maximum possible SR, for the given expected RoE. In order to do this, it takes
advantage of the relation between inputs and outputs learned by the previous neural
network as we will describe in the following.

For simplifying the explanation of NN2, first of all we report in Figure 5.4 the
illustrative representation of its architecture.

It is a deep neural network with 1 input vector, 5 hidden layers, the first two
consisting of 5 and 30 nodes, while the other ones with 64 nodes each, and 2 output
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nodes. As outlined by the dotted regions, NN2 is actually composed of more parts.
The first layer is the input node, which is then replicated in 5 separate nodes, all
with the same value and non-trainable. Then, each of these “second-stage” inputs is
connected to another layer, which is then concatenated together, as indicated by the
red dots. The remaining part of the network, instead, consists exactly in NN1, as it
is possible to observe from the common structure.

In the following we briefly explain the idea behind this modeling and the details of
the structure of NN2. This neural network takes as input the expected RoE and
replicate it 5 times in the subsequent layer, which simply consists in a non-trainable
layer with weights equal to 1, no bias and linear activation function9. These 5
nodes represent respectively the numerical features (one node) and the categorical
features (one node for each feature) reported in Table 5.1 before the pre-processing
phase. Hence, each of these 5 nodes is connected to a specific layer which can be
interpreted as the input layer of NN1 for the specific variable. In more detail, the
first node propagates in 7 nodes, which represent the 7 numerical variables of NN1.
The other nodes are linked with a number of nodes equal to the number of levels of
the corresponding categorical variable in NN1, representing in this way the one-hot
encoded version of these variables. Clearly, once all these layers are concatenated, as
indicated by the red dotted region of Figure 5.4, we obtain the exact analogous of the
input layer of NN1. Indeed, our objective is that the concatenated layer represents
the parameters of reinsurance strategies used as input for finding the corresponding
metrics of risk and return in NN1. In this way we take advantage of the already
learned relation between these inputs and outputs and build the remaining part
of the neural network exactly as NN1. It shall be underlined that the equivalence
between the structures is not limited to the architecture, but it also regards the
parameters. Moreover these weights are set as non-trainable in order to not modify
the relation learned by NN1.

At this point, the idea behind this model is straightforward. Once NN2 has been
calibrated on training set, reaching a sufficient performance, we just need to choose a
value of expected RoE for obtaining the corresponding Solvency Ratio on the efficient
frontier (from the output) and the reinsurance strategy generating this combination
(from the concatenated layer). Repeating this procedure for a sequence of expected
RoE at a certain step size we derive the efficient frontier and the corresponding
reinsurance strategies.

Having provided an overall description of the structure of NN2 it is now necessary
to deep-dive on some details and potential issues. As anticipated, the first node of
the first hidden layer is connected with 7 other nodes, representing the 7 numerical
input features of NN1. Recalling that we employed a min-max normalization of
numerical variables in NN1, we have to provide inputs on the same range also in this
case. This requirement can be easily satisfied by simply using a sigmoid activation
function, since it returns a value between 0 and 1. In Formula (5.14) we report one

9It is possible to notice that it is equivalent to have a neural network directly with 5 input nodes
all equals, but we preferred this architecture.
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of the most commonly employed sigmoid functions, represented by the logistic:

ϕ(x) = 1
1 + e−x

. (5.14)

Differently from numerical variables, the procedure for deriving the one-hot encoding
of categorical variables, as in NN1 is much more complex. As a first step, it is
evident that the most appropriate activation function in this context is represented
by the softmax. Indeed, this function, as reported in Formula (5.15), applies the
exponential to each element and returns the normalization of each element with
respect to the sum of these exponentials:

ϕ (xi) = exi∑N
n=1 exn

. (5.15)

It is typically employed as activation function of the output layer in classification
problem, since the returned values can be interpreted as probabilities. Also in this
context, we are interested in transforming the input in probabilities in order to apply
at the next step the one-hot encoding and obtain the same structure as the input
layer of NN1. However, differently from what we did in the pre-processing of NN1,
in this case we cannot apply the one-hot encoding between these two layers. The
reason is that, as a function, one-hot encoding can be interpreted as arg max, which
is a not differentiable function. Hence, it cannot be employed, since we have to
apply back-propagation also to the loss in previous layer. The solution that allows
us to still obtain a one-hot encoding of the variables from softmax comes from the
application of a “soft” version of one-hot encoding: the Gumbel-Softmax estimator.
It is a (approximate) differentiable version of one-hot encoding, which then permits
the application of backpropagation algorithm10.

Finally, the last and fundamental element of NN2 is represented by the loss function.
Given the presence of multiple outputs, also in this case we are interested in a loss
function that considers the errors with respect to multiple losses. The specific loss
function is reported in Formula 5.16

L = L (y, ŷ)

= L
(
y, f

(
x, Ŵ

))
= p1L1 (y1, ŷ1) + (1 − p1)L2 (y2, ŷ2)

= p1
1
n

n∑
i=1

max (0, y1,i − ŷ1,i) − (1 − p1)ŷ2

(5.16)

where the value of p1 is set in a way to ensure a balance between the losses during
the learning phase.

10For a detailed explanation of Gumbel-Softmax distribution and its application refer to the
original work [48].
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5.3.4 Efficient strategies determination

At this point, we have calibrated NN2 such that it is able to determine the combina-
tions of expected RoE and SR on the efficient frontier. In order to determine the
corresponding reinsurance strategies, reminding the architecture of NN2 reported in
Figure 5.4, we just need to compute the first step of the forward propagation, given
the input value (representing the expected RoE). In practice for numerical variables
we employ the sigmoid function reported in the following formula:

zi = 1
1 + e−(w0+wix) .

It shall be noted that, since we applied the sigmoid function, the returned outputs
will be in the range (0, 1). Hence, as last step, in order to obtain the corresponding
unscaled variables it is necessary to apply the inverse of the min-max transformation
described in Formula (5.10).

Similarly, for categorical variables we employ the GumbelSoftmax function reported
in the following formula:

zi = GumbelSoftmax

(
e(w0+wixi)∑N

n=1 e(w0+wnxn)

)

Also in this case, we have an additional final step consisting in retrieving back the
categorical variable corresponding to its numerical encoding obtained from previous
formula.

5.4 Numerical application

At this point we can assess the performance of the approach proposed in the previous
section on a practical case study. For this numerical analysis we employ the same
setting described in Section 4.2. The main difference is instead related to the data
for the analysis. Indeed, as explained in Section 5.3.1, we have 100, 000 combinations
of reinsurance strategies on which to calibrate the model. As anticipated in the
same section we use 90% of this data for training NN1 and the remaining 10% for
testing purposes.

The total loss that we want to minimize is composed as a weighted average between
the loss respect to the expected RoE and respect to SR, with weights of 20% and 80%
respectively. Indeed, our objective is that NN1 is able to predict both the metrics.
The choice of the different weights for the average of the two losses is related to the
different scale of the variables and some cross-validation analyses. In practice, a
better way for defining these weights is to consider them as hyper-parameters and
consequently follow the approach for their calibration.

Regarding the loss metric, we choose the MAE for both the losses. The reason
of this choice is that the support of both SR and RoE is R and consequently we
have to select a loss metric which do not compensate positive and negative errors.
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For instance, the mean error would have been not appropriate for this scope, while
another possible alternative would have been the mean squared error (MSE).

Finally, employing an early stopping rule we reached convergence before 1000 epochs,
using a batch size of 4096 samples.

In Figure 5.5 we report the combinations of expected Return on Equity and Solvency
Ratio for the reinsurance strategies in the test set according to actual results (in
black) and predictions from NN1 (in red). It is possible to observe that the NN1
adequately reproduces the actual shape of the combinations of RoE and SR according
to the parametric assumptions of the analysis. However, we can notice that there are
still some areas where the prediction has a lower precision and there is some room for
improvement. In practice, it could be possible to improve the predictive capability
of the model by a specific assessment of the “best” value of each hyper-parameter
(e.g. number of nodes, number of hidden layers, improvement in the loss for the
early stopping rule, etc.).

Numerically, we register a total loss of 1.3%, where the loss from the expected RoE
is equal to 0.7% and the one from the SR is 1.4%. It shall be noted that we decided
to not normalize the values of outputs, having in this way a difference in their scale.
This is the reason for choosing the specific weights between the two losses, and also
why the error in the estimate of the solvency ratio is much higher than the one
related to the expected return on equity.

In Figure 5.6 we report a more detailed comparison of actual and predicted values for
RoE and SR. It is possible to observe that the model has more difficulty in estimating
the actual solvency ratio, despite the greater weight we associated to its loss. This
is particularly relevant for smaller values of the SR, while the more we reach higher
values of the SR the more we observe an improvement in the prediction. Moreover,
it is also possible to observe that, while for the RoE we have a quite symmetric
prediction compared to the actual values, for the SR the overestimation prevails.
A fine-tuning of the model, like increasing the weight associated with the error in
estimating SR or including an additional weight for under and over-estimation, could
help improve model performance.

For NN2 we set the input and output in the following way. For the input, we sampled
500, 000 random variables from uniform distribution in the interval (−0.3, 0.3). It
represents the range of potential values of RoE, so we choose an interval centered at
0 and larger than the observed one, although in practice we do not expect values
too extreme. Regarding the outputs we set the output for RoE equal to the input
value, while for the SR we set all the elements equal to 400%. In practice, this
value represents an extreme (unreachable) value of SR to which the estimates should
aim. In practice, it shall be noted that, according to the loss function we defined in
Formula (5.16), this value has no impact on the total loss.

After training the neural network on the training set described above, we are then
able to make a first assessment of the efficient frontier produced by the model
compared to the observations. We expect that it is at least at the same level as the
highest observation for each value of the Return on Equity. Indeed, as shown in
Figure 5.7, the efficient frontier produced by NN2 is above the set of observations.
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Figure 5.5. Scatterplot of the combinations of expected RoE and SR. In black are reported
actual values from the training set, while in red are reported predicted values.

Figure 5.6. Actual vs Predicted plot for expected Return on Equity (left) and Solvency
Ratio (right).
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Figure 5.7. Scatterplot of the combinations of expected RoE and SR. In black are reported
actual values from the training set, while the red line represents the estimated efficient
frontier according to the model.

This means that the model has found a set of strategies that provide a higher Pareto
frontier than to the one given by the observed data. This result is expected since we
know that the reinsurance strategies of the observed data are based on a limited
number of combinations at a given step-size. In practice, the assumption is that
if we were able to consider all the possible reinsurance strategies at the smallest
step size, we would obtain an efficient frontier very close to the one produced by the
neural network model.

In order to derive the efficient strategies corresponding to each point of the efficient
frontier we have to follow the last step, described in Section 5.3.4. In practice, it is
necessary to apply the sigmoid and GumbelSoftmax functions, depending on whether
the variable is numeric or categorical, in order to derive the “transformed” variables.
Then, it is applied the inverse transformation of the preprocessed variables in order
to obtain each element of the reinsurance strategy “unscaled”.

In Table 5.2 we report a subset of efficient reinsurance strategies, obtained using
as input a sequence of expected Returns on Equity and deriving the corresponding
Solvency Ratio and reinsurance strategy.

It is possible to observe that, in line with the findings of the previous chapter (e.g.
see 4.5), the strategies defining the efficient frontier prescribe a complete retention
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Table 5.2. Subset of the efficient strategies maximizing expected Return on Equity and
Solvency Ratio.

DMTPL LMTPL DGTPL LGTPL αMTPL αGTPL αMOD multiRE CQSMTPL CQSGTPL CQSMOD SR RoE

1, 000, 268 3, 651, 094 4, 999, 605 1, 000, 518 20.1% 20.0% 100% 1 7 3 4 260.5% −8.5%
1, 000, 263 1, 315, 931 4, 997, 786 1, 000, 360 23.7% 20.0% 100% 1 7 3 4 255.3% −7.0%
1, 000, 262 1, 141, 071 4, 993, 484 1, 000, 321 31.2% 20.0% 100% 1 2 3 4 242.1% −4.6%
1, 000, 261 1, 062, 496 4, 979, 344 1, 000, 286 48.4% 20.1% 100% 1 2 3 4 215.0% 0.1%
1, 000, 260 1, 027, 831 4, 933, 352 1, 000, 257 71.9% 20.7% 100% 1 2 3 4 182.4% 5.9%
1, 000, 259 1, 012, 662 4, 788, 748 1, 000, 231 89.0% 26.1% 100% 1 2 3 4 164.5% 10.3%
1, 000, 258 1, 006, 049 4, 378, 577 1, 000, 209 96.4% 53.9% 100% 1 2 5 4 144.6% 15.3%
1, 000, 257 1, 003, 169 3, 488, 852 1, 000, 189 98.9% 89.3% 100% 1 2 5 4 128.7% 22.5%
1, 000, 256 1, 001, 372 1, 525, 285 1, 000, 158 99.9% 99.8% 100% 1 2 5 5 124.4% 24.6%

of the risk associated with the MOD line of business11.

Interestingly, we observe that there are efficient reinsurance strategies for different
values of CQS, rather than having almost only CQS equal to 3 as it was for the
efficient frontier obtained in previous chapter. This could also be related to the fact
that, under this neural network approach, we are allowing for different CQS for each
line of business. Indeed, in order to have a manageable number of combinations, in
Chapter 4 we had to consider only the case of same CQS for each reinsurer of the
three LoBs. The possibility of ceding the risks to reinsurers with different CQS for
each LoB allows a better management of each risk by the insurance company and
leads to a higher presence of multiRE in the efficient frontier.

11It shall be specified that even for the strategies not reported in the table there is a strong
prevalence of high retention values for the MOD line of business.
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Appendix C

Neural network models

C.1 Sensitivities

In order to show the strength of the described approach, we show how it can also be
employed in case a smaller number of observations is available. Indeed, if we observe
that NN1 has a high enough performance with respect to our objectives, then NN2
will also typically be able to estimate the efficient frontier. Moreover, while it was
not needed for the specific case, since the task was simple enough and we wanted to
clearly show the formulas for obtaining the parameters of the reinsurance strategy
from the single input, it is possible to add other neurons and layers to both the
neural networks in order to improve their performance.

In the following, we present the results of the neural network approach developed in
Chapter 5 in case we calibrate it with half of the data used in the numerical example,
hence with just 50, 000 observations.

In Figure C.1 we report the combinations of expected Return on Equity and Solvency
Ratio for the reinsurance strategies in the test set according to actual results (in
black) and the predictions from NN1 (in red). We can observe that NN1 adequately
reproduces the actual shape of the combinations of RoE and SR according to the
parametric assumptions of the analysis, despite the strong reduction on the available
data on which to make inferences. Indeed, if we ensure that the sample space of
each input variable is sufficiently represented in the training set, we can reduce the
number of observations without a too strong worsening in the predictive ability of
the model. Clearly, in this case there are even more areas, compared to Section 5.4
where the prediction provided by the model has a low accuracy.

Numerically, we register a total loss of 1.8%, with the one from expected RoE
equal to 1.0% and the one from SR to 1.9%. We can notice that, as expected, we
obtain a higher loss for both the metrics compared to the model based on 100, 000
observations, due to the lower number of data on which to calibrate the model.
However, it shall be remarked that the MAE for both the metrics, as well as the
total one, is still quite low.

In Figure C.2 we report a more detailed comparison of actual and predicted values for
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Figure C.1. Scatterplot of the combinations of expected RoE and SR. In black are reported
actual values from the training set, while in red are reported predicted values.

RoE and SR. We can observe that, differently from the model described in Section
5.4, this one has a worse (relative) predictive capability in estimating the RoE, rather
than the SR. Looking at the red line (representing the 45-degree line), we can notice
that the estimates provided by the model are fairly symmetric. Hence, even with the
limited data available the model does not seem to produce biased estimates. The
only portion of prediction that seems to produce poor fitting concerns the area of
actual SR below 100%, while we observe an improvement the more we move towards
higher thresholds. Finally, also in this case an appropriate adjustment of the weight
associated with the loss of each metric could help improve model performance.

Regarding the steps for producing the efficient frontier, we follow the same approach
developed for the “full” model. In Figure C.3 we then report the combinations of
expected RoE and SR of the dataset and the efficient frontier estimated by means
of the “reduced” model (red dots). We can observe that the efficient frontier lies
above all the combinations of treaties, meaning that the model was able to find an
improvement in the strategies compared to observed data, but also compared to the
whole (not observed dataset).

As expected, if we compare Figure C.3 with Figure 5.7 we can notice that the efficient
frontier produced by this model is at a lower position compared to the one defined by
the full model. The reason could be that, having to rely on half of the data used by
the “full” model, it is less able to generalize the relationship between the variables,
as confirmed by the lower predictive performance. Hence, this model produces an
efficient frontier which is closer to the actual observed one.
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Figure C.2. Actual vs Predicted plot for expected Return on Equity (left) and Solvency
Ratio (right).

Figure C.3. Scatterplot of the combinations of expected RoE and SR. In black are reported
actual values from the training set, while the red line represents the estimated efficient
frontier according to the model.
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Chapter 6

Conclusions

The main activity of an insurance company consists in covering another party from
the financial effects connected to the occurrence of a risk. In pursuing its activity, the
insurer shall always balance the potential profitability deriving from its underwriting
activity with the related risk. Reinsurance treaties are the main instruments used
by insurance companies for reducing their risks and balancing technical performance.
These contracts work as a cession of risks from the insurer to the reinsurer, which
in turn ask for a remuneration that reduce the insurer expected profit. However,
the cession of risks to reinsurance companies is not free, but it generates another
potential risk: the risk of default of the counterparty.

This thesis has three main objectives. The first one consists in presenting an extension
of classical formulas of technical profit of an insurance company which considers the
potential default of the reinsurance counterparty. The second objective of this thesis
is to present a stochastic simulation approach that considers counterparty default
risk, and enough general to potentially include other features, for estimating the
efficient frontier of reinsurance strategies for a non-life insurance company. The last
objective consists in showing how neural network models can be easily employed
for finding the efficient frontier in a multi-objective optimization problem, requiring
a lower amount of data compared to other approaches and still preserving the
possibility of deriving the corresponding strategies generating the Pareto front.

In order to develops these points we propose two approaches. The first one is based
on closed formulas for determining expected value and standard deviation of the risk
reserve, including the effect of reinsurance counterparty default risk. The second one
proposes a more general extension of the risk reserve equation considering different
possible combinations of reinsurance treaties and number/rating characteristics of
reinsurance companies. For both these approaches numerical results, based on Italian
market data, are presented in order to show the potential practical application for a
non-life insurance company. In particular, the results of Chapter 3 and 4 show that
the rating of the reinsurance counterparty could be a relevant driver for the decision
of the reinsurance strategy by an insurance company. The relevance of this driver
increases the more the reinsurance companies offer a different “discount” based on
their rating. From these findings we can conclude that the rating of a counterparty
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and in general counterparty default risk should not be neglected when considering
the selection of optimal reinsurance strategies. Finally, the neural network model,
developed in Chapter 5, shows the possibility of employing these approaches in the
context of optimal selection also in the actuarial sector.

The models presented in this thesis are clearly not the definitive conclusion of the
problems we are interested in answering, but they offer new point of view and
potential improvements. In particular, regarding the closed formula of Chapter 3 a
future challenge is to derive a general formulation which permits to consider multiple
lines of business and multiple reinsurance companies for different reinsurance treaties.
Regarding the stochastic simulation approach of Chapter 4 a future challenge consists
in extending the model, without suffering for the computational burden related to
the increasing number of combinations. Finally, for the neural network approach
developed in Chapter 5 future applications are possible in many different areas of
actuarial science, but another interesting area of research consists in employing
explainable methods for deriving information from the machine learning model.
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