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Simple Summary: Exposure to endocrine-disrupting pollutants, such as the fungicide mancozeb, is
linked to various environmental health hazards, including female fertility. Although the dithiocar-
bamate mancozeb has low reported toxicity in mammals, it impairs female reproductive functions
in exposed animals and humans. The specific mechanism of action of mancozeb and the damage
to cell structures in the female reproductive system are still unclear. This study aims to describe
the ultrastructure of mouse oocytes exposed in vitro to increasing concentrations of mancozeb
(0.001–1 µg/mL) by light and transmission electron microscopy and to perform a morphometric
analysis over significant organelles. While from 0.001 to 0.1 µg/mL, oocyte ultrastructure was com-
parable to controls, at the highest concentration (1 µg/mL), a decrease in the numerical density of
mitochondria and cortical granules, an altered organelle distribution, and flattening of microvilli were
observed. These results could be responsible for the adverse effect of this fungicide on mammalian
reproductive performance.

Abstract: Mancozeb is a widely used fungicide, considered to be an endocrine disruptor. In vivo and
in vitro studies evidenced its reproductive toxicity on mouse oocytes by altering spindle morphol-
ogy, impairing oocyte maturation, fertilization, and embryo implantation. Mancozeb also induces
dose-dependent toxicity on the ultrastructure of mouse granulosa cells, including chromatin con-
densation, membrane blebbing, and vacuolization. We evaluated the effects on the ultrastructure
of mouse oocytes isolated from cumulus-oocyte complexes (COCs), exposed in vitro to increasing
concentrations of mancozeb. COCs were matured in vitro with or without (control) low fungicide
concentrations (0.001–1 µg/mL). All mature oocytes were collected and prepared for light and
transmission electron microscopy. Results showed a preserved ultrastructure at the lowest doses
(0.001–0.01 µg/mL), with evident clusters of round-to-ovoid mitochondria, visible electron-dense
round cortical granules, and thin microvilli. Mancozeb concentration of 1 µg/mL affected organelle
density concerning controls, with a reduction of mitochondria, appearing moderately vacuolated,
cortical granules, and microvilli, short and less abundant. In summary, ultrastructural data revealed
changes mainly at the highest concentration of mancozeb on mouse oocytes. This could be responsible
for the previously described impaired capability in oocyte maturation, fertilization, and embryo
implantation, demonstrating its impact on the reproductive health and fertility.

Keywords: oocytes; mancozeb; ultrastructure; transmission electron microscopy; fertility; reproductive
toxicity
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1. Introduction

Over the past decades, due to the growing use of pesticides, the impact of environ-
mental pollutants on human health represents a worldwide concern. Exposure to these
substances may occur occupationally during agricultural and industrial activities through
soil, air inhalation, contaminated food and water ingestion, and skin absorption [1–4].
These pesticides affect health both in animals and humans, as demonstrated by increased
carcinogenesis [5,6], toxic effects on neuronal and immune systems [7,8], reproductive
toxicity, and reduced fertility [9–11]. The duration and timing of exposure play a significant
role in the severity of organ dysfunctions and metabolism-associated disorders [12].

Mancozeb, an ethylene-bis-dithiocarbamate, is a fungicide currently used to manage
fungal diseases in plants. Introduced in the global market in 1962, it has been used for
over 70 years due to its low price [13]. In 2021, EFSA (European Food Safety Agency)
banned the use of mancozeb as a pesticide in Europe, due to its reproductive toxicity and
endocrine-disrupting properties [14]. Nevertheless, in several countries, this fungicide is
still largely employed.

Mancozeb toxicity is widely attributed to the adverse effects of its metabolite,
Ethylenethiourea (ETU), used to evaluate its exposure in humans [15]. In workers ex-
posed to 147.11 µg concentration of fungicide for 38 workdays, the ETU concentration in
the urine ranged from 0.8 to 61.4 µg/L [16–18]. High doses of mancozeb metabolites (from
ng/L to mg/L) are often detected in the soil and surrounding water [19]. Mancozeb was
detected at a concentration of 39 µg/L in environmental water near farms [20]. The US. EPA
(Environmental Protection Agency) (2013) reported a concentration of mancozeb in surface
water ranging from 0.1 to 25.2 µg/L [21]. In the air of California, values of mancozeb
were comprised between 0.29 µg/m3 to 1.81 µg/m3 [22]. Despite its short environmental
resistance, ETU persists longer in the soil (5–10 weeks). In 1988, the WHO (World Health
Organization) estimated exposure to mancozeb and ETU was 0.01–1 µg/kg b.w./day for
the general population. Small quantities of ETU were detected in tobacco, fruits, and
vegetables. Agricultural and farming activities, during field application, represent the main
sources of contamination for the general population through inhalation, direct skin contact,
and food intake [23].

Mancozeb and its metabolite product are considered by IARC (International Agency
for Research on Cancer) Class 3 carcinogen, given the limited evidence in humans, although
teratogenic and carcinogenic effects have been observed in animal studies [24]. In vitro
experiments evidenced neurodevelopmental damages after mancozeb and ETU expo-
sure, due to mitochondrial respiration inhibition (2.6–31.2 µg/mL), active ROS generation
(0.08–7.8 µg/mL) [7,25]; oxidative stress induction, genotoxicity, and apoptosis were re-
vealed in rat fibroblast (0.125–0.5 µg/mL) [26].

Endocrine disrupting chemicals (EDCs) such as mancozeb are defined as “exogenous
agents that can potentially mimic, secrete, carry natural hormones, or replace them by
interacting with their receptors” [27]. Even though the involvement of EDCs, such as
mancozeb, in certain reproductive diseases is well documented [28], only a few studies
have examined the direct impact of pesticides on fertility, especially in female infertility. It
has been hypothesized that the negative effect of these toxicants on reproductive health
occurs either by affecting the hypothalamic-pituitary-gonadal axis or by directly affecting
the genital organs through cytotoxicity on germ cells [29,30].

Despite low acute mammalian toxicity (LD50 = 8 g/kg/day in rats), long-term and
chronic exposure to mancozeb could lead to spontaneous miscarriage, maternal mortal-
ity, and fetal malformation in rats and rabbits [31]. It affected pregnancy and embryo
development by apoptosis and induced gonadal toxicity in female rats by genotoxic and
malignant alterations in human ovarian cells [32,33]. Mancozeb impaired the endometrium
receptivity through the direct suppression of prostaglandin E synthase (PGS) expression in
the uterine microenvironment [34] and affected mouse embryo implantation by reducing
trophoblastic spheroids (embryo surrogates) attachment onto endometrial epithelial cells
via downregulation of estrogen receptor β (ERβ) and integrin β3 (ITGβ3) expression [35].
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Nevertheless, this fungicide’s exact mechanism of action on reproductive functions
still needs to be fully understood. Exposure to a mancozeb concentration of 0.003 µg/mL,
impairs mouse embryo development in vitro by inducing blastomere apoptosis [36]. As
recently described, exposure to mancozeb (0.3–30 µm/mL) reduces cumulus cell expansion,
indicating insufficient maturation of the caprine oocyte cytoplasm upon high-dose expo-
sure [37]. The cytotoxic effects of mancozeb on the caprine oocytes were seen at the highest
concentrations (3 and 30 µg/mL), with a significant decrease in the nuclear maturation rate
by preventing the formation of the metaphase plate. Interestingly, disintegrated nuclear ma-
terials formation was present even at low concentrations (0.3 µg/mL) [37]. Transcriptomic
analysis on ovaries from in vivo exposed mice (100 mg/kg) revealed an abnormal mito-
chondrial respiratory chain function responsible for oxidative phosphorylation decoupling,
oxidative stress, ovarian injury, and apoptosis [38].

By using a lower range of concentrations (0.001–1 µg/mL), we previously observed
alterations of the spindle morphology in mouse cumulus-oocyte complexes (COCs) asso-
ciated with a reduction of the fertilization rate in vitro [39]. A reduced ability to sustain
the early steps of fertilization, i.e., two pronuclei (2PN) formation, was also confirmed
in vivo [40]. Numerous studies in mouse granulosa cells (GCs) highlighted p53 downreg-
ulation, ROS production increase, and mitochondrial activity alterations after fungicide
exposure [32,41]. All these data were further sustained by ultrastructural analysis of mouse
GCs, evidencing chromatin condensation, membrane blebbing, cytoplasmic vacuolization,
and cell degeneration [42]. Damages to the somatic compartment of COCs may be co-
responsible for the above-cited germ cell alterations, given the close association between
GCs and the oocyte.

However, to better clarify the potentially detrimental effects of mancozeb exposure
to mouse oocytes, we performed a morphological study by light (LM) and transmission
electron microscopy (TEM) and a morphometric evaluation of cytoplasmic organelles.

2. Materials and Methods
2.1. Chemicals

Unless otherwise stated, all materials were purchased from Sigma Chemical (St. Louis,
MO, USA).

2.2. Animals

Swiss CD1 mice (Harlan Italy, Udine, Italy) were housed in individual cages with a
12:12 h light: dark cycle, controlled temperature (21 ± 1 ◦C), and free access to food and
water. Twelve prepubertal females (21–23 days old) were intraperitoneally administered
5 IU of PMSG (Pregnant Mare Serum Gonadotropin) (Intervet, Milan, Italy) and euthanized
48 h later [42]. Animals were maintained according to the Italian Department of Health
Guide for Care and Use of Laboratory Animals [42].

2.3. In Vitro Maturation of Oocyte-Cumulus Cell Complexes and Experimental Protocol

COCs were recovered by puncturing antral follicles from mouse ovaries with an
insulin syringe. COCs (10/group) were matured in vitro (IVM) at 37 ◦C and 5% CO2 in air
in alpha MEM supplemented with 0.23 mM pyruvate and two mM l-glutamine, with or
without (control) low concentrations of the fungicide ranging from 0.001 to 1 µg/mL.

These concentrations were selected based on the results of previous studies on mouse
oocytes and granulosa cells treated with mancozeb [40,42]. A stock solution of mancozeb
(50 µg/mL, 50×) was prepared by resuspending the fungicide in the culture medium or
vehicle (DMSO: dimethyl sulfoxide) to obtain the desired concentrations by diluting with
the culture medium. The final volume of vehicles added to the samples never exceeded
0.1% (v/v), and no adverse effects on maturation were observed [39].

After 16 h, control and mancozeb-exposed oocytes were deprived of cumulus cells
and arrested at metaphase II (MII), as evidenced by extrusion of the first polar body (PB1).
Experiments were repeated in triplicate.



Biology 2023, 12, 698 4 of 17

2.4. Light Microscopy (LM) and Transmission Electron Microscopy (TEM)

After collection, oocytes were immediately fixed in 2.5% glutaraldehyde (Agar Sci-
entific, Cambridge Road Stansted Essex, Cambridge, UK) in PBS (phosphate buffered
saline, pH = 7–7.4) and were maintained at 4 ◦C until the next preparative for TEM ob-
servations [42–46]. After several washes in PBS, mouse oocytes were post-fixed with 1%
osmium tetroxide (electron microscopy sciences) in PBS for one and half hours in a dark
compartment at 4 ◦C. Oocytes were then embedded in small blocks of 1% agar of about
5 mm × 5 mm × 1 mm in size, dehydrated in an ascending series of ethanol, immersed
in propylene oxide for solvent substitution, and left overnight in a propylene oxide/resin
1:1 solution. Finally, they were embedded in epoxy resin EMbed-812 (Electron Microscopy
Sciences, 1560 Industry Road, Hatfield, PA, USA) and sectioned using an Ultracut E ul-
tramicrotome (Leica EMUC6, Wetzlar, Germany). Semithin sections (1 µm thick) were
stained with methylene blue (Sigma-Aldrich), examined by LM (Zeiss Axioskop), and
photographed using a digital camera (Leica DFC230).

Ultrathin sections (70–90 nm thick) were cut with a diamond knife, mounted on copper
grids, and contrasted with Uranyless (Uranyl acetate alternative) (TAAB Laboratories
Equipment Ltd., Aldermaston, UK) and Lead Citrate (Electron Microscopy Science) before
being examined and photographed using Zeiss EM10 and Philips TEM CM100 electron
microscopes operating at 80 kV.

The following parameters were evaluated by LM and TEM and taken into considera-
tion for the qualitative morphological assessment of the ultrastructural characteristics of
oocytes: general features (including shape and dimension); cytoplasmic organization and
cell organelles (state of preservation, type, distribution); oolemma (membrane integrity,
presence, appearance, and distribution of microvilli); perivitelline space (width, presence
of cytoplasmic fragments) and zona pellucida.

2.5. Morphometric Analysis

ImageJ 1.54 v software was used to measure the numerical density of mitochondria,
SER, autophagic vesicles, multivesicular bodies and dense lamellar bodies, cortical gran-
ules, and microvilli, following observations of low-magnification TEM micrographs of
control and mancozeb-treated oocytes [47,48]. More specifically, the numerical density of
mitochondria, vesicular and tubular SER elements, autophagic vesicles, multivesicular
bodies, and dense lamellar bodies was determined on at least five equatorial sections
(distance between the sections: 3 µm) of two oocytes/group. Values are expressed as
numerical density per 50 µm2 of the oocyte area. The evaluation of cortical granule and
microvilli density was performed by analyzing TEM micrographs at 2500× of the entire
surface profiles on five equatorial sections [49] of two oocytes/groups. Values are ex-
pressed as cortical granule and microvilli density (n. of cortical granules and microvilli per
10 micrometers of the oocyte linear surface profile).

2.6. Statistical Analysis

All data are expressed as means ± standard deviation (SD). Statistical comparisons
were performed using one-way ANOVA with Tukey’s honest significant difference (HSD)
tests for post-hoc analysis (GraphPad InStat. GraphPad Software, La Jolla, San Diego, CA,
USA). Differences in values were considered significant if p < 0.05.

3. Results
3.1. Controls

By LM on semithin sections, control oocytes showed a regular round shape with an
equatorial diameter of about 80 µm. The ooplasm appeared dense and homogeneous,
surrounded by an intact zona pellucida (Figure 1A, inset).

In the ooplasm, TEM analysis revealed numerous organelles evenly distributed, indi-
cating a high cytoplasm/organelle ratio (Figure 1A). Numerous round-to-ovoid-shaped
mitochondria were mostly organized in groups throughout the ooplasm. Mitochondrial



Biology 2023, 12, 698 5 of 17

cristae were well-distinguishable, with a dense mitochondrial matrix; both inner and outer
mitochondrial membranes appeared electron-dense (Figure 1B,D). In addition, a highly
dense “cytoplasmic lattice,” a typical fibrillar structure, was diffusely scattered in the
ooplasm of mouse oocytes. Lipid droplets and smooth endoplasmic reticulum (SER) were
commonly found (Figure 1B). Numerous dense lamellar bodies were present, whereas
multivesicular aggregates of small vesicles and large vacuoles were mostly located in the
cortical region of the ooplasm (Figure 1C). Occasionally, immature autophagosome vesicles
were dispersed throughout the cytoplasm. Numerous rounds and uniformly electron-
dense cortical granules were linearly arranged below the oolemma (Figure 1B). A narrow
perivitelline space was occupied by numerous, longer, and thin microvilli protruding from
the oolemma. The zona pellucida appeared continuous and characterized by a smooth
appearance (Figure 1B,C). Table 1 shows a summary of the main results.
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Figure 1. Ultrastructure of mouse oocytes in the controls group. Representative TEM micrographs
showing in (A) the general morphology of the cortical region in MII mouse oocytes, microtopography
of intracellular organelles, and microvillar processes. Round/ovoid mitochondria (m) and cortical
granules (cg) are visible; zp: zona pellucida; mv: microvilli (TEM, bar: 1 µm). Inset in (A): a
representative image of a semithin section of mouse oocyte (LM, Mag: 40×). (B) High magnification,
cortex of mouse oocytes evidence clusters of mitochondria (m), lipid droplets (ld), multivesicular
bodies (mvb), cortical granules (cg), and regular distribution of microvilli (mv) on the oolemma (TEM,
bar: 800 nm). (C) Multivesicular aggregates (mva) are visible in the cortex, with dense lamellar bodies
(dlb), at high magnification. Notice long and thin microvilli (mv) (TEM, bar: 800 nm). (D) Portion
of ooplasm showing cell organelles: mitochondria (m) with electron-dense cristae, accompanied by
multivesicular bodies (mvb), multivesicular aggregates (mva). Dense lamellar bodies (dlb), SER and
the extensive fibrillar matrix of cytoplasmic lattice (*) are observed (TEM, bar: 600 nm).
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Table 1. Summary of the qualitative data obtained by TEM analysis on the main ultrastructural
features in oocytes unexposed (controls) or exposed to increasing concentrations of mancozeb
(0.001–1 µg/mL).

Mancozeb

Control 0.001 µg/mL 0.01 µg/mL 0.1 µg/mL 1 µg/mL

Cytoplasmic lattice Uniformly
distributed

Uniformly
distributed

Uniformly
distributed

Uniformly
distributed

Uniformly
distributed

Mitochondria
Round to ovoid

shaped, with dense
matrix

Round to ovoid
shaped

Increased
vacuolated forms

Increased
vacuolated forms

Prevalent
vacuolated forms

Cortical Granules Round, dark
electron density

Round, dark
electron density

Round, dark
electron density

Round, dark
electron density

Round, dark
electron density

Microvilli Long, and thin Thicker Short and thick Short and thick Flattened

Zona pellucida Dense Dense Dense Thin and dense Thin and dense

3.2. Mancozeb 0.001 µg/mL

Oocytes exposed in vitro to the lowest concentration of mancozeb presented morpho-
logical features similar to the control group by LM. The zona pellucida was intact, and the
ooplasm showed a high organelle density (Figure 2A, inset).

Low magnification TEM micrographs confirmed a cytoplasmic ultrastructure simi-
lar to controls, with a homogenous distribution of numerous organelles in the ooplasm
(Figure 2A); the cytoplasmic lattice was well-distinguishable and evenly distributed throughout
the ooplasm. Mitochondria were the most prominent organelles. At higher magnification,
the clustered organization of mitochondria and their ultrastructural characteristics, i.e., a
round-to-ovoid shape, a double-layered electron-dense mitochondrial membrane, and a
homogeneous matrix, did not change if compared to controls (Figure 2B,D). Rarely vacuo-
lated mitochondria were present in the ooplasm. Numerous multivesicular bodies and SER
were isolated or arranged in groups; membrane-bound lamellar bodies, containing a dense
undigestible material were frequently detected in the ooplasm (Figure 2B,C). Occasionally,
immature early autophagic vesicles with a marked lumen bordered by a double membrane
were found (Figure 2D). Numerous rounded cortical granules with dark electron-dense
content were located just beneath the oolemma (Figure 2C). Thick and short microvilli
were regularly distributed along the oolemma, and the perivitelline space appeared narrow
(Figure 2A,C). Table 1 shows a summary of the main results.

3.3. Mancozeb 0.01 µg/mL

By LM, oocytes treated with a concentration of 0.01 µg/mL of mancozeb had a round
shape and an intact zona pellucida. The perivitelline space appeared less thick than in
controls and mancozeb 0.001 µg/mL (Figure 3A, inset).

Differently from the previous groups, TEM observations highlighted a reduction in
organelle density and a patchy distribution (Figure 3A,B). The ooplasm was rich in clusters
of round-shaped mitochondria with electron-dense inner and outer membranes. Occa-
sionally, vacuolated mitochondria were detected in which the outer membrane and cristae
were not distinguishable (Figure 3B–E). SER vesicles were visible (Figure 3B), together
with multivesicular aggregates and multivesicular bodies. Fibrillar structures, typical of
the cytoplasmic lattice, were distinctly observable (Figure 3B,C). There were numerous
dense lamellar bodies and mature vesicles associated with autophagy (Figure 3C, inset).
Subcortical round and electron-dense cortical granules were less abundant than in previous
groups (Figure 3D). Microvilli appeared slightly shorter in length, lesser in number, and
more irregularly distributed; moreover, extracellular material and debris were found in
the perivitelline space (Figure 3C). The zona pellucida showed high density (Figure 3C).
Table 1 shows a summary of the main results.
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Figure 2. Ultrastructure of mouse oocytes in mancozeb 0.001 µg/mL group. (A) Low magnification
of TEM micrographs from MII mouse oocytes showing high preservation of cell organelles, homo-
geneously distributed in the cytoplasm. Clustered mitochondria (m) and numerous multivesicular
aggregates (mva) are visible; mv: microvilli.(TEM, bar: 2 µm). Inset in (A): a representative semithin
section of mouse oocyte (LM, Mag: 40×). (B) Representative TEM image of the cortical region
in MII mouse oocytes. Clusters of mitochondria (m), with electron-dense cristae and matrix, are
visible, accompanied by multivesicular aggregates (mva) and multivesicular bodies (mvb). zp: zona
pellucida (TEM, bar: 500 nm). (C) At high magnification, a small portion of the cortex evidences
multivesicular bodies (mvb), with dense lamellar bodies (dlb) and multivesicular aggregates (mva).
Cortical granules (cg) are linearly arranged below the oolemma. Note multivesicular bodies (mvb)
and dense lamellar bodies (dlb) are in close association with an autophagic-like vesicle (arrowhead).
Short and thick microvilli (mv) are observed (TEM, bar: 500 nm). (D) Micrographs of cytoplasmic
ultrastructure in mouse oocyte. Image shows different cytoplasmic structures as mitochondria (m),
with a round or oval shape and visible double membranes, multivesicular bodies (mvb) and aggre-
gates (mva), dense lamellar bodies (dlb), and fibrillar matrix of cytoplasmic lattice (*). Immature
autophagic-like vesicle delimited by a double membrane and a wider lumen (arrow). SER, with small
vesicles, is also visible (TEM, bar: 1 µm).

3.4. Mancozeb 0.1 µg/mL

Oocytes exposed to mancozeb 0.1 µg/mL showed a round-to-ovoid shape with a very
narrow perivitelline space and an intact zona pellucida under LM (Figure 4A, inset).

Ultrastructural analysis evidenced a dramatic reduction in organelle density (Figure 4A).
Mitochondria appeared less numerous, with less evident mitochondrial cristae, compared
to the previous group (0.01 µg/mL) (Figure 4A–C). Some of these organelles appeared
vacuolated (Figure 4D). However, the quantity of vacuolized mitochondria remains al-
most unchanged compared to the previous group. Tubular SER elements seemed slightly
reduced, compared to the previous group (Figure 4B). Multivesicular aggregates were
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distributed in the cortical region in the cytoplasm, accompanied by dense lamellar bodies
(Figure 4B). Furthermore, TEM observations showed the presence of structures compatible
with mature autophagic vesicles, enclosed by a single membrane and containing membra-
nous material of unrecognizable origin (Figure 4C, inset). The density of cortical granules
appeared to be reduced, whereas the oolemma showed smaller and shorter microvilli
(Figure 4B). In the perivitelline space, it was detected the presence of extracellular material
and debris (Figure 4C). The zona pellucida appeared thin and dense. Table 1 shows a
summary of the main results.
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Figure 3. Ultrastructure of mouse oocytes in mancozeb 0.01 µg/mL group. Representative TEM
micrograph of mouse oocyte showing in (A) patchy distribution of intracellular organelles. Note
numerous dense lamellar bodies (dlb), multivesicular bodies (mvb), multivesicular aggregates (mva),
and mitochondria (m); mv: microvilli (TEM, bar: 1 µm). Inset in (A): representative semithin section
of mouse oocyte (LM, Mag: 40×). (B) A portion of free organelles in the cortical region. Clusters
of vacuolated mitochondria (vm), multivesicular aggregates (mva), andSER are observed. Cortical
granules are less visible. Less, short, and thicker microvilli (mv) are present. zp: zona pellucida
(TEM, bar: 1 µm). (C) High magnification of cortical region in MII oocytes showing few organelles.
Notice, in the perivitelline space (pvs), extracellular material and debris (arrow); mva: multivesicular
aggregates; (*): cytoplasmic lattice (TEM, bar: 800 nm). Inset in (C): clusters of mitochondria (m),
multivesicular bodies (mvb), and immature autophagic-vesicle (arrowhead) delimited by a double
membrane, with recognizable material derived from cytoplasmic organelles (TEM, bar: 800 nm). (D)
Isolated cortical granule (cg) visible below the oolemma; vacuolated mitochondria (vm) (TEM, bar:
800 nm). (E) Groups of vacuolated mitochondria (vm) and mitochondria (m) at high magnification
(TEM, bar: 800 nm).
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Figure 4. Ultrastructure of mouse oocytes in mancozeb 0.1 µg/mL group. (A) TEM micrograph
showing general morphology of MII oocyte. Few organelles are visible in the cytoplasm; m: mito-
chondria; zp: zona pellucida. Rare cortical granules are visible (arrow) (TEM, bar: 2 µm). Inset in
(A): semithin section of mouse oocytes (LM, Mag: 40×). (B) A portion of the cortical region showing
nonhomogeneous and short microvilli (mv) protruded in the perivitelline space (pvs), SER, and dense
lamellar bodies (dlb) (TEM, bar: 1 µm). (C) Cortex of mouse oocytes with few organelles, sporadic
clusters of mitochondria (m). Notice the presence of extracellular materials and debris (arrow) in the
perivitelline space. (TEM, bar: 1 µm). Inset in (C): Mature autophagic-like vesicles (arrow) enclosed
in a single membrane, containing material of unrecognizable origin and vacuolated mitochondria
(vm) (TEM, bar 600 nm). (D) TEM image of ooplasm showing vacuolated mitochondria (vm), dense
lamellar bodies (dlb), multivesicular aggregates (mva), and abundant cytoplasmic lattice (*) (TEM,
bar: 1 µm).

3.5. Mancozeb 1 µg/mL

At the highest concentrations of mancozeb, oocytes showed signs of ultrastructural
damage. By LM, the oocytes presented a round shape, and the ooplasm showed organelles
condensed in one pole (Figure 5A, inset).

TEM revealed a low cytoplasm/organelles ratio and a non-homogeneous distribution
of organelles, which appeared reduced in some areas of the ooplasm compared to the
previous groups (Figure 5A). Mitochondria were less numerous, with a round-to-ovoid
shape, sometimes vacuolated. Outer mitochondrial membranes appeared highly electron-
dense (Figure 5B). Clusters of mitochondria, occasionally including SER tubules, were
interspersed with numerous isolated elements (Figure 5B, inset). Cytoplasmic lattices were
identifiable in the ooplasm by fibrillar structures; multivesicular bodies and dense lamellar
bodies were seen (Figure 5C,D). Noteworthy, some regions just beneath the oolemma,
showed organelles-free areas and cortical granules were very rare (Figure 5A,B). Microvilli
appeared mostly short, tiny, flattened, and not numerous, even if, in some areas they were
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longer. Sometimes, in the perivitelline space, extracellular materials, such as extracellular
vesicles and cell fragments, were found (Figure 5B,D). The zona pellucida appeared thin
and dense (Figure 5C,D). Table 1 shows a summary of the main results.
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Figure 5. Ultrastructure of mouse oocytes in mancozeb 1 µg/mL group. (A) Representative TEM
micrograph of the cortical region showing low cell organelles density. Few mitochondria (m) are
visible; cortical granules are absent. Notice the lack of microvilli (arrow) on the oolemma; zp:
zona pellucida (TEM, bar: 2 µm). Inset in (A): semithin section of mouse oocytes, with condensed
organelles in one pole (LM, Mag: 40×). (B) A portion of the cortical region with a non-homogeneous
distribution of organelles beneath the oolemma and short and thick microvilli (mv). Exocytotic
vesicles (arrow) are visible in the perivitelline space; mitochondria (m) (TEM, bar: 1 µm). Inset in
(B): groups of mitochondria (m) and vacuolated mitochondria (vm) (TEM, bar: 1 µm). (C) High
magnification of cortex part with more organelles present; mitochondria (m) with evident cristae,
dense lamellar bodies (dlb), and multivesicular bodies (mvb); pvs: perivitelline space; (*): cytoplasmic
lattice; (TEM, bar: 1 µm). (D) Representative TEM micrographs of the cortical region in mouse oocyte.
Multivesicular bodies (mvb) are visible. Few cortical granules (cg) are present. Microvilli (mv) are
short, and irregularly distributed on the oolemma. Extracellular material, exosomes, and debris
(arrow) are detected in the perivitelline space; zp: zona pellucida; (TEM, bar: 1 µm).

3.6. Morphometric Analysis

The morphometric analysis revealed a downward trend in the mitochondrial nu-
merical density from control to increasing concentrations of mancozeb (C: 28 ± 7.131;
0.001 µg/mL: 24.13 ± 5.436; 0.01 µg/mL: 23.38 ± 8.684; 0.1 µg/mL: 21.13 ± 4.794; 1 µg/mL:
18.25 ± 5.175). However, a significant decrease was evidenced between the group exposed
to mancozeb 1 µg/mL and controls (18.25 ± 5.175 vs. 28 ± 7.131; p < 0.05) (Table 2).
The density of multivesicular bodies, dense lamellar bodies, and vesicular/tubular SER
elements did not reveal significant differences between groups (p > 0.05, Table 2). However,
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autophagic vesicles showed an upward trend at increasing mancozeb concentrations, even
if not significant.

Table 2. Morphometric evaluation (expressed as mean ± standard deviation) of organelles in control
and mancozeb-exposed groups (0.001–1 µg/mL). Morphometry was performed using one-way
ANOVA with Tukey’s HSD post-hoc analysis. Different superscripts indicate a significant difference
(p < 0.05).

Mancozeb

Control 0.001 µg/mL 0.01 µg/mL 0.1 µg/mL 1 µg/mL

Mitochondria (50 µm2) 28 ± 7.131 a 24.13 ± 5.436 a,b 23.38 ± 8.684 a,b 21.13 ± 4.794 a,b 18.5 ± 5.175 b

Multivesicular bodies and
dense lamellar bodies (50 µm2) 7 ± 1.581 8.6 ± 1.517 7.4 ± 1.517 7.2 ± 0.836 7.4 ± 1.14

Autophagic vesicles (50 µm2) 0.6 ± 0.547 0.8 ± 0.836 1.4 ± 0.547 1.6 ± 0.547 1.8 ± 0.836

SER (50 µm2) 3 ± 1 2.8 ± 1.789 2.4 ± 1.14 1.8 ± 0.836 0.8 ± 0.836

Cortical granules/10 µm 3 ±0.707 a 3.2 ± 0.837 a,b 1.6 ± 0.894 a,c 1.6 ± 1.14 a,c 0.8 ± 0.837 c

Microvilli/10 µm 15.6 ± 2.408 a 14.4 ± 2.702 a,b 11 ± 2.345 b 11.4 ± 1.517 a,b 6 ± 2.449 c

The morphometric evaluation of cortical granules showed that control and mancozeb
0.001 µg/mL had a significantly lower number per 10 µm when compared to mancozeb
1 µg/mL (3 ± 0.7 and 3.2 ± 0.8 vs. 0.8 ± 0.8, respectively; p < 0.05), with a general declining
trend, as seen for mitochondria (Table 2). The number of microvilli per 10 µm decreased at
increasing concentrations of the pesticide, when compared to controls (15.6 ± 2.408), with
a highly significant difference at 1 µg/mL (6 ± 2.449; p < 0.001) (Table 2).

4. Discussion

This study described the effects of increasing concentrations of mancozeb on the
mouse oocyte ultrastructure, evidencing overall proper preservation of oocytes exposed
from 0.001 to 0.1 µg/mL. Morphology changes, mainly affecting organelle shape, density,
and plasma membrane, were observed in oocytes exposed with the highest tested fungicide
concentration (1 µg/mL).

Mancozeb caused a reduction of thyroxine (T4) levels in female rats, neural tube
defects [50,51], and genotoxic effects in humans [31]. The reproductive toxicity caused
in vivo pathological alterations in mouse ovaries, impaired fertilization, and alterations of
the estrous cycle [52,53]. Its action was responsible for a decrease in the number of healthy
follicles and an increase in the number of atretic follicles [40,54]. These data were confirmed
in vitro, where increasing doses of mancozeb (0.001–1 µg/mL) determined a reduction in
the fertilization rates and an alteration of the oocyte meiotic spindle morphology [39].

At the lowest concentrations of mancozeb (0.001–0.01 µg/mL), our morphological data
indicated good overall preservation of the oocyte ultrastructure; no specific alterations were
detected on mitochondria, cortical granules, and microvilli. In the ooplasm of all groups
examined, the presence of the “cytoplasmic lattice” formed by a fibrillar protein matrix
was abundant [55,56]. These fibrillar structures could play a regulatory role in oocyte
maturation by acting as a storage site for ribosomes and maternal ribosomal RNA during
the early stages of embryo development [57,58]. Recently, the cytoplasmic lattice was
associated with the subcortical maternal complex (SCMC), a multiprotein complex located
in the cellular subcortex and inherited from the mother. The interplay between cytoplasmic
lattice and SCMC seems to be critical for the oocyte-embryo transition, particularly for
meiotic spindle formation and positioning, translation regulation, organelle redistribution,
and epigenetic reprogramming [58].

However, ultrastructural changes were found in oocytes treated with 0.1 and 1 µg/mL
of mancozeb. Our morphological findings showed the rearrangement, as well as the
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reduction of cell organelles/ratio in the ooplasm, related to the exposure dose. This non-
homogeneous distribution pattern could be a sign of oocyte immaturity or be associated
with loss of oocyte viability, at least in mice, as shown by previous studies [59–61]. TEM
analysis revealed a reduction in the numerical density of mitochondria in mouse oocytes
treated with mancozeb 1 µg/mL compared to controls. Moreover, in this experimental
group, mitochondria appeared mostly vacuolated. Vacuolated mitochondria are a peculiar
aspect in mouse oocytes, where they can present one or two light vacuoles in their ma-
trix [62], but their role remains unclear. Some authors hypothesized they may represent
an immature form limiting ROS [63,64]. Others believe that this specific mitochondrial
morphology could be associated with an increased surface area due to the expansion of
outer and inner membranes [65]. Vacuolated mitochondria could also result in a reduction
of their membrane potential and a decreased efficiency [66]. Such ultrastructural changes
have been reported in various pathological states and could indicate dysfunctions of these
organelles and/or activation of apoptotic phenomena [67].

In line with this, the decrease in the numerical density of mitochondria at the high-
est concentration and a higher prevalence of their vacuolated morphology may indicate
alterations in respiratory activity and energetic metabolism or oxidative stress conditions.
In addition, mitochondria are maternally inherited, so genetic, functional, structural, and
numerical abnormalities in the oocyte, associated with metabolic defects, could compro-
mise the embryos’ ability to pass the pre-implantation stages. Mitochondrial defects, such
as impaired membrane potential, altered mitochondrial DNA expression, and structural
abnormalities, could lead to irrecoverable failure of the pre-implantation embryo [68].

Ultrastructure analysis revealed a significant reduction in the linear density of cortical
granules in the group at 1 µg/mL, compared to control and mancozeb 0.001 µg/mL groups.
Usually, cortical granules are small organelles, regularly present, stratified in one to three
rows in the cortex region of the oocytes. They represent a product of the Golgi complex;
they showed different electron densities in mice (dark or light), as observed by Nicosia and
collaborators (1977) [69], which might depend on different stages of maturation, and they
have a unique role in fertilization [70–73]. Indeed, cortical granules are usually involved
in the blocking mechanism of polyspermia through the exocytosis of their contents (gly-
cosaminoglycans, proteases, acid phosphatases, and peroxidases) in the perivitelline space,
called “cortical reaction” [69,74,75]. The reduction and/or absence of these organelles, as
suggested by our findings, could be a marker of premature exocytosis of its content and
could be indicative of an inability of the oocyte to interact with the spermatozoa, leading to
non-monospermic fertilization and the production of an embryo, with an inappropriate
chromosome arrangement [75,76].

Furthermore, the results of our work reported an irregular and decreased distribution
of microvilli, highly significant at the 1 µg/mL concentrations, which are short and some-
times flattened, compared with controls and other tested groups. Microvilli are dynamic
structures in the oolemma, known for their role in membrane fusion during fertiliza-
tion [77,78]. Some authors suggest that microvilli may act as a platform, which concentrates
adhesion/fusion proteins and/or provides membranous protrusion with a slight curva-
ture radius, facilitating the interaction between spermatozoa and oocytes [79,80]. Thus,
alterations in microvilli morphology, emerging from our observations, could represent the
inability of the oocyte to facilitate sperm entrance, reducing the fertilization rate.

In all groups studied, it was detected the presence of multivesicular bodies, which
characterized the cytoplasm of mouse oocytes. These structures are large pale spherical
vacuoles containing rounded vesicles and represent a variety of lysosomes. Multivesicular
bodies behave as autophagic vacuoles or autolysosomes and digest endogenous material
such as secretory granules, thus regulating secretory processes within certain cells [81].
However, these structures, dense lamellar bodies, and phagophore-like structures at the
different stages of maturation may represent autophagic phenomena, which could be
associated with cellular stress conditions, as previously reported [76,82]. Moreover, the
extracellular materials, exosome vesicles, and debris noted in the perivitelline space could
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be compatible with different processes, such as exocytosis of residual bodies or autophagic
exocytosis. These data represent evidence of degenerative changes related to the apoptotic
process or aging of the oocyte [83,84] due to the accumulation of autophagic or degradative
vesicles in the cytoplasm.

Our previous in vitro study demonstrated dose-related toxicity of increasing concen-
trations of mancozeb (from 0.001 to 1 µg/mL) on the ultrastructure mouse granulosa cells,
resulting in intercellular contact alterations, nuclear membrane irregularities, chromatin
marginalization and condensation, membrane blebbing and signs of apoptosis [42,85].
Recently, it was found that mancozeb suppresses granulosa cells’ viability and changes
their morphology but induces granulosa cells to secrete progesterone, which could in-
hibit LH (luteinizing hormone) production and suppress ovulation [37]. Since granulosa
cells contribute to the development and maturation of oocytes, their alterations may be
associated with the oocyte’s reduced capability and sterility [86–88]. However, in this
current study, no dose-dependent toxicity of mancozeb on mouse oocyte ultrastructure
was found. Emerged data from our work showed some ultrastructural changes at the
highest concentration, which could be attributed to the fungicide, but without indicating
gradual alterations depending on the exposure dose. This could be connected to the pro-
tective role against toxicants exerted by cumulus cells toward the oocyte, as previously
demonstrated by others [89,90]. In our experimental model, cumulus cells exerted quite
efficient protection at low concentrations of mancozeb, becoming ineffective at 1 µg/mL.
Our morphological findings added information regarding the potentially harmful impact
of mancozeb on the mammalian oocyte ultrastructure.

5. Conclusions

In conclusion, we reported ultrastructural changes on the mouse oocyte primarily
at the highest concentration of mancozeb, indicating the morphological location of the
alterations and the individual compartments altered and explaining its detrimental effects
on female reproductive health. The interesting aspect of this study is that mancozeb-
induced detrimental effects on the ultrastructure of mouse oocytes only at the highest
concentration (1 µg/mL) could be indicative of protection exerted by nourishing cumulus
cells toward the oocyte. However, this action seems to be not fully effective at the highest
concentration, being responsible for the toxicant intake by the oocyte. These results are of
interest for fertility preservation and infertility studies, also because using oocytes matured
in vitro provides an easy and useful experimental model of reproductive toxicity to study
the harmful effects of pesticides, with results potentially transferable to higher species,
including humans.
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