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Abstract
Multipath cohomology is a cohomology theory for directed graphs, which is defined
using the path poset. The aim of this paper is to investigate combinatorial properties of
path posets and to provide computational tools formultipath cohomology. In particular,
we develop acyclicity criteria and provide computations of multipath cohomology
groups of oriented linear graphs. We further interpret the path poset as the face poset
of a simplicial complex, and we investigate realisability problems.

Keywords Directed graphs · Posets ·Multipaths · Graph homology · Poset homology

1 Introduction

Cohomology theories of directed graphs (shortly, digraphs) have become extremely
important tools and are, nowadays, of central interest for the mathematical and scien-
tific community. This is mainly due to the emergence of new techniques in Topological
Data Analysis, which hinge on (co)homological and homotopical methods.

In this paper, we are concerned with a cohomology theory of digraphs called mul-
tipath cohomology [7] and denoted by H∗

μ. This is defined as the poset homology [7,
8] of the path poset (cf. [22]). More abstractly, multipath cohomology can be seen as
a functor cohomology, or as a cellular cohomology [9]—see [7, Sect. 6] for a compar-
ison. The main advantage of using poset homology over functor/cellular cohomology
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is its amenability to computations. In view of the discussion in [7, Sect. 6], the com-
putations provided here yield information about the functor and cellular cohomology
groups of (a mild modification of) path posets.

The goal of this paper is to analyse how the combinatorics of the path poset may
affect multipath cohomology. As a by-product, we develop a number of techniques
that can be used to explicitly compute H∗

μ with coefficients in a field. A first application
is the following theorem (see Theorem 5.9);

Theorem 1.1 Let L be an oriented linear graph andK be a field. Then, there exist inte-
gers h, k1, . . . , kh, which are combinatorially determined by L, such that the multipath
cohomology of L is trivial if ki ≡ 0 mod 3 and 1 ≤ i < h; otherwise, multipath
cohomology decomposes as the tensor product of graded modules, as follows

H∗+h−1
μ (L;K) = H∗

μ

(
A3�k1/3�;K

)⊗ · · · ⊗ H∗
μ

(
A3�kh−1/3�;K

)⊗ H∗
μ(Akh ;K) ,

where each factor

Hk
μ(An;K) =

{
K if n = 3(k − 1) + 2 or n = 3k,

0 otherwise

is the multipath cohomology group of an alternating graph An – cf. Fig. 1.

This result, togetherwith themethods involved in its proof, proves that themultipath
cohomology of a digraph captures relevant combinatorial information. Among other
implications, our computations reveal the non-triviality of multipath cohomology, in
the sense of the following theorem (see Proposition 4.17);

Theorem 1.2 The multipath cohomology H∗
μ(−;K) with coefficients in a field K can

be supported in arbitrarily high degree and can be of arbitrarily high dimension.

Our interest in the combinatorial properties of the path poset is not limited to the
purpose of understanding multipath cohomology groups, but it extends to its con-
nections with the so-called monotone properties. A property of (di)graphs is called
monotone if it is preserved under deletion of edges—e.g. being acyclic, being a forest,
etc.—and the study of the homotopy type of simplicial complexes associated with
monotone properties of (di)graphs is a central topic in combinatorial topology; see,
for instance, the classical papers [1, 6, 13, 23], as well as the more recent works [4,
17, 19]. The study of a simplicial complex associated with the path poset fits into this
framework.

In the last part of the paper, we describe the relationship between multipaths and
simplicial complexes. We show that for a given digraph G, there exists a simplicial
complex X(G) whose (reduced) simplicial cohomology is the multipath cohomology
of G—see Theorem 6.5;

Fig. 1 An alternating graph on n + 1 vertices. The edge between vn−1 and vn can be oriented either way
depending on the parity of n
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Theorem 1.3 For each n ≥ 0, the multipath cohomology group Hn
μ(G;K) of G is

isomorphic to the ordinary homology H̃n−1(X(G);K).

In virtue of this theorem, we reinterpret some of our combinatorial results—for
instance, we reprove a Mayer–Vietoris theorem for multipath cohomology. Then, we
turn to the question of which simplicial complexes arise as multipath complexes.
Among others, we observe that all wedges of spheres of the same dimension can be
obtained in this way (Example 6.9 and Proposition 6.12). It remains open the problem
of whether all wedges of spheres, or more complicated spaces, can be realised as
X(G)—cf. Questions 6.13 and 6.15.

On the combinatorial techniques

The construction of multipath cohomology with arbitrary coefficients (algebras and
bimodules) is quite abstract. One first associates to a digraph G its path poset. Then,
using the fact that every poset can be seen as a category, certain abstract categorical
constructions can be used to define the multipath cohomology of G. In this process,
the combinatorial information provided by the graph is somehow obscured. However,
when restricting to coefficients in the base ring, instead of a general algebra, com-
putations can be carried over the path poset. It becomes therefore useful to develop
combinatorial tools to study path posets.We rely on the gluing construction∇ (cf. Def-
inition 3.2) to provide the description of a path poset in terms of simpler path posets
(cf. Theorem 3.5). The decomposition in terms of the gluing construction ∇, together
with a Mayer–Vietoris type result for multipath cohomology, provides useful acyclic-
ity criteria (Criteria A and B). These criteria can be applied to compute explicitly the
cohomology of a number of graphs, see Table 1.

We also develop a deletion–contraction type result for multipath cohomology with
coefficients in an algebra A (Theorem 5.10). This result allows us to give a recursive
formula for the (graded) Euler characteristic of An , which shows how the complexity
of multipath cohomology increases in case A 
= R, and to prove the analogue of
[18, Lemma 3.3]—see Corollary 5.12. We conclude by noting that Corollary 5.12 can
be proved, in case A is commutative, by using the deletion–contraction long exact
sequence in chromatic homology [11].

Conventions

Typewriter font, e.g. G, H, etc., are used to denote finite graphs (both directed and
unoriented). All base rings are assumed to be unital and commutative, and algebras
are assumed to be associative. Unless otherwise stated, R denotes a principal ideal
domain, K is a field, A is a unital R-algebra, and all tensor products⊗ are assumed to
be over the base ring R. Given a cochain complex C∗, we denote by C∗[i] the shifted
complex C∗+i . General references for graph theory, algebra, and algebraic topology
are [15, 26] and [14], respectively.
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Table 1 Some digraphs and their respective multipath cohomologies

2 Basic notions

In this section, we review some basic notions on (directed) graphs and posets, and
recall the construction of multipath cohomology. Then, we specialise the general
construction to the case of multipath cohomology with coefficients in a field K – en
lieu of a general algebra A.

2.1 Digraphs and posets

Recall that a directed graph G, often shortened to digraph, is a pair of finite sets
(V (G), E(G)), called vertices and edges, where E(G) ⊆ {V (G)× V (G) \ {(v, v) | v ∈
V (G)}. Unless otherwise stated, we will refer to digraphs, simply, as graphs. When
dealing with (un)directed graphs, i.e. graphs for which the edges are not oriented,
the adjective “(un)oriented” will be explicitly stated. The forthcoming definitions for
digraphs apply verbatim to unoriented graphs by discarding the orientation of the
edges. Note that two vertices v and w in a digraph can share at most two edges: (v,w)

and (w, v).
By definition, an edge of a digraph is an ordered set of two distinct vertices, say

e = (v,w). The vertex v is called the source of e, while the vertexw is called the target
of e. The source and target of an edge e will be denoted by s(e) and t(e), respectively.
If a vertex v is either a source or a target of an edge e, we will say that e is incident to
v. Furthermore, we say that v ∈ V (G) is a sink (resp. a source) if for every e ∈ E(G)

incident to v we have v = t(e) (resp. v = s(e)). Finally, a digraph G with n edges is
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(a) (b)

Fig. 2 Linear source and sink

a sink (resp. a source) over n vertices if it has a unique sink (resp. source), and every
edge in G is incident to it.

Amorphism of digraphs from G1 to G2 is a function φ : V (G1) → V (G2) such that:

e = (v,w) ∈ E(G1) �⇒ φ(e) := (φ(v), φ(w)) ∈ E(G2) .

A morphism of digraphs is called regular if it is injective as a function.
A sub-graph H of a graph G is a graph such that V (H) ⊆ V (G) and E(H) ⊆ E(G),

and in such case we write H ≤ G. If H ≤ G and H 
= G we say that H is a proper
sub-graph of G, and we write H < G.

Definition 2.1 If H ≤ G and V (H) = V (G), we say that H is a spanning sub-graph
of G.

Given a proper spanning sub-graph H < G, we can find an edge e ∈ E(G) \ E(H).
The spanning sub-graph of G obtained from H by adding an edge e is simply denoted
by H ∪ e.

We now review some basic notions about partially ordered sets. A partially ordered
set, or simply poset, is a pair (S, �) consisting of a set S and a partial order � on S. A
morphism of posets f : (S, �) → (S′, �′) is a strictly monotone map of sets.

Example 2.2 The standard Boolean poset B(n) (of size 2n) is the poset (℘ ({0, . . . , n−
1}),⊂), where ℘ denotes the power set—i.e. the set of all subsets. A poset is called a
Boolean poset, if it is isomorphic to the standard Boolean poset B(n), for some n.

Example 2.3 Let G be a digraph with n edges. The poset (SSG(G),<) of spanning
subgraphs of G is given by all the spanning subgraphs of Gwith order relation given by
the property of being a subgraph. The associated covering relation≺ can be described
as follows:

H ≺ H′ ⇐⇒ ∃ e ∈ E
(
H′
) \ E(H) : H′ = H ∪ e .

Then, (SSG(G),<) is a Boolean poset isomorphic to B(n)—see also [7, Exam-
ple 2.14].

Given a partial order � on a set S, there is an associated covering relation �̃, given
by x �̃ y if, and only if, x � y and there is no z such that x � z, z � y. In order to
visually represent posets associated to digraphs, we use covering relations and the
associated Hasse graphs. Recall that the Hasse graph Hasse(S, �) of a poset (S, �)
is the graph whose vertices are the elements of S and such that (x, y) is an edge if,
and only if, x �̃ y. Each morphism of digraphs φ : Hasse(S, �) → Hasse

(
S′, �′)
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induces a morphism of posets φ : (S, �) → (S′, �′). We remark that not all morphisms
of posets arise this way. Recall also that, given a poset (S, �), a sub-poset is a subset
S′ ⊆ S with the order relation �|S′×S′ induced by �.
Definition 2.4 A sub-poset (S′, �|S′×S′) is called downward closed with respect to
(S, �), if whenever h � h′ and h′ ∈ S′, then h ∈ S′.

Essential to the construction of multipath cohomology are the following properties:

Definition 2.5 Let (S, �) be a poset and (S′, �|S′×S′) be a sub-poset of (S, �).
(1) We say that (S, �) is squared if for each triple x, y, z ∈ S′ such that z covers y

and y covers x , there is a unique y′ 
= y such that z covers y′ and y′ covers x .
Such elements x , y, y′, and z will be called a square in S.

(2) We say that (S′, �|S′×S′) is faithful if the covering relation in S′ induced by �|S′×S′
is the restriction of the covering relation in S induced by �;
Note that Boolean posets are squared and that the property of being squared or

faithful is preserved under intersections [7, Proposition 2.21]. Furthermore, downward
closed sub-posets are faithful, and each downward closed sub-poset of a squared poset
is also squared.

If (S, �S) and (S′, �S′) are posets, then their product poset is the set S × S′ with
the relation

(x1, x2) �S×S′ (y1, y2) ⇐⇒ (x1, x2) = (y1, y2) or x1 �S y1 and x2 �S′ y2. (1)

The definition of product poset is essential to introduce the cone of a poset. Let P be
a poset.

Definition 2.6 The cone of P , denoted by Cone P , is the product poset P × B(1).

As B(1) is (isomorphic to) the poset on the set {0, 1} with the relation 0 < 1, the
cone Cone P can also be seen as P × {0, 1}. The covering relation in Cone P can be
explicitly described; an element (a, i) is covered by (b, j) if and only if i = j and
a � b or i < j and a = b.

2.2 Path posets

We introduce one of the main tools in the definition of multipath cohomology of
directed graphs, the path poset associated with a directed graph G. By a simple path
in G , we mean a sequence of edges e1, . . . , en of G such that s(ei+1) = t(ei ) for i =
1, . . . , n−1, and no vertex is encountered twice, i.e. if s(ei ) = s(e j ) or t(ei ) = t(e j ),
then i = j , and is not a cycle, i.e. s(e1) 
= t(en). A connected component of G is
a sub-graph H of G whose geometric realisation (as CW-complex) |H| is connected.
Following [22], a multipath of G is a spanning sub-graph such that each connected
component is either a vertex or its edges admit an ordering such that it is a simple
path. The set of multipaths of G has a natural partially ordered structure:
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Fig. 3 The coherently oriented
linear graph In

Fig. 4 The coherently oriented
polygonal graph Pn

Definition 2.7 The path poset of G is the poset (P(G),<) associated to G, that is, the
set of multipaths of G ordered by the relation of “being a sub-graph”.

Observe that the order relation makes sense, because each multipath is a subgraph
of G.

Remark 2.8 The path poset P(G) is a downward closed subposet of a Boolean poset—
the Boolean poset of all spanning subgraphs. Therefore, it is faithful and squared.

When the partial order on P(G) is not specified, we will always implicitly assume
it to be the order relation<. Moreover, with abuse of notation, we will also write P(G)

instead of (P(G),<). We now provide some examples of path posets—cf. [7, Sect. 2].

Example 2.9 Consider the coherently oriented linear graph In with n edges—Fig. 3.
Then, (P(In),<) is isomorphic to the Boolean poset B(n). Let Pn be the coherently
oriented polygonal graph with n + 1 edges—Fig. 4. Then, (P(Pn),<), is isomorphic
to the Boolean poset B(n) minus its maximum.

2.3 Multipath cohomology

Given a special type of poset coherently assigned to each digraph and a choice of a
sign assignment on it (see Definition 2.10), one can define a cohomology theory for
directed graphs—see [7]. Let Z2 be the cyclic group on two elements.

Definition 2.10 A sign assignment on a poset (S, �) is an assignment of elements
εx,y ∈ Z2 to each pair of elements x, y ∈ S with x �̃ y, such that the equation

εx,y + εy,z ≡ εx,y′ + εy′,z + 1 mod 2 (2)

holds for each square x �̃ y, y′ �̃ z.
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A priori, the existence of a sign assignment on a given poset is not clear. For a coho-
mological sufficient condition for a sign assignment on a given poset, see [7, Sect. 3.2].
For the poset of spanning sub-graphs—or, better, for any Boolean poset—and their
sub-posets, a sign assignment can be easily described—see [12]. More generally, one
may ask when two sign assignments on a given poset are isomorphic. We refrain
here from giving the definition of isomorphism of sign assignments—cf. [7, Defini-
tion 3.13]—but in cases of interest to us, all sign assignments are isomorphic—cf. [7,
Theorem 3.16 and Corollary 3.17].

Recall that the length of a graph G, denoted by lenght(G), is the number of edges
in G.

Definition 2.11 Let P be a finite poset with a minimum m. The level �(x) of x ∈ P is
the minimal length among all simple paths joining x to the minimum in Hasse(P).

If P = P(G) is the path poset of a graph, then the level and the length coincide.
More generally, if P is a faithful sub-poset of SS(G), the notion of level of an element
H ∈ P can be extended as follows:

�(H) = #E(H) + #V (H) −min{#E(H′) + #V (H′) | H′ ∈ P} .

For the rest of the section, R denotes a commutative ring with identity, and A an
associative unital R-algebra. An ordered digraph is a digraph with a fixed ordering of
the vertices.

Let G be an ordered graph and let v0 ∈ V (G) be the minimum with respect to
the given ordering. Given a multipath H < G, to each connected component of H we
associate a copy of A. Then, we take the ordered tensor product. More concretely, if
c0 < · · · < ck is the set of ordered connected components of H, we define:

FA(H) := Ac0 ⊗R · · · ⊗R Ack , (3)

where all the modules are labelled by the respective component.
Assume H′ = H ∪ e. We define the source s(e,H) (resp. target t(e,H)) of e in H

as the index of the connected component of H containing the source (resp. target) of
e. Denote by c0,…,ck the ordered components of H, denote by c′0,…,c′k−1 the ordered
components of H′, and assume that the addition of e merges ci and c j . Then, for each
h = 0, . . . , k − 1, there is a natural identification

c′h =

⎧
⎪⎨

⎪⎩

ch if 0 ≤ h < i or i < h < j;
ci ∪ e ∪ c j if h = i;
ch+1 if j ≤ h < k.

(4)

for some 0 ≤ i < j ≤ k. Using this identification, we define μH≺H′ : FA(H) −→
FA(H′) as

μH≺H′(a0 ⊗ · · · ⊗ ak) = a0 ⊗ · · · ⊗ as(e,H)−1 ⊗ as(e,H) · at(e,H) ⊗ as(e,H)+1

⊗ · · · ⊗ ât(e,H) ⊗ · · · ⊗ ak−1 ⊗ ak
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where ât(e,H) indicates that at(e,H) is missing. Let ε be a sign assignment on P(G). We
can now define the cochain groups

Cn
μ(G; A) :=

⊕

H ∈ P(G)

�(H) = n

FA(H)

together with the differential

dn = dnμ :=
∑

H ∈ P(G)

�(H) = n

∑

H′ ∈ P(G)

H ≺ H′

(−1)ε(H,H′)μ(H ≺ H′).

It has been proved that (C∗
μ(G; A), d∗) is a cochain complex [7, Theorem 4.10]. Fur-

thermore, the path poset P(G) is squared and faithful by Remark 2.8; hence, the
homology groups of (C∗

μ(G; A), d∗) do not depend on the sign assignment ε used in
the definition of (C∗

μ(G; A), d∗) and on the choice of the ordering on V (G) [7, Corol-
lary 3.18 & Proposition 4.11]. We are ready to give the definition of the multipath
cohomology of a directed graph:

Definition 2.12 The multipath cohomology H∗
μ(G; A) of a digraph G with with coef-

ficients in an algebra A is the homology of the cochain complex (C∗
μ(G; A), d∗).

Observe that, when A is the ring R, the tensor products in Eq. (3) simply give
FR(H) = Rc0 ⊗R · · · ⊗R Rck

∼= R, for each multipath H < G. The isomorphism
between the tensor powers of R and R itself is given bymultiplicationμ, and therefore,
the differential can be written as:

dn =
∑

H ∈ P(G)

�(H) = n

∑

H′ ∈ P(G)

H ≺ H′

(−1)ε(H,H′)IdH≺H′ .

Identifying FR(H) with a copy of R gives us a set of linearly independent generators
{bH}H (as free R-module) for C∗

μ(G; R) indexed by multipaths.
If φ : G1 → G2 is a regular morphism of digraphs, then it induces (functorially) a

morphism of posets Pφ : P(G1) → P(G2), as it sends multipaths of G1 to multipaths
of G2.We obtain a (controvariant) morphism of cochain complexes φ∗ : C∗

μ(G2; A) →
C∗

μ(G1; A) where we fixed a sign assignment on P(G2) and we considered the sign on
P(G1) by restriction.

We conclude the section with the computation of the multipath cohomology of the
coherently oriented linear graph;

Example 2.13 Consider the coherently oriented linear graph In of length n, illustrated
in Fig. 3. Then, its multipath cohomology H∗

μ(In;K) is trivial [7, Example 4.20].
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3 A combinatorial description of path posets

Theaimof this section is to give a combinatorial descriptionof the path poset associated
with a directed graph G; we show that the path poset can be constructed by gluing
together simpler path posets associated with (suitable) subgraphs of G. In the follow
up, we will deal with disconnected graphs. A straightforward observation is that the
multipath cohomology of disconnected graphs is the tensor product of the multipath
cohomologies:

Remark 3.1 Let G be the disjoint union of connected digraphs G1, . . . ,Gn . Then, the
path poset P(G) is the product P(G1)×· · ·×P(Gn)—cf. Eq. (1). Hence, the multipath
cohomology of G splits as the graded tensor product:

H∗
μ(G;K) = H∗

μ(G1;K) ⊗ · · · ⊗ H∗
μ(Gn;K) .

In particular, if H∗
μ(Gi ;K) = 0 for some i ∈ {1, . . . , n}, then H∗

μ(G;K) = 0.

We introduce a gluing operation for directed graphs.

Definition 3.2 (Gluing) Let G,G1,G2 be digraphs, and ı1 : G → G1 and ı2 : G → G2
be regular morphisms. The gluing of G1 and G2 along G is the digraph ∇G(G1,G2)
defined as follows:

(1) V (∇G(G1,G2)) := V (G1) � V (G2)/ ∼, where x ∼ y if, and only if, either x = y
or x ∈ ı1(G), y ∈ ı2(G), and ı−1

1 (x) = ı−1
2 (y);

(2) ([v], [w]) ∈ E(∇G(G1,G2)) if, and only if, there exist v′ ∈ [v], w′ ∈ [w], and
i ∈ {1, 2} such that (v′, w′) ∈ E(Gi ), where [·] denotes an equivalence class with
respect to ∼.

Roughly speaking, ∇G(G1,G2) is the graph obtained from G1 and G2 by identifying
the vertices and edges belonging to the image of G.

When clear from the context and for ease of notation, we denote the edge ([v], [w])
in the set E(∇G(G1,G2)) as (v,w). For a given graph G, the operation ∇G(−,−)

is commutative and associative up to isomorphism of digraphs. Let Digraph be the
category of digraphs and regular morphisms of digraphs.We can reinterpret the gluing
as a categorical pushout:

Remark 3.3 Theoperation∇G(−,−) is the categorical push-out—cf. [16, Sect. III.3]—
in the category Digraph. Since ∇G(G1,G2) is an object of Digraph, and since the
inclusions of G1 and G2 in ∇G(G1,G2) are regular morphisms of digraphs, we have a
commutative square

G G1

G2 ∇G(G1,G2)

ı1

ı2 j1

j2
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inDigraph. Note that V (∇G(G1,G2)) is the push-out of V (G1) and V (G2) along V (G)

in the category Set of sets. Now, given another digraph G′ such that the square

G G1

G2 G′

ı1

ı2 j ′1
j ′2

commutes, then we get a function V (∇G(G1,G2)) → V (G′) since V (∇G(G1,G2))
is a push-out in Set. Such a function extends to a map of digraphs by definition of
morphism of digraphs, which is injective as it is composition of injective functions.

If G′ is a digraph, and ı : G′ → ∇G(G1,G2) and j : G′ → G3 are regular morphisms,
we define:

∇G′,G(G1,G2,G3) := ∇G′(∇G(G1,G2),G3) .

In general, if G1, . . . ,Gn is a family of digraphs such that for every k < n there exist
a (regular) morphisms of digraphs ık : G → Gk we will denote ∇G,...,G(G1, . . . ,Gn)
by ∇G(G1, . . .Gn). Note that ∇G(G1, . . .Gn) does not depend, up to isomorphism of
digraphs, on the order of the digraphs G1, . . .Gn , whereas ∇G′,G(G1,G2,G3) might.

Definition 3.4 The gluing of two posets P1 and P2 along a common subposet P is the
poset, denoted by ∇P (P1, P2), whose Hasse diagram is the gluing of Hasse(P1) and
Hasse(P2) along Hasse(P).

Observe that the gluing does not commute with the operation of taking path posets.

To see it, let G1 be the graph
v0 v1 v2 and G2 the graph

v1 v2 v3

and consider the gluing G of G1 and G2 over v1 v2 . Then, the poset P(G) is
isomorphic to the Boolean poset B(3), whose Hasse diagram is (the 1-skeleton of) a
3-dimensional cube. On the other hand, the Hasse diagram of ∇P(G)(P(G1), P(G2))
is the gluing of two copies of Hasse(B(2)) along a copy of Hasse(B(1))—that is
two (empty) squares attached along an edge.

We now relate the path poset of a graph to the gluing of the path posets certain
subgraphs. First, for a vertex v ∈ V (G), consider the set Ev of edges e1, . . . en in
G incident to v, ordered so that v = t(ei ), for i = 1, . . . , k, and v = s(e j ), for
j = k + 1, . . . , n. Denote by Gkv the graph obtained by deleting the edges e1, . . . ek
from G, and set G(h)

v := Gkv ∪ eh .

Theorem 3.5 If the vertex v is a target for k ≥ 2 edges, then

P(G) ∼= ∇P(Gkv)

(
P
(
G(1)

v

)
, . . . , P

(
G(k)

v

))
.

In other words, the path poset P(G) is isomorphic to an iterated gluing of the path
posets of the subgraphs G(1)

v ,…,G(k)
v over the path poset of Gkv .
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Proof We recall that, if G′ is a subgraph of a digraph G, then every multipath in P(G′)
can be seen as a multipath in P(G). This means that P(G′) can be seen as an downward
closed (and, in particular, faithful) subposet of P(G).

To prove the theorem, we want to produce an isomorphism of posets

P(G) ∼= ∇P(Gkv)

(
P
(
G(1)

v

)
, . . . , P

(
G(k)

v

))
.

First, we start by identifying the underlying sets, and then, we proceed with proving
that the respective poset structures are isomorphic.

For the rest of the proof, denote by T the set {e ∈ E(G) | t(e) = v}. Let H be a
multipath in P(G). We have two possible cases:

Case 1: H does not contain any edge in T . Then, all simple paths in H are simple paths
in Gkv , and thus, H ∈ P

(
Gkv
)
.

Case 2: H contains an edge eh ∈ T . In this case, H cannot contain any other e j ∈ T .

Therefore, we have H ∈ P
(
G(h)

v

)
\ P
(
Gkv
)
.

On the other hand, observe that any multipath H ∈ ∇P(Gkv)

(
P
(
G(1)

v

)
, . . . , P

(
G(k)

v

))

can be identified with either an element of P
(
G( j)

v

)
\P (Gkv

)
, for some j ∈ {1, . . . , k},

or with an element of the poset P
(
Gkv
)
. Thus, we have a way to uniquely iden-

tify H with an element of P(G) and, consequently, the underlying sets of P(G) and

∇P(Gkv)

(
P
(
G(1)

v

)
, . . . , P

(
G(k)

v

))
. With abuse of notation, we denote this element

again by H.
Now, we want to prove that the general multipath H covers the same elements both

in P(G) and ∇P(Gkv)

(
P
(
G(1)

v

)
, . . . , P

(
G(k)

v

))
. This is obvious if H is a multipath

of P
(
Gkv
)
. Assume that H is in P(G) \ P

(
Gkv
)
. Then, there exists a unique e j ∈ T

such that e j ∈ H. A multipath covered by H is then a multipath in P
(
G( j)

v

)
, and

consequently, the same covering relations hold in ∇P(Gkv)

(
P
(
G(1)

v

)
, . . . , P

(
G(k)

v

))
.

Finally, if H ∈ ∇P(Gkv)

(
P
(
G(1)

v

)
, . . . , P

(
G(k)

v

))
, then all the elements covered by H

are contained in P
(
G( j)

v

)
and it is possible to conclude the proof because P

(
G( j)

v

)

in an downward closed subposet of P(G). ��

4 Applications tomultipath cohomology

In this section, we prove a Mayer–Vietoris-type theorem and some aciclicity criteria
for multipath cohomology with coefficients in a field.
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4.1 The cohomology of the cone construction

Recall first that a poset P = (S, �) can be seen as a category P. Given a functor F
from P to the category of vector spaces, with some mild assumptions on P , there
are well-defined cohomology groups H∗(P;F) of P with coefficients in F—cf. [7,
Theorem 3.7]—which, when P = P(G) is the path poset of a digraph G, gives the
multipath cohomology.

We denote by (C∗(P;K), ∂P ) the cochain complex (C∗
FK

(P), ∂) associated with
a poset P (and level �) and to the functor FK assigning a copy of K to each object of
P and the identity K → K to each arrow. Analogously, we denote by H∗(P;K) the
cohomology groups of the cochain complex (C∗(P;K), ∂P ). Recall that for a map
f : (A, ∂A) → (B, ∂B) of cochain complexes, themapping cone Cone f is the cochain
complex defined in degree n as (Cone f )n := An+1 ⊕ Bn and differential

∂ :=
(

∂A[1] 0
f [1] ∂B

)

where ∂A[1] and f [1] represent the differential ∂A and the morphism f shifted by one.

Theorem 4.1 Let G be a digraph. Then, we get an isomorphism of cochain complexes

C∗(Cone P(G);K) ∼= Cone
(
IdC∗

μ(G;K)

)
[−1]

where Cone
(
IdC∗

μ(G;K)

)
represents the mapping cone of the identity map on the

cochain complex C∗
μ(G;K). Consequently, we have H∗(Cone P(G);K) = 0.

To simplify the notation, we drop the reference to K in the proof of the theorem.

Proof Recall that the cone of a poset P is the product poset P ×B(1)—cf. Definition
2.6. Consider the partition P(G)× {0} � P(G)× {1} = Cone P(G). Furthermore, we
also have that �Cone P(G)(H, i) = �P(G)×{i}(H, i) + i = �P(G)(H) + i , for i ∈ {0, 1}.
As a consequence, we have the isomorphism of graded K-vector spaces

C∗(Cone P(G)) ∼= C∗(P(G) × {0})⊕ C∗(P(G) × {1})[−1]
where C∗(P(G))[−1] denotes the complex C∗(P(G)) shifted by one. In turn, we have
an isomorphism of posets P(G) ∼= P(G)×{i}, for i = 0, 1, given by the identification
H �→ (H, i). These identifications induce the isomorphism of graded K-vector spaces

C∗(P(G)× {0})⊕ C∗−1(P(G) × {1}) ∼= C∗
μ(G) ⊕ C∗−1

μ (G) = Cone
(
IdC∗

μ(G;K)

)
[−1].

Now, we have to show that the above isomorphism commutes with the differentials.

The differential ∂ of Cone
(
IdC∗

μ(G;K)

)
[−1] is defined as

∂ :=
(

∂μ 0
IdC∗

μ(G;K) ∂μ[−1]
)
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where (∂μ[−1])n := (−1)n∂n−1
μ . The differential of C∗(Cone P(G)) can be explicitly

written:

∂Cone P(G)(e(H,i)) = (1− i)e(H,1) +
∑

H≺H′
(−1)ε(H,H′)+i e(H′,i)

where ε(H,H′) is a sign assignment on P(G) and e(H,i) is the generator of C∗(P(G)×
{i}) associated with the multipath H in G. It is easy to check that ε′((H, i), (H′, j)) :=
ε(H,H′) + i is a sign assignment on Cone P(G).

The isomorphismC∗(Cone P(G)) ∼= Cone
(
IdC∗

μ(G;K)

)
[−1] described above com-

mutes with these differentials, concluding the proof of the first part of the statement.
The vanishing result follows from the classical properties of themapping cone of chain
complexes [25]. ��

We observe that the second part of Theorem 4.1 can be alternatively proved using
discrete Morse theory—see [14, Chapter 11] for an introduction; if we consider the
edges in Hasse(Cone P(G))) with source in P(G) × {0} and target in P(G) × {1},
then these form an acyclic matching ([14, Definition 11.1]) whose edges are incident
to all vertices of the graph Hasse(Cone P(G)). It follows from the definitions and
[14, Theorem 11.24] that the homology of C∗(Cone P(G);K) is trivial.

4.2 AMayer–Vietoris theorem

The goal of this subsection is to prove a result which is the analogue, in the framework
of multipath cohomology, of the classical Mayer–Vietoris theorem. In the classical
statement, given a decomposition of a topological space as union of two subspaces,
there is an induced long exact sequence of (co-)homology groups featuring also their
intersections. In the setting of multipath cohomology, the rôle played by unions of
topological spaces is given by the gluing of posets. Recall that, for φ : G′ → G, we
have an induced morphism of posets Pφ : P(G′) → P(G)—see [7, Remark 2.33].
Furthermore, [7, Proposition 5.11] gives us a map between the multipath cochain
complex of a graph G and the multipath cochain complex of a sub-graph G1.

Theorem 4.2 Let G,G1,G2 be directed graphs, and i1 : G → G1 and i2 : G → G2
be regular morphisms of digraphs. Then, we have a short exact sequence of cochain
complexes

0 → C∗(∇P(G)(P(G1), P(G2));K)
I ∗−→ C∗

μ(G1;K) ⊕ C∗
μ(G2;K)

J∗−→ C∗
μ(G;K) → 0 (5)

inducing the long exact sequence

· · · → Hi−1
μ (G;K) → Hi (∇P(G)(P(G1), P(G2));K) → Hi

μ(G1;K) ⊕ Hi
μ(G2;K)

→ Hi
μ(G;K) → · · ·

of cohomology groups.
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Proof We first observe that, as a consequence of the definition of gluing—cf. Defini-
tion 3.2—P(G1) and P(G2) are isomorphic to subposets of∇P(G)(P(G1), P(G2)); call
j1 and j2 these isomorphisms. The inclusions of graphs i1 : G → G1 and i2 : G → G2
induce morphisms of posets ı1 : P(G) → P(G1) and ı2 : P(G) → P(G2). All the
resulting morphisms fit into the following commutative square of posets

P(G) P(G1)

P(G2) ∇P(G)(P(G1), P(G2))

j1

j2 ı1

ı2

and induce a commutative diagram of cochain complexes:

C∗(∇P(G)(P(G1), P(G2));K) C∗
μ(G1;K)

C∗
μ(G2;K) C∗

μ(G;K)

ı∗1

ı∗2 j∗1

j∗2

Now, for every n ∈ N, consider the maps

I n := ın1 ⊕ ın2 : Cn(∇P(G)(P(G1), P(G2));K) → Cn
μ(G1;K) ⊕ Cn

μ(G2;K) ,

and

Jn := jn1 − jn2 : Cn
μ(G1;K) ⊕ Cn

μ(G2;K) → Cn
μ(G;K) .

We proceed with proving that the sequence of complexes in Eq. (5) is exact. The
cochain complexes C∗(∇P(G)(P(G1), PG2);K), Cn

μ(G1;K), and Cn
μ(G2;K) have

bases indexedby the elements of the correspondingposet (namely,∇P(G)(P(G1), PG2),
P(G1), and P(G2), respectively). We denote by bH the element of each of these bases
corresponding to the multipath H.

With this notation, a generic element x of Cn(∇P(G)(P(G1), PG2);K) is of the
form

x =
∑

H∈P(G)

αHbı1◦j1(H) +
∑

H′∈P(G1)\j1(P(G))

βH′bı1(H′) +
∑

H′′∈P(G2)\j2(P(G))

γH′bı2(H′′)

with �(H) = �(H′) = n. Note that ı1 ◦ j1 = ı2 ◦ j2, thus bı1◦j1(H) = bı2◦j2(H) for each
H ∈ P(G). We are now ready to verify that I n is injective. With respect to the basis
above, we can write

I n(x) =
⎛

⎝
∑

H∈P(G)

αHbj1(H) +
∑

H′∈P(G1)\j1(P(G))

βH′bH′ ,
∑

H∈P(G)

αHbj2(H) +
∑

H′′∈P(G2)\j2(P(G))

γH′′bH′′

⎞

⎠ .
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It follows that I n(x) = 0 if and only if all the coefficients αH, βH and γH′ , and thus, x
are zero.

It is left to show that Jn is surjective and that Ker(I n) = Im(Jn). First, we write
Jn explicitly, as follows;

Jn

⎛

⎝
∑

H′∈P(G1)

αH′bH′ ,
∑

H′′∈P(G2)

βH′′bH′′

⎞

⎠ =
∑

H∈P(G)

(αj1(H) − βj2(H))bH .

Now, for Jn(x) to be zero, we must have that αj1(H) = βj2(H), for all H ∈ P(G),
independently on the values of αH′ and βH′′ for H′ /∈ j1(P(G)), and H′′ /∈ j2(P(G)). It
follows that the kernel Jn is precisely the image of I n . Finally, Jn is clearly surjective,
concluding the proof. ��

The following observation is straightforward:

Remark 4.3 Under the assumptions of Theorem 4.2, if G1 and G2 have trivial multi-
path cohomology, thenHn(∇P(G)(P(G1), P(G2));K) is isomorphic toHn−1

μ (G;K) for
all n.

By iterated applications of theMayer–Vietoris long exact sequence for themultipath
cohomology, we obtain the corollary:

Corollary 4.4 LetG1, . . . ,Gn be digraphs and suppose that for all j ∈ {1, . . . , n} there
exists a regular morphism i j : G → G j . If all the cohomology groups H∗

μ(G;K) and
H∗

μ(G j ;K) vanish for all j , then

H∗ (∇P(G)(P(G1), . . . P(Gn));K
) = 0 .

In the next subsection, we apply the results shown in this subsection to obtain
vanishing criteria for multipath cohomology.

4.3 Acyclicity criteria and examples

The aim of this subsection is to find sufficient conditions on a graph G, for H∗
μ(G;K)

to be trivial. Using the same notation as in Theorem 3.5, we obtain the first vanishing
criterion;

Criterion A Assume that a digraph G satisfies the following conditions:

(1) There exists a vertex v that is the target (or source) of k ≥ 2 edges;
(2) The graphs G(1)

v , . . . ,G(k)
v ,Gkv have trivial multipath cohomology.

Then, H∗
μ(G;K) = 0.

Proof By Theorem 3.5, we have the isomorphism of posets

P(G) ∼= ∇P(Gkv)

(
P
(
G(1)

v

)
, . . . , P

(
G(k)

v

))
.

Then, the statement follows from Corollary 4.4. ��
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Fig. 5 A graph with n edges
with target v glued to a linear
graph

Fig. 6 A graph G and two copies
of I3 inside it. The morphism of
digraphs φr , whose image is the
red copy of I3, is a
ν-equivalence away from v0 and
v3, while morphism of digraphs
φb , whose image is the blue
copy of I3, is a ν-equivalence
away from v1 and v2

At a first glance, Criterion A looks quite technical. However, it can easily applied
in practice.

Example 4.5 Let G be the graph shown in Fig. 5. Recall from Example 2.13 that a
coherent linear graph has trivial cohomology. Then, by applying Criterion A, we get
that H∗

μ(G;K) = 0.

CriterionA says thatwe can infer the vanishing ofmultipath cohomologyby looking
at smaller pieces in the graph. Our second criterion is based on the existence of suitably
“embedded” subgraphs. To formalise this, we need the notion of ν-equivalence.

Definition 4.6 A morphism of directed graphs φ : G → G′ is a ν-equivalence away
from a (possibly empty) set of vertices V ∈ V (G), if the valence of v ∈ V (G) is the
same as the valence of φ(v) ∈ V (G′), for every v ∈ V (G) \ V .

Note that a ν-equivalence φ : G → G′ away from an empty set of vertices is just
the inclusion of G as a connected component of G′.

Example 4.7 Let G be the graph in Fig. 6, and denote by I3 the linear digraph illus-
trated in Fig. 3, with vertices labelled as in the aforementioned figure. Consider the
morphisms of digraphs φb, φr : I3 → G, defined as follows: φb(vi ) = wi , for each
i ∈ {0, 1, 2, 3}, and

φr (vi ) =

⎧
⎪⎨

⎪⎩

w1 if i = 0;
zi if i = 1, 2;
w2 if i = 3.

Then, φb is a ν-equivalence away from v1 and v2, while φb is so, away from v0 and v3.

In order to state our next criterion, we need a new family of graphs Hn,m , illustrated
in Fig. 7.

Criterion B LetG be a digraph and assume that there exists a ν-equivalenceφ : Hn,m →
G away from w1, . . . , wn and x1, . . . , xm . If (φ(v0), φ(v1)) is not contained in any
coherently oriented cycle1 of G, then H∗

μ(G;K) = 0.

1 That is the image of a regular morphism Pn → G, for some n.
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Fig. 7 The graph Hn,m

Proof Denote by e the edge (φ(v0), φ(v1)) of φ(Hn,m) and set G′ := G \ {e}. We
want to show that the poset P(G) is isomorphic to the cone Cone P(G′). Consider the
following subset of the path poset: P(G)0 := {H ∈ P(G) | e /∈ H} and P(G)1 := {H ∈
P(G) | e ∈ H} endowed with the poset structure induced by P(G). We claim that
P(G)i ∼= P(G′) × {i} ⊂ Cone P(G′), for i = 0, 1. The isomorphism P(G)0 ∼= P(G′)
is clear. Now, to identify P(G)1 with P(G′) × {1} we observe that:
(1) The edge e is coherently oriented with the other edges in φ(Hn,m),
(2) Nomultipath contains two edges of the form (φ(xi ), φ(v1)) nor contains two edges

of the form (φ(v1), φ(wi )),
(3) And e is not contained in a coherently oriented cycle.

It follows that H ∪ e is a multipath for every H ∈ P(G)0, which implies that the
map sending H ∈ P(G)0 to H ∪ e ∈ P(G)1 is well-defined. Note that this map is
also a bijection and that it preserves the inclusions, i.e. if H ≺ H′ ∈ P(G)0, then
H∪ e ≺ H′ ∪ e ∈ P(G)1. Consequently, we have a sequence of isomorphism of posets
P(G)1 ∼= P(G)0 ∼= P(G′) × {0} ∼= P(G′) × {1}. To complete the proof that P(G) ∼=
Cone P(G′), we have to check that, under the above chain of identifications, a covering
relation between two elements H ∈ P(G)0 and H′ ∈ P(G)1 corresponds uniquely
to a covering relation between the corresponding elements (H, 0) ∈ P(G′) × {0}
and (H′ \ {e}, 1) ∈ P(G′) × {1}. This follows directly from the description of the
covering relation in Cone P(G′). As a consequence, the posets P(G) and Cone P(G′)
are isomorphic. From Theorem 4.1, it follows H∗

μ(G;K) = 0. ��
Remark 4.8 Criterion B also holds if either n = 0 or m = 0. In these cases, we say
that the graph G has a coherent tail. With this terminology, we can restate the special
case of Criterion B when either n = 0 or m = 0 as follows; if G has a coherent tail,
then H∗

μ(G;K) = 0.

We now provide some examples.

Example 4.9 Anarborescent graph (orarborescence) is a directed graph inwhich there
is a vertex r , called root, and there is exactly one directed path from r to any other
vertex. If an arborescent graphT has a vertex at distance 2 from the root (i.e. the unique
path joining them has length 2), then up to orientation reversing of the edges there is
a ν-equivalence H0,m → T away from v0, for some m > 0 . Applying Criterion B, we
get H∗

μ(T;K) = 0.

Example 4.10 Let On be the graph in Fig. 8, and set v = v3, e1 = (v3, v2), and
e2 = (v3, v1). Using the same notation of Criterion A, we have that G2v and G(1)

v have
a coherent tail, while there is a ν-equivalence I3(∼= H1,1) → G(2)

v whose image is the
sub-graph with edges (v3, v1), (v1, v0), (v0, v2). Thus, by Criterion B, G2v , G

(1)
v , and

G(2)
v have trivial cohomology. By Criterion A, it follows that H∗

μ(On;K) = 0.
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Fig. 8 The graph On

Fig. 9 The graph D3,2

Another class of graphs, important to us, is given by the dandelion graphs:

Definition 4.11 Let Dn,m the graph on (n+m+1) vertices, and (m+n) edges defined
as follows:

(1) V (Dn,m) = {v0, w1, . . . ., wn, x1, . . . , xm};
(2) E(Dn,m) = {(wi , v0), (v0, x j ) | i = 1, . . . , n; j = 1, . . . ,m}.
The digraph Dn,m is called a dandelion graph.

In other words, we have a single (m + n)-valent vertex v0, all remaining vertices
are univalent, there are n edges with target v0, and there are m edges with source
v0—cf. Fig. 9.

Remark 4.12 If we reverse the orientation of all the edges in Dk,n−k , we obtain Dn−k,k .
Then, we have an isomorphism P(Dk,n−k) ∼= P(Dn−k,k); hence, Hn

μ(Dk,n−k;K) ∼=
Hn

μ(Dn−k,k;K) for all n.

The dandelion digraph Dn,0 is a source with n edges, and the dandelion digraph D0,n
is a sink with n edges. The dandelion digraph D1,1 is the 2-step graph I2.

Remark 4.13 If G is a source or a sink with n ≥ 2 edges, then dimH1
μ(G;K) = n − 1

and dimHi
μ(G;K) = 0 for i 
= 1; in fact the path poset of a sink (or a source) with

n edges is given by a single multipath of length 0, and n multipaths of length 1. It
follows that, in the case at hand, the multipath chain complex is very simple:

0 → C0
μ(D0,n;K) ∼= K

d0−→ C1
μ(D0,n;K) ∼= K

n → 0.

Furthermore, the map d0 is injective (since d0 is the map x �→ (±x, . . . .,±x) for an
appropriate choice of signs), giving trivial cohomology in degree 0 and a cohomology
group of dimension n − 1 in degree 1.

An immediate consequence of Remark 4.13 is that we can have multipath coho-
mology groups of arbitrary dimension (as K-vector space).

Proposition 4.14 Let n ≥ 1 be an integer. Then, H∗
μ(D1,n−1;K) = 0.
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(a) (b)

Fig. 10 Configurations of a digraph G with subgraphs ν equivalent away from v0 to D1,2 and D2,1

Proof Note that D1,0 = I1 and that D1,n−1 = H0,n−1. In the former case, the coho-
mology is trivial by direct computation. In the latter case, the cohomology is trivial
by Criterion A, as D1,n−1 has a coherent tail—cf. Remark 4.8. ��
Proposition 4.15 Let n > 2 and k > 0 be two integers such that n > k. Then, we
have

Hi
μ(Dk,n−k;K) ∼=

{
K

(k−1)(n−k−1) if i = 2

0 otherwise.

Proof We proceed by induction on n. If n = 3, Proposition 4.14 and Remark 4.12
imply H∗

μ(D2,1;K) ∼= H∗
μ(D1,2;K) = 0. Now, set G = Dk,n−k and v = v0. By

Theorem 3.5, we have

P(Dk,n−k) ∼= ∇P(D0,n−k )

(
P(D1,n−k), . . . , P(D1,n−k)

)

︸ ︷︷ ︸
k copies

(∗)∼= ∇P(D0,n−k )

(
P(D1,n−k), P(Dk−1,n−k)

)

where the isomorphism marked with (∗) follows from the associativity of the gluing
(and from Theorem 3.5). By applying Theorem 4.2 and the inductive hypothesis, it
follows that Hi

μ(Dk,n−k;K) = 0 for i ≥ 3, and that the sequence

0 → H1
μ(D0,n−k;K) → H2

μ(Dk,n−k;K) → H2
μ(Dk−1,n−k;K) → 0 ,

is exact. The assertion is now immediate from the fact that the dimension function is
additive on short exact sequences. ��

We conclude the section showing that there exist directed graphs with multipath
cohomology of arbitrary high rank in arbitrary high degree.

Lemma 4.16 Given a digraph G′ with a vertexw of valence 1, there exists a digraph G
such that H∗

μ(G′;K) ∼= H∗−1
μ (G;K).

Proof Let e ∈ E(G′) be the only edge incident to w. We define G as follows; if
s(e) = w, glue a linear sink over w to G′—cf. Fig. 2, otherwise glue a linear source.
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(a) (b)

Fig. 11 The graph G′ as subgraph of G in the two cases we consider

In the notations of Figs. 10 and 11, by Theorem 3.5 the path poset of G is the gluing
of the path posets P(G(1)

w ) and P(G(2)
w ) over P(G′). By Remark 4.8, the subgraphs

G(1)
w and G(2)

w have trivial cohomology; hence, by Remark 4.3, we have H∗
μ(G;K) =

H∗−1
μ (G′;K). ��
Observe that the digraph G constructed in Lemma 4.16 has again (at least) one

vertex of valence 1 and consequently the construction can be iterated.

Proposition 4.17 For all i, n ∈ N, there exists a digraphG such that dimK

(
Hi

μ(G;K)
)

= n.

Proof The multipath cohomology of a sink graph G with n + 1 edges is concentrated
in degree one, where it is H1

μ(G;K) ∼= K
n . By applying iteratively Lemma 4.16, we

obtain digraphs G with dimK

(
Hi

μ(G;K)
) = n for every i . ��

5 Oriented linear graphs

This section is devoted to the study of the multipath cohomology of oriented linear
graphs. Firstly, we focus on the case of coefficients in a fieldK. In this case, we achieve
a complete description of their cohomology groups. Then, we analyse the general case
of coefficients in a graded algebra A, and we prove some recursive formulae for the
graded Euler characteristic.

5.1 Multipath cohomology of linear graphs

An oriented linear graph L (on n vertices) is a directed graph with vertices
{v0, . . . , vn−1}, such that, for all i ∈ {1, . . . , n − 1}, exactly one among (vi , vi−1)

and (vi−1, vi ) belongs to E(L), and there are no other edges. An oriented linear
graph L is called alternating if whenever (vi−1, vi ) ∈ E(L) for some i < n − 1, we
have (vi+1, vi ) ∈ E(L) and, analogously, if (vi , vi−1) ∈ E(L), then (vi , vi+1) ∈ E(L).
We denote by An an alternating linear graph on n + 1 vertices. Observe that the alter-
nating graph An is unique up to orientation reversing.

Definition 5.1 A vertex of an oriented linear graph L is called unstable if it is both a
source and a target, and stable otherwise.We denote by SV(L) the set of stable vertices
of L.
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(a) (b) (c)

(e)(d)

Fig. 12 The graphs G, G′, G′′, and the relative orientations of e1 and e2

Our aim is to show that the cohomology of an oriented linear graph L is related to
the number of stable vertices in L, and their relative distance.

Definition 5.2 Let vi , v j be vertices of an oriented linear graph L. The distance
d(vi , v j ) is the length of the unique simple path, if it exists, between them, and it
is set to −∞ otherwise.

For an oriented linear graph L, the property D(k) is defined as follows:

D(k) : ∀ v,w ∈ SV(L), d(v,w) ≤ k . (6)

A disjoint union of oriented linear graphs satisfies the property D(k) if each component
does. Observe that the set of oriented linear graphs is filtered by the above property;
each linear graph satisfies D(k) for some k, and if L satisfies D(k), then it also satisfies
D(k + 1). Furthermore, the alternating graphs satisfy the property D(1), and they are
the only connected graphs satisfying it. The graph In satisfies the property D(n).
Observe that, if an oriented linear graph L satisfies the property D(n) for n > 2, then
L has trivial cohomology. In fact, if there exists a pair of stable vertices at distance
grater than 2, then there exists a ν-equivalence f : I3 → L away from v0, v3 ∈ V (I3);
by Criterion B, H∗

μ(L, K) = 0.

Remark 5.3 If L satisfies the property D(n), then each of its subgraphs also
satisfies D(n).

By the above observations, a complete description of the multipath cohomology of
oriented linear graphs can be achieved by studying graphs satisfying the property D(2).
As a first step, we start with oriented linear graphs satisfying D(1). Since the coho-
mology of a disjoint union of linear graphs is the tensor product over its components
(cf. Remark 3.1), we restrict to the case of connected ones, i.e. the alternating graphs.
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Theorem 5.4 Let An be an alternating graph. Then, we have the following isomor-
phisms

H∗
μ(An, K) ∼=

⎧
⎨

⎩

H∗
μ(An−1, K) if n ≡ 0 mod 3,

0 if n ≡ 1 mod 3,
H∗−1

μ (An−2, K) if n ≡ 2 mod 3.
(7)

depending on the congruence class of n modulo 3.

Proof Weuse the notation illustrated in Fig. 12,withG = An . ByTheorem3.5, the path
poset P(An) is isomorphic to∇P(G′′)(P(G\{e2}), P(G′)). Observe that P(G\{e2}) is a
cone over P(G′′) and that we have isomorphisms of graphs G′ ∼= An−1 and G′′ ∼= An−2.
Consequently, there is an induced isomorphism

P(An) = P(G) ∼= ∇P(An−2)(Cone P(An−2), P(An−1))

of posets. Since the cohomology groups H∗
μ(Cone P(An−2);K) are all trivial, from

Theorem 4.2 (applied to the gluing of Cone P(An−2) and P(An−1)) we obtain the
following exact sequence:

· · · → Hi
μ(P(An−1);K) → Hi

μ(P(An−2);K) → Hi+1
μ (P(An), K)

→ Hi+1
μ (P(An−1);K) → · · ·

A direct computation shows that the cohomology of the graphs An for n < 5 agrees
with the isomorphisms in Eq. (7). The assertion now follows by an induction argument.

��
As a consequence, it is possible to obtain a precise description of the ranks of

cohomology groups for alternating graphs:

Corollary 5.5 Let An be an alternating graph. Then,

dimKHk
μ(An;K) =

{
1 if n = 3(k − 1) + 2 or n = 3k,

0 otherwise.

Before proceeding with our analysis of the cohomology of oriented linear graphs,
we need the following definition.

Definition 5.6 Given a oriented linear graph L, its reduction Red L is the (possibly
disconnected) spanning subgraph of L, obtained as follows; for each maximal simple
path on (the ordered set of) vertices {vh, . . . , vh+m}, delete all edges, but the one
between vh+m−1 and vh+m .

Note that if a maximal simple path is an edge of L, then it is still an edge of Red L.

Example 5.7 The reduction of In is the spanning subgraph of In with only
edge (vn−1, vn). The reduction Red L is isomorphic toL if, and only if,L is alternating.
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Fig. 13 The sub-graph Akh inside L. The edge (wkh−1, wkh ) can be oriented either way depending on the
parity of kh

Observe that, by construction, the digraphRed L is the disjoint union of h connected
components,whereh−1 is the number of edges deleted during the process of reduction.

We can linearly order the connected components of Red L according to their
minimal-index vertex. Denote by Ci the i-th component with respect to this order.
Notice that Red L satisfies D(1), thence for each i ∈ {1, . . . , h} there is a ki ≥ 0 such
that Ci ∼= Aki .

Lemma 5.8 Let L be an oriented linear graph satisfying the property D(2), and
let Ak1 , . . . ,Akh be the connected components of Red L. If kh ≡ 1 mod 3, then
H∗

μ(L;K) = 0.

Proof Note that if L satisfies D(1), then it is an alternating graph, and the statement
follows by Proposition 5.4. Suppose L satisfies D(2), but not D(1) and denote by
w0, . . . , wkh the vertices of Akh . First, observe that, by Definition 5.6, if kh = 1 or
if |E(L)| = kh + 1, then the linear graph L has a coherent tail. Thus, H∗

μ(L;K) = 0
by Remark 4.8.

In all the other cases, up to orientation reversing, the graph L contains a subgraph
as in Fig. 13.

We can apply Theorem 3.5 choosing the vertex x illustrated in Fig. 13 and obtain
the isomorphism

P(L) ∼= ∇P(L′′′)(P(L′), P(L′′)) ,

where L′ = L \ {(w0, x)}, L′′ = L \ {(v, x)} and L′′′ = L \ {(w0, x), (v, x)}. Now,
Remark 4.8 implies H∗

μ(L′′;K) = 0. Furthermore, H∗
μ(L′;K) = H∗

μ(L′′′;K) = 0,
since L′ and L′′′ have Akh as a connected component—cf. Remark 3.1 and Propo-
sition 5.4; in fact, wkh is univalent, since kh 
= 0. The statement now follows from
Theorem 4.2. ��

Denote by �x� the integer part of x .
Theorem 5.9 Let L be an oriented linear graph satisfying the property D(2), but not
D(1). Denote by Ak1 , . . . ,Akh the connected components of Red L. Then,

(1) If there exists an index j ∈ {1, . . . h − 1} such that k j ≡ 0 mod 3, then
H∗

μ(L, K) = 0;
(2) Otherwise, the cohomology groups of L decompose as

H∗+h−1
μ (L;K) = H∗

μ(A3�k1/3�;K) ⊗ · · · ⊗ H∗
μ(A3�kh−1/3�;K) ⊗ H∗

μ(Akh ;K) ,

where ⊗ here denotes the graded tensor product over K.
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Fig. 14 A possible sub-graph of L

Fig. 15 Another possible sub-graph of L

Proof We linearly order the edges e1, . . . , eh−1 in E(L) \ E(Red L), i.e. the edges
in the complement of the components Ak1 , . . . ,Akh , according to their minimal-
index vertex. The addition of ei to Red L merges the component Aki with the
component Aki+1 .

(1) To prove the first item, observe that if k j ≡ 0 mod 3, then either L has a coherent
tail (when k1 = 0) or, up to orientation reversing, it contains a subgraph as in
Fig. 14, where the vertices w0, . . . , w3 are in Ak j .
Now, if v is an univalent vertex of the graph L, then L has a coherent tail of length
two and, again, the cohomology groups H∗

μ(L, K) are trivial. In all remaining
cases, L contains a subgraph as in Fig. 15.
We are in the hypothesis of Theorem3.5, choosing the vertex v, to decompose P(L)

as

P(L) ∼= ∇P(L′′′)(P(L′), P(L′′)) ,

where L′ = L \ {(v, x)}, L′′ = L \ {(v, y)}, and L′′′ = L \ {(v, x), (v, y)}.
The first assertion follows from Criterion A: H∗

μ(L′′;K) = 0 because L′′ contains
a coherent tail, and the cohomologies H∗

μ(L′;K) and H∗
μ(L′′′;K) are both trivial

in virtue of Lemma 5.8 and Remark 3.1.
(2) The proof of second statement proceeds by induction. We are in the case k j 
≡ 0

mod 3 for j ∈ {1, . . . , h − 1}.
The graph obtained fromL by deleting e1 has two connected componentsL1 = Ak1
and L2. Observe that L1 and L2 are oriented linear graphs satisfying the property
D(2)—cf. Remark 5.3. Since k1 
= 0, we have that L1 has at least one edge.
Furthermore, by definition of the reduction, we can assume that e1 is contained in

a linear subgraph of the form e e1 or e e1 with e ∈ E(L1).
By Theorem 3.5, we have the decomposition

P(L) ∼= ∇P((L1�L2)\{e})(P(L1 � L2), P(L \ {e})) .

Observe now that P(L \ {e}) ∼= Cone P ((L1 � L2) \ {e}), hence

P(L) ∼= ∇P(Ak1−1�L2)
(
P(Ak1 � L2),Cone P(Ak1−1 � L2)

)
.

Using Theorem 4.2, we get the following exact sequence

· · · → Hi
μ(Ak1−1 � L2;K) → Hi+1

μ (L;K) → Hi+1
μ (Ak1 � L2;K)
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→ Hi+1
μ (Ak1−1 � L2;K) → · · · (8)

In the following, set first k1 = 3 j + 1. By Corollary 5.5 and Remark 3.1, the
cohomology group Hi

μ(Ak1 �L2;K) is trivial. Analogously, the group Hi
μ(Ak1−1�

L2;K) is isomorphic to the product H j
μ(Ak1−1;K) ⊗ Hi− j

μ (L2;K). In the case
k1 = 3 j + 2 instead, the group Hi

μ(Ak1 � L2;K) is isomorphic to the product

H j+1
μ (Ak1;K) ⊗ Hi− j−1

μ (L2;K), and Hi
μ(Ak1−1 � L2;K) is trivial.

As a consequence, using the Mayer Vietoris sequence in Eq. (8), we have

Hi+1
μ (L;K) ∼=

{
H j

μ(Ak1−1;K) ⊗ Hi− j
μ (L2;K) if k1 = 3 j + 1,

H j+1
μ (Ak1;K) ⊗ Hi− j

μ (L2;K) if k1 = 3 j + 2

If k1 = 3 j + 1, we can rewrite the first isomorphism, using that the multipath
cohomology of Ak1−1 = A3 j is concentrated in cohomological degree j , as fol-
lows:

Hi+1
μ (L;K) ∼=

(
H j

μ(Ak1−1, K) ⊗ Hi− j
μ (L2, K)

)

∼=
⊕

r+s=i

(
Hr

μ(A3 j , K) ⊗ Hs
μ(L2, K)

)

On the other hand, if k1 = 3 j + 2, by Theorem 5.4 and Corollary 5.5, we obtain
the isomorphism

Hi
μ (L;K) ∼= H j+1

μ (Ak1 , K) ⊗ Hi− j−1
μ (L2, K) ∼= H j

μ(A3 j , K) ⊗ Hi− j−1
μ (L2, K).

Finally, we have also that

H j
μ(A3 j , K) ⊗ Hi− j−1

μ (L2, K) ∼=
⊕

r+s=i−1

(
Hr

μ(A3 j , K) ⊗ Hs
μ(L2, K)

)

since the multipath cohomology of Ak1−2 = A3 j is concentrated in degree j . We
have shown that, in either case, we have

H∗+1
μ (L;K) ∼=

⊕

r+s=∗

(
Hr

μ(A3 j , K) ⊗ Hs
μ(L2, K)

) = (H∗
μ(A3 j , K) ⊗ H∗

μ(L2, K)
)
.

The statement now follows by induction.

��

5.2 Graded characteristic of linear graphs

We now analyse the cohomology of linear graphs from a different perspective; instead
of considering multipath cohomology with coefficient in a field, we fix a principal
ideal domain R as a base ring and take coefficients in a unital R-algebra A. We are
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interested in analysing the (graded) Euler characteristic in the case where A is graded.
Firstly, let us prove a general result.

Theorem 5.10 Let G, G′, and G′′ be three digraphs as illustrated in Fig. 12, and let A
be a unital R-algebra. Then, one of the following holds:

(1) If the edges e1 and e2 are coherently oriented, as in Fig. 12d, then the sequence

0 → C∗−1
μ (G′; A) −→ C∗

μ(G; A) −→ C∗
μ(G′; A) ⊗ A → 0

is exact;
(2) If the edges e1 and e2 are not coherently oriented, see Fig. 12e, then the sequence

0 → C∗−1
μ (G′′; A) ⊗ A −→ C∗

μ(G; A) −→ C∗
μ(G′; A) ⊗ A → 0

is exact;

where all tensor products are over R.

Proof Before dwelling into the details of each case, we first discuss the general picture.
Denote for simplicity by P , P ′, and P ′′ the path posets of G, G′, and G′′, respectively.
We have an embedding of G′ into G that induces (as a spanning subgraph, cf. Fig. 12c)
an injective morphism of poset ı : P ′ → P . We remark that ı(P ′) is a downward
closed faithful subposet of P and that the minimal length of an element in P \ ı(P ′)
is 1. By [7, Proposition 5.12], we have the following sequence of cochain complexes

0 → C∗−1
FA,A

(P \ ı(P ′)) −→ C∗
FA,A

(P) −→ C∗
FA,A

(P ′) ⊗ A → 0

which is exact. By definition, we have that C∗
FA,A

(P) = C∗
μ(G; A) and C∗

FA,A
(P ′) =

C∗
μ(G′; A).
To conclude, it is enough to identify the complex C∗

FA,A
(P \ ı(P ′)). Observe that

the elements of P \ ı(P ′) are precisely the multipaths in G containing e1. The proof
splits now in two cases;

(1) If e1 and e2 are coherently oriented, then H∪ {e1} ∈ P \ ı(P ′) for each H ∈ ı(P ′).
Thus, we have an order-preserving bijection between P(G′) and P \ ı(P ′), which
also preserves the number of connected components. Therefore, we obtain the
isomorphism

C∗
FA,A

(P \ ı(P ′)) ∼= C∗
FA,A

(P ′) = C∗
μ(G′; A)

of cochain complexes;
(2) If e1 and e2 are not coherently oriented, then a multipath which contains e1 cannot

contain e2. Thus, we have an identification between multpaths in P \ ı(P) and
multipath in G′′ ∪ {e1}, which gives the isomorphisms

C∗
FA,A

(P \ ı(P ′)) ∼= C∗
FA,A

(P ′′) ⊗ A = C∗
μ(G′′; A) ⊗ A .
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The tensor factor ⊗A arises from an extra connected component in each element
of the poset P \ ı(P ′) with respect to the corresponding element in P ′′ (namely
the edge e1).

The statement is now immediate from the above identifications. ��
The short exact sequence in Theorem 5.10(1) holds also in a slightly different case;

Remark 5.11 Assume that the edges e1, e2, and e3 in G form a path and that e2 is not
contained in any coherently oriented cycle in G, then the sequence in Theorem 5.10(1)
holds. In this case, the role of G′ is played by the graph obtained from G by contracting
the “middle edge” e2. Then, we have that

P(G) \ P(G \ {e2}) ∼= P(G′) and P(G) \ P(G \ {e2}) ∼= P(G \ {e2}),

where the first identification is given by contracting e2, while the second is given by
deleting it. Note that, in the former case, the number of connected components of
multipaths is preserved, while in the second case a multipath H ∈ P(G) \ P(G \ {e2})
is sent to a multipath with one more connected component. At this point, the same
reasoning as in the proof of Theorem 5.10 provides the desired exact sequence.

We can use Theorem 5.10 to reprove a result of Przytycki [18] which computes
the cohomology of In (cf. [7, Corollary 7.5]). We observe that Przytycki obtains this
result using the chromatic polynomial as intermediate step, while we prove it directly
by induction. Moreover, the following corollary, if A is commutative, can also be
proved as an application of the deletion-contraction exact sequence for the chromatic
homology [11, Theorem 3.2].

Corollary 5.12 Let In be the coherently oriented linear graph (cf. Figure 3). For each
(unital) R-algebra A, we have

H∗
μ(In; A) = H0

μ(In; A),

and

rankR(H∗
μ(In; A)) = rankR(H0

μ(In; A)) =
{
rankR(A)(rankR(A) − 1)n n ≥ 1

rankR(A) n = 0
.

Proof The statement is true for I0, and it is easily proved for I1; in fact, we have

0 → C0
μ(I1; A) = A ⊗ A

d0−→ C1
μ(I1; A) = A → 0,

where d0 is the map a ⊗ b �→ ab, which is surjective since A is unital.
We proceed by induction. Assume that the statement is true for n = k − 1. Then,

we can apply Theorem 5.10 to G = Ik , G′ = Ik−1, and e = (v0, v1)—cf. Fig. 3. From
the inductive hypothesis, we obtain the exact sequences

0 = Hi−1
μ (Ik−1; A) → Hi

μ(Ik; A) → Hi
μ(Ik−1; A) = 0, for i > 1,
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and

0 → H0
μ(Ik; A) → H0

μ(Ik−1; A) ⊗ A
δ∗→ H0

μ(Ik−1; A) → H1
μ(Ik; A) → 0, (9)

where δ∗(x ⊗ 1) = x . As a consequence, we have

(1) Hi
μ(Ik; A) = 0, for all i > 1;

(2) The exact sequence in Eq. (9), since δ∗ is surjective, splits into the exact sequences

0 → H0
μ(Ik; A) → H0

μ(Ik−1; A) ⊗ A
δ∗→ H0

μ(Ik−1; A) → 0

and

0 → H1
μ(Ik; A) → 0.

Since the rank is additive on short exact sequences2, this concludes the proof. ��
Let R be a PID, and A∗ = ⊕i∈Z Ai be a finitely generated Z-graded R-algebra.

The graded dimension of A is the Laurent polynomial

qdim(A∗) :=
∑

i∈Z
rankR(Ai )qi ∈ Z

[
q, q−1

]
,

where rankR(M) indicates the maximal number of non-torsion, linearly independent,
elements. A graded algebra has, by definition, an homogeneous multiplication. As a
consequence, the multipath cochain complex inherits from A∗ a second Z-grading,
which is preserved by the differential. This gives the multipath cohomology the struc-
ture of bi-graded cohomology theory. Define the graded Euler characteristic of a
graph G (with respect to A∗) as

χgr(G; A∗) =
∑

i, j∈Z
(−1)i rankR

(
Hi, j

μ (G; A∗)
)
q j ∈ Z

[
q, q−1

]
.

Note that if we evaluate qdim(A∗) (resp. χgr) in q = 1, we obtain the rank of A∗
as R-module (resp. the usual Euler characteristic χ ). It is well known that the Euler
characteristic is additive under exact sequences, and the same holds for the graded
Euler characteristic 3. With the above notation in place, the following corollary is an
immediate consequence of Theorem 5.10.

2 To see this one can tensor for the quotient field, or localise—cf. [3, Definition 1.4.2 and Proposition 1.4.5].
3 For each fixed value j of the second grading, we have a short exact sequence of chain complexes. Notice

that Ci, j
μ (G; A) 
= 0 for finitely many values of i and j . Thence, we can re-arrange the sum and write

χgr(G; A∗) =
∑

j∈Z
χ
(
C∗, j

μ (G; A)
)
q j .

Now, additivity follows from the additivity of the (usual) Euler characteristic.
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Table 2 The graded Euler
characteristic of some
alternating linear graphs

n χgr(An; A∗)
0 α

1 α(α − 1)

2 α2(α − 2)

3 α2(α2 − 3α + 1)

4 α3(α − 1)(α − 3)

5 α3(α3 − 5α2 + 6α − 1)

6 α4(α − 2)(α2 − 4α + 2)

7 α4(α − 1)(α3 − 6α2 + 9α − 1)

8 α5(α2 − 5α + 5)(α2 − 3α + 1)

9 α5(α5 − 9α4 + 28α3 − 35α2 + 15α − 1)

10 α6(α − 1)(α − 2)(α − 3)(α2 − 4α + 1)

11 α6(α6 − 11α5 + 45α4 − 84α3 + 70α2 − 21α + 1)

Corollary 5.13 Let G, G′, and G′′ be three digraphs as illustrated in Fig. 12. Let A∗ be
a finitely generated free Z-graded R-algebra with graded dimension α = qdim(A∗).

(1) If the edges e1 and e2 are coherently oriented (cf. Fig. 12d), then

χgr(G; A∗) = (α − 1)χgr(G
′; A∗).

(2) If the edgese1 and e2 are not coherently oriented (cf. Fig. 12e), then

χgr(G; A∗) = α
(
χgr(G

′; A∗) − χgr(G
′′; A∗)) .

Corollary5.13 allowsus to compute the (graded) characteristic of anyoriented linear
graph, recursively.We provide, as an example of this process, the graded characteristic
of some alternating graphs.

Example 5.14 Let An be the alternating graph on n vertices, with n ≥ 3; by Corol-
lary 5.13, the graded characteristic can be expressed as:

χgr(An; A∗) = α
(
χgr(An−1; A∗) − χgr(An−2; A∗)

)
.

For n = 0 and n = 1, the graded characteristic of An are qdim(A∗) =: α and α(α−1),
respectively. Some further examples are listed in Table 2.

The usual Euler characteristic over R = K can be obtained by evaluating the graded
Euler characteristic in α = 1. Thus, by Corollary 5.5, (α − 1) divides χgr(An; A∗) if,
and only if, n ≡ 1 modulo 3. Observe that our computations are in perfect accordance
with this fact.

Despite not having a closed formula for the graded Euler characteristics of
alternating graphs, we can compute its associated generating function A(t) =
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∑
χgr(An)tn∈ (Z[α])[[t]] (cf. [27]). In fact, if we denote by Sh the classical shift

for power series

Sh

( ∞∑

n=0

cnt
n

)

=
∞∑

n=0

cn+ht
n ,

from Theorem 5.10 one obtains the relation S2(A(t)) = α(S1(A(t))− A(t)). It is also
immediate to see that

S1(A(t)) = A(t)− α

t
.

Iterating S1 and using the fact that A(1) = A(0)(α − 1), one easily obtains that the
ordinary generating function of the graded Euler characteristic of alternating graphs
is

A(t) = α(1− t)

1− αt(1− t)
.

Furthermore, in some special cases, we can actually obtain a closed formula.

Corollary 5.15 Let A∗ be a free Z-graded R-algebra with graded dimension α ∈
Z
[
q, q−1

]
. If In is the coherently oriented linear graph of length n, then

χgr(In; A∗) = α(α − 1)n, for n > 0,

and χgr(I0; A∗) = α.

FromRemark 5.11 andCorollary 5.13, it follows that (α−1)x dividesχgr(L), where
x is the number of edges incident only to verticeswhich are either univalent or unstable.
This, similar divisibility properties, and the decomposition shown in Theorem 5.4,
seem to hint to the fact that χgr(L) is sensible to “dynamical properties” of the graph.

Question 5.16 Does it exist a closed formula for χgr(L), with L a linear graph, which
features only dynamical data (e.g. stable and unstable vertices, change of stability,
etc.) and the polynomial of an alternating χgr(An) (n also depending on dynamical
data)?

6 Relations with simplicial homology

In this section, we give a topological description of multipath cohomology. More
specifically, we see that H∗

μ(G; R) is the ordinary cohomology of a certain simplicial
complex X(G) associated with G—cf. Theorem 6.5. For instance, this approach leads
to a reinterpretation of the Mayer–Vietoris exact sequence for multipath cohomology,
in topological terms. Furthermore, we also discuss which simplicial complexes can
be realised as X(G) for some G.
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6.1 Backgroundmaterial

Recall that a regular CW-complex is a CW-complex for which all the characteristic
maps are homeomorphisms—cf. [5, Sect. 3]. Recall also that the face poset F(X) of
a CW-complex X is the poset on the set of cells of X , ordered by containment and
augmented with a minimum element 0̂ corresponding to the empty cell. A poset P
with at least two elements is said to be a CW-poset if it has a minimum 0̂, and, for all
x ∈ P \ 0̂, the (geometric realisation4 of the) interval (0̂, x) := {z ∈ P | 0̂ < z < x}
is a sphere.

Example 6.1 A Boolean poset is a CW-poset. More generally, by [5, Proposition 2.6
(b)], every downward closed subposet of a Boolean poset is a CW-poset. By
Remark 2.8, the path poset P(G) is a downward closed subposet of a Boolean poset;
hence, it is a CW-poset.

A poset P is a CW-poset if, and only if, it is isomorphic to the face poset of a
regular CW-complex—see [5, Proposition 3.1]. As a consequence, for a digraph G
there exists a regular CW-complex X(G) whose face poset is isomorphic to P(G). We
can actually be more specific. Recall that an (augmented abstract) simplicial complex
K on a vertex set V is a simplicial complex augmented with a unique (−1)-simplex
given by the empty set ∅.
Definition 6.2 Given a digraph G, its multipath complex is the augmented abstract
simplicial complex X(G) on E(G) whose k-simplices are given by the multipaths in
G of length k − 1.

Since each spanning sub-graph of a multipath is a multipath, it is clear that X(G) is
indeed an augmented abstract simplicial complex. Furthermore, we have the following
observation.

Remark 6.3 A morphism of digraphs induces a morphism between the corresponding
multipath complexes, which sends multipaths of length 1 to multipaths of length 1.
It follows that for each morphism of digraphs φ : G → G′ there is an associated sim-
plicial map X(φ) : X(G) → X(G′). Clearly, we have that X(idG) = idX(G) and that
X(φ ◦ ψ) = X(φ) ◦ X(ψ). Hence, taking the multipath complex defines a func-
tor X : Digraph → SimpComp from the category of digraphs, and morphisms of
digraphs, to the category of augmented abstract simplicial complexes, and simplicial
maps.

We can give a more explicit description of X(G).
Construction of X(G)

We construct the CW-complex which has X(G) as face poset by explicitly describing
its cells and their gluing maps. We start by associating to the empty multipath of G,
i.e. the set of vertices of G, the empty simplex, i.e. the (−1)-skeleton of X(G). We

4 By geometric realisation of a poset we mean the geometric realisation of its order complex (i.e. the
abstract simplicial complex whose faces are the totally ordered sub-posets of our poset), see [14, Chapter
9].
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Fig. 16 The H digraph and its geometric realisation

build the complex X(G) by attaching n-cells to the discrete set X(G)0 := E(G), i.e. the
0-skeleton of X(G) is given by the set of edges of G.

Suppose to have iteratively constructed the (n − 1)-skeleton X(G)(n−1) of X(G).
Each multipath H of length n + 1—i.e. with n + 1 edges—is identified by edges
ei0 , . . . , ein of G; hence, by n + 1 points of X(G)0. We associate to H the (abstract)
n-dimensional simplex �n

H := [ei0 , · · · , ein ], which is an n-cell of X(G)n . In this way,
each multipath H of length n gives an n-cell of X(G). Note that the multipath H can be
obtained from exactly n+1 (sub-)multipaths of length n, say H0, . . . ,Hn , by adding an
edge; more precisely, H j is the multipath of G with edges ei1 , . . . , êi j , . . . , ein , where
êi j indicates that the edge ei j is not counted. The multipaths H0, . . . ,Hn correspond
to (n − 1)-cells of X(G), and, moreover, the boundary ∂(�n

H) of �n
H can be identified

with the union of its faces �n−1
H j

. The characteristic map of �n
H is then defined by

gluing each face [ei0 , . . . , êi j , . . . , ein ] in ∂(�n
H) with the corresponding (n − 1)-cell

in X(G)(n−1). More generally, we glue the simplices {�n
H}lenght(H)=n+1 to X(G)(n−1)

by identifying the facets of each �H with the simplices �H0 , . . . , �Hn , concluding the
construction of the n-skeleton, hence of X(G).

Observe thatmaximal simplices in X(G) correspond tomaximalmultipaths in P(G).
Therefore, to construct the geometric realisation of X(G) we can proceed by finding
the maximal multipaths in P(G), look at the intersection of each pair of maximal
multipath, then glue the simplices associated with maximal multipaths along the faces
determined by their intersections.

Example 6.4 In this example, we explicitly describe the geometric realisation of the
simplicial complex X(G), for G the H-shaped digraph illustrated in Fig. 16. Observe
that we have five 0-cells E0

01, E
0
14, E

0
21, E

0
34, and E0

54, where the cell E
0
i j corresponds

to the edge (vi , v j ). Each 1-cell in X(G) corresponds to a multipath of length two.
Thus, there are precisely six 1-cells E1

01,14, E
1
01,34, E

1
01,54, E

1
21,14, E

1
21,34, and E1

21,54.

The 1-cell E1
x,y bounds the 0-cells E

0
x and E0

y .

Let K be an augmented abstract simplicial complex. The n-th reduced simplicial
chain group C̃n(K ; R) (with coefficients in R) is the free R-module generated by all
the n-simplices in K . We assume, from now on, a linear ordering v1 < v2 < . . . < vk
of the 0-simplices of K to be fixed. Given an n-simplex in K , say σ = {vi0 , . . . , vin },
we denote σ as [vi0 , . . . , vin ], where i0 < i2 < . . . < in , and define

[vis(0) , . . . , vis(n)
] := (−1)sgn(s)[vi0 , . . . , vin ],
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for each s in the symmetric group over {0, . . . , n}. The n-th simplicial differential is
defined as

δn : C̃n(K ; R) −→ C̃n−1(K ; R) : [vi0 , . . . , vin ] �−→
n∑

j=0

(−1) j [vi0 , . . . , v̂i j , . . . , vin ] ,

where the hat x̂ indicates that x is missing. The n-th reduced simplicial co-chain group
is

C̃n(K ; R) = HomR(C̃n(K ; R); R)

and, given f ∈ Cn+1(K ; R), we define the co-boundary map δ by setting δn( f ) =
f (δn(σ )).

6.2 Multipath cohomology is simplicial

Let X(G) be the multipath complex associated with the digraph G, and let K be a field.

Theorem 6.5 The multipath cohomology Hn
μ(G;K) of G is isomorphic to H̃n−1

(X(G);K), that is, the reduced (simplicial) cohomology of X(G).

Note that in the isomorphism between the multipath cohomology of G and the
simplicial cohomology of X(G) there is a shift of degree one.

Proof Let X be a finite simplicial complex. The reduced simplicial cohomology
cochain complex C̃n(X;K) can be seen as the vector space over K generated by
the duals of all simplices (including the empty simplex) of X , with co-boundary map
δ given by

δ(σ ∗) =
∑

τ

(−1)ε
′(τ,σ )τ ∗ ,

where τ ranges among all simplices admitting σ as a face, and ε′(τ, σ ) is 0 or 1
depending on whether or not the orientation of σ matches with the orientation induced
by τ—for a more detailed construction, the reader can consult [14, Sect. 3.4.3].

By construction, the simplices of X(G) correspond to multipaths in G; more pre-
cisely, the points of X(G)0 are the edges of G, and the multipath H identified by the
edges ei1 , . . . , ein corresponds to the simplex [ei1 , . . . , ein ]. The vector spaceCn

μ(G;K)

has one generator bH for each multipath H of length n, and the differential is given by

d(bH) =
∑

H′⊃H

(−1)ε(H
′,H)bH′ ,

for a certain sign assignment ε. It follows that the correspondence bH �→ [ei1 , . . . , ein ],
where H is identified by the edges ei1 , . . . , ein , extends to an isomorphism of graded
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vector spaces which commutes with the differentials up to a sign. Note that a multipath
of length n corresponds to an (n − 1)-dimensional simplex, which gives the shift in
cohomological degree.

We conclude by observing that ε′ is a sign assignment on the face poset of X(G),
which is isomorphic to P(G); in fact, the statement now follows from the uniqueness
(up to isomorphism) of the sign assignment on the path posets [7, Corollary 3.17]. ��

An alternative way to associate to P(G) a simplicial complex X ′(G), having the
same cohomology groups as X(G), is to use the order complex �(P(G))—see [24]. It
is a standard fact that, for a simplicial complex X , the realisation of �(F(X)), that is
the order complex of the face poset of X , is the barycentric subdivision of X . Conse-
quently, X ′(G) is the barycentric subdivision of X(G). It is well known that a simplicial
complex and its barycentric subdivision have the same simplicial (co)homology. As
an immediate consequence, we have the following corollary.

Corollary 6.6 The multipath cohomology H∗
μ(G;K) is the reduced (simplicial) coho-

mology of the order complex �(P(G)) associated with P(G).

Observe that the isomorphism of Theorem 6.5 is well-behaved in a functorial sense:

Remark 6.7 By Remark 6.2, associating the simplicial complex X(G) to a graph G is
functorial with respect to morphisms of digraphs. Therefore, since taking cohomology
groups is functorial with respect to simplicial maps, the isomorphism in cohomology
provided by Theorem 6.5 induces a natural isomorphism of functors η : H∗

μ(−;K) ⇒
H̃∗−1(−;K) ◦ X . More concretely, given a morphism of digraphs φ : G → G′, we
obtain the following square

H∗
μ(G′;K) H∗

μ(G;K)

H̃∗−1(X(G′);K) H̃∗−1(X(G);K)

φ∗

ηG′ ηG

φ∗

that is commutative, with vertical arrows which are isomorphisms. This, in particular,
extends the functoriality result [7, Theorem 1.3] also to non-regular morphisms of
digraphs.

6.3 Mayer–Vietoris from the topological viewpoint

In this subsection, we reinterpret theMayer–Vietoris-type theorem formultipath coho-
mology, that is Theorem 4.2, using the simplicial description given in Theorem 6.5.

Let X be a simplicial complex and assume that there are sub-complexes5 Y1 and
Y2 such that:

(1) X = Y1 ∪ Y2;
(2) Their intersection of Y1 and Y2 is a sub-complex of X , Y1, and Y2;

5 A sub-complex Y of a simplicial complex X is a subset of X which is itself a simplicial complex.
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then, we have a long exact sequence in (reduced) simplicial cohomology

· · · → H̃i (X;K) −→ H̃i (Y1;K) ⊕ H̃i (Y2;K) −→ H̃i (Y1 ∩ Y2;K)

−→ H̃i+1(Y1 ∩ Y2;K) → · · ·

calledMayer–Vietoris sequence [10,Chapter 2.2]. Intuitively, this sequence “describes”
the cohomology of the space X in terms of the cohomology of Y1, Y2, and Y1 ∩ Y2.

In Theorem 4.2, we obtained a similar sequence for path posets associated with
regular morphisms of digraphs. We can actually use the correspondence between
multipath and simplicial cohomologies to re-prove this result; we can interpret the
path poset of a graph G as the face poset of a simplicial complex X(G). Further-
more, a downward closed sub-poset S of P(G) corresponds to (the face poset of) a
sub-complex of X(G)—the correspondence being described by taking the simplices
of X(G) given by the multipaths belonging to S. By Theorem 6.5, since we have
H∗

μ(G;K) ∼= H̃∗−1(X(G);K), we can replace the cohomology of spaces with the
multipath cohomology of the corresponding graph with the corresponding multipath
cohomology, obtaining the sequence in Theorem 4.2. To a more intimate level, and
in a more abstract language, this is due to the fact that the gluing construction in
Definition 3.2 represents the pushout in Digraph—cf. Remark 3.3.

Remark 6.8 The Mayer–Vietoris long exact sequence in homology is classically
obtained using the long exact sequence of the pair applied to homotopy pushouts
[21, Theorem 6.3]. Since the gluing construction in Definition 3.2 gives a pushout dia-
gram of graphs, it is reasonable to think that aMayer–Vietoris long exact sequence can
be obtained also for multipath cohomology. In fact, let G,G1,G2 as in Definition 3.2;
by Remark 3.3, the square

P(G) P(G1)

P(G2) P(G1)∇P(G)P(G2)

i1

i2 j1
j2

(♠)

is a pushout square. Observe that also the square

X(G) X(G1)

X(G2) X(G1)
∐

X(G) X(G2)

ι1

ι2 j1

j2

(♦)

is a pushout square of simplicial complexes, where X
∐

Z Y indicates the gluing of X
and Y along Z ↪→ X ,Y . Furthermore, taking the face poset takes the square (♦) to the
pushout square (♠); i.e.F(X(G1)

∐
X(G) X(G2)) = P(G1)∇P(G)P(G2). As inclusions

of simplicial complexes are cofibrations, the square (♦) is (equivalent to) a homotopy
pushout square. Hence, Diagram (♦) gives rise to the Mayer–Vietoris long exact
sequence in reduced cohomology. Naturality of Theorem 6.5, as in Remark 6.7, now
gives the Mayer–Vietoris long exact sequence in multipath cohomology. In the light
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of the above discussion, we can think informally that “inclusions as downward closed
sub-posets are cofibrations in the category of posets, and the corresponding nablas are
actually homotopy pushouts”—for a more precise treatment of the homotopy theory
of posets, see for example [20].

6.4 Realisability of path posets and examples

It is interesting to understand which simplicial complexes can be realised as X(G)

for some digraph G. In this subsection we investigate this problem and some of its
consequences. First, we observe that all spheres can be realised.

Example 6.9 Let n ≥ 1 be a natural number. The boundary of the n-dimensional
standard simplex �n is homeomorphic to the (n − 1)-dimensional sphere S

n−1; we
argue that ∂�n is the simplicial complex X(Pn), where Pn is the coherently oriented
polygonal graph on n vertices as illustrated in Fig. 4. By [7, Sect. 2.3], the path
poset P(Pn) is isomorphic (as posets) to the Boolean posetB(n+1)with its maximum
removed. Note that the (n + 1)-Boolean poset B(n + 1) is the face poset F(�n) of
�n . Hence, it follows that P(Pn) is the face poset of �n minus its unique (n + 1)-
dimensional cell,which turn to be precisely the sphere ∂�n ∼= S

n−1.As a consequence,
by Theorem 6.5, we get

Hi
μ(Pn;K) ∼= H̃i−1(Sn−1;K) ∼=

{
K if i = n,

0 otherwise

the computations of the cohomology of Pn , with coefficients in K, for every n ∈ N.
Alternatively, this could have been obtained as a consequence of the isomorphismwith
Hochschild homology of K—cf. [7, Proposition 1.4].

Another example is given by the dandelion graphs; their multipath complexes
(or, better, their geometric realisations) are homotopy equivalent to wedges of 1-
dimensional spheres.

Example 6.10 Consider the dandelion graph Dn,m in Fig. 9. We assume nm > 0. The
multipath complex of Dn,m is easily described as follows; we have two sets e1, . . . , en
and e′1, . . . , e′m of 0-cells in X(Dn,m), and each ei is joined with each e′j by a 1-cell,
and there are no other 1- or higher cells. Thus, X(Dn,m) is the complete bipartite graph
Kn,m . It follows that

Hi
μ(Dn,m;K) ∼= H̃i−1(Kn,m;K) ∼=

{
K

(n−1)(m−1) i = 2,

0 otherwise.

In fact, since Kn,m is a connected 1-dimensional complex, we have that: H̃0(Kn,m;K)

= 0, and rank(H̃1(Kn,m;K)) equals the number of edges minus the number of vertices
plus one, which yields exactly (n − 1)(m − 1).

It is yet not clear whether multipath cohomology can be supported in different
degrees. In the next example, we show that this is also possible.
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Fig. 17 The coherently oriented
polygon P3 with a diagonal

Fig. 18 The geometric
realisation of X(G), where G is
the graph in Fig. 17. In green is
illustrated the boundary of a
tetrahedron

Example 6.11 Consider the graph Q to be the coherently oriented polygon P3 with a
diagonal, as illustrated in Fig. 17.

The path poset associated with Q has multipaths of length at most 3, corresponding
to having atmost 2-simplices in the realisation of X(Q). The realisation of themultipath
complex associated with P3 is isomorphic to the 2-sphere S

2, and adding the diagonal
results in adding two 1-cells to S

2. A depiction of the geometric realisation of X(Q) is
given in Fig. 18; we have decorated the vertices in the realisation corresponding to the
edges (v1, v2) and (v1, v3) of Q, all the others being interchangeable in the realisation.

The simplicial complex X(G) is homotopically equivalent to the wedge of S
2 with

a copy of S
1, showing that the multipath cohomology

H∗
μ(Q;K) ∼=

⎧
⎪⎨

⎪⎩

K for n = 2,

K for n = 3,

0 otherwise.

of Q is nonzero in degrees 2 and 3 by Theorem 6.5.

Let G′ be a digraph with a univalent vertex w. In Lemma 4.16, we have proved that
there exists a graph G, obtained by gluing a linear sink or source to w (cf. Fig. 10),
such that H∗

μ(G;K) ∼= H∗+1
μ (G′;K). Classically, this is the property of the suspension6

�X . In the proof of the next proposition we will see that these two constructions are
related. Let

∨k
S
n be the wedge of k n-dimensional spheres.

Proposition 6.12 For all k, n ∈ N, there exists a graph Gk,n such that

k∨
S
n % |X(Gk,n)|

6 The topological space �X obtained from X by taking the cylinder X × [0, 1], and collapsing each of the
faces X × {0} and X × {1} to a point. Alternatively, the suspension can be seen as two copies of the cone
(X × [0, 1])/(x, 1) ∼ (y, 1) glued along X × {0}.
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where |X(Gk,n)| is the geometric realisation of the (abstract) simplicial complex
X(Gk,n).

Proof Let Dn,m be a dandelion graph, cf. Definition 4.11 and Fig. 9. The geometric
realisation of Gk,0 := Dk+1,0 consists of k + 1 points, which can be seen as a wedge
of k 0-spheres. In Example 6.10, we have shown that X(Dk+1,2) for k > 0 is homo-
topy equivalent to a wedge of k 1-spheres. In order to get a wedge

∨k
S
n of higher

dimensional spheres, it is enough to iteratively glue sinks or sources to Gk,1 := Dk+1,2.
More precisely, we fix k and proceed by induction on n. We assume to have already

constructed a graphGk,n , whose associatedmultipath complex is homotopic to awedge
of k n-dimensional spheres, and that it has a univalent vertex, say v. Now, we glue
a source or a sink, depending on whether v = s(e) or v = t(e), for some edge
e ∈ E(Gk,n)—cf. Lemma 4.16 and Fig. 10. Define Gk,n+1 to be the graph obtained
this way. Note that Gk,n+1 has at least two univalent vertices. Now, by Theorem 3.5
applied to v, the path poset of Gk,n+1 is the gluing of two copies of Cone P(Gk,n)

(which are P
(
(Gk,n)

(1)
v

)
and P

(
(Gk,n)

(2)
v

)
, in the notation of Theorem 3.5) glued

along P(Gk,n). This can be illustrated using the following pushout diagram

P(Gk,n) ConeP(Gk,n)

ConeP(Gk,n) Gk,n+1

j1

j2 ı1

ı2

By passing to the geometric realisations ofmultipath complexes (see alsoRemark 6.8),
we obtain the pushout diagram

|X(Gk,n)| %∨k
S
n Cone(

∨k
S
n) % ∗

∗ % Cone(
∨k

S
n) �(

∨k
S
n) % |X(Gk,n+1)|

ι1

ι2 j1

j2

of topological spaces, where ∗ denotes the one point space. As the suspension of a
wedge on k n-spheres is homotopy equivalent to a wedge of k (n + 1)-spheres, the
statement follows. ��

The proposition says that wedges of spheres of the same dimension can be realised,
up to homotopy, as multipath complexes of certain digraphs. It is therefore natural
to ask whether wedges of spheres of different dimensions can also be realised as
(geometric realisations of) multipath complexes. We have seen, in Example 6.11, that
the wedge S

1 ∨ S
2 can be realised, but it is not clear whether all wedges of spheres

can be:

Question 6.13 Can we realise, up to homotopy, all wedges of spheres? For example,
can we realise a space homotopic to S

1 ∨ . . . ∨ S
1 ∨ S

0 ∨ . . . ∨ S
0?

We observe here that, if we allow the graphs to be disconnected, then it is possible
to obtain also the topological join X(G) ∗ X(G′) of X(G) and X(G′); concretely, this
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Fig. 19 A 1-dimensional
complex X whose face poset is
not a path poset

can be realised as X(G � G′)—compare [14, Definition 2.16], and Remark 3.1. Note
that the join of simplicial complexes commutes with the geometric realisation [14,
Eq. (2.9)]. In particular, we can realise the suspension �X(G) of X(G) also as the
multipath complex X(G � A2) [14, Example 2.32.(1)]. Realising joins allows us to
obtain more complicated wedges of spheres giving a partial answer to the question
above.

Example 6.14 The join commutes, up to homotopy, with the wedge operation, and it
is well known that S

n ∗ S
m % S

n+m+1—cf. [2]. An immediate consequence of these
facts is that

k∨

i=1

S
ni ∗

h∨

j=1

S
m j %

k∨

i=1

h∨

j=1

S
ni+m j+1 .

For instance, we have shown in Example 6.11 that we can realise S
2 ∨ S

1 as |X(Q)|,
where Q is the square P3 with a diagonal. Therefore, we have that

S
5 ∨ S

4 ∨ S
4 ∨ S

3 % (S2 ∨ S
1) ∗ (S2 ∨ S

1) % |X(Q � Q)| .

Since all spaces we are able to realise are, up to homotopy, wedges of spheres, the
following question arises naturally;

Question 6.15 Can we realise spaces which are not homotopic to wedges of spheres,
e.g. the real projective spaces?

Before further discussing the realisability of simplicial complexes via path posets,
we want to extend the category of digraphs. Recall that a multigraph, or quiver, is 4-
uple (V , E, s, t)where V and E are finite sets, whose elements are called vertices and
edges, respectively, while s, t : E −→ V are the source and target functions. To avoid
self-loops we require t(e) 
= s(e), for all e ∈ E . Clearly, all digraphs can be seen as
multigraphs. The definition of path poset and multipath cohomology extends verbatim
to multigraphs. Similarly, we have an isomorphism between multipath cohomology
and simplicial homology of X(G).

Proposition 6.16 There are simplicial complexes whose face poset cannot be realised
as the path poset of any multigraph. In other words, the functor X : Digraph →
SimpComp (cf. Remark 6.3), or better its extesion to multigraphs, is not (essentially7)
surjective on objects.

7 That is up to (simplicial, in our case) isomorphism.
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Fig. 20 Possible configurations
for the graph G

(a) (b)

Proof Consider Fig. 19, it contains the picture of a geometric realisation of the sim-
plicial complex, say X . The face poset of X consists of: the empty simplex ∅, five
0-simplices, and six 1-simplices.

Assume, by the means of contradiction, that there exists a multigraph G such that
X = X(G). It follows that G has five edges, six multipaths of length two, and no
multipaths of higher length. Note that we cannot read the number of vertices from the
path poset (and thence from X(G)). Moreover, adding a vertex with no edges does not
change the path poset. Therefore, without loss of generality, we might assume that G
has no connected components which are vertices.

We claim that the edges e1, e2, and e5, form a coherently oriented triangle in G.
We start by noticing that the sub-graph T of G given by the edges e1, e2, and e5 is
connected. Either all pairs of edges among e1, e2, and e5 share a vertex, in which case
T is connected, or there are ei and e j , with i 
= j and i, j ∈ {1, 2, 5}, do not share
any vertex. In the latter case, both must share at least one vertex with ek , k 
= i, j
and k ∈ {1, 2, 5}. If not, we would have a multipath of length 3 given by e1, e2, e5. It
follows that T is connected. The path poset of T is (isomorphic to) the sub-poset of
P(G) given by multipaths with edges e1, e2, or e5. Pasting all the pieces together, we
have that T is a connected graph with 3 edges whose path poset is a Boolean poset
minus its maximum; hence,T is a coherently oriented triangle by [7, Proposition 2.37].

The same reasoning as above proves that the edges e3, e4, and e5, also form a
coherently oriented triangle in G. It follows that G must consist of two coherently
oriented triangles glued at least along one edge (namely e5). Now we can enumerate
all possible G’s; these are illustrated, up to orientation reversal and exchanging in the
roles of e1 and e2, and of e3 and e4, in Fig. 20.

In case (a), we have two multipaths of length 3, while in case (b) the 0-cells corre-
sponding to e4 and e3 must be in the boundary of three 1-cells in X(G) = X . In either
case, we get a contradiction, and the statement follows. ��

Note that, while the face poset of the simplicial complex in Fig. 19 cannot be
realised as a path poset, we can realise the face poset of an homotopy equivalent space
as a path poset (e.g. P(D2,3), cf. Example 6.10).
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