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Abstract: The aim of this study was to assess the ability of multiscale sample entropy (MSE), refined
composite multiscale entropy (RCMSE), and complexity index (CI) to characterize gait complexity
through trunk acceleration patterns in subjects with Parkinson’s disease (swPD) and healthy subjects,
regardless of age or gait speed. The trunk acceleration patterns of 51 swPD and 50 healthy subjects
(HS) were acquired using a lumbar-mounted magneto-inertial measurement unit during their walk-
ing. MSE, RCMSE, and CI were calculated on 2000 data points, using scale factors (τ) 1–6. Differences
between swPD and HS were calculated at each τ, and the area under the receiver operating character-
istics, optimal cutoff points, post-test probabilities, and diagnostic odds ratios were calculated. MSE,
RCMSE, and CIs showed to differentiate swPD from HS. MSE in the anteroposterior direction at τ4
and τ5, and MSE in the ML direction at τ4 showed to characterize the gait disorders of swPD with
the best trade-off between positive and negative posttest probabilities and correlated with the motor
disability, pelvic kinematics, and stance phase. Using a time series of 2000 data points, a scale factor
of 4 or 5 in the MSE procedure can yield the best trade-off in terms of post-test probabilities when
compared to other scale factors for detecting gait variability and complexity in swPD.

Keywords: multiscale sample entropy; refine composite multiscale entropy; cerebellar ataxia;
Parkinson’s disease; trunk acceleration time series; complexity index; gait variability; gait
complexity; gait pattern; movement disorders

1. Introduction

Subjects with Parkinson’s disease (swPD) experience progressively invalidating gait
impairment [1], which affects their quality of life and increases their risk of falling [1–4].

Due to the effects of dopamine depletion on motor control, swPD are character-
ized by increased gait variability [5–7], which can result in a number of gait abnormal-
ities, including shuffling gait and reduced step length [8–10]. Altered trunk behavior
showed to characterize gait impairment [11–17] and to represent a responsive outcome
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for medications and rehabilitation in swPD [17–22]. Wearable sensors, such as magneto-
inertial measurement units (MIMUs), have been shown to provide trunk acceleration-
derived gait indexes that can accurately characterize gait abnormalities, fall risk, and gait
variability in swPD [14,23,24], and responsive measures to quantify the effectiveness of
rehabilitation [25].

When retrieved from trunk accelerations, the coefficient of variation (CV), a com-
monly used statistical measure that quantifies the variability of spatio-temporal gait
parameters [13,26–29], can be extrapolated. However, CV may present some limitations in
assessing gait variabilities in swPD, such as high dependency on gait speed, limited ability
to provide information on the underlying patterns and short-term changes in gait variabil-
ity [9,13,30], and lack of identification of gait variability at earlier stages of the disease [31].
Moreover, CV is dependent on the identification of gait cycles, which is a possible source of
error due to irregular acceleration signals or difficulties in the identification of acceleration
peaks, particularly in neurodegenerative diseases [32–35].

To overcome these shortcomings, researchers have proposed adopting nonlinear
entropy measures, which assess gait variability by providing a measure of the complexity
and regularity of a time series, regardless of step detection [36–39].

Entropy quantifies the probability of the next state of the system based on what is
known about the current state of a time series [40,41]. When the probability is high, the
following system states provide little new information, resulting in low entropy values.
When the probability is low, the subsequent data points in the system provide a greater
amount of new information, resulting in high entropy values, indicating greater gait irregu-
larity or complexity of the gait pattern. Several methods for calculating entropy have been
proposed [41–46]. Among them, sample entropy (SampEn) [43]-based methods have been
described as valid tools for assessing gait regularity in healthy subjects and pathological
conditions [40,47,48], including trunk acceleration-derived gait signals from swPD [49].
Multiscale entropy (MSE) and refined composite multiscale entropy (RCMSE) have been
shown to be the most appropriate entropy measures for assessing the repeatability of
gait signals, particularly when analyzing shorter time series [41,44], such as those gener-
ated by ambulatory gait trials, where they limit the risk of noisy and unstable entropy
estimates [43,50–52].

MSE is an extension of SampEn that computes SampEn at different scales by
segmenting the original time series into different length windows through a coarse-graining
procedure [53–58]. When MSE was applied to trunk accelerations, it revealed differences
between treadmill and overground walking in older but not younger individuals [59],
and a progressive decrease in trunk acceleration complexity from childhood to adulthood
during natural walking [60]. RCMSE has been proposed to overcome the probability of
undefined entropy of MSE [61] by calculating the entropies of each coarse-grained time
series into a composite multiscale algorithm with a scale factor [61]. Recently, another
method of entropy calculations, the complexity index (CI), has been introduced to assess
the gait complexity of swPD across a pre-determined range of scale factors [62–64]. How-
ever, its ability to characterize the gait of swPD, compared to healthy subjects, has never
been investigated.

Notably, when calculating MSE and RCMSE, researchers should consider which
combination of signal embedding, tolerance radius, scale factor, and length of data best
fit with their type of data and study objectives [40]. The length of 2000 data points (N)
was described as an acceptable compromise between instability of the results and loss of
significant information, a signal embedding value (m) of 2 was calculated using the nearest
neighbor method [65–67] and 0.2 times the standard deviation was used as the tolerance
radius (r). However, the choice of number of scales, commonly referred to as τ, differs
across the studies analyzing MSE and RCMSE [40,41]. As it may significantly affect sample
entropy calculations, the optimal τ related to N to identify complexity and irregularity
should be identified for each pathological condition [38,68].
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Furthermore, when assessing the discriminative ability of entropy measures, the
effects of age [37] and gait speed [69], which can overrepresent the differences between
pathological and healthy gait [70], should be considered.

Therefore, the aims of this study were: (i) to identify the best τ in MSE or RCMSE
procedure, or the ability of CI, to characterize the complexity and variability of trunk
acceleration patterns of swPD during gait, compared with healthy subjects (HS), regardless
of age and gait speed; (ii) to assess the ability of MSE and RCMSE calculated using the
identified optimal τ, and CI to characterize fallers within swPD; (iii) to assess the ability
of MSE and RCMSE as calculated through the identified optimal τ, and CI to differentiate
swPD according to their disability stages; and (iv) identify correlations between MSE and
RCMSE at the optimal τ, and CI, with clinical features and spatio-temporal and kinematic
gait parameters in swPD.

We hypothesized that MSE and/or RCMSE at a single τ, or CI, could characterize
trunk irregularity in swPD, regardless of age and gait speed, and that could reflect the
clinical status and kinematic gait abnormalities.

2. Materials and Methods
2.1. Subjects

Gait data from 51 swPD, acquired at “ICOT”, Latina, Italy, and at “IRCSS Casimiro
Mondino”, Pavia Italy, were included in the study. SwPD were included according to
the following inclusion criteria: (i) idiopathic PD diagnosis based on UK bank crite-
ria [71]; (ii) Hoehn and Yahr (HY) scale classification 1–3 [72]; (iii) ability to walk unas-
sisted for at least 30 m along a laboratory corridor without presenting freezing of gait;
and (iv) a stable and accustomed drug dosage for at least 2 weeks prior to the gait as-
sessment. Subjects with cognitive deficits as defined by Mini-Mental State Examination
score <26 [73,74], moderate-to-severe depression, as defined by Back Depression Inven-
tory scores >17 [75,76], orthopedic or other diseases influencing gait behavior, such as
other neurological conditions, clinically defined osteoarthritis, joint replacements, and
subjects reporting hip or knee joint pain, limited hip range of motion, or anatomic alter-
ations of the joints, were excluded [77–79]. Gait data from 50 age and gait speed-matched
healthy subjects (HS) were included for comparison. To match pwPD and HS, a 1:1 optimal
matching procedure using the propensity score difference method was conducted [80].
Each HS was asked to repeat the gait task twice while walking at both their self-selected
speed and a slower directed speed in order to reduce the effect of gait speed on the other
speed-dependent gait parameters and to gather the largest sample size for speed-matched
comparisons [17,81]. Age and gait speed were used as covariates in logistic regression
analysis to calculate the propensity scores [82–84]. Table 1 summarizes the clinical charac-
teristics of the included subjects. All participants gave their informed consent in accordance
with the Helsinki Declaration, and the study was approved by the local ethics committee
(CE Lazio2 protocol n.◦ 0053667/2021).

Table 1. Clinical and spatio-temporal gait characteristics of the included subjects.

swPD HS p

Age [mean(SD)] 71.15 (5.12) 69.14 (4.80) 0.06

Gender [n (%)]
F 15 (29.41) 27 (54)

0.01M 36 (70.58) 23 (46)

Disease duration [mean(SD)] 8.04 (4.70)

HY [n (%)]
1 10 (19.60)
2 17 (33.33)
3 24 (47.05)
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Table 1. Cont.

swPD HS p

UPDRS III [mean(SD)] 41.41 (18.22)

UPDRS III < 32 [n (%)] 16 (31.27)

UPDRS III ≥ 32 [n (%)] 22 (43.13)

UPDRS III ≥ 58 [n (%)] 13 (25.49)

History of falls (n◦ of falls in the
previous 6 months) [mean (SD)] 1.35 (3.28)

Gait speed (m/s) [mean (SD)] 1.08 (0.25) 1.09 (0.25) 0.91

Stance phase (% gait cycle) [mean (SD)] 60.82 (2.27) 61.41 (3.42) 0.31

Swing phase (% gait cycle) [mean (SD)] 39.18 (2.27) 38.59 (3.42) 0.31

Single support (% gait cycle) [mean (SD)] 39.24 (2.92) 37.93 (5.29) 0.13

Double support (% gait cycle) 10.88 (2.33) 11.90 (4.92) 0.19

Cadence (steps/min) [mean (SD)] 103.37 (20.44) 101.35 (14.06) 0.60

Stride length (m) [mean (SD)] 0.94 (0.21) 1.22 (0.22) <0.00

Pelvic tilt (◦) [mean (SD)] 3.33 (1.55) 3.01 (1.13) 0.25

Pelvic obliquity (◦) [mean (SD)] 3.87 (2.16) 5.38 (2.70) 0.01

Pelvic rotation (◦) [mean (SD)] 5.49 (3.29) 6.68 (3.90) 0.02

HR AP [mean (SD)] 1.66 (0.26) 2.32 (0.64) <0.00

HR ML [mean (SD)] 1.62 (0.25) 2.23 (0.59) <0.00

HR V [mean (SD)] 1.68 (0.28) 2.41 (0.76) <0.00

stride length CV % [mean (SD)] 39.26 (19.44) 26.69 (13.76) 0.00
swPD, subjects with Parkinson’s disease; HS, age and speed-matched healthy subjects; p, significance level at
95% confidence interval in Mann–Whitney procedure; HY, Hoehn and Yahr disease stage classification; UPDRS
III, motor section of the Unified Parkinson’s Disease Rating Scale; HR, Harmonic Ratio; AP, antero-posterior
direction of the acceleration signal; ML medio-lateral direction of the acceleration signal; V vertical direction of
the acceleration signal; CV, coefficient of variation.

2.2. Procedures

Data were collected using an inertial sensor (BTS GWALK, BTS, Milan, Italy) posi-
tioned at L5 via a unique ergonomic belt. The “Walk+” protocol of the G-STUDIO software
vers.3.5.25.0 (BTS, Milan, Italy) was used to detect the linear acceleration patterns of the
trunk during gait in the anterior-posterior (AP), medio-lateral (ML), and vertical (V) di-
rections, and spatio-temporal parameters and pelvic kinematics, at a sampling rate of
100Hz. A triaxial accelerometer and gyroscope (16 bit/axis) and a triaxial magnetometer
are included in the sensor (13 bit). Spatio-temporal characteristics of the included sample
are described in Table 1. As sample entropy algorithms are sensitive to concatenation of
gait trials [85], to collect the largest number of consecutive data points, subjects were asked
to walk through a 30 m long pathway at their own pace (Figure 1).

As this study focused on natural locomotion, participants were allowed to choose
their desired speed without interfering with their rhythm or receiving external sensory
information. HS were also requested to walk at a slower pace to increase the sample size
for the matching procedure. The multiscale entropy techniques were calculated using the
MATLAB software (MATLAB R2022a 7.4.0, MathWorks, Natick, MA, USA).
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Figure 1. Triaxial trunk acceleration. Triaxial trunk acceleration extrapolated by L5 inertial sensor
after subjects were asked to walk barefoot down a 30-m-long corridor at a self-selected speed.

2.3. Entropy Algorithms

To calculate the entropy measures, we chose an embedding dimension, m = 2 [86],
and a fixed tolerance, r = 0.2, multiplied by the standard deviation [87]. Due to the
amount of information shared from point-to-point decreases as the lag increases, we chose
a standard time lag = 1 [88]. A scale factor τ = 1–6 was chosen as the most appropriate scale
factor used in previous gait research work, based on the number of data points evaluated
(N = 2000 [41]).

2.3.1. Multiscale Entropy (MSE)

The MSE calculation consisted of two procedures: (i) a coarse-graining procedure for
obtaining representations of the original time series on various time scales (Figure 2); and
(ii) the SampEn procedure for quantifying the coarse-grained time series’ regularities [89].
The original time series was separated into non-overlapping windows of length, and the
data points inside each window were averaged to generate the coarse-grained time series
at a scale factor of τ. As illustrated in Figure 2, coarse-grained time series are separated by
a scale factor of τ for the original time series.
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Figure 2. Coarse Graining Procedure. Given a time series x1, x2 . . . xi+2, we first create coarse-grained
time series by averaging a growing number of data points in non-overlapping windows. Schematic
illustration of the coarse-graining procedure in Multiscale Sample Entropy for scale τ = 2 in (a) and for
scale τ = 3 in (b); data length of the trunk acceleration time series reduced, respectively to N

2 and N
3 .

SampEn was calculated as follows:
Let x = {x1, x2 . . . xN} represent a time series of length N.
Using Equation (1), build model vectors of size m:

xm
i = {xi xi+1 . . . xi+m−1}, 1 ≤ i ≤ N −m (1)

1. There will be correspondence if the distance between two vectors (xm
i, xm

j) is smaller
than a predefined tolerance r. The distance between the two vectors was calculated
using the norm of infinity:

dm
ij =‖ xm

i − xm
j ‖ ∞, 1 ≤ i, j ≤ N −m, j 6= i (2)

2. If dm
ij was less than or equal to the predefined tolerance r, we defined (xm

i, xm
j) a pair

of m-dimensional matched vectors. Total number of pairs of m-dimensional matched
vectors, given nm.

3. We repeated steps 1–3 for m = m + 1, where nm+1 represents the total number of
(m + 1) dimensional matched vector pairs as shown in Figure 3.
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Figure 3. Sample Entropy calculation. For each pattern of m points in trunk acceleration sig-
nal, places in other parts of the signal where the template is seen are identified within tolerance
r. Sample Entropy is calculated as the negative natural of the conditional probability that the pattern of
m + 1 points will match if that the pattern of m points did match. After the signal matched the
first two parts of the pattern m, this is the probability that pattern match will complete, m + 1. The
number of m matches are compared to the number of complete pattern (m + 1) matches.

4. The SampEn was defined as the logarithm of the ratio of nm+1 to nm as in Equation (3):

SampEn(x, m, r) = − ln
nm+1

nm (3)

The k-th coarse-grained time series y(τ)k =
{

y(τ)k,1 y(τ)k,2 . . . y(τ)k,p

}
of x was defined

as follows:
y(τ)k,j =

1
τ ∑jτ+k−1

i=(j−1)τ+k xi, 1 ≤ j ≤ N
τ

, 1 ≤ k ≤ τ (4)

As in the conventional MSE algorithm proposed by Costa et al. [44], the MSE at a
scale factor of τ was defined as the SampEn of the first coarse-grained time series as in
Equation (5):

MSE(x, τ, m, r) = SampEn
(

y(τ)1 , m, r
)

(5)

2.3.2. Refined Composite Multiscale Entropy (RCMSE)

To calculate RCMSE, the SampEns of all coarse-grained time series were calculated in
the CMSE algorithm at a scale factor of τ, and the CMSE value was defined as the mean of
τ SampEns:

CMSE(x, τ, m, r) =
1
τ

τ

∑
k=1

SampEn
(

y(τ)k , m, r
)
=

1
τ

τ

∑
k=1

(
−ln

nm+1
k,τ

nm
k,τ

)
(6)

where nm
k,τ represents the total number of m-dimensional matched vector pairs and is

constructed from the k-th coarse grained time series at a scale factor of τ.
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The logarithms of the ratio of nm+1
k,τ to nm

k,τ for all τ coarse-grained series are investi-
gated first in the CMSE algorithm, and the average of these logarithms is then determined
as the entropy value. When one of the values of nm+1

k,τ to nm
k,τ is 0, the CMSE value is

undefined. The likelihood of inducing undefined entropy is higher when the CMSE is used
to examine a short time series than when the MSE is used. Due to this flaw, the CMSE
algorithm’s short time series analysis applications are limited. To overcome this issue, Wu
et al. introduced the RCMSE method [61]. The RCMSE algorithm was calculated according
to following steps:

(1) To obtain coarse-grained time series on different time scales, we utilized the coarse-
graining process indicated in Equation (4).

(2) For all τ coarse-grained series, the number of matched vector pairs, nm+1
k,τ and nm

k,τ ,
was determined at a scale factor of τ.

(3) For 1 ≤ k ≤ τ, let nm
k,τ

(
nm+1

k,τ

)
denote the mean of nm

k,τ

(
nm+1

k,τ

)
. Equation (7) provides

the RCMSE value at a scale factor of τ.

RCMSE(x, τ, m, r) = − ln

(
nm+1

k,τ

nm
k,τ

)
(7)

where nm+1
k,τ = 1

τ ∑τ
k=1 nm+1

k,τ and nm
k,τ = 1

τ ∑τ
k=1 nm

k,τ .

Equation (7) can be written as follows:

RCMSE(x, τ, m, r) = − ln
(

nm+1
k,τ
nm

k,τ

)
− ln

(
1
τ ∑τ

k=1 nm+1
k,τ

1
τ ∑τ

k=1 nm
k,τ

)
= − ln

(
∑τ

k=1 nm+1
k,τ

∑τ
k=1 nm

k,τ

) (8)

2.3.3. Complexity Index (CI)

We also use the trapezoid rule to calculate CI by integrating the entropy values over
a pre-determined range of scales [56]. This index reflects the amount of information, or
entropy, in a signal over a range of time scales, as shown in Figure 4. High entropy values
over a wide time scale range, and thus a high CI, indicate high complexity, and vice
versa [90]. The maximum scale that can be analyzed depends on the length of the original
time series [91].
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Figure 4. Complexity Index. Multiscale Entropy plot of the triaxial trunk acceleration signal evaluated
for all scale factors τ; the complexity index was determined for the Antero-Posterior direction of a
healthy subject by calculating the area under the curve given by the multiscale Entropy values.

2.4. Clinical Assessment

The HY disease staging system and the motor examination section of the Unified
Parkinson’s Disease Rating Scale (UPDRS-III) were used to determine the severity of
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Parkinson’s disease [92] (Table 1). Clinical scales were administered by an assessor who
was not aware of the gait reports. SwPD were classified as fallers (at least one fall) or
non-fallers based on a self-reported history of falls in the 6 months preceding the gait
assessment [93,94]. A fall was defined as an unintentional landing to the ground that was
not caused by a significant intrinsic event or a dangerous situation [93,95].

2.5. Statistical Analysis

To identify entropy measures with good ability to discriminate between swPD and HS,
as represented by an area under the receiver operating characteristics curve
(AUC) ≥ 0.70 at a 95% significance level and 80% power under the null hypothesis of
an AUC = 0.50, a minimum sample of 68 participants (34 swPD and 34 HS) was calculated.

After checking the normality of the distributions and equality of the variances through
the Shapiro–Wilk and Levene’s test, respectively, a Mann–Whitney test was performed
to identify significant differences between swPD and HS in entropy measures at each τ,
spatio-temporal gait features, pelvic kinematics, HRs, and CV. Cohen’s d with Hedge’s
correction were calculated to assess the effect size.

To identify the entropy measures that best discriminated between swPD and HS,
AUCs at each τ were calculated. AUCs ≥ 0.70 were deemed to have sufficient overall
discriminative ability [96]. To identify the optimal cutoff points (OCPs) for each τ, the
maximal sum of sensitivity and specificity, Youden Index, and maximal F1 score were
calculated. To investigate the likelihood of being correctly classified by a given combination
of entropy measure and τ at the OCP, positive and negative likelihood ratios (LR+ and
LR−, respectively) were calculated and transformed into positive and negative post-test
probabilities (PTP+ and PTP−, respectively) through a Fagan’s nomogram [97]. PTPs were
also calculated using the prevalence of subjects with gait disorders (35%) [98] in the general
older population as pre-test probability to improve the external validity of the results in
terms of recognizing gait disorders attributable to PD in aged populations. Diagnostic odds
ratios (DORs) were also calculated to assess the diagnostic performances [99]. When F1
score and Youden index score referred to different entropy values, the OCP was chosen
as the value with the greatest difference between PTP+ and PTP− [100] (Supplementary
Material, Table S2). The combinations of entropy measures and τ with the highest DOR,
PTPs, the difference between PTP+ and PTP−were considered as the best entropy measures
to characterize gait complexity in swPD.

The ability of the identified entropy measures to discriminate between fallers and
non-fallers was assessed through a Mann–Whitney test.

To investigate the ability of the identified entropy measures to discriminate across the
disability levels, Kruskal-Wallis test with Dunn’s post hoc analysis and Holm’s correction
was performed using the HY stage and the UPDRS III thresholds as between-subjects
factors. UPDRS III scores < 32, ≥32, and ≥58 were considered as reflecting mild, moderate,
and severe motor disease, respectively [101].

To assess the correlations between the identified entropy measures and the clinical
features of swPD, spatio-temporal gait characteristics, pelvic kinematics, and the other
trunk-acceleration-derived gait indexes that characterize swPD [11,13], a partial correlation
analysis excluding the effects of age and gait speed was conducted.

Statistical analyses were carried out using the IBM SPSS ver. 27, NCSS 2022, and JASP
vers. 0.16 software.

3. Results

Significant differences between swPD and HS were found in all combinations of
entropy measures and τ (Figure 5, Supplementary Material: Table S1), and in stride length,
pelvic obliquity, pelvic rotation, HRs and CV (Table 1), regardless of age and gait speed.
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Figure 5. Descriptive measures. Comparison of Entropy metrics between swPD (green) and HS
(blue). Boxplots for (a) MSEAP, (b) MSEML, (c) MSEV, (d) RCMSEAP, (e) RCMSEML, (f) RCMSEV,
(g) CIMSE, (h) CIRCMSE.

MSE in the AP direction at τ4 (MSEAP τ4) and τ5 (MSEAP τ5), and MSE in the ML
direction at τ4 (MSEML τ4), revealed the best trade-off between PTP+ and PTP to characterize
the gait of swPD, compared with HS (Figures 6–8, Supplementary Material: Table S2). Par-
ticularly, MSEAP τ4 values ≥ 0.53, MSEAP τ5 values ≥ 0.60, and MSEML τ4 values ≥ 0.59
characterized swPD with 79%, 82%, and 78%, PTP+, and 30%, 34%, and8 33% PTP−, respec-
tively, and the highest DORs (Figures 6–9, Supplementary Material: Table S2). After adjusting
pre-test probabilities based on the 35% prevalence of gait disorders in elderlies, MSEAP τ4,
MSEAP τ5, and MSEML τ4 still showed the highest differences between PTP+ and PTP−
(Figure 6, Supplementary Material: Table S2).
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Figure 6. ROC curves and optimal cutoff metrics of MSE. ROC curves of MSE in the antero-posterior
(AP) (left), medio-lateral (ML) (middle), and vertical (V) (right) directions of the acceleration sig-
nals at τ. 1–6. Area under the curves values and their 95% confidence intervals are reported
for each τ (a). Estimated cutoff values (b), sum of sensitivity and specificity (c), F1 scores (d),
Youden indexes (e), positive post-test probabilities, negative post-test probabilities, and difference
between post-test probabilities using the prevalence of PD in the actual sample as pre-test probability
(f,g,h, respectively), and using the general 35% prevalence of gait disorders (i,j,k, respectively) are
reported. Red lines represent AP direction, yellow lines ML direction, green line V direction.
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Figure 7. ROC curves and optimal cutoff metrics of RCMSE. ROC curves of RCMSE in the antero-
posterior (AP) (left), medio-lateral (ML) (middle), and vertical (V) (right) directions of the acceleration
signals at τ. 1–6. Area under the curves values and their 95% confidence intervals are reported
for each τ (a). Estimated cutoff values (b), sum of sensitivity and specificity (c), F1 scores (d),
Youden indexes (e), positive post-test probabilities, negative post-test probabilities, and difference
between post-test probabilities using the prevalence of PD in the actual sample as pre-test probability
(f,g,h, respectively), and using the general 35% prevalence of gait disorders (i,j,k, respectively) are
reported. Red lines represent AP direction, yellow lines ML direction, green line V direction.
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Figure 8. ROC curves and optimal cutoff metrics of CI MSE and CI RCMSE. ROC curves of CI
MSE in the antero-posterior (AP) (left), and CI RCMSE (right)medio-lateral (ML). Area under the
curves values and their 95% confidence intervals are reported (a). Estimated cutoff values (b),
sum of sensitivity and specificity (c), F1 scores (d), Youden indexes (e), positive post-test prob-
abilities, negative post-test probabilities, and difference between post-test probabilities using the
prevalence of PD in the actual sample as pre-test probability (f,g,h, respectively), and using the general
35% prevalence of gait disorders (i,j,k, respectively) are reported. Red lines represent CI MSE, yellow
lines represent CI RCMSE.
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Figure 9. Confusion matrices. Confusion matrices of multiscale entropy in the AP direction at τ4 (a),
and τ5 (b), and in the medio-lateral direction at τ4 (c). Radar plots represent the true positive (TPR),
true negative (TNR), false positive (FPR) and false negative (FNR) rates at each optimal cutoff point.

No differences between swPD fallers and non-fallers in MSEAP τ4 (p = 0.281), MSEAP
τ5 (p = 0.377), and MSEML τ4 (p = 0.966) were found.

MSEAP τ4 (H2 = 7.07, p = 0.03) and MSEAP τ5 (H2 = 6.50, p = 0.04) differentiated
between swPD according to UPDRS III. Post-hoc analysis revealed significant differences in
MSEAP τ4 and MSEAP τ5 between mildly and moderately impaired, and severely impaired
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swPD (Figure 10). MSEML τ4 did not differentiate across UPDRS III scores (H2 = 3.69,
p = 0.16). No significant differences in age (H2 = 1.20, p = 0.55) and gait speed (H2 = 0.04,
p = 0.98) were found across the UPDRS III thresholds. No differences across the HY stages
in MSEAP τ4 (H2 = 0.090, p = 0.956), MSEAP τ5 (H2 = 0.105, p = 0.949), and MSEML τ4
(H2 = 0.357, p = 0.836) were found.
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Figure 10. Ability to differentiate across the motor disability levels. Differences in multiscale
entropy (MSE) at scale factor τ4 and τ5 in the antero-posterior direction according to motor disability
as assessed by the motor section Unified Parkinson’s Disease Rating Scale (UPDRS III). p-values
represent significant differences at Dunn’s post-hoc analysis with Holm’s correction after the Kruskal—
Wallis’s procedure.

Regardless of age and gait speed, MSEAP τ4, MSEAP τ5, and MSEML τ4 positively
correlated with UPDRS III. MSEAP τ4 and MSEAP τ5 negatively correlated with pelvic
obliquity and pelvic rotation. MSEAP τ4 negatively correlated with cadence. MSEML τ4
positively correlated with the stance and double support phases, and negatively correlated
with the swing phase (Figure 11).Sensors 2022, 22, x FOR PEER REVIEW 16 of 23 
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Figure 11. Partial correlation analysis. Partial Spearman’s correlation analysis excluding the effects
of age and gait speed between clinical features, spatio-temporal, and kinematic gait characteristics,
trunk acceleration derived harmonic ratios, stride length coefficient of variation, and multiscale
entropy measures. Highlighted connecting lines represent significant correlations, and their width
represents the strength of the correlation, which is also reported numerically. Link: https://public.
flourish.studio/visualisation/12786560/ accessed on 15 May 2023).
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4. Discussion

The main objective of this study was to assess the ability of trunk acceleration derived
MSE, RCMSE, and CI to characterize swPD gait variability as an expression of the complex-
ity of trunk acceleration signals calculated across a range of τ 1–6, regardless of age and
gait speed.

We found that swPD showed higher entropy values than age and gait speed matched
HS for all the tested scale factors, and that MSE in the AP direction at τ4 and τ5, and MSE
in the ML direction at τ4, provided the best compromise between the probability to identify
a subject with PD for values higher than the OCP and the probability to identify an HS for
values lower than the OCP. These findings are consistent with previous research, which
reported higher entropy values in swPD, indicating lower gait regularity than HS [48,55],
and a disruption of trunk accelerations [13] due to the greater number of adjustments
required to overcome the increasing instability caused by impaired sensorimotor integra-
tion [38]. Conversely, a previous study reported lower entropy values in swPD than healthy
controls [102]. Aside from a different method of entropy calculation, this contradictory
result may be explained primarily by differences in the healthy control group, which was
significantly younger and walked faster than swPD in Kamath’s study compared to our
sample. Gait entropy measures are strongly related to age, with younger people exhibiting
greater complexity than older people [103,104]. To avoid misrepresenting differences in
gait complexity through entropy measures, the ages of the compared groups should be
comparable. In this way, because we matched swPD and HS based on age in this study,
we reported differences between the groups that are not dependent on age. Furthermore,
nonlinear gait indexes are correlated with gait speed [41,58,105], which is known to be
reduced and affects most of the spatio-temporal and kinematic gait parameters, potentially
overrepresenting the differences between neurotypical and pathological gait [69]. Although
we calculated entropy measures directly from trunk acceleration patterns, avoiding the
need for step detection, which is a controversial issue in MIMUs- based gait analysis of
subjects with neurological conditions [32], we also matched swPD and HS for gait speed.
Therefore, our findings allow us to consider MSE in the antero-posterior and medio-lateral
directions as age and speed-independent biomarker of gait complexity in swPD.

In this study, MSE in the AP direction as calculated at τ4 and τ5, and MSE in the ML
direction at τ4, outperformed the other scaling configurations in terms of discriminative
ability. Riva et al., previously found that τ2 represented the best scale factor to identify
clinically meaningful gait irregularity through trunk acceleration-derived MSE in older
adults [31]. In this way, our findings suggest that higher scaling factors are required to
highlight gait irregularities that are caused by Parkinson’s disease rather than aging. In
our study, however, MSEAP τ4, MSEAP τ5, and MSEML τ4 were unable to distinguish
between fallers and non-fallers. This finding represents yet another distinction in the
calculation of MSE between healthy older adults, where MSE is higher in fallers, and swPD,
where the increase in gait irregularity appears to be a direct expression of the clinical
features, regardless of fall history. Indeed, we found that MSE values correlated with motor
disability, as assessed by UPDRS III, and that MSE in the AP direction was significantly
higher in subjects with greater motor impairment. However, we found no differences in
entropy values across disease stages as calculated by HY, confirming that gait irregularity
in swPD is most likely due to motor symptoms, rather than the longitudinal progression of
the disease [49,106], as further reinforced by the lack of correlation with disease duration.
Moreover, we found that higher MSE values in the AP direction correlated with lower
ranges of movement of the pelvis in the frontal and transverse plane, regardless of age and
gait speed. Pelvic rigidity and trunk rotation reduction have been consistently described as
characterizing features of swPD [12,17,19,107]. As we directly calculate entropy measures
from lower trunk acceleration, we can argue that abnormalities in MSE in the AP direction
reflect the irregularity of trunk behavior in swPD due to pelvic rigidity, as an expression
of the disruption of trunk acceleration patterns [108]. MSE in the ML direction correlated
with stance, swing, and double support phases, which are temporal gait parameters that
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reflect gait stability in swPD [109–111]. In this way, we might hypothesize that MSEML
τ4 represents a marker of inefficiency of the compensatory strategy to antero-posterior
irregularity [58], resulting in increased medio lateral irregularity. However, because no
significant differences were found in temporal gait features between swPD and HS at
matched gait speed (Table 1), we cannot ascertain that this mechanism is characteristic of
swPD rather than a consequence of the reduced gait speed. As a result, MSEAP τ4, MSEAP
τ5, and MSEML τ4, characterize the irregularity of trunk accelerations during gait, and
correlate with the motor symptoms of swPD and reduced pelvic kinematics. The lack of
correlation with other trunk acceleration-derived gait indexes that have previously been
shown to characterize the gait abnormalities of swPD [13], such as HR and CV, supports
the hypothesis of entropy as a measure of gait irregularity that reflects a different aspect
of gait variability than the CV [32]. However, because of the relatively high false positive
rates (Figure 9), MSEAP τ4, MSEAP τ5, and MSEML τ4, while providing insights into the
gait behavior of swPD, cannot be considered as gait biomarkers alone, requiring additional
research into the integration with other gait and clinical features.

To our knowledge, this is the first application of RCMSE on trunk acceleration derived
gait data from swPD. Although significant differences between swPD and HS were found
in RCMSE at all scale factors, none of them achieved sufficient discriminative ability to
be considered accurate biomarkers of gait irregularity in swPD in this study. Refined
algorithms are used on data series with high frequency oscillations. In the field of gait
analysis, RCMSE appears to fit better with less predictable signals [89,112], such as elec-
tromyographic, than with pre-filtered trunk acceleration patterns at natural steady-state
locomotion, which are rather regular and repetitive in time and amplitudes. Analyzing
more unstable gait conditions in swPD, such as gait initiation, freezing, and real-world
data, could provide additional insights into RCMSE. In this way, MSE was sufficient for the
signal typology that we examined.

In this study, we also assessed CIs. For RCMSE, although significant differences
between swPD and HS were found, their discriminative ability was not sufficient to
be considered as markers of gait irregularity in swPD. Previous studies have reported
increased CI in swPD after rehabilitation [62] or deep brain stimulation [63], indicating that
the increase in complexity represents improvements in ability to overcome obstacles during
gait [62]. In contrast, Ahmadi et al. reported higher CI values during the over imposed
dual task gait condition when compared to natural locomotion [64]. Given the differences
in sensor localization and the lack of healthy control groups in the aforementioned studies,
a comparison with our results is difficult. In this study, we discovered that lower scale
factors, regardless of age or gait speed, were unable to characterize swPD when compared
to HS. As a result, the inclusion of non-discriminant entropy values in the CI calculation
may have resulted in an underrepresentation of gait irregularity in swPD.

This study presents several limitations. First, in this study we fixed length of
2000 data points, m = 2 and r = 0.2 times the standard deviation because these param-
eters are the most used to calculate entropy measures in gait samples. Therefore, our
results can be only interpreted based on the aforementioned parameters. To test the relative
consistency of our calculations, different combinations of m and r should be tested [43,113].
Furthermore, we analyzed gait data from 30 m walking bouts, which, despite reflecting
long time-series in ambulatory settings, limited us to only 2000 useful datapoints in the
entropy calculations. Using longer time series from real-world data would allow for more
datapoints per scaling factor, likely reflecting more in-depth changes in motor control
mechanisms [49,91]. Another limitation of this study is the retrospective self-reported
history of falls, which could have led to recall bias. Furthermore, we only assessed swPD
during the ON phase of the medication. As differences in entropy measures as measured
by shank-mounted MIMUs between ON and OFF phases have been reported in swPD,
further studies investigating the ability of trunk acceleration-derived MSE indices to assess
the effectiveness of medications are needed.
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