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Large amount of data are today available, that are easier and faster to collect than survey data,
bringing new challenges. One of them is the nonprobability nature of these big data that may
not represent the target population properly and hence result in highly biased estimators. In
this article two approaches for dealing with selection bias when the selection process is
nonignorable are discussed. The first one, based on the empirical likelihood, does not require
parametric specification of the population model but the probability of being in the
nonprobability sample needed to be modeled. Auxiliary information known for the population
or estimable from a probability sample can be incorporated as calibration constraints, thus
enhancing the precision of the estimators. The second one is a mixed approach based on mass
imputation and propensity score adjustment requiring that the big data membership is known
throughout a probability sample. Finally, two simulation experiments and an application to
income data are performed to evaluate the performance of the proposed estimators in terms of
robustness and efficiency.
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1. Introduction

The main characteristic of big data sources is that they provide us with detailed

information often in real time, since they are generated in an automated way using

information technology systems or sensors. This results in massive datasets of very large

volume and in a huge variety of forms of data. For an overview on big data, see Beresewicz

et al. (2018). Large amount of data are therefore available, that are easier and faster to

collect than the standard data sources as census and survey data, bringing new

opportunities and challenges, see Pfeffermann (2015).

However, if on one hand big data represent potentially new data sources, on the other we

need to know how much they can help the inferential process and under which

assumptions. From the statistical inference point of view, what really matters is the way

these data are generated. Big data sources are nonprobability samples, which often fail to

represent the target population properly then the analysis results may be subject to

selection biases, see Elliott and Valliant (2017) and Meng (2018). In this article, this

concern is addressed.

Let A and B be two data sources, where B is a nonprobability sample while A is an

independent probability sample. We assume that (x, y) are available from B while x is

available from survey data A, where x is a vector of p auxiliary variables and y is the
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variable of interest. Generally speaking, there are three possible methods to draw reliable

statistical inference from nonprobability samples. The first method is the so called

propensity score adjustment, see Rosenbaum and Rubin (1983). In this approach the

unknown probability of selection for the units in B is estimated from sample A (propensity

or sampling score) by the covariates x. The second approach is based on calibration. That

is, information on the auxiliary variables in sample B is calibrated with that in the

population or at least can be estimated from the probability sample A, see Kott (2006) and

DiSogra et al. (2011). The third approach is mass imputation where imputed values of y are

created for all units in the probability sample A. Then, an estimator of the parameter of

interest based on imputed data is computed. Survey data integration for combining a

probability sample with a nonprobability sample is also discussed in Yang et al. (2021a)

where a formal framework for mass imputation is developed and asymptotic results for the

k nearest neighbor estimator are established. The nearest neighbor imputation estimator of

Rivers (2007) is also covered as a special case. Finally, Yang et al. (2021b) propose a

doubly robust estimator of the finite population mean using the estimated propensity

scores as well as an outcome linear regression model. The double robustness entails that

the final estimator is consistent for the true value if either the probability of selection into

the nonprobability sample or the outcome model is correctly specified, not necessarily

both.

All the aforementioned methods assume that the selection mechanism for sample B is

ignorable after controlling on x. Since selection mechanism and nonresponse are closely

related, it is essentially the missing at random (MAR) assumption of Rubin (1976).

However, the MAR assumption is not always realistic because survey participation may be

related to the survey topic of interest. For instance, we might expect that the selection

process (self-selection) to be nonignorable on Twitter data, since the propensity to tweet

(sample inclusion probability) might depend on the particular subject, which will often be

related to the target variable. When the inclusion probabilities are related to the value of

the target outcome variable even after conditioning on the model covariates, the observed

outcomes are no longer representative of the population outcomes and the model holding

for the sample data is then different from the model holding in the population. This allows

the possibility that being in the sample or analogously being a respondent depends in some

stochastic way on the variable of interest y. It is essentially the not missing at random

(NMAR) assumption of Rubin (1976).

If MAR assumption does not hold, then we can build a NMAR model for the selection

mechanism and estimate the model parameters, see Chang and Kott (2008) and Riddles

et al. (2016). Existing approaches for parameter estimation for a propensity score model

under nonignorable nonresponse can be classified as fully parametric approaches or

method of moments approaches. A fully parametric approach, which makes parametric

assumptions about the population distribution of the study variable, is considered in

Beaumont (2000). Also, the Heckman (1979) selection model approach is a fully

parametric approach in the sense that the outcome regression model and the response

model are linked by a joint normal distribution on the error terms of the two models. In

Galimard et al. (2018) an imputation model for missing binary data with NMAR

mechanism from Heckman’s model using a onestep maximum likelihood estimator is

derived. These fully parametric approaches can be used to estimate the parameters in the
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response model, but the estimates can be very sensitive to failure of the assumed model.

The method of moments approach does not directly use the outcome model while the

response model is assumed to be specified. In Chang and Kott (2008) and Kott and Chang

(2010) propensity score weighting for nonignorable missing mechanism is introduced

together with instrumental variable calibration. The authors extended the notion of

calibration weighting by allowing the number of explanatory variables in the assumed

response model to be less than the number of calibrations variables. Instead of the fully

parametric or the calibration approach, Riddles et al. (2016) consider an alternative

modeling approach that uses parametric model assumptions about the study variable

among the respondents only. Such a modeling approach has been considered in

Pfeffermann and Sikov (2011).

Evidently, accounting for nonignorable selection mechanism is a major undertaking and

the present article attempts to address this challenge. In this article two approaches for

dealing with selection bias when the selection process is nonignorable are discussed. The

first one, based on the empirical likelihood, does not require parametric specification of the

population model but the probability of being in the nonprobability sample needed to be

modeled. An important advantage of this approach is that it facilitates the use of

calibration constraints that can help to correct for selection bias in nonprobability samples.

That is, auxiliary information known for the population or estimable from the probability

sample A can be incorporated as calibration constraints, thus enhancing the precision of

the estimators. The success of the proposed approach depends on proper modeling of the

unknown selection probabilities. However, the resulting sample model can be tested based

on the observations in nonprobability sample by standard test statistics. Then, model

diagnostics are more feasible and the method is less sensitive to failure of the assumed

selection model. The approach relies on work by Feder and Pfeffermann (2019) for dealing

with problems such as observational studies, informative sampling and nonignorable

nonresponse. Such an approach has also been proposed to deal with the statistical

matching problem under nonignorable sampling and nonresponse in Marella and

Pfeffermann (2021).

The second one is a mixed approach based on mass imputation and propensity score

adjustment. We consider the case when additionally the membership to the nonprobability

sample B can be determined throughout the probability sample A, as in Yang et al. (2021a).

First of all, imputed values ~y are created for all units in A and the selection probabilities for

units in B are estimated from A by (x, ~y). Next, the sample empirical likelihood is

maximized by a two steps estimation procedure.

The article is organized as follows. In Section 2 the basic setup in a fully parametric

context is briefly introduced. In Section 3 a semiparametric approach based on the

empirical likelihood (EL) is discussed and its performance is evaluated by a simulation

study in Sections 5 and 6. The failure in proper modeling the unknown selection

probabilities is investigated in Subsection 6.2.1. The robustness of the approach to

violations of the population normality assumption is evaluated in Subsection 6.2.2, where

skewed and binary data are considered. Furthermore, an application to income data is

presented in Section 7. In Section 4 the mixed approach is described. Its performance is

assessed by a simulation study in Section 8. Section 9 draws final conclusions.
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2. Adjusting for Selection Bias: Basic Setup

The main challenges in using nonprobability samples are under-coverage and self

selection. In the sequel we assume that the target population is fully covered, then the

inclusion probabilities are nonzero for all the population units. Suppose that we have two

independent samples A and B selected from a finite population of size N generated from a

joint probability distribution function (pdf) f (x, y; u), governed by a vector parameter u.

Let y be the study variable and x ¼ (x1, x2,..., xp)0 the vector of p auxiliary variables. Let B

be a nonprobability sample of size nB, such as a voluntary sample or a self-selected

sample, and A an independent probability sample. We assume that (x, y) are available from

B while x is available from survey data A. Then, B contains rich information on (x, y) but

the sampling mechanism is unknown while the sample A, representing the finite

population, does not observe the study variable of interest. Let di be the sample inclusion

indicator, that is, a Bernoulli random variable taking value di ¼ 1 if population unit i [

B, di ¼ 0 otherwise. The sampling mechanism for the nonprobability sample B is

ignorable (noninformative) after controlling on x if,

Pðdi ¼ 1jxi; yiÞ ¼ Pðdi ¼ 1jxiÞ; ð1Þ

for each xi. Unfortunately, the ignorability condition is a strong assumption and it is not

verifiable based on the observed data. If the sampling mechanism for sample B is not

ignorable, the inclusion probabilities are related to the value of the target outcome variable

y even after conditioning on the model covariates x, then the observed outcomes are no

longer representative of the population outcomes and the model holding for the sample

data is then different from the model holding in the population, see Pfeffermann and

Sverchkov (2009) and Pfeffermann (2011) for discussion of the notion of informative

sampling. This is equivalent to assume that the sample B is subject to not missing at

random (NMAR) nonresponse, by which the response probabilities depend in some

stochastic way on the study variable of interest.

In this section an approach of reducing the selection bias associated with the

nonprobability sample B is briefly illustrated in a parametric context. In Section 3 the use

of the EL is proposed. From Pfeffermann et al. (1998), the marginal sample pdf of (xi, yi)

for i [ B is defined as,

f B xi; yi; u;gB

� �
¼

P di ¼ 1jxi; yi;gB

� �

P di ¼ 1;u;gB

� � f pðxi; yi; uÞ; ð2Þ

where fp(xi, yi; u) is the population pdf governed by u and gB represents any additional

parameters defining the sample distribution, resulting from the sampling process. Under

independence between observations corresponding to different sampling units, the sample

likelihood can be approximated by the product of the sample pdfs over the corresponding

sample observations. Hence, the sample likelihood is,

LBðu;gBÞ ¼
YnB

i¼1

f Bðxi; yi; u;gBÞ: ð3Þ

The probabilities P(di ¼ 1jxi, yi; gB) appearing in the sample pdf (2) needed to be

modeled. To this aim, a parametric model indexed by the unknown parametergB ¼ (gx, gy)
0
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of length p þ 1 can be assumed, which is allowed to depend on the observed data (the

outcome and auxiliary variables). Formally,

Pðdi ¼ 1jxi; yi;gBÞ ¼ gðg 0xxi þ gyyiÞ ð4Þ

for some known function g, taking values in the range [0, 1].

Remark 1 The sample inclusion probabilities in B may depend on several unobserved

variables and yet, by definition of the sample pdf, one only needs to model the

probabilities P(di ¼ 1jxi, yi). As discussed and illustrated in subsequent sections, the

resulting sample model can be tested based on the observations in B.

Modeling the probabilities by the logistic or probit functions is common, but notice that

in our case the probabilities depend also on the study variable y. Then, the two models, the

population model fp(xi, yi; u) and the parametric model (4), define the model holding for

the observed units in B. Notice that, the sample likelihood in Equation (3) only depends on

the observed data in sample B. Furthermore, it needs to be maximized with respect to the

population and selection model parameters (u, gB). Thus, the unknown sampling

parameters gB are estimated jointly from the likelihood.

Remark 2 If the main target of inference is the mean of y (my), after having estimated u,

the following estimators can be computed,

m̂y ¼ Epð yi; ûÞ; m̂y;H ¼

X

i[B

yi=P̂ di ¼ 1jxi; yi

� �

X

i[B

1=P̂ di ¼ 1jxi; yi

� � : ð5Þ

where m̂y;H is the Hájek estimator, see Hájek (1964). Large differences between the two

estimators may indicate misspecification of either the population model or the parametric

model (4). Notice that both the estimators take into account the informative sampling

design in B since P̂ di ¼ 1jxi; yi

� �
instead of the propensity scores P̂ di ¼ 1jxi

� �
are used.

However, the maximization of sample likelihood in Equation (3) with respect to (u, gB)

can be complicated numerically and result in unstable estimates, depending on the

population model and the model assumed for the selection probabilities. One may also

face identifiability or practical identifiability problems, see Pfeffermann and Landsman

(2011) and Lee and Berger (2001). For this reason, we propose in the next section the use

of the empirical likelihood approach.

3. Adjusting for Selection Bias: A Semiparametric Approach

The approach described in Section 2 is fully parametric, since it makes parametric

assumptions about both the population distribution of the study variable and the selection

mechanism. In this section we propose a semiparametric approach based on the use of the

EL which enables estimating the parameter gB, governing the sampling process, without

specifying the population model. The EL combines the robustness of nonparametric

methods with the efficiency of the likelihood approach, see Owen (2001, 2013) and

references therein. The EL is essentially the likelihood of the multinomial distribution,

where the parameters are the point masses assigned to the distinct sample values. An

important advantage of the empirical likelihood approach is that it facilitates the use of
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calibration constraints. That is, auxiliary information on known population means for

some auxiliary variables can be incorporated by placing additional constraints on the

maximization process. See Chaudhuri et al. (2010) for details of the constrained estimation

procedure and the asymptotic properties of the resulting empirical likelihood estimators.

Last, but not least, not requiring to specify the population model the approach is more

robust and often easier to implement.

The basic idea of the empirical likelihood approach is to approximate the population

distribution by a multinomial model with probabilities p
xy
i ¼ Pr xi; yi

� �
, which support is

given by the empirical observations {(xi, yi), i ¼ 1,...,nB}. This means that a multinomial

probability is assigned just to the observed values in sample B. Notice that, the statement

regarding the support is a basic assumption underlying the EL approach which can be

justified by having sufficiently large sample. Then, the sample distribution in B is,

p
xy
i;B ¼

P di ¼ 1jxi; yi;gB

� �

P di ¼ 1; p
xy
i

� �
;gB

� � p
xy
i ; ð6Þ

where P di ¼ 1; p
xy
i

� �
;gB

� �
¼
P

i[B P di ¼ 1jxi; yi;gB

� �
p

xy
i . The sample EL based on B is

thus,

ELB p
xy
i

� �
;gB

� �
¼

i[B

Y
p

xy
i;B ¼

i[B

Y P di ¼ 1jxi; yi;gB

� �

Si[BP di ¼ 1jxi; yi;gB

� �
p

xy
i

p
xy
i : ð7Þ

Then, the semiparametric approach defines the sample EL and combines it with a

parametric model for the probabilities P(di ¼ 1jxi, yi; gB), as specified in Equation (4).

As previously stressed, an important advantage of the EL approach is that it facilitates

the use of calibration constraints that can help to correct for selection bias in

nonprobability samples. Specifically, known population means of auxiliary variables

related to the study variable and measured for the nonprobability sample B can be

incorporated by placing additional constraints (calibration constraints) on the

maximization process. For instance, in the simulation study of Section 5 the constraint,

i[B

X
xi

i[B:X¼X if g

X
p

xy
i ¼ mx ð8Þ

is considered, where the population mean mx of x is assumed known. Then, the likelihood

(7) must be maximized with respect to ({p
xy
i }, gB) under the constraints,

p
xy
i $ 0;

i[B

X
p

xy
i ¼ 1; ð9Þ

for all i, and the calibration constraint (8). One only needs the estimates of the multinomial

population model parameters {p
xy
i } and thus, we may consider gB, as nuisance parameter.

In order to write the likelihood in Equation (7) as only a function of the unknown

probabilities {p
xy
i }, we adopt the profile likelihood approach. We use some initial

estimates for the set of probabilities {p
xy
i } and we solve the constrained maximization

problem by first computing the profile likelihood of gB and then maximizing the profile

likelihood over gB. For a given gB, we then maximize the resulting likelihood under the

constraints in Equastions (8) and (9) with respect to the unknown probabilities {p̂
xy
i },
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yielding {p
xy
i }. This completes the first iteration in the estimation process. In the second

iteration, we consider the estimates {p̂
xy
i } as known, re-estimate the parameters gB, and

then the unknown probabilities {p
xy
i }. The iterations continue until convergence. See

Feder and Pfeffermann (2019) for conditions guaranteeing the convergence of the

maximization process. There are cases where a solution does not exist. An example is

where all the observed values of a constraining variable are greater (or smaller) than its

known population mean. Furthermore, a combination of multivariate constraints can also

preclude a solution. For instance, when the sum of two variables used in the constraints is

greater for all the observed units than the sum of the corresponding population means.

Remark 3 The simulation study has been carried out by using the software R, R Core

Team (2021). The maximization with respect to gB can be performed by using the R

numerical optimization function optim. For a given gB, the maximization with respect to

{p
xy
i } can be carried out by using the function emplik in the R package mev, see Belzile

et al. (2022). See Owen (2013) for related theory and further details.

Notice that, inference on the unknown model parameters is based on the sample EL

which requires that the corresponding sample model is identifiable. The sample model is

not identifiable if there is more than one combination of a population model and a

sampling mechanism yielding the same sample model. See Pfeffermann and Landsman

(2011) and references therein for conditions guaranteeing the identifiability of the sample

model. Notice that, for a given parameter gB and without any constraints the EL is not

identifiable. In the proposed approach the empirical likelihood is maximized under a set of

calibration constraints. Then, the main question is how the survey variables defining the

constraints should be chosen. As in Chang and Kott (2008), such variables should be

correlated as highly as possible with y and x because otherwise they provide little or no

information on the probabilities P(di ¼ 1jxi, y).

Remark 4 If mx is unknown but a probability sample A is available then the auxiliary

infomation in sample B can be calibrated with that in sample A. Then, in Equastion (8) the

mean vector mx can be replaced by its Horvitz-Thompson estimator computed from

sample A. Formally,

i[B

X
xi

i[B:X¼X if g

X
p

xy
i ¼

1

N j[A

X
djxj; ð10Þ

where dj is the sampling weight associated to the jth unit in sample A. Constraint (10) is

used in the application to income data of Section 7.

The success of the proposed approach depends on proper modeling of the unknown

selection probabilities for sample B, that is the estimates can be sensitive to failure of the

assumed model. However, once the parameters ({p
xy
i }, gB) have been estimated, the null

hypothesis that the sample model fits the sample data can be tested successfully by

classical test statistics, because the sample model refers to the observed data. An overview

of the plausible test statistics that can be used for assessing the goodness of fit of the

sample pdf is in Pfeffermann (2011). For instance, in the simulation study of Section 5 the

Kolmogorov-Smirnov test has been used to compare the theoretical and the empirical

sample pdfs of y. The asymptotic distribution of test statistic and correct critical values

have been obtained by use of parametric bootstrap, as established theoretically by Babu

and Rao (2004).
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Finally, the bias and the standard deviation of the population parameters estimates can

be obtained by resampling method. Formally, once the estimated model has been validated

M bootstrap samples can be selected from it and for each bootstrap sample the unknown

parameters can be estimated according the proposed approach. Then, bootstrap estimates

of bias and standard deviation can be computed.

4. A Mixed Approach Based on Mass Imputation and Propensity Score Adjustment

In this section a data integration approach for combining the nonprobability sample B with

an independent probability sample A is described. It is a mixed approach based on mass

imputation and propensity score adjustment requiring that we can observe di, the B sample

inclusion indicator, from the probability sample A. That is, among the elements in the

sample A, it is possible to obtain the membership information from the nonprobability

sample B, as in Kim and Wang (2019). As stressed in Yang et al. (2021a), the key insight is

that the subsample of units in probability sample A with the membership information

(di ¼ 1) constitutes a second phase sample from B, which acts as a new population.

Clearly, this condition is more plausible in the big data context where the nonprobability

sample B is so large that any probability sample A is bound to overlap with it.

As previously stressed, unlike the usual imputation for missing data analysis, in mass

imputation imputed values for all units in the probability sample A are created. The mass

imputation methods and their statistical properties are discussed in Yang et al. (2021a).

The nearest neighbor imputation estimator of Rivers (2007) is also covered as a special

case. The parameter of interest is my. The proposed approach can be described by the

following steps:

Step 1. Create imputed values ~yi for all units i [ A by nearest neighbor method. The

basic idea is to find the nearest neighbor in sample B to create an imputed value of

y for each unit in sample A. Formally, the unit k [ B closest to unit i [ A is

determined by the Euclidean distance based on the auxiliary variables x and the

corresponding y value from this unit is used as the imputed value.

Step 2. Regress the membership indicator d against (x, ~y) in sample A, estimate the

selection probabilities for all units in B and compute their inverse. Let ~wi be the

estimated sample weight (pseudo-weight) for the ith unit in B, for i ¼ 1,...,nB.

Step 3. Estimate the parameter my by

(3.1) the Horvitz-Thompson estimator

mW ¼
1

N i[B

X
~wiyi: ð11Þ

(3.2) the maximum sample EL estimator (mEL). Formally, once the sampling

weights ~wi in B are computed a two steps estimation procedure can be

applied in the maximization of the EL (7). More specifically, since

P di ¼ 1jxi; yi;gB

� �
<

1

EBð ~wijxi; yi;gBÞ
; ð12Þ

from Equation (6) the EL (7) becomes,
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ELB p
xy
i

� �
;gB

� �
¼
YnB

i¼1

p
xy
i;B <

YnB

i¼1

EB ~wi; p
xy
i;

n o
;gB

� �

EB ~wijxi; yi;gB

� � p
xy
i : ð13Þ

Then, in the first step the expectations displayed in Equation (13) are estimated from the

observed data, using classical model fitting procedures. Specifically, the expectation

EB( ~wijxi, yi; gB) could be estimated by regressing the sampling weights ~wi against (xi, yi).

See, for example, Pfeffermann and Sverchkov (2009) and Pfeffermann (2011) for

examples of regression models that can be used for this purpose, depending on the

problem at hand. In the second step, fixing the unknown parameters gB featuring in these

expectations at their estimated values allows to maximize the EL in Equation (13) only

with respect to the parameter {p
xy
i } indexing the population pdf, thus simplifying and

stabilizing the maximization process.

The basic idea of the proposed method is to create predicted values for y in the

probability sample A. In order to accomplish this in Step 1 the covariates x are used, then

the predictions are based on the ignorability assumption of the selection mechanism acting

in the nonprobability sample B. A class of nonparametric imputation procedures based on

k-nearest neighbors methods (kNN), including 1NN, is discussed in Marella et al. (2008),

where both theoretical and simulation results are obtained. Furthermore, a nonparametric

technique based on local linear regression is discussed in Conti et al. (2008). In Step 2 the

inclusion probabilities in B are computed by applying the estimated regression of d on

(x,~y) to the observed values (x, y) in B.

When auxiliary information is available it can be incorporated into the method to avoid

the ignorability assumption in Step 1 and to improve the quality of the imputed values ~y in

sample A. For instance, auxiliary information may refer to a set of proxy variables z , x

expected to behave similarly to the variable of interest. Under this circumstance better

predicted values can be obtained in Step 1. Furthermore, the proxy variables z, if

sufficiently associated with y, can help studying the relationship between y and d and in

particular, help verifying or refuting the ignorability assumption.

In Section 8 a simulation study is employed to investigate the performance of the

proposed method when the selection process is nonignorable, comparing it with other

existing methods. As discussed in Section 9, new developments of the present work

include the use of proxy variables.

5. Simulation Study 1

In order to evaluate the performance of the approach discussed in Sections 2 and 3 in its

parametric and semiparametric form, a simulation experiment is performed. Suppose that

the primary target of inference is to estimate my. The simulation study consists of the

following steps:

Step 1 Generate a population of N ¼ 1; 000; 000 observations (xi, yi), where (x, y) has a

bivariate normal distribution with mean m ¼ ðmx;myÞ
0 and variance covariance

matrix (V-C matrix) S (N (m, S), for short). Specifically, the marginal distribution

of x isN ðmx;s
2
x) with mx ¼ 5 and s2

x ¼ 1. The conditional distribution of y given x
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is N (myjx, s2
yjx

), with myjx ¼ b0 þ b1x, b0 ¼ my – b1mx; b1 ¼ sxy/s
2
x , s2

yjx
¼

s2
y –b2

1s
2
x . We assume that b0 ¼ 2, b1 ¼ 1, syjx ¼ 2.

Step 2 Draw a sample B from the population generated in Step 1 by a Poisson sampling design

with expected sample size E(nB) ¼ 0.2N and sample inclusion probabilities given by,

Epðpijxi; yi;gBÞ ¼ kexp{gxxi þ gyyi}; ð14Þ

where gB ¼ (gx, gy)’ is the sampling model parameter and k guarantees that the

expectation is less or equal to one. We use different sampling model parametersgB, so

as to distinguish between informative and noninformative samples. From Marella and

Pfeffermann (2019) the joint sample pdf f Bðxi; yiÞ is N ðmB;SBÞ; with mean vector

mB ¼ ðmx þ ðgx þ b1gyÞs
2
x , my þ b1gxs

2
x þgys

2
y)0 and V-C matrix SB ¼ S, that is

the sample V-C matrix is the same as for the population distribution. Then, the sample

model and the population model are in the same family and only differ in the mean

ðmB – mÞ:

Step 3 For computational reasons, as in Kim and Wang (2019), we generate 500 samples S

of size nS ¼ 2,000 from sample B drawn in Step 2 by a simple random sampling

(srs). In srs the selection probabilities are equal for all units in sample B and the

sample S can also be regarded as a set of independent and identically distributed

observations from the sample model f Bðxi; yiÞ:

The population model parameters are estimated by parametric and semiparametric

approach.

Parametric approach. For each sample S drawn in Step 3, the population model

parameters ðmx;sx;b0;b1;syjx;myÞ are estimated under the following scenarios:

Scenario 1 The sample B and then each sample S are simply treated as simple random

samples (srs). The estimates of the population parameters are denoted by

{m̂x;I , ŝx;I , b̂0;I ,b̂1;I , ŝyjx;I , m̂x;I}, where I means that the selection mechanism

acting in B is ignored.

Scenario 2 The sample likelihood in Equation (3) is maximized with respect to the

population parameters and the sampling parameters gB. The estimates of the

population parameters are denoted by {m̂x;P, ŝx;P, b̂0;P,b̂1;P ŝyjx;P, m̂x;P},

where P stands for parametric approach.

Semiparametric approach. In what follows we assume knowledge of the

population mean mx (Equation (8)). Hereafter the calibration constraint. For

each sample S drawn in Step 3, the population model parameters {p
xy
i } are

estimated under the following scenarios:

Scenario 3 The sample B and then each sample S are simply treated as simple random

samples but the knowledge of mx is assumed, so as to enhance the precision of

the estimator for the mean my. Formally, the EL under the independent and

identically distributed assumption,

EL p
xy
i

� �� �
¼

i[B

Y
p

xy
i ; ð15Þ

is maximized under the constraints in Equation (9) and the calibration

constraint in Equation (8). Denote by m̂y;ISP the estimate of my, where ISP
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means that such an estimate is obtained under the semiparametric approach by

ignoring the selection mechanism acting in B.

Scenario 4 The sample empirical likelihood in Equation (7) is maximized with respect to

({p
xy
i }, gB) under the constraints in Equation (9) and the calibration constraint

in Equation (8). Denote by m̂y;ISP the estimate of my, where SP stands for

semiparametric approach.

In order to evaluate the performance of the proposed approach as the informativeness of

sampling design acting in B changes, in scenarios 2 and 4 we assume that the model (14)

for the inclusion probabilities P(di ¼ 1jxi, yi) is known and the sample EL is maximized

with respect to the sampling and the population parameters ({p
xy
i }, gB). The robustness of

the semiparametric approach to misspecification of the selection model P(di ¼ 1jxi, yi) is

assessed by a sensitivity analysis in Subsection 6.2.1. Finally, the robustness to violations

of the population normality assumption is evaluated in Subsection 6.2.2. Notice that we

generated the population values only once, so as to assess the design-based properties of

the various estimation procedures.

6. Results of Simulation Study 1

In this section the simulation results obtained by the parametric approach (Subsection 6.1)

and by the semiparametric approach (Subsection 6.2) are reported.

6.1. Simulation Results for the Parametric Approach

We start by studying the effect of ignoring the sampling mechanism used for drawing the

sample B in the parametric approach. This is done by comparing the estimates of the

population parameters under the scenarios 1 and 2, described in Section 5. In Table 1 the

bias (B), the standard deviation (Sd) and the root mean square error (RMSE) of the

estimates m̂y;I ; m̂y;P over the 500 samples are reported, for different gB coefficients so to

distinguish between informative and noninformative samples. In Table 2 and 3 the mean

and the standard deviation of the remaining parameters ðmx;sx;b0;b1;syjxÞ over the 500

samples are presented. As stated previously, since SB ¼ S it follows that ŝx;I ¼ ŝx;P;

b̂1;I ¼ b̂1;P; and ŝyjx;I ¼ ŝyjx;P; for details see Marella and Pfeffermann (2019). Then, in

Table 2 and 3 just the means of ðŝx;I ; b̂1;I ; ŝyjx;IÞ and the corresponding standard deviations

are reported.

As results in Table 1 show, for gB ¼ (0,0)0 the estimate m̂y;I coincides with m̂y;P since the

sampling process acting in B is ignorable, B(m̂y;I) ¼ B(m̂y;P) ¼ 0. When gB – ð0; 0Þ0 the

sampling design is informative and the bias in m̂y;I (last two rows in Table 1), coming from

Table 1. Bias (B), standard deviation (Sd) and RMSE of m̂y;I and m̂y;P over the 500 samples for different gB

coefficients. True parameter is my ¼ 7.

gB Bðm̂y;IÞ Bðm̂y;PÞ Sdðm̂y;IÞ Sdðm̂y;PÞ RMSEðm̂y;IÞ RMSEðm̂y;PÞ

(0,0) 0.00 0.00 0.05 1.43 0.05 1.43
(0, 0.5) 2.16 -0.11 0.04 2.02 2.16 2.02
(0.25, 0.5) 2.26 -0.28 0.04 2.06 2.26 2.08
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the bias affecting b̂0;I and m̂x;I (last two rows in Table 2), increases considerably. Then,

ignoring the sample selection process in sample B affects negatively the quality of the

estimates of my. The estimator m̂y;I works poorly, even though m̂y;I has the smallest

standard deviation as shown in Table 1, a well known phenomenon from other studies, see

Marella and Pfeffermann (2019). Furthermore, the larger is the informativeness of the

sampling process the larger will be the bias in m̂y;I . Finally, the bias of the estimates m̂y;P

for gB – ð0; 0Þ0 reduces since scenario 2 takes into account the selection mechanism

acting in B. Same consideration holds for the estimates of the other population parameters,

see Table 2 and 3.

Figure 1 (left) exhibits the population pdf, the sample pdf and the estimated sample pdf

of y for one of the 500 samples, for the case gB ¼ (0.25, 0.5)0. As can be seen, the sample

pdf is very different from the population pdf, but the distribution of the estimated pdf is

close to the true population distribution. Finally, with regard to the variable of interest y we

test the model fitted for the sample units by Kolmogorov-Smirnov (KS) test statistic

given by

KSY ¼ maxy[BjF̂empð yÞ2 FBð y; û; ĝBÞj; ð16Þ

Table 2. Mean of the estimates of (mx, sx, b0, b1, sy|x) under scenarios 1 and 2, over the 500 samples for

different gB coefficients. True parameters are mx ¼ 5, sx ¼ 1, b0 ¼ 2, b1 ¼ 1, sy|x ¼ 2.

gB m̂�x;I m̂�x;P ŝ�x;I b̂
�
0;I b̂

�
0;P b̂

�
1;I ŝ�yjx;I

(0,0) 5.00 5.00 1.00 2.00 2.00 1.00 2.00
(0,0.5) 5.43 4.89 0.98 4.65 2.83 0.83 1.82
(0.25, 0.5) 5.62 4.85 0.95 5.21 3.23 0.72 1.80

Table 3. Standard deviation of the estimates of (mx, sx, b0, b1, sy|x) under scenarios 1 and 2, over the 500

samples with different gB coefficients.

gB Sdðm̂x;IÞ Sdðm̂x;PÞ Sdðŝx;IÞ Sdðb̂0;IÞ Sdðb̂0;PÞ Sdðb̂1;IÞ Sdðŝyjx;IÞ

(0,0) 0.02 0.62 0.02 0.22 1.10 0.04 0.03
(0, 0.5) 0.02 0.63 0.02 0.23 1.68 0.04 0.03
(0.25, 0.5) 0.02 0.65 0.01 0.25 1.86 0.04 0.03
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Fig. 1. Population pdf, sample pdf and estimated sample pdf of y (left); sample cdf and empirical cdf of y (right),

for gB ¼ (0.25, 0.5)0.
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where F̂empð yÞ ¼
1

nB

P
i[B Ið yi # yÞ is the empirical cumulative distribution (cdf ), I( yi #

y) is the indicator function taking the value 1 if yi # y and 0 otherwise, and

FBð y; û; ĝBÞ ¼

Z y

21

f Bð yi; û; ĝBÞdyi; ð17Þ

is the sample cdf. The asymptotic distribution of test statistic in Equation (16) and correct

critical values can be obtained by use of parametric bootstrap, as established theoretically

by Babu and Rao (2004) and applied in Pfeffermann (2011). Specifically, first of all

M ¼ 1,000 samples are generated from the estimated sample model. Next, for each

bootstrap sample the unknown parameters and the corresponding test statistic are

computed. The empirical distribution of test statistic provides approximate critical values

for the null distribution. In Figure 1 (right), the estimated sample cdf and the empirical cdf

of y are reported. The KS statistic is 0.069 and the critical value corresponding to a

significance level a ¼ 0.05 is 0.197. Then, the null hypothesis that the estimated model fits

the sample data in B is not rejected.

6.2. Simulation Results for the Semiparametric Approach

In this section we proceed to estimate my by the semiparametric approach described in

Section 3. The robustness with respect to misspecification of the parametric model for

P(di ¼ 1jxi, yi) and to violations of the population normality assumption is evaluated in

Subsections 6.2.1 and 6.2.2, respectively. Table 4 shows the bias (B), the standard deviation

(Sd) and the RMSE of the estimates m̂y;ISP and m̂y;SP obtained under scenarios 3 and 4,

respectively.

Notice that, if sample B is treated as a simple random sample the estimates ofmy obtained

maximizing the EL in Equation (15) under the constraints in Equation (9) match the

estimates m̂y;I obtained under scenario 1. The conclusions of Table 4 are similar to those

obtained from Table 1. When gB ¼ ð0; 0Þ
0 the estimates m̂y;ISP and m̂y;SP are equal since the

sampling design is not informative, B(m̂y;ISP) ¼ B(m̂y;SP) ¼ 0. When gB – (0, 0)0 the

estimates m̂y;ISP ignoring the sampling process show as light reduction in the bias compared

to the estimates m̂y;I (scenario 1) because of the introduction of the calibration constraint in

Equation (8) in the EL maximization (scenario 3). As results in the Table 4 show, the

estimates m̂y;SP obtained by maximizing the sample EL (7) under the constraints in Equation

(9) and the calibration constraint in Equation (8) (scenario 4) are characterized by lower

selection bias and standard deviation illustrating the good performance of our proposed

methodology. Finally, for the sample in Figure 1 the goodness of fit of the estimated model

to the observed data is tested by the KS statistic in Equation (16). Its value is 0.098 and the

critical value corresponding to a significance level a ¼ 0.05 is 0.332. Then, the null

Table 4. Bias (B), standard deviation (Sd) and RMSE of m̂y;ISP and m̂y;SP, over the 500 samples with different gB

coefficients. True parameter is my ¼ 7.

gB B(m̂y;ISP) B(m̂y;SP) Sd(m̂y;ISP) Sd(m̂y;SP) RMSE(m̂y;ISP) RMSE(m̂y;SP)

(0, 0) 0.00 0.00 0.04 0.05 0.04 0.05
(0,0.5) 1.78 -0.02 0.07 0.09 1.78 0.09
(0.25,0.5) 1.74 -0.08 0.17 0.11 1.75 0.14
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hypothesis that the estimated model fits the sample data is not rejected. The results in the

Table 4 suggest that my can be estimated almost unbiasedly and with acceptable standard

error estimates when external auxiliary information is incorporated in the EL maximization,

as the estimates m̂y;SP and their standard deviations show.

6.2.1. Misspecification of the Selection Model

As previously stated, the EL approach does not require to specify the population pdf while

the relationship between the probabilities P(di ¼ 1jxi, yi) and the variables (x, y) is

parametrically specified, see Equation (4). Hence, its performance depends on how well

the assumed parametric model describes the unknown selection mechanism acting in B. In

this section a sensitivity analysis is performed to assess the impact on my estimate due to

misspecification of the selection model. First of all, suppose that the sample B is selected

by a Poisson sampling design with expected sample size E(nB) ¼ 0.2N and unknown

selection probabilities given by Equation (14) with gB ¼ (0.25, 0.5)0. Next, 500 samples S

of size nS ¼ 2000 are drawn from B by a srs (Step 1–3, Section 5). Let us assume that the

probabilities P(di ¼ 1jxi, yi) are modeled by:

Model A: a linear logistic model

Pðdi ¼ 1jxi; yiÞ ¼ logit 21ðgxxi þ gyyiÞ: ð18Þ

Model B: a quadratic logistic model. In Equation (18) x is squared and y is linear;

Model C: a quadratic logistic model. In Equation (18) both x and y are squared.

For each sample S, the estimates of my under scenario 4 and models A-C are computed.

Table 5 reports the bias (B) and the standard deviation (Sd ) of such estimates over the 500

samples. Finally, in Table 6 the corresponding RMSEs are computed.

As results in Table 5 show, B(m̂y;SP) increases from 0.89 (model A) to 1.53 (model B)

with a reduction in the standard deviation from 0.36 to 0.18. An additional increase is

obtained under model C where B(m̂y;SP) ¼ 1.78. Recall that under a correct specification of

the selection model B(m̂y;SP) ¼ –0.08 (see Table 4). Hence, as results in Table 5 show, the

reduction of the bias in estimating my depends on proper modeling the probabilities

P(di ¼ 1jxi, yi; gB). The larger is the distance between the true selection model and the

assumed selection model the lower will be the performance of the semiparametric

Table 5. Bias (B) and standard deviation (Sd) of m̂y;SP over the 500 samples under models A-C, for

gB ¼ (0.25,0.5)0. True parameter is my ¼ 7.

Model A Model B Model C

B(m̂y;SP) Sd(m̂y;SP) B(m̂y;SP) Sd(m̂y;SP) B(m̂y;SP) Sd(m̂y;SP)

0.89 0.36 1.53 0.18 1.78 0.16

Table 6. RMSE of m̂y;SP over the 500 samples

under models A-C, for gB ¼ (0.25,0.5)0

RMSE (m̂y;SP)

Model A Model B Model C

0.96 1.54 1.79
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approach in removing the bias in my estimator. Same consideration holds for the RMSEs in

Table 6. The RMSE value of m̂y;SP under model A is lower than that of comparison models,

implying that the model A is better.

As previously discussed, the combined model can be tested based on the observations in

sample B by standard test statistics because the sample model refers to the observed data.

For instance, with regard to the sample used in Figure 1, after having modeled the

probabilities P(di ¼ 1jxi, yi) by the logistic model in Equation (18) (model A) the goodness

of fit of the estimated model is tested by the KS statistic. The KS statistic is 0.166 and the

critical value corresponding to a significance level a ¼ 0.05 is 0.244, then the null

hypothesis that the estimated model fits the sample data is not rejected. Recall that the KS

statistic when the model for the selection probabilities is assumed known is 0.098 (critical

value 0.332) much smaller than 0.166 (critical value 0.244) when the model (18) is assumed.

The same consideration holds for model B. Finally, under model C the null hypothesis is

rejected. Specifically, the KS statistic is 0.129 and the critical value is 0.112. Finally, setting

the significance level a ¼ 0.01 both models B and C are rejected. Notice that, the relative

bias under model A is 13%. A further reduction in the bias can be obtained introducing

additional calibration constraints in the empirical likelihood maximization.

6.2.2. Violations of the Population Normality Assumption

In this section we employ a simulation study to assess the impact associated to violations

of the normality assumption on the proposed EL approach. With this regard, two

population pdfs are considered:

1. Generate a population of N ¼ 1; 000; 000 observations (xi, yi), where x has a Gamma

distribution with shape 3 and scale 1 and log( yjx) is normal with parameters

uyjx ¼ b0 þ b1xi with b0 ¼ 0.1, b1 ¼ 0.2, and s2
yjx
¼ 0.3. A sample B is selected by a

Poisson sampling design with expected sample size E(nB) ¼ 0.2N and sample

inclusion probabilities given by Equation (14) where gB ¼ (0.25, 0.5)0.

2. As in Feder and Pfeffermann (2019), generate a population of N ¼ 1; 000; 000

observations (xi, yi), where x has a Gamma distribution with parameters (2, 2). For

each xi a binary outcome yi is generated with Pðyi ¼ 1jxi;bÞ ¼logit -1ð-0:8 þ 0:8xiÞ

where b ¼ ð�0:8; 0:8Þ: Next, a value of a design variable z is generated as zi ¼ max

½ð xi þ 1:1Þð2yi þ 1Þ þ vi; 0:01� where vi follows a uniform distribution ð-0:2; 0:2Þ:

The sample B is drawn by a Poisson sampling with inclusion probability,

pi ¼ minð200000z21
i =
XN

j¼1

z21
j ; 0:9999Þ: ð19Þ

Finally, 500 samples S of size 2,000 are drawn from B by a srs and the logistic model in

Equation (18) is used to model the selection probability Pðdi ¼ 1jxi; yiÞ: Results are shown

in Table 7 where the bias (B), the standard deviation (Sd) and the RMSE of the estimates

m̂y;ISP and m̂y;SP, obtained under scenarios 3 and 4, are reported.

As Table 7 shows, if the nonprobability sample B is treated as a simple random sample

the estimates m̂y;ISP obtained maximizing the EL in Equation (15) under the constraints in

Equations (8) and (9) are biased. The bias is 1.21 (relative bias 48.4%) and -0.26

(relative bias -0.32%) for the lognormal and the binary case, respectively. A reduction in

Marella: Selection Bias in Nonprobability Samples 165



the bias is obtained when the selection process in B is taken into account as the estimates

m̂y;SP show. More specifically, in the lognormal case the bias decreases to 0.58 (relative

bias 0.23), in the binary case to -0.14 (relative bias -0.18). A further reduction in the bias

can be obtained introducing additional calibration constraints in the empirical likelihood

maximization.

7. An Application to Income Data

In this section the approach based on the EL is applied to real sample data. In Italy,

reliable information on households income ( y) is provided by the Survey on Household

Income and Wealth (SHIW) conducted by the Bank of Italy (Banca d’Italia) every two

years. Its main goal is to study the economic status of Italian households, focusing on

income and wealth. The sample for the SHIW survey is drawn in two stages, with

municipalities and households as, respectively, the primary and secondary sampling

units. The primary units are stratified by region and population size. Bigger

municipalities (with more than 40,000 inhabitants) are all included in the sample, while

the smaller towns are selected using a probability proportional to size sampling (PPS).

The individual households to be interviewed are then selected by simple random

sampling. In the present article we use the 2010 wave, whose sample consists of 7,951

households and 387 municipalities. The variable of interest is the household income,

defined as the combined disposable annual income of all the people living in the

household. The average annual household income in 2010 is my ¼ EUR 32,714, as

published by Bank of Italy (Banca d’Italia 2012). To reproduce the situation where a

nonprobability sample B and a probability sample A are available the following

procedure has been implemented:

1. A sample B is selected from SHIW according to a Poisson sampling design with

expected sample size E(nB) ¼ 2,000 and unknown inclusion probabilities

proportional to ( yi – miniyi þ10).

2. Suppose that the Household Budget Survey (HBS) run by Italian National Institute of

Statistics, (ISTAT) in 2010 (sample A) which consists of 22,227 households is

available. The HBS uses a sampling design similar to SHIW and collects detailed

information on sociodemographic characteristics and expenditures on a disaggre-

gated set of commodities (durable and nondurable). Let x ¼ (x1, x2) be the available

auxiliary variables, where x1 is the household size and x2 is the monthly expenditure

on food. Furthermore, let 2.4 and 507.46 be the estimates of the average size of

households and the monthly mean expenditure on food in 2010, respectively, as

obtained from HBS. Then, we can add the calibration constraint in Equation (10)

where,

Table 7. Bias (B), standard deviation (Sd) and RMSE of m̂y;ISP and m̂y;SP, over the 500 samples for

gB ¼ (0.25,0.5)0. True parameter is my ¼ 2.5 for the lognormal variable and my ¼ 0.8 for the binary variable.

Population B(m̂y;ISP) B(m̂y;SP) Sd(m̂y;ISP) Sd(m̂y;SP) RMSE(m̂y;ISP) RMSE(m̂y;SP)

Lognormal 1.21 0.58 0.09 0.05 1.21 0.58
Binary -0.26 -0.14 0.02 0.01 0.26 0.14
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1

N i[A

X
dix1i ¼ 2:4;

1

N i[A

X
dix2i ¼ 507:46: ð20Þ

Step 3 The probabilities P(di ¼ 1jxi, yi) are modeled by the logistic model logit -1ðgx
0xi þ

gyyiÞwith gx ¼ ðgx1;gx2Þ
0 and the average annual household income my is estimated

from B by the EL under scenarios 1,3,4 described in Section 5. We recall that under

scenario 1 the selection process in B is not taken into account. Scenario 3 is as

scenario 1 but we add the calibration constraint in Equation (10). Under scenario 4

we maximize the EL in Equation (7) under the constraints in Equation (9) and the

calibration constraint in Equation (10), respectively.

Step 4 Steps 1–3 are repeated 500 times.

For one of the 500 samples B, Figure 2 shows the weighted kernel density of y estimated

from SHIW for the purpose of benchmark comparison and the kernel density estimate of y

estimated from B. The bandwidth selection rule is as proposed in Sheather and Jones

(1991). As clearly seen, both the distributions are right-skewed but the B sample pdf is

very different from the SHIW pdf. In Table 8 the bias (B) and the standard deviation (Sd)

of the estimates m̂y;I ,m̂y;ISP and m̂y;SP obtained under scenarios 1,3,4, over the 500 samples,

are reported. Furthermore, in Table 9 the corresponding RMSEs are computed.

As results in Table 8 show, the estimate m̂y;ISP ignoring the sampling process in B

shows a slight reduction in the bias compared to the estimates my;I because of the

introduction of the calibration constraint in Equation (10). A larger reduction in the bias

is obtained when the selection process in B is taken into account as the estimates m̂y;SP

show. Finally, the RMSE of m̂y;SP is lower than that of comparison estimators as shown

in Table 9.
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Fig. 2. Income pdf from SHIW data set, sample pdf from B.

Table 8. Bias (B) and standard deviation (Sd) of m̂y;I ,m̂y;ISP and m̂y;SP, over the 500 samples. True parameter is

my ¼ 32,714.

B(m̂y;I) B(m̂y;ISP) B(m̂y;SP) Sd(m̂y;I) Sd(m̂y;ISP) Sd(m̂y;SP)

15803.01 13331.07 -2527.36 420.49 328.01 261.54

Table 9. RMSE of m̂y;I ,m̂y;ISP and m̂y;SP, over the 500 samples

RMSE(m̂y;I) RMSE(m̂y;ISP) RMSE(m̂y;SP)

15808.60 13335.10 2540.86
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8. Simulation Study 2

In this section we evaluate the performance of the mixed approach described in Section 4.

We generate a finite population {x ¼ (x1i, x21), y ¼ ( y1i, y2i): i ¼ 1,.., N} with size

N ¼ 1,000,000 where y1 is a continuous outcome while y2 is a binary outcome. From the

finite population we select a sample B where the inclusion indicator di , Ber( pi) with pi

the inclusion probability for unit i. We obtain a representative sample A ¼ {x1i, x2i, di} of

size n ¼ 1,000 using srs. As in Yang et al. (2021a), for generating the finite population we

consider the following models,

y1i ¼ 1þ x1i þ x2i þ ai þ 1i; ð21Þ

Pð y2i ¼ 1jx1i; x2i;aiÞ ¼ logit 21ð1þ x1i þ x2i þ aiÞ; ð22Þ

where x1 , N(1, 1), x2 , Exp(1), a , N(0, 1), 1 , N(0, 1), and x1, x2, a and 1 are

mutually independent. The variable a induces the dependence of y1 and y2 even adjusting

for x1 and x2. The point biserial correlation coefficient between y1 and y2 is 0.32. For the

inclusion probability in B, we consider the following logistic linear model,

pi ¼ logit 21ð y1iÞ: ð23Þ

The expected size of the subsample of units in probability sample A with the

membership information (di ¼ 1) is 873. Notice that, in the logistic regression there should

be an adequate number of outcomes per predictor variable to avoid an overfit model.

Agresti (2007) suggests that there should be ten outcomes for each independent variable.

However, the issue has not been definitively settled. We compare the following estimators:

1. m̂HT , the Horvitz-Thompson estimator assuming that ( y1i, y2i) are observed in sample

A for the purpose of benchmark comparison.

2. m̂NN , the nearest neighbor imputation estimator where the imputed values ( y1i, y2i)

are obtained by nearest neighbor method, as described in section 4.

3. m̂RC, the regression calibration estimator based on m̂NN with calibration variables

H(d, x, y) ¼ (d, 1 – d, dx, d y)0, as described in Yang et al. (2021a).

4. m̂W , the Horvitz-Thompson estimator with weights ~wi obtained by regressing the

membership indicator d against (x1i, x2i, ỹ1i, ỹ2i) in sample A, as described in section 4

(Step 3, point 3.1),

5. m̂EL, the estimator based on maximization of empirical likelihood, as described in

section 4 (Step 3, point 3.2).

The simulation is based on 1,000 Monte Carlo runs. Table 10 summarizes the

simulation results with biases, standard deviations and coverage rates of 95%

confidence intervals using asymptotic normality of the aforementioned estimators. All

the results are multiplied by 100. The population means of y1 and y2 are 3 and 0.89,

respectively.

First of all, if sample B is simply treated as a simple random sample the bias is 33.1%

and 2.3% for the mean of y1 and y2, respectively. In Table 10 the estimators m̂NN and m̂RC

have the larger bias, but m̂RC has a smaller standard error than m̂NN . Recall that both

estimators implicitly assume that the selection mechanism for sample B is ignorable.

With regard to the mean of y1, m̂W has the smaller bias (13.3%) followed by m̂EL
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(16.12%) even if m̂EL has a smaller standard error and a larger coverage rate ðCR1 ¼

99:4%Þ: The opposite occurs for the mean of y2, the bias is B2 ¼ -0.4% for m̂W against

B2 ¼ -0.02% for m̂EL. The coverage rates are all close to the nominal level. In

conclusion, both mW and mEL reduce the bias in estimating my respect to m̂NN and m̂RC.

The Horvitz-Thompson estimator (m̂W ) seems to perform better for continuous variables

while the estimator based on maximization of empirical likelihood (m̂EL) according the

two steps procedure described in Section 4 seems to show a better performance for binary

variables.

9. Concluding Remarks

In this article two approaches for reducing selection bias when the selection process is

non-ignorable are proposed. The first one based on EL requires to model parametrically

the unknown selection probabilities and to maximize the sample likelihood with respect to

the sampling and the population parameters. Auxiliary information known for the

population or estimable from a probability sample can be incorporated in the

maximization process, thus enhancing the precision of the estimators. As previously

stressed, the success of the proposed approach depends on proper modeling of the

unknown selection probabilities. However, the resulting sample model can be tested from

the data by standard test statistics, see Subsection 6.2.1. A broad simulation study

illustrates the good performance of the EL approach also when skewed and binary data are

considered, see Subsection 6.2.2. Finally, the proposed approach can be extended to the

multivariate case when several variables of interest are considered. For variables selection

in modeling P(di ¼ 1jxi, yi) see Variyath et al. (2010) and Chen et al. (2022). We obviously

hope that other researchers will apply our proposed approach with appropriate

modifications required for their data.

The second one is a mixed approach based on mass imputation and propensity score

adjustment. It requires that the membership to nonprobability sample can be determined

throughout the probability sample A. As indicated by the results in Section 8, the method

seems to show a good performance in terms of bias, standard error and confidence interval

coverage probabilities. Empirical studies with alternative population and selection models

are needed to further ascertain the results of the mixed approach obtained in the present

article. Finally, new theoretical developments of the present work include the use of proxy

variables that can help studying the relationship between y and d and in particular, help

verifying or refuting the ignorability assumption.

Table 10. Bias (Bh), standard deviation (Sdh), RMSE and coverage rate of 95% confidence interval (CRh) for the

population mean of yh, h ¼ 1, 2, based on 1,000 Monte Carlo samples. The population means of y1 and y2 are 3

and 0.89, respectively. All the results are multiplied by 100.

Estimator B1 Sd1 RMSE1 CR1 B2 Sd2 RMSE2 CR2

m̂HT 0.2 6.2 6.2 95.4 0.0 1.0 1.0 96.6
m̂NN 20.2 5.6 21.0 93.8 1.2 0.9 1.5 96.6
m̂RC 20.1 1.8 20.2 96.0 1.3 0.4 1.4 95.4
m̂W 13.3 1.9 13.4 95.8 -0.4 0.3 0.5 93.4
m̂EL 16.12 0.1 16.1 99.4 -0.02 0.3 0.3 94.4
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