
Computational and Applied Mathematics (2022) 41:19
https://doi.org/10.1007/s40314-021-01716-y

Efficient implementation of characteristic-based schemes on
unstructured triangular grids

S. Cacace1 · R. Ferretti1

Received: 14 July 2021 / Revised: 10 November 2021 / Accepted: 25 November 2021 /
Published online: 18 December 2021
© The Author(s) under exclusive licence to Sociedade Brasileira de Matemática Aplicada e Computacional 2021

Abstract
Using characteristics to treat advection terms in time-dependent PDEs leads to a class of
schemes, e.g., semi-Lagrangian and Lagrange–Galerkin schemes, which preserve stability
under large Courant numbers, and may therefore be appealing in many practical situations.
Unfortunately, the need of locating the feet of characteristics may cause a serious drop of
efficiency in the case of unstructured space grids, and thus prevent the use of large time-step
schemes on complex geometries. In this paper, we perform an in-depth analysis of the main
recipes available for characteristic location, and propose a technique to improve the efficiency
of this phase, using additional information related to the advecting vector field. This results
in a clear improvement of execution times in the unstructured case, thus extending the range
of applicability of large time-step schemes.

Keywords Large time-step schemes · Unstructured grids · Point location · Computational
complexity

Mathematics Subject Classification 65-04 · 65D18 · 65M06 · 65M25

1 Introduction

Born in the 50s in the framework of environmental fluid dynamics and Numerical Weather
Prediction, large time-step, characteristic-based schemes have become in recent years a useful
tool for various PDEmodels, mainly of hyperbolic type. While this class of schemes collects
various techniques (for example semi-Lagrangian Falcone and Ferretti 2013, Lagrange–
Galerkin Douglas and Russell 1982; Pironneau 1982, ELLAM Russell and Celia 2002)
having in common the use of the method of characteristics to treat advection terms, to fix

Communicated by Raphaèle Herbin.

B R. Ferretti
ferretti@mat.uniroma3.it

S. Cacace
cacace@mat.uniroma3.it

1 Dipartimento di Matematica e Fisica, Università Roma Tre, Largo S. Leonardo Murialdo, 1, Rome, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40314-021-01716-y&domain=pdf
http://orcid.org/0000-0002-2270-4629

19 Page 2 of 24 S. Cacace, R. Ferretti

ideas we will refer in what follows to the case of semi-Lagrangian (SL) schemes, which
probably employ this strategy in its simplest form. We consider, as a model problem, the
simple variable-coefficient advection equation with Dirichlet boundary conditions,

⎧
⎪⎨

⎪⎩

ut + f (x, t) · ∇u = 0 (x, t) ∈ � × R
+,

u(x, t) = γ (x, t) (x, t) ∈ �in(t) × R
+,

u(x, 0) = u0(x) x ∈ �,

(1)

in which� ⊂ R
d , f : �×R

+ → R
d , γ : ∂�×R

+ → R, u0 : � → R,�in(t) is the portion
of the boundary ∂�where f (x, t) points inwards. The solution of (1) may be represented via
the well-known formula of characteristics, which will be concisely recalled here. We start by
defining X(x, t; s) as the solution at time s of the ordinary differential equation

{
d
ds X(x, t; s) = f (X(x, t; s), s) s ∈ R,

X(x, t; t) = x,

that is, the trajectory moving with velocity f (X , s) and passing through the point x at time
t . If, for some time s, the trajectory X(x, t; s) falls outside �, then we define

s̄(x, t) = sup{s ≤ t : X(x, t; s) /∈ �},
that is, the last time at which X(x, t; s) hits the boundary of �. Then, the solution u has the
representation

u(x, t) =
{
u0(X(x, t; 0)) s̄(x, t) < 0

γ (X(x, t; s̄(x, t)), s̄(x, t)) s̄(x, t) ≥ 0.
(2)

We assume that f is C1 with bounded derivatives on � × R
+, so that:

‖ f (x1, t1) − f (x2, t2)‖ ≤ Lx‖x1 − x2‖ + Lt‖t1 − t2‖,
with Lx , Lt denoting the two Lipschitz constants associated to, respectively, space and time
increments, and ‖ · ‖ denoting the Euclidean norm. Clearly, such a framework is ultimately
directed towards nonlinear equations in which the advection term has a smooth space and
time dependence, at least in a large majority of the computational domain.

Once a time grid tn = n�t has been set, a SL discretization of (1) uses the representation
formula (2) written on a single time step, i.e.,

u(x, tn+1) =
{
u(X(x, tn+1; tn), tn) s̄(x, tn+1) < tn
γ (X(x, tn+1; s̄(x, tn+1)), s̄(x, tn+1)) s̄(x, tn+1) ≥ tn .

To turn this relationship into a computable scheme, we first build a space grid with space
scale �x and with nodes in the set V = {xi }i=1,...,N . Then, the foot of the characteristic
X(xi , tn+1; tn) is replaced by a numerical (e.g., one-step) approximation X�(xi , tn+1; tn),
and the value u(·, tn) by an interpolation I [V n](·), constructed using the vector V n =
(vn1 · · · vnN) of the node values at time tn , with vni corresponding to the i-th node xi and
the n-th time step tn . Here and in what follows, N = |V| will denote the total number of
nodes.

Following Falcone and Ferretti (2013), we will also need an estimate of the time s̄ for the
discretized representation formula. For example, if � is defined by the inequality g(x) < 0

123

Efficient implementation of characteristic-based schemes... Page 3 of 24 19

for a suitable function g : Rd → R, this estimate might be obtained as the solution s̄n+1
i of

the equation

g
(
X�(xi , tn+1; s)

) = 0, (3)

to be solved every time X�(xi , tn+1; tn) /∈ � (if �t is not too large, we expect that only one
solution exists). The scheme is therefore in the form

vn+1
i =

{
I [V n] (X�(xi , tn+1; tn)

)
X�(xi , tn+1; tn) ∈ �

γ
(
X�(xi , tn+1; s̄n+1

i)), s̄n+1
i

)
X�(xi , tn+1; tn) /∈ �.

(4)

In (4), the discrete approximation X�(xi , tn+1; tn) of X(xi , tn+1; tn) might be computed in
the simplest case by applying, backward in time, the explicit Euler scheme:

X�(xi , tn+1; tn) = xi − �t f (xi , tn+1). (5)

Then, s̄n+1
i is obtained by reducing �t so as to bring X�(xi , tn+1; s̄n+1

i) on the boundary:
in the Euler scheme (5) this amounts to solving, with respect to s, the equation

g
(
xi − (tn+1 − s) f (xi , tn+1)

) = 0. (6)

A different approach to boundary conditions is to assign a value to the point X(xi , tn+1; tn),
whenever it falls outside �, by extrapolation (see Bonaventura et al. 2021). This approach
requires to build an additional mesh to obtain extrapolated values, and will not be pursued
here.

Concerning the interpolation, this step is typically accomplished in local form, using the
values of the numerical solution at nodes close to X�(xi , tn+1; tn). Selecting the relevant
values requires an O(1) cost on a structured array of nodes, and therefore is not a critical
issue from the viewpoint of complexity. On the other hand, when working on unstructured
(typically, but not necessarily, triangular) grids, the interpolation is usually computed via
Lagrange finite elements: interpolating at a given point requires first select the element
containing the point, and then use the Lagrange basis associated to this specific triangle. In
comparisonwith the structured case, in the unstructured case the former phase (point location)
represents a clear bottleneck, which either prevents the use of large time-step schemes, or
causes a substantial drop in their efficiency. In fact, as we will show in the last section, the
point location phase covers a significant part of the total CPU time.

Despite this difficulty, a certain amount of literature has been devoted to unstructured
implementations of characteristic-based schemes; in most cases, however, we found that an
in-depth discussion of the efficiency issues is eluded. In other cases, practical recipes are
provided: the two typical techniques used are on one hand the quadtree search (see Giraldo
1998, 2000), on the other the tracking of characteristics via substepping, which requires in
general tomove from one element to its neighbour, thusmaking the search easier (see Restelli
et al. (2006) for the case of a triangular mesh, Boscheri et al. (2013; 2020) for a Voronoi
mesh). We will briefly review the ideas behind these techniques in the next section.

To the authors’ knowledge, the optimal complexity of known general-purpose point loca-
tion algorithms is O(log N), where N is the number of grid nodes. In this paper, we will
show that this complexity may be brought to O(1), by using the information related to
the specific problem under consideration, that is, moving from a general-purpose algo-
rithm to an algorithm tuned on the case of characteristics, at the price of introducing some
additional data structures related to the mesh. A first motivation for this study is to apply effi-
cient semi-Lagrangian techniques to Navier–Stokes equations on non-orthogonal geometries
(Bonaventura et al. 2020).

123

19 Page 4 of 24 S. Cacace, R. Ferretti

The paper is structured as follows. In Sect. 2, we review the two main techniques to locate
a point in an unstructured triangulation, and study their computational complexity. In Sect. 3,
we study in detail some possibilities to improve the point location algorithms. Last, in Sects. 4
and 5 we present a numerical validation for the algorithm and draw some conclusions.

2 Locating a point on a triangular grid: some basic facts

Consider a triangulation of the set � in the form T = ⋃
k Tk , where each simplex Tk is

called an element. We assume that this triangulation satisfy the usual requirements of the
finite element setting, in particular, that it does not contain “hanging nodes”, and that the
interior sets of the elements do not intersect one another. In what follows, we will identify �

and T , that is, we will neglect the possible inaccuracies in the reproduction of the boundary
∂�, whenever � is not a polygonal set itself. We start by stating formally the point location
problem:
(PL) Given a point x , a set � ⊂ R

d and a covering triangulation T = ⋃
k Tk , then:

1. If x ∈ T , find the index k such that x ∈ Tk ;
2. If x /∈ T , return a suitable flag.

Our interest here is to solve efficiently this problem for the whole set of points
X�(xi , tn+1; tn). The case 1. allows one to find the element in which local interpolation
should be performed, while case 2. indicates the need to enforce boundary conditions via
(3).

In this section, we briefly review two major approaches to point location on triangula-
tions, namely the quadtree search and the barycentric walk search, including an experimental
analysis of their computational complexities. To fix ideas, we will mostly refer to the case
d = 2 (i.e., the simplices Tk are triangles), and discuss, when necessary, the generalization
to higher dimensions.

2.1 Quadtree algorithm

As far as the authors know, the first appearance of this algorithm dates back to the 70s (Finkel
and Bentley 1974). The algorithm is based on an auxiliary data structure of quadtree type, i.e.,
a tree where all nodes but the leaves have precisely four children. Each node (also termed as a
quad) corresponds to a rectangle, starting with the quad associated to the root and containing
the whole triangulation, and each successive level divides the quad into four. Once fixed
an integer q ≥ 2, the subdivision is stopped as soon as one of the following conditions is
satisfied (see Fig. 1):

(a) The quad intersects a number nt of triangles such that 1 ≤ nt ≤ q , and contains no
vertex;

(b) The quad contains exactly one vertex, regardless of the number of triangles nv it joins;
(c) The quad does not intersect the triangulation.

A leaf of the tree is generated at the final level of the subdivision, and the list of triangles
intersecting the final quad is associated with the leaf. A point location requires to visit the
tree: once found the leaf containing the point, the location of the point in the triangulation is
completed with a number O(max(q, nv)) of operations. The tree is unbalanced in general;
however, for a regular Delaunay triangulation we can reasonably assume that the average

123

Efficient implementation of characteristic-based schemes... Page 5 of 24 19

Fig. 1 Quadtree partition associated with an unstructured triangulation of � =
[
− 1

2 , 1
2

]2
, with q = 3

complexity for the visit of the tree (and, therefore, for one point location) isO(log N), where
N is the number of grid nodes, while the complexity of the checks to be done at the leaves
is constant. The complexity of a single point location takes then the form

O
(
CQ
1 + CQ

2 log N
)

.

In principle, the complexity of the visit should depend on q; however, a decrease of q causes
at the same time a higher depth of the quadtree and a shorter list of elements to be checked
at a leaf, and vice versa for an increase of q (for example, in the grid of Fig. 1, the relatively
low value of q = 3 causes a tree depth of ten levels with only 218 elements). Except for
the lowest values of q , which may lead to an extremely deep tree, the two effects tend to
compensate, as shown by the following numerical test.
Quadtree: numerical example. We show here an experimental assessment of the perfor-
mance of quadtree search. In the first plots (Fig. 2), we consider meshes of size N ranging
from about 105 to about 1.7 · 106. In the left plot, we compare the depth of the tree obtained
for different values of q: the plot shows a clear saturation effect, and for q ≥ 7 the depth
becomes constant for all meshes. This effect might be explained by the fact that, in a regu-
lar Delaunay mesh, this is the typical maximum number of triangles joined at a node, this
meaning that leaves of both types (a) and (b) contain typically a similar number of triangles
(no more than q). Then, the tree is likely to be more balanced, and at the increase of q we
don’t expect any improvement in the depth of the tree.

In the right plot, we compare the search time for a set of N random query points (the same
size of the mesh), obtained with different values of q; here, it is clear that this parameter has
a small effect, if any at all, on the execution times. From now on, we will choose q = 7 in
all the tests.

123

19 Page 6 of 24 S. Cacace, R. Ferretti

Fig. 2 Depth of the quadtree versus q (left) and search times versus q (right), for 105 � N � 1.7 · 106

Fig. 3 Execution times for the quadtree search on the whole mesh, compared with N and N log N curves, for
105 ≤ N ≤ 5 · 106

Next, we report in Fig. 3 the search times for N random query points, with mesh size
N ranging from about 105 to about 5 · 106, compared to both N and N log N orders. As
we are performing N searches, each one of the expected complexityO(log N), the expected
order for the total CPU time is O(N log N). In practice, while this asymptotic behaviour is
confirmed, the intermediate scenario can be somewhat less predictable. For example, Fig. 3
shows an almost linear behavior even for a relatively large number of nodes (about 5 · 105).
This occurs because, under the subdivision rules described above, the resulting, unbalanced
quadtree structure reaches its maximum depth only in a few regions, compared to the whole
mesh (see again Fig. 1).

Note that, even if the log N term might seem irrelevant in terms of order of complexity,
in the case of a large number of elements it can increase multiple times the global execution
interval, as we will show in the numerical tests. Note also that this complexity is retained
by the three-dimensional version, based on a tree structure in which all internal nodes have
eight children (the so-called octree).

123

Efficient implementation of characteristic-based schemes... Page 7 of 24 19

2.2 Barycentric walk

Among the various algorithms which locate a point by stepping along the elements of the
triangulation, we review here the so-called barycentric walk, which is probably the simplest
one – complexity issues are in all cases similar for all the algorithms of this class (seeDevillers
et al. 2001 for an extensive review). In this algorithm, in order to locate the point x , we start
from a given element of the triangulation and change element on the basis of the barycentric
coordinates of x with respect to the current element, as shown in Fig. 4. Given the nodes
x1, x2 and x3 of the element T (with xi = (ξi , ηi)), we write x = (ξ, η) by means of the
barycentric coordinates θ1, θ2, θ3 as

x = θ1x1 + θ2x2 + θ3x3,

with the θi given by

⎧
⎪⎨

⎪⎩

θ1 = (η2−η3)(ξ−ξ3)+(ξ3−ξ2)(η−η3)
(η2−η3)(ξ1−ξ3)+(ξ3−ξ2)(η1−η3)

θ2 = (η3−η1)(ξ−ξ3)+(ξ1−ξ3)(η−η3)
(η2−η3)(ξ1−ξ3)+(ξ3−ξ2)(η1−η3)

θ3 = 1 − θ1 − θ2

(7)

and we repeat the following steps:

(a) if all the barycentric coordinates are nonnegative, then x ∈ T and the point location is
complete;

(b) if there exists (at least) one negative coordinate, we look for the node associated with the
negative coordinate of largest magnitude. Then:

(i) If there exists a triangle adjacent to the opposite side, change element passing to
this triangle, and repeat the computation of the barycentric coordinates on the new
element;

(ii) If no triangle is adjacent to the opposite side, mark the point x as “out of the trian-
gulation”.

For example, in the case shown in Fig. 4, the only negative coordinate is θ1, so that we
change element from T to the triangle having in common with T the x2x3 side, if this triangle
exists; otherwise, we consider x as an external point (see Sect. 3 for implementation details).

Note that, strictly speaking, case (b.i i) is treated in inexact form. On a general (e.g,
nonconvex) triangulation, even if x ∈ T , the barycentric walk might eventually fall outside
T at an intermediate step. However, on the Delaunay triangulation of a sufficiently regular
set �, and if the point x is not “too far” from T (which is definitely the case for the feet of
characteristics X�), we can reasonably rule out this situation.

Remark 1 The point location ends as soon as we are in an element where all the barycentric
coordinates are nonnegative. The finite element-type interpolation on this last element can
be immediately computed in terms of these parameters, which are invariant with respect to
affine transformations of the reference element. For example, in the P1 case, we have

I [V](x) = θ1v1 + θ2v2 + θ3v3.

Note also that, whichever algorithm is used for locating the feet of characteristics, the interpo-
lation phase requires to compute the barycentric coordinates to interpolate. Therefore, inwhat
follows, the comparison among the various recipes will always include this computation.

123

19 Page 8 of 24 S. Cacace, R. Ferretti

Fig. 4 Change of element on the
basis of barycentric coordinates

Concerning the complexity, each change of element has a constant cost, and we can
assume that, on a regular Delaunay mesh, the number of elements visited during a walk is
asymptotically proportional to its length (this is not necessarily true on graded or anisotropic
meshes). Therefore, if we want to locate a query point Q starting the search from a point P
(i.e., from a triangle containing this point), the number of walk steps is

O
(
‖Q − P‖√N

)
, (8)

where
√
N is inversely proportional to the space scale of the triangulation (in higher dimen-

sions, this term should be replaced by N 1/d). The location of Q has therefore a complexity
of the order of

O
(
CB
1 + CB

2 ‖Q − P‖√N
)

, (9)

in which the constant term accounts for operations which cannot be avoided even in case of
a very small distance ‖Q− P‖: at least one computation of the barycentric coordinates, and,
possibly, some change of element. In particular, we observe that if P is fixed, the complexity
will be heavier than the quadtree search (

√
N versus log N). We validate our complexity

analysis with the following numerical test.
Barycentric walk: numerical example.We first show, on a rough mesh of N = 250 nodes,
the typical barycentric walk for the location of a query point starting from a mesh node,
see Fig. 5. The initial triangle is randomly chosen from those containing the starting node.
Note that the barycentric walk is forced, by construction, to perform a large number of steps
around those nodes that lie on (or are close to) the line connecting the start and endpoints.
This effect might locally increase the number of steps of the walk, although, as we will soon
show, the average number retains a linear dependence on the distance.

Now,weprovide an experimental assessment of the complexity of the algorithm in terms of
the distance between the start point and the query point.We choose a fixedmesh of N ∼ 4·105
nodes, and we compute the total CPU time to locate, for each node, a corresponding query
point at given distance. The results are reported in Fig. 6. For small distances we clearly
observe a plateau in the search times, corresponding to the constant termCB

1 in (9), while the
behaviour is linear, as expected, when the distance increases (compare with the reference
line for the linear increase). To show that the conclusions of this work are applicable to higher
space dimensions, this test has also been performedwith a three-dimensional tetrahedral grid,
obtaining the results shown in Fig. 7, which completely parallel the 2-d case.

123

Efficient implementation of characteristic-based schemes... Page 9 of 24 19

Fig. 5 Locating a point via
barycentric walk (gray triangles)
on a Delaunay triangulation
(color figure online)

Fig. 6 Execution times (left) and averaged walk steps (right) for the barycentric walk search on the whole
mesh (d = 2, N ∼ 4 · 105), versus distance between start and endpoints, compared with the line of linear
increase

Remark 2 In this example, the space scale of the triangulation is estimated by 1/
√
N ∼

1.5 ·10−3, while we observe that CPU time begins to grow already at a smaller distance. This
reflects the fact that the actual intersection between the trajectory and each element amounts
in general to a fraction of the space scale, as clearly shown by Fig. 5. The behavior of the
averaged walk steps is similar, in particular, we observe a value of about 1.5 for the plateau.
Here, the random choice of the initial triangle of the walk at each mesh node implies on
average some change of element even at a very small distance.

2.3 Quadtree and barycentric walk complexity in space

In this section, we briefly compare the quadtree and the barycentric walk in terms of space
complexity, i.e., of memory occupation. Recall that we have heuristically assumed that the
number of elements is O(N), and that the average depth of the quadtree is O(log N). Both

123

19 Page 10 of 24 S. Cacace, R. Ferretti

Fig. 7 Execution times (left) and averaged walk steps (right) for the barycentric walk search on the whole
mesh (d = 3, N ∼ 4 · 105), versus distance between start and endpoints, compared with the line of linear
increase

point location approaches use the mesh information, namely the list of point coordinates of
each grid node and the connectivity, in the form of a list of triplets of vertex indices, ordered
as they appear in the node list. In addition, the barycentric walk requires, for each triangle,
the list of triangle neighbours to move across the elements. This list consists in triplets of
triangle indices ordered as they appear in the connectivity list. On the other hand, the quadtree
structure is more complicate. Starting from the root, each node of the tree must record the
four coordinates (for the left/bottom and top/right vertices) of its quad, and four pointers to
its children, while the leaves contain the indices of mesh nodes and triangles intersected by
their quads. According to the rules discussed in Sect. 2.1, the construction stops if a quad
contains at most one mesh node, regardless of the number of incident triangles, and at most
q triangles if it contains no mesh nodes. This implies that the total number of vertex indices
in the leaves is about N (some duplicates can be found if a mesh node stands on the side or
is exactly one vertex of a quad), whereas the total number of triangle indices is much greater
than the number of triangles, since a triangle typically overlaps with several quads. Note that,
for point location, only the triangle indices are needed. Hence, in the following computation,
we drop the list of vertex indices after the quadtree construction.

To estimate the order of memory occupation for the quadtree, we note that starting from
the root, each successive level has four times the number of quads of the previous. The total
memory occupation is proportional to the total number of quads, i.e.,

log N∑

k=0

4k = O(N),

as it can be easily seen, for example, via comparison with an integral. On the other hand, the
barycentric walk requires to store the list of neighbouring elements for each triangle, which
results again in a linear memory occupation.

The following numerical test validates the expected O(N) space complexity in terms of
storage for the corresponding data structures.
Storage for quadtree and barycentric walk: numerical example.We report in Fig. 8, for
meshes of size 105 � N � 2.5 · 106, the storage in Mbytes corresponding to the two data
structures, including for both the loaddue to themesh (vertices plus triangles). The experiment
confirms the O(N) space complexity for both approaches. Nevertheless, we found that the
number of tree nodes is about 2N , while the number of triangle indices in the leaves is about

123

Efficient implementation of characteristic-based schemes... Page 11 of 24 19

Fig. 8 Memory storage (Mbytes) required for quadtree (black circles) and barycentric walk (crosses), for
105 � N � 2.5 · 106 (color figure online)

9N , and this results in a gain factor about 2.5 for the barycentric walk. For completeness, we
remark the code has run on a 64bit architecture, in which the storage for integers, doubles
and pointers amounts, respectively, to 4, 8 and 8 bytes each.

3 Efficient initializations for the barycentric walk search

In this section, we present the main contributions of the paper. In particular, we propose two
new strategies for the initialization of the barycentric walk search, adapted to the case of
characteristics tracking for SL schemes. We show that these strategies are a key ingredient
to obtain an O(1) complexity for the location of a point on the grid, as compared to the
O(

√
N) complexity of the standard barycentric walk and the O(log N) complexity of the

quadtree search.Thismakes it convenient to replace the quadtree algorithm,which ismemory-
consuming and complex to code, with an easier and smarter procedure, which only requires
some additional memory to record the initial elements for the barycentric walks associated
with the mesh nodes. Note that, in view of the results shown in Fig. 7, it will be reasonable
to extend the conclusions of this analysis to higher dimensions, in particular d = 3. Finally,
we provide some implementation details, and also pseudo-codes for both the proposed point
location algorithm and the basic SL scheme for advection equations.

To fix ideas, we consider a regular Delaunay triangulation with N nodes and space scale
�x ∝ 1/

√
N , and use Euler tracking of characteristics (5), that we recall here for the reader’s

convenience:

X�(xi , tn+1; tn) = xi − �t f (xi , tn+1).

123

19 Page 12 of 24 S. Cacace, R. Ferretti

In this setting, the complexity (9) for the barycentric walk algorithm reads

O
(

CB
1 + CB

2
‖X�(xi , tn+1; tn) − Xi‖

�x

)

,

where X� is the query point and Xi is a starting point (or the corresponding starting element)
related to the node xi from which the characteristic originates. Now, we introduce different
choices for Xi , suitable to obtain a point location with a complexity independent of the grid
size.
Strategy (BWa): follow the characteristic. We set Xi = xi , i.e., we start from an element
neighbouring xi . This is maybe the simplest and most natural choice, corresponding to track
all the characteristic starting from a fixed element. As discussed in the introductory overview,
this technique has already been applied to SL schemes, for example, in Restelli et al. (2006),
Boscheri et al. (2013), Boscheri (2020), coupled with a substepping along the characteristic.
With this choice,

‖X�(xi , tn+1; tn) − xi‖ = �t‖ f (xi , tn+1)‖,
so that the number of steps is of the order of the local Courant number, and a single element
search has, therefore, a complexity of

O
(

CB
1 + CB

2
‖ f (xi , tn+1)‖�t

�x

)

,

that is, asymptotically constant under linear �t/�x relationship. Note that, if one works
at large Courant numbers in order to increase efficiency of the scheme, the element search
becomes in turn more complex. Moreover, complexity is no longer asymptotically constant
under nonlinear refinements in which �x = o(�t).
Strategy (BWb): look at the previous time step. We set Xi = X� (xi , tn; tn−1), i.e., we
start from the element containing the foot of the characteristic at the previous time step (it
has already been computed by the scheme (4)). In this case,

∥
∥X�(xi , tn+1; tn) − X�(xi , tn; tn−1)

∥
∥ = �t‖ f (xi , tn+1) − f (xi , tn)‖

≤ Lt�t2,

and the location of the foot of characteristics has therefore a complexity of

O
(

CB
1 + CB

2 Lt
�t2

�x

)

,

inwhich, since Lt is a global Lipschitz constant, we are bounding the computational cost from
above. In this case, the complexity is asymptotically constant provided �t = O

(
�x1/2

)
.

On the other hand, under a linear refinement, it tends to coincide with the complexity of a
single computation of the barycentric coordinates: in other terms, the event of a change of
element becomes more and more unlikely. In particular, regions of the domain in which the
advecting vector field has slow changes (or tends towards a regime state) require only minor
adjustments from one time step to the next. In the limit case of an advection term constant
in time, no change of element is necessary.
Note that this initialization is constructed independently for each node, and hence the location
of the points X�(xi , tn+1; tn) can be performed in parallel w.r.t. i . Since it requires the same
sequence of operations for each node (except for a possibly different length of the walk), the
resulting algorithm might be particularly convenient on a SIMD architecture.

123

Efficient implementation of characteristic-based schemes... Page 13 of 24 19

Strategy (BWc): look at the neighbour. We set Xi = X� (xk, tn+1; tn), i.e., the walk
algorithm is initialized with the element containing the foot of the characteristic at the same
time step, but at a node xk adjacent to xi . With this choice,

‖X�(xi , tn+1; tn) − X�(xi , tn+1; tn)‖ = ‖xi − xk − �t(f (xi , tn+1) − f (xk, tn+1))‖
≤ (1 + Lx�t)�x .

Taking into account the fixed complexity terms, the point location has therefore a cost of

O
(
(CB

1 + CB
2) + CB

2 Lx�t
)

.

Again, we obtain an asymptotically constant complexity, but it appears to have a less critical
dependence (if any dependence at all) on the �t/�x relationship, and in particular to be
applicable when �x = o(�t). However, opposite to what happens in the previous case
(BWb), even with stationary advection terms, we expect that a change of element is needed
in general, and this causes an increase of the constant term.

This strategy clearly requires that the nodes are put in a sequence where all nodes but the
first one have a neighbour for which the final element has already been computed. In practice,
this may be accomplished by constructing a spanning tree of the grid, once and for all after
the grid construction. Note that, with respect to the previous strategy, this technique is more
complicate to set in parallel form. Parallelization should be performed on successive levels
of the spanning tree, by computing in parallel all the nodes having parents at the previous
level, and its efficiency is clearly related to the depth of the spanning tree, and ultimately to
the mesh size.

Note also that, in SL schemes (see, e.g., the discussion of this point in Ferretti andMehren-
berger 2020), it is usually required for stability reasons that characteristics passing through
neighbouring nodes do not cross. In practice, X�(xi , tn+1; tn) and X�(xk, tn+1; tn) must
always have a positive distance, so that, using (5) and the reverse triangular inequality,

‖X�(xi , tn+1; tn) − X�(xk, tn+1; tn)‖ ≥ ‖xi − xk‖ − �t‖ f (xi , tn+1) − f (xk, tn+1)‖
≥ (1 − �t Lx)‖xi − xk‖ > 0.

This leads to the well-known condition

Lx�t < 1,

and, as a consequence,

‖X�(xi , tn+1; tn) − X�(xk, tn+1; tn)‖ ≤ 2�x, (10)

which also implies a uniform bound w.r.t. �x on the complexity.

Remark 3 For an actual implementation, all the three initialization strategies (BWa), (BWb)
and (BWc) presented above require some additional data structures with respect to the stan-
dard barycentric walk. More precisely, we need a list of N integers for storing the indices of
all the triangles, one for each vertex of the mesh, from which to start the barycentric walks.
Furthermore, strategy (BWc) also requires the spanning tree for ordering the grid nodes.
This results in another list of N integers, storing for each node the index of its parent in the
spanning tree. In the left plot of Fig. 9 we report, for meshes of size 105 � N � 2.5 · 106,
the storage in Mbytes corresponding to the different strategies (clearly the same for strate-
gies (BWa) and (BWb)), including the mesh data and the neighbour list for the standard
barycentric walk. Finally, the right plot reports the storage improvement, showing that the
initialization strategies require less than half the memory required by the quadtree location.

123

19 Page 14 of 24 S. Cacace, R. Ferretti

Fig. 9 Memory storage (Mbytes) required by the initialization strategies for the barycentric walk (left) and
improvement w.r.t. storage for the quadtree, for 105 � N � 2.5 · 106. Strategy (BWa): crosses, strategy
(BWb): white squares, strategy (BWc): black squares (color figure online)

We now provide some implementation details and a pseudo-code for our barycentric walk
algorithm, according to the initialization strategy chosen. We consider, as follows, a suitable
data structure containing all the relevant information for the triangulation. We recall that
V = {xi }, for i = 1, . . . , N , is the list of point coordinates of each node. We denote by T
the list of triangles, namely the list of vertex indices T j = (i1, i2, i3) ∈ {1, . . . , N }3 defining
the triangle with vertices xi1 , xi2 , xi3 , for j = 1, . . . , Nt , where Nt is the total number of
triangles. Moverover, we denote by N the list of triangle neighbours, namely the list of
triangle indices N j = (j1, j2, j3) ∈ {1, . . . , Nt }3 corresponding to the three neighbours
T j1 , T j2 , T j3 of T j , for j = 1, . . . , Nt . We adopt the standard convention for which the index
jk corresponds to the neighbouring triangle of T j sharing the edge opposite to the vertex with
index ik , for k = 1, 2, 3, and we set jk = 0 if T j is a boundary element and the corresponding
k-th neighbour is missing. Furthermore, we denote by T 0 a list of triangle indices associated
to the nodes, so that T 0

i ∈ {1, . . . , Nt }, for i = 1, . . . , N , identifies the initial triangle for
the barycentric walk which tracks the characteristic originating from the node xi . We always
initialize T 0 assigning to each node xi a random triangle among those having xi as a vertex.
We remark that to implement the initialization strategy (BWc), we need a root node for the
spanning tree of the grid. For simplicity, we assume that V is already ordered according
to the spanning tree, so that x1 is the root node, followed by its first neighbouring nodes,
and so on recursively. Then, we denote by P the list of indices of parent nodes, so that
Pi ∈ {1, . . . , N }, for i = 1, . . . , N , identifies the parent node of xi . In particular, the root
node is the only one satisfying P1 = 1. Finally, given the dynamics f , we can build the list
Q = {qi }i=1,...,N of query points for the barycentric walks, tracking the characteristics with
a suitable solver for ordinary differential equations (e.g., qi = xi − �t f (xi , tn+1) for the
Euler scheme at time tn+1). The procedure is implemented as a pseudo-code in Algorithm 1,
according to the initialization strategy chosen ((BWa), (BWb) or (BWc), corresponding to
σ = a, b, c). The function PointLocationBW returns the indices of the final elements
for the corresponding walks, the related barycentric coordinates of the query points, and the
type of the final elements (‘internal’ if the element encloses the query point, ‘boundary’ if
the walk stopped at the boundary of the domain).

We remark that the choice of the initialization strategy affects only a few lines of code.
More precisely, for strategies (BWa) and (BWb), we just read in line 4 the initial element
of node xi from T 0

i , while for strategy (BWc) we refer to the element T 0
Pi
, according to

123

Efficient implementation of characteristic-based schemes... Page 15 of 24 19

Algorithm 1 Function PointLocationBW

1: Given V , T , N , T 0, P , Q and an itialization strategy σ ∈ {a, b, c}
2: function (T f ,B,K) = PointLocationBW[σ](Q)

3: for i = 1 : N do
4: Set j ← T 0

i if σ = a, b or Set j ← T 0
Pi

if σ = c

5: Set BW ← true
6: while BW do
7: Set (i1, i2, i3) ← T j
8: Compute (θ1, θ2, θ3) for q

n
i w.r.t. xi1 , xi2 , xi3 using (7)

9: Set θ∗ ← min
k=1,2,3

θk and k∗ ← argmin
k=1,2,3

θk

10: if θ∗ ≥ 0 then
11: Set Ki ← ‘internal’
12: Set BW ← false
13: else
14: Set (j1, j2, j3) ← N j
15: if jk∗ = 0 then
16: Set Ki ← ‘boundary’
17: Set BW ← false
18: else
19: Set j ← jk∗
20: end if
21: end if
22: end while
23: Set T f

i ← j
24: Set Bi ← (θ1, θ2, θ3)
25: Set T 0

i ← j if σ = c
26: end for
27: Set T 0 ← T f if σ = b
28: return T f , B and K
29: end function

the spanning-tree embedded in the list P of parent nodes. Moreover, for strategy (BWb),
we update all the list T 0 at the end of the process in line 27, while for strategy (BWc) the
update is performed point by point at line 25, to provide the children of the nodes in the
spanning tree with the initial elements just updated by their parents. We also remark that,
whenever a barycentric walk reaches the boundary and the neighbouring element is missing
(see line 15), we stop the walk, marking the element as ‘boundary’, and we do not update
the current element as for the ‘internal’ ones (see line 19). This ensures that the walks can
restart correctly from elements on the boundary, if the corresponding query points change in
time and re-enter the domain.

We finally report, in Algorithm 2, the basic SL pseudo-code for the advection equation
(1), using P1 interpolation for the solution and the Euler scheme for tracking characteristics.
This will be used later to show which fraction of the total computational time is due to the
point location phase.

Remark 4 It could be observed that once assumed that � is defined by the inequality
g(x) < 0, the internal/boundary test could be performed by checking the sign of g at the
point X�(xi , tn+1; tn), thus avoiding to start the walk-in case of external points. In prac-
tice, however, such an explicit representation of � is seldom available, and the test is better
accomplished during the walk algorithm, as we have described above. In lack of an explicit
form of g, the exact location of the intersection of X�(xi , tn+1; s)with the boundary requires
some additional technicalities, which will be omitted here.

123

19 Page 16 of 24 S. Cacace, R. Ferretti

Algorithm 2 Basic Semi-Lagrangian advection scheme

1: Given � ⊂ R
2, u0 : � → R, f : � × R

+ → R
2, γ : ∂� × R

+ → R, �x, �t, T > 0
2: Choose an initialization strategy σ ∈ {a, b, c}
3: Build a triangulation (V,T ,N ,T 0,P) ← (�, �x)
4: Set V 0

i ← u0(xi) for i = 1, . . . , N
5: Set n ← 0
6: while n�t ≤ T do
7: Set qi ← xi − �t f (xi , tn+1) for i = 1, . . . , N andQ ← {qi }i=1,...,N
8: Compute (T f ,B,K) ← PointLocationBW[σ](Q) using Algorithm 1 according to σ

9: for i = 1 : N do
10: if Ki =‘internal’ then

11: Set (i1, i2, i3) ← T f
i

12: Set (θ1, θ2, θ3) ← Bi
13: Set Vn+1

i ← θ1V
n
i1

+ θ2V
n
i2

+ θ3V
n
i3

14: else if Ki =‘boundary’ then
15: Compute s̄n+1

i by solving (6) for s

16: Set Vn+1
i ← γ

(
xi − (tn+1 − s̄n+1

i) f (xi , tn+1), s̄
n+1
i

)

17: end if
18: end for
19: Set n ← n + 1
20: end while

4 Numerical examples

In this section, we present several numerical tests, showing the performance of the search
strategies proposed, as compared with the standard quadtree search and with a direct search
on a structured grid. Moreover, we provide a comparison with the built-in Matlab function
pointLocation. Finally, we present the performance of the basic SL scheme, equipped
with the different point location algorithms.

All the codes have been implemented from scratch in C++ language on the basis of
Algorithms 1–2, compiled with GCC compiler 7.5.0, and run (in serial for the present work)
on a PC Desktop equipped with an Intel i9-9900K CPU with 16 cores 3.60Ghz, 32Gb RAM,
under the OS Ubuntu 18.04.3 LTS. We have also built a simple wrapper to easily employ the
library Triangle for the generation of quality Delaunay meshes (TRI 2021). In particular,
the library accepts an input constraint Amax for the maximal area of each triangle in the mesh.
Then, we set the space scale �x = √

2Amax, so that triangle areas are proportional to 1
2�x2.

In all the tests, we consider the following advecting vector field:

f (x, t) =
(
cos (C0‖x‖ + C1t)
sin (C0‖x‖ + C1t)

)

, (11)

with x ∈ �, t ∈ [0, 1] and C0,C1 > 0, namely a rotating vector field with frequencies C0

and C1, respectively in space and time (see Fig. 10).
To compare the execution times with the structured case, we take the square domain

� = [−1/2, 1/2]2, and, focusing on the point location for internal query points, we exclude
from the computation all the grid nodes for which the corresponding characteristic, tracked
by the Euler scheme (5), falls out the domain. Moreover, in the construction of the spanning
tree for the initialization strategy (BWc), we take the root node as the closest to the center of
the domain.

Note that, by the definition (11), we have ‖ f ‖ = 1 everywhere in �, while the Lipschitz
constants of f are given by Lx = C0 and Lt = C1. This allows to better analyze the

123

Efficient implementation of characteristic-based schemes... Page 17 of 24 19

Fig. 10 Test dynamics with C0 = 8π , C1 = 2π at time t = 0, sampled on a uniform grid with �t/�x = 1

complexity of the search strategies in terms of the Courant number ‖ f ‖�t/�x , which is
indeed the same on the whole domain: setting�t = α�x , with α ≥ 0, the Courant number is
simply given by α. Finally, we average in time, dividing by the number of time steps �1/�t�,
both the computational times and the averaged walk steps.
Comparison of quadtree search versus initialization strategies for the barycentric walk.
In this test, we compare the performance of the initialization strategies (BWa)–(BWc) for the
barycentric walk with that of the quadtree. We fix the Lipschitz constants of the dynamics
to Lx = Lt = 2π , the Courant number to α = 5, and we consider finer and finer triangular
meshes with 105 � N � 7 · 106. The results are reported in Fig. 11: in the left plot we show
the average CPU time for a single point location (CPU time of the point location phase over
the whole grid, divided by N), while in the right one we show the improvement factor with
respect to the quadtree.

As N increases, all the proposed initialization strategies for the barycentric walk exhibit,
as expected, an O(1) complexity, whereas CPU times for the quadtree algorithm grow due
to itsO(log N) complexity. Nevertheless, the quadtree still performs better than the walking
strategy (BWa), due to the relatively large Courant number, although this advantage tends to
decrease at the increase of N . On the other hand, in this setting, the improvement provided
by the initialization strategies (BWb) and (BWc) with respect to the quadtree is apparent,
with an improvement factor ranging between 2 and 5, and increasing with N .
Dependence on theCourant number.The efficiency of the initialization strategies proposed
for the barycentric walk depends on the ratio α = �t/�x (which coincides, in our examples,
with the Courant number), as it can be seen by rewriting the complexity estimates of the
previous section in terms of α as:

(BWa) : O(CB
1 + CB

2 ‖ f ‖∞α) ,

(BWb) : O(CB
1 + CB

2 Ltα
2�x) ,

(BWc) : O(CB
1 + CB

2 + CB
2 Lxα�x) .

(12)

123

19 Page 18 of 24 S. Cacace, R. Ferretti

Fig. 11 Averaged search time of the quadtree and barycentric walk (left) and improvement factor versus the
quadtree search (right), for 105 � N � 7 · 106. Strategy (BWa): crosses, strategy (BWb): white squares,
strategy (BWc): black squares, quadtree: black circles (color figure online)

Fig. 12 Search times versus Courant number (left) and averaged barycentric walk steps versus Courant number
(right), for N = 1.5 ·106, Lx = 2π , and with Lt = 2π (upper plots), Lt = 8π (lower plots). Strategy (BWa):
crosses, strategy (BWb): white squares, strategy (BWc): black squares, quadtree: black circles (color figure
online)

In this test, we compare the three initialization strategies and the quadtree search at the
increase of the Courant number and of the Lipschitz constants of the advecting dynamics.
To this end, we consider a grid with a fixed number of nodes N = 1.5 · 105 (corresponding
to Amax = 5 · 10−5 and �x = 10−2), and choose a variable Courant number in the range

123

Efficient implementation of characteristic-based schemes... Page 19 of 24 19

Fig. 13 Averaged barycentric walk steps versus Courant number for strategy (BWc), with N = 1.5 · 106 and
Lx = 2π (left), Lx = 20π (right)

0 ≤ α ≤ 20. In the upper plots of Fig. 12, we report the results for the case Lx = Lt = 2π ,
while in the lower plot we report the same data for Lx = 2π and Lt = 8π .

As expected, the complexity of the quadtree search does not depend at all on the Courant
number. Moreover, for α → 0, we recover the constant terms in the estimates (12). In
particular, strategies (BWa) and (BWb) have the same constant CB

1 , while strategy (BWc)
shows an additional cost due to the constantCB

2 . On the other hand, as α increases, we clearly
observe the linear increase of complexity for strategy (BWa), which eventually performs
worse than the quadtree search. Strategies (BWb) and (BWc) are the most effective, due to
the terms �x in (12). Moreover, we recognize a quadratic behavior in α for strategy (BWb),
with a loss of performance at the increase of Lt , while the linear behavior for strategy (BWc),
in the chosen range for α, is somewhat hidden by both its slope �x and the constant term.
This confirms the uniform bound in (10), since the crossing condition Lx�t ≥ 1 for the
characteristics reads, in the present case, as 2πα�x ≥ 1, namely α � 16. The effect of the
Lipschitz constant Lx on the number of steps for the strategy (BWc) is analyzed more in
detail in Fig. 13. In the left plot, we use Lx = 2π , and obtain an averaged number of walk
steps of about 3.5, which is in agreement with (10) in view of Remark 2. The increase in the
number of steps becomes apparent when choosing a larger Lipschitz constant Lx = 20π ,
which forces the crossing of characteristics around α � 1.6, so that the uniform bound on
the walking steps fails, as shown in the right plot of Fig. 13. We point out, however, that this
makes the scheme work in unstable (and unphysical) conditions.
Comparision with direct location on a structured grid. In this test, we compare the
barycentric walk search (initialized with the strategy (BWb)) with a direct search on a mesh
which is still triangular, but structured. More precisely, we consider in [−1/2, 1/2]2 the
Courant triangulation shown in Fig. 14, with a uniform number of nodes in each dimension
and a natural labelling of the corresponding triangles.

In this setting, a given target point X�(xi , tn+1; tn) = (ξ, η) can be directly located, with
constant complexity, by the couple

l =
⌊

ξ + 1/2

�x

⌋

, m =
⌊

η + 1/2

�x

⌋

X�(xi , tn+1; tn) ∈
{
T2(Mm+l)+1 if ξ + 1/2 − l�x < η + 1/2 − m�x

T2(Mm+l+1) otherwise,
(13)

123

19 Page 20 of 24 S. Cacace, R. Ferretti

Fig. 14 Courant triangular grid
for structured/unstructured search
comparison

Fig. 15 Search time (left) and improvement factor (right) of the barycentric walk with initialization strategy
(BWb) versus the direct search on a structured grid, for 106 � N � 8 · 106. Direct access: black circles,
strategy (BWb): white squares (color figure online)

with M denoting the number of elements for each side of the square. We consider the same
advecting dynamics of the previous tests, with Lx = Lt = 2π and Courant number α = 5,
and we choose the initialization strategy (BWb) for the barycentric walk, which achieves
the best performance in this case (see again Fig. 12). For a fair comparison, we include in
the direct search both the location of the triangle and the computation of the corresponding
barycentric coordinates for the target point (the minimal requirement for computing the
interpolation). The results are reported in Fig. 15.
In the left plot we show the CPU times for the search on finer and finer meshes with a total
number of nodes 106 � N � 8 ·106. As expected, both algorithms show a linear behavior in
N , but, surprisingly, the initialization strategy (BWb) for the barycentric walk outperforms
the direct search, with a factor between 1.05 and 1.35 (see the right plot in Fig. 15). We found
out that the most expensive task of the direct search consists in the computation of the two
lower integer parts in (13), and it is deeply related to the assembly code generated by the
GCC compiler. Among the various possible implementations of this operation, we have used
a division followed by casting to integer, while the use of the built-in floor function would

123

Efficient implementation of characteristic-based schemes... Page 21 of 24 19

result in worse performances. A more careful test should be performed by running the code
against different compilers and architectures, but this goes beyond the scope of the present
paper.

We can conclude anyway that, even in less favourable conditions, the initialization strategy
(BWb) (and the strategy (BWc), which performs slightly worse in these conditions), when
implemented on unstructured meshes, has comparable performances with respect to the fully
structured case, for interpolations of a finite element type.
Comparison with Matlab pointLocation. In this test, we compare the barycentric
walk search, initialized with the strategy (BWb), with the built-in pointLocationMatlab
function. It is known that theMatlab environment provides several facilities for practitioners,
including toolboxes for generating unstructuredmeshes and for solving PDEs. Unfortunately,
many Matlab functions (as the general-purpose pointLocation) are closed-source, pre-
compiled, and cannot bemodified for specific tasks.Here,weprovide somehints to implement
the barycentric walk algorithm with a few lines of code in Matlab, then evaluate its perfor-
mances versus the pointLocation function.

To this end, we employ the Matlab command mex to build a MEX function from our
C++ implementation, namely a binary file that can be called, as any Matlab built-in function,
by a Matlab script. Starting from the Matlab triangulation data structure, containing
point coordinates of the nodes and vertex indices of the triangles in the mesh, we add three
additional fields:

• a list containing the indices of the initial triangles for the barycentric walk (one index per
node);

• a list containing the index triplets of neighbouring triangles (one triplet per triangle)
• a list containing the indices of the parent nodes for the initialization strategy (BWc) (one

index per node).

The first list can be constructed choosing a random triangle from the output of the Matlab
function vertexAttachments, the second list is simply the output of the Matlab func-
tion neighbours, while the third list can be obtained, starting from a root node, using
vertexAttachments to find recursively the first neighbours of nodes already inserted in
the list (some care must be taken to avoid duplicates). Then, we design our MEX function
pointLocationBW with a syntax similar to pointLocation:

[I,B,K] = pointLocationBW(TBW,Q,S) ,

where TBW is the extended triangulation data structure, Q the list of query points, S the
initialization strategy chosen (‘a’,‘b’ or ‘c’), while I is the output list of the triangles
enclosing the query points, B the corresponding list of barycentric coordinates, and K the list
of element types (‘internal’ or ‘boundary’). This function is still in beta version,
but available for the interested readers on reasonable request.

Now, we set the same parameters of the previous test, namely Lx = Lt = 2π , α = 5,
then we choose the initialization strategy (BWb) for the barycentric walk, and run the code
on Matlab version R2021a. The results are reported in Fig. 16.

In the left plot, we show the CPU times for the search on finer and finer meshes with a total
number of nodes 106 � N � 107.We observe that also theMatlabpointLocation seems
to have a linear complexity in N , and this suggests that its black-box algorithm might not
be based on a quadtree structure. The function pointLocationBW with the initialization
(BWb) improves the pointLocation CPU times by a factor ranging from 11 to 18, as
shown in the right plot.

123

19 Page 22 of 24 S. Cacace, R. Ferretti

Fig. 16 Search time (left) and improvement factor (right) of the barycentric walk with initialization strategy
(BWb) versus the Matlab pointLocation, for 106 � N � 107. Matlab pointLocation: black circles,
strategy (BWb): crosses (color figure online)

Fig. 17 Fraction of CPU time used for point location, for different algorithms in a SL scheme, versus number
of grid nodes 105 � N � 2.5 · 106. Strategy (BWa): crosses, strategy (BWb): white squares, strategy (BWc):
black squares, quadtree: black circles (color figure online)

Fraction ofCPU time used for point location. In this last test, we combine the point location
provided by the quadtree search and by the initialization strategies proposed above for the
barycentric walk, with the SL scheme (P1 interpolation + Euler tracking of characteristics)
illustrated in Algorithm 2. The aim is to measure, for the different algorithms, which percent-
age of the total computational load is due to the point location. To this end, we consider the
same parameters for the advecting dynamics of the previous tests (Lx = Lt = 2π , α = 5),
we choose a Gaussian-like initial datum u0, and homogeneous boundary conditions γ ≡ 0.
The results for different meshes of size 105 � N � 2.5 · 106 are reported in Fig. 17. We
remark that here the total CPU time for each run includes, on the whole mesh and for all the
time steps, the computation of the query points Q, the point location and the interpolation
of the solution. Then we show the ratio between the point location time and the total CPU
time. We observe that the quadtree point location requires about 80% of the total CPU time,

123

Efficient implementation of characteristic-based schemes... Page 23 of 24 19

against the 85% of the initialization strategy (BWa). On the other hand, we get about 65%
for strategy (BWc), while for strategy (BWb) the percentage drops between 50% and 60%
(in particular it decreases as N increases before saturating, whereas the CPU time fraction
is actually constant for the other algorithms). This is not surprising, since strategy (BWb) is
designed to take advantage from small variations of the dynamics with respect to time. Note
that in this test we have a moderate value for Lt , while the Courant number and the final
time are kept fixed, so that the number of time steps increases with N . This implies that most
characteristics eventually fall in the same triangle for more and more time steps.

5 Conclusions

In this paper, we have analyzed in detail the complexity issues related to characteristics loca-
tion in SL-type schemes, for time-dependent PDEswith advection terms on 2-D unstructured
triangular space grids. Moreover, we have proposed two new and clever initialization strate-
gies for the barycentric walk point location, corresponding to the strategies (BWb) and (BWc)
of Sect. 3, which may bring this algorithm to a higher degree of efficiency, in terms of both
complexity and memory occupation, with respect to the recipes typically used so far. These
strategies take advantage of the regularity of the advection term with respect to the space and
time variables; on the other hand, fast space and/or time variations of the advecting field may
represent a limitation to their efficiency, e.g., in turbulent flows.

We have reported implementation details and pseudo-codes for the proposed algorithms,
and provided numerical experiments to validate the new techniques in a variety of scenarios.

Although the analysis has been carried out in a specific setting (triangular grids, two-
dimensional problems), it is not difficult to extend the technique to more general situations,
in particular to Voronoi meshes, as well as to three-dimensional problems. The choice of a
walk algorithm different from the barycentric walk is also possible (see Devillers et al. 2001),
especially to treat the case of less regular space grids than the ones we have used here.

Finally, a further direction of investigation would be to conceive a hybrid point location
algorithm, by selecting the appropriate initialization strategy for the barycentric walk on the
basis of local information provided by the dynamics at a specific point in the domain. This
direction of research is still under investigation, and we plan to address it in a forthcoming
work.

Acknowledgements This work has been partially supported by the PRIN 2017 project “Innovative Numerical
Methods for Evolutionary Partial Differential Equations and Applications”, by the INdAM–GNCS project
“Approssimazione numerica di problemi di natura iperbolica ed applicazioni” and by Roma Tre University.
We thank Dr.Beatrice Beco and Dr.Lorenzo Della Cioppa for taking part in the first steps of this work.

References

Bonaventura L, Calzola E, Carlini E, Ferretti R (2020) A fully semi-Lagrangian method for the Navier–Stokes
equations in primitive variables. In: van Brummelen H, Corsini A, Perotto S, Rozza G (eds) Numerical
Methods for Flows. Lecture Notes in Computational Science and Engineering, vol 132. Springer, Cham

Bonaventura L, Calzola E, Carlini E, Ferretti R (2021) Second order fully semi-Lagrangian discretizations of
advection–diffusion–reaction systems. J Sci Comp 88:1–29

Boscheri W (2020) A space-time semi-Lagrangian advection scheme on staggered Voronoi meshes applied to
free surface flows. Comput Fluids 202

Boscheri W, Dumbser M, Righetti M (2013) A semi-implicit scheme for 3D free surface flows with high-order
velocity reconstruction on unstructured Voronoi meshes. Int J Num Meth Fluids 72:607–631

123

19 Page 24 of 24 S. Cacace, R. Ferretti

Devillers O, Pion S, Teillaud M (2001)Walking in a triangulation. In: Proceedings of the seventeenth annual
symposium on Computational geometry, 106–114

Douglas J, Russell TF (1982) Numerical methods for convection-dominated diffusion problems based on
combining the method of characteristics with finite element or finite difference procedures. SIAM J Num
Anal 19:871–885

Falcone M, Ferretti R (2013) Semi-Lagrangian approximation schemes for linear and Hamilton-Jacobi equa-
tions. SIAM, Philadelphia

Ferretti R, Mehrenberger M (2020) Stability of Semi-Lagrangian schemes of arbitrary odd degree under
constant and variable advection speed. Math Comp 89:1783–1805

Finkel RA, Bentley JL (1974) Quad trees a data structure for retrieval on composite keys. Acta Informatica
4:1–9

Giraldo FX (1998) The Lagrange–Galerkin spectral element method on unstructured quadrilateral grids. J
Comp Phys 147:114–146

Giraldo FX (2000) The Lagrange–Galerkin method for the two-dimensional shallow water equations on
adaptive grids. Int J Num Meth Fluids 33:789–832

Pironneau O (1982) On the transport-diffusion algorithm and its application to the Navier–Stokes equations.
Num Math 38:309–332

Restelli M, Bonaventura L, Sacco R (2006) A semi-Lagrangian discontinuous Galerkin method for scalar
advection by incompressible flows. J Comp Phys 216:195–215

Russell TF, Celia MA (2002) An overview of research on Eulerian–Lagrangian localized adjoint methods
(ELLAM). Adv Water Res 25:1215–1231

Triangle, A two-dimensional quality mesh generator and delaunay triangulator. https://www.cs.cmu.edu/
~quake/triangle

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://www.cs.cmu.edu/~quake/triangle
https://www.cs.cmu.edu/~quake/triangle

	Efficient implementation of characteristic-based schemes on unstructured triangular grids
	Abstract
	1 Introduction
	2 Locating a point on a triangular grid: some basic facts
	2.1 Quadtree algorithm
	2.2 Barycentric walk
	2.3 Quadtree and barycentric walk complexity in space

	3 Efficient initializations for the barycentric walk search
	4 Numerical examples
	5 Conclusions
	Acknowledgements
	References

