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i
Abstract

The Solvency II regulatory regime requires the calculation of a capital requirement,
the Solvency Capital Requirement (SCR), for the insurance and reinsurance com-
panies, that is based on a market-consistent evaluation of the Basic Own Funds
probability distribution forecast over a one-year time horizon.

This work proposes an extended generalized Markov model for rating-based pricing
of risky securities for spread risk assessment and management within the Solvency IT
framework, under an internal model or partial internal model. This model is based
on Jarrow, Lando and Turnbull (1997), Lando (1998) and Gambaro et al. (2018) and
models the credit rating transitions and the default process using an extension of a
time-homogeneous Markov chain and two subordinator processes. This approach
allows simultaneous modeling of credit spreads for different rating classes and credit
spreads to fluctuate randomly even when the rating does not change.

The estimation methodologies used in this work are consistent with the scope of the
work and the scope of the proposed model, i.e., pricing of defaultable bonds and
calculation of SCR for the spread risk sub-module, and with the market-consistency
principle required by Solvency II. For this purpose, estimation techniques on time
series known as filtering techniques are used, which allow the model parameters to
be jointly estimated under both the real-world probability measure (necessary for
risk assessment) and the risk-neutral probability measure (necessary for pricing).
Specifically, an appropriate set of time series of credit spread term structures, diffe-
rentiated by economic sector and rating class, is used.

The proposed model, in its final version, returns excellent results in terms of goodness
of fit to historical data, and the projected data are consistent with historical data
and the Solvency II framework.

The filtering techniques, in the different configurations used in this work (par-
ticle filtering with Gauss-Legendre quadrature techniques, particle filtering with
Sequential Importance Resampling algorithm, Kalman filter), were found to be an
effective and flexible tool for estimating the models proposed, able to handle the
high computational complexity of the problem addressed.
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Introduction

With the entry into force of the Solvency II regulatory regime on January 15¢ 2016,
FEuropean Insurance and Occupational Pensions Authority’s (EIOPA) main objective
is to adequately protect policy-holders and beneficiaries by providing insurance
and reinsurance undertakings with effective solvency requirements and an economic
risk-based approach that incentivises them to properly measure and manage their
risks. To this end, the new framework Directive [26] provides for the calculation of
a new capital requirement, the Solvency Capital Requirement (SCR), for insurance
and reinsurance companies. This requirement, based on a market-consistent evalua-
tion of the balance sheet, “should reflect a level of eligible own funds that enables
insurance and reinsurance undertakings to absorb significant losses and that gives
reasonable assurance of the company solvency to policy-holders and beneficiaries”. In
fact, the SCR “should be determined as the economic capital to be held by insurance
and reinsurance undertakings in order to ensure that ruin occurs mo more often
than once in every 200 cases” (i.e. with a probability of 0,5%). In practice, “the
SCR shall correspond to the Value-at-Risk of the basic own funds of an insurance or
reinsurance undertaking subject to a confidence level of 99,5% over a one-year period”.

EIOPA allows insurance and reinsurance undertakings to calculate the SCR in
accordance with the Standard Formula or using an internal model.

The Standard Formula adopts a modulalﬂ approach and provides standardised model
and parameters, calibrated on European insurance market data. If the standardised
approach provided by the Standard Formula does not adequately reflect the specific
risk profile of an undertaking, subject to approval by the supervisory authorities, the
undertaking can replace a subset of the standardised parameters with parameters
calibrated on its internal data (Undertaking Specific Parameters), while maintaining
the Standard Formula structure.

The internal model, partial or full, is a more sophisticated model developed by
the undertaking to evaluate as accurately as possible its risk profile and the con-
sequent requirement. This method is also subject to supervisory authorities approval.

Therefore, in an internal model framework, the SCR calculation requires the Basic
Ouwn Fundsﬂ (BOF) probability distribution forecast over a one-year time horizon.
Assets and liabilities, and then BOF, shall be valued in accordance with the principle

!The individual exposure to each risk category should be assessed in a first step and then
aggregated in a second step, a bottom-up approach.
2 According to the Directive [26], BOF are defined as the excess of assets over liabilities.
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of market consistency: the risk—neutra]lﬂ probability measure must be used in this
evaluation. On the other hand, in order to calculate the SCR, the real—worlcﬁ
probability distributions of risk factors are also necessary, in order to simulate the
evolution of their values over the one-year time horizon required by the Directive.
This framework brings out the issue of using estimation techniques based on market
time series, which allow to estimate the parameters under both probability measures
at the same time.

Within the broader context of market risk, defined as “the risk of loss or of adverse
change in the financial situation resulting, directly or indirectly, from fluctuations
in the level and in the volatility of market prices of assets, liabilities and financial
instruments”, and credit risk, defined as “the risk of loss or of adverse change in
the financial situation, resulting from fluctuations in the credit standing of issuers
of securities, counterparties and any debtors to which insurance and reinsurance
undertakings are exposed, in the form of counterparty default risk, or spread risk, or
market risk concentrations”, this work focuses only on spread risk, one of the market
risks considered by the regulations. In particular, spread risk is, as defined by the
Directive: “the sensitivity of the values of assets, liabilities and financial instruments
to changes in the level or in the volatility of credit spreads over the risk-free interest
rate term structure." [26].

More specifically, this work proposes a methodology for the calculation of the SCR
for the spread risk sub-module using a full or partial internal model.

The model proposed to assess the spread risk is a stochastic Markovian model for
the rating-based pricing of risky securities: it is an extension of the models proposed
by Jarrow, Lando e Turnbull (1997) [36] and by Lando (1998) [47], which aims to
represent the credit rating transition and the default process using an extension
of a time-homogeneous Markov chain and one or more subordinator processes, as
suggested in Gambaro et al. (2018) [28]. Through this approach, term structures
of credit spreads for different rating classes can be simultaneously modelled, and
the credit spreads are allowed to fluctuate randomly even when the rating does not
change.

The model price of a risky zero coupon bond (ZCB) with maturity 7" and rating ¢
at time ¢ is then defined as:

] - Tru U ) 7

;

where r(t) is the risk-free spot rate process, 1?{T>T} and 1?{T§T} are respectively
the indicator functions of the default event after and before the maturity 7' for
an i-rated issuer, and J is the exogenous recovery rate. Under model assumptions,
this expectation can be solved in closed form as a function of the eigenvalues and
eigenvectors of the generator matrix.

3The risk-neutral measure is used primarily for market-consistent valuations, e.g. for the pricing
of financial and insurance products.

4The real-world probability measure is used primarily for risk management purposes and SCR
assessment.
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This model can be used to asses several securities in which credit ratings and default
are relevant; specifically, in this work it is used to evaluate risky ZCB for different
rating classes and maturities.

According to this framework, Bayesian filtering techniques, specifically particle
filtering and Kalman filter, are investigated and implemented for the estimation of
the model parameters used in this work. In fact, this estimation technique, widely
used in the financial field and discussed in literature from a theoretical and practical
point of view (refer to McNeil (2015) [53], Lemke (2006) [49], Doucet et al. (2001)
[16] and Durbin and Koopman (2012) [I8]), makes it possible to comply with the
requirements of the regulations by jointly estimating the real-world and risk-neutral
parameters, in that the time series make it possible to estimate the parameters of the
real-world dynamics, while the term structures of the credit spread (which can be
interpreted as prices) allow to estimate the parameters of the risk-neutral dynamics.
The estimation leverages on the state-space representation, which allows to get
around the unobservability of the subordinator processes, and is based on a procedure
involving the maximization of the likelihood function computed on the observed
data set.

The main difficulty in applying filtering techniques is represented by having to solve
multidimensional integrals needed by the algorithm. In this regard, three types of
solutions can be identified:

- closed-form solution (the so-called Kalman Filter);
- solution by using quadrature techniques (e.g. Gauss-Legendre quadrature);
- solution by using Monte Carlo techniques.

The last two cases represent the class of particle filters. All three of these cases are
presented and used in this work.

Markovian models for rating-based term structures are widespread in financial lit-
erature, and this work proposes an application of these models in the insurance
framework defined by Solvency II regulations, offering some solutions to the short-
comings already presented in the literature.

In this work, several configurations of Bayesian filtering techniques are applied for
the first time to the estimation of models for rating-based term structures. This
estimation procedure allows the model to be estimated under both probability
measures relevant for the calculation of the capital requirement in the Solvency
1I framework, real-world and risk—neutra][ﬂ The power of the filtering techniques
also allows the estimation procedure to be applied to time series with high depth
of credit spreads for all ratings (without modifiers) and for all available maturities
jointly. In fact, in the following work, the reference database consists of the time
series from 01/01/2007 to 31/12/2021 of credit spreads for all ratings from AAA to
CCC (according to Standard & Poor’s Global Ratings scale) and for different short-
and medium-term maturities (from 2 to 15 years), containing more than 120000

®The modeling framework is first presented in Lando (1998) [47] for the only purpose of rating-
based pricing of risky securities, then only under the risk-neutral probability measure.
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observationsd]

In order to obtain a model that is sufficiently adaptable and able to accurately
capture different behaviors and temporal trends, even the most extreme ones, of
credit spreads considering such a large number of observations, this paper proposes
an extension of the Markovian models for rating-based term structures presented by
Jarrow, Lando and Turnbull (1997) [36], Lando (1998) [47] and Gambaro et al. (2018)
[28]; in particular, the use of two subordinator processes for modelling the process
of rating transitions, including default, and a rating-specific liquidity component is
proposedﬂ This extension is designed in accordance with the principles of prudence
and parsimony in the size of the parameter space required by the regulations.

In addition, this work provides a theoretical and practical overview of the main
configurations of Bayesian filtering techniques used in financial model estimation,
namely the Kalman filter, particle filtering with Gauss-Legendre quadratures, and
particle filtering with Sequential Importance Resampling algorithm.

This work is structured as follows. Chapter [I] introduces credit risk and the different
types of credit spread and describes the processing of spread risk in the Solvency
II framework. In chapter [2] some models for the spread risk are introduced and,
specifically, the model object of study in this work and the models from which it
derives (Jarrow, Lando and Turnbull (1997) [36], Lando (1998) [47] and Gambaro
et al. (2018) [28]) are further investigated. Chapter [2| also presents the theoretical
aspects of Markov chains in their different settings. Chapter [3| provides a summary
of Bayesian filtering techniques and describes their application to estimation on
market price time series; in particular, Kalman filter and the particle filters class are
explored. In chapter [4] the estimation problem is formalized and the methodological
aspects are detailed. Finally, the results returned by the estimation procedure, both
in terms of goodness of fit and in terms of application in Solvency II framework, are
presented in chapter

SGambaro et al. (2018) [28] estimate the rating transition intensity process by applying the
maximum likelihood method proposed in Pearson and Sun (1994) [58]. The reference data for
estimation procedure are time series of default probabilities obtained via bootstrap from the iTraxx
Europe CDS Index spread for a reference rating, from 20/09/2016 to 13/01/2017.

"Gambaro et al. (2018) [28] proposes a model with a single subordinator process with intensity
modeled with a CIR++ model under the risk-neutral probability measure and with a CIR model
under the real-world probability measure and sector-specific liquidity component.



Chapter 1

Credit risk and credit spreads

This chapter discusses the theoretical aspects of credit risk and credit spreads.

In section [L.1] the different definitions of credit risk found in the literature are
presented and contextualized within the Solvency II framework. In addition, the
main variables relevant in dealing with credit risk are listed and described, with
particular regard to the credit rating, which is of primary importance in this work.
Finally, corporate bonds are described, which are among the defaultable claims.

In section the main results of the Standard and Poor’s Default, Transition, and
Recovery: 2021 Annual Global Corporate Default And Rating Transition Study are
presented.

Section focuses on credit spread, in that its different definitions and the several
components into which it can be decomposed are analysed. Finally, the various
types of data available for measuring spread risk are presented and, specifically, the
iBoxx indices proposed and calculated by the provider IHS Markit are examined in
depth.

Section [I.4] presents the main aspects of current regulatory framework Solvency I,
with a focus on the capital requirement for the spread risk sub-module.

1.1 Credit risk

Credit risk and, in particular, its assessment and management have become increa-
singly important in recent years. This issue is perfectly in line with the general trend
of paying greater attention to risk in all areas, as shown by the recent European
regulations in the banking and insurance sectors, Basel III and Solvency II, in which
risk plays a central role in the management and supervision of banking and insurance
institutions. The causes of the considerable relevance accorded to credit risk in
recent times can be identified above all in:

- the extreme topicality of credit events, such as defaults or downgrades, which
have played major roles in the most important recent economic crises, including
the global economic crisis of 2008, erupted as a result of the subprime mortgage
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crisis, and the sovereign debt crisis, which led to the downgmdinglﬂ of many
countries, including Italy, Greece and Portugal;

- the occurred obsolescence of many models for the assessment and management
of credit risk developed over the years, due to the continuous evolution and
refinement of financial markets and traded securities, especially credit derivative
securities.

The definition of credit risk is constantly evolving and updating. Amman (2001) [3]
defines credit risk, in its traditional meaning, as the default risk, i.e., the risk that
the counterparty of a financial contract fails to meet all or part of its contractual
obligations and is therefore insolvent, thereby causing a loss to the creditor.

Over time, credit risk has taken on a more general meaning, less focused on the
default event, leading up to Crouhy et al. (2006) [13], that define credit risk as the
risk of a loss due to changes in the factors that drive the credit quality of an asset (e.g.
rating migrations, including default, and recovery rate dynamics), and to Solvency
I [26], “the risk of loss or of adverse change in the financial situation, resulting
from fluctuations in the credit standing of issuers of securities, counterparties and
any debtors to which insurance and reinsurance undertakings are exposed, in the
form of counterparty default risk, or spread risk, or market risk concentrations”. In
these definitions, the default event is only the extreme case, since the risk that the
counterparties may be downgraded by rating agencies, without necessarily leading
to default, is also covered.

Two main credit risk paradigms defined by the Basel Committee in 1999 can there-
fore be distinguished: the default-mode paradigm, in which the relevant event is
exclusively the default of the counterparty, and the mark-to-market paradigm, in
which the change in value of the credit position as a result of a deterioration in
creditworthiness is considered. Depending on the paradigm adopted, two approaches
to assessing credit risk can be distinguished: a default-mode approach, which en-
visages only two states for a credit position, default or non-default, and is based
solely on the probability of default, and a multi-state approach, in which the risk of
migration between rating classes is considered through the use of transition probabil-
ity matrices, and default represents only one of the possible states for a credit position.

Arvanitis et al. (2001) [4] provide a more detailed decomposition of credit risk into
the following sub-risks:

e Default risk, which can in turn be broken down into:

- Counterparty risk, relevant for derivative securities and loans, that are
illiquid positions, for which the risk is evaluated over a long time horizon;
- Issuer risk, relevant for bonds, that are more liquid positions, for which
the risk is evaluated over a short time horizon, as traditional market risks.

e Credit spread risk, which can in turn be broken down into:

'Downgrading of an issuer, company or government, due to the deterioration of its creditworthi-
ness.
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- Downgrading risk, the risk of a change in the credit spread due to a
change in the rating of a counterparty;

- Spread risk, the risk of a change in the credit spread required by the
market, given the same rating;

e Recovery risk, the risk that the recovery rate for the various counterparties
that have defaulted will be lower than estimated;

o Ezposure risk, the risk that the exposure to a counterparty at the time of
default is higher than estimated.

The different components of credit risk generate different types of losses: for example,
the default event generates an immediate loss in any approach, while the downgra-
ding event generates an immediate loss only in the multi-state approach where the
impairment due to the deterioration of creditworthiness is taken into account.

In this work the definition of credit risk that falls under the mark-to-market paradigm
is adopted, in which in addition to the extreme case of insolvency, the changes in
value due to changes in creditworthiness, the so-called credit rating transitions, are
also taken into account. Therefore, the multi-state approach is followed, in line with
the provisions of the Solvency II Directive, which explicitly considers insolvency risk
and credit spread risk (downgrading and spread fluctuations) for the calculation of
the SCR, although distributed over different risk modules.

1.1.1 Main driving factors and variables of credit risk

In order to assess and manage credit risk, in the meaning of the risk that an
unexpected change in the creditworthiness of a counterparty generates an unexpected
loss, it is necessary to calculate the distribution of the so-called unexpected loss.
What follows is a brief analysis of the factors driving the credit risk, as defined in
[4], and the variables that come into play in this assessment, as defined in Bluhum
et al. (2003) [8], with reference to the individual credit position.

The credit risk is driven by:

- exposure: it is necessary to calculate the distribution of the future exposures,
i.e., their present value discounted at the risk-free rate, at all possible default
times;

- default probabilities, i.e., the likelihood that a counterparty will be bankrupt
or will not honour its obligations at their due times over a given period. There
are essentially two approaches to assign a default probability (DP) to every
credit counterparty:

a) calibration based on market data, such as market prices, as in the case of
the expected default frequencies of the KMV-model, and credit spreads of
financial products subject to credit risk, such as credit bonds and credit
derivatives (e.g. Credit Default Swaps (CDS));

b) rating-based calibration, in which default probabilities are associated with
ratings, that are assigned to customers by external rating agencies like
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Standard € Poor’s Global Ratings (S&P), Moody’s Investors Services and
Fitch Ratings, or by internal rating systems. Credit ratings are discussed
in more detail in section [1.1.2

- credit migration probabilities: the deterioration of a counterparty’s creditwor-
thiness and the resulting rating downgrade lead to a loss; in the context of a
marked-to-market valuation, future cash flows are discounted at a higher risky
rate, or future expected losses are increased; conversely, creditworthiness may
also improve with opposite consequences;

- recovery rates, which specify the payment to the contract holder in case of
default.

The loss of any obligor is defined by a loss variable, L, which can be decomposed as

follows: )
L=FAD x LGD x L, (1.1)

where:

- EAD denotes the exposure at default subject to be lost in the reference time
horizon;

- LGD denotes the loss given default, i.e., the expected fraction of loss in case of
default. The LGD can be defined through the recovery rate, or rather through
its ones’ complement, and can be interpreted as the expected value of the
severity of the loss;

- L denotes the indicator function of the default event D:

1 default,
L=1p =
0 non-default.

Considering a generic probability space (€2, F,P), where Q is a sample space, F
is a o-Algebra with measurable elements, that can be interpreted as the available
informatiorﬂ and P is a probability measure, and assuming one of the following
conditions:

- EAD and LGD are constant values;

- FAD and LGD are the expectations of the respective random variables and
they are independent of each other and of the default event,

the expected loss (EL) of any position is defined as the expectation of its corresponding
loss variable L:

EL =E[L] = EAD x LGD x E[L]. (1.2)

Since L is a Bernoulli random variable and its expectation coincides with the
probability of the underlying event (the default event), we obtain:

EL = EAD x LGD x DP. (1.3)

2The event of default is measurable and it is included in F.
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Another relevant component, also from a regulatory perspective, in the assessment
and management of credit risk is the unexpected loss. In fact, both banking and
insurance regulations require the coverage of unexpected losses, in addition to
expected losses. Bluhum et al. (2003) [§] propose as a measure of the deviation
of losses from their expectation (expected loss), and therefore as a measure of the
unexpected loss, the standard deviation of the loss variable L:

UL =\/Var(L] = \/Var[EAD x SEV x L], (1.4)

where SE'V denotes the severity random variable, whose expectation is the LGD.
Under the assumption that the severity and the default event are independent, the
unexpected loss can be written as:

UL = EAD x \/Var[SEV] x DP + LGD x DP(1 - DP)|. (1.5)

For the proof of (1.5 refer to [§].

1.1.2 Credit rating

As defined by the rating agency Standard € Poor’s Global Ratings, credit ratings
are “forward-looking opinions about the ability and willingness of debt issuers, like
corporations or governments, to meet their financial obligations on time and in
full, and also the credit quality of an individual debt issue, such as a corporate or
government bond, and the relative likelihood that the issue may default”.

Credit ratings provide transparent information and insight to the market participants
(e.g. investors, portfolio managers, analysts, insurance companies, etc.) through a
global language, but they do not indicate investment merit.

Rating agencies usually use a combination of analysts opinions and mathematical
models: the latter provide a first assessment of the rating, which is then re-evaluated
by rating analysts. In the rating evaluation process, many financial and non-financial
factors have to be considered:

- key performance indicators, like future earnings and cashflows,
- debt, short and long-term liabilities, and financial obligations,
- capital structure,

- assets liquidity,

- political and social situation of the country/home country,

- situation of the reference market,

- management quality, company structure, etc.

Fach rating agency applies its own methodology and uses a specific rating scale,
typically expressed as alphanumeric grades, however comparable with those of other
rating agencies. Table shows the correspondence between the rating scales of
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the three main credit rating agencies, Standard & Poor’s Global Ratings, Moody’s
Investors Services and Fitch Ratings; Table [[.2] and Table [I.3] show in detail the
rating scales of Standard & Poor’s Global Ratings and Moody’s Investors Services.
The two rating scales are almost symmetrical: the first one counts 9 main rating
classes, from AAA to D, and 22 rating classes with modifiers, while the second one
counts 8 main rating classes, from Aaa to C, and 21 rating classes with modifiers.
The modifiers are expressed with +/- in the Standard € Poor’s Global Ratings
scale and with {1,2,3} in the Moody’s Investor Service scale, and indicate that the
obligor/obligation is, respectively, in the higher end, in the mid-range or in the lower
end of that generic rating category.

Rating agencies also have the option of withdrawing an entity’s rating for several
reasons, including the termination of the rated program(s) and extinguishment of the
related debt, the bankruptcy/liquidation of a rated entity, the provision of incorrect,
insufficient or otherwise inadequate information, corporate reorganizations or the
request of the rated entity itself.

Both rating scales can be relocated within the macro-classification between Invest-
ment Grade and Speculative Grade (or High Yield). The first macro-class consists
of rating classes that are considered to be more solid, less risky and therefore less
speculative: from AAA to BBB- for Standard & Poor’s Global Ratings and from Aaa
to Baa3 for Moody’s Investor Service; the second macro-class consists of rating classes
with significant speculative characteristics, and thus exposed to large uncertainties
and adverse conditions.

This differentiation is crucial, since it distinguishes issuers with a good ability to
repay capitals and interests at maturity from issuers who have the ability to repay
debt but may face many difficulties with adverse economic and financial conditions.
Being in the first class provides several benefits, including lower interest rates to
be paid to investors, access to a larger number of investors and with it a greater
and more stable demand for bonds. As a matter of fact, various regulations, like
banking and insurance ones, generally place limits on investments in Speculative
Grade securities.

In the theoretical approach credit ratings do not necessarily have to be attributed by
a commercial rating agency. In fact, many financial institutions have their own credit
rating systems, known as internal ratings, that can be more adequate for assessing
the debt’s credit quality and consider changes, improvement or deterioration, in the
firm’s credit quality more quickly.
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Standard & Poor’s | Moody’s Fitch
AAA Aaa AAA
AA+ Aal AA+
AA Aa2 AA
AA- Aa3 AA
A+ Al A+
A A2 A
A- A3 A-
BBB+ Baal BBB+
BBB Baa2 BBB
BBB- Baa3 BBB-
BB+ Bal BB+
BB Ba2 BB
BB- Ba3 BB-
B+ B1 B+
B B2 B
B- B3 B-
CCC+ Caal
CCC Caa2
CCC- Caa3 CCC
cC Ca
C

C DDD
b DD

D

Table 1.1. Correspondence between Standard & Poor’s Global Ratings, Moody’s Investor
Service and Fitch Ratings rating scales with modifiers.
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‘ Category ‘ Definition
AAA Extremely strong capacity to meet its financial commitments. ‘AAA’
© is the highest issuer credit rating assigned by S&P Global Ratings.
g
£ | AA+
Ef AA Very strong capacity to meet its financial commitments.
2 | AA-
i
2:;3 A Strong capacity to meet its financial commitments, but somewhat
RS A susceptible to economic conditions and changes in circumstances.
BBB+ Adequate capacity to meet its financial commitments, but more
BBB susceptible to adverse economic conditions or changing
BBB- circumstances.
BB+ Less vulnerable in the near term but faces major ongoing
BB uncertainties and exposure to adverse business, financial, or
BB- economic conditions.

B+

More vulnerable to adverse business, financial and economic
conditions but currently has the capacity to meet its financial
commitments.

Speculative Grade
S

CCC+

Currently vulnerable and dependent on favorable business, financial,

ggg_ and economic conditions to meet its financial commitments.

cC Highly vulnerable. Default has not yet occurred but is expected to
be a virtual certainty, regardless of the anticipated time to default.

C Currently highly vulnerable to non-payment, and ultimate recovery
is expected to be lower than that of higher rated obligations.

D Payment default on a financial commitment or breach of an imputed
promise; also used when a bankruptcy petition has been filed.

Table 1.2. Standard € Poor’s Global Ratings long-term rating scale definitions with

modifiers.
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‘ Category ‘ Definition
‘ Aaa ‘ Highest quality, with minimal risk.
2 Aal
| Aa2 High quality and subject to very low credit risk.
E—E Aa3
=
g Al
2 | A2 High quality and subject to low credit risk.
S| A3
RS
Baal . . o
Ban2 Medium grade and subject to moderate credit risk.. May possess
speculative characteristics.
Baa3
Bal
Ba2 Have speculative elements and subject to substantial credit risk.
L | Ba3
&
& | Bl
¢ | B2 Speculative and subject to high credit risk.
= | B3
§ Caal
& | Caa2 Of poor standing and subject to very high credit risk.
Caa3
Ca Highly speculative and likely in, or very near, default, with some
prospect of recovery in principal and interest.
C Lowest-rated class, typically in default, with little prospect for recov-
ery of principal and interest.

Table 1.3. Moody’s Investors Services long-term rating scale definitions with modifiers.
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1.1.3 Corporate bonds

Corporate bonds are debt instruments issued by corporations. The bonds issue
involves a commitment by the company to pay specified amounts to the bondholders
at specified future dates. However, while a default-free bond (or risk-free bond) pays
both coupons and face value to the bondholders with certainty on predetermined
dates, the firm issuing corporate bonds can go into default before the bond’s maturity
and fail to meet its commitments to bondholders, that then will not receive the full
promised payments. This is why corporate bonds are also called risky bonds and
are included in defaultable claims.

Starting from the corporate bond definition is possible to define the defaultable
term structure as the term structure of interest rates implied by the yields on the
defaultable corporate bonds or on the defaultable sovereign bonds.

Corporate bonds are characterized by:

recovery rules;

safety covenants;

credit ratings;

default correlations.

Recovery rules generally include clauses on the priority of payment in case of default
(sendority rules) and on the recovery payment, i.e., the timing and the amount
of payment in case of default before the bond’s maturity (recovery scheme). The
recovery payment generally is defined by a recovery rate ¢, i.e., the fraction of the
bond’s face amount paid to the bondholders in case of default.

A defaultable bond with unit face value and maturity 7 is considered.

If a fixed fraction of the bond’s face value is paid to the bondholders at the time of
default 7, the recovery scheme is referred to as the fractional recovery of par value.
The discounted payoff at the time ¢ of the bond is:

T T
e Ty s i@y (1.6)

T
where e~ J: "% ig the stochastic discount factor at time ¢ for the maturity T,

and 1y is the indicator function of the generic event E. Then the price of the
defaultable bond is

T T
V(,T) =B | o r@duq s il 6], )

where G; contains the information about the market variables up to ¢t and about
whether and when default has occurred up to time ¢ and E? denotes the risk-neutral
expectation in the enlarged probability space supporting 7.
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If a fixed fraction of the bond’s face value is paid to the bondholders at maturity
date T, the recovery scheme is referred to as the fractional recovery of Treasury
value. Under this rule, the discounted payoff of the bond is

T T
eift r(u) du 1{T>T} +4 eift r(u) du 1{T§T}

T T (1.8)
= o7 (1 - 1{7§T}) Foe b M gy
and the price of the defaultable bond is
T T
W(t,T) = BC {e_ft B (1 Apeny) 8 el WM G| ()

If a fraction of the pre-default market value is paid to the bondholders at time of
default 7, the recovery scheme is referred to as the fractional recovery of market
value. Under this rule, the discounted payoff of the bond is

T T
e_ft r(u) du 1{T>T} 46 UJ(T—,T) e_ft r(u) du 1{T§T}7 (110)

where v%(7—,T) is the price of the defaultable bond just before the default time 7.
Then the price of the defaultable bond is

T T
O, T) = EQ | rwdu 1ory + 000 (7=, T) e~ J, rwdu 1<rylGe| . (1.11)

It is necessary to stress that the recovery process and/or the recovery value may be
specified either exogenously or endogenously based on the current market value of
the bond.

Corporate bond is only one of the securities linked to credit risk. For more on
defaultable claims and credit derivatives, refer to Bielecki and Rutkowski (2004) [6]
and Brigo and Mercurio (2001) [9].
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1.2 Overview on 2021 global corporate default and ra-
ting transition

Each year Standard and Poor’s publishes an annual global corporate default and
rating transition study, which presents a summary of the overall situation, time
trends, and updated rating transition matrices at different levels of granularity (with
modifiers, without modifiers, by region, etc.).

This section presents the main results of the Standard and Poor’s Default, Transition,
and Recovery: 2021 Annual Global Corporate Default And Rating Transition Study
[63).

The year 2021 was marked by a better-than-expected economic recovery, following
a 2020 that was severely affected by the COVID-19 pandemic effects. As in most
recovery periods, defaults decreased and for global speculative-grade firms default
rates fell below 2% (1.7%) for the eighth time in 41 years (Figure [Ll.1]and Table [L.4).
Downgrades also decreased, outstripped by upgrades of 1.85x.

Although 2020 had seen an improvement in credit quality, the distribution of ratings
among companies rated by Standard and Poor’s remains weak, with 14.5% of
companies being rated B- or lower.

Global Default Rates: Investment-Grade Versus Speculative-Grade

12

QOverall

= nvestment-grade
10
Speculative-
grade

%
L)

A S N D B A
‘bo_@ 8 £ (N )

Sources: S&P Global Ratings Research and S&P Global Market Intelligence's CreditPro®.

Figure 1.1. Global Default Rates: Investment-Grade Versus Speculative-Grade - Source:
Standard and Poor’s.
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Consistently with the past six years, the two sectors with the highest number of
defaults are consumer services and energy and natural resources, with 29 defaults
(40% of the total). Defaults decreased for nearly all sectors except financial institu-
tions, for which they remained constant. Despite the reduction in the number of
defaults, the transportation and real estate sectors continued to have annual default
rates above their long-term average (Figure .

Global Corporate Default Rates By Industry: 2021 Versus Long=Term Average

E&NR =1981-2021 weighted
average
Leisure w2021 default rate
Telecom

Consumer services
Forest
Transportation
AACGM
Health care/chemicals
High tech
Real estate
Financial institutions
Utilities
Insurance
0.0 0.5 1.0 1.5 2.0 25 3.0 3.5 4.0
n/l'l
High tech--High technology/computers/office equipment. AACGM--Aerospace/automotive/capital
goods/metals. Forest--Forest and building products/homebuilders. E&NR--Energy and natural resources.
Sources: S&P Global Ratings Research and S&P Global Market Intelligence’s CreditPro®.

Figure 1.2. Global Corporate Default Rates By Industry: 2021 Versus Long-Term Average
- Source: Standard and Poor’s.

As shown in Figure most defaults were concentrated at the lowest ratings: all of
the defaulters were rated B or lower, with 83% rated CCC/C. This is a characteristic
of the economic recovery years. However, even CCC/C rating presents a default
rate for 2021 significantly lower than the long-term (1981-2020) weighted average,
i.e., 11% vs. 28.3%.

For the second year in a row, there have been no defaults by investment-grade firms:
the default rate for the AAA rating was 0, consistently with its historical trend

(Table [L.6).

AAA AA A BBB BB B CcCc/C
Minimum 0.00 0.00 0.00 0.00 0.00 0.25 0.00
Maximum 0.00 0.38 0.39 1.02 4.24 13.84 49.46
Weighted long-term average 0.00 0.02 0.05 0.15 0.60 3.18 26.55
Median 0.00 0.00 0.00 0.06 0.58 3.40 25.00
Standard deviation 0.00 0.06 0.10 0.25 0.99 3.25 11.86
2008 default rates 0.00 0.38 0.39 049 0.81 4.11 27.27

Table 1.5. Global Corporate Annual Default Rates (%) By Rating Category (2012-2021).
For the complete table (1981-2021), refer to [63] - Source: Standard and Poor’s.
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Year AAA AA A BBB BB B CcCcC/C

2012 0.00 0.00 0.00 0.00 0.30 1.58 27.52
2013 0.00 0.00 0.00 0.00 0.10 1.52 24.67
2014 0.00 0.00 0.00 0.00 0.00 0.79 17.51

2015 0.00 0.00 0.00 0.00 0.18 2.42 26.67
2016 0.00 0.00 0.00 0.06 047 3.76 33.17
2017 0.00 0.00 0.00 0.00 0.08 1.00 26.67

2018 0.00 0.00 0.00 0.00 0.00 0.94 27.18
2019 0.00 0.00 0.00 0.11 0.00 1.49 29.76
2020 0.00 0.00 0.00 0.00 094 3.53 47.68
2021 0.00 0.00 0.00 0.00 0.00 0.52 10.99

Table 1.6. Global Corporate Annual Default Rates (%) By Rating Category (2012-2021).
For the complete table (1981-2021), refer to [63] - Source: Standard and Poor’s.

Global Corporate Default Rates
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* m2021

25 +1981-2020 weighted average
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BB+ BB BB- B+ B B- CCC/C

Sources: S&P Global Market Intelligence’s CreditPro® and S&P Global Ratings Research.

Figure 1.3. Global Corporate Default Rates (%) - Source: Standard and Poor’s.

Credit ratings also serve as an effective measure of risk over time. In this context,
all of Standard € Poor’s Global Ratings Research’s default studies have shown a
strong correlation between ratings and defaults: in fact, the better the rating, the
lower the frequency of default, and vice versa (Figure . In addition, studies on
rating transitions have shown that better ratings tend to be more stable and that
speculative-grade ratings are generally more volatile over a defined time span.
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Global Corporate Average Cumulative Default Rates By Rating (1981-2021)
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Sources: S&P Global Ratings Research and S&P Global Market Intelligence’s CreditPro®.

Figure 1.4. Global Corporate Average Cumulative Default Rates (%) By Rating (1981-2021)
- Source: Standard and Poor’s.

In 2021, credit quality has markedly improved. In fact, upgrade and downgrade
rates appreciably improved (higher upgrade rates and lower downgrade rates): the
downgrade rate fell to its lowest on record, at 5.5%, and the upgrade rate reached
its highest since 2013, at 10.2% (Figure [1.5)). This produced the lowest downgrade-
to-upgrade ratio ever recorded.

Consistent with the decrease of downgrades, the number of largeﬂ rating changes
was limited to one in 2021.

Annual Rating Actions
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Excludes downgrades to 'D'. Sources: S&P Global Ratings Research and S&P Global Market Intelligence's
CreditPro®.

Figure 1.5. Annual Rating Actions - Source: Standard and Poor’s.

3Seven notches or more, including movements to default class.
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The 2021 one-year Gini rati(ﬁ was well above the long-term (1981-2020) one-year
weighted average, i.e., 87.7% vs. 82.6%, and the median annual Gini ratio over the
1981-2020 period (85.5%) (Figure [L.6] and Table [1.7).

Gini Coefficients By Pool Year Across Multiple Time Horizons
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Sources: S&P Global Ratings Research and S&P Global Market Intelligence's CreditPro®.

Figure 1.6. Gini Coefficients By Pool Year Across Multiple Time Horizons - Source:
Standard and Poor’s.

Time horizon
One-year Three-year Five-year Seven-year

Weighted average (%) 82.58 75.35 71.59 69.07
Average (%) 85.47 78.62 74.42 71.25
Standard deviation (%) 5.43 5.14 5.34 5.20

Table 1.7. Global Average Gini Coefficients - Sector: Global - Source: Standard and Poor’s.

4The Gini ratio is a measure of the rank-oredring power of ratings over a given time horizon.
It shows the ratio of actual rank-ordering performance to theoretically perfect rank ordering. For
details on the Gini methodology, refer to [63] - Appendix II.
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1. Credit risk and credit spreads

Defaults have decreased since 2020 in both number (60 vs. 198) and total amount
of debt exposed to debt ($66.3 billion vs. $353.4 billion) and have been recorded
mostly in the U.S., which is the nation with the largest number of rated corporate

issuers (46%) (Figures [1.7] and [L.8)).

Annual Corporate Defaults By Number Of Issuers

Number of issuers
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Count excludes defaults from companies that were not rated prior to Jan. 1 of each year. Other

developed--Australia, Brunei Darussalam, Canada, Israel, Japan, Republic of Korea, New Zealand, and
Singapore. Sources: S&P Global Ratings Research and S&P Global Market Intelligence's CreditPro®.

Figure 1.7. Annual Corporate Defaults By Number Of Issuers - Source: Standard and
Poor’s.

Annual Global Corporate Defaulters' Debt Amounts Outstanding
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Figure 1.8. Annual Global Corporate Defaulters’ Debt Amounts Outstanding - Source:

Standard and Poor’s.
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The analysis of 2021 rating transitions shows that the behavior of ratings is consistent
with long-term trends: higher ratings are found to be less subject to default and
more stable in terms of the frequency of rating transitions. Tables and
show, respectively, the 2021 one-year rating transition matrix and the long-term
(1981-2021) average one-year rating transition matrix for the global corporates.

From/To AAA AA A BBB BB B cCccC/C D NR

AAA 100.00  0.00 0.00 0.00 0.00 0.00 0.00 0.00  0.00
AA 0.00 91.72 517 0.00 0.00 0.00 0.00 0.00 3.10
A 0.00 0.50 9274 3.99 0.00 0.00 0.00 0.00 2.78
BBB 0.00 0.00 202 9178 1.74 0.05 0.00 0.00 4.41
BB 0.00 0.00 0.00 3.89 8530 3.21 0.17  0.00 7.43
B 0.00 0.00 0.00 010 454 77.20 1.96 0.52 15.68

ccc/c 0.00 0.00 0.00 0.00 0.00 21.76 50.99 10.99 16.26

Table 1.8. 2021 Global One-Year Corporate Transition Rates (%) - Source: Standard and
Poor’s.

From/To AAA AA A BBB BB B CcCcC/C D NR

AAA 87.09 9.05 0.53 0.06 0.11 0.03 0.06 0.00 3.10
AA 0.48 8732 7.72 0.46 0.05 0.06 0.02 0.02 3.88
A 0.02 156 8873 497 0.25 0.11 0.01 0.06 4.29
BBB 0.00 0.08 3.19 86.72 348 042 0.09 0.15 5.86
BB 0.01 0.02 0.10 452 7812 6.66 0.53 0.60 9.43
B 0.00 0.02 0.06 0.15 4.54 74.73 4.81 3.18 1251

ccc/c 0.00 0.00 0.09 0.16 0.49 13.42 4391 26.55 15.39

Table 1.9. Global Corporate Average One-Year Transition Rates (1981-2021) (%) - Source:
Standard and Poor’s.
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1.3 Credit spread: definitions and data

It is essential for the credit risk market to define a measure of the risk premium
required by investors to remunerate the assumption of credit risk embedded in a
security. Such a measure would make it possible to compare securities that differ
by issuer, maturity, coupon or seniority. In practice, there are a number of such
measures, which are generally referred to as “credit spreads”, since they attempt to
measure the difference in creditworthiness by comparing the yield of the credit risk
security with that of some benchmark with higher creditworthiness, usually either
a government bond assumed to be risk-free or the LIBOR swap rate at the same
maturity.

However, as argued in Amato and Remolona (2003) [2], credit spread should not
be considered just an extra return to compensate for the counterparty default risk;
rather, it can be determined and defined by more than one component:

- Ezxpected loss. Since corporate bonds are issued by companies subject to
default risk, some issuers will necessarily go into default; this drives investors
to demand a higher yield to compensate for this eventuality. This component,
though the most straightforward, is incorrectly considered the main one, as it
may account for just a small percentage of the whole spread.

- Tazation. With reference to the U.S. market, corporate bonds are taxed at
the individual state level, while government bonds are tax-exempt; this leads
investors, who reason and operate in terms of net returns, to demand higher
returns for corporate bonds to compensate for the effect of taxation. This can
represent a significant component of the spread (for Elton et al. (2001) [20]
between 28% and 73%, for Driessen (2004) [19] between 34% and 57%).

- Risk premium. This component includes premiums for systematic risk, specific
risk, and other risks other than default, which are difficult to diversify, driving
investors to demand an additional risk premium over that for expected losses
and taxation. Driessen (2004) estimates that the weight of this component
can vary between 18% and 53% of the spread.

- Liquidity risk. Since the corporate bond market is not always particularly liquid
in comparison with the stock or government bond market, it is characterized
by higher transaction costs that lead investors to demand additional yield.
Driessen (2004) estimates this component to be about 20% of the spread.

Credit spread measures can be classified as follows:

- credit spread measures for fixed rate bonds, including the yield spread, the
interpolated spread, the option-adjusted spread (OAS), the asset swap spread
(ASW) and the Credit Default Swap spread;

- credit spread measures for Floating Rate Notes (FRNs), including quoted
margin, discount margin, and zero discount margin.

The former will be discussed in detail below; for a detailed description of the latter,
refer to O’Kane and Sen (2004) [57].
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1.3.1 Credit spread measures for fixed rate bonds

This section will define the main credit spread measures for fixed rate bonds,
summarized in Figure |1.9

The yield spread

The yield spread is defined as the difference between the yield-to-maturity of a credit
risky bond and the yield—to—maturityﬂ of a benchmark treasury bond with similar,
but not necessarily coincident, maturity:

Yield spread = yp — yB , (1.12)

where yp is the yield of the defaultable bond and yg is the yield of the benchmark
bond.

It is the most straightforward and easiest spread measure to use; however, its
simplicity has some drawbacks in its use. In fact, being based on yield-to-maturity,
it shares its weaknesses in terms of constant reinvestment rate and hold to maturity.
In addition, the benchmark can change over time as the bond rolls down the curve,
making the yield spread a not consistent measure over time.

For these reasons, the yield spread should be used only as a way to express the price
of a bond relative to the benchmark, rather than as a measure of credit risk.

The interpolated Spread

The interpolated Spread (I-spread) is defined as the difference between the yield-to-
maturity of the bond and the linearly interpolated yield to the same maturity on an
appropriate reference curve:

ISpread =yp — [ycn + (yGQ_yGl> (Tp — Ta1)| (1.13)

T2 — T

where T;1 and Tgo are the maturities of the two benchmark bonds, which straddle
the maturity of the defaultable bond, and yg1 and ygo are the respective yields-to-
maturity.

The interpolated spread allows to overcome the problem of maturity mismatch by
using a yield at the correct maturity, although interpolated. Anyway, this measure
inherits all the drawbacks of the yield-to-maturity, and so it should be used only as
a way to express the price of a bond relative to the reference curve.

The option-adjusted spread

The option adjusted spread (OAS) is defined as the parallel shift to the LIBOR zero
rate curve that allows to replicate, with the adjusted curve, the price of the bond.
The OAS can be referred to as the zero-volatility Spread (ZVS), if the semi-annual

’The yield-to-maturity is the constant discounting rate which, when applied to the bond’s
cash-flows, allows to replicate the price of the bond.
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compounding is assumed.

Assuming a discrete compounding for the OAS with the frequency of the bond f,
the OAS, denoted by (2, satisfies the following equation:

Cy 1 100
PP=%2 5+ —, (1.14)
f j=1 (1 + (TWT)W)JC () (1 " (rT(%—i-Q)f T(n)

where PP is the price of the defaultable bond (including accrued interests), C' is the
annual coupon of the bond and rp;) is the LIBOR zero rate at the j-th maturity.

In case of continuous compounding for the OAS, the above equation becomes

PP = ? > Zpye T 4100 Zp(yy e T (1.15)
j=1
where Zr ;) is the LIBOR discount factor at the j-th maturity.

The option-adjusted spread takes into account the shape of the term structure of
interest rates in a robust manner, so it can be used to measure the credit risk
embedded in a bond, although it remains essentially a relative value measure.

The asset swap spread

The asset swap spread is defined as the spread over LIBOR paid on the floating leg
in a par asset swap package.

The par asset swap package is an instrument for hedging against interest rate risk,
in which a fixed-rate component (fixed leg) and a floating-rate component (floating
leg) are combined:

- the investor pays the par and receives the bond worth the full price;

- at the same time, the investor enters into an interest rate swap, paying the
fixed leg identical in size and timing to the coupon schedule of the bond and
receiving a fixed spread over LIBOR, the asset swap spread, with its own
frequency, basis and settlement conventions.

The par asset swap spread is given by the formula:
PLIBOR _ PD

A= (1.16)

where PIIBOE is the value of the bond’s cash-flows discounted at LIBOR, PP is
the market price of the bond, and PV 01 is the LIBOR discounted present value
of a 1 basis point coupon stream, paid according to the frequency, basis and stub
conventions of the floating leg of the interest rate swap.
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The asset swap spread represents an actually traded spread, and thus can be
considered a measure of creditworthiness. In fact, if the bond characteristics are
kept constant, changes in price can only result from a change in the perceived
creditworthiness of the issuer: the bond price increases, and thus the asset swap
spread decreases, only if the implied credit risk decreases and vice versa.

The Credit Default Swap spread

The Credit Default Swap (CDS) spread is defined as the contractual spread which
determines the cash-flows paid on the premium leg of a credit default swap, i.e., the
contractual premium paid by the protection buyer in a CDS contract.

The CDS spread measures an investor’s compensation for assuming the risk of issuer
default, that is, the risk of losing the face value of the bond minus the expected
recovery rate. So it can be considered the best measure for credit risk. In fact, CDS
are contracts affected almost exclusively by credit risk; a term structure of CDS
spreads can be observed; and finally, the CDS market is sufficiently liquid, hence
the CDS spread can accurately reflect the market price of credit risk.

Spread Measure Summary Comments

Yield Spread or Yield-

Difference between YTM of the bond and YTM of the

Assumes reinvestment at same rate as the yield, and

Yield Spread benchmark treasury hond. assumes the bond is held to maturity. Can be biased as
maturities may not be the same and the benchmark hond
changes over time.

|-Spread Difference between ¥ TM of the bond and Reference curve rates are linearly interpolated. Gets

corresponding rate for the same maturity on a
benchmark curve (swaps or treasuries).

around the maturity mismatch problem of yield spread, but
suffers drawbacks from being based on the yield to
maturity measure.

OAS or Z-Spread

Parallel shift to treasury or LIBOR zero rates required
to reprice the bond.

Relative value measure for the bond against a reference
curve. A rough measure of credit quality. Expecta

difference in the computed OAS based on compounding
frequency: Bloomberg uses discrete compounding, while
Lehman uses continuous.

Asset Swap Spread or
Gross Spread

Investor pays par and receives LIBOR+ASW instead
of paying full price and receiving fixed coupons.

This is a tradable spread — not a spread “measure” — it
corresponds to a real cashflow. A better measure of
compensation for assuming credit risk as the cashflows
are real and the interest rate exposure is residual.

CDsS Spreacf Compensation for expected loss due fo a credit event.

A “real” spread.

Cleanest measure of credit risk. Similar to OAS if recovery
rates are zero, but a pricing rather than a yield measure.
Better than ASW since the contract terminates following a
credit event (no residual interest rate swap MTM).

Figure 1.9. Summary of credit spread measures for fixed rate bonds - Source: O’Kane D.,
Sen S. Credit Spreads Fxplained, Lehman Brothers Fixed Income Quantitative Credit
Research Series, 2004.

1.3.2 Credit spread data

The Solvency II Directive gives considerable importance to the data used for ex-
pected calculations, particularly for SCR calculation, and to data-quality. In fact,
the regulation encourages companies to internally create a data-driven culture and
governance through a high level of technology throughout the whole governance
structure: “Member States shall ensure that insurance and reinsurance undertak-
ings have internal processes and procedures in place to ensure the appropriateness,
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completeness and accuracy of the data used in the calculation of their technical
provisions.” [26].
The data must therefore comply with the principles of:

- completeness, i.e., the data must cover a sufficiently large time period of
observations based on the phenomenon being measured, and must contain all
information that is fundamental and relevant to the assessments for which
they are used;

- appropriateness, i.e., the data must be consistent with the methods and
purposes for which they are used;

- accuracy, in terms of correctness and precision, i.e., the data must be free of
material errors and must be up-to-date as of the date of assessment.

In the case of full or partial internal models, the data play an even more central role
because they are the starting point for the estimation procedures used to estimate
model parameters. The correct calculation of SCR requires methodologies that are
able to infer:

- both real-world and risk-neutral parameters of the models;

- both the parameters of the models used to describe the various elementary
sources of risk and the parameters of the dependence structure between the
risks, which is also modeled.

To comply with the requirements prescribed by the regulations, the model used
to measure spread risk must be able to represent the dynamics of spreads in both
real-world and risk-neutral measures. Therefore, regardless of the model considered,
a data source that allows all model parameters to be estimated under both prob-
ability measures must be selected: thus, time series with adequate depth must be
available to robustly estimate real-world parameters as well. In fact, an estimation
on the cross section of prices of financial instruments traded on the valuation date
can be used for trading and hedging activities but is inadequate for insurance risk
management.

There are two types of data available to estimate a model for spread risk under both
measures:

- yield spreads, either for individual bonds or for bond indices;
- Credit Default Swap (CDS) index quotes.

In this work, specifically, the IHS Markilﬁ provider and IHS Markit iBoxx indices
spreads are used, in line with what is described by EIOPA in the Technical documen-
tation of the methodology to derive EIOPA’s risk-free interest rat term structures
(2021) [25] for providing market yield data for corporate bonds aimed at calculating
the Volatility Adjustment and Matching Adjustment.

SPart of Standard € Poor’s.
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1.3.3 IHS Markit iBoxx indices

An index is defined as a statistical measure, typically of a price or quantity, calcu-
lated from a representative set of underlying data. The main role of an index is
to be a benchmark. In fact, an index provides a measure of the performance of a
specific segment of a financial market (region, sector, or other asset class) and can
be the standard against which the performance of a financial instrument is evaluated.

Bond indices are used to measure the value of various sections of the bond market,
being defined by maturity or rating, and are a way to deal with the complexity of
the bond market. In fact, bonds, unlike stocks, can be very different by asset class,
by type (government, corporate, or sovereign), by tenor, by frequency and coupon
rates, and are traded over-the-counter. A further element of complexity is the lower
liquidity of the bond market compared to the stock market.

All iBoxx indices are basket indices provided by IHS Markit and express relative
changes in value from the beginning of the relevant period. The composition and
weights of the indices are updated at the beginning of each period. The iBoxx
indeces can be classified by:

- region (global, Europe, North America, Asia Pacific)

- country

- currency (EUR, USD, GBP, ...)

- sector (sovereign, financial, industrial, telecommunications, ...)
- rating (single rating, macro-rating)

- maturity

- type of bond

Table shows the existing iBoxx index families (updated to September 2022).

In this work, only indices belonging to the iBoxx FUR Indices and iBoxx FUR High
Yield Indices families are used. The former is designed to reflect the performance
of EUR denominated investment grade debt and is split into five major indices:
Overall, Eurozone, Collateralized, Corporates and Sub-sovereigns, which in turn are
divided into sub-indices based on rating, maturity and sector, as summarized in
Figure [I.I0] The latter, on the other hand, is designed to reflect the performance
of EUR denominated sub-investment grade corporate debt and is split into four
different indices: overall, maturity, rating and sector indices, as summarize in Figure

LI1
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Index Family Name Region
iBoxx ABF Indices APAC
iBoxx ADBI Indices APAC
iBoxx ALBI Indices APAC
iBoxx ASIA Indices APAC
iBoxx AUD Indices APAC
iBoxx CNH Indices APAC
iBoxx CNY Indices APAC
iBoxx JPY Indices APAC
iBoxx SAR Indices APAC
iBoxx SGD Indices APAC
iBoxx USD APAC Indices APAC
iBoxx USD ASIA Indices APAC
iBoxx USD Belt & Road Indices APAC
iBoxx EUR Indices & iBoxx EUR Liquid Investment Grade Europe
iBoxx EUR FRN Investment Grade Indices Europe
iBoxx EUR High Yield Indices & iBoxx EUR Liquid High Yield Indices Europe
iBoxx GBP Indices Europe
iBoxx GBP High Yield Indices & iBoxx GBP Liquid High Yield Indices Europe
iBoxx Contingent Convertible Indices Global
iBoxx USD Emerging Markets Sovereigns Indices Global
iBoxx USD Emerging Markets Corporates Indices Global
iBoxx GEMX Indices Global
iBoxx Global GOV Indices Global
iBoxx Global HY Indices Global
iBoxx Global SOV Indices Global
iBoxx Green Select Indices Global
iBoxx Green Soc Sust Indices Global
iBoxx Infrastructure Indices Global
iBoxx ILB Indices Global
iBoxx USD Leveraged Loan Indices North America
iBoxx USD Indices & iBoxx USD Liquid Investment Grade Indices North America
iBoxx USD FRN Indices North America
iBoxx USD High Yield Developed Markets Indices & iBoxx USD Liquid High Yield Indices North America
iBoxx USD MM Indices North America
iBoxx USD CMBS Indices North America

Table 1.10. iBoxx index families (updated to September 2022) - Source: IHS Markit.

Markit iBoxx EUR Overall

Sovereigns Non-Sovereigns
Sovereigns Sub-Sovereigns Collateralized Corporates
& Eurozene Sovereigns & Other Sovereigns s Covered & Financials
> Eurozone country & Agencies > Country indices > Market sector indices
indices s Public Banks s Securitized —  Market sub-sector
s Regions e Other Collateralized indices
) # Non-Financials
¢ Supranationais _ > Market sector indices
& Other Sub-Sovereigns — Market sub-sector
indices

Rating and maturity indices

Figure 1.10. Overview of Markit iBoxx EUR family indices - Source: IHS Markit, Markit
iBoxx FEUR Benchmark Index Guide, September 2022.
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Markit iBoxx EUR High Yield Overall

Core High Yield

Special Bond Types

Corporate Sectors

« Fixed coupon bonds

» Floating rate notes

s Callable bonds

# Sinking funds

* Rating sensitive honds

« Bonds with poison put option

« Bonds with make-whole call or tax
changes call provision

Fixed rate bonds

> Step up honds
> Callable bonds
> Sinking funds
FRNs

PIK MNaotes

« Financials
> Market sector indices
—  Market sub-sector indices
« Non-Financials
> Market sector indices
—  Market sub-sector indices

Rating and maturity indices (BB, B, CCC) (1-3, 3-5, 5-7, 7-10, 1-5, 510, 5+, 1-10, 10+)

Figure 1.11. Overview of Markit iBoxx EUR family indices - Source: IHS Markit, Markit

iBoxx EUR High Yield Index Guide, September 2022.

The following selection criteria are used to determine the index constituents:

bond type (inter alia, fixed coupon bonds, zero coupon bonds, ...)

credit rating: all bonds in the IHS Markit iBoxx EUR Indices must have an
iBoxx ratingﬂ of investment gmdeﬁ7 while for iBoxx FUR High Yield Indices
all bonds must have an iBoxx rating of sub-investment gradeﬂ

time to maturity: all bonds must have a remaining time to maturity of at least
one year at rebalancing time.

issuer eligibility: only EUR denominated debt from corporate issuers is eligible,
not considering the country of risk or origin.

amount outstanding: the minimum required amount outstanding is between
500 million and 1 billion for investment grade bonds and 150 million for high

yield bonds.

All bonds are classified based on the principal activities of the issuer and the main

sources of the cash flows used to pay coupons and redemptions:

- sovereigns: bonds issued by a central government of a member country of the

Eurozone and denominated in Euro or in a pre-Euro currency;

- other sovereigns: bonds issued by a central government that is not a member
country of the Eurozone and denominated in Euro or in a pre-Euro currency;

- sub-sovereigns: bonds issued by entities with explicit or implicit government
backing due to legal provision, letters of comfort or the public service nature

of their business (agencies, supranationals, public banks, regions, ...);

"More details on the iBoxx Rating Methodology can be found in Appendix

8BBB- or higher from Fitch Ratings and S&P Global Ratings and Baa3 or higher from Moody’s

Investor Service.

9BB+ or lower from Fitch Ratings and S&P Global Ratings and Bal or lower from Moody’s

Investor Service, but not in default.
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- collateralized:

- covered bonds: bonds which are secured by a general pool of assets in
case the issuer becomes insolvent;

- securitized bonds: bonds secured against specific assets or receivables
(ABS), mortgages (MBS) or cash-flows from a whole business segment
(Whole Business Securitizations), in each case via a special purpose
vehicle;

- other collateralized bonds;
- corporates: bonds issued by public or private corporations. Corporate bonds
are further classified into Financials and Non-Financials bonds and then into

their multiple-level economic sectors, as summarized in Figure [I.12] Corporate
bonds are also classified according to the seniority of the debt.

For further details, refer to [31] and [32].
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Figure 1.12. Overview of Markit iBoxx Corporates Sectors - Source: THS Markit, Markit
iBoxx FUR Benchmark Index Guide, September 2022.
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1.4 The measure of spread risk in Solvency II

This chapter discusses the aspects of risk measurement in Solvency II affected by
spread risk.

Section recalls the main features of the current regulatory framework for risk
measurement and summarizes the structure of the Standard Formula. The possibility
offered by the regulations to use internal methodologies as an alternative to the
Standard Formula - so-called internal model - or parts of it - partial internal model -
is also recalled.

Section [I.4.2] on the other hand, focuses on the definition and measurement of
spread risk within the Solvency II framework.

These aspects are particularly relevant in the scope of investigation of this thesis,
as the spread risk measurement methodologies proposed in the following chapters
are of interest to the insurance sector precisely because of the possibility offered by
Solvency II to use alternative measurement techniques for individual risk modules,
provided one can demonstrate to the national authority in one’s country that these
are more appropriate and realistic than the Standard Formula to represent the risk
profile of the insurance company that adopts them.

1.4.1 The current regulatory framework for risk measurement in
insurance sector: the Directive 2009/138/EC and the Stan-
dard Formula

Framework Directive 2009/128/EU [26], known as Solvency II, published in Dec. 17"
2009, marked a profound cultural change in the risk management of the insurance
industry. In fact, it did not merely define new solvency requirements, but redefined
the management and supervision of an insurance or reinsurance company across the
board.

The reasons that led to this veritable revolution in the European insurance system
are to be found in the limitations of the previous solvency system, in particular in
the fact that it was a poorly risk-sensitive system, providing a capital requirement
that was not very sensitive to a company’s actual risk profile, and not risk-based, in
that it did not take into account all the risks to which an insurance or reinsurance
company is exposed, whether on the asset or liability side.

The goals of this legislation are:

- investor protection through preventive control and transparent management
of insurance and reinsurance companies;

- to create a uniform European supervisory system through harmonization of
the principles and rules on which to base the solvency of any company in the
EU;

- improved and increased transparency in risk management. Solvency II is
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based on quantitative aspects of risk measurement that require the use of the
insurance company’s own internal models and processes.

The system is articulated with a 3-pillar structure, inspired by the similar banking
regulation Basel I, in which a risk-based supervisory system is promoted to fulfill
the need for clear and transparent disclosure to investors and consumers, with the
aim to increase the market’s ability to assess the solvency of insurance companies.
The evaluation of the financial position of the enterprise should be based on an
economic balance sheet, in which fair value represents the general valuation principle
of assets and liabilities.

Assets shall be valued with a marked-to-market approach, i.e., “at the amount for
which they could be exchanged between knowledgeable willing parties in an arm’s
length transaction” [26].

Liabilities shall be valued according to the principle of current exit value, i.e., “at
the amount for which they could be transferred, or settled, between knowledgeable
willing parties in an arm’s length transaction” [26]. The fair value of liabilities can
be calculated according to two distinct methodologies:

- as a whole, if their value is directly observable in the market;

- as the sum of a best estimate and a risk margin. The best estimate is defined
as “the probability-weighted average of future cash-flows, taking account of the
time value of money (expected present value of future cash-flows), using the
relevant risk-free interest rate term structure” [26]. The risk margin is “such as
to ensure that the value of the technical provisions is equivalent to the amount
that insurance and reinsurance undertakings would be expected to require in
order to take over and meet the insurance and reinsurance obligations” [26)].

The difference between assets and liabilities constitutes the so-called Basic Own
Funds (BOF), which are the financial resources the company has at its disposal. This
variable plays a key role in defining the Solvency Capital Requirement (SCR), which
companies must hold in order to cope with the risks to which they are subjected.

The SCR is defined as “the Value-at-Risk of the Basic Own Funds of an insurance
or reinsurance undertaking subject to a confidence level of 99,56% over a one-year
period” [26]. That is, if the firm has equity in an amount equal to the SCR, it is
probabilistically guaranteed that the ruin event will not occur more than once in
200 cases, i.e., that the firm will still be able, with a probability of at least 99.5%, to
meet its obligations to policy-holders and beneficiaries in the following 12 months.

Solvency II regulations provide various methods for calculating the SCR, characteri-
zed by increasing levels of complexity and sensitivity to the company’s specific risk
profile. The Standard Formula, which is the basis and benchmark of the Directive,
proposes a modular approach, the structure of which is illustrated in Figure [1.13
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Figure 1.13. Modules and sub-modules of risk of the EIOPA Standard Formula.

Marginal SCRs for risk sub-modules are calculated - in factor based™| or scenario
basedEI logic - by means of shocks provided by the regulations, which the company
must apply to its assets and liabilities. Once estimated, these are aggregated, by
means of correlation matrices provided by EIOPA, firstly at each module level, and
then at the level of the Basic Solvency Capital Requirement that the insurance
company must meet, following a bottom-up approach:

BSCR = \/Z Cori; SCR; SCR; + SC Rintang (1.17)
2

Companies are provided by the regulations with the option of using internal metho-
dologies as an alternative to the Standard Formula - so-called internal model (IM) -
or parts of it - partial internal model (PIM). The model selection is motivated by a
number of considerations: some related to the peculiarities of the current situation
of financial markets - for example, the observation of negative nominal rates -, others
to the principles of Solvency II regulations, such as the character of substantiality
and adequacy to the company’s activities.

The model selection also requires balancing complexity, usability, and readability
of results, in search of the right medium, with the guarantee of acting as best as
possible (the best effort of the regulations).

10Based on the application of one or more factors to a measure of risk exposure.
" Based on the study of the impact of adverse scenarios, established by EIOPA.
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The selection of models to be used must therefore be defined by:

- ability to represent substantive risks, in a pattern reasonably comparable to
that adopted in the Standard Formula regulatory approach;

- ability to represent the main features of market risks, in a formally rigorous
theoretical framework;

- manageability from the point of view of the computational complexity of the
calculation procedures;

- assurance of transparency in the interpretation of the model’s findings, for
management purposes.

1.4.2 Spread risk in the Solvency II framework

The spread risk sub-module, defined as the sensitivity of the values of assets, liabilities
and financial instruments to changes in the level or in the volatility of credit spreads
over the risk-free interest rate term structure [26], can be found within the market
risk module.

The Delegated Regulation [21] defines the SCR for spread risk sub-module, SCRgpreqd,
as the sum of the following capital requirements:

SCRspread = SCRbonds + SCRsecuritisation + SCRCd y (118)
where:
- SCRponds is the capital requirement for spread risk on bonds and loans;

- SCRsecuritisation is the capital requirement for spread risk on securitisation
positions;

- SCR,4 is the capital requirement for spread risk on credit derivatives.

For the purpose of this discussion, it is useful to specifically investigate the calcula-
tion of SCR related to loans and bonds, defined as equal to the loss in the basic own
funds that would result from an instantaneous relative decrease in the value of each
bond or loan [21].

Bonds or loans for which a credit assessment by a nominated FEzternal Credit
Assesment Institution (ECAI) is available shall be assigned a risk factor stress, which
depends on the credit quality step and the modified duration of the bond or loan,
accordingly to Table

Spread risk stress factors defined according to creditworthiness class refer to an
objective creditworthiness class scale. On the other hand, the creditworthiness
assessment provided by the various ECAIs follows internal agency evaluation pa-
rameters. In order to standardize the different ratings, EIOPA provided, through
European Commission Implementing Regulation 2016/1800, the correspondence
between ECAIs’ credit ratings and the objective scale of creditworthiness classes.
Table [I.12] shows this correspondence relative to the ratings provided by Standard €
Poor’s Global Ratings.
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Credit quality step 0 5eb
Duration A&\:\st .m.gam.m.w& a; F. a; S a; F a; F a; F. a; F
dur; <5 b; - dur; 0.9% 1.1% 1.4% 2.5% 4.5% 7.5%
5 < dur; <10 a; + b; - (dur; — 5) 45% 10.5% | 55% | 0.6% | 7.0% | 0.7% | 12.5% | 1.5% | 22.5% | 2.6% | 37.5% | 4.2%
10 < dur; < 15 a; + b; - (dur; — 10) 7.0%% | 0.5% | 8.4% | 0.5% | 10.5% | 0.5% | 20.0% | 1% | 35.0% | 1.8% | 58.5% | 0.5%
15 < dur; <20 a; + b; - (dur; — 15) 9.5% 1 0.5% | 10.9% | 0.5% | 13.0% | 0.5% | 25.0% | 1.0% | 44.0% | 0.5% | 61.0% | 0.5%
dur; > 20 min [a; + b; - (dur; — 20);1] | 12.0% | 0.5% | 13.4% | 0.5% | 15.5% | 0.5% | 30.0% | 0.5% | 46.6% | 0.5% | 63.5% | 0.5%
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Table 1.11. Risk factor stress for bonds or loans for which a credit assessment by a nominated External Credit Assesment Institution (ECAI) is
available - Source: European Commission, Delegated Regulation 2015/85, 2014.
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0 1 2 3 4 5 6
AAA AA A BBB BB B CCC,CC, C, D

Table 1.12. Allocation of Standard €& Poor’s Global Ratings credit assessments to the EIOPA
objective scale of credit quality steps - Source: European Commission, Implementing
Regulation 2016/1800, 2016.

In contrast, bonds and loans for which a credit assessment by a nominated ECAI is

not available shall be assigned a risk factor stress depending only on the duration of
the bond or loan, accordingly to Table [I.13]

Duration (dur;) stress;
dur; <5 3% - dur;
5 < dur; <10 15% 4+ 1.7% - (dur; — 5)
10 < dur; <20 23.5% + 1.2% - (dur; — 10)
dur; > 20 min [35.5% + 0.5% - (dur; — 20); 1]

Table 1.13. Risk factor stress for bonds or loans for which a credit assessment by a
nominated FEzternal Credit Assesment Institution (ECAI) is not available - Source:
European Commission, Delegated Regulation 2015/35, 2014.
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Chapter 2

Credit risk models

In the scientific literature on credit risk modelling, two main issues are identified:
the modelling of the default time, i.e., the random time when the default event
occurs, and the modelling of the term structure of credit spreads and, in particular,
of the random times of credit migration in an approach that considers intermediate
credit events.

The main goal of modelling credit risk is pricing and hedging financial contracts that
are sensitive to credit risk, while ensuring internal consistency of the financial model,
i.e., compliance with the arbitrage-free principle. In order to model the default/credit
migration times and the recovery rate, two main approaches are identified:

- the structural approach, based on the firm’s value and some credit-event-
triggering threshold (firm’s value models);

- the reduced-form approach, based on the default process (intensity models).

The main difference between structural and reduced-form approaches is the under-
lying vision. In structural models, the default event is triggered by changes of the
market value of the firm’s assets; starting from this and their volatility, these models
return as output the price of credit-sensitive securities and the default probability.
Reduced-form models, on the other hand, are based on reverse-engineering, and
model the default process starting from the prices of credit-sensitive securities to
return as output the model parameters, such as the risk-neutral default probabilities.
This difference is also reflected in the different estimation techniques applied in
the two approaches: the parameters of structural models are generally estimated
econometrically from the time series of share prices, while the parameters of reduced-
form models are inferred directly from the prices of securities traded on the market
through cross-sectional estimation, assuming an arbitrage-free framework.

Another key difference between the two approaches is in the definition of the default
event: in structural models it is determined by the deterioration of the firm’s assets,
while in reduced-form models it coincides with the instant at which a Poisson process
makes the first jump.
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As for recovery rates, they are generally endogenous in structural models, where
the value of the firm’s assets at the default time is estimated, and exogenous in
reduced-form models, where the value of the firm’s assets is not modelled at all.

Another classification for credit risk models is:

- models for the assessment of individual counterparties, based on the structural
approach, which include the cornerstone of credit risk models, i.e., the Merton
model, the EDF RiskCalc model developed by Moody’s KMV [55] [56] and
the CrediGrades model by RiskMetrics, Goldman Sachs, J.P. Morgan and
Deutsche Bank;

- models for the valuation of portfolios, based on both approaches, including the
more financial model CreditMetrics developed by J.P. Morgan [35], the more
actuarial model CreditRiskt by Credit Suisse [14] and the more econometric
model CreditPortfolio View by McKinsey [68].

This chapter is organized as follows. In section structural models are presented
in detail, with particular focus on the Merton’s model. In section reduced-form
models and Cox processes, on which they are based, are presented. Section [23]
discusses Markov chains in their discrete-time and continuous-time, conditional
and unconditional settings. Section [2.4] focuses on Markovian models for credit
migrations, presenting in detail the model of Jarrow, Lando and Turnbull (1997),
which is the starting point for the credit spread risk model proposed in this work.
Finally, section [2.5|introduces and describes the model for credit spread risk proposed
and used in this work.

2.1 Structural models

The key feature of structural models, which owe their name to the fact that they
are based on structural variables of the firm, is that the liabilities of a firm, i.e., the
bonds it issues, are treated as a contingent claim on the total value of the firm’s
assets. These models are also called firm’s value models (or option-theoretic models),
as they are based on the dynamics of the value of the firm’s assets, which is specified
through a stochastic differential equation, usually a diffusion or jump-diffusion
process, and the evolution of the firm’s capital structure. Credit events are therefore
triggered by movements of the firm’s value relative to some, random or non-random,
credit-event-triggering threshold or barrier. In this way, it is possible to link credit
events to the firm’s economic fundamentals.

The option pricing theory, introduced by Black and Scholes [7], plays a key role in
these models, since in this context the liabilities of the firm can be interpreted as a
put option on the firm’s assets: the fundamental hypothesis is that the underlying
process, the firm value, follows a random process similar to the one used to describe
generic stocks in equity markets, that is a Geometric Brownian Motion, i.e., the
value of company V is assumed to follow a lognormal dynamicﬂ and that is possible

!This assumption is studied in detail and confirmed by Crouhy et al. in [I3].
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to observe this value at any time. Hence, the default event can be thoroughly
monitored based on default-free market and is less sudden and unexpected.

It is necessary to make a clarification on the definitions of total value of the firm and
total value of the firm’s assets: the former is equal to the value of the firm’s assets,
plus tax deductions, less bankruptcy costs, but in some structural models the last
two terms are ignored and the two definitions coincide. Then, in these models, the
value of the firm V is the sum of the firm equity value S and of the firm debt value
D; the firm equity value S can be seen as a kind of option on the value of the firm V,
plain-vanilla in Merton’s model and barrier-like in Black and Cox model. Another
important difference is that the total value of the firm is complicated to observe,
whereas the total value of the firm’s assets can be observed at least for traded firms.

Structural models usually refer to only one type of credit event, namely, the firm’s
default, which is defined as the first time the value of the firm reaches a certain
lower threshold, and the recovery rates are usually defined as a function of the firm’s
value; so both the default event and recovery rates are usually endogenously defined
within the model.

In summary, the components that contribute to structural models are the following:

- the dynamics of the total value of the firm’s assets,

the structure of the firm’s liabilities,

the default event (in particular, the default triggering thresholds),

the recovery rule in case of default,

other relevant economic quantities, like the short-term interest rate.

The main shortcomings of the structural approach are the assumptions that the value
of the firm can be directly observed and that the firm’s assets represent a tradeable
security, or at least that the firm’s value process can be replicated through traded
securities. In a framework that provides for periodic and imperfect information
about the firm’s value (see Duffie and Lando (1997)) is justified in moving to the
intensity-based approach.

Some examples of structural models are: Merton (1974), Black and Cox (1976),
Brennan and Schwartz (1977, 1978, 1980) and Longstaff and Schwartz (1995).

2.1.1 Default time

In the structural approach, the default time 7 is typically defined in terms of the
value V and the barrier process v:

T=inf{t >0:te€T,V; <wv} (2.1)

where 7T is assumed to be a Borel measurable subset of the time interval [0,T].
Furthermore, 7 is a G-stopping time and, if the filtration G, 7.e., the filtration
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modeling the information the information flow available to the traders, is generated
by a standard Brownian motion, as in most structural models, is a G-predictable
stopping time. This means that the random time of default is announced by an
increasing sequence of stopping times.

In classical structural models, default may occur only at final time 7', if the firm is
not able to reimburse all the bond-holders.

First passage time models extend the original Merton framework assuming that the
default may occur even before maturity 7', so the default time 7 is the first time
where the firm value hits from above either a deterministic or a stochastic barrier.
In these models, the corporate bond is treated as an American put option with
down-and-out barrier, and the barrier L is below the par value of the bond and
represents an absorbing state. Some examples of first passage time models are Black
and Cox (1976) and Longstaff and Schwartz (1995).

2.1.2 Merton’s model (1974)

In Merton’s model, which is the starting point for structural models and the study
of credit risk in general, it is assumed that there is a corporate bond (the debt)
with maturity 7" and face value L, and the firm default is possible only at the final
maturity, if the value of the firm’s asset Vr is below the debt L to paid.

The model assumes that the following quantities are listed and therefore observable
on the reference market:

- the firm’s value at time ¢, V; (market value of firm’s assets);
- the firm’s share value at time ¢, S; (market value of firm equity);

- a corporate zero coupon bond with face value L, issued in ¢t = 0, with maturity
in 7" and market value at time ¢ D(¢t,T).

According to Black and Scholes (1973) [7], the issue of the zero coupon bond
corresponds to the sale of the firm’s assets to the bond-holders and the purchase of
a call option to buy back the assets by shareholders, or equivalently to the holding
of the firm’s assets and the purchase of a put option from the bond-holders. Thus, a
corporate bond can be interpreted as a default-free zero coupon bond minus a put
option with strike price equivalent to the value of the issue written on the firm’s
assets. The debt value at time ¢ < T is thus:

B T
D(t,T) = By |~ i 7w du min(VT,L)]

r T
—E e o Ty, (v - D)

(2.2)

. T
— B, |e o T (p vy

=o(t,T)L— P(t,T;V;, L),

where v(t,T) is the risk-free discount factor and P(¢,T;V;, L) is the price of an
European put option on V; with strike price L and residual maturity 7" — ¢. If one
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T
assumes deterministic interest rates, then E; [eft () du} =v(t,T).

The equity value can be derived as a difference between the value of the firm and
the debt, by put-call parity:
St = ‘/t - D(tv T)
=V, —v(t,T) L+ P(t,T;V;, L) (2.3)
=C(t,T; Vi, L)
where C(t,T; Vi, L) is the price of an European call option on V; with strike price L

and residual maturity 7" — ¢. The equity can be interpreted as a call option on the
value of the firm.

The valuation of the two options requires the choice of a model for the evolution
of the value of the firm. Specifically, Merton assumes that the dynamic of V is
described by a diffusion process identical to that used in the Black and Scholes
model [7] for the option valuation:

dVy = py Vi dt + o Vi dZ;. (2.4)

And similarly, a constant risk-free spot rate is assumed, r; = r.
The value of the corporate bond at generic instant ¢ € [0, 7] is therefore defined as:

D(t,T) =v(t,T)L — [L e TN (~do) — V, N(—dl)] (2.5)

with
In(V;/L) + (r + 0‘2/)7'
d1/2 = O'V\/F )

The same result could have been reached by setting [9]:

T=T—t. (2.6)

D(t, T) = ’U(t, T) EC [L 1{VT2L} + VT]_{VT<L}‘gt}
= B(t,T)(1 — Pp RR)
where:

- EQ denotes the expected value under the risk-neutral measure Q;

- B(t,T) = Lv(t,T) is the risk-free bond value;

Pp is the risk-neutral probability of default;

RR is the exogenous recovery rate.
In Merton model the risk-neutral probability of default Pp is:
Pp =E% 1y, 11|Gi] = N(—dy), (2.8)
while the real-world probability of default is:
Pp = E 1y, 13]G , (2.9)

where EF denotes the expected value under the real-world measure P, and represents
the probability that the default occurs.
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2.2 Reduced-form models

In the reduced-form approach, the value of the firm’s assets and its capital structure
are not modelled at all, and the credit events are specified in terms of some exoge-
nously specified jump processﬂ

Among the reduced-form models, one can distinguish between intensity-based models,
that are only focused on the modeling of the default time, and credit migration
models, that consider migrations between credit rating classes. In the former models,
typically, the random default time is defined as the jump time of some one-jump
process and a key role is played by the default intensity process, which is also known
as hazard rate process. In the latter models, which are called also multiple credit
ratings model, migrations between credit ratings are allowed and are modelled in
terms of a (conditional) Markov chain, with a finite state space consisting of the
different credit rating classes and the absorbing state of default. The main issue in
this approach is modelling the transition intensities matrix for the migration process,
both under the risk-neutral and the real-world probability measures.

2.2.1 Intensity-based models

Intensity models move from the idea that the default time 7 is the first jump time
of a Poisson process and it does not depend on market observables and economic
fundamentals.

Given the underlying probability space (€2, G, Q), where the probability measure Q
is a spot martingale measure, the default time 7 is an arbitrary non-negative random
variable, and the cumulative distribution function of the default time can be defined
as F(t) = P{r <t|F}, with F; = 0 and F; < 1 for every ¢t € R*. The survival
process G of the random time 7 with respect to the filtration F;, i.e., the filtration
with information about the other relevant default-free variables (interest rates, stock
prices, ...), is defined as:

G :=1-F=P{r>tlFR}, vteR". (2.10)

The hazard process of the default time 7 under Q, given the flow of information
represented by F3, denoted by I'y, is defined as:

T,:=—InG, = —In(1 - F,), VteR", (2.11)

with I'g = 0 and lim¢—, 4 o0 't = +00.

In most of the recently developed reduced-form models for credit risk, it is assumed
for the hazard process I'; of a default time to have absolutely continuous sample
paths and to admit the following integral representation:

t
I, = / v(u) du, Vte€RT (2.12)
0

for some non-negative, F-progressively measurable stochastic process v, that is
called stochastic intensity of 7.

2As a rule, the recovery rates at default are also exogenously given.
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For a given default time 7, the associated default process can be introduced as a
right-continuous jump process:

Hy=1(<y - (2.13)

The filtration generated by the process H, H; = o (H,, : u < t), contains the infor-
mation about the occurrence of the default event at time f. The default time 7 is a
stopping time with respect to the filtration H;.

It is therefore possible to define a third enlarged filtration G; = F; V H;, which
contains the filtrations H; and F; and represents the total information available to
agents. The default time 7 is not necessarily a stopping time with respect to the
filtration F3, but it is, of course, a stopping time with respect to filtration G;. It
follows that the default time is not predictable with respect to the filtration G;.

Since the events {7 <t} and {7 > ¢} belong to the filtration G;, it can be derived
that:

T ) d
P{r <T|Gi} = 17<y + 1{T>t}EQ [1 _ e )i 1w du

]-"t] : (2.14)

T
P{r>T|G} =1{-nEY {e—ft 7(w) du

]-"t} . (2.15)

The presence of two filtrations, and of the third union filtration, serves to make sure
that the information contained in the residual variables is not sufficient to predict
the default time, thus bypassing the limitation of structural models. While the
residual variables do not determine the default event, they do, however, influence
the probability of its occurrence.

2.2.2 On Cox processes

Starting from the Poisson processes framework, discussed in detail in Appendix
let \; be a stochastic intensity, besides being time varying, assumed to be at
least ]-'t—adaptedﬁ and right continuous process. The cumulated intensity or hazard
process is the random variable A(t) = fg A(u) du with Ay > 0.

Recall that an inhomogeneous Poisson process N with non-negative intensity function
¢ satisfies the following equation:

s k s
P{NS—Nt:k}:Weft Alwpdu = —0,1,. .. (2.16)

In particular, assuming Ny = 0, the following relation stands:
“\u) d
P{N, = 0} = ¢ Jo A du, (2.17)

A Cox process, or a doubly stochastic Poisson process, is a generalization of the
Poisson process in which the intensity A can be stochastic, under the condition
that, given a particular realization of the intensity A\;(w), the jump process is still a
time inhomogeneous Poisson process with intensity A;(w). The doubly stochastic

3Given the information F; we know \ from 0 to ¢.
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definitions derives from the fact that, besides having stochasticity in the jump
component &, the process has stochasticity in the probability of jumping, i.e., in the
intensity.

For Cox processes, the first jump time can be represented as:

¢
= AN(E) = inf {t : / Aw) du > g} , (2.18)

0
where £ is a unit exponential random variable, independent of A. The first jump

time can be interpreted as the default time.
With Cox processes, the following relations are valid:

P{relt,t+dt]|r >t,F} =\ dt, (2.19)
Plr>t}=P{A(r) > A(t)} = P {g > /Ot)\(u) du}
—E [P {5 > /Ot)\(u) du’ ]—“tH =E {efou(u) d”] ;

t
P{r>t|F) =c Jo 2w, (2.21)

(2.20)

2.2.3 The evaluation of a zero-coupon bond subject to spread risk.

Some examples of unit corporate ZCB with maturity 7', issued by an R-rated issuer,
that are subject to various recovery schemes and go on to define their pre-default
value at time ¢, v(t, T'), are considered in the following.

At any time t, the discounted payoff of a unit defaultable bond is given by:

T T
Yy =1papyh(r)e @y e Jorde, (2.22)

where 7 is the short-term interest rate and h(7) is the recovery cash flow.

In case of zero recovery scheme, h(7) = 0 and the pre-default value at time ¢ of such
a bond is:

T
UR(t,T) _ 1{T>t}EQ e*f; r(u)+y(u) du

T
.7-}} =v(t,T) EQ [eft V(u) du

.7-}} . (223)

where v(t,T) is the value of a unit risk-free ZCB with maturity 7" at time ¢.
Under this recovery scheme, the corporate bond becomes valueless as soon as the
default occurs.

In case of fractional recovery of par value scheme, h(7) = §, that is a constant
coefficient between 0 and 1, and the corporate bond pays at time of default a
constant payoff proportional to the bond’s face value, in case the bond defaults
before or at the bond’s maturity 7. The pre-default value at time ¢ of such a bond
is:

T s T
UR(t, T) = 1{T>t}EQ [/t e_ft r(u)+y(u) du g ~(s) ds + e—ft r(u)+y(w) du’]_—t

(2.24)
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This is the closest we come to legal practice, in the sense that debt with the same
priority is assigned a fractional recovery depending on the outstanding notional
amount but not on maturity or coupon, and it is also the measure typically used by
rating agencies. In mathematical terms, the formula for pricing a bond is not so
pretty, as it requires calculating an integral.

In case of fractional recovery of market value scheme, h(1) = § v%(r=,T), where §
is a constant coefficient between 0 and 1, and vf¥(7~,T) is the value of the risky
zero coupon bond pre-default, that is, at the instant immediately before default.
The corporate bond pays the variable payoff § v®(r=,T) at defalut time 7 if default
occurs before maturity. The pre-default value at time ¢ of such a bond is:

T s T
of'(t,T) = 15 E2 V e ST du 5 B (o ) o (5) ds 4 e S 70T d“!ft]

T
e 1{7->t} 'U(t7T) EQ |:€J; (175))\(/“‘) du’Ft] .
(2.25)

Receiving a fraction § at default time 7 of the pre-default value v (7=, T) has the
same expectation as receiving 0 with probability 1 —§ and v?(7~, T') with probability
§. Since receiving vf{(77, T) is equivalent to a cancellation of the default event, this
formulation of recovery is equal to a zero-recovery assumption in a thinned default-
event process. The thinning rate is 1 — § and hence we can use our zero-recovery
formulation with the intensity (1 — &) A(u).

This measures the change in market value at the time of default. This has economic
meaning since this is the loss in value associated with default. This quantity is
extremely convenient to work with for modeling purposes.

In case of fractional recovery of Treasury value scheme, h(1) = ¢ v(t,T), and the
corporate bond pays the constant payoff § at maturity T if default occurs before
maturity. Under this assumption, the corporate bond in default is replaced with
a treasury bond with the same maturity but a reduced payment. The pre-default
value at time ¢ of such a bond is:

]-"t]

(2.26)

T T s T
(¢, T) = 1{T>t}EQ [/t o= J ) du = [T y(w) du g ~(s) ds + o Jo () du

T T
=1y 0(t,T) EC {5 (1 — efft v(u) du) + 67ft 7(“)‘]:4 .

Under this recovery scheme, the pre-default value of a corporate bond can also be
expressed as follows:

ofi(t,T) = o(t,T) (6 PO{t <7 <T}+P{r>T}). (2.27)

An advantage of the fractional recovery of Treasury value scheme is that is permits
(at least with an assumption of independence between the short rate r and the
default intensity A) an immediate expression for implied default probabilities.
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2.3 On Markov chains

An underlying probability space (2,G,P) and a finite set £ = {1,..., K}, that
represents the state space for all considered Markov chains are set. Since the state
space K is finite, any function h :  — R is bounded and measurable, provided that
the state space is endowed with the o-field of all its subsets.

2.3.1 Discrete-time Markov chains

Let {Ct}i=0.1,... be a sequence of random variables on (€2, G, P) with values in K, and
let ¢ = 0(Cs:5=0,...,t) be the natural filtration generated by the process C.
A process C' is a discrete-time Markov chain under the original probability measure
P with respect to G (G-Markov chain) if, for any function h : K — R:

E" [h(Ci14)|Gi] = EF [R(Ciys)|Cy], Vit s € NT. (2.28)

Therefore a Markov chain is a stochastic process whose future behavior can be
determined only by the current state of the process and it is independent of its past.
If, in addition,

E" [W(Ciss)|Ct] = EF [0(Cuss)|Cu] s Vit s,u € NT, (2.29)

the Markov chain C' is said to be time-homogeneous.
Since the state space K is finite, the condition (2.28)) is equivalent to

P{Cis1 = j|G:} = P{Ciy1 = j|Ci}, VteNT,VjeK, (2.30)
and the condition (2.29) is equivalent to:

P{Ct+1 = j!gt} = P{Ct_H :]|Ct} = P{Cs+1 = ]’CS}, Vt, s € N+, V] e kK.
(2.31)
The Markov property (2.28]) generalizes to the following condition: for any function
h:Kx...K—=R,

E” [A(Ciioi,- -, Crvs,)

gt} = EP {E(CH-SU RN Ct“‘sn)

Ct} , Vt,s1,...,8, € NT.

(2.32)
From now on, C is assumed to be a time-homogeneous Markov chain under the
original probability measure [P with respect to G.

A Markov chain C is governed by the one-step transition probability matrix
P = [pij]lgi,ng’ where the generic element of P, p;; = P{Cyy1 = j|Cy = i},
represents the probability of passing from the state ¢ at time t to the state j at time
t + 1. These probabilities are normally assembled in a matrix represented as follows:

P11 s P1,K-1 P1,K

P pu—
PKk-11 - PK-1,K-1 DPiK
PK1 + PK-1,K DPKK

The transition probability matrix P is a stochastic matrix, hence:
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- pij =0, Vi,j€K;

K
- Zpij =1, for any fixed i € K.
=1
The s-step transition probability matrix as PG = {pz(j)} ik is defined so that,
<4,j<
for any s € N,
Pg;) = P{Cs =j|Ci =i}, Vi,jeKk. (2.33)

The Chapman-Kolmogorov equations are satisfied, specifically:

pits) — pOpl) = pE PO vt g e NT. (2.34)
More explicitly:
t X i t
P =30 ) =3 el B, vts e N, i e K. (2.35)
k=1 k=1
Then, in case of time-homogeneity:
P& = P*, (2.36)

where P* denotes the s-th power of the one-step transition probability matrix P.
The following relations can be written:

PUH) — PP vt e NT, (2.37)
PUHD — PO P vt e NT, (2.38)
AP(t+1) — P(t"l‘l) _ P(t) (239)

Starting from equations (2.37) and (2.38)), the backward Kolmogorov equation:

AP — APO PO =1 wvteNT, (2.40)
and the forward Kolmogorov equation:
APHD = pO A PO =1 vteNt (2.41)

can be written, where A =P — I and I is the K-dimensional identity matrix. The
matrix A is called the generator matrix associated with the stochastic matrix P and
satisfies the following properties:

- OS)\“, foriGlC;

- Aij 20, for i,j € Kwith i # j;

K
- Z)\ijzo, for i € K.
j=1
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A state k € K is defined absorbing for a G-Markov chain C' under P if:
P{Cs=k|C, =k} =1, Vt,seNT, t<s. (2.42)

If the state K is assumed to be the only absorbing state for the G-Markov chain C
under P, then the transition probability matrix P can be expressed as:

P11 vt PLK-1  PLK
P — ’
PK-11 *° PK-1,K-1 DiK
0 0 1
where p; < 1foreveryi=1,..., K—1, and the generator matrix A can be expressed
as:
pip—1 - PLEK-1 P1LK
A= '
PKk-11 "*° PK-1,K-1—1 Dik
0 . 0 0

Let the random time 7 be the first moment when the process C' jumps to the
absorbing state K:

T=inf{t >0:C; = K}. (2.43)

Its probability distribution under P is:

K-1
P{r<t|Co=i}=1-P{Ci#K|Co=i}=1- 3 p{!, VteNVi#K. (2.44)
j=1

2.3.1.1 Change of a probability measure

In most financial applications, it is sufficient to study the behaviour of a Markov
chain only up to some time 7™ < co. For a fixed T, the Radon-Nykodim derivative
from the original probability measure P to an equivalentﬂ probability measure Q is
defined as:

dQ

- = N 24
dP G vre (245)

where 1)+ is a strictly positive Gr«-measurable random variable with EF [1)7+] = 1.
Then the density process ¢ = EF [r«|Gi], t =0,...,T*, follows a strictly positive
martingale under P.

If the random variable ¢; ! ¢, 1 is 0(Cy, Cyy1)-measurable for any t = 0,...,T* —
1, d.e., if wt_l Yiy1 = g1(Ct, Cyq1) for some function g, : K x K — R, a time-
homogeneous G-Markov chain C under P keeps following a G-Markov chain under
Q, and pj;(t) = pij gi(i, j) for arbitrary states 4,5 € K and every t =0,...,T" — 1,
where pj; denotes the transition probabilities under Q.

4Equivalent on (2, Gr~).
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Proof. Let t € NT be set. Using the abstract version of the Bayes theorem, for any
state j € K:

P{Crar = 11Gi} = B2 [0 b1y, 1G]
=E° :EQW}T* Gri1] U7 ! 1{Ct+1=j}|gt]
=E© :Tﬁ{l ¢t+11{ct+1:j}|gt]
=E? [gt(Ct, Ct+1)1{ct+1=j}\gt}
= B2 [0u(Cr, Cri) (= 1]

where the last equality follows from applying formula (2.32)) to the function
h(k,1) = g+(k,1)1;1(1). Hence, the conditional probability P*{Cy;1 = j|G;} is a
o(Ct)-measurable random variable, and then:
P*{Ci11 = j|Gi} = P {Ciy1 = j|Ci},
so that C' manifestly follows a G-Markov chain under Q. Furthermore:
py;(t) = P*{Cyy1 = j|Cy = i}

=E¢ W;l Yer1lic,, =4 |Cr = Z}

=E? {gt(C’u Cri1)1icy, =3 Cr = Z}

= pij g¢(i, 7).

Typically, a Markov chain C' is no longer a time-homogeneous process under an
equivalent probability measure Q. For the conditions for preserving the time-
homogeneity property under Q, refer to [6].

2.3.1.2 Discrete-time conditionally Markov chain

A probability space (©2,G,P) endowed with some filtrations {F;};cn+ and {Gi fren+,
such that F C G, is considered.

A discrete-time IC-valued stochastic process C is a discrete-time conditionally Markov
chain under the original probability measure P with respect to F if, for any function

h:K—R,
E" [1(C5)|Gi] = EF [W(Cs)|Fr v a(Cy)], Vt,seN', t<s. (2.46)

The Markov chain C is governed by the one-step F-conditional transition probability
matrix process, i.e., an F-adapted, matrix-valued stochastic process:

P(t) = [pij(t)]lgi,j§K7 YVt € N+, (247)
where for every ¢t € N* and arbitrary i, € K, on the set {C; = i}:

pij(t) = P{Ci11 = j|F: V o(Ch)}. (2.48)
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A s-step F-conditional transition probability matrix at time t for C' can be defined
as the Fi-measurable, matrix-valued random variable:

P(t,s) = [pij(t,8)]<; j<rc» VYt SE NT, (2.49)
where for every i, j € KC, on the set {Cy =i}:
pij(t, 8) = P{Ct+3 = j‘]:t V O'(Ct)} (250)

Similarly to the general case, the F. -conditional G-Markov property (2.46) generalizes
to the following condition: for any function h: I x ... K — R,

EIP [E(CiH’Sl’ ey Ct+5n)|gt:| = EP [E(Ct+517 ceey Ct+sn)|-rt Vv O'(Ct)} s Vt, S1y...438n € N+.
(2.51)
2.3.2 Continuous-time Markov chains

Let {C}}icr+ be a right-continuous stochastic process on (2, G, P) with values in the
finite set K, and let F¢ C G be the filtration generated by this process.

A process C' is a continuous-time Markov chain with respect to G under P if, for an
arbitrary function h : I — R,

E" [(Ci45)|Gi] = EF [R(Ciy)|C1], VL, s €RT. (2.52)

If, in addition,

E" [W(Ciss)|Ct] = EF [0(Cuss)|Cu] s Vi, s,u € RT, (2.53)
the continuous-time G-Markov chain C is said to be time-homogeneous.
A continuous-time G-Markov chain is governed by a two-parameter family of stocha-
stic transition probability matrices P(t,s) with ¢,s € R* ¢ < s, where the generic
entry of P(t,s), pij(t,s) = P{Cs = j|C; = i}, represents the probability of passing
from the state ¢ at time t to the state j at time s.
2.3.2.1 Time-homogeneous Markov chains

A continuous-time time-homogeneous G-Markov chain under P is governed, instead,
by a one-parameter family of stochastic transition probability matrices P(s), where
the generic entry is p;;(s) = P{Cits = j|Cy = i}.

The Chapman-Kolmogorov equations are satisfied, specifically:

P(t+s) =P(t) P(s) = P(s) P(t), Vt,s € RT, (2.54)

i.e., more explicitly:
K K
pij(t+5) = pir(t) prj(s) = > pir(s) pr;j(t), Vi, s €RY, Vi, jek. (2.55)
k=1 k=1
The family P(-) is assumed to be right-continuous at time ¢ = 0, that is, %in%P(t) = P(0).
—

This implies that:
lir% P(t+s)=P(t), Vt>D0, (2.56)
5—
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and thus:
11_1}1(1) P{Cis = j|C’t =i} =0i, Vi,jel, Vt>D0. (2.57)

Since the family P(+) is right-continuous at time ¢ = 0, it is right-hand side differen-
tiable at time t = 0, and the following finite limits exists:

pyt) =i (0) _ oy PisH) =0y

Aij = 1i i, J 2.
gt Sy ek, (259
with
- 0< N\, forie K
K
- i =— Z Aij < 0;
j=Li]
K
- Z)\” =0, for i€ K.
j=1
The matrix A := [Ajj]; o; ;< is called the infinitesimal generator matrix, or intensity

matrix, for a Markov chain governed by P(-), and each entry \;; represents the
intensity of transition from the state ¢ to the state j. The generator matrix uniquely
determines all the relevant probabilistic properties of a time-homogeneous Markov
chain.

The issue of the existence and calculation of the generator matrix is discussed in

Appendix [C]

Starting from the Chapman-Kolmogorov equation (2.58)), the backward Kolmogorov
equation:

P(t
8&5) =AP(), P0) =1, (2.59)
and the forward Kolmogorov equation:
P
8&Et) =Pt)A, P(0)=1 (2.60)

can be derived, and both have the same unique solution:

S A"
Pt) == . Vte RT. (2.61)
n=0 '

The state K is assumed to be the only absorbing state for the G-Markov chain C
under P; then, denoting Ay, for every j = 1,..., K, its infinitesimal generator matrix
A has the following form:

)

Al o ALK—1 0 MK

A p—
AK-1,1 " AK-1,K-1 MK
0 . 0 0
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Moreover, the initial state Cy = x # K is assumed to be set, and 7 is assumed to be
the random time of absorption at K, i.e., 7 = inf{t > 0: Cy = K} < oo P-almost
surely, and H} = Lic,—iy and Hy = 1<y = Lig,—k) = HE. 7 is an F¢-stopping
time and a G-stopping time.

For any t,s € RT, the following equality is valid:

K-1

P{T > S‘Qt} = 1{s§t} 1{725} + 1{s>t} Z Htl P{T > S’Ct = i}, (2.62)
i=1

and, since:
P{r>s|Ci=i}=1-P{Cs=K|Cy =i} =1—pi(s—t) VO<t<s, (2.63)

it can be rewritten it as follows:

K-1

P{7 > |G} = Loapy Lirsay + Lissgy O Hi 1 —pir(s — 1) (2.64)
i=1

2.3.2.2 Time-inhomogeneous Markov chains

In case of a time-inhomogeneous Markov chain, the infinitesimal generator matrix
A(t) = [Aij(t)],<; j<x and the transition intensities become time-dependent:

pij(t,t-i- h) — 5@

with:

- )\z](t)>07 \V//L?éjv

K
( b1 > pijt,t+h) .
iy o ettt h) =1 = _ g
B L L D
J=1,j#1
where:
pij(t,t + h) = P{Cip = j|Cy =1}, Vi,jeK. (2.66)

The two-parameter family of transition probabilities matrices P(¢, s) that governs the
time-inhomogeneous Markov chain C' satisfies the Chapman-Kolmogorov equation:

P(t,s) =P(t,u)P(u,s), Vt<u<s, (2.67)

the forward Kolmogorov equation:

813657;’5) =P(t,s)A(s), P(t,t) =1, (2.68)

and the backward Kolmogorov equation:

OP(t, )
ot

= -A{)P(t,s), P(s,s)=L (2.69)
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The Chapman-Kolmogorov equation (2.67)) yields:

K
pij(t,s +h) = Zpik(t, s)prj(s,s+h), Vi,jek, 0<t<s<s+h (2.70)
k=1

Maintaining the assumptions of the time-homogeneous case about 7 and the initial
state Cp, for every t € RT and any i = 1,..., K — 1, the conditional law of the
absorption time 7 is given by the formula:

K-1

P{r<t|Co=1i}=1-> pi;(0,1). (2.71)
j=1

2.3.2.3 Change of a probability measure

Recall that H} = lic,=iy and Hy = 1<y = Lig,—g) = H[. Now the number of
jumps of the process C from i to j in the interval (0,¢], H,’, for any fixed i # j:

HY = Y H.-H) VteR", (2.72)

o<u<t

and a family k%, k,l € K, k # 1, of bounded, FC-predictable, real-valued processes,
such that I;:fl > —land k** =0 for k =1,..., K, can be introduced.

For a fixed T* > 0, the Radon-Nykodim derivate from the reference probability
measure P to an equivalent probability measure Q on (€2, Gr+) can be defined as:

dQ
dP

=1 Vte[0,T7], (2.73)
Gt

where the process v is strictly positive and is defined as:

K
de=e M ] (HZ/%Z%HSZ—HSL)), (2.74)

o<u<t k,l=1

where M is the path-by-path continuous component of the auxiliary G-martingale
process M;.

To simplify the exposition, only processes l;:fl = ky(t), where for every k,l € K, k # 1,
the function kg : Rt — (=1, 00) is Borel measureable and bounded, will be consid-
ered.

If the probability measure Q is defined by (2.73) with the Radon-Nikodym density
tp+ given by (2.74), then:

i) the process {Ci}iejo,r+] is @ G-Markov chain under the equivalent probability
measure Q,

ii) the infinitesimal generator matrix function A*(t) = {)\;‘j (t)} for C' under

1<ij<K
Q satisfies, for i # j,

() = (1+ ki (6) g, VE € [0,T7], (2.75)
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and

K
N6y =— > A(t), vtel[o,T7), (2.76)
j=1,j#i

iii) the two-parameter family P*(¢,s), 0 <t < s < T, of transition probability
matrices for C relative to Q satisfies the forward Kolmogorov equation:

OP*(t, 5)

0s - P*(t’ S) A*(S)v P*(t, t) = 17 (277)

and the backward Kolmogorov equation:

oP*(t
8(15’8) =—A*(t)P*(t,s), P*(s,s) =L (2.78)
For a more detailed discussion and the proof of the last proposition refer to [6].

2.3.2.4 Continuous-time conditionally Markov chain

A probability space (£2,G, Q) endowed with some filtrations {F;};cr+ and {G; }iep+,
such that F C G is considered, and, for the sake of convenience, the following
arguments are carried on under the risk-neutral probability measure Q.

A G-adapted K-valued stochastic process C' defined on this probability space is a
continuous-time conditionally Markov chain relative to F and under the risk-neutral
probability measure Q if, for any function h : K — R:

EQ[h(Cy)|Gi] = EQR(Cy)|F v a(Cy)], YO <t <s. (2.79)
Moreover, since o(Ct) C F; V 0(Cy) C Gy, if a process C' is a G-Markov chain under
Q, then C is also an F-conditional Markov chain under Q, for any choice of a

sub-filtration F of G. However, the opposite is not necessarily true.

Let A*(t) = [\j;(t)1<ij<k, t € RT, denote a F-progressively measurable, bounded,
matrix-valued process, and for every i € K, t € Rt and any function h : K — R,

A*(B)h() = DN (HR(): (2:80)

A* is an F-conditional infinitesimal generator, or matrix of stochastic intensities, for
a K-valued F-conditional G-Markov chain C' under Q if, for any function h : L — R
the process M", defined as:

t
M = h(Cy) — h(Co) — / A % h(Cy)du, Vi€ RT (2.81)
0

follows a G-martingale under QQ. The generic entry )\;‘j(t) represent the F-conditional
intensity of transition from the state 7 to the state j.



2.4 Markovian models for credit migrations 55

2.4 Markovian models for credit migrations

Markovian models for credit migrations can be interpreted as an extension of inten-
sity models discussed in section that allow to consider several possible credit
events within the framework of the intensity-based methodology, and not just the
default event.

A firm’s credit rating is a measure of the firm’s creditworthiness and propensity to
default. Credit ratings, as seen in section [I.1.2] are typically identified with elements
of a certain set. Formally, the credit quality of corporate debt is categorized into
a finite number of credit rating classes, and each credit class is represented by an
element of a finite set £ = {1,..., K}, where state 1 represent the highest ranking,
state K — 1 represents the lowest ranking and state K corresponds to the default
event. It is well known that the credit quality of a given corporate debt changes
over time, i.e., the credit quality migrates between various credit classes and credit
ratings along with it.

These models aim to dynamically model credit migrations of a corporate bond
between different possible credit ratings, that is, changes in their credit quality over
time. The most widely used way to model credit migrations is in terms of either
discrete- or continuous-time Markov chain (or conditionally Markov chain) C' with
finite state space, referred to as the credit migration process. The main issue in
the Markovian models for the credit migrations is the specification of the transition
probabilities matrix (discrete time) or the infinitesimal generator matrix (continu-
ous time) for C, both under the real-world and the risk-neutral probability measures.

It is useful to delve into the properties of the probability space in which these models
are defined. Typically, the overall filtration involved in a credit risk model that
involves credit migrations in terms of a Markov chain C is larger than the natural
filtration FC of the migration process. Therefore, in general, it is more convenient
to deal with either the G-Markov property or the conditional Markov property,
rather than the ordinary Markov property of the migration process C. This way,
the model involves the presence of several sources of uncertainty (market risk, credit
risk, economic factors, ... ).

Another important issue in this framework is the preservation of the G-Markov
property under an equivalent change of probability measure, as the change from
the real-world probability to a risk-neutral probability. The conditions imposed in
section for the respective Radon-Nikodym densities so that the G-Markov
property is preserved are too restrictive for these credit risk models, in which the
change from the real-world to the risk-neutral probability involves all sources of
uncertainty present in the model, since the Radon-Nikodym densities are assumed
to be only adapted with respect to the natural filtration of the Markov chain, F¢,
rather than adapted to the filtration G. However, if the credit risk model admits
structural properties such as some sort of decomposition of the overall risk into
market risk and credit risk, mathematically G = F x FC, where F and F€ denote,
respectively, the filtrations related to market risk and credit risk. Then it seems
natural to expect that the G-Markov property of the migration process will still be
preserved, under some conditions for the component of the Radon-Nikodym density
corresponding to the filtration F¢. Such a decomposition would correspond to an
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underlying product probability space, which may also support the assumption of
independence between market risk and default risk (imposed, for instance, in the
Jarrow et al. (1997) [36] approach).

2.4.1 Jarrow, Lando and Turnbull model (1997)

Jarrow et al. (1997) [36] propose a Markov model for the term structure of credit
risk spreads that incorporates a firm’s credit rating as an indicator of the likelihood
of default. The model proposed by Jarrow, Lando e Turnbull is based on the Jarrow
and Turnbull model (1995).

A frictionless economy with a finite horizon [0,7%] is considered, where 7% is a
fixed horizon date and trading can be discrete or continuous. Moreover, a filtered
probability space (€2, G, P) is considered, where the filtration G represents the total
information available to traders and P is interpreted as the real-world probability
measure.

The first assumption is that there exists a unique equivalent martingale measure
Q, equivalent to P on (€, Gp+), such that all the default-free and risky zero coupon
bond prices follow a G-martingale, after normalization by the money market account.
This assumption is equivalent to the statement that the markets for default-free and
risky debt are complete and arbitrage-free.

Let r(t) be the time t default-free spot rate; then, the money market account is
denoted in the discrete time case as:

—1 .
B(t) = eXizo ™), (2.82)
or in the continuous time case as:
b r(u) d
B(t) = eJor dv, (2.83)

The second assumption is that the interest rate risk is modeled by means of an
F-adapted stochastic process r of the default-free spot rate, where F is some sub-
filtration of G. Under the first two assumptions, the time ¢ price of a default-free
zero coupon bond paying a sure unity of currency at time 7', denoted by v(¢,T),
0 <t <T, can be written as the expected, discounted value of a sure dollar received

at time 7', that is:
B(t)
o(t,T) = B2 | =~ | . 2.84

(.7) = B¢ | 5 (2849
Let v°(t,T) be the time ¢ price of a risky zero coupon bond promising to pay a
unity of currency at time T where t < T < 7, where 7 represent the random time of
default.
The third assumption is that the risky zero coupon bond is subject to the fractional
recovery of Treasury value scheme, as defined in section [2.2.3] and the recovery rate
0 is an exogenous constant, that is, the issuer may not pay in full the promised unity
of currency, if the firm’s default occurs before or at time T'. If bankrupt, the firm
pays only § < 1.
Then, v° (t,T) can be written as the expected, discounted value of a “risky” unity of
currency received at time T
B(t)
5 _ w0
W (t,T) = ES [B(T) (6 1r<ry + 1(rory) ‘gt] . (2.85)
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The fourth assumption is that the default time 7 is a random variable independent
of the stochastic process for default-free spot rates {r(t)}o<¢<,, conditionally upon
the filtration G under the martingale probability measure Q. In other words, for any
integrable functional ¢ of the default-free spot rate process r, and any integrable
function f of the random time 7:

EC [6(r) f(7)|G:] = B2 [¢(r)|G:] EQ [f(7)|G:], VteRY.

This assumption is quite convenient from the perspective of computations. In fact,
under the additional structure imposed by the model, the default time is uncorrelated
with default-free spot rates under the real-world probability measure as well (it is
really only needed under the risk-neutral probability measure). This way the model
is really only a model of spreads and hence it can be combined with any model of
the default-free term structure. Then:

Ua(t, T) = E? [BB((;))‘QJ E(t@ [(S 1{T§T} + 1{T>T}‘gt}
—o(t,T) (6 P{r <T|G/} + P*{r > T|G})
=v(t,T) (6+(1=68)P{r>T|G}),

where P*{7 > T|G;} is the probability under Q that default will occur after the
maturity 7.

(2.86)

If the conditional independence (fourth assumption) is relaxed, one can change
numeraire to the treasury bond with maturity 7" and construct the forward probability

measure Qr:
dQrp 1

aQ " w0, 1) BTy Frmestswely (250

Then:
W (t,T) = v(t,T) (5 +(1-8PT{r> T|gt}) : (2.88)

where PT{r > T|G;} is the probability that default will occur after the maturity T
under the forward martingale measure for the date T' < T™ Q.

It is interesting to observe that under the fourth assumption, the probability of
survival under the risk-neutral probability measure QQ coincides with that under the
forward probability measure Qrp:

P*{r > T|G} = PT{r > T|G}.

The idea is to make P*{r > T|G;} depend on the rating of the issuer, i.e. the
formula ([2.86) become:
', T) =v(t,T) 0+ (1—=0)P{r >T|G}). (2.89)

where 7 is the initial rating of the issuer. It would be tempting to simply use the
empirical transition probabilities as reported by the major rating agencies, but the
spreads obtained are totally inconsistent with those observed because of the effects
of, among others, different tax treatment of corporate bonds and treasury bonds
and different liquidity.
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2.4.1.1 The discrete-time case

The dates t = 0,...,T* are considered, where the horizon date T™ is assumed to be
a positive integer.

The fifth assumption is that the distribution for the default time and for the credit
migration process C' is modeled via a discrete-time, time-homogeneous G—Markov
chain on a finite state space £ = {1,..., K}, that represents the ordered possible
credit classes and the default absorbing state K, under the real-world probability
measure P. Then, the future probabilistic evolution of credit ratings does not depend
on the history of the market and on the past rating, but it is assumed to depend
exclusively on the current rating. The Markov chain is specified by the K x K
transition matrix under PP:

P11 P1,K-1 P1.K
P = : . . N ,
PK-11 * PK-1,K-1 DiK
0 - 0 1
where:
-pij =0, Vi,jek;
K
- Zpij =1, for any fixed i € K.
j=1

The default time 7 is defined as the first time the credit migration process jumps to
the absorbing state K:

T=inf{t € [0,7]: C; = K}.

The sixth assumption is that the default time and the credit migration process C'
follow a time-inhomogeneous G-Markov chain under the spot martingale probability
measure Q, with the time-dependent transition matrix:

P*(t,t+1) = : : :
P11ttt +1) oo Py g (GE+ 1) pig(tt+1)
0 e 0 1
where:

- ph(tt+1) >0, Vi,jeK;

K
- Zp;!‘j(t,t + 1) =1, for any fixed i € K;
j=1

- pfj(t, t+1) > 0 if and only if p;; > 0.
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The seventh assumption is that the risk premia adjustments are such that credit
migration process C under the martingale probability measure Q satisfy:

Pt t+ 1) = mi(t)pi; Vi, j.i # J, (2.90)

where 7;(t) are time-dependent, deterministic coefficients and are interpreted as
discrete-time risk premia. These transform the actual probabilities to those used in
valuation. Now the ¢-step transition matrix under Q can be computed:

P*(0,¢) = P*(0,1) P*(1,2) ... P*(t — 1,1). (2.91)

Each one-period transition matrix is a modification of P using the low-dimensional
parameter . This numerical scheme can be seen as a discrete-time approximation
to a row wise adjustment of the generator matrix.

In this kind of a model, the G-Markov property of C' on the product space is rather
trivial, as it is essentially equivalent to the Markov property of C' on the component
space. Observe, though, that in such a model the Markov property of the migration
process is in fact detached from the market fundamentals (it is sort of superimposed
on the market of default able claims).

In view of the seven assumptions just presented, the risk-neutral conditional proba-
bility of solvency (i.e., default occurs after T') is:

Pr>T|G} =P{r>T|C}=> p5(t.T)=1—pj(t,T), t=0,...,T,
J#K
(2.92)
where ¢ represents the state the firm is in at time ¢. Then, the value of a zero coupon
bond issued by a firm in credit class ¢ at time ¢ can be rewritten as:

V(L T) =o(t,T) |64+ (1 —=06) Y pst,T)| . (2.93)
J#K

2.4.1.2 The continuous-time case

In the continuous-time case the fifth assumption is replaced by the following: the
distribution for the default time and for the credit migration process C' are modeled
via a continuous-time, time-homogeneous G-Markov chain on a finite state space
K ={1,..., K} under the real-world probability measure P. The Markov chain is
specified by the K x K infinitesimal generator matrix under P:

A1 o ALK—1 MK
A= : : S
AK-11 " AK-1,K-1 AiK
0 . 0 0

where:

- OS)\“, fOl"iGlC;



60 2. Credit risk models

=

- A =0, forie K.
j=1

The K x K t-period probability transition matrix is given by

00 k
P(t)=et=>" (t;;) . (2.94)
k=0 ’

As in the discrete-time case, the default time 7 is defined as the first time the credit
migration process jumps to the absorbing state K:

T =inf{t € [0,T"] : C;, = K}.

The sixth assumption is replaced by the following: the default time and the credit
migration process C follow a time-inhomogeneous G-Markov chain under the spot
martingale probability measure Q, with the time-dependent infinitesimal generator
matrix:

NI E 1r-1(t) 1 i)
Ngo1a(®) o Mgl 1 () Al k(D)
0 ... 0 0

Finally, the seventh assumption is replaced by the following: the infinitesimal
generator matrix of C' under the equivalent martingale probability measure Q is
given by:

A*(t) =U(t) A, (2.95)

where U(t) = diag(u1(t),...,ux—1(t),1) is a K x K diagonal matrix whose the first
K — 1 entries are strictly positive deterministic functions of ¢ that satisfy:

T
/ wi(t) dt < +oo fori=1,...,K —1.
0

As in the discrete-time case, the diagonal entries of U(t) are interpreted as risk
premia, that is, the adjustments for risk that transform the actual probabilities into
the pseudo-probabilities suitable for valuation purposes.

Similarly as in the discrete-time case:

P*{T >T ‘ gt} = P*{T >T | Ct} = Z p:j(taT) =1 _pr(tT)a le [OaT]7
J#K
(2.96)
hence the same valuation formulae as those derived for the discrete-time case (equa-

tion (2.93])) can be applied.
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2.5 The model for the spread risk

By using only ratings as the relevant predictor of default, the Jarrow, Lando and
Turnbull model does not explain variations in credit spread between different issuers
of the same credit quality. Also, the time-inhomogeneous Markov chain assumption
implies that bond prices evolve deterministically between ratings changes. The
model presented here is a generalization of the Jarrow, Lando and Turnbull model
which incorporates state dependence in transition rates and risk premia, thus al-
lowing for stochastic changes in credit spreads between ratings transitions. The
process of credit rating transitions and default is modelled using an extension of the
classical time-homogenous Markov chain, as presented for the first time in Lando
(1998) [47] and later taken up in Gambaro et al. (2018) [28]. This model allows
to simultaneously model term structures for different rating classes and spreads to
fluctuate stochastically even in periods where the rating of the defaultable issuer does
not change, incorporating stochastic transition rates and stochastic default intensities.

Let p(t) be the categorical variable “credit rating of a firm at time t”. Recalling the
Cox process framework defined in Lando (1998) and reported in section the
process of credit rating transitions and default C' is assumed to follow a continuous-
time, time-inhomogeneous F-conditional G-Markov chain on a finite state space
K ={1,...,K}, where K is the absorbing state of default, both under the real-world
probability measure P and the risk-neutral probability measure Q. The Markov
chain is characterized by the K x K transition matrix for the time interval (¢, s:

mia(tys) oo mig-a(ts) o mak(ts) A(t,s) ap(t,s)
P(t,s) = E E | - 7
mK_Ll(t,S) T mK—l,K—l(t7 S) mivK(t’s) (]T 1
0 - 0 1
(2.97)

where the last row is composed of all zeros and a one because the default state K is
an absorbing state.

The transition matrix P(t, s) is assumed to have the following representation:
P(t,s) = S =m®), (2.98)

where G is the constant value generator matrix of a time-homogeneous Markov
chain, i.e., the generator of the P(¢, s) process, and 7(t) is a stochastic time. Hence,
conditionally to the trajectory of 7(¢), C' is a time-inhomogeneous Markov process.
Formula is an extension of the original Jarrow, Lando e Turnbull model , where
instead time evolves deterministically and the generator matrix is time-dependent
(depend on t and s):

P(t,s) = S5 (71, (2.99)

In order for the model to be consistent, that is, to have transition probabilities
between 0 and 1, the generator matrix G must have the following properties:

- the elements of the diagonal must be non-positive, g;; < 0;
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- the off-diagonal elements must be non-negative, g;; > 0, i # j;

- the sum of the elements on each row must be zero:
K

Zgijzo, i=1,..., K,
j=1

- the elements of the K-th row must all be null, since they correspond to the
transition intensities for the state K, which is absorbing.

Moreover, the process 7 has to be a stochastic time:

7(t) is a real non-negative and increasing right continuous process with left
limits (RCLL);

7(t) is a stopping time, for every t > 0;
- 7(t) is finite almost surely, for every ¢ > 0;
- 7(0) = 0;

- tlgglow(t) = 00.

As demonstrated in Feller (1971) [27], if w(¢) has stationary non-negative independent
increments, then C' is unconditionally a Markov chain. A stochastic Lévy process
with non-negative values and stationary non-negative independent increments is
called a subordinator process; hence, 7(t) is the subordinator of the subordinated
process C.

The financial interpretation of the model is that the transition probabilities of the
credit rating process are subjected to a common source of uncertainty, i.e., the
subordinator process 7(t).

If the generator matrix G is assumed to have all distinct eigenvectors, i.e., to be
diagonalizable, it is possible to perform the so-called spectral decomposition (or
diagonalization), a canonical decomposition provided by the spectral theorem:

G=BDB, (2.100)

where B is a K x K matrix whose columns consist of K eigenvectors of G and D is
the diagonal matrix whose elements on the diagonal consist of the eigenvalues of G,
which are all non-positive:

dlag(D) = (dla s 7dK—17dK = 0) <0.

It is relevant to notice that from the properties of G it follows that the K-th
eigenvector has mutually identical components and corresponding null eigenvalues:

K
Zglj c
j=1 0 c

G|:|= : =|:]l=0]:]. (2.101)

.
> gKjc
2
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Therefore, the elements of the last column of matrix B are all equal:
big =bog = = bgk. (2.102)
Recall that, by the properties of the exponential of a matrix, in general:

e 0
G =eBPB _BLB!'=B| : .. : |BL (2.103)
0 ... e¥rx

Given the spectral decomposition (equation (2.100)) and the property (2.103), the

transition matrix can be written as:

P(t,s) = BPE) 1) g1

b1 ... big\ [eh&=m®) 0 bt ... b
b1 ... bk 0 etk @)= @) )\t b
bi eh =T e edr(m(o) =)\ (prl bk
bm di(n(s)-w(e) bKKedxiﬂs)—w(t» bl bk
Zblj bj_ll edj(w(s) w( Zbljb w(s)—m(t))
7j=1
ZbK] -1 d (m(s)—m(t)) ZbK]ije (s)—m(t))
(2.104)

The condition that all the elements in the last row are null except the last one which

is equal to 1 (equation ([2.97))) implies:

dK - 07
bri =0, i=1,...,K—1,
) (2.105)
b =0, i=1,...,K—1,
bk b;(le 1,
from which it can be derived:
ZbKj ()= =0, i=1,...,K,
(2.106)

ZbKj ij edi(m(s)=m() _ 1

Finally, the property (2.102)) and the last of the four properties (2.105]) imply:
szbKK—l, i=1,..., K. (2.107)
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The subordinator process 7(t) is assumed to be defined as an integral of a positive
stochastic intensity n(t), as defined in [28]:

m(t) = /ttn(u) du ; (2.108)

0

then, with:

P(t,s) = BeP(r(®)-m") g1
_ g DU ) du- Jio () du) B! (2.109)
- B eDf:n(u)du Bfl7

P(t, s) satisfies the Kolmogorov backward equation:

OP(t, s)

T —Gn(t)P(t,s), (2.110)

and is the transition probability matrix of an inhomogeneous Markov chain on K.
Hence, the infinitesimal generator matrix of C' is G 7(t), that is, the instantaneous
transition probability to jump from the rating i to the rating j, is g;; n(t) dt.

Proof. Since:
GB =BD,

it can be seen that:

8]?5?5) =B (-D) n(t) e” 7 n(w) du g1
— _Gy(t)BeP S nwdupg-1

=-G 77(t) P(ta S)a
which shows that P(¢,s) is indeed a solution to the Kolmogorov backward equation.

With the proposed structure the calculation of the survival probability conditionally
on a starting state ¢ is simple:

K S
= pic(tys) = 1= 3 —bygbrk e Jy e du (2.111)
j=1

This Markov chain describe the evolution of a rating process that is conditional
on a particular path of the subordinator process. To get unconditional transition
probabilities, it is needed to take the expectation of these transition probabilities
over the distribution of the subordinator process.
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2.5.1 The price of the zero coupon bond

Consider a unit zero coupon bond maturing at time 7" issued by a firm whose rating
at time t is ¢, and for tractability assume the fractional recovery of Treasury value
scheme in case of default, which provides that in case of default the creditor receives
in T a fraction § € (0,1) of the face value, i.e., receives in a default-free zero coupon
bond with residual maturity 7' — 7 and face value §. The price of this bond can be
computed as:

d

T
gy e @A

’Ui(t, T) = :EQ ((T’) (1 1{T>T} +0 1{T<T}>
N

]

T
e j;f r(u) du 5 E? ll{TéT}

T
— [ KOS 1y

FiV G i| + FiV Gyt

]

[ T T
— B2 e r@d (1 g, 7)) e S @ du5qz'K(t,T)“Fj

—EQ -e_ S rw du [(1—6) (1 — qir(t,T)) + 6] |]—"t]

—EQ [ ’"(“)d"{ [1 Zb”b]}iE@[dlf }

+5} ft]
K 1 1

—EQ [ T“)d"[ (=bijbix [edfff”(md“}m ‘ft :

J=1

(2.112)

where B(t) denotes the money market account, 7 denotes the default time, ¢;x(¢,7)
denotes the probability of default by time 7" starting from the rating 7 at time ¢ under
the risk-neutral probability measure Q, G; and F; denote, respectively, the overall
filtration and the filtration with the information about the state variables. The term
—|d;| in the risk-neutral expectation coincides with d;, since the eigenvalues of G
are non-positive (d; < 0).

The last equality of the derives from the relationship:

K T K-1 T
> bijhig BY [e_ldjlft " du] = bib EY {e_ldﬂft ) du]

j=1 j=1

T
+ (birby) EY [e‘dK Ji nte ﬂ ,

(2.113)

where (biKbl}lK) =1 from (2.107)) and the expected value is equal to 1 since dx = 0.

From here on, information about the reference filtration will be omitted in the
expected values to simplify the notation.
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The subordinator process m(t) and, therefore, the default time 7 are assumed to be
independent of the default-free spot rate process r, then (2.112)) becomes:

. K- 1 T
V(ET) = o(t,T) [(1—68) Y (—bibj |:e|djft n(u) du} s
7j=1

(2.114)

where v(t,T) is the price at time ¢ of a unit default-free zero coupon bond with
maturity 7.

This assumption is really only needed under the risk-neutral probability measure in
order to obtain a closed-form valuation formula. Although this assumption is not
always empirically confirmed, it is quite common in the literature, see [36], [37], [28],
[50] and [I5]. Alternatively, this assumption can be relaxed and one can change the
numeraire to the treasury bond with maturity 7" and use the forward probability
measure Qp, as presented in section [2.4.1]

Equation shows that the price of the unit zero coupon bond depends on
(K — 1) intensities, respectively 7;(t) = |d;|n(t) with j =1,..., K — 1, each propor-
tional to the intensity of the subordinator 7(t), and therefore perfectly correlated.
If affine functions of diffusions with affine drift and volatility for r and 7 are used,
a class of models whose bond prices are expressed as sums of affine models can be
obtained.

It is interesting to show the version of the (2.114) in case of zero recovery (6 = 0):

' K-1 T
Vit T) = o(t,T) D (~bijbix {a'dﬂft ’7(“““] . (2.115)
7j=1

The subordinator intensity process 7(t) is assumed to be modelled as a mean-
reverting square root process, for instance as a Cox, Ingersoll and Ross (CIR) model,
under both the real-world and the risk-neutral probability measures, P and Q. The
real-world dynamics is:

dn(t) = aly — ne) dt + o/midZ,  n(to) = o, (2.116)

with a, vy, > 0 such that 2ay > 2, n(t) > 0 and where dZ} is a standard Brownian
motion under the real-world probability measure. Assuming a risk premium defined
as:

At my) = A@, (2.117)

the change of probability measure allows the same functional form for 7(¢) dynamics
to be maintained even under the risk-neutral measure:

dn(t) = a(§ —ny) dt + o/ dZ2, (o) = no, (2.118)

where:
d=a+ A &y=ay. (2.119)
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Under the CIR model assumption, the distribution for future values, n(s), s > t,
conditional on ¢, is a non-central Chi-squared distribution with expected value and
variance defined by the following expressions:

En(s)] =7+ (g — y)e 6D,
2
Var,[n(s)]|= a*ne [e—a(s—t) _ e—Qa(s—t)} + 022707 {1 _ e—a(s—t)] :

(67

T
and the term E? {e_mj' Ji ntw du] has an analytical expression given by [38]:

EY {(f'dj' ) d"] = A(h)e BWIdilne p = ¢, (2.120)
where:
dqh v
Ah) = | ——2ac ,
pa (¥ — 1) + dg
edah 1
B(h) = ,
") = e 1)+ 55
where: 5
- G + 04 axy
5d: a2+2\dj|02, (Z)d: B > szﬁ‘

are the model parameters in Brown and Dybvig parameterization.

Thus, the change of probability measure for the Markov chain transition matrix
governing the process of credit rating transitions and default C' is defined implicitly,
considering the dynamics and the parameters for the intensity 7(t) of the subordinator
process m(t), respectively, under the real-world and risk-neutral probability measures:

P]P(t7 5)=B eP Ji n(w) du B!,

. (2.121)

PO(t,5) = BeP Sy 1w du g1,
where 7(t) and 7(t) denote the intensities of the subordinator process, respectively,
under the real-world and risk-neutral probability measures, and the B, D, and B~}
matrices of the eigenvalues and eigenvectors of generator matrix G, and consequently
the generator matrix G, are assumed invariant between the two probability measures.

2.5.1.1 A special case

It is interesting to consider the limit case in which the only transitions allowed
are those to the default state K. In this case the first (K — 1) eigenvectors are
orthogonal (only one of the components is different from 0). Sorting the first (K — 1)
eigenvectors by eigenvalue:

|di| <|di| < -+ <|dg-1],
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the intensity 7y (¢) of the first process is that corresponding to the higher rating class
and so on. The B and B~! matrices are respectively:

10 ... 0 ¢ 10 0 -1
01 ... 0 ¢ 01 0 -1
B= . BT = s
0 0 1 ¢ 0 0 1 -1
0 0 0 ¢ 0 0 0 1/c

It follows that the price of a unit zero coupon bond with maturity 7" issued by a
firm whose rating at time ¢ is ¢ and subject to the fractional recovery of Treasury
value scheme in case of default becomes:

K-1

(1-6) 3 (~byb7 ) E { sl f }+5

= (t,T) [(1 —4) ;;@l{e—idil S ) d“} + 5] .

The terms (—bijbj_é) have the following property:

vi(t, T) = v(t,T)

K-1
D (=bijbig) = 1.
j=1
In fact, since that (BB™!);; = 0 for i # j, and then biKbI_(lK =1:

K K-—1
> (bibig) =
j=1

> (bijbig) + birbgy =0, i # K.
J=1

However, in order to be interpreted as probabilities, the terms (—bijbj_é) would all
have to be non-negative, which does not always occur.

2.5.2 The volatility structure
Let §(t,t 4+ h) be the yield to maturity of a unit risky zero coupon bond:
1
g(t,t+h) = —Elog@(t,t—kh), (2.122)

and let y(¢,t + h) be the yield to maturity of a unit default-free zero coupon bond;
then, the corresponding spread is defined as:

s(t,t+h) = g(t,t +h) — y(t,t + h). (2.123)

Hence, under the assumption of independence between the subordinator process m(t)
and the default-free spot rate:

t+h
s(t,t+h) = —illlog< (1-9) Z bwb]K )E2 [ —l;1 n(u)du} _|_5>_ (2.124)
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From the assumptions about the intensity 7(¢) of the subordinator process, which
follows a CIR model, it can be derived that:

E? |:€_|dj|j;t+h n(u) du] _ A(h)e—B(h)|dj|n(t)’

where:
(Sd 6¢d h v
A =
" [% (e%h —1)+6q] ’
edah 1

B(h) = ¢d(e§dh_1)+5d7

where 04, ¢4 and v are defined in section [2.5.1]
In case of zero recovery ( = 0), if a single contribution is considered in the sum

present in ([2.124]), the model coincides with the model of Duffie and Singleton with
default intensity evolving according to a dynamic a la CIR:

s A) | B . (2.125)

s(t,t+h) =

Therefore, at time t the term structure of credit spreads can be monotone increasing,
monotone decreasing or humped. At future time ¢ + At, for each value of h, the
distribution of s(t + At,t + At + h) is a non-central Chi-squared distribution with
variance:

2 207, 2 2
Vars(tL AL L+ AFLR)] = Bh(zh) [J |déj n(t) (e—aAt _ 6—2aAt) n % (1 _ e—aAt) ] '

(2.126)
Thus, the term structure of spread volatility is governed by the term B(h)/h that
zeroes in the limit h — oo and tends to 1 in the limit ~ — 0. Furthermore, the
function B(h)/h is monotone decreasing as h increases. In fact, the first derivative
with respect to h is equal to:

Kl <B(h)) _ 63hedal — (edah — 1) [5,1 + ¢ (e’ — 1)}

Oh \ h h?[6q + ¢a(ePh —1)] (2.127)
_ —ale®h —1)% + 64(54h — 1) (P — 1) + 53k

a h? [6q + ¢ga(edah —1)] '

The denominator of (2.127)) is non-negative and zeroes at h = 0, where:

.0 (B(h)\ _  (2¢4—da)
flfi%ah< h >_ 2

which is definitely negative since (2¢4 — d04) = a > 0. For h > 0, the requirement
that the derivative vanishes has for solution:

Sa(Sqh — 1) % [02(5gh — 1) + 4¢462h) /2

2¢4 ’

(65dh _ 1) —
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but of the two solutions, one should be discarded since that (%" — 1) is definitely
non-negative; the positive solution remains:

g
2¢q4

that is derived as the intersection of the two curves:

{f(h) = fih 1 hso

(e"h —1) = = [(5t—1 +\/ (dg — 1) +4¢dh]

g(h):% {(5d—1)+\/(6d_1)2+4¢dh} ) =

for which f(0) = g(0) = 0. Recalling that (2¢4 — 64) = o > 0, the two curves are
both monotone increasing, as can be seen from their respective derivatives:
fl(h) = 6d eédh

N A e
g'(h) =34 [5d+ (5dh1)2+4¢>dh]

and therefore do not intersect at any other point.

Summing up, the first derivative of B(h)/h never vanishes and the function B(h)/h
has a maximum in h = 0, with derivative definitely negative. Hence, the term that
governs the term structure of spread volatility is monotone decreasing.

2.5.3 The extension of the model with double subordinator process

In this section an extension of the model introduced in section is presented,
involving a double subordinator process and aimed to more accurately capture the
behaviours of rating transitions and thus the term structures of credit spreads for
all rating classes.

Consider two subordinator processes, m1(t) and m(t), defined as two integrals of two
positive stochastic intensities, 71 (t) and 72(t), as in equation (2.108]):

m(t) = / () du, mo(t) = / " () du, (2.128)

to to

that have the same characteristics and the same properties as the single subordinator
process defined in

Then, the transition probability matrix P (¢, s) can be expressed through a represen-

tation analogous to (2.109):
P(t,s) = eClm)4m(s)=(m@)+m ()]
— B Plmi(s)+ma(s))—(m(t)+m2 (1) g—1

:BeD( du+f n2(w) u) (f m(u)du+f n2(u du)]Bil

|
D{( w)+n2(u du>f(ft’; nl(u)+n2(u)dU)]B71
(

B L2, m(w)tnz(w) du) g—1

(2.129)

Be
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The transition probability matrix P(¢,s) thus defined satisfies the Kolmogorov
backward equation:
OP(t, s)
ot

and G(n1(t) + n2(t)) is the generator matrix of the inhomogeneous Markov chain
that governs C.

= =G(m(t) + ()P, s), (2.130)

The two intensity processes, 1;1(t) and 72(t), of the subordinator processes and,
consequently, the two subordinator processes, m1(t) and 7wa(t), are assumed to be
independent. Thus, the price at time t of the unit risky zero coupon bond with
maturity T issued by a firm with rating ¢ at time ¢, defined in , becomes:

K-1
o(T) = o(t,T) |(1-0) > (bt DE { sl J;T +n2<u>du}+5

h
—

MH

=o(t,T) |(

T
(—bijb; ) EF { —ld;] ;" m(u ] EQ [e—wjft nz(u)du:| 45

1

<.
Il

(2.131)

The two intensity processes, 71 (t) and 72(t), are assumed to be modelled as a mean-
reverting square root process, for instance as a Cox, Ingersoll and Ross (CIR) model,
under both the real-world and the risk-neutral probability measures, P and Q. The
real-world dynamics are:

dmi(t) = on(y —m(t) dt + ory/m(t) dZY (t), m(to) =mo,
dnp(t) = as(ye — ma(t)) dt + o2/ (t) dZE (), ma(to) = 20,

with oy, 75,05 > 0 such that 2ay; > crjz-, n;(t) > 0, for j = 1,2, and where dZ;P(t),
j =1,2, is a standard Brownian motion under the real-world probability measure,
and the dynamics of 71 (t) and n2(¢) under the risk-neutral measure are:

dm(t) = a1(5n —m(t) dt + o1/m®) dZ2(t), mlto) =mo,
dna(t) = (92 — m2(t)) dt + o2y/ma(1) dZS (1), ma(to) =20 -

Then the two expectations in (2.131]) have an analytical expression given by the CIR

model and defined in (2.120]).

(2.132)

(2.133)

The model can be extended to more accurately capture market imperfections by
adding a rating-specific liquidity spread to the formula of the defaultable zero coupon

bond price (2.131)):

; T
vi(t,T) =v(t, T) EX [e R0 du] y

K 1
[ bl]b |: |d |f T]l :| E? |:e_djj;T772(u)du:| +(5 )

Jj=1

(2.134)
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The rating-specific liquidity spread intensities I°(t), for i = 1,..., K — 1, are assumed
to be independent of each other of the other risk-factors in the model (the default-free
spot rate process and subordinator processes). They are assumed to be modelled
as a Vasicek model. Then the rating-specific liquidity spread intensities evolve as
an Ornstein-Uhlenbeck process with constant coefficients under both the real-world
and the risk-neutral probability measures, P and Q. The real-world dynamics is:

di(t) = k;(0; — 1'(t)) dt + p; dZY (1), 1'(to) = lio, (2.135)

with k;,p; > 0, fori =1,...,K — 1, and dZZI-P(t), 1=1,...,K — 1, is a standard
Brownian motion under the real-world probability measure. Assuming a risk premium

defined as:
Gt (1) = G, (2.136)

the change of probability measure allows the same functional form for /;(¢) dynamics
to be maintained even under the risk-neutral measure:

I (t) = ki(0; — 1'(t)) dt + p; dZ2(t), 1i(to) = lio, (2.137)

where:
o= ki, ;= 6; — Q/:Z' (2.138)
Under the Vasicek model assumption, the distribution for future values, I*(s), s > t,
1=1,...,K — 1, conditional on F¢, is a Gaussian distribution with expected value

and variance defined by the following expressions:
E([li(s)] = 0;+ (Li(t) — 0;) e ki (7D,
Vart[li(s)]: % |:1 _ e_2ki(5—t):| ’

Q| — fT li(u) du . : SO
and the term E; [e Jt has the following analytical expression:

E9 |:€_ j;Tli(u) du:| — eA(h)—B(h) li(t)’ h=T— t, (2139)
where:
1-— e_f“lh
Bh)=—¢
=15
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Chapter 3

Bayesian filtering techniques

Filtering is an operation that involves extracting information about a variable of
interest at a specific time, using the observed /measured data up to and including
that time.

Stochastic filtering theory was first established in the early 1940s due to the pionee-
ring work by Norbert Wiener [66] [67] and Andrey N. Kolmogorov [43] [44], and it
culminated in 1960 with the publication of classic Kalman filter [39].

The Kalman filter is a recursive method of estimating the state of a dynamic system
perturbed by white noise. It is based on the assumption that the observable variables
are related to the state of the system by a linear function, and allows estimation of
the variables driving such dynamical systems by inferring missing information from
the measurement of the observable ones.

The Kalman filter and its numerous variants have been applied in various areas of
research: in finance Harvey [30] found in the logic of the Kalman filter the so-called
structural time series models, and Babbs and Nowman [5] first applied it in the
area of interest rate risk; in the industrial field, the Kalman filter has been used in
modern vehicle monitoring systems ([48], [51]), all the way to the space exploration
field. In fact, part of the filter’s notoriety is due to its use by NASA [52] in the
processing guidance system for the spacecraft of the Apollo program. Nowadays,
Kalman filters have been applied in various engineering and scientific areas, includ-
ing communications, machine learning, neuroscience, economics, finance, political
science, and many others.

In order to overcome the Kalman filter’s very limiting assumptions of linearity and
Gaussian distribution of noise process, a variety of extensions have been proposed,
including the Extended Kalman Filter and the Unscented Kalman Filter, which allow
non-Gaussian and non-linear problems to be dealt with by linearly approximating the
observations and equations of state, or by applying approximations to the iterative
formulas of the classical Kalman filter.

On this basis, further developing filtering techniques, Gordon [29] first presented
the particle filter, later formalized in the work of Kitagawa [42]. Since their in-
troduction in 1993, particle filters have become a very popular class of numerical
methods for the solution of optimal estimation problems in non-linear non-Gaussian
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scenarios, where the Extended Kalman Filter and the Unscented Kalman Filter
do not yield reasonable estimates. These methods solve the estimation problems
numerically in an online manner, i.e., recursively as observations become available.
In comparison with the standard approximation methods, the principal advantage
of particle methods is that they do not rely on any local linearization technique
or any crude functional approximation. The price that must be paid for this flexi-
bility is computational: these methods are computationally expensive. However,
thanks to the availability of ever-increasing computational power, these methods
are already used in real-time applications appearing in fields as diverse as chemi-
cal engineering, computer vision, financial econometrics, target tracking and robotics.

In the Solvency II framework, the application of full or partial internal models
requires the use of appropriate estimation techniques for estimating model parameters,
allowing;:

- to infer the model parameters under both the real-world and risk-neutral
probability measures;

- to infer both the parameters of the models used to describe individual risk
drivers and the parameters of the dependency structure among individual risk
drivers.

The estimation technique based on particle filtering is consistent with the require-
ments of the regulations, as it represents a time series estimation technique that
allows the parameters under both probability measures to be estimated and the
time series of the latent variable to be reconstructed, through which the dependency
structure can be estimated.

This chapter is organized as follows. In section [3.I] Hidden Markov models are
presented and the estimation problem is formalized, which justifies the use of
filtering techniques. Sections and present the estimation methodology on
time series using filtering techniques, in the particular case of the Kalman filter
and the general case, in which the class of particle filters is also placed. This last
section then discusses two special cases of particle filters, which utilize, respectively,
Gauss-Legendre quadrature and Sequantial Monte Carlo methods with resampling.
Section [3.4] shows how the different filtering techniques are applied to the model for
spread risk.
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3.1 Hidden Markov Models and the estimation problem
Consider a X-valued discrete-time Markov process { X, },,>0 such that:

XU ~ :U’(wo)a
Xn ’ (Xn—l = xn—l) ~ f(wn | mn—l)a

where p(x) is a probability distribution function and f(x | ") denotes the probability
density associated with moving from @’ to . Only the Y-valued process {Y ,,}n>1
can be observed, and {X,},>0 has to be estimated, under the assumption that,
conditional on {X,,}n>0, {Yn}n>1 observations are statistically independent and
their marginal densities are:

Y, | (Xn = mn) ~ g(yn | mn) (3'2)

Models defined by equations (3.1]) and (3.2]) are known as Hidden Markov Models
(HMM) or general state-space models (SSM), where:

(3.1)

- {Xn}n>0 is the (multidimensional) state variable, that is a non-observable
Markov process; equation (3.1)) is called state equation;

- {Y', }n>1 is the (multidimensional) observation variable, whose observations are
mutually independent, conditional on the value of the state variable; equation
(3.2) is called measure equation or observation equation.

The state equation describes the dynamics of the system, while the measure equation
describes the relationship between the state variable and the observation variable. In
general, the dynamics is stochastic and the measure equation is affected by a noise
due to errors/imperfections in the measure process (e.g., related to the presence of
transaction costs).

Ezample. Finite State-Space Hidden Markov Model
Consider X = {1,..., K}, so that:

P(Xo = k) = u(k),
P(Xp = k| Xoor = 1) = f(k | 1),

The observations follow an arbitrary model of the form . This type of model
is extremely general and can be used in areas, such as genetics, in which they can
describe imperfectly observed genetic sequences, signal processing, and computer
science, in which they can describe, amongst many other things, arbitrary finite-state
machines.

In the general representation of such models, the problem of interest is to be able to
estimate the expected value of a generic function h : X — R™:

1) = B [hl@oa)) = [ h@od) p@os | yre) dwoa, (3.3)

where xg; and y,, are the time series of the state variable and observations,
respectively:
mO:t:{mmwla"'amt}v yl:t:{ylay%'",yt}'
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The estimation of (3.3]) in turn requires knowledge of the probability distribution
p(xo:t | Y1)

Hence, estimation procedures based on the state-space representation consist in
solving the optimal problem related to the following reference quantity:

T
log(L) = log (p(yy.7)) = log (H p(y; | yl:t—l)) , (3.4)

t=1

where p(y,.7) is the (multivariate) probability density function computed for the
observed values of the observation variable time series. Then the problem of filtering
can be redefined more specifically in the Hidden Markov Model framework as the
characterising the distribution and the full path of the state variable at the present
time, given the observations up to the present time.

Since at each time in the time series the likelihood function depends on the value
of the state variable (which is needed to compute the expected value of the ob-
servations), the problem takes the form of a simultaneous estimation problem of
the distribution of the values of the state variable and the parameters of its dynamics.

The main challenge in computing (3.4]) consists in computing the (multidimensional)
integrals that appear in the two recursive equations of the filter. According to the
techniques used to solve these integrals, three cases can be distinguished:

- the case where a closed-form solution exists at the iteration on the time pair
(t — 1,t), because of the (restrictive) assumptions on the state variables and
on the observation variables (the so-called Kalman filter);

- the case where integrals are computed using so-called quadrature techniques,
e.g., Newton or Gauss quadratures;

- the case where integrals are computed using Monte Carlo methods.

The last two cases represent the class of particle filters: the former are known as
deterministic filters and make use of well-established integration schemes, while for
the latter there are many alternative algorithms, belonging to the class of Sequential
Monte Carlo methods. They will be discussed in detail in the section [3.3] By
estimating models using market time series, the use of the techniques of filtering
makes it possible to obtain simultaneously the parameters of the dynamics of the risk
factors with respect to the two probability measures (real-world and risk-neutral), as
well as to estimate the values of (unobserved) risk factors and to handle any missing
of observed data (e.g., if time series are not equispaced).



3.2 Kalman filter 77

3.2 Kalman filter

The Kalman filter provides the solution to the estimation problem in the case where:
- the dynamics is linear (affine) in the state variables;
- the measure equation g(y,, | ,) is linear (affine) in the state variables;

- the process and the observation noises are independent and Gaussian dis-
tributed.

The existence of a closed-form solution is due to the property of the Gaussian
distribution, whereby linear combinations of Gaussian-distributed random variables
are also Gaussian-distributed. For the linearity assumption, the recursive filter
equations take the following expression in matrix form:

41 =c+Tix+ Rydy, dy~ N(0,Q,) (state equation),

. 3.5
Yy =ki+ Z;x; + &4, g, ~ N(0,H;) (measure equation), (3.5)
with initial condition &g ~ N (g, Po). More explicitly:
1 o Tin ... Tim T1
R11 e R1k dl
ca
= | .|+ +| : e
. : : R Rk . dr .
m
Lm t+1 H/—E Tr1 ... Tom ¢ In/ ~ Tx,l—/
mx1 mxXm nx1
Y1 ki1 €1
Z11 Z1m 1
Y2 k2 €2
Y/ ko/ - )y N er/
—— —— pXm mx1 ~——
pXx1 pX1 pXx1
(3.6)
where:

-t=1,2,...,T, is the time index;
- vy, is the p x 1 vector containing the values of the observed variables;
- x¢ is the m x 1 vector containing the values of the state variables;

- g, € R™ and d; € R are Gaussian-distributed disturbance processes, indepen-
dent of each other and of x;, serially independent, with covariance matrices,
respectively, H; and Qy;

- ¢; and k; are vectors with — possibly time-varying — elements of size m and p;

- Z3, Ty and R; are matrices with — possibly time-varying — elements of size
pxm, mxmand m X k;

- T, p, m and k are positive integers.
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Assuming that the estimation of «;, conditionally to all the information y,., available
up to that time, &;; := ay, is available at time ¢, the expected value and the
variance-covariance matrix of @, ; can be computed:

ae = Elziy = ¢+ Tray,

Py = Varlzy,,] = TPy T+ RQR;,

sum of variances

where Py, is the variance of x; conditional on y,.;.

Adding the information from the observation of y,,, the variable innovation is
defined as the difference between the value of the observable variable and its expected
value:

Vir1 = Y1 —  ElYalyid =Yg — Zeagage (3.8)
—_———
ex-ante expected value

The innovation has zero expected value and variance-covariance matrix:
/
Fip = Varlven|y,y = Zepi P Ziy + Hiepa (3.9)

The estimate of 411 updated through the contribution of the new information is:

Apilft+1 = Qe+ Pt+1\tZ2+1Ft_+11 Ui+,
=G
(3.10)
Pijr = Py — PoapZi Frl Zia Py
Gy
Equations (3.7) and (3.10)) define the Kalman filter.
The log-likelihood function then takes this form:
Tp 1 &
log(£) = — —" log 27 — 5 > (log [Fo| + viFy toy). (3.11)

t=1
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3.3 Particle filter

The Hidden Markov Model defined by and is a Bayesian model with:
- at time t = 0, pp(x0)
- for time t > 1, fo(x; | T4—1) (state equation)
- for time t > 1, go(y; | x¢) (measure equation)

where p9(0) represents the initial probability density of the state variable, fp(a: | @i—1)
is the transition probability from time ¢ — 1 to time ¢, and gg(y, | o) represents
the likelihood of the time ¢ observation y,, conditional on the value of the state
variable x; at the same time ¢. 6 is the vector of model parameters (both real-world
and risk-neutral), and the subscript # denotes the dependence of the probability
distributions on the vector of parameters.

po(xo) and fop(a; | x;—1) define the prior distribution of the process of interest

{Xt}tzoi
t

po(xot) = po(xo) [ [ folar | me), (3.12)
k=1

and gp(y; | x;) defines the likelihood function:

t
Po(Y1:e | To:t) H (Ui | k). (3.13)

In such a Bayesian context, inference about X .+ given a realization of the observa-
tions Y1+ = y;.; relies upon the posterior distribution:

Pe(l‘ouylt)

po(®o:t | Y1) = o (yrs) (3.14)
where:
po(Zo:t, Y1:1) = Po(To:t) Po(Y1:t | Zout), (3.15)
and:
po(Y1.4) = /Qx Po(To:t: Y1.4) dTo:t- (3.16)

For the finite state-space HMM model discussed in the example of section the
integrals correspond to finite sums, and all these (discrete) probability distributions
can be computed exactly. For the linear Gaussian model, pg(xo.: | Y1) is a Gaussian
distribution whose mean and covariance can be computed using the Kalman filter,
as seen in section [3.2] However, for most non-linear non-Gaussian models, it is not
possible to compute these distributions in closed-form and numerical methods need to
be implemented. Particle methods are a set of flexible and powerful simulation-based
methods which provide samples approximately distributed according to posterior
distributions of the form py(xo. | y;.;) and facilitate the approximate calculation of
po(yy.). Such methods are a subset of the class of methods known as Sequential
Monte Carlo methods.
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The sequential approximation of the marginal distribution py(x; | y;.,) and marginal

likelihoods py(y;.;) are of interest.

The recursive procedure of constructing the likelihood by updating the probability

distribution of the state variable, expressed in terms of the marginal distributionﬂ

is:

90y | @) po (@t | Y1:4-1)
Po(Ye | Y1:4-1)

po(xs | Y1) = (updating step), (3.17)

where:

po(xs | Y14-1) = /Q Jo(xs | 1) po(wi—1 | Y14—1) dxs—1 (prediction step) (3.18)

x

is the distribution of &; conditional on the information up to time ¢ — 1, and:

Po(Yi | Y14-1) = /Q Po(xe—1 | Yr.4-1) fo(Te | Teo1) 90y | ) di 14 (3.19)

x

Equations (3.18)) and (3.17)) allow to calculate pg(x; | y;.4) from po(i—1 | Y1.4—1),
and thus use a recursive procedure that starts from py(xo | yo = @) = pg(xo). Then,

the marginal likelihood py(y;.;) can in turn be recursively evaluated using:

t

£<0) :p9<y1:t) = H p@(yt ‘ yl:t—l)' (320)
k=1

This approach is very computationally advantageous because it allows estimates to
be updated in real time without having to store the entire sample of observed values.

Particle methods can also be used to address smoothing problems: estimating the
distribution of the state at a particular time given all of the observations up to some
later time, i.e., attempting to sample from a joint distribution p(zo.r | y,, ) and
approximating the associated marginals {p(x, | y;.7)}, n=1,...,T.

The operation of the filter can be summarized through the following diagram:

t=20 g = 151|0 — .’E2‘0 — I’3|0 — JJ4|0 —

4
t=1 1 = Tor — X3 T Tap
4
t=2 Ti2 < g2 = 3|2 — T2 —
4
t=3 T3 < T2z & T33 = T4z —

|: filtering,

=: short-term prediction,
—: long-term prediction,
<: smoothing.

!This recursion can also be expressed in terms of posterior distribution pg(xo.: | ¥,.,)-
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3.3.1 Iterative Gauss-Legendre quadrature

Iterative quadrature is an important numerical approximation method, which was
widely used in computer graphics and physics in the early days. One of the most
popular quadrature methods is Gaussian quadrature: a quadrature rule for obtaining
an approximation of a finite integral of a function, defined as a weighted sum of n
function values at specified points, called nodes, within the domain of integration:

/bf(x) dz ~ f: wi f (@), (3.21)
a k=1

where:
- n is the number of sample points used,
- wy are quadrature weights,
- xp, are quadrature points or nodes.

In order to integrate the function f(x) over [—1,1] with Gauss—Legendre quadrature,
the k-th quadrature node is the k-th root of the n-th order Legendre polynomial
P, (z) normalized so that P, (1) = 1 and the weights are given by the formula [IJ:

2
(1 = a) [P (e

wy, = (3.22)

In case of an integration interval [a,b] other than [—1, 1], it is necessary to change
the integral to the interval [—1, 1] before applying the Gaussian quadrature rule as

follows: , )
b—a a+b\ dx
_ it 2
[ r@ae= [ (5t 10 G, (323)
with ?l% = 17_7“. Then the quadrature nodes and weights become:
, b—a a+b
I'k, = 2 T 2 s
o b4 . (3.24)
k — 2 ks

where x; and wy, are the quadrature nodes and weights computed with the integration
interval [—1, 1].

3.3.2 Sequential Monte Carlo methods for filtering

Sequential Monte Carlo methods are a general class of Monte Carlo methods that
sample sequentially from a sequence of target probability densities {m,(x1.,)} of
increasing dimension, where each distribution m,(21.,) is defined on the product
space X™. The distributions are defined as:

7I-n(ml:n) = : , (325)



82 3. Bayesian filtering techniques

and 7y, : X — RT is required to be known pointwise, while the normalising constant:

Zn = /Q ’Yn(wl:n) dwl:n (326)
might be unknown. Sequential Monte Carlo provides an approximation of (1)
and an estimate of Z; at time 1, an approximation of ma(@2) and an estimate of Zy

at time 2, and so on.

Monte Carlo methods approximate 7, (21.,) using the empirical measure:

N
. 1
wn(:cl:n) = N Zl 5X%:n (mlm), (327)
1=
where 6,,(x) denotes the Dirac delta mass located at z¢ and X%, for i = 1,..., N,

are N independent random variables sampled from 7, (x1.,).

This basic Monte Carlo approach is affected by at least two problems:

1. if 7w, (@1.) is a complex high-dimensional probability distribution, sampling is
impossible;

2. an algorithm sampling exactly from 7, (x1.,), sequentially for each value of n,
would have a computational complexity increasing at least linearly with n.

3.3.2.1 Importance Sampling

The first problem can be solved through the importance sampling method, that
relies on an importance density ¢, (x1.,) such that:

Tn(T10) > 0= qu(x1.) > 0.

Then:
Wn(ml:n) = wn(wl:n;qn(m1:n>a (328)
Z, = /Q Wn(E10) G (@ 1m) AT 1im, (3.29)

where wy, (21.,) is the unnormalised weight function:
wn(@ren) = 2O (3.30)

An importance density ¢,(x1.,) from which it easy to draw samples (e.g., a mul-
tivariate Gaussian) has been selected, and N independent samples X}, ~ q(T1:n)
have been drawn. Then the empirical measure of the samples X7i., is the Monte
Carlo approximation of g, (x1.,), and:

N
ﬁn(mlzn) — ZWTZL 6)(%:”(5171:71)’ (331)

i=1
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. 1 & .
where: )
. n( X2,
Wi = M (3.33)

3.3.2.2 Sequential Importance Sampling

The second problem can be solved through an algorithm that admits a fixed com-
putational complexity at each time step. This solution is based on selecting an
importance distribution of the form:

qn(mlzn) = anl(ml:nfl) Qn(mn | ml:nfl)

= q(z1) ﬁ qk(xk | T1k—1)- (3.34)
k=2

Practically, Xi ~ qi(x1) at time 1, and then X ~ qp(xp | Xi, ;) at time
k=2,...,n are sampled. The associated unnormalised weights can be computed
recursively using the decomposition:

wn(mlzn) = wn—l(mlzn—l) an(mlzn)

n 3.35
— ) [] enler,), (335
k=2
where the incremental importance weight function o, (x1.,) is defined as
an(mlzn) = 'Yn(xl:n) (336)

'Ynfl(xlznfl) QTL(wn | ml:nfl) ’

At any time n, the estimates 7, (21.,) and Z, defined by (3.31) and (3.32) can be
obtained.

With appropriate selection of the importance distribution g, (@, | 1.,—1), the time
required to sample from ¢, (x, | €1.,—1) and to compute a;,(x1.,) is independent of
n.

3.3.2.3 Resampling

The Importance Sampling and the Sequential Importance Sampling methods provide
estimates whose variances increase, typically exponentially, with n. To mitigate this
problem, the resampling technique is used.

Consider an Importance Sampling approximation 7, (x1.,) of the target distribution
7n(21:n). This approximation is based on weighted samples from g, (1, ), and does
not provide samples approximately distributed according to m,(@1.,). In order
to obtain approximate samples from 7, (x1.,), it is possible to sample from its
Importance Sampling approximation 7, (x1.,), i.€., to select X {n with probability
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W. This technique is called resampling. In order to obtain N samples from 7, (21.,),
one can simply resample N times from @, (x1.,). This is equivalent to associating
a number of offspring N with each particle Xi,, such that N}V = (N} ... NN)
follow a multinomial distribution with parameter vector (N, W,}V) and associating
a weight of 1/N with each offspring. Then, an approximation of 7, (®1.,), defined
as the resampled empirical measure, can be obtained:

fn(mlm) = Z Wn 5Xi:n (:cl:n), (337)

with B [N | WEN] = N W,

Several resampling schemes have been proposed in the literature; the three main
ones are:

- Systematic Resampling: sample U; ~ Unif [O, %} and define U; = Uy + % for
i =2,...,N, then set:

I

1—1 7
sz\wj:zwssvjszws}
k=1 k=1

0
with the convention Z = 0;
k=1

- Residual Resampling: set N} = | N W/ |, sample NZN from a multinomial of
; i

parameters (N, W,ILZN), where W,, oc Wi — N /N, then set N = N’ + N,,;

- Multinomial Resampling: sample N}L‘N from a multinomial of parameters
(N, Wy ).

An important advantage of resampling techniques is that they allow to remove
particles with low weights with a high probability, which is extremely useful in the

sequential framework, as the computational effor ts should be focused on regions of
high probability mass.

3.3.2.4 A Sequential Importance Resampling algorithm for filtering

In the filtering context, the aim is to compute a numerical approximation of the
distribution {p(xo:t | ¥1.¢) }+>0 sequentially in time.

If v (o) = p(xot, Yy.4) is selected, then:
mt(Tot) = p(To:t | Y1.0), (3.38)

Zy = p(Y0)- (3.39)
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In order to minimize the variance of the importance weights at time ¢, the following
importance distribution has been selected:
qt(xt | To:t—1) = me(xt | To:t—1)
=p(xt | Yy, T1-1) (3.40)
9y ) [ | 1)
a p(Y; | @i-1)

and the associated incremental importance weight is:

)

at(To.n) = (s | Yy Te-1). (3.41)

Assuming an importance distribution of the form ¢ (x; | ®o.t—1) = q(x¢ | Y;, 1—1),
the incremental weight becomes:

9(ye | @) flae | 1)

ar(xo:t) = ar(@—1:4) = (3.42)
(e | yy, 1)
Hence, at time t:
N .
Plaose | Yre) = Y Widxi (ox), (3.43)
i=1
N . .
D | Y1) = > Wit ar (X1y) - (3.44)
=1
The algorithm can be summarised as follows [42]:
1. fori=1,..., N draw samples from the importance distribution:
Xilg ~ qi(xt | Tou—1) = p(xs | Yy, Tp—1);
2. for i =1,..., N update the importance weights up to a normalizing constant:

- (qu:k) _ 9(Ys | ik) ( ki| k 1)7
Q(Xk | yk7Xk—1)

Wi=Wi_ o (Xlig—lzk) ;

Note that if the transition prior probability distribution f(x; | €;—1) is used
as the importance function, q;(x; | ©o.—1) = f(x¢ | x1—1), the last equation
simplifies to the following:

Wi Wi (e | X0) :

3. for i =1,..., N compute the normalized importance weights:
N 1ird’
j=1 Wi

4. for i =1,..., N resample {W}{, Xi,} to obtain N new equally-weighted parti-
cles {1/N, X}, }: draw N particles from the current particle set with proba-
bilities proportional to their weights, then set W} =1/N.
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3.4 Filtering techniques applied to the model for spread
risk

In this section it is described how the different filtering techniques presented above
are applied to the model for spread risk presented in section [2.5| and its extensions.
Specifically, the estimation of the model with one subordinator process
exploits particle filtering with Gauss-Legendre quadrature techniques; the estimation
of the model with two subordinator processes drops the quadrature techniques
for solving integrals, because of the high computational complexity due to the
presence of multidimensional integrals, and instead exploits particle filtering with
the Sequential Importance Resampling algorithm; finally, the estimation of the
liquidity component within the model for spread and liquidity risks , due to
modeling assumptions (Vasicek model and thus Gaussian distributions), can exploit
the Kalman filter.

3.4.1 The model for spread risk with one subordinator process

In the model for spread risk summarized by , the reference variable is the
intensity 7(t) of the subordinator process, which is a latent variable on which the
observed values of the credit spreads of the different rating classes depend. It can
thus be configured as a Hidden Markov Model, where:

- the intensity n(t) of the subordinator process is the state variable;

- the term structures of credit spreads for a given sector and the different rating
classes considered are the observation variables.

The measure equation g (o(s) | 7) is assumed to have a Gaussian distribution with
expected values equal to model values and diagonal variance-covariance matrix A
with identical elements for “macro-rating”: ratings AAA, AA, and A have variance
d 4, ratings BBB, BB, and B have variance g, and rating CCC has variance ¢

A = diag(04,04,04,0p,0p,08,0c). (3.45)

The assumption of using different variances by “macro-rating” is justified by the
significantly different statistics observed for the time series of credit spreads for
different ratings, which will be presented later. The measure equation is:

g(oi(s) |m) ~ N (ai(s)iat(s),4), (3.46)

where o(s) are the term structures of credit spread for the different rating classes
considered at time t for the vector of residual maturity s, and o} (s) are the corre-
sponding model values.

Instead, the state equation fy(n; | 7¢—1) is implicitly defined by the model assumption
for the intensity of the subordinator process (CIR model), i.e., it is a non-central
Chi-squared distribution.

Since the distributions provided by the model are not Gaussian and the relationship
between the state variable and the observed variables is non-linear, the closed-
form solutions provided by the Kalman filter cannot be used, but the numerical
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approximation technique of Gauss-Legendre quadratures with n = 1024 quadrature
nodes over the interval [0, 25] must be implemented. Therefore, the recursive filter

equations (3.17) and ( - ) become:

o (1| oracs () = 3 folui 1) Bk y | (), (347)
k=1

o (,7; | au(@) _ % (oi(s) | nt) o (ni | o1:0-1(8)) | (3.48)
Z w gy (Ut(s) ’ 775) Po (Uf—1’ 0'1:1;1(3))
k=1

po(ae(s)lor:i—1(s))

where 6 is the vector of model parameters (both real-world and risk-neutral).

Then the optimization problem (3.4) becomes:

gé?l); L(0) = = max Hpg o(s) | oi-1(8)). (3.49)

3.4.2 The model for spread risk with two subordinator processes

In the extension of the model with two subordinator processes , the reference
variables are the intensities, 71 (t) and n3(t), of the two subordinator processes. These
two variables thus represent the latent variables of the Hidden Markov Model, while
the observation variables are still the term structures of the credit spreads for the
different rating classes.

The assumption for the measure equation g (o¢(s) | 71(t), n2(t)) remains the same as
that made for the model with only one subordinator process: a Gaussian distribution
with expected values equal to model values and diagonal variance-covariance matrix
with identical elements for “macro-rating”.

With two state variables, the state equation becomes:

fo (mesmoe | mi—15m2,0-1) = for (e | me—1) foo (M2, | M2,0—1)

where 6 is the overall vector of model parameters, 6 is the vector of parameters
related to the intensity 71 (¢) of the first subordinator process, and 69 is that re-
lated to the intensity 72(t) of the second subordinator process. The two transition
prior probability distributions, fp, (71| m,t—1) and fp, (M2¢ | m2,4—1), are implicitly
defined by the model assumption for the intensities of the subordinator processes
(CIR model), i.e., they are non-central Chi-squared distributions.

Since, as in the single-subordinator process case, the closed-form solutions provided
by the Kalman filter cannot be used and the level of computational complexity
increases compared to the single-subordinator process case, the Sequential Impor-
tance Resampling algorithm for particle filtering is used. The importance distribu-
tion g (¢, —1) is assumed to coincide with the transition prior
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probability distribution fg (91.¢,72,¢ | 71,.—1,72,¢—1), then the Sequential Importance
Resampling algorithm shown in section with N = 1024 independent samples
is used.

3.4.3 The liquidity component in the model for spread and liquid-
ity risks

In the model for spread and liquidity risk , for the liquidity component the refe-
rence variable is the rating-specific liquidity spread intensity (), fori = 1,..., K —1.
These variables represent the latent variables of the Hidden Markov Model, while
the observation variables are the term structures of the credit spreads for the rating
class 1.

The liquidity component is estimated separately from the spread risk component, and
the estimation is performed individually on each rating ¢ = 1,..., K — 1. Therefore,
since the rating-specific liquidity spread intensity {?(¢) has been assumed to follow a
Vasicek model, and thus follows a Gaussian distribution and respects the property of
linearity, it is possible to exploit the closed-form solutions provided by the Kalman
filter. Based on the properties of Vasicek model, particularly , the measure

equation becomes:

oi(s) = Al(s) + Bi(s)li + &

—log vgpr(t,sl)—Ai(sl) Bi(s1) ;

s . s s
— log vgpr(t,SQ)—A’ (s2) B'(s2) €i

. ; s
—_ $2 + 5‘2 l; + ‘2 R (350)
—log ngr(t,sn)—Ai (sn) B (sn) Eén ‘
Sn Sn
ko= Al (s) Zi=B'(s)

where v,iS'pr (t, sx) denotes the price at time ¢ of the unit risky zero coupon bond with
maturity s; issued by a firm with rating ¢ at time ¢, defined in with the
parameters obtained from the estimation of the spread risk component, A%(s) and
B'(s) are defined by the Vasicek model (2:139), and &} ~ N(0, H'), where H' is a
diagonal matrix whose elements on the diagonal are equal to h?, fori = 1,..., K — 1,
since the measurement errors are assumed to be independent from each other.
Instead, the state equation is implicitly defined by the model assumption for the
rating-specific liquidity spread intensity [*(t) (Vasicek model) and becomes:

ligr =05 (1= e7h8) 4 7O 1 4 i, (3.51)
— i

Ct

where d ~ N(0,Q"), with Q" = ;zi [1 o2 ki(sft)}
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Chapter 4

Estimation problem

The purpose of the following chapter is to present:
- the data underlying the estimation problem (section [4.1));

- the methodological aspects of the estimation procedure (section [4.2)), with
detail on the optimization problem and on the synthetic measures used in
determining the goodness of fit of the models to the data.

Finally, in section the estimation problem is framed within the Solvency IT
framework through a practical application.

4.1 Reference database

This section presents the input data to the estimation procedure, and specifically the
time series of term structures of credit spreads for different rating classes (section

4.1.1)) and the rating transition matrix (section 4.1.2]).

4.1.1 Credit spread time series

For time series of term structures of credit spreads, iBoxx indices provided by IHS
Markit are used, consistent with the EIOPA guidelines in [25] for calculating funda-
mental spreads for matching adjustment. Specifically, IHS Markit iBoxx indices for
the Financials sector, EUR currency, and credit ratings ranging from AAA to CCC,
according to Standard €& Poor’s Global Ratings classification, are used. Table
shows the identifiers of the IHS Markit iBoxx indices that have been considered.
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Index name/Maturity bucket 1-3yr 3-5yr 5-Tyr y-10yr 10+4yr
EUR Financials AAA DEO00A0JZBMY9 | DE000A0JZBP2 | DE000AOJZBRS | DE0O00A0JZBT4 | DEO00A0JZBKS3
EUR Financials AA DEO000A0JZBB2 | DEO00AOJZBDS8 | DE000A0JZBF3 | DE0O00A0JZBHY9 | DEO00A0JZA95
EUR Financials A DEO00AOJZA12 DEO00AOJZA3S8 DEO00AOJZA53 | DEO00AOJZAT79 | DEOOOAOJZAZ3
EUR Financials BBB DEO00A0JZBX6 DEO00A0JZBZ1 DEO000A0JZB11 | DE000A0JZB37 | DEO0O0AOJZBVO
EUR High Yield Financials BB GB0O0OBDDNH/909 | GBOOBYMX3P02 | GBO0OBYX97S82 | GBOOBDDN5C33 | GBOOBL0O9VP55
EUR High Yield Financials B GBO0OBDDN5H87 | GBOOBYMX3MT70 | GBOOBYX97Q68 | GBOOBDDN5K17 | GBOOBL0O9VP55
EUR High Yield Financials CCC | GBOOBDDN5P61 | GBOOBYMX3R26 | GBOOBYX97V12 | GBOOBDDN5R85

Table 4.1. ISIN codes of THS Markit iBoxx indices for the Financials sector, EUR currency and AAA to CCC ratings - Source: THS Markit.
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Among the various types of spreads available for THS Markit iBoxx indices, the
Annual Benchmark Spread is considered, and the Average Time to Maturity/Average
Ezxpected Remaining Life is used as a proxy for maturity.

The Annual Benchmark Spread is defined as a premium above the yield on a default-
free bond necessary to compensate for the additional risk associated with holding
the bond. It is calculated as the difference between the yield of the bond and the
benchmark bond. The selection criteria for a benchmark bond used by the provider
ITHS Markit are:

- a government bond is selected as an approximation of a default-free bond;

- the difference between maturities of a bond and the benchmark bond is the
smallest in comparison to other alternatives.

The Annual Benchmark Spread of a bond ¢ at time  is:

BMSE — 0 Benchmark bonds (41)
nt Y — Y§M(i)7t Other bonds, '

and the Annual Benchmark Spread of a index at time ¢ is:

n
BMS{ =Y BMS{ WS (4.2)
i=1
where n is the number of bonds/indices that make up the index, BM Sfft is the
Annual Benchmark Spread of a bond/index i at time ¢t and W£ is the duration-
adjusted market value weight of a bond or index, i.e., the adjusted share of each
bonds market value in the aggregate adjusted market value of the index, or the
current weight of the sub-index in the overall index as of the last rebalancing.

The Average Time to Maturity is defined as a weighting of the Average Fxpected
Remaining Life of the bonds/sub-indices that make up the index, in accordance with
the amount outstanding:

n
ZLFi,t sz\tf Index of bonds
LFU; = {51 (4.3)
> LFU;y W/ Index of indices
i=1
where LF;; is the Average FExpected Remaining Life of the bond ¢ at time ¢, LFU;;
is the Average Time to Maturity of the sub-index ¢ at time t and WZA; is the nominal
value weighting, i.e., the share of the notional of bond 7 in the aggregate notional of
the index, or the fixed weight of the sub-index ¢ in the overall index as of the last
rebalancing.

The valuation date is 31/12/2021 and the depth of the time series is 15 years, from
01/01/2007 to 31/12/2021. The periodicity of the time series is daily. Table
shows the overall availability of credit spread data for the IHS Markit iBoxx indices
considered, while table shows the year-by-year detail.
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IHS Markit iBoxx index Maturity Market value Observations
EUR Financials AAA - 1-3 2 5516476643 2327
EUR Financials AAA - 3-5 4 4927871934 2399
EUR Financials AAA - 5-7 6 3916205602 2358
EUR Financials AAA - 7-10 8 5363510971 1629
EUR Financials AAA - 10+ 14 4084164057 1244
EUR Financials AA - 1-3 2 52650850957 3939
EUR Financials AA - 3-5 4 45591680392 3939
EUR Financials AA - 5-7 6 25086644930 3939
EUR Financials AA - 7-10 8 23015840644 3939
EUR Financials AA - 10+ 15 5657217749 3889
EUR Financials A - 1-3 2 95846586646 3889
EUR Financials A - 3-5 4 101038447078 3890
EUR Financials A - 5-7 6 67401880719 3890
EUR Financials A - 7-10 8 61345065649 3890
EUR Financials A - 10+ 13 10751186 522 3890
EUR Financials BBB - 1-3 2 49707321550 3890
EUR Financials BBB - 3-5 4 57304285173 3890
EUR Financials BBB - 5-7 6 42814002345 3890
EUR Financials BBB - 7-10 8 35452841869 3890
EUR Financials BBB - 10+ 12 8217208981 3204
EUR High Yield Financials BB - 1-3 2 16312748 668 3899
EUR High Yield Financials BB - 3-5 4 16775285602 3898
EUR High Yield Financials BB - 5-7 6 8195328585 3832
EUR High Yield Financials BB - 7-10 8 4317310019 3898
EUR High Yield Financials BB - 10+ 21 1046 066 465 1742
EUR High Yield Financials B - 1-3 2 2179708 553 3579
EUR High Yield Financials B - 3-5 4 3275042164 3514
EUR High Yield Financials B - 5-7 6 983 786 900 3469
EUR High Yield Financials B - 7-10 8 697699 434 1470
EUR High Yield Financials B - 10+ 39 124824727 651
EUR High Yield Financials CCC - 1-3 2 1055441671 2734
EUR High Yield Financials CCC - 3-5 4 937284795 2906
EUR High Yield Financials CCC - 5-7 6 308918134 644
EUR High Yield Financials CCC - 7-10 8 410998 647 1061

Table 4.2. Overall availability of credit spread data for the ITHS Markit iBoxx indices.
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In order to obtain estimates that are as representative as possible, having in mind
the availability, the reliability and the robustness of data, in terms of the number
of observations, the market value of indices and the number of constituents, the
following decisions have been adopted for pragmatic reasons:

- EUR Financials AAA credit spread indices have not been available for several
maturity buckets and several observation years; moreover, the number of index
constituents and market value are very low. In order to solve the current
lack of data, in accordance with the assumption taken by EIOPA as part of
the Volatility Adjustment and Matching Adjustment calculations, the market
Financials AAA credit spread will be 85% of market Financials AA credit
spread. The 0.85 reduction factor is based on historical experience: the average
ratio between the average values of AAA and AA Financials credit spread
among different maturity buckets is 0.83;

- EUR High Yield Financials BB credit spread index for 10+ years-maturity
bucket have not been available for several observation years; moreover, the
number of index constituents and market value are very low. In order to avoid
lack of representativeness due to the lack of data, for the BB rating, only the
maturity buckets 1-3 years, 3-5 years, 5-7 years and 7-10 years are considered;

- EUR High Yield Financials B credit spread indices have the same problems as
EUR Financials AAA credit spread indices. Therefore, in order to maintain
maturity information, a flat index is not used, in contrast to the EIOPA
guidelines, but an adjustment is applied consistently with that applied to FUR
Financials AAA credit spread indices: the market Financials B credit spread
will be 180% of market Financials BB credit spread. The 1.80 increase factor
is based on historical experience: the average ratio between the average values
of B and BB Financials credit spread among different maturity buckets is

1.807

- FEUR High Yield Financials CCC credit spread indices have the same problems
as FUR Financials AAA and FUR High Yield Financials B credit spread
indices. Therefore, in order to maintain maturity information, a flat index is
not used, in contrast to the EIOPA guidelines, but an adjustment is applied
consistently with that applied to FUR High Yield Financials B credit spread
indices: the market Financials CCC credit spread will be 365% of market
Financials BB credit spread. The 3.65 increase factor is based on historical
experience: the average ratio between the average values of CCC and BB
Financials credit spread among different maturity buckets is 3.65.

Therefore, the number of input observations is 19445 for FUR Finacials AAA in-
dices, 19445 for FUR Financials AA indices, 19445 for FUR Financials A indices,
18759 for FUR Financials BBB indices, 15538 for EUR High Yield Financials BB
indices, 15538 for EUR High Yield Financials B indices and 15538 for FUR High
Yield Financials CCC indices, for a total of 123708 observations processed in the

'For the calculation of this average ratio, the 10+ year maturity bucket was excluded, as the
reference maturity for Financials B is almost twice that of Financial BB (39 years vs. 21 years).
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estimation procedure. This amount is evidence of the numerical complexity of the
estimation problem considered.

Figures and show the surfaces of the credit spreads observed in the market?]
for the Investment Grade (AAA to BBB) and High Yield (BB to CCC) rating classes,
respectively. Figure compares the time series of credit spreads of different rating
classes, from AAA to CCC, for common maturities (2, 4, 6 and 8 years). It shows
that credit spreads trended similarly for all rating classes and maturities considered,
with peaks corresponding to the 2008-2009 (subprime mortgages), 2012 (European
sovereign debt), and 2020 (COVID-19 pandemic) crises. In addition, spread risk
estimation raises the issue of controlling dominance between risks corresponding to
different rating classes. Figure shows a general dominance among the different
rating classes, that is, as the rating worsens, the credit spread increases. This
behavior is also confirmed by table [£.4] which shows the inversion frequencies
between credit spreads of adjacent rating classes, computed both at the level of the
central curve and at the level of the “Up” and “Down” curves, obtained respectively
by summing and subtracting a standard deviatiorﬁ from the central values. The
table shows that at the level of the central curves inversions are almost totally absent,
and shows that the difference between the central curves is small compared to their
volatility.

Tables and show the means, volatilities, and 99.5% quantiles of credit
spreads for all rating classes and maturities considered, computed over the entire
observation period (2007-2021) and over subperiods of annual span, respectively.
With respect to the overall statistics, it can be noticed that as the rating deteriorates,
the means and volatilities increase, while there is no uniform trend as the maturity
increases, with the volatilities of the latest maturities always being lower than those
of the earliest maturities. With respect to the annual statistics, on the other hand,
it can be seen that for all rating classes and all maturities considered, the variability
of credit spreads decreases significantly from 2013 onward. Figure [£.4] compares
historical volatilities, over 1-year rolling windows, of credit spreads for all rating
classes considered and for common maturities (2, 4, 6 and 8 years).

2As a result of the decisions described above.
3Computed over the whole time series.
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Figure 4.1. Credit spread term structures time series - from 01/01/2007 to 31/12/2021 -

Investment Grade.
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Figure 4.2. Credit spread term structures time series - from 01/01/2007 to 31/12/2021 -
High Yield.
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100 4. Estimation problem

Bucket Maturity Mean Std. Dev. Min Max Quant. 99.5%
EUR Financials AAA

1-3yr 2 79.53 60.48 13.14 351.68 322.69
3-5yr 4 89.57 57.64  21.45 331.18 315.58
5-Tyr 6 97.52 64.44  27.22 419.19 392.68
7-10yr 8 102.34 60.17  31.77 368.62 340.63
104-yr 15 118.22 56.13 41.54 384.13 332.90
FEUR Financials AA
1-3yr 2 93.56 71.15  15.46 413.74 379.64
3-5yr 4 105.38 67.81  25.23 389.62 371.27
5-Tyr 6 114.73 75.81 32.02 493.16 461.98
7-10yr 8 120.39 70.79  37.38 433.67 400.74
10+yr 15  139.08 66.04  48.87 451.92 391.65
EUR Financials A
1-3yr 2 171.27 181.13  24.37  1039.05 996.76
3-5yr 4 178.83 154.58  40.00 968.92 911.70
5-Tyr 6 201.87 168.81  45.60  1044.73 973.28
7-10yr 8 216.16 167.30 73.61 1013.47 952.37
10+yr 13 206.23 124.95  93.76 819.50 775.01
EUR Financials BBB
1-3yr 2  393.16 535.93  39.70  4125.30 3842.83
3-5yr 4  365.41 370.03 54.02  2381.88 2237.60
5-Tyr 6 391.46 422.00 82.80 3324.18 2883.55
7-10yr 8  401.85 363.94 101.06  2571.68 2419.64
10+yr 12 316.11 125.38 145.89 789.21 747.08
EUR High Yield Financials BB
1-3yr 2  706.10 707.67 184.95  4874.89 4007.63
3-5yr 4 696.13 605.64 188.17  3969.93 3808.96
5-Tyr 6 627.85 379.08 234.30 2419.64 2198.16
7-10yr 8  638.70 419.05 129.88  2804.49 2579.93
EUR High Yield Financials B
1-3yr 2 1270.98 1273.80 33291  8774.80 7213.73
3-5yr 4 1253.03 1090.16 338.71  7145.87 6856.13
5-Tyr 6 1130.14 682.35 421.74  4355.35 3956.69
7-10yr 8 1149.66 754.29 233.78  5048.08 4643.87
EUR High Yield Financials CCC
1-3yr 2 2577.27 2582.99 675.07 17793.35 14627.85
3-5yr 4 2540.86 2210.60 686.82 14490.24 13902.70
5-Tyr 6 2291.67 1383.65 855.19  8831.69 8023.28
7-10yr 8 2331.25 1529.54 474.06 10236.39 9416.74

Table 4.5. Means, standard deviations, minimum, maximum and 99.5% quantiles of market
data (b.p.).
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EUR Financial AA

2Y 4Y 6Y 8Y 15Y
Start Date End Date Mean Std. Dev. Quant. 99.5% Mean Std. Dev. Quant. 99.5% Mean Std. Dev. Quant. 99.5% Mean Std. Dev. Quant. 99.5% ean Std. Dev. Quant. 99.5%
01-01-2007  31-12-2007  35.20 19.45 77.22 48.86 26.47 104.17 64.06 30.99 128.21 67.02 28.94 128.07 70.22 17.93 105.62
01-01-2008  31-12-2008 184.67 90.19 364.17 212.90 93.63 388.40 254.99 103.54 446.06 242.57 82.64 400.74 240.80 82.95 444.45
01-01-2009  31-12-2009 216.99 103.54 413.07 209.41 92.13 366.63 241.05 120.18 491.56 245.33 100.67 433.31 257.97 41.41 345.90
01-01-2010  31-12-2010 132.79 28.76 191.29 140.59 18.84 188.43 128.76 20.68 173.37 150.21 26.54 205.63 189.48 12.28 216.12
01-01-2011  31-12-2011 184.35 57.34 296.64 173.49 53.58 310.05 149.15 42.03 262.00 176.81 40.27 280.22 216.34 42.90 293.22
01-01-2012  31-12-2012 123.51 43.07 235.98 151.31 42.25 239.94 163.94 48.12 250.97 161.88 38.48 241.14 174.27 29.98 241.98
01-01-2013  31-12-2013  64.85 4.14 75.65 87.79 6.33 101.26 104.60 6.50 120.51 102.92 4.43 114.36 117.90 6.96 133.36
01-01-2014  31-12-2014  50.95 9.31 65.94 64.89 11.83 85.76 73.52 14.03 95.89 76.46 13.48 99.30 90.44 15.93 112.89
01-01-2015 31-12-2015  51.59 6.70 61.31 68.96 10.00 85.79 83.31 14.84 110.93 89.56 17.39 120.77 110.70 25.27 158.65
01-01-2016  31-12-2016  61.14 4.47 74.35 73.59 6.34 89.45 85.33 11.38 110.12 93.36 11.02 113.09 118.07 17.41 155.15
01-01-2017 31-12-2017  64.08 6.35 74.56 67.84 7.17 78.34 71.98 6.64 82.64 76.53 6.90 90.45 98.57 7.35 107.49
01-01-2018  31-12-2018 59.19 7.86 77.69 67.93 12.12 93.82 76.70 14.51 97.78 81.35 15.86 111.23 102.47 15.42 125.39
01-01-2019  31-12-2019  61.06 6.69 83.38 73.17 8.37 101.93 75.67 10.11 107.56 86.40 11.36 120.47 103.21 11.37 133.02
01-01-2020  31-12-2020  72.20 34.13 181.21 82.45 33.33 193.80 84.46 31.36 195.21 88.27 34.52 209.85 105.74 34.43 216.80
01-01-2021  31-12-2021 41.16 5.44 59.92 57.94 5.05 75.27 64.26 5.51 82.27 67.82 5.19 85.41 90.05 9.04 116.95
Table 4.7. Year by year statistics: means, standard deviations and 99.5% quantiles of EUR Financial AA indices (b.p.).



103

4.1 Reference database

(*dq) seotpul | pprounuLy YA JO so[puRnb 9/C 66 PUR SUO)RIADD PIRpUR)S ‘SUROW (SO1ISIIRYS TRk Aq Ieox *Q'F O[qe],

69°071T 60°L 89°GIT Geget LT'8 G8'90T ¥9'art 88'9 Ge'16 1€ 10T 1c¢ ST°6L 8L°08 LG 16'8¢  Tc0g-¢l-1€ 1c0Z-10-10
CL'98¢C c6'ar 96°G9T L1°66C 9T°G¥ ITVVL LG°68¢ c8'9v greetl 16'79¢ 897V GR°LTT 90'8¢€¢C 806 98°'T0T  0¢0¢-¢I-1€ 020¢-10-T0
Prasid €8°€C 9L°971 €7 €8T 64°8T 90°8¢T 99°GLT 76°81 LE°9TT 02671 G0°GT €0°T0T Praans 1.6 89°LL  610C¢I-1€ 610%-T0-TO
08°10¢ 66°8¢ c0°071 60°0LT 7€°2e 1L°6eT L6°091 €€°€T €LTIT 9g°LET 88'8T LL7€6 89°G0T 167¢T GL'GL  8T0C¢I-1€ 8T0T-T0-T0
647991 €T°LT 9T°€cT 98TV 80°GT 6T°LTT L€°8¢T L9771 Gev0T PeITI 90°¢T 62706 8E'16 @88 GL9L  L10CCI-1€  LT0G-T0-TO
84°L0C (434 167241 74961 1781 [agiigs 68891 6€°81 67921 a8'cetT 0901 6€°801 67°L0T 09°L €6'L8  910C¢I-1€  9105-10-T0
¥9°L8T 96°81 8E'8V1 VL8LT 60°€T cgeet 66°971 891 99VIT [AWARL ¥eTt 17°€6 92706 Ge'6 88'€L  G10C¢I-1€ S10%-10-10
TV 1atT 01'6 I87€T ceotr 88°€TT 62°0¢T 196 66°L0T L0°0eT 1Lt 66°96 Lg°6et L9°€T 88'8L  ¥10C¢I-1€ V102 1010
Ve6T 06T 17 L81T L8°CT TLPST GLELT 8C'TT 90 TV T 6£°991 9€°Cl 0L TVT 90°GTT L0'8 Ly'66  €10¢¢I-1€ €T0¢-10-10
6L°€8¢ 1€°9¢ L9°€9¥ 00°28 L9662 LTVLY 9T°06 9¢°€8¢C 12657 89'T8 02°6L2 ¥ 60s 86°66 G¥'6ve  ¢l10¢¢I-1€ ¢&10g-10-T10
laaid 00°16 GG'6TS €9°€6 8L°¢ie TT'87¢ 87901 yeoee €8°1ST G9'88 L9°19¢ 8E°679 LV GrT 06'9¢€  T10G¢I-1€  TT0%-T0-TO
1129 €€ c0°0LE 9€°0¥ 86°€8C €0°a¢e geee 96°9.% V1768 L9°9¢ €9°€6C 06°1L€ ey 6099¢  0T0G¢I-1€ 0T0G-T0-TO
667008 80°€9T 8G°C10T €EETT GE'EGS 997701 16'14¢ 9€°99¢ £9'896 107 9L°81¢ 167601 8€°65C 16'86¢  600¢-¢I-T€ 6005710710
66'818 la494" 107286 cLvee YL 16V €9°9.8 ve'91e orevy 19°€82 ¥ a81 [y 8T T9L L8°LTC 6¢°LE€  800C-¢I-1€  800%-10-T0
04'86C 0€°cy 167261 01°L52 cLLs ¥0°6¢1T G681 €9y ¥0°€6 LTVLT ey €C°9L 08°TTT 6¥°LT 8¢°0S  200g-¢I-1€ L00Z-10-10
%4G'66 TUeNy) A9 'PIS  UBdN %G'66 WURNY) Ad( PIS  Ued\ %G'66 WeNY) A PIS  URdN 9466 TUeny) A9 'PIS  URdN 2%G'66 TURNy) A9 PIS  UedJ ore( puy  oYe( IS
A€T A8 A9 AV AT

V 1vrouvurg YN0d




4. Estimation problem

104

EUR Financial BBB

2Y 4Y 6Y 8Y 12Y

Start Date End Date Mean Std. Dev. Quant. 99.5% Mean Std. Dev. Quant. 99.5% Mean Std. Dev. Quant. 99.5% Mean Std. Dev. Quant. 99.5% Mean Std. Dev. Quant. 99.5%
01-01-2007  31-12-2007 86.20 185.48 116.87 261.01 157.84 69.42 277.73 149.73 51.75 261.50

01-01-2008 31-12-2008  647.91 1845.05 603.25 1410.89 700.81 405.63 1720.85 653.85 409.67 1620.57

01-01-2009  31-12-2009 1762.94 4098.93 1277.70 2341.91 1532.28 T47.73 3279.29 1296.23 665.91 2568.46 447.91 44.60 541.20
01-01-2010  31-12-2010  584.62 787.81 553.67 689.77 497.90 73.66 638.89 486.72 57.02 620.65 432.77 57.40 584.55
01-01-2011  31-12-2011 803.40 1297.13 679.77 1151.82 576.49 186.07 951.65 638.45 256.07 1132.13 486.88 133.70 784.52
01-01-2012 31-12-2012  732.29 1239.67 660.02 1097.29 591.72 144.89 909.88 593.32 145.32 949.88 531.59 120.95 750.28
01-01-2013  31-12-2013  269.20 360.32 296.65 373.87 287.68 41.47 387.49 346.99 32.49 420.88 284.16 25.92 348.57
01-01-2014  31-12-2014 146.88 219.56 173.35 217.35 195.69 11.41 227.13 251.82 13.85 288.01 236.39 31.76 309.49
01-01-2015 31-12-2015 120.85 159.41 157.08 196.56 191.38 25.85 250.41 267.42 35.54 338.39 297.03 36.11 383.35
01-01-2016  31-12-2016 134.84 172.51 194.05 243.62 236.29 22.77 305.77 323.49 31.15 420.42 325.26 26.38 416.34
01-01-2017 31-12-2017  103.18 136.91 142.01 193.44 169.52 26.59 213.58 221.09 41.36 293.68 259.39 52.17 347.11
01-01-2018 31-12-2018 124.36 193.26 158.10 249.86 189.89 48.40 294.55 222.35 44.56 303.29 235.39 48.38 341.22
01-01-2019  31-12-2019 128.99 199.67 164.35 249.36 207.03 40.26 306.10 218.92 34.63 304.23 251.18 35.42 334.02
01-01-2020  31-12-2020 170.86 356.04 188.43 363.41 209.97 61.85 373.97 213.04 54.84 367.42 248.16 49.70 372.82
01-01-2021 31-12-2021 83.24 107.67 117.56 144.97 130.48 8.23 158.22 146.21 7.68 173.11 162.57 11.00 189.40

Table 4.9. Year by year statistics: means, standard deviations and 99.5% quantiles of EUR Financial BBB indices (b.p.).
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EUR High Yield Financial B

2Y 4Y 6Y 8Y
Start Date End Date Mean Std. Dev. Quant. 99.5% Mean Std. Dev. Quant. 99.5% Mean Std. Dev. Quant. 99.5% Mean Std. Dev. Quant. 99.5%
01-01-2007  31-12-2007  671.79 339.38 1539.58 820.49 404.68 1660.95 727.68 237.02 1160.41 627.22 328.44 1348.81
01-01-2008  31-12-2008 2383.44 1765.84 6480.20 2357.86 1165.15 5119.67 1430.96 523.44 2756.18 1788.28 669.77 3981.96
01-01-2009  31-12-2009 3861.54 1962.78 8640.70 3891.34 1780.14 7124.81 2524.18 812.82 4323.47 2980.77 1001.60 5030.64
01-01-2010 31-12-2010 1590.20 329.37 2263.21 1664.50 378.54 2362.36 1575.25 172.01 1926.49 1565.09 363.07 2526.61
01-01-2011  31-12-2011 2815.82 772.26 4971.01 1977.46 474.38 2826.38 1736.01 549.34 2852.77 1727.18 533.69 2734.58
01-01-2012 31-12-2012 2362.44 569.12 3656.63 1973.43 342.72 2761.02 2140.92 405.25 2941.09 1725.92 259.34 2349.65
01-01-2013  31-12-2013  964.83 112.02 1186.72 975.35 125.03 1281.85 1182.43 134.68 1384.72 1027.79 118.11 1271.21
01-01-2014  31-12-2014  506.59 49.17 652.55 592.54 80.38 803.65 724.64 75.65 877.93 762.24 63.05 889.83
01-01-2015 31-12-2015  493.07 29.44 556.85 652.78 47.77 759.42 702.61 67.37 820.42 730.09 42.44 812.84
01-01-2016  31-12-2016  680.97 55.16 857.25 793.63 64.42 1012.07 854.53 77.46 1094.67 973.27 61.97 1128.15
01-01-2017 31-12-2017  515.09 42.07 628.78 601.33 88.41 771.28 591.80 80.25 762.05 639.20 138.57 871.70
01-01-2018 31-12-2018  556.10 143.52 889.99 591.38 127.19 882.32 647.47 126.29 904.73 640.20 140.48 904.61
01-01-2019  31-12-2019  523.41 96.07 827.26 673.65 82.43 888.26 681.18 103.61 905.67 733.23 66.35 900.86
01-01-2020 31-12-2020  736.12 329.60 1657.66 772.27 223.82 1406.57 763.34 211.65 1236.13 836.26 190.43 1374.64
01-01-2021  31-12-2021  458.41 34.07 549.47 507.83 40.74 620.51 598.72 62.95 762.07 520.17 42.57 627.66

Table 4.11. Year by year statistics: means, standard deviations and 99.5% quantiles of EUR High Yield Financial B indices (b.p.).
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Figure 4.4. Volatilities over 1-year rolling periods for AAA to CCC rating classes for maturities 2, 4, 6 and 8 years.
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4.1.2 The transition matrix

The infinitesimal generator matrix G is initialised using the historical transition
matrices published by rating agencies. Specifically, the generator matrix is obtained
from the Global Corporate Average One-Year Transition Rates (1981-2921) provided
by Standard € Poor’s Global Ratings (table. The choice of this input transition
matrix is consistent with the EIOPA guidelines [25] for calculating the matching
adjustment. Therefore, the transition probabilities refer to the 1-year average
calculated from 1981 to 2021.

The use of an average transition matrix calculated over a long time span (1981-2021)
instead of the one-year transition probability matrix fits with the EIOPA guidelinesﬂ
and use in a time series estimation procedure. Moreover, it allows the number of
elements equal to zero to be reduced, as sparse matrices are not consistent from a
theoretical point of view and complicate estimation on market data.

Having in mind the limited number of exposures per geographical area, a global
transition matrix, referring to all countries, is used.

The credit ratings considered are those ranging from AAA to CCC, according to
Standard € Poor’s Global Ratings notation, without taking into account rating
modifiers. Furthermore, having in mind the definition of the market source for
ratings below CCC, those categories are included as defaults.

From/To AAA AA A BBB BB B CCC D NR

AAA 87.09 9.05 053 005 0.11 0.03 0.05 0.00 3.10
AA 048 8732 772 0.46 0.056 0.06 0.02 0.02 3.88
A 0.02 1.56 8873 497 025 0.11 0.01 0.06 4.29
BBB 0.00 0.08 3.19 86.72 348 0.42 0.09 0.15 5.86
BB 0.01 0.02 0.10 452 7812 6.66 0.53 0.60 9.43
B 0.00 0.02 0.06 015 4.54 74.73 4.81 3.18 1251
cccC 0.00 0.00 009 016 049 13.42 4391 26.55 15.39

Table 4.13. Global Corporate Average One-Year Transition Rates (1981-2021) (%) - Source:
Standard and Poor’s.

Then the withdrawn rating/not rated class is excluded and its associated probability
mass is allocated proportionally to the other rating classes. This adjustment is
performed by dividing the elements of the original matrix by the difference between
one and the probability of transition to the not rated class:

I (4.4)
Z Pij
J£NR

where p;; is the 1, j-th element of the original matrix and p;; is the corresponding
element of the matrix without not rated class. Therefore the adjusted transition
matrix has seven rating classes (i.e., eight rows and columns, including the situation
of being defaulted, which is considered to be an absorbing state — no return to rated
categories) and is reported in table

1EIOPA uses an average transition matrix calculated over the 1986-2016 time span.
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From/To AAA AA A BBB BB B cCCC D
AAA 89.87 934 0.55 0.05 0.11  0.03 0.05  0.00
AA 0.50 90.84 8.03 048 0.05 0.06 0.02  0.02
A 0.02 1.63 92.72 5.19  0.26 0.11 0.01  0.05
BBB 0.00 0.08 339 9213 3.70 0.45 0.10 0.16
BB 0.01 0.02 0.11 499 86.26 7.35 0.59  0.66
B 0.00 0.02 0.07 017 519 85.42 5.50  3.63
CCC 0.00 0.00 0.11 0.19 0.58 15.86 51.89 31.38

Table 4.14. Adjusted Global Corporate Average One-Year Transition Rates (1981-2021)

(%).

Finally, the generator matrix used as input (table is obtained as a solution of
the Quasi-Optimization algorithm (refer to Appendix |C)) using the R package ctmcd,
and satisfies the properties of a generator matrix: non-positivity of the elements
of the diagonal, non-negativity of off-diagonal elements, sums of each row null and
elements of the last row null.

From/To AAA AA A BBB BB B CcCcC D
AAA -0,10715  0,10336  0,00145 0,00024 0,00123  0,00017 0,0007 0
AA 0,00554 -0,09717  0,08754  0,00277  0,00042 0,00063 0,00028 0
A 0,00019 0,01776 -0,07741  0,05618 0,00172  0,00109 0 0,00047
BBB 0 0,0006  0,03667 -0,08416 0,04139 0,00316 0,00107 0,00128
BB 0 0,00023 0,00017 0,05605 -0,15152 0,08538 0,00488  0,0048
B 0 0,00025 0,00068 0,00015 0,06061 -0,16853 0,08214  0,0247
CCc/C 0 0 0,00137 0,00246 0,00077 0,23737 -0,66761 0,42564
D 0 0 0 0 0 0 0 0

Table 4.15. Input infinitesimal generator matrix.

Tables and show the eigenvectors and eigenvalues, respectively, of the input
infinitesimal generator matrix. The eigenvectors are all distinct, so it is possible to
perform the spectral decomposition of the generator matrix and the K-th eigenvector
has mutually identical components and corresponding null eigenvalues.

AAA AA A BBB BB B cccC D
-0.00108  0.05011 0.91594 0.99078 -0.98211 0.87173 -0.57316 0.35355
-0.00035 -0.06388 -0.35934 -0.10595 -0.15886  0.41356 -0.51986 0.35355

0.00041  0.09719  0.15063 -0.03864 0.04921 0.13329 -0.45882 0.35355
-0.00195 -0.24690 -0.07787  0.05937  0.04454 -0.08062 -0.36306 0.35355
0.01512  0.78798 -0.01355 -0.00956 -0.04300 -0.16385 -0.21372 0.35355
-0.15317 -0.48492  0.04982 -0.04133 -0.05832 -0.12472 -0.10735 0.35355
0.98808 -0.25872  0.02275 -0.01770 -0.02374 -0.04881 -0.04141 0.35355
0.00000  0.00000 0.00000  0.00000 0.00000 0.00000 0.00000 0.35355

Table 4.16. Eigenvectors of input infinitesimal generator matrix.
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AAA AA A BBB BB B cccC D
-0.70440 -0.22323 -0.14747 -0.11827 -0.09043 -0.05821 -0.01155 0.00000

Table 4.17. Eigenvalues of input infinitesimal generator matrix.

4.2 On the methodology of estimation procedures

The model parameters for the intensities of the subordinating processes (7 in the
case of the model with one subordinator process, 11 and 72 in the case of the model
with two subordinator processes) are estimated using the time series of credit spreads
for all rating classes and all maturities considered jointly. Particle filtering is used
in both cases, using the Gauss-Legendre quadrature technique and the Sequential
Importance Resampling algorithm, respectively, as described in section

In the estimation stage, a zero recovery rate has been assumed.

The estimation of the rating-specific liquidity components is a subsequent step to
estimation of the spread risk component, as described in The model parameters
for the intensity of the liquidity component are estimated considering only the time
series of credit spreads referred to each rating, using the Kalman filter technique.

4.2.1 On the optimization problem

The R package nlopt, and specifically the algorithm cobyla (Constrained Optimiza-
tion By Linear Approximations), a numerical optimization method for constrained
problems where the derivative of the objective function is not known, is used to
solve the optimization problem in the estimation stage. This method, presented
by Powell in [59] and [60], has as its main feature robustness, although at a high
computational cost. This choice is motivated by the fact that the function (3.20]) to
be optimized is very irregular, and gradient optimization algorithms do not allow
for stable results. The maximum number of iterations has been set equal to 1000 for
each estimation step.

4.2.2 Quality measures

The estimation results have been evaluated according to several quality measures.
To measure the goodness of fit to the input data, a graphical comparison of the
market and model time series for all rating classes and all maturities considered
have been performed, accompanied by calculation of means and standard deviations
and analysis of normality of residuals, defined as the difference between market and
model values. Furthermore, three summary indicators have been considered:

- the root mean square error (RMSE), since it represents a measure of absolute
error expressed in the same unit of measurement as the estimated data;

- the overall coefficient of determination (R?), as it is a measure of relative error;

- the single-rating coefficients of determination (R?, for i = AAA, AA, ...,
CCO);
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- 04, 0 and d¢c parameters, which, under the assumptions of randomness in
market prices, serve to capture the (slight) imperfections of the market, and
therefore can be considered representative of effects such as the differential
bid-ask spread or liquidity effects.

4.3 Application in Solvency II framework

Finally, the forecasting ability of the model for spread risk has been tested by
comparing the SCR. for spread risk sub-module for unsubordinated risky zero coupon
bonds with maturities from 1 to 30 years calculated in internal model framework
and the corresponding SCR provided by the Standard Formula. The SCR of the
internal model is calculated as the value at risk of the risky zero coupon bond price
distribution over a 1-year forecast time horizon.

In order to forecast the value of the risky zero coupon bond over a fixed time horizon
[t,t + At], the following steps are required:

- eliciting the real-world probability distribution of the risk factors, i.e., the
intensities of the subordinator processes 7 (t + At) and n2(t + At), conditional
on the information available at time ¢;

- obtaining the probability distribution of the bond price, through the model
bond price formula (2.134), involving n; (t4+At), na(t+At), the eigenvectors and
eigenvalues of the generator matrix, and the model’s risk-neutral parameters.

In the model presented in this work, the spread component at time ¢t + At with
residual life 7 for the rating class i is defined by the following expression:

Q'(t+ At t+ At +7) =0+ (1-06) Y (—bib; ) EZ 5,
=1

=

t+At+T
ST T mw ]

<
I

t+At+T
Q —ld;] |, n2(u) du
X Et-i—At e t+At

=

1 R
=5+ (1-90) (—bz‘jbj_é) A(7;0y)e” Bt lds I m(t+A8)

<.
Il
—_

x A(T; éQ)e—B(T;é2) ;| 2 (t+A8)
(4.5)
where 0; and 65 are the vectors of the risk-neutral parameters for the processes of

the two subordinator process intensities, and A(7;6) and B(r;0) are functions of T
and 6 defined by the modeling assumptions, as described in section

Once the probability distribution of Qi(t + At,t + At + 7) has been defined, the
SCR value for spread risk in internal model framework can be represented as:

EP [Q'(t+ At,t+ At +7) | Gi] — Q'(t+ At t + At +7)
Qi (t, t+T) ’

@;pread = (46)
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where @Z(t + At,t + At + 1) is the 0.5% quantile of the distribution of Q(t +
At,t+ At+7) and Q(t,t+ 7) is the value at time ¢ of the spread risk component.

SCR is also calculated in an integrated modeling approach, whereby spread risk,
migration risk, and default risk are considered jointly. In this approach, the proba-
bility distribution of the price of the risky zero coupon bond also depends on the
rating transition (including default) that occurs in the time horizon [¢,t + At], which
is simulated with the transition matrix implied in the model. In case of transition
from rating 7 to rating j in the time horizon [t,¢ + At], the spread component at
time ¢ + At with residual life 7 for the rating class i, is defined as:

Qip(t+ ALt +At+7) = QI (t + At,t + At +7) (4.7)

where Q7 (t + At,t + At + 1) is defined by (4.5).

In case of default, a fractional recovery of market value scheme is assumed, i.e.,
the price of the defaulted bond is assumed to be 55% of the price at the instant
immediately prior to default:

Qb in(t+ At,t + At +17) = 055 Q" (t + At,t + At + 7). (4.8)

55% represents the average recovery rate (1987-2022) for unsubordinated U.SE]
corporate bonds in terms of nominal recovery, as shown in [62].

Then the SCR value for spread risk in internal model framework in an integrated
modeling approach can be represented as:

EP [Qiy ar(t + At t+ At +7) | G| — Qyar(t + At t + At +7)

SCRsm = Qi(t,t+ 1)

(4.9)

5Standard & Poor’s has published the recovery study only for U.S. corporate debt.
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Chapter 5

Numerical results

This chapter presents the results returned by the estimation procedure, both in terms
of the goodness of fit of the model to historical data and in terms of its application
within the Solvency II framework. Specifically, for the first two model configurations,
spread risk model with one subordinator process and spread risk model with
two subordinator processes , only the results in terms of goodness of fit are
presented; for the full model (spread and liquidity risks) the results in terms
of Solvency Capital Requirement are also presented.

5.1 The model for spread risk with one subordinator
process

In this section, results on the goodness of fit of the model with a single subordinator
process are presented.

5.1.1 The goodness of fit of the model to the historical data

Table shows the starting values, upper bounds, lower bounds and optimal
parameters returned by the estimation procedure. Unlike other models for spread
risk, such as the Duffie-Singleton model, the financial interpretation of the model
parameters is less straightforward because the parameters relate to the intensity of
the subordinator process underlying the transition matrix of the Markov chain that
models the rating process.

Table presents the quality measures that can be used to assess the goodness of
fit of the model to historical data. Overall, the estimation of the model is found
to be fair. In fact, the overall coefficient of determination R? amounts to 0.72
and the overall RMSFE is 601 b.p.. At the individual rating class level, there is a
better goodness of fit for the central ratings (A to B), with R? ranging from 0.60
to 0.88, while for the extreme ratings (AAA, AA and CCC) there is a significantly
worse goodness of fit, with R? ranging from 0.21 to 0.35. The RMSE shows similar
behavior, with proportionally smaller values at the central rating classes.

The 6 parameters for the three rating macroclasses, A, B and C, are found to be in
line with the corresponding RSME.

The consistent use of the model requires that all rating classes considered have at
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least sufficient goodness of fit. To this end, the extension of the model with two
subordinator processes is proposed.

Plow Pupp Par0 Parfit
0.001000  7.000000 1.500000 2.744029
0.000000  5.000000 0.050000 0.365893
0.001000  5.000000 2.500000 1.417053
0.001000  7.000000 0.200000 0.261695
0.000000  5.000000 2.500000 3.836619
1o 0.000000 25.000000 5.000000 0.822875
04 0.000100  0.100000 0.005000 0.006986
d0p 0.000100  1.000000 0.100000 0.030607
dc 0.000100  2.000000 0.500000 0.163798

Table 5.1. Starting values (Par0), lower bounds (Plow), upper bounds (Pupp) e es-
timated values (Parfit) of model parameters for the model with one subordinator

=) )9 =2 Q

process.
Quality
Overall AAA AA A BBB BB B CcCcC
Measure
RMSE (b.p.) 601.04 54.52 63.71 80.53 249.87 189.39 397.07 1609.50
R? 0.72 0.21  0.22 0.75 0.60 0.88 0.84 0.35
5a (b.p.) 69.86
55 (b.p.) 306.07
dc (b.p.) 1637.98
Table 5.2. Quality measures for the goodness of fit of the model with one subordinator
process.

5.2 The model for spread risk with two subordinator
processes

In this section, results on the goodness of fit of the model with two subordinator
processes are presented.

5.2.1 The goodness of fit of the model to the historical data

Table shows the starting values, upper bounds, lower bounds and optimal
parameters returned by the estimation procedure.

Table presents the quality measures that can be used to assess the goodness of
fit of the model to historical data. The overall goodness of fit improves, with the R?
increasing to 0.77 (+7%) and the RMSE decreasing to 542 b.p. (-10%) compared
with the model with one subordinator process. At the individual rating class level,
there is a partial leveling of goodness of fit. For the extreme rating classes (AAA,
AA, CCC), poorly replicated by the model with one subordinator process, there is
a marked improvement, with R? now above 0.45. For the BBB, BB, and B rating
classes, already fairly well replicated by the model with one subordinator process,
there is minimal worsening. The A rating class, on the other hand, improves reaching
an excellent R? of 0.87. The RMSE shows similar behavior, with proportionally
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smaller values at the central rating classes.

The § parameters for the three rating macroclasses, A, B and C, are found to be in
line with the corresponding RMSE.

Although the goodness of fit has reached at least sufficient levels, in order to improve
the consistency of the model, the full model with two subordinator processes and a
rating-specific liquidity component is needed.

Plow Pupp Par0 Parfit
a1 0.001000 7.000000 2.744029 0.413639
1 0.000000 5.000000 0.365893  4.997962
o1 0.001000 5.000000 1.417053  3.608986
ap 0.001000  7.000000 0.261695 0.313215
~41 0.000000 5.000000 3.836619 3.880962
ag 0.001000 7.000000 1.500000 4.469894
2 0.000000 5.000000 0.050000 0.000425
oo 0.001000 5.000000 2.500000 0.061724
as 0.001000  7.000000 0.200000 6.810526
2 0.000000 5.000000 2.500000 0.000279
d4 0.000100 0.100000 0.005000 0.004738
0 0.000100 1.000000 0.100000 0.029691
dc 0.000100  2.000000 0.500000 0.202653

Table 5.3. Starting values (Par0), lower bounds (Plow), upper bounds (Pupp) e es-
timated values (Parfit) of model parameters for the model with two subordinator

processes.
Quality Overall AAA AA A BBB BB B CCC
Measure
RMSE (b.p.)  542.97 4464 51.54 57.67 253.37 23412 460.78 1411.65
R?2 077 047 049 087 059 082  0.78 0.50
5a (b.p.) 47.38
55 (b.p.) 296.92
sc (b.p.) 2026.54

Table 5.4. Quality measures for the goodness of fit of the model with two subordinator
processes.
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5.3 The model for spread risk with two subordinator
processes and a rating-specific liquidity component

This section presents results on the goodness of fit and the application within the
Solvency II framework of the full model with two subordinator processes and a
rating-specific liquidity component.

5.3.1 The goodness of fit of the model to the historical data

Table [5.5| shows the starting values, upper bounds, lower bounds and optimal param-
eters for the rating-specific liquidity model, returned by the estimation procedure.
The parameters for the spread component remain those estimated for the model
with two subordinator processes, shown in table

Table presents the quality measures that can be used to assess the goodness of
fit of the model to historical data. The overall goodness of fit markedly improves
with the R? increasing to an excellent 0.92 (+19%) and the RMSE decreasing to
318 b.p. (-42%) compared with the model with two subordinator processes. The
RMSE value is sufficiently small in proportion to the order of magnitude of the data.
The excellent goodness of fit is also confirmed at the individual rating class level,
with single-rating R? reaching a minimum level of 0.84 (CCC rating) to a maximum
level of 0.97 (BBB rating) and single-rating RMSE decreasing significantly, more
than halving compared to the model with two subordinator processes. It is also
noticeable that the central rating classes are those best replicated by the model; this
finding is consistent with the choice to estimate the model on the credit spreads
data for all rating classes and all maturities considered jointly.

Figures to show the comparison of model and market values for all rating
classes and all maturities considered. The graphical analysis also confirms the
excellent goodness of fit of the model to the observed data, and shows how the model
succeeds in capturing the trend of credit spreads over time. Table and figures [5.8
to provide a summary of the mean and volatility (standard deviation) values of
the market and model time series for all the rating classes and maturities that have
been considered. The analysis of model volatilities confirms the model characteristic
of decreasing trend as maturity increases, as described in section which does
not always match what is observed on market data.

Figures to show normality analyses for the residuals referred to all rating
classes and all maturities considered. The analysis consists of comparing empirical
and theoretical densities, quantiles and CDFs. It is clear that the assumption of
normality of the residuals is not met, as the distributions have very heavy tails.
Table contains the transition matrix implied in the model, i.e., the expected
transition matrix, calculated empirically. In comparison with the transition matrix
provided by Standard € Poor’s Global Ratings (table from which the generator
matrix is obtained, the probabilities of remaining in the initial state are slightly
lower, while the probabilities of default are slightly higher. In order to use this
transition matrix within the Solvency II framework, it is useful to point out that
high yield ratings (BB, B and CCC) have a probability of default of more than 5%e.
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Plow Pupp Par0 Parfit

AAA AA A BBB BB B CCC

k  0.00100  5.00000 1.00000 0.89903 0.88936 2.27326 0.82893 0.74335 1.33046 0.62264
6 -5.00000  5.00000 0.01000 0.00009  0.00078 0.00125 0.04311 0.03671  0.00009 0.02809
p 0.00100  2.00000 0.15000 0.13304  0.13426 0.12760 0.03818  0.02868  0.02255 0.08647
k  0.00100  5.00000 0.50000 0.56224  0.57002 0.51399 0.11167 0.12829  0.25330 0.85245
6 -5.00000  5.00000 0.05000 0.02252  0.02240 0.02970 0.03775  0.03215  0.05278 0.06040

-5.00000  5.00000 -0.05000 -0.04188 -0.08839 2.62786 2.35371 -0.06981 -0.19110 2.51472
v 0.00010 2.000000 0.50000 0.50168  0.49925 0.52611 0.40589  0.40948  0.50222 0.87847

Table 5.5. Starting values (Par0), lower bounds (Plow), upper bounds (Pupp) e esti-
mated values (Parfit) of model parameters for the rating-specific liquidity components
of the model.

—
>3S

Quality

Overall AAA AA A BBB BB B CcCC

Measure
RMSE (b.p.) 318.47 23.68 25.69 43.90 7526 147.28 312.80 822.97
R? 0.92 0.85 0.87 0.93 0.97 0.93 0.90 0.84

Table 5.6. Quality measures for the goodness of fit of the full model with two subordinator
processes and a rating-specific liquidity component.
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Figure 5.1. Comparison of model (red) and market (black) credit spread time series for
maturities: 2, 4, 6, 8 and 15 years - EUR Financials AAA index.
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Mean Volatility
T MKT MDL MKT MDL
EUR Financials AAA
2 79.53 67.65 60.48 42.29
4 89.57  102.51 57.64 79.81
6 97.52  106.81 64.44 74.60
8 102.34  105.92 60.17 64.17
15 118.22  110.16 56.13 42.84
EUR Financials AA
2 93.56 80.53 71.15 57.06
4 105.38  120.38 67.81 91.28
6 114.73  124.75 75.81 82.00
8 120.39  124.16 70.79 69.63
15 139.08  129.67 66.04 45.61
EUR Financials A
2 171.27  161.21 181.13  195.98
4 178.83  204.44 154.58  180.97
6 201.87  206.59 168.81  144.32
8 216.16  204.24 167.30  116.69
13 206.23  204.27 124.95 78.72
EUR Financials BBB
2 393.16  372.70 535.93  530.56
4 365.41  402.36 370.03  444.45
6 391.46  397.01 422.00  369.13
8 401.85  385.41 363.94 315.44
12 316.11  313.25 125.38  124.41
EUR High Yield Financials BB
2 706.10  726.01 707.67  786.66
4 696.13  673.24 605.64  528.64
6 627.85  644.99 379.08  396.27
8 638.70  624.63 419.05  313.35

EUR High Yield Financials B
1270.98 1367.47 1273.80 1514.49
1253.03 1172.44 1090.16  901.15
1130.14 1127.98 682.35  635.71
1149.66 1110.18 754.29  479.01

EUR High Yield Financials CCC

2 2577.27 3036.56 2582.99 3217.47
4 2540.86 2426.24 2210.60 1597.70
6 2291.67 2200.31 1383.65 1006.70
8 2331.25 2034.43 1529.54  706.75

Table 5.7. Means and volatilities of historical (MKT) and model-reconstructed (MDL)
credit spreads (b.p.).
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Figure 5.8. Comparison of sample means and volatilities, calculated on the credit spread
time series reconstructed with the model (solid line) and market values (triangles) - EUR
Financials AAA index.
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Figure 5.9. Comparison of sample means and volatilities, calculated on the credit spread
time series reconstructed with the model (solid line) and market values (triangles) - EUR
Financials AA index.
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Figure 5.10. Comparison of sample means and volatilities, calculated on the credit spread
time series reconstructed with the model (solid line) and market values (triangles) - EUR
Financials A index.
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Figure 5.11. Comparison of sample means and volatilities, calculated on the credit spread
time series reconstructed with the model (solid line) and market values (triangles) - EUR
Financials BBB index.
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Figure 5.12. Comparison of sample means and volatilities, calculated on the credit spread
time series reconstructed with the model (solid line) and market values (triangles) - EUR
High Yield Financials BB index.
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Figure 5.13. Comparison of sample means and volatilities, calculated on the credit spread
time series reconstructed with the model (solid line) and market values (triangles) - EUR
High Yield Financials B index.
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Figure 5.14. Comparison of sample means and volatilities, calculated on the credit spread
time series reconstructed with the model (solid line) and market values (triangles) - EUR
High Yield Financials CCC index.
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Figure 5.15. Normality analysis of residuals: comparison of empirical (histogram) and
theoretical (red line) densities, Q-Q plot, comparison of empirical (black line) and
theoretical (red line) CDFs and P-P plot - EUR Financials AAA index.
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Figure 5.16. Normality analysis of residuals: comparison of empirical (histogram) and
theoretical (red line) densities, Q-Q plot, comparison of empirical (black line) and
theoretical (red line) CDFs and P-P plot - EUR Financials AA index.
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Figure 5.17. Normality analysis of residuals: comparison of empirical (histogram) and
theoretical (red line) densities, Q-Q plot, comparison of empirical (black line) and
theoretical (red line) CDFs and P-P plot - EUR Financials A index.
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(e) Maturity: 12 years

Figure 5.18. Normality analysis of residuals: comparison of empirical (histogram) and
theoretical (red line) densities, Q-Q plot, comparison of empirical (black line) and
theoretical (red line) CDFs and P-P plot - EUR Financials BBB index.
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(c) Maturity: 6 years

Figure 5.19. Normality

analysis of residuals:

(d) Maturity: 8 years

comparison of empirical (histogram) and

theoretical (red line) densities, Q-Q plot, comparison of empirical (black line) and
theoretical (red line) CDFs and P-P plot - EUR High Yield Financials BB index.
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(c) Maturity:

Figure 5.20. Normality

6 years

(d) Maturity: 8 years

analysis of residuals: comparison of empirical (histogram) and
theoretical (red line) densities, Q-Q plot, comparison of empirical (black line) and
theoretical (red line) CDFs and P-P plot - EUR High Yield Financials B index.
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Figure 5.21. Normality analysis of residuals: comparison of empirical (histogram) and
theoretical (red line) densities, Q-Q plot, comparison of empirical (black line) and
theoretical (red line) CDFs and P-P plot - EUR High Yield Financials CCC index.
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From/To AAA AA A BBB BB B CCC D

AAA 84.48 1293 195 028 0.18 0.07 0.06 0.05
AA 0.70 86.03 11.54 1.37 017 0.13 0.03  0.04
A 0.04 235 8894 7.60 0.67 0.25 0.03 0.13
BBB 0.00 0.21 495 88.15 5.09 1.01 0.16  0.42
BB 0.00 0.056 043 6.83 8044 9.51 093 1.81
B 0.00 0.04 014 061 6.66 79.84 540  7.30
CCC 0.00 0.01 014 031 129 1555 46.73 35.98

Table 5.8. Transition matrix implied in the model (%).

5.3.2 Application within the Solvency II framework

Figures to show the comparison between the SCR curves provided by the
Standard Formula and those calculated within the internal model framework, in
the two configurations of the modular approach (not including rating transitions
and default) and the integrated approach (including rating transitions and default).
The SCR calculated within the internal model framework with integrated approach
always turn out to be significantly higher than those provided by the Standard
Formula. On the other hand, the SCR calculated within the internal model frame-
work with a modular approach turn out to be slightly higher than those under the
Standard Formula for investment grade rating classes (AAA, AA, A, and BBB),
while medium- to long-term maturities of high-yield rating classes (BB, B, CCC)
show slightly lower SCR than those provided by the Standard Formula.

The greater prudence of the defined partial internal model compared with the Stan-
dard Formula may be justified by the different calibration procedure and the different
data used in it. In fact, as reported in the Solvency II Calibration Paper [11], the
Standard Formula SCR for the spread risk sub-module is calibrated using the time
series of Corporate Bond Indices provided by Merril Lynch indices with a depth of 9
years (02/1999 - 02/2010), which is significantly less than the one used in this work
(01/01/2007 - 31/12/2021). By stopping at 2010, these time series do not consider a
crucial period for the trend of credit spreads and their volatilities, such as that of the
European sovereign debt crisis in 2012. Moreover, the credit spreads of the Merril
Lynch indices have significantly lower levels and volatilities than the THS Markit
iBoxx indices used in this work. Furthermore, in the Standard Formula calibration
procedure each portfolio spread series (rating and maturity) was first transformed
into a 3 month moving average function in order to smooth out short-term spikes.
All these aspects result in the variability and thus the riskiness estimated to the IHS
Markit iBoxx indices being higher than those of the Standard Formula, thus leading
to higher SCR in internal model framework.

If the two different approaches, modular and integrated, are compared, SCR are
always higher if computed using the integrated approach versus using the modular
approach, as the former covers all facets of credit risk, including migration and
default risks. This result is consistent with what is observed in the Results from
the 2020 MCRCS [24], where it is reported that credit risk charges are generally
higher for firms adopting an integrated approach than for those adopting a modular



140 5. Numerical results

approach. It is also observed that in both cases SCR are higher for the lowest rating
classes.

Table shows the statistics of simulated 1-year rating transitions. It can be seen
that the average “transition” consists of remaining in the initial rating class, and
that for initial high yield ratings the 99.5% quantile transition coincides with default
state.

Figures to show the 1-year probability distribution forecast of term struc-
tures of credit spreads for all rating classes and maturities considered. The effect of
rating transitions and default in the simulation is evident: the distributions simulated
with the modular approach turn out to be smoothed, while those simulated with
the integrated approach turn out to be multi-modal.
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Figure 5.22. SCR provided by Standard Formula (black dots), in internal model logic
with modular approach (black line) and in internal model logic with integrated approach
(red line) for an unsubordinated risky ZCB as maturity changes - EUR Financials AAA
index.
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Figure 5.23. SCR provided by Standard Formula (black dots), in internal model logic with
modular approach (black line) and in internal model logic with integrated approach (red
line) for an unsubordinated risky ZCB as maturity changes - FUR Financials AA index.
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Figure 5.24. SCR provided by Standard Formula (black dots), in internal model logic with
modular approach (black line) and in internal model logic with integrated approach (red
line) for an unsubordinated risky ZCB as maturity changes - EUR Financials A index.
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Figure 5.25. SCR provided by Standard Formula (black dots), in internal model logic
with modular approach (black line) and in internal model logic with integrated approach
(red line) for an unsubordinated risky ZCB as maturity changes - EUR Financials BBB
index.
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Figure 5.26. SCR provided by Standard Formula (black dots), in internal model logic with
modular approach (black line) and in internal model logic with integrated approach (red
line) for an unsubordinated risky ZCB as maturity changes - EUR High Yield Financials
BB index.
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Figure 5.27. SCR provided by Standard Formula (black dots), in internal model logic with
modular approach (black line) and in internal model logic with integrated approach (red
line) for an unsubordinated risky ZCB as maturity changes - EUR High Yield Financials
B index.
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Figure 5.28. SCR provided by Standard Formula (black dots), in internal model logic with
modular approach (black line) and in internal model logic with integrated approach (red
line) for an unsubordinated risky ZCB as maturity changes - EUR High Yield Financials
CCC index.

Stat/Starting rating AAA AA A BBB BB B CCC

Mean AAA AA A BBB BB B CCC

Quantile 99.5% BBB BBB BB CCC D D D
Table 5.9. Means and 99.5 % quantiles of simulated 1-year rating transitions.
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Figure 5.29. Probability distribution forecast of credit spreads o, (T, T + 7) with T =1
and 7 = 5,10, 20 years with modular (left) and integrated (right) approaches. The red
line denotes the quantile at 99.5% - EUR Financials AAA.
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Figure 5.30. Probability distribution forecast of credit spreads o, (T, T + 7) with T =1
and 7 = 5,10, 20 years with modular (left) and integrated (right) approaches. The red
line denotes the quantile at 99.5% - EUR Financials AA.
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Figure 5.31. Probability distribution forecast of credit spreads o, (T, T + 7) with T =1
and 7 = 5,10, 20 years with modular (left) and integrated (right) approaches. The red
line denotes the quantile at 99.5% - EUR Financials A.
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Figure 5.32. Probability distribution forecast of credit spreads o, (T, T + 7) with T =1
and 7 = 5,10, 20 years with modular (left) and integrated (right) approaches. The red
line denotes the quantile at 99.5% - EUR Financials BBB.
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Figure 5.33. Probability distribution forecast of credit spreads o, (T, T + 7) with T =1
and 7 = 5,10, 20 years with modular (left) and integrated (right) approaches. The red
line denotes the quantile at 99.5% - EUR High Yield Financials BB.
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Figure 5.34. Probability distribution forecast of credit spreads o, (T, T + 7) with T =1
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Chapter 6

Conclusions

The model proposed in this work, in its different configurations, allows the issue
of rating transitions to be explicitly addressed within a model for spread risk, as
defined in Solvency II. Corporate credit rating may change over time according to
the improvement or deterioration of credit quality and is considered the fundamental
variable that drives the default process.

Regarding the comparison of the quality of the estimates obtained from the three
different versions of the model for the spread risk treated (model with one subor-
dinator process, model with two subordinator processes, and full model with two
subordinator processes and a rating-specific liquidity component), it is evident that
the model with a subordinator process fails to satisfactorily fit the market data, and
that the extension to a second subordinator process has a positive effect in terms
of goodness of fit. However, the model should not be evaluated solely in terms of
goodness of fit, but should be considered within the scope of the analysis, in this
case a partial internal model for calculating the Solvency Capital Requirement for
the spread risk sub-module. Therefore, it is required to define a model that can
capture credit spread trends, especially the most extreme ones, for all rating classes
considered. Indeed, in a model with an integrated approach, in which the different
components of credit risk, including migration and default risks, are considered, the
credit spreads for each risk class considered contribute to the determination of the
SCR for a given rating class. To this end, the extended version of the model with
two subordinator processes including a rating-specific liquidity component has been
proposed; it returned an excellent goodness of fit, and makes it possible to capture
the particular trends in credit spreads of different rating classes, particularly the
different crises observed during the period considered.

This extension has been proposed in accordance with the principles of prudence and
parsimony in the size of the parameter space required by the regulations.

The proposed model has the drawback of being more difficult to understand than
classic reduced-form models for credit risk, because of the use of one or more subor-
dinator processes in the definition of the rating transition matrix, which also makes
the financial interpretation of model parameters complicated. However, it is not
contrary to the regulations that require governability and awareness on the part of
management in the use of an internal model.
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In terms of Solvency Capital Requirement, the proposed model is more prudential
than the Standard Formula and consistent with the findings of the Market and
Credit Risk Comparative Studies proposed by EIOPA. The greater prudentiality of
the proposed model, as described in the previous chapters, can be attributed to the
estimation procedure used, which does not include smoothing techniques, and to the
IHS Markit iBoxx indices used in the estimation, which provide credit spreads with
particularly high averages and volatilities, when compared with those used for the
Standard Formula calibration.

The application framework made it necessary to estimate the model under both
probability measures involved in calculating the SCR, the real-world measure for the
evolution of risk factors over a 1-year time horizon and the risk-neutral measure for
pricing securities from the projected risk factors. This framework required particular
estimation techniques on time series, and in particular filtering techniques were used.
The filtering techniques, in the different configurations used in this work (particle
filtering with Gauss-Legendre quadrature techniques, particle filtering with Sequen-
tial Importance Reampling algorithm, Kalman filter), were found to be an effective
and flexible tool for estimating the models considered and returned substantially
good estimates. Indeed, the full model excellently replicates the data used for the
estimation and projects consistently with the Standard Formula and observed market
dynamics.

One of the advantages of using filtering techniques is the ability to process a very
large amount of input data, as seen in this work. In fact, the structure filtering
techniques allows exceptional savings in memory space: since they only operate on
date pairs, once the estimate is updated, the memory location containing the value
can be cleaned out and overwritten. This makes it possible to apply the estimation
procedure to time series with high depth. However, filtering techniques also have
some drawbacks. The high computational complexity of the problem addressed
through the use of filtering techniques and the very large amount of data processed
result in a significant increase in estimation time compared with cross-sectional
estimation procedures, which consider a single date. Moreover, the estimation results
may be affected by the choice of the depth of the time series.

In the case of particle filtering, the high computational complexity is also due to the
numerical calculation of the integrals present in the filter formulas. In this work,
two different techniques are used for the numerical approximation of the integrals:
the Gauss-Legendre quadrature approximation and the Sequential Importance Re-
sampling algorithm, based on Monte Carlo simulation techniques.

Further detailed analyses concerning the use of a stochastic recovery rate and different
configurations of the simulation of rating transitions for a portfolio of risky securities
are deferred to future research work. An additional relevant topic deferred to future
work is the development of a procedure for backtesting the obtained estimations,
which compares the observed values with the distribution estimated by the model.
This issue is of primary importance for supervisory approval of the internal model,
either partial or full.
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Appendix A

iBoxx Rating Methodology

IHS Markit uses information provided by the three major rating agencies - Standard
& Poor’s Global Ratings, Moody’s Investors Services, and Fitch Ratings - to calculate
the rating of an iBoxx index.

If a bond is rated by several agencies, then the average rating is attached to the
bond. If a tranche is not rated, the rating of its parent is applied. The rating is
consolidated to the nearest rating grade.

Investment grade is defined as BBB- or higher from Fitch Ratings and Standard
& Poor’s Global Ratings, and Baa3 or higher from Moody’s Investor Services. If
at least one of the above credit rating agencies provides “D” (“default”) or “SD”
(“selective default”) rating, all available ratings from the agencies are consolidated
into the “D” iBoxx rating.

The iBoxx average rating is determined as the average of the ratings of the three
credit rating agencies where available: the available credit ratings are converted into
scores according to Table [A.T], the numerical average of all scores is calculated and
rounded to the nearest integer, and finally the rounded average score is converted
back into the iBoxx index rating according to Table
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Standrd & Poor’s | Moody’s | Fitch | Score
AAA Aaa AAA 1
AA+ Aal AA+ 2
AA Aa2 AA 3
AA- Aa3 AA 4
A+ Al A+ 5
A A2 A 6
A- A3 A- 7
BBB+ Baal BBB+ | 8
BBB Baa2 BBB 9
BBB- Baa3 BBB- | 10
BB+ Bal BB+ 11
BB Ba2 BB 12
BB- Ba3 BB- 13
B+ B1 B+ 14
B B2 B 15
B- B3 B- 16
CCC+ Caal CCC+ | 17
CCC Caa2 CcCC 18
CCC- Caa3 CCC- | 19
CC Ca CC 20
C C C 21
D/RD D 22

Table A.1. Correspondence between the ratings of the three rating agencies - Standard &
Poor’s Global Rating, Moody’s Investors Services, and Fitch Ratings - and the numerical
scores - Source: [THS Markit - iBoxx Rating Methodology.
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Score | iBoxx rating
1 AAA
2

3 AA
4

5

6 A

7

8

9 BBB
10

11

12 BB
13

14

15 B

16

17

18 CCC
19

20 CcC
21 C

22 D

Table A.2. Correspondence between the numerical scores and the iBoxx ratings - Source:
IHS Markit - iBoxx Rating Methodology.
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Appendix B

Poisson Processes

Poisson processes are the purely jump analogous of the Brownian motion and play a
key role in modeling default. Like the Brownian motion, Poisson processes belong
to the family of Levy processes, i.e., particular cases of processes with stationary
independent increments and with right continuous and left limit paths.

B.1 Time homogeneous Poisson Processes

A time homogeneous Poisson process is a unit-jump increasing, right continuous
process M; with the following properties:

independent increments, for any 0 < t < s < u:

M, (w) — Ms(w) independent of My(w) — M;(w); (B.1)

stationary increments, for any 0 < ¢ < s and any h > O:

M (@) = Mign(w) ~ Mo(w) — Mi(w):; (B2)

M0:07

where w is the experiment result.

Further properties of time homogeneous Poisson processes are as follows:

there exists a positive number 7 € R such that P {M; = 0} = e for all ¢, i.e.,
the probability of having no jumps up to some given time ¢ is an exponential
function of minus that time;

PI%P {M; > 2} /t =0, i.e., the probability of having more than one jump in
ﬁ

an arbitrary small time going to zero goes to zero faster then the time itself;
%ir%P {M; =1} /t =7, i.e., the probability of having exactly one jump in an
_>

arbitrary small time, re-scaled by the time itself, is the constant 7;

P{M, - M; =k} = e 75D (5(s — t))¥/k!, i.e., the number of jumps of a
Poisson process follows the Poisson law;

P{r € [t,t+ dt]|T >t} =7dt, i.e., 7 can be interpreted as the probability of
having a new jump at time ¢ given there have not been any before t.
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B.2 Time inhomogeneous Poisson Processes

Let M, be a standard Poisson process and I'; the cumulated intensity or cumulated
hazard rate:

T, — /Ot'y(u) du, (B.3)

with a deterministic time-varying intensity «(¢); then a time inhomogeneous Poisson
process Ny with intensity v(t) is defined as

Ny = Mr,. (B.4)

Essentially, a time inhomogeneous Poisson process is just a time-changed standard
Poisson process.

The time inhomogeneous Poisson process still has independent but no longer sta-
tionary increments, due to the time distortion introduced by I'.

By construction, the process N jumps the first time at 7 if and only if the process
M jumps the first time at I';-, then, since M is a standard Poisson process for which
the first jump time is exponentially distributed:

I'; := £ ~ exponential(1). (B.5)
By inverting equation it can be obtained:
T=T"Y¢); (B.6)
hence, the probability of first jump between ¢ and s is:

P{t<T<S}:P{Ft<FT<Fs}:P{Ft<6<FS}
=P{>T} —P{E>T )=t —els
— e ot du _ = [ () du (B.7)

— e f;'y(u) du (1 _ effts'y(u) du) )

Similarly to what was seen for the time homogeneous case, the probability of having
a new jump at time ¢ given that there have not been any before ¢ is:

P{r € [t,t +dt]|r >t} = y(t)dt. (B-8)
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Appendix C

The embedding problem and
the Quasi-Optimization of the
generator matrix

In risk management practices and reduced-form pricing models based on Markov
chains, the knowledge of the annual transition matrix, which is provided by several
specialized agencies, may be insufficient. But computing a fractional root of an
annual transition matrix is a badly placed problem: in fact, it may return invalid
(with negative values) or non-unique transition matrices.

One approach of obtaining transition matrices for periods of arbitrary length involves
embedding a discrete-time Markov chain into a continuous-time Markov chain. For
a continuous-time Markov chain, in fact, any transition matrix can be expressed
as the exponential of the generator (like in Equation . Therefore, solving the
embedding problem essentially allows one to find a generator consistent with the
annual transition matrix of the discrete-time Markov chain. However, computing
the generator of an existing transition matrix by taking its logarithm still raises
the problem of existence and uniqueness. In fact, observed transition matrices
typically have characteristics that preclude the existence of the generator (Israel et
al. (2001) [34]). Alternatively, more than one generator matrix could be associated
with the same transition matrix (Kingman (1962), Carette (1995)). Moreover, the
problem of non-uniqueness of the generator also compromises the no-arbitrage pro-
perty assumed by the models; in fact, this relies on the existence and uniqueness of
an equivalent martingale measure, which in Markov credit migration models can-
not be independent of the existence and uniqueness of the transition matrix generator.

However, there are regularization algorithms that make it possible to compute the
generator that returns the best approximation of the original transition matrix,
without running into the problems of existence and uniqueness.
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C.1 The embedding problem

Suppose that {Ci};cp+ is a time-homogeneous, continuous-time Markov chain
with finite state space K = {1, ... K} under some probability measure P. Sup-
pose that the transition probability matrix for C' corresponding to time ¢ = 1,
P(1) = [pij(1)]1<ij<k is given, where, for every i,j =1,... K and every t € RT:

pij(l) = P{Cl :j ’ C() = Z} = P{Ct—H :j | Ct = Z} (Cl)

The classic embedding problem for a Markov chain C' relative to P can be summarized
as follows: find a K x K matrix A = [Aj;]1<; j<x with:

- non-negative off-diagonal entries: 5\2-]- > 0 for every i,j € K with ¢ # j;

- all rows summing to 0: 5\” = —Zj\ij, Vi e K,
J#i

such that A = P(1).

In case of a time-homogeneous, continuous-time Markov chain C, if the transition
probability matrix function P(t), t € R satisfies some mild regularity conditions,
then there exists a unique infinitesimal generator matrix A such that P(t) = etA.
Consequently, one of the solutions of the embedding problem for C' relative to P in
this case is A = A, so that the infinitesimal generator matrix is a solution of the
embedding problems. Unfortunately, it is known that the embeddability problem is
nearly unavoidable in credit risk modeling. Israel et al. (2001) [34] provide several
necessary conditions for the non-existence of an exact valid generator. One of this
is: if there are states ¢ and j such that j is accessible from ¢, but p;; = 0, an exact
generator matrix does not exist for the transition probability matrix P.

This condition is likely to hold for the majority of empirical rating transition matrices.
For example, high investment grades tend to exhibit zero default probability in
the empirical transition probability matrix, even if the true probability is not zero.
However, default state is accessible from the same high investment grades if successive
downgrades are considered. Hence, the above condition is almost unavoidable and a
simple matrix logarithm of an empirical transition matrix is very likely to contain
negative off-diagonal elements.

C.2 The Quasi-Optimization of the generator matrix

There are several ways to cope with the embeddability problem. One way is to adjust
the matrix logarithm of P such that the adjusted A represents a valid generator
matrix. Specifically, the approach first sets the negative off-diagonals to zero and
then adds the extra value to the other elements to compensate (see Inamura (2006)
[33]). There are also a variety of numerical procedures, from ad-hoc adjustments to
optimization-based adjustment, as shown in [34] and in [45].

Kreinin and Sidelnikova (2001) [45] present an algorithm of Quasi-Optimization
of the generator matrix. The regularization problem can be described as follows:
find a generator matrix X that is a valid generator and, when raised to the power
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t, most closely matches the annual transition probability matrix P. The set of
generator matrices, G(K), consisting of all matrices of dimension K x K that are
valid generator matrices, is defined. The problem of Quasi-Optimization of the
generator matrix is: find A € G(K) such that:

A —InP||= mi X —In(P)|}. 2
| n P Xénél(aK){H n (P)|} (C.2)

The space of the generator matrices, G(K), is a Cartesian product of K-dimensional
cones. Each row of a generator has the property that its elements sum to zero and
non-diagonal elements are non-negative. By permuting the row elements, one can
always represent them as a point in a standard cone, v(K), defined as:

K
v(K) = {(azl,...,xK) GRK,Z% =0, 21 <0, 2 >0, fori> 2}. (C.3)
i=1

Note that «(K) is contained in the hyperplane H(K):

K
H(K):{(xl,...,mK)GRK,inzo}. (C4)

i=1

The problem of Quasi-Optimization of the generator matrix can be solved on a
row by row basis by projecting a point a € RX| i.e., a row of the matrix In (P),
onto the cone defined in [C.3] Thus, the problem can be reduced to K independent
instances of the following distance minimization problem: for a given point a € R¥,
a=(ai,...,ax), find g* € y(K) such that:

dist(a, ¢*) = min {dist(a,g)}. (C.5)
9€v(K)

The optimal solution to this problem can be obatained as follows:
K
1. let b be the projection of a on H(K): set b; = a; — A, where A\ = % (Z ai>;
i=1
2. let a = mw(b), where 7 is a permutation that orders the coordinates of b in

descending sequence;

3. find [*, that is the smallest integer 2 <[ < K — 1 that satisfies:

K—(1+1)
(K =1+ 1a1 > Z ag —1;
=0

4. define B ={i:2 <1i <[*}. Construct the vector g € v(K) as follows:

0 i€ B,

J— o 1 ) s
9i @i — R Z a; otherwise;
j¢B

5. apply the inverse permutation 77! to g. 7~!(g) is the solution to problem.
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