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Abstract: Background: preoperative risk assessment of gastrointestinal stromal tumors (GISTS)
is required for optimal and personalized treatment planning. Radiomics features are promising
tools to predict risk assessment. The purpose of this study is to develop and validate an artificial
intelligence classification algorithm, based on CT features, to define GIST’s prognosis as determined
by the Miettinen classification. Methods: patients with histological diagnosis of GIST and CT studies
were retrospectively enrolled. Eight morphologic and 30 texture CT features were extracted from
each tumor and combined to obtain three models (morphologic, texture and combined). Data were
analyzed using a machine learning classification (WEKA). For each classification process, sensitivity,
specificity, accuracy and area under the curve were evaluated. Inter- and intra-reader agreement
were also calculated. Results: 52 patients were evaluated. In the validation population, highest
performances were obtained by the combined model (SE 85.7%, SP 90.9%, ACC 88.8%, and AUC
0.954) followed by the morphologic (SE 66.6%, SP 81.8%, ACC 76.4%, and AUC 0.742) and texture
(SE 50%, SP 72.7%, ACC 64.7%, and AUC 0.613) models. Reproducibility was high of all manual
evaluations. Conclusions: the AI-based radiomics model using a CT feature demonstrates good
predictive performance for preoperative risk stratification of GISTs.

Keywords: gastrointestinal stromal tumor; radiomics; machine learning; risk assessment; prognostic;
artificial intelligence; computed tomography

1. Introduction

Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors
found in the gastrointestinal tract, accounting for about 2% of gastrointestinal tumors, with
an incidence that has been progressively increasing over the past year. [1,2].

These tumors are derived from precursors of interstitial Cajal cells, pacemaker cells
responsible for (GI) peristalsis activity. Currently, no environmental risk factor for GIST is
known, but there is evidence of familial predisposition to germline oncogene mutations:
KIT or PDFRA oncogene mutations are the most frequent [3].

Unlike other tumors, for which the TNM system represents the most commonly
adopted staging tool, the risk stratification of GISTs is based on the Miettinen’s classification,
which has been recently reviewed [4]. By integrating tumor size (2 cm; >2–5 cm; >5–10 cm;
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>10 cm), mitotic index (5/50 HPFs or >5/50 HPFs), and tumor site (stomach; duodenum;
small bowel; rectum), this classification identifies five risk grades: none, very low, low,
moderate, and high. The prognosis of GISTs is closely related to their risk grade. Different
risk grades lead to different therapeutical options. Therefore, an adequate preoperative
tumor assessment, including specimen collection and pathological examination based
on microscopic morphology and immune phenotype, is mandatory to select an optimal
therapeutic strategy for each patient [5].

Multidetector computed tomography (MDCT) plays a key role in GIST management,
including detection, evaluation of tumor extent, and evaluation of treatment response.
However, less is known about its role in risk assessment and prognostication of GISTs [6,7].

Multiple MDCT findings are helpful to establish the preoperative risk stratification
of GISTs; given that preoperative biopsy for histopathological assessment is not routinely
performed due to the risk of bleeding and/or seeding of the tumor, MDCT imaging findings
are helpful in the preoperative risk stratification of GISTs [8,9].

In this setting, the emerging roles of artificial intelligence (AI) and radiomics offer new
opportunities to forecast the tumor risk and aid in clinical decision making [10,11].

In particular, texture analysis (TA) has been increasingly applied to radiological imag-
ing for diagnosing, characterizing, and monitoring treatment response by quantifying
tumor heterogeneity and irregularity of tissue components [12,13]. Tumors with high
heterogeneity have been shown to have worse prognosis, potentially reflecting intrinsic
biological aggressiveness or treatment resistance [14–19].

Recently, some studies investigated whether MDCT TA features of GISTs could be
used as imaging biomarkers, demonstrating its potential role in the characterization of
tumor subtypes [20–23]. In these studies investigators developed different methods to
extract CT features using customized software or complex AI algorithms. This complexity
may limit the clinical application of such promising algorithms.

Thus, the aim of our study was to develop and validate classification models based on
morphologic and texture features extracted from CT images, to predict a tumor’s biology
using the Miettinen’s classification as a reference standard.

2. Materials and Methods
2.1. Study Design and Population

This retrospective, non-randomized, single center study was conducted according to
the Good Clinical Practice (GCP) International Conference on Harmonization (ICH). We
retrospectively selected patients with a pathological diagnosis of GIST who had undergone
a multiphasic CT scan of the abdomen from May 2017 to September 2019. Inclusion
criteria were (1) histopathological diagnosis of GIST, and (2) surgical excision of the tumor.
Exclusion criteria included (1) a poor image quality of the CT images, (2) an incomplete
histopathological report, and (3) neoadjuvant chemotherapy before CT.

The study was approved by the local ethical committee. Informed consent was waived
because of the retrospective nature of the study and the anonymization of clinical data.

2.2. Pathological Examinations

The histopathological diagnosis of GIST was performed by an expert pathologist
with more than 20 years of experience, based on microscopic morphology and immune-
phenotype. Immunohistochemistry (IHC) was performed on freshly cut, 3-micron-thick,
paraffin-embedded tissue sections using antibodies against C-KIT/CD117 (Dako A 4502,
polyclonal rabbit anti-human), according to manufacturer instructions. All the included
cases demonstrated cytoplasmatic/membranous positivity. Mitotic count was performed
on 50 HPF (high power field) and expressed as the number of mitoses/50 high power fields
(HPF). Tumor size was measured on formalin-fixed samples, and expressed in cm. As
per Miettinen’s classification, tumors were stratified in five risk classes (no risk, very low
risk, low risk, moderate risk, high risk) based on mitotic count, tumor size and location
(Table 1) [4]. The five risk classes were dichotomized in two groups: a higher risk group
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(including moderate and high risk classes) and a lower risk group (including no risk, very
low risk and low risk classes).

Table 1. Table shows the Miettinen’s risk classification according to GIST location, size and mitotic
rate. * HPFs (high power fields).

Size (cm) Mitotic Rate (HPFs) * Stomach Small Bowel Duodenum Rectum

≤2 ≤5/50 None None None None
>2 ≤ 5 ≤5/50 Very low Low Low Low
>5 ≤ 10 ≤5/50 Low Moderate High High

>10 ≤5/50 Moderate High
≤2 >5/50 Insufficient data Insufficient data Insufficient data High

>2 ≤ 5 >5/50 Moderate High High High
>5 ≤ 10 >5/50 High High High High

>10 >5/50 High High
≤2 ≤5/50 None None

2.3. MDCT Acquisition Protocol

All MDCT scans were acquired with a 16 raw scanner (LighSpeed 16 slice, GE Medical
Systems, Waukesha, WI, USA). All acquisitions were performed in the cranio-caudal
direction form the diaphragmatic dome to the end of the ischiatic branches. Scanning
parameters were as follows: kV 120; mAs 120–180; gantry rotation0.5 s; pitch 1:1; detector
configuration 16× 1.5 mm; reconstructed section thickness 2.5 mm; standard reconstruction
algorithm. A portal venous phase, following unenhanced scan, was acquired after 75 s
from the injection of 0.625 mL of iodine per Kg of total body weight injected at 1.6 gI/s.

2.4. Morphologic Features

For each tumor, the following features were evaluated by two independent radiologists
(with more than 10 years of experience in abdominal radiology): primary tumor location,
lesion margins, angiogenesis, intralesional necrosis, peritoneal effusion, peritoneal implants,
degree and pattern of contrast enhancement, and invasion of adjacent organs. Radiologists
were blinded to the histopathological outcome of the tumors.

The primary tumor location was classified according to the gastrointestinal tract of
origin: esophagus, stomach, duodenum, jejunum, ileum, and colon. The margins of the
lesions were classified as regular when the edge of the lesion appeared smooth, or irregular
when they appeared jagged. The presence of angiogenesis was assessed when enlarged and
engorged blood vessels, close to the lesion, were identified. The presence of internal necrosis
was assessed when intratumoral low-attenuation unenhanced areas were identified. Both
peritoneal effusion and implants were scored as present or absent. The density of the
primary tumor was measured applying a circular ROI on unenhanced and portal venous
phase images. The degree of contrast enhancement was scored as mild, in cases where the
difference between enhanced density and unenhanced density was lower than 55.33 HU,
and as high if it was greater or equal than the same value [24]. The enhancement pattern was
classified as homogeneous or heterogeneous based on the presence of different attenuation
areas within the tumor. Finally, the invasion of adjacent organs was defined as an absence
of clear margins between the tumor and the adjacent structures.

2.5. Texture Features

Texture features were extracted using TexRAD, a proprietary software algorithm
(TexRAD Ltd., London, UK) commercially available and equipped with a simple user
interface. The feature extraction process was performed by two independent radiologists
(with 10 years of experience in abdominal imaging), blinded to the histopathological results.

A region of interest (ROI) was drawn around the tumor at the level of the largest
tumor area as depicted on the axial MDCT portal venous phase images. The ROI was
then used for texture analysis, which comprised an image histogram technique with an
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initial image filtration, followed by the quantification of texture within the filtered images.
The in-plane filtration step was performed by means of a Laplacian of Gaussian spatial
band-pass filter to produce a series of derived images highlighting features at different
spatial scaling factors (SSF), ranging from fine to coarse texture within an ROI. The scale
was selected by altering the filter standard deviation parameter, or σ, between 0.0 (not
filtered) and 2 (coarse texture); SSFs performed by the software were: 1 mm, 1.5 mm,
1.8 mm, and 2 mm. A value of 1 mm represented fine texture scale, a value of 1.5 mm and
1.8 mm represented medium texture scale, and 2 mm represented a coarse texture scale.
Heterogeneity within each ROI was quantified with and without image filtration using the
following histogram parameters: kurtosis, entropy, skewness, mean value of positive pixels
(MPP), standard deviation (SD), and mean. Kurtosis, which can be positive or negative,
reflects the peakedness of the histogram. Entropy is linked with the irregularity of gray-
level distribution. Skewness represents and measures the asymmetry of the histogram
and could be positive or negative. The mean is the average value of the pixels within the
analyzed ROI. SD describes the variation, low or high, from the average (mean value). MPP
represents the average brightness of positive pixel values within the image [25,26].

2.6. Machine Learning Classification

Both the morphologic and the texture features extracted from CT images were com-
bined and analyzed using the WEKA (Waikato Environment for Knowledge Analysis,
Version 3.8.5, University of Waikato, Hamilton, New Zealand) machine learning (ML)
suite for data mining classification. A total of thirty-eight features were extracted: eight
morphologic features and thirty texture features. The aim of this process was to identify a
ML classification algorithm able to identify higher- and lower-risk patients as determined
by the Miettinen’s classification, which was considered the reference standard.

During the first step, patients were subdivided in two groups. Using the WEKA
Explorer Filter tool, two thirds of the patients were placed in the training group, and one
third in the validation group, after the population had initially been randomly reorganized.
The training group was analyzed using Auto-WEKA, a dedicated package that allows the
automatic identification of the best model with its best parameter settings (hyperparameter
optimization) for a given classification or regression task, as well as a feature selection
process. This analysis was performed separately for the eight morphologic features and the
30 texture features. Finally, the process was performed on all 38 features merged.

The optimized classification algorithms, identified by the Auto-WEKA analysis, were
applied to the validation group, performing three separate analyses: morphologic features,
texture features, and combined (morphologic and texture) features. For each classification
model, sensitivity (SE), specificity (SP), accuracy (ACC) and area under the curve (AUC)
were evaluated.

2.7. Statistical Analysis

All continuous variables were expressed as mean and standard deviation (SD).
Differences in patients’ sex distribution, tumor location, tumor size, mitotic rate,

Miettinen’s risk score and morphologic features were calculated using a χ2 test with Yates’s
correction. The Student t test was calculated to find significant differences in patients’ age.

The one-way ANOVA with Fisher’s LSD test was used to find significant differences
in texture features.

Since the features implemented in the classification algorithms were derived from
manual assessments, intra-reader and inter-reader agreement were calculated. The re-
producibility of the morphologic feature evaluation was calculated with the weighted
Cohen’s kappa (κ) analysis, while the reproducibility of the texture feature measurement
was calculated using the intraclass correlation coefficient (ICC). One of the two radiologist
performed all measurements twice for intra-reader agreement. Agreement was interpreted
according to the following criteria: >0.81: excellent agreement; 0.61–0.80: good agreement;
0.41–0.60: moderate agreement; 0.21–0.40: fair agreement; <0.20: poor agreement.
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All statistical analyses were carried out using SPSS (Version 25.0. IBM Corp.: Armonk,
NY, USA), GraphPad Prism version 7.0 (GraphPad Software, La Jolla, CA, USA) and
MedCalc (MedCalc Software® version 12.5, Ostend, Belgium).

A two-tailed p < 0.05 was considered statistically significant.

3. Results
3.1. Study Population

Eighty-one patients were retrospectively selected from our database. Twenty-nine
patients were excluded from the analysis because of a incomplete histology report (17),
low-quality CT images (4), or neoadjuvant chemotherapy before CT (8). Thus, the final
study population resulted in fifty-two patients (Figure 1).
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Figure 1. Flow chart detailing the patient selection process.

At histology, 25% (13) of the included patients presented more than five mitoses (from
6 to 180), and 75% (39) five or less (from 0 to 5). As for tumor location, 71.2% (37) of the
tumors were located in the stomach, 9.6% (5) in the duodenum, 7.7% (4) in the jejunum,
9.6% (5) in the ileum, and 1.9% (1) in the esophagus. Three lesions (5.8%) were smaller than
2 cm, 25 lesions (48.1%) ranged between 2 and 5 cm, 11 lesions (21.1%) ranged between
5 and 10 cm, while 13 lesions (25%) were larger than 10 cm.

As per the reviewed Miettinen’s classification, lesions were stratified as follows:
5.8% (3) no risk, 27% (14) very low risk, 25% (13) low risk, 21.1% (11) moderate risk,
and 21.1% (11) high risk. Accordingly, 22 patients (42.3%) were included in the higher
risk group, and 30 patients (57.7%) in the lower risk group. No statistically significant
differences were observed between the higher and lower risk groups in terms of gender,
age, tumor location and mitotic rate, while a significant difference was observed in tumor
size. Results are summarized in Table 2.

Table 2. Table shows the subjects characteristics and GIST’s histologic features for the entire popula-
tion, stratified according to risk and for both training and validation populations.

All Subjects Higher Risk Lower Risk p-Value Training Validation p-Value

Subjects 52 22 (42.3%) 30 (57.7%) 35 (67.3%) 17 (32.7%)
Age 61.64 (±15.09) 64.43 (±14.94) 59.62 (±15.12) 0.2704 62.45 (±15.3) 60.06 (±14.99) 0.3163

Gender (M/F) 31/21 11/11 20/10 0.2262 19/12 11/10 0.5234
Tumor location

Esophagus 1 (1.9%) 0 (0%) 1 (3.3%) 0.0993 1 (2.9%) 0 (0%) 0.7779
Stomach 37 (71.2%) 17 (77.3%) 20 (66.8%) 23 (65.7%) 14 (80.9%)

Duodenum 5 (9.6%) 1 (4.5%) 4 (13.3%) 4 (11.4%) 1 (4.8%)
Jejunum 4 (7.7%) 0 (0%) 4 (13.3%) 3 (8.6%) 1 (4.8%)
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Table 2. Cont.

All Subjects Higher Risk Lower Risk p-Value Training Validation p-Value

Ileum 5 (9.6%) 4 (18.2%) 1 (3.3%) 4 (11.4%) 1 (9.5%)
Colon 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Tumor size
≤2 3 (5.8%) 0 (0%) 3 (10%) <0.0001 2 (5.7%) 1 (5.9%) 0.5037

>2 ≤5 26 (50%) 5 (18.2%) 21 (70%) 20 (57.2%) 6 (35.3%)
>5 ≤10 11 (21.1%) 5 (27.3%) 6 (20%) 6 (17.1%) 5 (29.4%)

>10 12 (23,1%) 12 (54.5%) 0 (0%) 7 (20%) 5 (29.4%)
Mitotic rate
≤5/50 39 (75%) 9 (40.9%) 30 (100%) <0.0001 25 (71.4%) 14 (82.3%) 0.3934
>5/50 13 (25%) 13 (59.1%) 0 (0%) 10 (28.6%) 3 (17.7%)

Risk score
None 3 (5.8%) 0 (0%) 3 (10%) <0.0001 2 (5.7%) 1 (5.9%) 0.6809

Very low 14 (27%) 0 (0%) 14 (46.7%) 10 (28.6%) 4 (23.5%)
Low 13 (25%) 0 (0%) 13 (43.3%) 7 (20%) 6 (35.4%)

Moderate 11 (21.1%) 11 (50%) 0 (0%) 9 (25.7%) 2 (11.7%)
High 11 (21.1%) 11 (50%) 0 (0%) 7 (20%) 4 (23.5%)

Risk Class
Lower Risk 30 (57.7%) 0 (0%) 30 (100%) <0.0001 19 (54.3%) 11 (64.7%) 0.4756
Higher Risk 22 (42.3%) 22 (100%) 0 (0%) 16 (45.7%) 6 (35.3%)

The WEKA Explorer Filter tool randomly subdivided the population in two groups:
the first group, including 31 patients (59.6%), used for model training, and the second group,
made up of 21 patients (40.4%), for model testing. No statistically significant differences
were observed between the training and the validation groups for any of the characteristics
evaluated. Results are summarized in Table 2.

3.2. Morphologic and Texture Features

The higher and lower risk groups differed significantly for most of the morphologic
features (margins, angiogenesis, necrosis, peritoneal effusion, peritoneal seeding, organ
invasion, and enhancement pattern) and some of the texture features (SF0mean, SF0MPP,
SF1.5SD, SF1.5MPP, SF1.8mean, SF1.8SD, SF1.8MPP, SF2mean, SF2SD, and SF2MPP). No
differences were observed between the training and validation groups for both morphologic
and texture features. Results are summarized in Tables 3 and 4.

Table 3. Table shows the GIST’s morphologic features for the entire population, stratified according
to risk and for both training and validation populations.

All Subjects Higher Risk Lower Risk p-Value Training Validation p-Value

Subjects 52 22 30 35 17
Margins
Regular 41 (78.8%) 12 (54.5%) 29 (96.7%) 0.0002 30 (85.7%) 11 (64.7%) 0.0818
Irregular 11 (21.2%) 10 (45.5%) 1 (3.3%) 5 (14.3%) 6 (35.3%)
Angiogenesis
Present 16 (30.8%) 12 (54.5%) 4 (13.3%) 0.0015 10 (28.6%) 6 (35.3%) 0.6222
Absent 36 (69.2%) 10 (45.5%) 26 (86.7%) 25 (71.4%) 11 (64.7%)
Necrosis
Present 27 (%) 17 (77.3%) 10 (33.3%) 0.0017 18 (51.4%) 9 (52.9%) 0.9184
Absent 25 (%) 5 (22.7%) 20 (66.7%) 17 (48.6%) 8 (47.1%)
Peritoneal effusion
Present 7 (%) 6 (27.3%) 1 (3.3%) 0.0125 4 (11.4%) 3 (17.6%) 0.5377
Absent 45 (%) 16 (72.7%) 29 (96.7%) 31 (88.6%) 14 (82.4%)
Delta density
≥55.33 27 (%) 13 (59.1%) 14 (46.7%) 0.3757 19 (54.3%) 6 (35.3%) 0.1985
<55.33 25 (%) 9 (40.9%) 16 (53.3%) 16 (45.7%) 11 (64.7%)
Peritoneal seeding
Present 3 (%) 3 (13.6%) 0 (0%) 0.0372 1 (2.8%) 2 (11.8%) 0.1963
Absent 49 (%) 19 (86.4%) 30 (100%) 34 (97.2%) 15 (88.2%)
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Table 3. Cont.

All Subjects Higher Risk Lower Risk p-Value Training Validation p-Value

Organ invasion
Present 4 (%) 4 (18.2%) 0 (0%) 0.0151 3 (8.6%) 1 (5.9%) 0.7328
Absent 48 (%) 18 (81.8%) 30 (100%) 32 (91.4%) 16 (94.1%)
Enhancement
pattern
Homogenous 20 (%) 3 (13.6%) 17 (56.7%) 0.0016 15 (42.8%) 5 (29.4%) 0.3499
Heterogeneous 32 (%) 19 (86.4%) 13 (43.3%) 20 (57.2%) 12 (70.6%)

Table 4. Table shows the GIST’s texture features for the entire population, stratified according to risk,
and for both training and validation populations.

Higher Risk Lower Risk Training Validation

Mean SD Mean SD p Value Mean SD Mean SD p Value

SF0
Mean 62.36 ±26.36 76.13 ±28.56 0.0411 68.79 ±28.91 73.94 ±27.39 0.5853
SD 29.89 ±7.27 36.13 ±20.12 0.3543 32.48 ±13.01 35.57 ±21.61 0.9727
Entropy 4.66 ±0.21 4.57 ±0.35 0.9889 4.59 ±0.27 4.64 ±0.35 0.4190
MPP 64.90 ±24.84 80.05 ±27.26 0.0247 71.87 ±28 77.29 ±25.53 0.5041
Skewness −0.58 ±1.22 −1.63 ±2.65 0.8752 −1.09 ±2.39 −1.36 ±1.81 0.3067
Kurtosis 3.49 ±10.51 16.17 ±44.37 0.0599 12.14 ±41.06 8.06 ±15.69 0.5393
SF1
Mean 4.18 ±7.38 12.57 ±18.67 0.2135 10.32 ±17.6 6.34 ±9.45 0.3328
SD 65.50 ±19.40 73.19 ±33.76 0.2540 68.5 ±26.36 72.89 ±33.42 0.7317
Entropy 5.45 ±0.26 5.31 ±0.27 0.9836 5.34 ±0.24 5.41 ±0.32 0.4178
MPP 53.45 ±16.83 58.85 ±22.59 0.4228 56.85 ±20.46 55.97 ±20.71 0.9846
Skewness 0.05 ±0.31 0.49 ±1.35 0.9480 0.51 ±1.11 −0.11 ±0.80 0.0533
Kurtosis 0.62 ±0.96 5.84 ±12.24 0.4386 3.68 ±10.35 3.53 ±8.17 0.9269
SF1.5
Mean 8.33 ±14.10 19.42 ±21.42 0.0997 15.86 ±20.24 12.4 ±17.64 0.3232
SD 69.11 ±19.44 94.64 ±51.92 0.0002 84.01 ±40.04 83.5 ±49.92 0.4506
Entropy 5.48 ±0.20 5.43 ±0.26 0.9944 5.45 ±0.19 5.45 ±0.30 0.9989
MPP 57.25 ±19.68 73.09 ±34.76 0.0188 68.08 ±30.42 62.91 ±30.2 0.3837
Skewness 0.07 ±0.74 0.75 ±1.85 0.9196 0.78 ±1.53 −0.22 ±1.24 0.0312
Kurtosis 2.84 ±7.30 7.40 ±15.87 0.4984 5.28 ±13.94 5.88 ±11.39 0.7980
SF1.8
Mean 11.06 ±18.28 25.96 ±27.60 0.0271 21.26 ±26.26 16.36 ±22.64 0.2974
SD 69.32 ±20.35 102.90 ±61.37 <0.0001 89.43 ±47.89 87.19 ±58.2 0.2691
Entropy 5.41 ±0.28 5.45 ±0.28 0.9952 5.43 ±0.26 5.44 ±0.31 0.8130
MPP 57.78 ±22.18 80.07 ±41.85 0.0010 73.07 ±36.79 65.64 ±36.04 0.2526
Skewness 0.14 ±1.01 0.82 ±1.89 0.9197 0.91 ±1.56 −0.25 ±1.44 0.0097
Kurtosis 4.47 ±10.99 7.16 ±14.83 0.6901 5.64 ±13.36 6.81 ±13.52 0.6533
SF2
Mean 12.91 ±20.94 30.32 ±31.85 0.0098 24.84 ±30.36 19.07 ±25.93 0.2884
SD 64.75 ±28.23 107.80 ±66.86 <0.0001 89.67 ±56.01 89.32 ±62.84 0.3449
Entropy 5.45 ±0.20 5.46 ±0.30 0.9981 5.46 ±0.22 5.44 ±0.32 0.8290
MPP 58.42 ±24.31 84.53 ±46.22 0.0001 76.38 ±41 67.53 ±39.52 0.2710
Skewness 0.19 ±1.17 0.84 ±1.86 0.9237 0.96 ±1.53 −0.25 ±1.53 0.0059
Kurtosis 5.45 ±13.13 6.78 ±13.63 0.8440 5.73 ±12.77 7.22 ±14.7 0.7025

3.3. Machine Learning Models Training

Among the 38 features, only 16 were selected for the development of the classification
model according to the Auto-WEKA analysis (10-fold cross validation attribute evaluator
“CorrelationAttributeEval”). Among the eight morphologic features, four of these were
selected, including angiogenesis, necrosis, delta density, and enhancement pattern. On
the other hand, 12 of the 30 texture features were selected for the model development:
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SF0_sd, SF0_entropy, SF0_skewnwss, SF1_mean, SF1_sd, SF1_entropy, SF15_mean, SF15_sd,
SF15_entropy, SF18_mean, SF2_mean and SF2_sd.

Three models were subsequently developed: the first one based on morphologic
features only (morphologic model), the second one on texture features only (texture model),
and the last one using both feature classes (combined model).

The Multilayer Perceptron (MLP) classifier was identified as the best for the morpho-
logic model. The hyperparameters were optimized as follows: -L, 0.8440810869039, -M,
0.9072704953488756, -H, t, -S, 1. The model diagnostic performance estimates were SE
92.3%, SP 81.8%, ACC 85.7%, and AUC 0.848.

The Locally Weighted Learning (LWL) classifier was identified as the best for the
texture model. The hyperparameters were optimized as follows: -U 0 -K −1 -A „weka.core.
neighboursearch.LinearNNSearch -A \“weka.core.EuclideanDistance -R first-last\”„ -W weka.
classifiers.trees.DecisionStump. The diagnostic performance estimates were SE 75%, SP 93.3%,
ACC 82.8%, and AUC 0.837.

The Multilayer Perceptron (MLP) classifier was identified as the best for the combined
model. The hyperparameters were optimized as follows: -L 0.3 -M 0.2 -N 500 -V 0 -S 0 -E 20 -H a.
The model performances were SE 100%, SP 95%, ACC 97.1%, and AUC 0.968.

Results are summarized in Table 5.

Table 5. Table shows the performances of the three models (Morphologic, Texture and Combined) for
the training and validation populations.

Morphologic Texture Combined

Training

Sensitivity 92.31
(63.97–99.81)

75
(50.90–91.34)

100
(78.20–100)

Specificity 81.82
(59.72–94.81)

93.33
(68.05–99.83)

95
(75.13–99.87)

Accuracy 85.71
(69.74–95.19)

82.86
(66.35–93.44)

97.14
(85.08–99.93)

PPV 75
(54.94–88.07)

93.75
(68.95–99.02)

93.75
(68.95–99.02)

NPV 94.74
(73.05–99.17)

73.68
(56.43–85.82)

100
(83.18–100)

AUC 0.848
(0.687–0.946)

0.837
(0.673–0.939)

0.968
(0.846–0.998)

Validation

Sensitivity 66.67
(22.28–95.67)

50
(11.81–88.19)

85.71
(48.69–99.27)

Specificity 81.82
(48.22–97.72)

72.73
(39.03–93.98)

90.91
(62.26–99.53)

Accuracy 76.47
(50.10–93.19)

64.71
(38.33–85.79)

88.89
(65.29–98.62)

PPV 66.67
(33.58–88.78)

50
(22.21–77.79)

85.71
(48.69–99.27)

NPV 81.82
(58.39–93.52)

72.73
(52.56–86.52)

90.91
(62.26–99.53)

AUC 0.742
(0.477–0.919)

0.613
(0.352–0.834)

0.954
(0.752–0.999)

3.4. Machine Learning Models Validation

The three models were subsequently applied to the validation population. Just like
the training models, the highest performances were obtained by the combined model
(SE 85.7%, SP 90.9%, ACC 88.8%, and AUC 0.954) followed by the morphologic (SE 66.6%,
SP 81.8%, ACC 76.4%, and AUC 0.742) and texture (SE 50%, SP 72.7%, ACC 64.7%, and
AUC 0.613) models. Results are summarized in Table 5.
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3.5. Reproducibility

The eight morphologic features and thirty texture features showed good or excellent
agreement for both inter- and intra-reader evaluation. As for the morphologic features,
the highest inter-reader agreement was achieved for lesion margins (κ = 0.95; 95% CI:
0.89–0.99), the lowest for enhancement pattern (κ = 0.91; 95% CI: 0.81–0.98). The highest
intra-reader agreement was achieved for lesion margins (κ = 0.96; 95% CI: 0.91–0.99),
while the lowest was observed for enhancement degree (κ = 0.93; 95% CI: 0.59–0.94). The
intraclass correlation coefficients for the texture features were 0.79 (95% CI: 0.53–0.93) and
0.82 (95% CI: 0.59–0.94) for the inter- and intra-reader agreement, respectively.

4. Discussion

The aim of this study was to develop and validate a decision support model, based on
the combination of CT morphologic and texture features, to classify patients affected by
GIST as higher or lower risk according to Miettinen’s classification. Preoperative evaluation
of risk assessment is required for optimal and personalized treatment planning [8].

According to our results, a combined model, based on morphologic and texture
features, performed better than models based solely on the two feature classes separately.

Few recently published manuscripts have already investigated the potential role of ra-
diomics in the risk assessment of GISTs. Chen T. et al. [27] evaluated a radiomic nomogram
using morphologic features to predict the malignant risk of GISTs, obtaining an AUC of
0.847 [95% CI: 0.818–0.915], demonstrating that radiomics features combined with clinical
data and typical CT characteristics were more effective in evaluating the malignant potential
of GISTs compared to clinical data or typical CT characteristics models. Zhang L. et al. [28]
also demonstrated favorable performance of a 5-CT-feature-based radiomic model in
discriminating risk stratification according to Miettinen’s classification, with an AUC of
0.809 (95% CI: 0.777–0.841). Wang et al. [9] also developed four different radiomic models
based on morphological features extracted from arterial and venous enhanced CT scans
to predict the malignancy risk of GISTs, which resulted in higher diagnostic performance
compared to clinical data and/or typical CT characteristics.

The performance of the combined model obtained in the present study is in line with
the performance of previous studies. The main difference between our study and the previ-
ous ones is represented by the methodological approach. In particular, inhouse-developed
software and complex analyses were used in the previous studies. Such approaches may
result in higher performance, thus adversely affecting reproducibility. The latter is a well-
known concern for radiomics and AI studies as confirmed by recent initiatives focused on
the assessment of quality and reproducibility in this field, such as the Radiomics Quality
Scores [29]. In this context, one of the major strengths of our approach is represented by
the utilization of a commercially available software. Both TexRAD, for texture feature
extraction, and WEKA, for machine learning algorithm development, have been widely
utilized and validated, especially for oncologic imaging [14,30,31].

Unlike the previous studies, a reduced number of radiomic features, namely first-
level texture features, were included for model building process. Although this might be
considered a limitation, it should be noted that in most of the radiomic studies the feature
selection process is mandatory in order to avoid overfitting issues.

Another major difference is the use of a machine learning suite (WEKA) with a simple
user interface. This software is optimized for supervised machine learning analysis with
a specific tool (Auto-WEKA) for feature and classifier optimization. As described in our
work, different classifiers and different hyperparameters were used for the three different
models. MLP emerged as the best classifier for the morphologic and combined models,
even if with different hyperparameters, whereas LWL was the most accurate regarding the
texture model. The model training was performed using a 10-fold cross validation method,
which allowed us to partially overcome the major limit of the present study, represented by
the small sample size.
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Another limitation of the study is the retrospective nature of the patients’ enrollment.
However, in line with most of the previous similar studies, this design could be considered
appropriate for preliminary results. Finally, one limitation that may be considered is the
single slide (2D) tumor manual contouring. In this setting, the use of automatic tumor
segmentation software or 3D feature extraction are known to be the best methods. However,
the most advanced segmentation tools require specific software, therefore increasing the
complexity of the analyses and hampering its implementation in clinical workflow. On the
other hand, the 2D approach adopted in our study demonstrated a high reproducibility,
which may be well suited for routine usage.

5. Conclusions

Noninvasive risk stratification of GISTs may be performed by means of a combined
model, based on morphologic and texture features obtained from CT images. The proposed
approach, based on commercially available software, might be considered relatively easy to
perform and suitable for clinical practice if results can be confirmed in a larger population.

Author Contributions: Conceptualization, M.R. and F.C.; methodology, D.C. and D.B.; software,
D.D.S. and M.Z.; validation, E.I., A.L. and I.C.; formal analysis, A.O.; investigation, S.V.; resources,
A.O.; data curation, M.R.; writing—original draft preparation, M.R.; writing—review and editing,
A.O. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: This study was conducted in accordance the Good Clinical
Practice (GCP) International Conference on Harmonization (ICH) and approved by the Institutional
Review Board of Sant’Andrea University Hospital.

Informed Consent Statement: Informed consent was waived because of the retrospective nature of
the study.

Data Availability Statement: Data can be made publicly available upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Rubin, B.P.; Heinrich, M.C.; Corless, C.L. Gastrointestinal Stromal Tumour. Lancet 2007, 369, 1731–1741. [CrossRef]
2. Al-thani, H.; El-menyar, A.; Ibrahim, K.; Al-sulaiti, M. Clinical Presentation, Management and Outcomes of Gastrointestinal

Stromal Tumors. Int. J. Surg. 2014, 12, 1127–1133. [CrossRef] [PubMed]
3. Blay, J.-Y.; Kang, Y.-K.; Nishida, T.; von Mehren, M. Gastrointestinal Stromal Tumours. Nat. Rev. Dis. Primers 2021,

7, 22. [CrossRef] [PubMed]
4. Miettinen, M.; Lasota, J. Gastrointestinal Stromal Tumors: Pathology and Prognosis at Different Sites. Semin. Diagn. Pathol. 2006,

23, 70–83. [CrossRef] [PubMed]
5. Mantese, G. Gastrointestinal Stromal Tumor: Epidemiology, Diagnosis, and Treatment. Curr. Opin. Gastroenterol. 2019, 35,

555–559. [CrossRef] [PubMed]
6. Dimitrakopoulou-Strauss, A.; Ronellenfitsch, U.; Cheng, C.; Pan, L.; Sachpekidis, C.; Hohenberger, P.; Henzler, T. Imaging

Therapy Response of Gastrointestinal Stromal Tumors (GIST) with FDG PET, CT and MRI: A Systematic Review. Clin. Transl.
Imaging 2017, 5, 183–197. [CrossRef]

7. Danti, G.; Addeo, G.; Cozzi, D.; Maggialetti, N.; Lanzetta, M.M.; Frezzetti, G.; Masserelli, A.; Pradella, S.; Giovagnoni, A.; Miele, V.
Relationship between Diagnostic Imaging Features and Prognostic Outcomes in Gastrointestinal Stromal Tumors (GIST). Acta
Biomed. 2019, 90, 9–19.

8. Yang, J.; Chen, Z.; Liu, W.; Wang, X.; Ma, S.; Jin, F.; Wang, X. Development of a Malignancy Potential Binary Prediction Model
Based on Deep Learning for the Mitotic Count of Local Primary Gastrointestinal Stromal Tumors. Korean J. Radiol. 2021, 22,
344–353. [CrossRef]

9. Wang, Y.; Wang, Y.; Ren, J.; Jia, L.; Ma, L.; Yin, X.; Yang, F.; Gao, B.L. Malignancy Risk of Gastrointestinal Stromal Tumors
Evaluated with Noninvasive Radiomics: A Multi-Center Study. Front. Oncol. 2022, 12, 966743. [CrossRef]

10. Attanasio, S.; Forte, S.M.; Restante, G.; Gabelloni, M.; Guglielmi, G.; Neri, E. Artificial Intelligence, Radiomics and Other Horizons
in Body Composition Assessment. Quant. Imaging Med. Surg. 2020, 10, 1650–1660. [CrossRef]

11. Vicini, S.; Bortolotto, C.; Rengo, M.; Ballerini, D.; Bellini, D.; Carbone, I.; Preda, L.; Laghi, A.; Coppola, F.; Faggioni, L. A Narrative
Review on Current Imaging Applications of Artificial Intelligence and Radiomics in Oncology: Focus on the Three Most Common
Cancers. Radiol. Med. 2022, 127, 819–836. [CrossRef] [PubMed]

https://doi.org/10.1016/S0140-6736(07)60780-6
https://doi.org/10.1016/j.ijsu.2014.08.351
https://www.ncbi.nlm.nih.gov/pubmed/25152441
https://doi.org/10.1038/s41572-021-00254-5
https://www.ncbi.nlm.nih.gov/pubmed/33737510
https://doi.org/10.1053/j.semdp.2006.09.001
https://www.ncbi.nlm.nih.gov/pubmed/17193820
https://doi.org/10.1097/MOG.0000000000000584
https://www.ncbi.nlm.nih.gov/pubmed/31577561
https://doi.org/10.1007/s40336-017-0229-8
https://doi.org/10.3348/kjr.2019.0851
https://doi.org/10.3389/fonc.2022.966743
https://doi.org/10.21037/qims.2020.03.10
https://doi.org/10.1007/s11547-022-01512-6
https://www.ncbi.nlm.nih.gov/pubmed/35771379


J. Pers. Med. 2023, 13, 717 11 of 11

12. Caruso, D.; Polici, M.; Zerunian, M.; Pucciarelli, F.; Guido, G.; Polidori, T.; Landolfi, F.; Nicolai, M.; Lucertini, E.; Tarallo, M.; et al.
Radiomics in Oncology, Part 1: Technical Principles and Gastrointestinal Application in Ct and Mri. Cancers 2021, 13, 2522. [CrossRef]

13. Caruso, D.; Polici, M.; Zerunian, M.; Pucciarelli, F.; Guido, G.; Polidori, T.; Landolfi, F.; Nicolai, M.; Lucertini, E.; Tarallo, M.; et al.
Radiomics in Oncology, Part 2: Thoracic, Genito-Urinary, Breast, Neurological, Hematologic and Musculoskeletal Applications.
Cancers 2021, 13, 2681. [CrossRef] [PubMed]

14. Sacconi, B.; Anzidei, M.; Leonardi, A.; Boni, F.; Saba, L.; Scipione, R.; Anile, M.; Rengo, M.; Longo, F.; Bezzi, M.; et al. Analysis of
CT Features and Quantitative Texture Analysis in Patients with Lung Adenocarcinoma: A Correlation with EGFR Mutations and
Survival Rates. Clin. Radiol. 2017, 72, 443–450. [CrossRef]

15. De Cecco, C.N.; Ciolina, M.; Caruso, D.; Rengo, M.; Ganeshan, B.; Meinel, F.G.; Musio, D.; De Felice, F.; Tombolini, V.; Laghi,
A. Performance of Diffusion-Weighted Imaging, Perfusion Imaging, and Texture Analysis in Predicting Tumoral Response to
Neoadjuvant Chemoradiotherapy in Rectal Cancer Patients Studied with 3T MR: Initial Experience. Abdom. Radiol. 2016, 41,
1728–1735. [CrossRef] [PubMed]

16. Coppola, F.; Giannini, V.; Gabelloni, M.; Panic, J.; Defeudis, A.; Lo Monaco, S.; Cattabriga, A.; Cocozza, M.A.; Pastore, L.V.; Polici,
M.; et al. Radiomics and Magnetic Resonance Imaging of Rectal Cancer: From Engineering to Clinical Practice. Diagnostics 2021,
11, 756. [CrossRef]

17. Gabelloni, M.; Faggioni, L.; Borgheresi, R.; Restante, G.; Shortrede, J.; Tumminello, L.; Scapicchio, C.; Coppola, F.; Cioni, D.;
Gómez, I.; et al. Bridging Gaps between Images and Data: A Systematic Update on Imaging Biobanks European Society of
Radiology. Eur. Radiol. 2022, 32, 3173–3186. [CrossRef]

18. Granata, V.; Fusco, R.; Setola, S.V.; De Muzio, F.; Dell’ Aversana, F.; Cutolo, C.; Faggioni, L.; Miele, V.; Izzo, F.; Petrillo, A. CT-Based
Radiomics Analysis to Predict Histopathological Outcomes Following Liver Resection in Colorectal Liver Metastases. Cancers
2022, 14, 1648. [CrossRef]

19. Gabelloni, M.; Faggioni, L.; Fusco, R.; Simonetti, I.; De Muzio, F.; Giacobbe, G.; Borgheresi, A.; Bruno, F.; Cozzi, D.; Grassi, F.; et al.
Radiomics in Lung Metastases: A Systematic Review. J. Pers. Med. 2023, 13, 225. [CrossRef]

20. Ning, Z.; Luo, J.; Li, Y.; Han, S.; Feng, Q.; Xu, Y.; Chen, W.; Chen, T.; Zhang, Y. Pattern Classification for Gastrointestinal Stromal
Tumors by Integration of Radiomics and Deep Convolutional Features. IEEE J. Biomed. Health Inf. 2019, 23, 1181–1191. [CrossRef]

21. Xu, F.; Ma, X.; Wang, Y.; Tian, Y.; Tang, W.; Wang, M.; Wei, R.; Zhao, X. CT Texture Analysis Can Be a Potential Tool to Differentiate
Gastrointestinal Stromal Tumors without KIT Exon 11 Mutation. Eur. J. Radiol. 2018, 107, 90–97. [CrossRef]

22. Yan, J.; Zhao, X.; Han, S.; Wang, T.; Miao, F. Evaluation of Clinical Plus Imaging Features and Multidetector Computed
Tomography Texture Analysis in Preoperative Risk Grade Prediction of Small Bowel Gastrointestinal Stromal Tumors. J. Comput.
Assist. Tomogr. 2018, 42, 714–720. [CrossRef] [PubMed]

23. Palatresi, D.; Fedeli, F.; Danti, G.; Pasqualini, E.; Castiglione, F.; Messerini, L.; Massi, D.; Bettarini, S.; Tortoli, P.; Busoni, S.; et al.
Correlation of CT Radiomic Features for GISTs with Pathological Classification and Molecular Subtypes: Preliminary and
Monocentric Experience. Radiol. Med. 2022, 127, 117–128. [CrossRef]

24. Iannicelli, E.; Carbonetti, F.; Federici, G.F.; Martini, I.; Caterino, S.; Pilozzi, E.; Panzuto, F.; Briani, C.; David, V. Evaluation
of the Relationships between Computed Tomography Features, Pathological Findings, and Prognostic Risk Assessment in
Gastrointestinal Stromal Tumors. J. Comput. Assist. Tomogr. 2017, 41, 271–278. [CrossRef]

25. Ganeshan, B.; Miles, K.A. Quantifying Tumour Heterogeneity with CT. Cancer Imaging 2013, 13, 140–149. [CrossRef] [PubMed]
26. Miles, K.A.; Ganeshan, B.; Hayball, M.P. CT Texture Analysis Using the Filtration-Histogram Method: What Do the Measurements

Mean? Cancer Imaging 2013, 13, 400–406. [CrossRef] [PubMed]
27. Chen, T.; Ning, Z.; Xu, L.; Feng, X.; Han, S.; Roth, H.R.; Xiong, W.; Zhao, X.; Hu, Y.; Liu, H.; et al. Radiomics Nomo-

gram for Predicting the Malignant Potential of Gastrointestinal Stromal Tumours Preoperatively. Eur. Radiol. 2019, 29,
1074–1082. [CrossRef]

28. Zhang, L.; Kang, L.; Li, G.; Zhang, X.; Ren, J.; Shi, Z.; Li, J.; Yu, S. Computed Tomography-Based Radiomics Model for
Discriminating the Risk Stratification of Gastrointestinal Stromal Tumors. Radiol. Med. 2020, 125, 465–473. [CrossRef]

29. Lambin, P.; Leijenaar, R.T.H.; Deist, T.M.; Peerlings, J.; De Jong, E.E.C.; Van Timmeren, J.; Sanduleanu, S.; Larue, R.T.H.M.; Even,
A.J.G.; Jochems, A.; et al. Radiomics: The Bridge between Medical Imaging and Personalized Medicine. Nat. Rev. Clin. Oncol.
2017, 14, 749–762. [CrossRef]

30. Bellini, D.; Carbone, I.; Rengo, M.; Vicini, S.; Panvini, N.; Caruso, D.; Iannicelli, E.; Tombolini, V.; Laghi, A. Performance of
Machine Learning and Texture Analysis for Predicting Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal
Cancer with 3T MRI. Tomography 2022, 8, 2059–2072. [CrossRef] [PubMed]

31. Rengo, M.; Landolfi, F.; Picchia, S.; Bellini, D.; Losquadro, C.; Badia, S.; Caruso, D.; Iannicelli, E.; Osti, M.F.; Tombolini, V.; et al.
Rectal Cancer Response to Neoadjuvant Chemoradiotherapy Evaluated with MRI: Development and Validation of a Classification
Algorithm. Eur. J. Radiol. 2022, 147, 110146. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/cancers13112522
https://doi.org/10.3390/cancers13112681
https://www.ncbi.nlm.nih.gov/pubmed/34072366
https://doi.org/10.1016/j.crad.2017.01.015
https://doi.org/10.1007/s00261-016-0733-8
https://www.ncbi.nlm.nih.gov/pubmed/27056748
https://doi.org/10.3390/diagnostics11050756
https://doi.org/10.1007/s00330-021-08431-6
https://doi.org/10.3390/cancers14071648
https://doi.org/10.3390/jpm13020225
https://doi.org/10.1109/JBHI.2018.2841992
https://doi.org/10.1016/j.ejrad.2018.07.025
https://doi.org/10.1097/RCT.0000000000000756
https://www.ncbi.nlm.nih.gov/pubmed/30015796
https://doi.org/10.1007/s11547-021-01446-5
https://doi.org/10.1097/RCT.0000000000000499
https://doi.org/10.1102/1470-7330.2013.0015
https://www.ncbi.nlm.nih.gov/pubmed/23545171
https://doi.org/10.1102/1470-7330.2013.9045
https://www.ncbi.nlm.nih.gov/pubmed/24061266
https://doi.org/10.1007/s00330-018-5629-2
https://doi.org/10.1007/s11547-020-01138-6
https://doi.org/10.1038/nrclinonc.2017.141
https://doi.org/10.3390/tomography8040173
https://www.ncbi.nlm.nih.gov/pubmed/36006071
https://doi.org/10.1016/j.ejrad.2021.110146
https://www.ncbi.nlm.nih.gov/pubmed/34998098

	Introduction 
	Materials and Methods 
	Study Design and Population 
	Pathological Examinations 
	MDCT Acquisition Protocol 
	Morphologic Features 
	Texture Features 
	Machine Learning Classification 
	Statistical Analysis 

	Results 
	Study Population 
	Morphologic and Texture Features 
	Machine Learning Models Training 
	Machine Learning Models Validation 
	Reproducibility 

	Discussion 
	Conclusions 
	References

