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Abstract: The introduction of synthetic dyes completely changed the industrial production and use
of colorants for art materials. From the synthesis of the first synthetic dye, mauveine, in 1856 until
today, artists have enjoyed a wider range of colors and selection of chemical properties than was
ever available before. However, the introduction of synthetic dyes introduced a wider variety and
increased the complexity of the chemical structures of marketed dyes. This work looks towards
the analysis of synthetically dyed objects in heritage collections, applying an extraction protocol
based on the use of ammonia, which is considered favorable for natural anthraquinone dyes but has
never before been applied to acid synthetic dyes. This work also presents an innovative cleanup
step based on the use of an ion pair dispersive liquid–liquid microextraction for the purification and
preconcentration of historical synthetic dyes before analysis. This approach was adapted from food
science analysis and is applied to synthetic dyes in heritage science for the first time in this paper. The
results showed adequate recovery of analytes and allowed for the ammonia-based extraction method
to be applied successfully to 15 samples of suspected azo dyes from the Azienda Coloranti Nazionali
e Affini (ACNA) synthetic dye collection, identified through untargeted HPLC-HRMS analyses.

Keywords: synthetic dyes; ACNA; ammonia extraction protocol; dLLME; HPLC-HRMS; cultural heritage

1. Introduction

Historians and conservators consider 1856 a key year in the history of industry. The
work of the young British chemist William Henry Perkin introduced mauveine (the first
synthetic dye) [1], and this discovery started a new era in fabric dyeing. The synthesis of
dyes in laboratory environments opened up the possibility of exploring new methodologies
to obtain new hues and shades, which no longer relied upon the intrinsic variability of
natural dye resources [2]. For this reason, the price of production was reduced and the
dependency of the textile industry on natural dyes declined [3–5]. This synthesis completely
changed the face of the industry and allowed for rapid scaling up of textile dye production
and an increase in market access to textile dyes, leading to the launch of new large chemical
plants and companies across the world [6,7].

Feverish experimentation, encouraged by the new potential in terms of possible sub-
stances, colors and synthesis routes was the result of this new phase, which invested not
only the world of industry but also the world of art materials. Colored objects originating
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from this period of rapid expansion offer important information that can shape our un-
derstanding of the histories of industries and art that shaped the development, use and
production of these materials.

This importance explains why synthetic dye studies, which represent a relatively
new field in cultural heritage analyses due to their modernity, are rapidly increasing in
importance, taking into account that the artistic productions of the 19th–20th century now
require conservation interventions and raise curatorial questions [2,8].

While scientific analysis of synthetically dyed heritage objects is carried out in a similar
way to the analysis of natural dyes, chemical variabilities between the two groups introduce
different complexities. In general, synthetic dyes possess greater molecular uniformity than
natural dyes, which are often a mixture of different chromophore compounds (i.e., we can
count 68 anthraquinone dye molecules for madder roots). This is because they are produced
under controlled conditions in laboratory environments, whilst natural dyes are influenced
by a significant number of “uncontrolled” natural variables [4,5]. In contrast, however, a
vast range of molecular classes exist for synthetic textile dyes compared to natural dyes.
This reflects the extensive variability of the dye molecules able to be synthesized in the
laboratory compared to those that are derived from the natural world [6]. Due to this
incredibly high diversity in chemical structure, substituents, etc., it is difficult to develop
analytical protocols that are well suited to the identification of all of the different chemical
classes and typologies of synthetic dye; for example, charged dyes (e.g., reactive dyes) may
require different extraction methods than uncharged dyes.

This variability means that different processes may be required for the extraction
of different types of dyes from fibers. Furthermore, the variability introduces additional
challenges for the heritage scientist in identifying the chemical structures of unknown
dyes, as reference spectra do not exist for the thousands of potential commercial dyes
sold, and minor variations (e.g., substituent position) make even mass spectrometry data,
which do not require reference data, difficult to interpret. Reference spectra databases
currently only contain a small proportion of the dyes made and sold on the market, and the
vast range of available dyes make it difficult to develop, navigate and update databases—
making it challenging to use techniques that rely upon comparison with known compounds.
Moreover, inconsistencies in nomenclature—where different manufacturers refer to the
same dye molecules by their own brand names, or use similar names for chemically
different dyes—make it challenging to identify dyes even when their commercial names
are listed [2,9,10]. Together, these factors make the identification of these types of dyes from
historical and artistic matrices a highly complex matter; for this reason, it is desirable to
develop ad hoc methodologies and (re-)organize bibliographical sources.

However, the improved molecular uniformity within a single sample of synthetic dyes
makes some aspects of analysis simpler than for natural dyes, which are generally made up
of several low-concentration chromophores. For example, in spectroscopic analysis such as
Raman spectroscopy, synthetic dyes often produce more intense spectral peaks. This can
allow for spectra to be obtained without enhancements such as surface-enhanced Raman
spectroscopy, which is required for natural dyes [2,9].

The development of new protocols for synthetic dye analysis represents a relatively
new research area that has the potential to lead to significant improvements in how we
research and understand modern heritage objects. Toward this goal, some interesting work
has been published in recent years. For example, the excellent potential of nondestructive
or minimally invasive analyses using Raman and SERS for providing new information on
synthetically dyed heritage materials has been researched [9,11–14].

High-pressure liquid chromatography, coupled with mass spectrometry analyses
(HPLC-MS)—generally considered the “gold-standard for dye analysis”—require extraction
of the dye from a sample of the object. The extraction methods used for synthetic dyes
are generally adapted from natural dye studies, such as oxalic acid or organic solvent,
such as pyridine, at high temperatures [3,15], and applied directly to synthetically dyed
textiles [12]. However, if the chemistries of the synthetic dyes under analysis are considered,
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more effective extraction protocols can be developed for specific objects. Furthermore,
unlike other fields that employ synthetic dye analysis (e.g., food science) current methods
in heritage science do not usually consider the use of cleanup steps, which are used to
purify the sample before analysis. This lack of purification introduces impurities to the MS
spectra that can at times produce signals that are higher than dyes or overlap their signals.
These issues are even more pronounced in high-resolution mass spectrometry, which is a
technique the field is increasingly moving toward. Furthermore, as synthetic dyes come
from multistep synthesis and, therefore, may contain various side products, performing
any separation or purification on the final compounds may not be commercially feasible
for industries. Therefore, commercial synthetic dyes commonly contain a medium-high
purity, and the remainder comprises side products [16]. For these reasons, the application
of well-suited extraction methods (decided upon by the historical context and literary
information available for the object under analysis), the use of an effective cleanup step
(which isolates and purifies the molecules of interest before analysis), and analysis with
high-sensitivity techniques such as UHPLC-MS is a beneficial approach that avoids sample
losses, decreases spectral interference, and maximizes signal intensity [17].

Furthermore, historical textiles have occasionally been subjected to more than one
dyeing process, sometimes both natural and synthetic, as demonstrated previously [18].
In these cases, two separate samples must be taken from a textile artefact that is likely to
contain both natural and synthetic dyes. These factors work in opposition to the cultural
heritage goal of achieving minimal destructiveness and maximum information. Recent
papers are therefore starting to present methodologies that look at both components [12,19],
but these methods still employ acid conditions or organic solvents at high temperatures,
which have been demonstrated to be less effective in preserving the molecular pattern of
natural dyes (e.g., madder, cochineal dyes) compared to ammonia methodologies [20,21].

For this reason, in this paper, the authors propose a new extraction protocol and novel
clean up strategy for the recovery of synthetic dyes, starting from the innovative application
of the ammonia–EDTA extraction methodology to such compounds. In particular, the
method is focused on the development of a cleanup protocol to be used in the extraction of
acid dyes, starting from the azo class specifically. This class of dyes, characterized by a N=N
bond, was one of the earliest developed, with the first dye, Bismarck brown, commercially
synthesized after 1861, shortly after mauveine synthesis [2,22]. Different colors can be
obtained by modifications to the chemical structure, but the azo class is most typically
associated with red, yellow and orange hues [22]. Since their first appearance on the market,
azo dyes have been widely used in historical objects, representing one of the largest classes
of synthetic dyes; it is therefore common to find them in early synthetic dye collections [22].
For this reason, the authors considered them a relevant class with which to start research
with this specific focus.

Several previous analytical methodologies for azo dyes have been investigated in the
field of food science, as azo dyes were largely employed, such as in edible products, until the
emergence of scientific evidence related to the carcinogenic effects of some compounds in
this class [23]. In response, several governments banned their use and a rapid development
in analytical methods for the detection and identification of azo dyes in foods became
necessary for enforcement of these regulations [24–26]. Despite the extensive study of these
dyes in food science, heritage science has not yet utilized this significant body of work in
improving its methods for the identification of azo dyes.

This work therefore uses the methods developed for food science as a springboard
to propose a new methodology suited to the analysis of synthetic dyes in the heritage
field. The method was developed using three specific azo dyes, broadly representative of
the azoic acid dye class. The standards chosen were Acid Yellow 25 (CI: 18835), Congo
Red (CI: 22120) and Red 2G (CI: 18050). The choice of these three dyes lies not only in
their chemical properties (good water solubility and possessing negative charges), which
allows for the use of the ammonia extraction, but also because they are potential reference
standards for the historical samples chosen as a case study to evaluate the effectiveness of
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the methodology in the art–historical context. These historical samples were taken from
the Azienda Coloranti Nazionali e Affini (ACNA) collection at the Museum of Chemistry,
Sapienza University, and the links to these compounds were predicted through literature
research into the commercial names listed beside the samples selected for analysis.

The Museum of Chemistry, located within Sapienza University of Rome’s Department
of Chemistry, holds an extensive collection of early synthetic dyes from several different
dye companies and a significant group is represented by the dyes from the ACNA—an
Italian chemical company active from 1882 until 1999 [7]. The collection of dyes analyzed
contains dye powders in glass jars and card-backed sheets holding samples of dyed wool
fibers. These samples came directly from the ACNA laboratories, and this collection is
likely to date from the 1930s.

Researching this type of collection represents a precious opportunity to deepen his-
torical knowledge about the production of dyes in a precise historical period, which is
still understudied. The data produced also contributes to the published reference spec-
tra available for other researchers studying unknown dyes. Moreover, samples coming
from the ACNA laboratories can provide useful information to reconstruct the synthetic
processes followed and history of the industrial process. The nature of these samples also
means that many of these dyes may have been synthesized but then discarded due to their
performance on textiles not considered suitable for large-scale production or due to a lack
of chemical–physical properties.

2. Results and Discussion

The ammonia–EDTA protocol represents the first method of dye extraction in a basic
environment at room temperature. It was initially developed for natural anthraquinone
dyes due to the sensitivity of many dye components to the acid environment. The method
showed that, even in comparison with organic solvent methods, it could better preserve
highly sensitive glycosylated moieties [20,21]. Never before applied to synthetic dyes, the
present work arises from a desire to evaluate the performance of this methodology for a
different dye group. One motivation for the development of a method applicable to both
dyes is that it is not unusual to find textile artifacts that contain both natural and synthetic
dyes, especially in the years immediately following the synthesis of mauveine [18]. In cases
such as these, if this protocol was found to be applicable to synthetic dyes, it would be
possible to minimize the quantity of materials and maximize the information obtained from
a single extraction.

Recently, the ammonia protocol has been successfully applied for the microgel ex-
traction of natural anthraquinone dyes [27]. This research found that the application of a
cleanup protocol strongly improves the quality of the spectra obtained, as mentioned in
the introduction. Traditional liquid–liquid extraction (LLE) approaches cannot be used for
the cleanup of azoic acid dyes, which are charged species stored as powders with cationic
counter-ions before application to textiles to which they bind directly through their ionic
group [28]. When extracted from the textiles, they revert to their anionic form and hence
have a high affinity for water. This charged characteristic means they have an extremely
low affinity for less polar solvents; so, it is unlikely for them to be recovered from an organic
extracting solvent during liquid–liquid extraction. This is a significant gap in the literature
that this paper addresses through the application of dLLME with the addition of an ion
pair reagent (IP-dLLME).

2.1. Development of IP-dLLME Protocol

For the development of a cleanup protocol for synthetic dyes, solvent ratios were
decided by referring to a study on dLLME extractions of azo dyes from ice cream samples
presented by Faraji et al. [24]. dLLME has recently been applied for the first time to heritage
dye analysis, and this represents one of the first well-suited cleanup methods applied in
this field [29]. The method was first developed in 2006 for environmental science [30], and
nowadays is widely used in analytical chemistry fields including forensics, food science and
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environmental biology [30,31]. Based on a three-solvent system, dLLME involves the rapid
injection of an organic extracting solvent and a disperser solvent into an aqueous solution.
This forms a cloudy solution that maximizes the contact between phases, increasing the
opportunities for analytes of interest to move into the extracting phase. This promotion of
extraction means that smaller quantities of extraction solvent can be used with improved
recoveries. This has the benefit of combining purification and extraction into a single
step [29–33]. For synthetic azo dyes, the aim of using an ion pair reagent is to overcome
their very high affinity for water and allow for transition to a less polar extracting phase
during liquid–liquid extractions. The ion pair reagent tetra-n-butylammonium bromide
(TBAB) was used. The quaternary character of TBAB means that it has significant steric
hindrance and through this can form an “ion associate” with anionic molecules—such
as azoic acid dyes [34]. These ion associate pairs are bound by the steric effects of the
TBAB, and act in a similar way to nonpolar molecules. This apolar behavior allows the
ion associate pair to transition into the organic extraction solvent. The use of this ion pair
reagent enables the application of the dLLME cleanup protocol to synthetic dyes, and
whilst it can also be used with traditional LLE, the use of dLLME enhances extraction
recovery, efficiency and precision. TBAB was specifically chosen, as it is reported to be
significantly more efficient than the chloride and iodide countered quaternary ammonium
salts [35]. It was also successfully applied to azo dyes from food samples by Faraji et al. [24]
in the protocol used as the basis for this research.

The results of the disperser tests for synthetic dyes are displayed in Figure 1.
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Figure 1. Comparison of the recoveries of three azo dye standards after the performance of dLLME
with chloroform as the extracting solvent trialing four dispersers: isopropanol, acetone, methanol
and acetonitrile.

Under the IP-dLLME protocol, all dispersers display good recoveries for all analytes.
The recovery of Congo Red—over 100% for all dispersers—is explained by a combination
of the error margins, and the matrix effect of the TBAB ion pair reagent. Despite the errors
in recovery attributed to matrix effects, the disperser trials were sufficient to evaluate that
the best recovery was achieved with methanol as the disperser. Methanol was therefore
used as the disperser for further tests.

To counter the matrix effects, further analyses used a spiked sample as a reference—
which takes into account the matrix. The spiked sample was prepared identically to
the experimental conditions described but using 100 µL methanol instead of 500 ppb
reference mix. After drying, the residue was reconstituted with the 500 ppb reference mix
before analysis.
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After deciding the best disperser conditions for the extraction of the synthetic azo dyes,
the state-of-the-art ammonia–EDTA protocol was applied alongside dLLME to assess its
effects on the recovery of the samples. The results of this analysis are presented in Figure 2.
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Figure 2. Recoveries of the three trialed synthetic dye analytes with the complete analytical protocol
combining the ammonia and Na2EDTA extraction method with the novel dLLME cleanup protocol
developed in this research.

These results display a more significant reduction in recovery than was observed when
dLLME was performed alone—particularly with reference to Congo Red. This reduction
is likely to be attributed to the reference in this trial accounting for the matrix effect, but
also could be related to the application of the extraction protocol. However, despite this
reduction, recoveries are sufficient to verify the coherence and effectiveness of the complete
analytical protocol. This means that the ammonia–EDTA extraction method can now be
applied to synthetic dyes as well as natural dyes and brings together a coherent extraction
methodology that requires only one sample to be taken from artefacts suspected to contain
both natural and synthetic dyes. While the methodologies for cleanup for natural and
synthetic dyes are divergent, the improved recoveries of the ammonia–EDTA extraction
method are sufficient to allow for the extracted sample to be divided into two when both
natural and synthetic dyes are extracted.

2.2. Application to the Case Study: ACNA Industries Samples

This study marks a first step toward understanding the full collection of synthetic
dyes held by the Museum of Chemistry and provides insight into the naming conventions
of the ACNA, an understudied dye manufacturer. Information on ACNA dye naming
conventions provides a useful understanding that could aid further studies related to their
dyestuffs, both within the Museum of Chemistry and elsewhere. The study of these dyes
is an excellent opportunity to understand the behaviors and synthetic procedures of a
company that was active throughout the 20th century. Studying this through the lens of
a collection obtained directly from the manufacturer, such as the collection in Sapienza
University’s Museum of Chemistry, is uniquely useful for two reasons: It offers the chance
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to obtain information about dyes that were available on the market—which have the
potential to offer a synthetic dye database that can be referred to in the analysis of unknown
objects. It also provides the opportunity to study dyes that may never have been placed on
the market—which could provide insight into the internal testing methods and motivations
of the ACNA. In particular, results from dyes such as Rosso Amidonaftolo 2G and Giallo
Luce Solido 2G for which both powders and dyed fibers were analyzed provides interesting
information regarding the consistency of naming.

The samples were first studied using nondestructive Raman spectroscopy before
proceeding to extraction [8] and untargeted HPLC-HRMS analysis, presented in this pa-
per. These results were combined to obtain information regarding the identities of the
dyes studied.

Fifteen samples were taken from the collection—11 fiber samples from one card-backed
sheet (Figure 3a), and 4 powder samples from glass jars (Figure 3b: photo of a part of the
collection, where the jars are visible too). The samples were chosen after an initial visit,
during which names were recorded to allow for literary research into their commercial
names. This particular group of dyes was then chosen due to research indicating a high
likelihood that a majority of the dyes in the group are of the azo class.
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2.3. HRMS Analyses—Analytical Challenges

To pursue the scope of identification of the dye compounds presents on the museum
samples, untargeted mass analysis was performed using an Orbitrap high-resolution mass
spectrometer. The mass spectrometry results contained several peaks that were present in
all analytes and hence likely to be related to the matrix and these were therefore discounted
when analyzing the data.

Where assignments agreed with the predictions formulated from the Raman spec-
troscopy interpretations [9], it was concluded that the molecules were highly likely to
correspond to the projected molecular structures. In cases where Raman spectroscopy
was not sufficient to obtain formal predictions about the molecular structures (particularly
when there were no corresponding spectra available in the literature) but the mass analyses
were able to provide possible predictions, Raman spectroscopy was utilized as further
confirmation of possible assignments. In some cases, characterization of the specific species
was not obtained and will require additional research.

The reasons for the difficulties associated with this characterization are the lack of
databases available for the identification of synthetic dye molecules, and sometimes the
dyes come from one specific company and therefore may not have been widely used or
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indeed ever been commercially available. Further challenges with the mass spectrometry
of azoic acid dyes most likely to be present in this collection are the fact that these species
contain varying degrees of charged character, meaning that m/z ratios may refer to several
different molecular masses.

Alongside this, where databases exist, they generally include the counter-ion mass
when reporting the overall molecular mass, so possible variations in the cationic species
must be considered. A summary table (Table 1) of evidence found and/or hypothesized is
presented and a case-by-case discussion, also in connection with the Raman data discussed
in [9], immediately follows.

Table 1. A summary table of evidences found and/or hypothesized for each sample.

Sample Possible Match or Possible
Chemical Features Chemical Structure

Arancio Luce G Acid Orange 31
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Table 1. Cont.

Sample Possible Match or Possible
Chemical Features Chemical Structure

Giallo Novamina 2G Acid Yellow 25
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Table 1. Cont.

Sample Possible Match or Possible
Chemical Features Chemical Structure

SEII Azoico Acido Pag Acid Orange 7
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• Assignments of “Arancio Luce G”

Preliminary research for “Arancio Luce G” suggested a possible association of this
name to Acid Orange 10 and Food Orange 4, which have the same chemical structure
(C.I. 16230) [8,36]. Mass spectral data of the compound were fairly weak, with three unique
m/z peaks observed, all of which had relatively low intensity chromatographic peaks. The
peaks observed were for m/z 360.3131, 361.2608 and 526.0877. The highest intensity of these
peaks was observed at m/z 361.2608 and this species was therefore used to make some
possible projections (Figure 4). Projections were made considering that “Arancio Luce G”
is likely to be an azoic acid dye, and that the counter-ion is likely to be Na+ (as is usually
the case for this class). Regarding the species, which seems to be a singly charged azoic dye
based on the isotopic pattern observed, the m/z is likely to represent [M-Na]−, where M
would represent the molecular mass and be equal to 384.2506 u. When this information
was searched on chemical databases, a tentative possible assignment to Acid Orange 31
was made [37].

• Assignment of “Giallo Eliaminia RL”

Preliminary investigations into the identification of “Giallo Eliamina RL” were strongly
based on the nomenclature. Several chemical databases listed Yellow Eliamina as a syn-
onym for a variety of dyes: Direct Yellow 29, Direct Yellow 44, Direct Yellow 49, and Direct
Yellow 50. Except for Direct Yellow 29, the other molecules share some features. Specifically,
they are diazo structures with the presence of a central carbamide group.

Mass spectral data of the “Giallo Eliamina RL” powder revealed several species present
in the sample; however, a very intense peak corresponding to m/z 388.7797 at a retention
time of 2.25 min was by far the most prominent. The species seems to be a singly charged
azoic dye; the m/z is likely to represent [M-Na]−, where M would represent the molecular
mass and be equal to 411.7695u. Molecular weight searches into the projected mass were
performed but no yellow dyes were found to correspond.

• Assignment of “Giallo Italana 2G”

In the case of Giallo Italana 2G, preliminary studies were not indicative for identification.
The mass spectral data for “Giallo Italana 2G” presented three m/z species, and by

far the most intense was m/z 236.9883, which had a retention time of 3.35 min (Figure S1
in Supplementary Materials). The species, based on isotopic pattern observed, is a singly
charged azoic dye; thus, the m/z is likely to represent [M-Na]−, where M would represent
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the molecular mass and be equal to 259.9781u. Molecular weight searches into the projected
mass were performed but no yellow dyes were found to correspond. However, it is possible
to infer from the Raman spectrum [9] that the spectral template for “Giallo Italana 2G” is
likely to share structural details with Acid Orange 31.
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• Assignment of “Giallo Luce Solido 2G”

Preliminary research on both the nomenclature and Raman spectra agreed that it
was highly likely that that “Giallo Luce Solido 2G” powder was likely to be the dye Acid
Yellow 11. From the interpretation of the Raman spectrum, whilst there were some spectral
similarities between the fiber sample and the powder sample, several of the peaks did
not correspond strongly [9]. Preliminary analyses considered that this may be due to the
dyeing process, but also introduced the possibility that the fiber and powder may have
different molecular structures despite sharing the same name.

Powder: The mass spectrometry analysis of the powder sample corroborated the
prediction that the dye was Acid Yellow 11. The mass spectrometry results indicated the
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presence of a very intense peak corresponding to m/z 357.0572 between retention times
2.59–2.99 min (Figure S2). The m/z corresponds to the following species: [M-Na]-, where M
is the mass of Acid Yellow 11 and is equal to 380.0555u. The spectrum of the “Giallo Luce
Solido 2G” powder was therefore considered highly likely to be Acid Yellow 11 [38].

Fiber: For the fiber species, there is no significant peak present corresponding to the
m/z 357.0572. This agrees with the preliminary Raman data in which the spectra did not
appear to completely match with the powder spectrum despite some similarities [9]. This
indicates that the powder and fiber samples named “Giallo Luce Solido 2G” are different
molecular species despite having the same commercial names.

The fiber sample did however present a very intense chromatographic peak corre-
sponding to an m/z 417.3234 at retention time 3.88 min. From this m/z, it is possible to draw
several interpretations, but if it is considered likely that the fiber is an azoic acid (which
the similarities in the Raman spectrum to the powdered sample would point towards) and
that the counter-ion is likely to be Na+, some projections for possible masses can be put
forward: the molecule, if singly charged, is characterized by a m/z ratio likely represen-
tative of [M-Na]-, and the molecular mass would likely be to be 440.3132 u. Molecular
weight searches into the projected mass were performed but no yellow dyes were found
to correspond.

• Assignment of “Giallo Novamina 2G”

Three molecules were proposed as possible identifications of the dye “Giallo No-
vamina 2G” from preliminary research on nomenclature: Acid Yellow 61, Acid Yellow 39
and Acid Yellow 25. Whilst no reference Raman spectra were available for Acid Yellow
61 and 39 for comparison, the Raman analysis on an analytical standard of Acid Yellow
25 performed in the laboratory was found to correspond strongly to the peaks of the “Giallo
Novamina 2G” Raman spectrum.

Upon mass spectrometric analysis, an intense chromatographic peak was observed
corresponding to m/z 526.0876 at retention time 2.86 min, which is exactly as observed
for the Acid Yellow 25 analytical standard. The m/z corresponds to the following species:
[M-Na]-, where M is the mass of Acid Yellow 25 with a sodium counter-ion and is equal to
549.0774u.

The chemical structure of “Giallo Novamina 2G” is therefore understood as highly
likely to be that of Acid Yellow 25 [39].

• Assignment of “Rosso Amidonaftolo 2G”

The predictions proposed by the preliminary research on both the nomenclature of the
dye “Rosso Amidonaftolo 2G” and the comparison of the Raman spectra obtained meant
that Red 2G was predicted as a likely candidate for the identification of the molecular
structure of both the powder and fiber samples.

This identification was corroborated by the presence of an intense chromatographic
peak corresponding to the m/z 464.0233 at retention times 2.17 min for the powder
(Figure S3) and 2.24 min for the fiber, which are close to those observed for the Red 2G
standard. Furthermore, another the peak at m/z 358.9780 was observed, as reported in the
literature [40].

Both the powder and fiber samples of Rosso Amidonaftolo 2G are hence identified as
highly likely to be Red 2G [41].

• Assignment of “Tartrazina J”

The preliminary predictions for “Tartrazina J” were tartrazine (based on nomenclature;
however, significant spectral differences were observed between the Raman spectra for
these compounds) and Acid Yellow 17 (based on a very strongly similar Raman spec-
trum) [9,42].

For Acid Yellow 17, the expected m/z peak is likely to exist at m/z 251.6546, corre-
sponding to the species [M-2Na]2−, where M is the mass of Acid Yellow 17 and is equal to
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551.2888u. This peak was not present in the spectrum of Tartrazina J, and it was therefore
inferred that the dye molecule is unlikely to correspond to Acid Yellow 17.

For tartrazine, there could be significant problems in detection with mass analysis
owing to a triple charge on a very small molecule and the existence of the molecule in
several states. In trials undertaken as part of this work, even an analytical standard of
tartrazine was could not be detected in targeted analysis, so it is unlikely that it would be
possible to detect the species in untargeted analysis—which is less sensitive for specific
compounds. Alongside this, the Raman spectrum of “Tartrazina J” showed some significant
spectral peaks that did not correspond to the peaks observed in the analytical standard
of tartrazine.

However, one of the recorded m/z peaks in the literature for tartrazine is m/z 233.1,
owing to the following species: [M-3Na+H]+ [43], and this peak was present in the mass
spectrum of “Tartrazina J”, alongside another equally intense peak at m/z 228.9509 (Figure
S4). Due to problems with analyzing Tartrazine, it was not possible to conclude whether
tartrazine may have been present in the sample, but if it is present, it is possible that the
dyed fiber may contain a mixture of dyes, which would account for the extra peaks on the
Raman spectrum [9].

• Assignment of “Rosso Italana B”

Preliminary research on the nomenclature of the “Italana” dyes yielded no results.
Raman spectral comparisons with databases indicated possible correlations with structures
similar to Acid Red 26 [9]. Upon corroboration with the mass spectral data, however, this
possible attribution was found to be unlikely, as the following predictions were made based
on the only diagnostic peak that appeared on the spectra, which had an m/z of 236.9884
and a retention time of 3.36 min. If the species is a singly charged azoic dye, the m/z is
likely to represent [M-Na]−, where M would represent the molecular mass and be equal
to 259.9782 u. If the species is a doubly charged azoic dye, the m/z is likely to represent
[M-2Na]2−, where M would represent the molecular mass and be equal to 519.9564u.

Molecular weight searches into the two projected masses were performed but no red
dyes were found to correspond.

• Assignment of “Rosso Luce Solido BL” and “Rosso Italana R”

For both “Rosso Luce Solido BL” and “Rosso Italana R”, m/z peaks corresponding
to the major peaks in the chromatogram were all present in a wide range of the spectra
acquired from the whole set of the museum’s dyes and were hence not considered to be
indicative of the dye compounds present in the samples. It is possible that, upon further
analysis of the chromatograms in the laboratory, other chromatographic peaks may be
identified, with more diagnostic m/z values. For “Rosso Italana R” in particular, a very
broad peak was acquired from 1.45–2.41 min, which unfortunately includes the retention
time of an extremely intense peak at m/z 360.3130, which appears in every spectrum. It is
therefore likely that if the diagnostic peak elutes within this range that its signal may be
overwhelmed by the intensity of the m/z 360.3130 peak in the mass spectrum and therefore
not be visible. For both “Rosso Luce Solido BL” and “Rosso Italana R”, the tentative
data obtained from preliminary predictions were not adequate for making any informed
decision about the identification of dyes without a defined mass peak.

• Assignment of “Rosso Naftolo SJ”

Naphthol reds are a very common and significantly varied range of azoic acid dyes,
so the name “Rosso Naftolo SJ” is not particularly indicative for obtaining preliminary
predictions from. Unfortunately, no preliminary predictions were possible based on Raman
comparisons [9].

This meant that the interpretation of the mass spectral data was approached only
with the understanding that the dye was likely to be a species containing a naphthalene
group. For interpretation of the chromatogram, the only intense peak considered likely to
be indicative of the molecular structure of the compound was the peak recorded at a m/z
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of 200.9741 and retention time of 3.08 min. This was therefore used to make a tentative
projection for the possible mass of the molecule as follows: if the species is a singly charged
azoic dye, the m/z is likely to represent [M-Na]−, where M would represent the molecular
mass and be equal to 223.9308u; if the species is a doubly charged azoic dye, the m/z is
likely to represent [M-2Na]2−, where M would represent the molecular mass and be equal
to 447.8616u.

Molecular weight searches into the two projected masses were performed but no red
dyes were found to correspond. The authors contend that due to the likelihood that the
dye molecule contains a naphthalene group (as suggested by the name) as well as at least
one sulfonate group and one azo group (as is the case for the other dyes identified from the
sample set), it is suspected that a molecule of mass 223.9308u is unlikely to correspond as
these components have a cumulative mass > 223.9308u.

• Assignment of “Rosso Novamina 2G”

Preliminary research on the nomenclature of “Rosso Novamina 2G” found two related
azoic acid dye species—however, a historical document [44] strongly indicated that “Rosso
Novamina 2G” is likely to be Acid Orange 19 [45]. No Raman spectra were available in
the literature for the standard for spectral comparisons to be performed, and the Raman
spectrum of “Rosso Novamina 2G” was also very strongly affected by the signals of the
wool compared to the other red dyes, meaning that only very few peaks were visible.

As such, the prediction was made solely on the nomenclature for this sample and it
was predicted that if the sample corresponded to Acid Orange 19, which has a mass of
519.0535u, then the major m/z peak in the mass spectral data should correspond to the
following species: [M-Na]− = 496.0655. Indeed, an intense peak corresponding to this m/z
was observed at a retention time of 2.88 min (Figure S5).

It is hence proposed that the identification of the dye “Rosso Novamina 2G” is likely
to be Acid Orange 19.

• Assignment of “SEII Azoico Acido Pag”

For “SEII Azoico Acido Pag”, unlike the other samples, the label on the glass jar
was simply handwritten. Due to this (alongside the fact that the naming format was
very different to the others in the set), it was deemed likely that the label may have sim-
ply corresponded to an internal sample management system and not the commercial
dye nomenclature. Research on the name found no bibliographic references, and a Ra-
man spectrum of this sample was not obtained due to the spectrum being overwhelmed
by fluorescence.

This meant that the mass spectrometry data were observed without any prior knowl-
edge or corroborative data about the possible molecular structure and hence were difficult
to interpret. There were several very high-intensity m/z peaks observed in the data. A
fairly intense chromatographic peak was observed corresponding to the m/z 231.5072
associated with Red 2G at a retention time of 2.14 (as observed with the standard), as well
as intense peaks at m/z 217.01257, 253.1350, 327.0452, 355.0767 and 577.4851. The peak
at m/z 327.0452—recorded at a retention time of 2.68 min—was by far the highest peak
observed; however, all peaks were of a significant magnitude, indicating that it is possible
that the sample is a mixture. This peak showed two diagnostic fragments at m/z 170.9987
and 155.98758 (Figure 5); for this reason, taking into account the literature data [46], it was
identified as Acid Orange 7 [47].
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Figure 5. Fragmentation of peak at m/z 327.0450, 2.73 min. The two diagnostic fragments at m/z
170.9987 and 155.9875 are visible.

3. Materials and Methods
3.1. Solvents and Reagents

High-purity analytical standards of Congo Red and Red 2G were purchased from
Sigma Aldrich. A ≥ 40% purity standard of Acid Yellow 25 was also purchased from Sigma
Aldrich. Solvents, acids and bases were purchased from Sigma Aldrich and used without
further purification. Na2EDTA·2H2O was purchased from Carlo Erba while TBAB and
other salts were purchased from Sigma Aldrich.

3.2. Development of Clean Up for Synthetic Dyes: dLLME

Development of the cleanup protocol was performed on a mixed reference sample
containing 500 ppb of Acid Yellow 25, Congo Red, and Red 2G. The analytes were dissolved
to 500 ppm and diluted to 100 ppm in Millipore water and the final dilution to 500 ppb was
then performed in methanol. All experiments were repeated three times and each replicate
was analyzed twice using mass spectrometry to obtain an average.
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3.2.1. Evaluation of Disperser for Synthetic Dyes

The dLLME method was adapted from a protocol outlined by Faraji et al. [24] for the
determination of azo dyes from ice cream samples. Chloroform was used as the extracting
solvent for the tests and methanol, isopropanol, acetonitrile and acetone were all trialed
as dispersers.

The disperser trials were carried out as follows: 500 µL of 100 ppb mixed standard
was placed together in a tube. The sample was then made up to 5 mL with Millipore water,
and 150 µL previously made up 2M tetra-n-butylammonium bromide (TBAB) in water
was added as the ion pair reagent. The tube was lightly swirled to ensure homogeneity.
Quantities of 750 µL of the desired disperser and 100 µL of chloroform were then drawn
up into a syringe and injected rapidly into the aqueous phase, forming a cloudy solution.
The mixture was then vortexed for 10 s and sonicated for 10 min before undergoing 5 min
of centrifugation at 4200 rpm. The bottom organic layer was removed with a syringe and
placed in a vial where it was dried under N2 flow. The extract was reconstituted with
100 µL methanol for analysis using HPLC-MS.

3.2.2. Trial of the Complete Analytical Protocol for Synthetic Dyes

After the dLLME procedure was set up, the chosen method was paired with the initial
extraction protocol to ensure functionality of the whole protocol when joined together.
The initial extraction method was exactly as described in the literature for natural dyes in
Serafini et al. 2017 [21]. After that, the dLLME protocol was applied, employing methanol
as the disperser, as described above.

3.2.3. Analysis of Historical Textile and Powder Samples

The fiber samples were extracted using the method described above. Specifically, the
fiber sample was placed in a vial containing 4.4 mg NaCl, 0.8 mL 30% NH3 and 0.8 mL
1 mM Na2EDTA. The samples were left in the extraction mixture and covered in aluminum
foil for 2 days and left to extract at room temperature. The solution was then pipetted out.
The sample was then placed under N2 flow to facilitate the evaporation of the ammonia,
and this was performed until a neutral solution was obtained.

The neutral solution was then placed in a tube and made up to 5 mL with Millipore
water to which 150 µL 2M TBAB was added. The tube was lightly swirled to ensure
homogeneity. Quantities of 750 µL methanol and 100 µL chloroform were then drawn
up into a syringe and injected rapidly into the aqueous phase, forming a cloudy solution.
The mixture was then vortexed and sonicated for 10 min before undergoing 5 min of
centrifugation at 4200 rpm. The bottom organic layer was removed and placed in vial,
where it was dried under N2 flow.

For the powder samples, it was not necessary to perform the initial extraction step
and therefore the samples were dissolved in 5 ml water in a tube and the dLLME protocol
was then performed directly on the sample.

HPLC-HRMS was then carried out using untargeted analysis by following the instru-
mental setup reported below.

3.3. HPLC-MS Analyses
3.3.1. Targeted HPLC-MS Analyses

Recovery analysis during method development was carried out using the results from
targeted HPLC-MS. For the chromatographic analysis, a Series 200 Perkin Elmer micro-LC
system equipped with an autosampler was used. The system was coupled to a PE-Sciex
API 2000 triple quadrupole mass spectrometer equipped with a TurboIon-Spray ionization
source, operating in negative ionization mode. The columns tested were a Kinetex XB-C18
2.6 µm core–shell particle column and a Luna-C18 5 µm column, and the Luna-C18 was
chosen. The system was used in SIM. To individuate the best chromatographic conditions
for synthetic dyes, three trials were performed on the mobile phases:

i. Phase A: 0.1% formic acid in acetonitrile; Phase B: 0.1% formic acid in water;
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ii. Phase A: 5 mM ammonium acetate in acetonitrile; Phase B: 5 mM ammonium acetate
in water;

iii. Phase A: methanol; Phase B: 5 mM ammonium acetate in water.

The mobile phases chosen were methanol and 5 mM ammonium acetate in Millipore
water in a gradient elution, as shown in Table 2.

Table 2. Gradient elution for HPLC-MS analyses.

Time (min) Phase A
(MeOH)

Phase B
(5 mM Ammonium Acetate in H2O)

0.0 0% 100%
3.0 100% 0%
4.5 100% 0%
5.0 0% 100%
7.0 0% 100%

The SIM targets are listed below, in Table 3:

Table 3. Synthetic dye standard mass spectrometry targets.

Dye Exact
Mass

Parent Ion
(m/z) DP (V) FP (V) EP (V) CEP (V)

Acid Yellow 25 549.5537 526.2 −101 −140 −9 −29.66
Congo Red 696.6622 325.3 −38 −365 −9 −24.79

Red 2G 509.4200 231.5 −15 −326 −7 −22.52

Recoveries were calculated by performing peak area integrations with Sciex Ana-
lyst software, and these areas were compared to results from the original standards in
Microsoft Excel.

3.3.2. Untargeted HPLC-MS Analyses

Untargeted mass spectrometric data of the unknown museum samples were acquired
using a Thermo Fisher Scientific DionexTM UltiMateTM 3000 (RSLC) UHPLC system
equipped with an RS autosampler and coupled with a high-resolution Q-Exactive Orbitrap
mass spectrometer equipped with a heated electrospray ionization source (H-ESI).

The H-ESI source operated in negative ionization mode with tuning parameters set
at sheath gas flow rate (nitrogen) = 45 units, auxiliary gas flow rate (nitrogen) = 20 units,
spray voltage = −3.00 kV, capillary temperature = 350 ◦C, source temperature = 350 ◦C.
MS experiments were carried out in full scan–data dependent acquisition mode (Full-dds).
A full scan was conducted with a scan range between 100 and 800 m/z with a resolution
of 70,000 FWHM; automatic gain control (AGC) was 1 × 106, maximum injection time
was 100 ms. For MS/MS experiments, resolution was 17,500 FWHM, AGC was 5 × 106,
maximum injection time was 80 ms, loop count and TopN were 5, isolation window was
set to 2.0 m/z, the fixed first mass was 50 m/z. Minimum AGC target was 8 × 103 and
the intensity threshold was 1 × 106. The dissociation of molecular ions was induced in a
high-energy collision cell (HCD) by means of nitrogen; simultaneous experiments were
conducted at three different normalized collision energies: 10, 30 and 50%.

The Luna-C18 column used for the setting of the methods and the mobile phase
conditions individuated for the method development were used for analysis on histori-
cal samples.

3.4. Sampling from ACNA Collection

As mentioned in the introduction, the collection partially studied in this work comes
from the Museum of Chemistry, located within Sapienza University of Rome’s Department
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of Chemistry, which holds an extensive collection of early synthetic dyes from several differ-
ent dye companies. ACNA industry, an acronym for Azienda Coloranti Nazionali e Affini
(ACNA), was an Italian chemical company active from 1882 until 1999 [6]. The company
was extremely controversial throughout the entirety of its history. It was first founded as an
explosives factory that operated under the name Dinamitificio Barbieri and subsequently
the Italian Society of Explosive Products. The company later moved away from the produc-
tion of explosives and retooled as a colorant manufacturer after being acquired by Italgas
in 1925. The ACNA received significant investment from the fascist regime in the years
immediately following 1925, to promote Italian manufacturing industries, and its name
was once again changed, this time to the Associated National Chemistry Companies—at
which point it obtained the acronym ACNA. It was then acquired by the larger companies
IG Farben and Montecatini, who gave it its final name: Azienda Coloranti Nazionali e
Affini [48]. Under these companies, the ACNA manufactured colorants, working until 1999,
during which time their production caused extensive pollution of the surrounding areas,
inflicting severe damage to both the environment and the health of nearby residents [48].

Sampling of the ACNA Museum’s dye collection was carried out in July 2020 after a
preliminary viewing of the collection. The preliminary visit was used to take photographs
and note commercial names of dyes in the collection, which were then researched in the
subsequent months to identify possible assignments for the dyes based on the nomenclature.
Fibers (less than 1 mg) and powdered samples (about 1 mg) were then selected as the case
study for this research.

4. Conclusions

The primary aim of this work was the development and application of a novel ex-
traction strategy, based on the ammonia–EDTA protocol, adding a novel cleanup protocol
for the purification and enrichment of the analytes for the analysis of synthetic dyes from
historical and artistic matrices. As a secondary aim, the protocol developed for synthetic
dyes was applied to a real case study of historical synthetic dyes from the Museum of
Chemistry, Sapienza University to verify the effectiveness of this protocol in historical
sample analyses. This research adapted a methodology from the analytical science of food
and successfully developed a protocol well-suited to cultural heritage. For the dLLME
protocol, the best results were obtained with the use of methanol as the disperser solvent
with chloroform as the extracting solvent.

One of the main benefits of this application is that it allows for synthetic dyes to be
extracted alongside natural dyes in a single extraction step, with the ammonia extraction
protocol, and the best-suited dLLME protocol can be employed to purify the analytes. In
this way, both types of dye now only require the acquisition of a single sample instead of
two, minimizing the destructiveness of analysis.

For application to synthetic dye samples from the ACNA industrial collection, the
application of the novel analytical protocol for the extraction and preconcentration of
synthetic dyes was effective for this research, and it can therefore be considered a signif-
icant contribution to the study of synthetically dyed artefacts. Furthermore, the results
obtained confirmed the importance of scientific study in improving understanding of nam-
ing conventions in the context of the synthetic dye collections. In ACNA dyes, particularly
interesting was the case of “Giallo Italana 2G”, where it appears that, despite being labelled
with the same name and being from the same company, the dyed fiber and powdered
sample are likely to have different chemical structures. In contrast, in “Rosso Amidonaftolo
2G”, the chemical structure was consistent between the powder sample and the dyed
wool. This is a strong exemplification of the complexity of the study of synthetic dye
collections—where, even within a single company, naming conventions can vary widely.

The case study also perfectly illustrates the benefits and necessity of a multi-analytical
approach to the analysis of unknown artefacts. In some cases, Raman spectroscopy was
highly indicative of the likely assignment of the structure, but when compared with
the mass spectral results, the preliminary assignment was shown to be incorrect. This
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was illustrated with the “Tartrazina J” sample, which appeared strongly similar to the
spectrum for Acid Yellow 17, but the expected m/z was not observed in the mass spectrum.
Contrastingly, for some samples, the indicative nature of the Raman meant that mass
spectra could be rapidly interpreted to corroborate the data, for example, with “Rosso
Amidonaftolo 2G”. In other cases, such as for “Arancio Luce G”, the preliminary data were
not indicative of a particular compound but could be used to corroborate the data obtained
from the mass spectrum.

Moreover, the preliminary investigations using Raman analyses once again demon-
strated the importance of a multi-analytical approach, which meant that several samples
from the collection could be analyzed with only a very small textile sample.

It is also hoped that further studies will be conducted in the future, and hopefully
provide more indicative data for the unidentified samples, thus implementing the database
of such dyes.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28145331/s1, Figure S1: Diagnostic peak at 236.9883
from Giallo Italana 2G; Figure S2: Chromatograms of Giallo luce solido 2G, powder, with the
diagnostic peak at 357.0572 at 2.59–2.99 min; Figure S3: Diagnostic peak at 464.0233 from Rosso
Amidonaftolo-powder. Figure S4. Chromatograms of Tartrazine J, fiber; Figure S5: Chromatograms
of Rosso Novamina 2G, fiber, with the diagnostic peak at m/z 496.0655, 2.88 min.
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