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Abstract

The work presented in this PhD thesis has been done in the context of gravitational-waves
searches. Since the first detection on the 14th September 2015 by the LIGO-Virgo collab-
oration, a growing number of gravitational-wave events has been detected, all emitted by
the coalescence of binary systems involving black holes and/or neutron stars. My work is
focused on the search for continuous gravitational waves, which still lack the first detection.
These signals are expected to be emitted, for instance, by spinning neutron stars with an
asymmetric shape with respect to the rotation axis, and are at least five orders of magni-
tude weaker than the typical amplitude of detected binary coalescences. In this PhD thesis
I report on the work done in four different projects, with the common purpose of increasing
the sensitivity of continuous-wave searches, involving both data analysis and instrumental
aspects. The first project is a contribution to the commissioning of the Virgo interferometer
in view of the next observing run, O4, which will start in May 2023. My contribution has
been mainly devoted to the noise hunting activity, focused on the identification and mit-
igation of instrumental-noise sources that can degrade the sensitivity of continuous-wave
searches.

The other three projects are related to data analysis. I have focused, in particular, on all-
sky searches for sources without electromagnetic counterpart and long-lasting signals from
rapidly evolving newly-born neutron stars. I have studied in great detail the robustness
of an all-sky data analysis method in the case of overlapping signals. This is relevant
for some exotic classes of continuous wave sources and, more generally, in view of third
generation detectors, like Einstein Telescope. I have developed a two-dimensional filter,
called triangular filter, to be applied to the search for long-lasting gravitational waves
from unstable neutron stars, showing that thanks to this method an increase of the search
sensitivity of about 20% is achievable. Finally, I describe the first steps of a wide work to
develop a new procedure for all-sky continuous-wave searches, exploiting a statistics based
on the sidereal modulation, that affects astrophysical signals, due to the Earth rotation.
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Introduction

The existence of gravitational waves is among the most intriguing predictions of the the-
ory of General Relativity, published by Albert Einstein in 1916. Gravitational waves are
perturbations of the space-time metric propagating at the speed of light. The effect of a
gravitational wave is to periodically change the relative separation among different pairs of
test masses. Even when produced in astrophysical processes involving large masses moving
at a significant speed, gravitational waves are extremely faint at the detector, and induce
changes in the typical lengths of experimental apparatuses of the order of 10−18m or even
smaller 1. This extremely small effect is at the origin of the experimental difficulties to
directly observe gravitational waves, i.e. through the measurement of the space-time dis-
tortions they induce. The experimental effort to detect them started in the 1960s. It took
up to half a century of technological progress and the construction of kilometer-scale in-
terferometric detectors, such as LIGO and Virgo, to arrive at the first detection, on 14th
September 2015, when the gravitational-wave astronomy has officially begun. Since then,
various (∼ 90) gravitational-wave events have been detected, all emitted by the merger of
binary systems involving black holes and/or neutron stars.
The work I present here has been devoted to the search for continuous (persistent) gravita-
tional waves, which are thought to be emitted -for instance- by deformed, spinning neutron
stars. The effort to detect these sources is even more challenging with respect to binary
mergers, since the expected gravitational-wave amplitude at the detector is at least five
orders of magnitude weaker. However, thanks to their long duration, we can build up the
signal-to-noise ratio and exploit very specific signal features, which help us to discriminate
between signals and noise artefacts. My research activity is essentially focused on boosting
the sensitivity of continuous gravitational wave searches, working on different aspects, in-
volving both data analysis and instrumental aspects. Concerning the data analysis, I have
focused on the so-called all-sky searches for sources without an electromagnetic counterpart,
and on long-lasting waves from rapidly evolving newly-born neutron stars, whose position
is known through electromagnetic observations. In both cases a huge parameter space has
to be explored, so these searches are computationally bounded. The key to increase the
sensitivity lies in the development of novel analysis techniques, exploiting signal features
in different ways with respect to already existing methods. Another contribution is the
estimation of the robustness of existing procedures with respect to new classes of potential
sources and assessing the future improvements.
During my PhD I have worked on three projects covering both all-sky searches for continuous
waves, including a study on new exotic sources, and long-lasting transients from young
neutron stars. On the instrumental side, I have worked (for several weeks on the Virgo site)

1This number refers to gravitational waves with frequencies from tens to thousands of Hertz, observable
by Earth-based detectors (for more details, see Chapter 1).
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to identify and mitigate possible noise sources that can limit the continuous-wave search.
The work of this Thesis is organized as follows:
InChapter 1 I introduce the basics of gravitational-wave searches. I explain the mechanism
that generates gravitational waves, showing the different kind of sources and corresponding
search strategies. I introduce the basic physics of interferometric detectors and describe the
fundamental noise sources that limit the search sensitivity. Finally, I describe the optical
layout of LIGO-Virgo detectors, their sensitivity budget and the improvements done to
achieve the first detection.
In Chapter 2 I introduce continuous gravitational waves. I review the physics behind the
possible sources, considering both neutron stars and more exotic sources, like condensates
of ultra-light bosons around spinning black holes. I present the different search strategies
that can be done depending on the available source knowledge. I also briefly discuss the
most recent results.
In Chapter 3 I report the experimental work done at the Virgo site as contribution to the
commissioning of the interferometer. The activity on which I have mostly contributed is
noise hunting, focused on the noise sources that can limit continuous-wave searches. I have
focused the activity on the so-called technical noises generated by the heating, ventilation
and air conditioning systems, by the vacuum system and the external environment. For
each noise source I have done on-site actions to identify the noise and possibly mitigate it,
followed by a data-analysis work to process the results.
In Chapter 4 I report a study to assess the robustness of the Frequency-Hough procedure
for all-sky searches of continuous waves when we are in presence of several signals, which
cluster together in the same frequency band. At the moment this seems to be a remote
possibility because continuous waves in standard scenarios are very weak and, with current
detector sensitivity, we expect to have at most one or a few detectable signals in a given
observing run. However, the possibility of signal clusters in the exotic scenario of ultra-
light boson clouds has been recently considered. In such a case, the problem of resolving
individual signals arises. I show that the Frequency-Hough procedure is overall robust
towards the presence of signal clusters.
In Chapter 5 I present the development and test of a two-dimensional filter to be applied
to the search for long-lasting, rapidly evolving, gravitational waves, like those we expect
to be emitted by new born neutron stars, as a consequence of a large inner magnetic field,
or due to the excitation of unstable star oscillation modes. The so-called triangular filter

enhances the signal-to-noise ratio, allowing to increase the search sensitivity. I define and
characterize this filter, presenting specific tests to assess the achievable sensitivity gain.
In Chapter 6 I describe the first steps of a wide work to develop a new procedure for
all-sky continuous-wave searches. The basic idea is to exploit the sidereal modulation that
astrophysical signals get entering the detector because of Earth rotation. A method to
exploit such modulation has been developed within my group to search for signals from a
fixed position in the sky. Here, I report the first steps I have done to extend this approach
to the much more complicate case of all-sky searches.



Chapter 1

Gravitational waves and detectors

Initially fascinated by the beauty of the theory,

I was finally captured by experimental challenges.

The problem of detecting gravitational waves (GWs) has been one of the hardest challenges
in the last century. Since their first prediction, there has been a growing interest on their
physical meaning and on the possibility of their detection. Since the theory of General
Relativity (GR) was published in 1916 by Albert Einstein, it was clear that the equations
allowed for propagating wave solutions. Anyway, it took up to 20 years for Einstein to get
convinced that they have a real physical meaning and they are not just spurious math-
ematical solutions or coordinate artifacts [1]. Twenty more years were necessary for the
gravitational community to understand if they actually carry energy and what effect they
have on matter. A crucial step forward was done by Felix Pirani, who showed in 1956 the
effect of a GW passing through a group of particles [2]. His work laid the foundation for the
development of GW detectors. The pioneer was, however, Joseph Weber, who developed
Pirani’s idea of detecting GWs through their action on two masses connected by a spring.
In the 1960s, he developed and built the first resonant bar detector [3] and, in the subse-
quent four decades, resonant-mass detectors were built by various groups all over the world.
However, their typical sensitivity could allow to detect only extreme events generated in
our Galaxy, and no confident GW detection has never been confirmed.

The idea of GW detection through interferometers was first proposed in 1962 by M.E.
Gertsenshtein and V.I. Pustovoit [4], and Rainer Weiss was the first one to study in detail, in
early 1970s, the intrinsic limitations and noise sources associated to this method [5]. Since
from the beginning, it was clear that the realization of such a complex instrument would
have required large collaborations and large-scale science. In fact, the practical realization
of the first ground-based interferometers took up to 30 years, and we have to wait until 14th
of September 2015 to observe the first gravitational signal, after several instrument upgrades
and 100 years after GR formulation. In this Chapter, I will introduce the basic principles
that are behind the generarion of GWs and the main sources that are expected; then, I will
explain the basic physics behind the interferometric detectors, introduce Virgo and LIGO
detectors and their main limiting noises; finally, I will show the main discoveries that have
been made during the first 3 observing runs in the Advanced detector configuration.
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CHAPTER 1. GRAVITATIONAL WAVES AND DETECTORS 7

1.1 General Relativity and gravitational waves

GWs arise directly from GR equations. GR was formulated as a metric description of
gravity that incorporates the Weak Equivalence Principle, the Local Lorentz Invariance
and the Local Position Invariance. The space-time is described through the metric tensor
gµ¿ , which allows to compute intervals between two events. In Special Relativity, space-time
is flat and is described by the tensor ¸µ¿ = diag {−1, 1, 1, 1}. Instead, in GR we have to
take account for curved space-time. Let {e⃗µ} be a coordinate basis; a generic vector can

be decomposed on its components with respect to that basis as1 V⃗ = V Ã e⃗(Ã). While in
a flat space-time the coordinate basis is invariant with respect to traslations, in a curved
space-time they can change from point to point. Therefore, when computing derivatives
we have to take account for the changing basis2: V⃗ ,´ = V ³

,´ e⃗(³) + V (³)e⃗(³),´ . To do this,

we introduce the affine connections Γµ
³´ . Through these objects, we express the variation

of the coordinate basis in terms of the basis itself, e⃗(³),´ = Γµ
³´ e⃗(µ). They are defined as

combinations of the metric tensor and its derivatives, ΓÃ
³´ = 1

2g
Ãµ (gµ³,´ + gµ´,³ − g³´,µ),

and are pseudo-tensors3.

Figure 1.1: Illustration of the transition from a 2D flat space-time to a curved one. While
in flat space-time a set of base vectors remains unchanged independently on the region, in
curved space-time the base vectors can change region by region.

To describe properly the space-time curvature we can combine the metric tensor and its
first and second derivatives in the Riemann tensor, defined as

R³
µ´¿ = −

(

Γ³
µ´,¿ − Γ³

µ¿,´ + Γ³
¿¸Γ

¸
µ´ − Γ³

´¸Γ
¸
µ¿

)

(1.1)

The components of the Riemann tensor are determined by the mass-energy distribution of
the system. To do this, is more convenient to use the Ricci tensor, obtained through its 1st

1In this section, I will adopt the Einstein convention, where repeated indices means summation over all
the 4 components, e.g. aµ

bµ =
∑4

µ=1 a
µ
bµ.

2In this section, the use of the comma means a partial derivative: vµ,ν = ∂vµ

∂xν .
3A pseudo-tensor is a quantity that transforms like a tensor under coordinate transformation, but changes

sign if the transformation includes a reflection
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and 3rd indices contraction, Rµ¿ = R³
µ³¿ , and the Ricci scalar R = gµ¿Rµ¿ , and use it to

build the Einstein tensor Gµ¿ = Rµ¿− 1
2Rgµ¿ . With this notation the space-time curvature,

expressed through the Einstein tensor Gµ¿ , is determined by the mass-energy distribution
through the Einstein field equations [6]

Gµ¿ =
8ÃG

c4
Tµ¿ (1.2)

The Tµ¿ tensor on the right side is the stress-energy tensor, and describes the distribution of

mass-energy. Chosen a reference frame with coordinates À⃗, given n non-interacting particles
with locations À⃗i, four-momenta pµi and energies Ei, the stress-energy tensor is defined as

Tµ¿ = c2
n
∑

i=1

pµi p
¿
i

Ei
¶3
[

À⃗ − À⃗i (t)
]

(1.3)

Equation 1.2 represents a system of 10 second-order mixed differential equations and allows
to fully determine the metric gµ¿ . However, in practice we are not able to resolve that
system except for very simple and symmetric systems. Most of the solutions are typically
obtained using perturbation theory or require numerical techniques.

GW solutions are obtained expanding the Einstein equations around the flat-space met-
ric. Therefore we introduce the perturbation hµ¿ in order to write

gµ¿ = ¸µ¿ + hµ¿ , |hµ¿ | j 1 (1.4)

and then, expand the 1.2 to first order in hµ¿ . Taking the traceless part h̄µ¿ = hµ¿ − 1
2¸µ¿h

and imposing the harmonic gauge ∂¿ h̄µ¿ = 0, we get a simple wave equation,

□ h̄µ¿ = −16ÃG

c4
Tµ¿ (1.5)

Equation 1.5 is obtained under the physical assumption that the source moves in flat space-
time, with motion determined by their mutual interaction. Studying the propagation of
GWs outside the source, where it reduces to □h̄µ¿ = 0, we see that the presence of the
D’Alembert operator □ = −

(

1/c2
)

∂2t + ∇2 implies that GWs propagate at the speed of
light in vacuum. Moreover, outside the source we can simplify the form of the metric by
imposing the transverse-traceless (TT) gauge:

h0µ = 0, hii = 0, ∂jhij = 0 (1.6)

By imposing the TT gauge, we are setting 4+3+1 constraints to the 1.5, so we have reduced
from the original 10 degrees of freedom to only 2. In vacuum, 1.5 and 1.6 allow for plane
wave solutions [6],

hTT
µ¿ (t, x⃗) =









0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0









µ¿

cos
[

É
(

t− z

c

)]

(1.7)

, where we have chosen the z axis as propagation direction, É is the GW pulsation and h+,
h× are the amplitudes of the + and × polarization of the wave. In presence of the source,
we have to solve Equation 1.5 by means of the retarded Green’s function. In the limit of
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distant sources (r k d) and low velocity (v j c), we can expand the stress-energy tensor
in flat space-time. By defining the momenta M of T 00 and the momenta P of

M (t) = 1
c2

∫

d3xT 00 (t, x⃗) , P i (t) = 1
c

∫

d3xT 0i (t, x⃗) ,

Mi (t) = 1
c2

∫

d3xT 00 (t, x⃗)xi, P i,j (t) = 1
c

∫

d3xT 0i (t, x⃗)xj ,

Mij (t) = 1
c2

∫

d3xT 00 (t, x⃗)xixj P i,jk (t) = 1
c

∫

d3xT 0i (t, x⃗)xjxk

(1.8)

and pointing out that Ṁ = 0, Ṁi = P i and Ṗ i = 0, we can solve Equation 1.5 in term of
multipoles [7]:

hTT
ij (t, x⃗) =

1

r

4G

c4
Λij,kl (n̂)·

{

1

2
M̈kl +

1

c
nm

[

1

6

...
M

klm
+

1

3

(

P̈ k,lm + P̈ l,km − 2P̈m,kl
)

]

+O
(

1

c2

)}

t− r
c

(1.9)
where Λij,kl (n̂) is an operator that projects the tensors in the TT gauge along the propa-
gation direction n̂. Equation 1.9 is the basis for the multipole expansion. It is important to
underline that the first non-null term, that dominates the emission, is the 2nd momentum
of T 00. There is neither monopole nor dipole gravitational radiation. This is not surprising,
given that M and P i are conserved quantities and so their time derivatives vanish. This
important fact, which is here obtained in the context of linearized theory, holds also more
generally (see [7], p.112).

If we restrict to the leading term of 1.9, noting that the 0-0 component of the stress-
energy tensor to the lowest order of v/c has the physical meaning of a mass-energy density,
i.e. T 00 = Äc2, we can introduce the quadrupole moment

Qij ≡ Mij − 1

3
¶ijMkk =

∫

d3x Ä (t, x⃗)

(

xixj − 1

3
r2¶ij

)

(1.10)

If we now apply the TT gauge projector to the quadrupole moment, the emitted GW
amplitude at the leading order is given by

hTT
ij (t, x⃗)

∣

∣

quad
=

1

r

2G

c4
Q̈TT

ij

(

t− r

c

)

(1.11)

The emission of gravitational radiation influences the evolution of the source system itself,
since GWs carry energy and angular momentum away from it. The estimated radiated
power through GWs, also known as gravitational luminosity of the source, is given at the
leading order by

Lgw|quad =
dEgw

dt
=

G

5c5
〈 ...
Q ij

...
Q ij

〉

t− r
c

(1.12)

and the angular momentum, considering both the spin and the orbital contribution, carried
out by the GW, is at the leading order

dJ i

dt

∣

∣

∣

∣

quad

=
2G

5c5
ϵikl
〈

Q̈ka

...
Q la

〉

t− r
c

(1.13)

From the above considerations, it is clear that the condition for a source to emit GWs is that
its dynamics produces a quadrupole moment with non-vanishing second time derivative. In
physical terms, it means that the system dynamics must violate the cylindrical symmetry.
Furthermore, given the smallness of the constant term in Equation 1.9 (4G/c4 ∼ 3.3 ·
10−44s2/Kg ·m), only astrophysical sources involving masses of the order or greater than
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the solar mass (M») can produce GWs with detectable amplitudes. The explicit calculation
of Qij and hTT

ij depends on the particular geometry of the source.
The general solution expressed in 1.9 is an expansion in terms of v/c, but is still as-

suming that the background space-time is flat. The implicit assumption done is that the
background space-time curvature and the velocity of the source can be treated as indepen-
dent parameters, a condition that holds when the system is governed by non-gravitational
forces. However, the astrophysical systems on which we are interested are typically held
together by gravitational forces. In this condition the independence assumption is no longer
valid as a consequence of the virial theorem. For a self-gravitating system with total massM
and typical size d, we have (v/c)2 ∼ GM/c2d, where the right-side term is also a measure of
strength of the gravitational field near to the source. When treating a moderately-relativistic
self-gravitating system, it has to be described by a post-Newtonian (PN) formalism. In PN
formalism, the Einstein equations 1.2 have to be expanded in terms of a small parameter

x =
v

c
∼
(

GM

c2d

)1/2

and all the equations above have to be properly corrected. We refer to an expansion up to
a xn power as to a ’n-PN’ order. A detatiled description of the PN formalism can be found
in Chapter 5 of [7]. Finally, in the case of strongly relativistic system there is no possibility
to use the perturbation theory. Hence, the Einstein equations have to be solved explicitly,
in the non-linear regime, through computational methods called Numerical Relativity.

1.1.1 Gravitational wave sources

Gravitational signals can be roughly classified in macro-categories depending on the time
they remain in the detector sensitivity band. This time does not depend only on the
astrophysical process, but also on the type of detector, ad can actually change if we consider
for example space-based detectors. Here we refer to Earth-based wide-band detectors.
We can mark GW signals as transient, if they stay in the detector sensitivity band for a
limited time, or continuous, if they last for the entire observation time of the detector.
Another classification can be done for modeled and unmodeled signals, depending on the
good and expected understanding of the physical mechanisms and on the capability to
generate accurate waveform templates. In Table 1.1 the classification is reported, and the
main emission mechanisms are then reviewed.

Modeled Unmodeled

Transient signals Coalescence of compact binaries Bursts
Postmerger neutron stars Supernova explosions

Continuous signals Periodic sources Stochastic background

Table 1.1: Classification of GW signals between transient/continuous and mod-
eled/unmodeled.

Coalescence of compact binaries

The gravitational radiation produced by two coalescing compact bodies, like black holes
(BHs) and neutron stars (NSs), is one of the most important subjects, since in the first 3
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Figure 1.2: Representation of the parameters that fully describe a binary system of compact
stars

LIGO/Virgo observing runs all the detected GWs belong to this category [8, 9, 10, 11]. The
configuration of two (or more) mutually orbiting bodies is among the most efficient GW
emitters, since it strongly violates the cylindrical symmetry. In order to fully describe a
binary system we need 15 parameters:

• Localization (3): distance D (or luminosity distance DL), right ascension ³, declina-
tion ¶;

• Orientation (2): angle º between the line of sight and the orbital angolar momentum,
polarization angle È (i.e. the direction of the projection of orbital momentum on the
plane orthogonal to the line of sight)

• Intrinsic (8): couple masses (m1,m2) and spin4
(

S⃗1, S⃗2

)

• Dynamics (2): coalescing time tc and phase ϕc

The calculation of the system dynamics at the leading Newtonian order bring to a quadrupole
moment that depends on the binary masses only through a symmetric combination, called
chirp mass:

M =
(m1m2)

3/5

(m1 +m2)
1/5

(1.14)

At the first quadrupolar order, the emitted GW can be easily computed. The two polar-
ization amplitudes are

h+ (t) =
1

DL

(

GM
c2

)5/4 [ 5

c (tc − t)

]1/4 1 + cos2 º

2
cos [ϕ (t)] (1.15)

h× (t) =
1

DL

(

GM
c2

)5/4 [ 5

c (tc − t)

]1/4

cos º sin [ϕ (t)] (1.16)

4Please note that the use of the ”spin” term is intended as the rotational angular momentum of the
compact object. This usage is frequent in the gravitational wave community, and will be used in the text.
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Figure 1.3: Last cycles of a simulated quadrupolar chirp signal from a binary with chirp
mass M = 28M» and luminosity distance DL = 410Mpc, starting from 20 Hz. In the
top plot, the signal h+ strain amplitude is shown. In the bottom plot, its instantaneous
frequency evolution is shown.

, where the phase evolution is obtained by integrating the frequency evolution of the signal

fgw (t) =
1

8Ã

(

GM
c3

)−5/8( 5

tc − t

)3/8

(1.17)

ϕ (t) =

∫

2Ãfgwdt = −2

[

c3

5GM (tc − t)

]5/8

+ ϕc (1.18)

Both the signal amplitude and frequency have a growing trend in time. For this reason,
the signal produced by CBCs is typically called chirp. It is important to note that in
these quadrupolar formula there is a degeneracy with respect to the intrinsic parameters
of the binary system: individual masses are not resolved individually, and there is no
dependence at all on the total and individual spin. The reason is that when computing
the quadrupole moment, the orbiting bodies are treated as point-like particles interacting
through Newtonian gravity. Under these assumptions, the motion is fully symmetric in the
individual masses, and their intrinsic rotation is not considered. However, binary systems
typically do not satisfy the flat space-time condition, at least at their final stage when they
enter the Earth-based detectors sensitivity. To accurately describe the CBC dynamics we
need to compute the wave-forms at least up to the 3.5-PN order, see [12, 13].

The PN formalism is valid until the moderately-relativistic condition holds. However,
at the final phase of the coalescence also the weak-field condition is no more valid and the
system has to be treated in the strong-field regime. The analytic solution is valid until the



CHAPTER 1. GRAVITATIONAL WAVES AND DETECTORS 13

Figure 1.4: A sample waveform describing a full CBC signal from a BBH, computed with
Numerical Relativity. The three distinct regimes, namely the inspiral, merger, ringdown,
are highlighted.

orbital separation between the individual bodies reaches the value r ≃ 6G (m1 +m2) /c
2,

obtained in the quadrupole approximation, which is the inner-most stable circular orbit
(ISCO). After that, if the binary components are BHs the system has to be treated with
Numerical Relativity methods, which are computationally bounded. Since 2005 new numer-
ical methods have been introduced, based on generalized harmonic coordinates, that can
evolve a binary BH during the last crucial stages of a merger [14]. Before, no code has been
able to simulate a nonaxisymmetric collision through coalescence and subsequent relaxation
of the final BH. The numerical templates must have continuity with the analytic waveforms
before the ISCO. After the merger, there is an unique event horizon, highly asymmetric
and with an high rotational spin because of the conservation of orbital angular momentum.
During this last phase, called ringdown, the resulting BH performs few damped oscillation
cycles. Its GW emission is given by a superposition of its quasi-normal modes, with fre-
quency and damping time depending only on the BH mass and spin [15]. An example of a
complete waveform, referring to the first observed GW150914, is shown in Figure 1.4.

Despite some computational limitations for a full numerical simulation, the physics of
CBCs is generally well understood. The prediction of the emitted GW signal is therefore
very accurate and reliable. In this case, signals can be found using matched filter based
searches [16]. The shortness of the signals when they enter the Earth-based detectors
sensitivity window allows to build large template banks, which are typically used to scan
the detectors data. During the first three observative runs of Advanced Virgo and LIGO,
various different implementations of matched filter have been used. The main one used are
PyCBC [17], GstLAL [18] and MBTA [19], which differ in the way they implement the filter,
they combine results of different detectors and establish the significance of a detection. In
Section 1.3 the discoveries done up to now will be presented, all of them associated to CBCs.
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Figure 1.5: Some examples of GW templates (h+D in units of cm, where D is the distance
of the source) computed with a 2D GR model. All the waveforms exhibit one pronounced
spike at core bounce and a subsequent ring down.

Short-duration bursts

There is a wide range of astrophysical sources that are expected to emit GW transients
lasting from milliseconds up to seconds within the sensitivity band of Earth-based detectors.
Differently from CBCs, most of these sources signals are poorly or even not modeled because
of the complicated physical processes that occur.

Historically, the most famous expected source of short bursts are probably the core-
collapse supernovae (CCSN). These were among the first considered sources since the be-
ginning of GW searches, but they still miss the first detection. They are typically associated
to supernovae (SN) of kind Ib, Ic and II, according to the current SN classification [20], but
only II SNe are considered potential sources. Building models of stellar collapse and subse-
quent post-bounce evolution is an extremely complicated task, and requires highly detailed
numerical modeling, as shown for instance in [21], Chapter 10. The numerical simulations
should be three-dimensional and they should cover length-scales from a few meters (cor-
responding to typical turbulence scales) up to kilometers (corresponding to typical stellar
core scales). Additionally, they must follow the system evolution for at least 1 − 2 s with
computational steps f 10−6s, and the evolution should be studied using full GR. These
requirements imply that modeling the stellar collapse in its full generality is an extremely
hard task, probably still beyond the limits of present computing power. Nevertheless, in
the last decade many progresses have been made and many classes of expected waveforms
have been computed [22]. A general feature of the expected signals is a strong spike, cor-
responding to the core bounce, followed by a ring-down, like the ones shown in Figure 1.5.

The basic problem with GWs from CCSN is that only the fraction of the explosion
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that violates the system axial symmetry produces a non-vanishing time-varying quadrupole
moment and then GWs. Consequently, the emitted GW is weaker with respect to the one
produced by CBCs and these signals are observable only for limited distances of the source.
An event located in our Galaxy, at a distance of few kilo-parsecs, would be observable
with present sensitivities, but SN explosions are extremely rare events, estimated to take
place with a ∼ 1/100 years rate. With the Advanced LIGO/Virgo design sensitivities, these
explosions could be observed with a good Galactic coverage up to the nearby dwarf galaxies,
like the Large Magellanic Cloud (which is about ∼ 50 kpc far away)[23].

Because of the difficulty of building a complete template bank, matched-filter-based
searches are not the optimal solution. The search strategy adopted by the LIGO/Virgo
collaboration is to perform agnostic searches with no assumption on the waveform. The
main pipeline currently used is called Coherent Waveburst (cWB). Originally developed
in [24] and strongly improved in [25], it coherently combines the data streams of all the
detectors in a maximum-likelyhood statistics in the time-frequency wavelet domain. The
searches performed during the first three observing runs of Advanced LIGO/Virgo did not
find significant candidate signals different from CBCs, since cWB is also sensitive to them
[26, 27, 23]. Thus, the null result of the search allows to set rate upper limits on the
observable events. The most recent ones can be found in [23].

Periodic sources

The periodic sources are the subject of the present work. While the already discussed
sources radiate a short duration signal - from a fraction of a second to several seconds at
most - a periodic source emits a nearly monochromatic signal, often called continuous wave
(CW). These signals typically last for periods much longer than the observing time of the
detectors, so they are always present in the data. An intermediate case are the long-lasting
transients, with typical duration that ranges from hours to days, even up to months. The
most important source are rapidly spinning NSs, that are thought to emit GWs if they are
deformed from the axial symmetry. There are also more exotic possible sources of CWs,
like the boson condensates around spinning black holes. CW sources and search strategies
will be treated detail in Chapter 2.

Stochastic background

The stochastic GW background has received growing interest in the last decade. As a
stochastic process, a stochastic background can be seen as a superposition of plane waves,
with frequencies covering a given range, which amplitudes are random variables. Therefore,
this process cannot be described through an analytic waveform: instead, it is defined by
its own spectral density, and the goal of the stochastic searches is to extract that spectrum
from the noise. The stochastic background can originate from the superposition of many,
unresolved astrophysical sources [28]. This background can reveal important information on
the distribution of sources in the near and far universe and can be an-isotropic. A stochas-
tic background can originate also from cosmological phenomena [29]. The detection of a
cosmological GW background would have a strong impact on the cosmology research field.
It would represent a probe on the earliest stages of the Universe at times around t ∼ 10−43s,
much earlier than the decoupling of the Cosmic Microwave Background (which happened at
t ∼ 3.8 ·105years [29]. The expected spectra of the cosmological GW background is strongly
model-dependent, but generally they can be modeled as power laws ∼ f³ with ³ ∈ [0, 3]
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and a cutoff at O(GHz) frequencies. On the other side, stochastic backgrounds can also
disturb the detection of other signals.

The search for stochastic background is typically based on cross-correlation between de-
tectors data and folding over the sidereal day. A very efficient algorithm used in LIGO/Virgo
searches is PyStoch [30]. As no detection have been made by now, upper limits can be put
both on the astrophysical and the cosmological sources. The most recent results can be
found in [31, 32, 33, 34].

1.2 Gravitational waves observation: LIGO and Virgo

In this section, I introduce the basic principles of GW detection, with particular reference
on the actual implementation of the existing interferometers.

1.2.1 The effect of gravitational waves on matter

Describing the effect of a GW passing through a system of test masses is a task to be carried
on carefully. The reason is that, despite GR is invariant under coordinate transformations,
the way we describe the GWs and the detector depend on the reference frame chosen.

As stated in Section 1.1, GWs are typically described fixing the TT gauge, where their
analytic form gets simplified. However, the reference frame that physically corresponds to
the TT gauge is different from that one of an Earth-based detector frame. In a curved
spacetime, the motion of a particle is governed by the geodesic equation,

d2x³

dÄ2
+ Γ³

µ¿ (x)
dxµ

dÄ

dx¿

dÄ
= 0 (1.19)

and vectors evolve according to the equation of geodesic deviation,

D2À³

DÄ2
= R³

µ¿´À
´ dx

µ

dÄ

dx¿

dÄ
(1.20)

where the symbol D denotes the covariant derivative. If we take a test mass at rest at Ä = 0,
in the TT frame the surviving components of the affine connections are null, Γi

00 = 0. So,
in the TT frame, particles at rest before the GW arrival remain at rest even after its arrival
(excluding O

(

h2
)

contributions). This means that the coordinates of the TT frame stretch
themselves in response to the arrival of the wave, in such a way that the position of free
falling test masses initially at rest does not change.

As a consequence, to physically implement the TT frame we can use the free test masses
themselves to mark the coordinates: these masses continue to mark the origin and the other
reference points of the reference frame even when the GW is passing. This means that also
the coordinate separation between the test masses remain constant and hence we cannot
observe the effect of a passing GW just looking at the coordinates. However, this is not
surprising since GR is invariant under coordinate transformations. In order to observe
physical effects, we have to monitor proper distances or proper times, starting from the
perturbed metric

ds2 = −c2dt2 +
(

¶ij + hTT
ij

)

dxidxj (1.21)

When a plane GW like the one described in Equation 1.7 with pulsation Égw is passing,
taking the z axis coincident with propagation direction, the interval can be expressed as

ds2 = −c2dt2 + (1 + h+ cosÉgwt) dx
2 + (1− h+ cosÉgwt) dy

2 + (2h× cosÉgw) dxdy + dz2

(1.22)
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Figure 1.6: Representation of TT coordinates along one dimension when a GW is passing.
The coordinates x1, x2 keep unchanged, but the intervals between the dots are stretched in
response to the GW.

Let’s take for instance a GW with just the ’+’ polarization and two events located on the
x-axis at the same time, with coordinate separation L = x2 − x1. By integrating the 1.22
we get the proper distance

s = (x2 − x1)
√

1 + h+ cosÉgwt = L

(

1 +
1

2
h+ cosÉgwt

)

+O
(

h2
)

(1.23)

Therefore in the TT gauge, even if the coordinate distance L remains constant, the proper
distance between the two events oscillates as a consequence of the GW passing. More in
general, if we consider a generic wave and two events with spatial separation L⃗, the proper
distance is affected as

s = L+
1

2
hij

LiLj

L
+O

(

h2
)

(1.24)

By separating the components of the proper distance, the above relation implies that, at
linear order in h,

s̈i ≃
1

2
ḧijLj ≃

1

2
ḧijsj (1.25)

It is important to note that the perturbation of the proper distance between two points
results to be proportional to the unperturbed distance. So, in the TT frame the effect of
the GW is to perturb the proper distances between objects, making them oscillate with the
same pulsation of the wave. If the test masses are two mirrors with a light beam traveling
between them, the effect of a GW can be revealed measuring the round-trip time, since it
is a measure of the proper distance.

Now consider the effect of the wave in the proper detector frame. This is the reference
frame that is implicitly used by an experimenter to describe the apparatus. Differently
from TT frame, positions are not marked by freely falling particles, but after choosing the
origin, the coordinates are defined through rigid rules. The ideal configuration would be a
laboratory inside a drag-free satellite, in order to have the whole apparatus in free fall in
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the gravitational field of the Earth, plus that one of the GW. In a such ideal laboratory,
the metric would be flat even in presence of a GW, up to the linear order in

∣

∣xi
∣

∣:

ds2 ≃ −c2dt2 + ¶ijdx
idxj (1.26)

Expanding up to second order, we recover the effect of a passing GW, expressed in terms
of the Riemann tensor

ds2 ≃ −c2dt2
[

1 + R0i0jx
ixj
]

− 2cdtdxi
(

2

3
R0jikx

jxk
)

+ dxidxj
[

¶ij −
1

3
Rikjlx

kxl
]

(1.27)

However, an Earth-based detector is not in free fall with respect to the Earth’s gravitational
field. It has an acceleration a⃗ = −g⃗ with respect to a local inertial frame, and moreover
it rotates wit angular velocity Ω with respect to local gyroscopes. To correctly express the
metric of such frame, we need to make a coordinate transformation from the inertial frame
to a accelerating and rotating frame. The result is given by [7]:

ds2 ≃ −c2dt2
[

1 +
2

c2
a⃗ · x⃗+

1

4
(⃗a · x⃗)2 − 1

c2

(

Ω⃗× x⃗
)2

+R0i0jx
ixj
]

+ (1.28)

+2cdtdxi
[

1

c
ϵijkΩ

jxk − 2

3
R0jikx

jxk
]

+ dxidxj
[

¶ij −
1

3
Rikjlx

kxl
]

which is actually the metric of the proper detector frame. In this frame the evolution of
the coordinates of test masses is described in terms of forces. The corresponding geodesic
equation includes Newtonian forces like Newtonian gravity, Coriolis force, centrifugal forces,
gravity gradients and so on (see [35] for the full expression). So, in principle the GW effect
is overwhelmed by a large variety of effects that are many orders of magnitude stronger.
However, all these Newtonian forces have typical variation time-scales larger than few sec-
onds. This means that GWs with frequencies greater than a few Hertz see those forces as
static and are not hidden. In other words, there is a frequency window where the metric
can be described, as it was a freely falling, by the 1.27 rather than 1.28. By applying the
equation of geodesic deviation 1.20 to the test masses coordinates, since the detector motion
is non-relativistic we get

d2Ài

dÄ2
= −Ri

0j0À
j

(

dx0

dÄ

)2

(1.29)

Since the Riemann tensor is invariant, it can be computed in any frame. Therefore, it is
convenient to compute it in the TT frame, where GWs get the simplest analytic form. The
relevant components are

Ri
0j0 = − 1

2c2
ḧTT
ij (1.30)

Since the Riemann tensor is O (h), we can limit the 1.29 to linear order in h, so that the
proper time coincides with the coordinate time and the equation becomes

À̈i =
1

2
ḧTT
ij À

i (1.31)

Equation 1.31 implies that in the proper detector frame the effect of a GW on the test
masses can be described in terms of a Newtonian force

Fi =
m

2
ḧTT
ij À

i (1.32)
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Figure 1.7: Representation of the effect of a GW on a ring of masses, seen at different
fractions of the GW period. In the first row is shown the effect of a ”+” polarized wave, in
the second the effect of a ”×” wave. The effect of the two polarizations is the same, but is
rotated by 45 degrees.

Please note that in the TT frame the coordinates would remain constant, whereas the
proper distences are stretched by the GW. In the proper detector frame, the metric is
flat up to the linear order in

∣

∣xi
∣

∣, so the proper distances are not affected. Instead, the
coordinates of the test masses are perturbed as they experienced a sort of tidal force. The
effect of the 1.31, 1.32 on a set of test masses is shown in the example in Figure 1.7, for a
’+’ and a ’×’ polarization respectively. During one single period, the GW deforms a ring of
matter as an ellipse in two orthogonal directions. The effect is analogous both for the ’+’
and the ’×’ polarization, but they are rotated by 45 degrees one respect to the other.

The effects of a GW described in the TT frame by 1.25 and in the proper detector frame
by 1.31 have the same mathematical form, but the equations apply on different objects. This
is not surprising. In GR the physics must be invariant under coordinate transformations,
but the description of both GWs and detector depends on the reference frame choice. So,
it is not a problem to have different descriptions of the effect of a GW depending on the
reference frame, but they must produce the same physical observable. This will be clear
in the next Subsection, where the time travel of an electromagnetic wave will be used to
measure the effect of the GW.

1.2.2 Broad-band interferometers: basic principles

In Section 1.2.1 it has been shown the effect of a GW on a set of test masses. If the test
masses are mirrors and a light beam is traveling between them, the effect of a GW can
be detected measuring variations of the round-trip time of the beam. The basic idea is
to implement a Michelson interferometer. It was first used by Albert Abraham Michelson
and Edward Morley to try to detect the Earth’s motion through the supposed luminiferous
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aether, and actually demonstrating its non-existence [36]. In its basic concept, shown in
Figure 1.8, it consists in two mirrors and a 50% partially reflective mirror called beam
splitter. A coherent laser source sends a laser beam at 45° on the beam splitter, so that it is
divided in two beams traveling in orthogonal directions. The two mirrors are placed along
the beam travel directions, orthogonal to them, at distances respectively Lx and Ly from
the beam splitter. The two laser beams are reflected by the mirrors, so they come back and
recombine at the beam splitter, and finally the resulting beam is read by a photo-diode.

TT frame

First, we describe the Michelson interferometer in the TT frame. The problem is that
the mirrors of a ground-based detector are not freely falling, since they are suspended
to compensate Earth’s gravity. However, in the previous Subsection we have seen that the
gravitational forces are static with respect to GWs with frequencies above few Hertz. More-
over, even if in the vertical direction the mirrors are bounded, if we restrict to the horizontal
plane the masses follow the geodesics of the time-dependent part of the gravitational field,
so they can be taken as freely falling. So, we can define the origin of the TT frame as
the location of the beam splitter, marking it with (0, 0) coordinates, and we can mark the
positions of the mirrors at the end of the x and y arms respectively with coordinates (Lx, 0)
and (0, Ly). As shown in Section 1.2.1, the metric of a flat spacetime perturbed by a GW
is given by 1.21. Let’s take for simplicity a GW with just the ’+’ polarization. Given that
a light beam travels on a null geodesic, where ds = 0, the two laser beams exiting the beam
splitter do propagate in the x and y directions with







dx = ± c dt
[

1− 1
2h+ (t)

]

+O
(

h2
)

dy = ± c dt
[

1 + 1
2h+ (t)

]

+O
(

h2
)

(1.33)

where the plus and minus signs correspond to prograde and retrograde traveling respec-
tively. The two laser beams travel back and forth in the cavities, getting reflected by the
mirrors and then recombining at the beam splitter. Finally, the combined beams arrive at
the photodiode at a measured time ’t’. However, in principle the optical paths of the two
beams are different because of arms with different lengths Lx ̸= Ly or as a consequence of a
GW. So, this means that the beam observed at the photodiode at the time ’t’ is the result

of two beams entered in the interferometer at different times t
(x)
0 , t

(y)
0 , given at linear order

in h by:
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(1.34)

It is important to note that the part involving the effect of the h+ GW in 1.34 is scaled by
a function sinc (x) = sinx/x with argument x = ÉgwL/c = 2ÃL/¼gw. This means that the
effect of the GW is maximum when L j ¼gw, so the arms length must be much smaller
than the GW wavelength.

The input laser beam can be expressed in the spatial component of the electric field as

E0e
−iÉLt+ik⃗L·x⃗ (1.35)

where ÉL is its pulsation and kL = ÉL/c is its wavenumber. During the free propagation the
phase is conserved, while reflections and transmissions give to the beams an overall factor
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Figure 1.8: Basic scheme of a simple Michelson interferometer. The 50% beam splitter is
put at 45 degrees with respect to the input laser direction. The laser beam is then divided
into two orthogonal beams that travel onto a straight line until they are reflected back by
the end mirrors. They finally recombine at the beam splitter and arrive at the photo-diode
for the detection. In the TT frame description, the beam splitter marks the (0, 0) coordinate
and the two end mirrors mark the (Lx, 0), (0, Ly) coordinates, thus defining the x and y
axes.

±1/2. So, from the 1.34 different entering times determine a phase difference between the
two beams when they recombine
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(1.36)

where Lx and Ly have been substituted with L = (Lx + Ly) /2 with an error O
(

h2
)

; the
phase ϕ0 = kL (Lx − Ly) is a free parameter, tunable by adjusting the arms length; the
phase shift induced by GWs in a single arm is

∆ϕx = −∆ϕy = kLLh+

(

t− L

c

)

sinc

(

ÉgwL

c

)

(1.37)

So, the recombined beam is given by

Etot = E(x) (t) + E(y) (t) = −i E0e
−iÉL(t− 2L

c ) sin [ϕ0 +∆ϕx (t)] (1.38)

and the power observed as output at the photodiode is

Pout =
P0

2
{1− cos [2ϕ0 +∆ϕMich (t)]} (1.39)

where ∆ϕMich is the total phase difference on the Michelson interferometer

∆ϕMich = ∆ϕx −∆ϕy = 2∆ϕx (1.40)
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By comparing the ∆ϕMich and ϕ0 terms, in the limit ÉgwL/c j 1 the effect of the GW on
the phase shift is formally equivalent to a change in the arms length like

∆ (Lx − Ly)

L
≃ h

(

t− L

c

)

(1.41)

The direct effect of the GW on the laser is to generate side-bands. In fact, since ∆ϕx is
linear in h0, the electric field in 1.36 can be expanded to linear order in h0 as

E(x) (t) =
1

2
E0e

i´

[

e−iÉLt +
i

2
|∆ϕx| ei³e−i(ÉL−Égw)t +

i

2
|∆ϕx| e−i³e−i(ÉL+Égw)t

]

+O
(

h2
)

(1.42)
where ³, ´ are constant phases. So, while the original electromagnetic wave, called the
carrier, has pulsation ÉL, the GW generates two additional waves, called side-bands, with
pulsations ÉL ± Égw and amplitude O (h0) with respect to the carrier.

Proper detector frame

In the proper detector frame, coordinates are measured by means of rigid rulers. The
effet of a GW is a displacement of the masses coordinates following the 1.31, as effect of
a GW force which expression is given by 1.32. The condition is that the linear dimension
of the apparatus, which is the interferometer arm-length, is small compared to the GW
wavelength, Lj ¼gw. Until this condition is satisfied, in that region the space-time metric
can be taken as flat up to linear order, with quadratic corrections given by 1.27. So, the
basic assumption is that

ÉgwL

c
j 1 (1.43)

Since the solution found in the TT frame is an exact function of ÉgwL/c, the solution in
the proper detector frame can be only an approximate one. Considering a GW with only
the ’+’ polarization and the propagation along the ’x’ arm, Equation 1.31 becomes

À̈x =
1

2
ḧ+Àx (1.44)

Therefore, the end mirror located at (Lx, 0) keeps oscillating as

Àx (t) = Lx +
1

2
Lxh0 cosÉgwt (1.45)

Considering at the lowest order a flat spacetime as in 1.26, a photon propagates following
the trajectory x (t) = c (t− t0), so when it comes back to the beam splitter at the time ’t’
its entering time is given by

t
(x)
0 = t− 2Lx

c
− Lx

c
h+

(

t− Lx

c

)

(1.46)

This is the same result as the one in 1.34 except for the missing sinc (ÉgwL/c) function,
which is substituted by its lower-order expansion sinc (0) = 1. Considering also the next
term in the approximation, the photon propagates in a curved spacetime which metric is
1.27 and along the x direction reduces to

ds2 = −c2dt2
(

1 + R0101x
2
)

+ dx2
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where the Riemann tensor can be computed using the the TT gauge expression

R0101 = − 1

2c2
ḧ+ =

1

2c2
É2
gwh0 cosÉgwt (1.47)

Therefore, the photon propagates on the background with motion

x (t) ≃ c (t− t0) +
c

12
É2
gw (t− t0)

3 h0 cosÉgwt0 (1.48)

and when it comes to the beam splitter, its entering time is corrected from the previous
value 1.46 to the more accurate value

t
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0 = t− 2Lx

c
− Lx

c
h+
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c
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]

(1.49)

The expression inside the last bracket represents the first two terms of the ’sinc’ function

sinc (x) =
sinx

x
= 1− 1

6
x2 +O

(

x4
)

(1.50)

So, the calculation in the proper detector frame reproduces the results obtained within the
TT frame restricting to the leading and next-to-leading terms in ÉgwL/c. We can conclude
that even if the proper detector frame description is more intuitive, in the TT frame we can
get the exact solution of the interaction between the GW and the detector.

Fabry-Perot cavities

Since the observed quantity is the total output power at the end of the interferometer and
the information on the GW is encoded in the phase ∆ϕMich, we want to maximize it. From
1.40 and 1.37 we see that ∆ϕMich ∝ (ÉL/Égw) sin (ÉgwL/c), so the maxima is reached at
ÉgwL/c = Ã/2, which implies an optimal value of the arms length

L ≃ 750km

(

100Hz

fgw

)

(1.51)

For such values, the time shift induced by the GW on the beam maintain the same sign and
sums coherently. For larger values, during the beam propagation the GW inverts its sign
and then cancels the accumulated phase. This is a strong limitation, since it is impossible
to build arms of hundreds of kilometers. Therefore there is the need to fold this optimal
optical path of the laser several times in order to obtain the same result in a manageable
size. The solution adopted in present Virgo and LIGO interferometers is to transform each
arm into a Fabry-Perot cavity. A Fabry-Perot cavity consists in two parallel mirrors. The
mirrors have a high-reflecting coating on the interior of the cavity, and their reflection and
transmission coefficients ri, ti are such that r2i + t2i = 1 − pi, being pi the mirror losses
and i = 1, 2 the index to mark 1st and 2nd mirror. An incoming electric field is partially
reflected and transmitted by the first mirror; the transmitted field propagates to the second
mirror, where it is partially reflected and transmitted, and so on. At the end the total field
reflected by the cavity, as well as the interior and the transmitted fields, are given by the
superposition of many beams, resulting from multiple bounces. In particular, the reflected
field that goes back to the beam splitter is

Eref = E0 e
−iÉLt0

r1 − r2 (1− p1) e
i2kLL

1− r1r2ei2kLL
(1.52)
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Figure 1.9: Variation of the basic scheme described in Figure 1.8. Two additional mirrors
(called input mirrors) are inserted with an highly reflective substrate pointing towards the
end mirrors. In this way, in each arm the input and end mirrors form a Fabry-Perot cavity.

and also the fields inside the cavity and the transmitted have the same denominator. When
the condition 2kLL = 2Ãn is satisfied, the various beams interfere constructively and since
the denominator becomes (1− r1r2) with r1, r2 ∼ 1, the total field raises to very large
values. In this configuration the cavity is said to be in resonance. The power circulating is
therefore related to the cavity length as

P ∝ |E|2 ∝ f (2kLL) =
1

1 + (r1r2)
2 − 2r1r2 cos 2kLL

(1.53)

This dependence is shown in 1.10. The more the reflectivity of the mirrors is close to one,
the thinner are the resonance peaks and the more difficult is to put the cavity in resonance.
By defining the free spectral range ∆ÉL as the distance between tha maxima in terms of
the beam pulsation,

∆ÉL =
Ãc

L
(1.54)

and the peaks width at half maximum as

¶ÉL =
c

L

1− r1r2√
r1r2

(1.55)

the finesse F of the cavity is defined as the ratio betweem the free spectral range and the
peaks width at half maximum

F =
∆ÉL

¶ÉL
=

Ã
√
r1r2

1− r1r2
(1.56)

The finesse of the cavity has a strong impact since it directly influences the storage time of
the cavity Äs, which is defined as the average time spent inside by a single photon and in
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Figure 1.10: Plot of the function f (2kLL) defined in the 1.53, which shapes the circulating
power, as function of 2kLL. In the plot the value r1r2 = 0.9 has been used.

the high-finesse limit, is given by

Äs ≃
2L

c

F
2Ã

(1.57)

So, the average time spent by a photon inside the cavity is enhanced by a factor F/2Ã with
respect to the time spent in a simple Michelson arm , which is 2L/c. By looking at the
electrical field, the reflected field in 1.52 can be written in the form Eref = |Eref | e−iÉLt+iϕ

where the phase is given by

ϕ = Ã + arctan

[

− r2 (1− p1) sin (2kLL)

r1 − r2 (1− p1) cos (2kLL)

]

− arctan

[

− r1r2 sin (2kLL)

1− r1r2 cos (2kLL)

]

(1.58)

A plot of the phase ϕ as function of 2kLL is shown in Figure 1.11. It is important to note
that when the cavity is far from resonance the phase of the electrical field is insensitive to
changes in L. On the other side, when the cavity is locked to resonance the phase is strongly
sensitive to a length change. Defining the phase distance from a resonance ε = 2kLL−2Ãn,
in the limit εj 1 the phase sensitivity to a length change is

∂ϕ

∂ε
≃ 2F

Ã
(1.59)

Since for a simple Michelson arm ϕ = ε, by comparison we find that the sensitivity of a
Fabry-Perot cavity to changes in 2kLL is enhanced by a factor 2F/Ã. A similar result
can be obtained for the full interferometer. By repeating the calculations done for the
simple Michelson scheme, we can express the total phase shift in a Michelson + Fabry-
Perot interferometer in the form ∆ϕFP (t) = |∆ϕFP| cosÉgwt, with

|∆ϕFP| ≃ h0
4F
Ã
kLL

1
√

1 + (fgw/fp)
2

(1.60)
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Figure 1.11: Plot of the phase ϕ of the reflected field defined in 1.58 as function of 2kLL.
For this plot the values r1 = 0.9, r2 = 0 and p1 = 0 have been used. The arctan function
output has been unwrapped to better show the behavior. It is important to note that the
derivative of ϕ is significantly non-vanishing only around the 2nÃ resonances. Away from
them, the phase is insensitive to changes in the arms length.

having defined the pole frequency as fp = 1/ (4ÃÄs) and in the limit where ÉgwL/c j 1.
Within this limit, the ratio between the phase shifts in magnitude is

|∆ϕFP|
|∆ϕMich|

≃ 2F
Ã

1
√

1 + (fgw/fp)
2

(1.61)

Thanks to the implementation of Fabry-Perot cavities, it is possible to achieve the optimal
sensitivity required by 1.51, but with an actual arm length of 3− 4 km.

Detector pattern functions

The whole calculation done in this Section can be generalized to GWs with both the polar-
ization components and coming from an arbitrary direction. Since the motion of the mirrors
is governed in a more general way, in the limit ÉgwL/cj 1 by the geodesic equation

À̈x = 1
2 ḧxxL

À̈y = 1
2 ḧyyL

(1.62)

This means that the relative phase shift between the two arms is driven by the factor
1
2(ḧxx − ḧyy), so the h+ used in this Section should be replaced by 1

2 (hxx − hyy). The
reference frame of the GW is marked with (x′, y′, z′) so that the z′ axis coincides with the
propagation direction. On the other side, the proper detector frame is (x, y, z) with x, y
coincident with the detector arms and the z axis orthogonal ti the detector plane, oriented
outside the Earth’s surface. The GW propagates with direction n̂ = (¹, φ) with respect to
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the z axis in the detector frame, so the GW tensor h′ij in the TT frame

h′ij =





h+ h× 0
h× −h+ 0
0 0 0





ij

(1.63)

must be rotated to get the tensor expression in the detector frame, hij = RikRjlh
′
kl, with

the rotation matrix R given by the composition

R =





cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1









cos ¹ 0 sin ¹
0 1 0

− sin ¹ 0 cos ¹



 (1.64)

As a result, the GW enters the detector through a combination of the + and × polarizations

h (t) = F+ (¹, φ)h+ (t) + F× (¹, φ)h× (t) (1.65)

where the components are weighted by the detector pattern functions F+, F× defined as

F+ (¹, φ) = 1
2

(

1 + cos2 ¹
)

cos 2φ

F× (¹, φ) = cos ¹ sin 2φ
(1.66)

It is clear therefore that an interferometer has some optimal observing directions and,
above all, some blind directions. It is insensitive to ’+’ polarized GWs propagating in
the plane defined by φ = Ã/4; 3Ã/4, while it is insensitive to ’×’ GWs from ¹ = ±Ã/2 or
φ = 0;Ã/2;Ã; 3Ã/2. This also means that there are four directions where the detector is
completely blind. The result found in 1.65 and 1.66 can be taken as general, since the travel
time is negligibly affected by the GW direction.

1.2.3 Real interferometers: LIGO and Virgo

In Section 1.2.2 the GW detection theory has been introduced. However, the practical
realization of the descibed interferometers introduces a huge number of practical issues.
Here, I discuss some important modifications and additions that are needed in order to get
a real working interferometer, introducing the Virgo [37] and LIGO [38] detectors. The
Virgo detector is located near the city of Pisa, Italy. Its construction started in 1996 after
project approval by the French National Centre for Scientific Research (CNRS) and the
Italian Istituto Nazionale di Fisica Nucleare (INFN). Its construction was completed in
June 2003 and it have been recording data from 2007 to 2011 during four scientific runs.
LIGO have two detectors in the United States, located in Hanford, Washington and in
Livingston, Louisiana. Their construction started in 1994 and 1995 respectively, and they
have been recording data from 2002 to 2010, in five scientific runs. Both the experiments
implement the basic setup described in Section 1.2.2. The two LIGO detectors have Fabry-
Perot cavities 4 km long, whereas the Virgo detector cavities are 3 km long. In addition to
the basic outline, there are several modifications to apply as well as extra components to
add:

• Diffraction and spherical mirrors. When considering the transverse extension of
the beam and the finite-size of the mirrors, there is the problem of the diffraction.
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For interferometers like Virgo and LIGO, with typical laser wavelength ¼L ≃ 1µm,
arm length L = 3 − 4km and a beam transverse width of few centimeters, the beam
is in the regime of Fraunhofer diffraction. A beam with initial width 1 − 2cm would
broaden strongly even after the first one-way trip in the cavity. Therefore Fabry-perot
cavities, where the beam perform O (100) bounces, cannot be done with flat mirrors.
From the laser side, the optimal choice consists in generating beams with a Gaussian
profile, since they saturate the uncertainty principle and so have the minimum possible
spreading. Since the wavefronts of a Gaussian beam can be considered spherical with
great approximation, the mirrors are spherically shaped so that their surfaces match
the constant-phase surfaces of the beam. In this way, once reflected, the beam is
focused back, converges and re-expands going towards the other mirror, and so on.
The typical dimensions of Virgo and LIGO mirrors are about O (10) cm.

• Mode-cleaner. As stated above, there is the need to have a laser beam with Gaussian
profile. However, in general a laser beam can get higher order modes from the emission
and propagation, that are typically called Hermite-Gauss modes and are denoted as
TEMmn. The Gaussian profile is the fundamental mode, denoted as TEM00. The laser
emits a beam that is predominantly Gaussian, but with a contamination < 10% from
higher modes, mostly TEM01 and TEM10. These modes are not resonant, resulting
in just additional noise, so they have to be ruled out before the laser enters the
beam splitter. In order to eliminate these modes, the input laser is sent into a mode-

cleaner. This consists in a triangular shaped Fabry-Perot cavity with very high finesse,
operated in transmission. Its length is tuned so that only the (0, 0) is resonant, so it is
the only mode that is efficiently transmitted. In the same way, during the propagation
inside the interferometer the beam can get further higher modes because of mirrors
imperfections or misalignments, so an output mode-cleaner is placed after the beam
splitter and before the detection system.

• Phase modulation for dark fringe detection. The final step consists in the
extraction of the GW phase shift from the output. From 1.39 we see that the output
is given by the total power P (ϕ) = P0 sin

2 ϕ, where the phase ϕ = ϕ0 + ∆ϕgw (t) is
the sum of the phase shift ∆ϕgw induced by the GW and of a phase ϕ0 that can by
adjusted by the experimenter changing the position of the mirrors. It is clear that
the maximum derivative ∂P/∂ϕ, where the power should be more sensitive to a phase
shift due to a GW, is reached at ϕ0 = Ã/4. However, at this configuration the power
of the laser is P0/2 and therefore is subject to fluctuations that are many orders
of magnitude bigger than the searched ∆ϕgw. Given the small effect, there is the
need to have a null instrument, with output zero when the signal is absent, so that
it is not overwhelmed by calibration uncertainties. Such configuration, called dark

fringe, is reached at ϕ0 = 0. However, in this configuration we have P = 0 but also
∂P/∂ϕ = 0, and since ∆ϕgw = O (h), the effect of a GW on the output power would be
∆P = O

(

h2
)

, so practically undetectable since typical GW amplitude is h < 10−21.
The solution consists in the application of a time-varying phase modulation to the
input beam. In practice, the beam passes through a Pockels cell before entering the
beam-splitter. The Pockels cell is a crystal with an index of refraction that depends
on an applied electric field. The external field oscillates with a pulsation Ωmod, so the
index of refraction oscillates with the same pulsation, and the beam itself acquires a
time-vaying phase. The effect at first order is to generate sidebands with pulsation
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É± = ÉL ± Ωmod. When the arms have the same length, ∆L = 0, both the carrier
and the sidebands are in dark fringe. However, the arms can be set to differ for a
multiple of the laser wavelength, ∆L = n¼L, which is called Schnupp asymmetry.
The difference in length is on the distance between the beam splitter and the first
mirrors of the two Fabry-Perot cavities, while the cavities themselves have the same
length. With this choice, the carrier is still on dark fringe, while the sidebands are
no longer in dark fringe. Moreover, Ωmod is chosen so that inside the cavity only the
carrier is resonant, while the sidebands are not. When a GW arrives, the field of the
carrier is shifted from the value (Eout)c = 0 to a value (Eout)c ∝ (2F/Ã)Lh (t). The
sidebands, instead, are shifted from their ′ (1) value, proportional to cos (Ωmodt− ³),
into two terms O (1) +O (h). Looking at the output power, which is proportional to
|(Eout)tot|

2, the components of the carrier and the sidebands interfere together. The
squared fields give an irrelevant O

(

h2
)

for the carrier and a DC term that oscillates
at 2Ωmod for the sidebands. The mixed term, i.e. the beatings between the carrier
and the sidebands, is

∝ P0
2F
Ã
h (t) cos (Ωmodt− ³)

So, finally at the output we have a term linear in h (t) even if the carrier is on dark
fringe, that can be extracted using a mixer, and is insensitive to the power fluctuations
of the carrier.

• Power recycling mirror. Since the detector working point is the dark fringe of the
carrier, when no GW is passing no light goes out from the beam splitter at the carrier
frequency. In this situation, the full interferometer acts like a mirror, so all the light
finally goes back to the laser and is wasted. Since to minimize high-frequency read-
out quantum noise there is the need to keep the circulating power as high as possible
(see Section 1.2.4), the attempt is to recycle the power that comes back from the
beam splitter towards the laser source. The solution is to place a mirror between the
beam splitter and the laser, called power recycling mirror, that reflects back the light.
This mirror, together with the interferometer seen as an ”equivalent mirror”, forms
a new Fabry-Perot cavity. By tuning it in order to be resonant for the input laser
light, a gain of O (100) can be obtained on the circulating power. Since continuous
laser is produced at O (10− 100)W, in initial Virgo/LIGO configuration the power
circulating between the power recycling and the beam splitter raises to ∼ 1kW, and
up to ∼ 15kW in the interferometer cavities.

Considering all the introduced elements, the optical layout of the detector is represented
in Figure 1.12. In initial Virgo, the laser is emitted with ¼L = 1.064µm as a continuous
Nd:Yag, with power f 20W. Then, it passes through the Pockels cell where it gets sidebands
at Ωmod/2Ã = 6.2MHz. Both the carrier and the sidebands enter the input mode-cleaner,
coming out as a nearly pure TEM00 mode. It is transmitted through the power-recycling
mirror, which has the high-reflective substrate (≃ 0.95) on the interferometer side, and is
divided by the beam splitter. The interferometer arms realize the Schnupp asymmetry with
the input mirrors of the cavities respectively at lx ≃ 6.4m and ly ≃ 5.5m from the beam
splitter, whereas the cavities are 3 km long and with a finesse F = 50. The input mirrors
are plane, with r ≃ 0.88, and the end mirrors have a radius of curvature Rc = 3500m
and r = 0.99995. Since the working point is in dark fringe, the carrier is finally reflected
back to the power-recycling mirror and then sent back to the interferometer. When a GW
displaces the carrier from the dark fringe, the beating between the carrier and the sidebands
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Figure 1.12: Basic optical layout of initial Virgo. The input laser passes in the input mode-
cleaner (a triangular-shaped Fabry-Perot cavity) and then then enters the interferometer
passing through the low-reflective side of the power-recycling mirror, which creates a further
cavity with the interferometer. The beam at the output of the beam-splitter passes through
the output mode-cleaner before arriving at the photodetectors.

is transmitted through the output mode-cleaner and finally to the detection system, where
it is demodulated and recorded. The two LIGO detectors have a very similar scheme, with
some differences. For instance, the cavities are 4 km long, with the input mirrors that are
spherical and an overall finesse F = 200.

The raw output of the detector is dominated by the control loops used to control the
interferometer. In order to keep the Fabry-Perot cavities in resonance as well as the power-
recycling mirror and to be on dark fringe within a small fraction of wavelength, the relative
position of the mirrors must be kept fixed within a precision

¶L ∼
(

10−12 − 10−10
)

m (1.67)

Such a precision is achievable because of the transverse size of the laser beam, which is of few
centimeters. Even if the length scale of the atoms is 10−10m, the laser senses the position of
the mirrors averaged over a macroscopic scale, which actually cancels the individual atomic
fluctuations. Moreover, there is no need to know in which of the 2kLL = 2Ãn resonances
the cavity is, but only if it is on a resonance: we only need to keep the cavity resonant
within ¶L ∼ 10−4¼L. To lock the cavity on one of its resonances the strategy is to use
control loop systems. These systems are composed by a sensor, which measures the desired
quantity and produces an error signal, and an actuator, which provides a feedback based
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on the error signal in order to keep the measured quantity closer to the chosen one. So,
the detector output is dominated by the control loops noise in the range 10Hz − 100Hz.
In order to reconstruct the calibrated h (t) series, there is need to account for the readout
electronics, subtract the control noises and calibrate the optical gain of each mirror, as it
is explained in [40].

1.2.4 Noise budget and sensitivity curves

With the described structure of the detector, it is possible to estimate the noises affecting
the instrument and consequently the sensitivity that is possible to achieve. As a typical
reference, the detector should be sensitive to GWs produced by a burst occurring in the
Virgo cluster, or by a CBC at O (Mpc) distances, with typical amplitude h0 ∼ 10−21. When
the wave arrives to interferometers like Virgo or LIGO, with arms length L = 3 − 4km,
produces a coherent displacement of the mirrors by

∆L ∼ (1− 2) 10−18m (1.68)

Considering a laser with wavelength ¼L ∼ 1µm and Fabry-Perot cavities with finesse F =
O (100), the mirrors displacement corresponds to a phase shift on the output beam

∆ϕFP ∼ 10−8rad (1.69)

So, this effect has to compete with other effects produced by different noise sources that
superpose. The noises affecting an interferometer can be classified in two categories: the
optical read-out noise and the displacement noise.

Optical read-out noise

The optical read-out noise is related to the quantum nature of the light. Quantum mechanics
places limits on the accuracy of any measurement of the position of a free mass. If the
position of the mirror is measured with high precision, its momentum is perturbed and
subsequently it produces uncertainties in position. Even if this effect is typically relevant
on microscopic scales, given the required sensitivity it affects also the determination of
the position of a macroscopic-scale object like a mirror. The electromagnetic field inside
the interferometer is perturbed by vacuum zero-point fluctuations in phase and amplitude
that enter from the output port. These fluctuations produce two opposite effects that
intrinsically limit the sensitivity of an interferometer at high and low frequencies: the shot
noise and the radiation pressure [41].

- Shot noise. The shot noise, also known as granular noise, originates from the fact that
light is made by discrete quanta, the photons. Since the observed quantity is the output
power at the photodiode, if the number of photons that arrive in an observing time Tobs is
Nµ , the average power measured is

P =
Nµ

Tobs
ℏÉL (1.70)

Measuring the average power is actually a counting operation. Therefore, the outcome
follows the Poisson distribution and for large Nµ the fluctuation in the number of photons
is given by

∆Nµ =
√

Nµ (1.71)
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The direct effect is a fluctuation in the observed power, which is due to the discrete nature
of light, given by

∆P |shot =
√

ℏÉL

Tobs
P (1.72)

This effect competes against the power variation due to a GW, which is given by

∆P |gw =
P0

2
|sin 2ϕ0| |∆ϕFP| (1.73)

By evaluating the signal-to-noise ratio of the power variation due to a GW with respect to

the one due to the shot noise, we get the strain sensitivity S
1/2
n (f) due to the shot noise

S1/2
n (f)

∣

∣

∣

shot
=

1

8FL

√

4Ãℏ¼Lc

¸Pbs

√

1 + (f/fp)
2 (1.74)

where Pbs = CP0 is the power on the beam splitter after recycling (with C ∼ 50− 100) and
¸ is the efficiency of the photodetector, which reduces the power used to extract electrons.
It is worth to note that typically the shot noise is flat, independent on the frequency. In
our case instead the strain is flat up to the pole frequency fp, and then increases linearly
with the frequency. This is because the transfer function of a Fabry-Perot interferometer
degrades linearly with the frequency when it is greater than fp.

- Radiation pressure. The radiation pressure arises from the fact that a photon, once
reflected by a mirror, exerts a pressure on the mirror itself. Given a photon with energy
Eµ and momentum |p⃗| = Eµc, at reflection it transfers a momentum 2 |p⃗|. So, a beam of
power P exerts on the mirror a mean force F = 2P/c. Using the 1.72, the root mean square
fluctuations of that force during Tobs is given by

∆F =
2∆P

c
= 2

√

ℏÉLP

c2Tobs
(1.75)

This acts like a stochastic force with spectral density flat with respect to the frequency.
The effect on a single mirror is a displacement with spectral density

S1/2
x (f) =

2

M (2Ãf)2

√

2ℏÉLP

c2
(1.76)

Inside an interferometer, the beam splitter scatters randomly and independently each pho-
ton into one of the two arms. As a result, the number of photons in each arm follow the
Poisson distribution, and these distributions are anti-correlated, producing a ”

√
N” force.

This effect is an intrinsic property of an interferometer and has nothing to do with fluctua-
tions in input laser power [42]. When the cavities are resonant, the power circulating inside
is

Pcav ≃ Pbs
2F
Ã

(1.77)

and therefore the fluctuations in ∆Pbs are magnified by a factor 2F/Ã. As consequence of
the mirrors vibration, the cavity is displaced from the resonance, with a reduction in the
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Figure 1.13: Left plot: the strain sensitivity due to shot noise (dashed blue line) and
radiation pressure (dotted blue line) and the total optical read-out quantum noise (solid
blue line). Right plot: different curves (solid, dashed and dotted red lines) of the strain
sensitivity due to the optical read-out quantum noise, obtained varying the laser power
in order to have at the beam splitter a power of 0.5kW, 10 kW and 50 kW respectively.
The parameters used are those of initial Virgo. The curves are compared to the standard
quantum limit (solid black line).

circulating power by a factor [1 + (f/fp)
2]. Putting all together, the strain sensitivity due

to the radiation pressure is given by

S1/2
n (f)

∣

∣

∣

rad
=

16
√
2F

ML (2Ãf)2

√

ℏ

2Ã

Pbs

¼Lc

1
√

1 + (f/fp)
2

(1.78)

Far from the pole frequency, the radiation pressure results to be proportional to f−2, so it
limits mostly the low frequencies, which is the opposite effect with respect to the shot noise.

- The standard quantum limit. Looking at 1.74 the indication would be that in order
to beat the shot noise we need to increase the power Pbs. However, by doing this we are

increasing the radiation pressure: in fact, the former is proportional to P
−1/2
sb , whereas the

latter is proportional to P
1/2
bs . A gain in sensitivity at high frequencies in this way would

result in a sensitivity loss at low frequencies, and vice-versa. Is it the uncertainty principle
in action. We refer to the combination of these two noise sources as optical read-out noise,
defined as the sum of the two power spectral densities

Sn (f)|opt = Sn (f)|shot + Sn (f)|rad (1.79)

A plot of the shot noise and of radiation pressure as function of the frequency, together
with their sum defined in 1.79, is shown in the left plot of Figure 1.13. It turns out that

for each value of the frequency there is an optimal value Pbs that minimizes S
1/2
n (f) |opt.

The corresponding optimal value of S
1/2
n (f) |opt defines the standard quantum limit and is

given by

S
1/2
SQL (f) =

1

2ÃfL

√

8ℏ

M
(1.80)
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Equation 1.80 represents the minimum value of the amplitude spectral density that can be
obtained at a given frequency. Physically, it originates directly from the minimum possible
error in the determination of the mirror position [42]. The optical read-out noise then can
be expressed directly as function of the standard quantum limit

Sn (f)|opt =
1

2
SSQL (f)

[

1

K (f)
+K (f)

]

(1.81)

where the dimensionless function K (f) is defined as

K (f) =
8ÉLPbs

ML2

1

(2Ãf)4
[

1 + (fp/f)
2
] (1.82)

A plot of the S
1/2
SQL (f), together with different Sn (f) |opt curves corresponding to different

Pbs values, is shown in the right plot of Figure 1.13. From the plot it is also clear that the
1.80 represents the envelope of the minima of the Sn (f) |opt functions.

Displacement noise

The discussed read-out noise is intrinsic to the way that has been chosen to measure GWs.
However, the mirrors can also move because of other effects that can mimic a GW. As well
as a GW changes the length of a Fabry-Perot cavity by a ∆L = hL, a change ∆x in the
cavity length is equivalent to a GW with amplitude ∆x/L. These effects are denoted as
displacement noises, and their computation depends on many technical details like proper-
ties of materials, isolation mechanisms, environment. Here, the main noise sources will be
taken in account.

- Seismic noise. In general, the Earth’s ground is in continual motion. Earthquakes are
only one extreme manifestation of the Earth’s crust motion, but they occur randomly and
with a limited time duration. Their typical frequency range is between [ 0.03 , 0.1 ]Hz and
their strength can be high enough to cause the unlock of the interferometer even with the
best screening strategies. Atmospheric cyclonic systems over oceans generate micro-seismic
waves, which transfer energy from the atmosphere to the ocean and then to the ocean
floor. Then, the vibrations propagate over ∼ 103km in the crust in the form of surface
waves, guided in near-surface layers and through multiple reflections in deeper layers, with
amplitudes of the order of micrometers. These micro-seismic waves shake directly the
suspension mechanisms with amplitudes of few microns and, finally, the test masses. This
activity is relevant to the lock of the interferometer (also because it is often linked to the
wind activity), and is typically limited to the frequency range [ 0.1 , 1 ]Hz. An example of
the impact of earthquakes and sea activity on the seismic noise is shown in the spectrogram
in Figure 1.14, taken on a day where both an earthquake and an increased sea activity
occurred. In general the ground motion covers the full spectrum and its displacement
spectrum, at least for frequencies above 1Hz, can be described with a power law
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where the typical amplitude for quiet locations can be Aseis ≃ 10−7. More details can be
found in [43],[44]. Starting from Equation 1.83, the corresponding strain sensitivity should
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Figure 1.14: Seismic spectrogram recorded at 08/01/2023 covering 24 hours. The data
are collected by a seismometer placed on the ground of the Virgo West-End Building (see
Section 3.2). From ∼ 06 : 00 : 00 UTC the sea activity, recognisable in the [ 0.1 , 1 ]Hz
band, starts increasing its intensity. At ∼ 13 : 30 : 00 UTC an earthquake generated in
Vanuatu Islands hits the Virgo site, with a typical banana-shaped increasing frequency in
the [ 0.03 , 0.1 ]Hz band.

be obtained by dividing the displacement spectrum by the arm length, which is 3 − 4 km.
However, the obtained strain sensitivity results more than 10 orders of magnitude larger
than the typical h ∼ 10−21 that we are looking for. Therefore, there is the need to attenuate
seismic vibrations by a huge factor. The typical solution consists in suspending the mirrors
to a set of pendulums in cascade. The basic principle is simple: a single pendulum with
resonance frequency f0 transmits the vibrations with frequencies f k f0 attenuated by
a factor (f0/f)

2. A composite pendulum made by N single-pendulum stages provides an
attenuation factor (f0/f)

2N .
The solution adopted in initial Virgo, called Superattenuator, results to be particularly

efficient. It is described in detail in [45] and it is an 8m long pendulum chain, with all the
resonance frequencies confined below 2Hz. In this way the seismic vibrations are reduced
by more than 10 orders of magnitude starting from a few Hertz. Its full transfer function,
extrapolated by a stage by stage measurement, is shown in the left plot of Figure 1.15. To
obtain the residual mirror displacement, the input seismic noise has to be multiplied by that
transfer function. In the right plot of Figure 1.15 a spot measurement of the attenuation
factor is shown. The vibrations at the top stage are measured with an accelerometer,
whereas the mirror displacement is measured by the interferometer.

- Thermal noise. Thermal noise is due to the thermal kinetic energy of the atoms and
molecules of the various detector parts. The mirrors and the suspensions have a definite
temperature T , so the thermal noise produces a stochastic force that induce vibrations. For
a displacement x (t) describing a linear system subject to an external force F (t), we can
express the equation of motion in the Fourier space in the form

F̃ (f) = −i 2ÃfZ (f) x̃ (f) (1.84)

This relation defines the impedance Z (f) of the system. The fluctuation-dissipation theo-
rem links the power spectrum of the stochastic force responsible for thermal noise with the
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Figure 1.15: Left plot: the transfer function of the superattenuator in initial Virgo, as it
has been modeled (blue curve) and as it was measured (red curve). Since the individual
pendulum resonance frequencies are f0 f 2Hz, at frequencies above a few Hertz an attenu-
ation by a factor ∼ 10−14 − 10−12 is achieved. Right plot: one example of the attenuation
of the vibrations around 32.3Hz in initial Virgo. The vibration on the top stage of the su-
perattenuator is measured by an accelerometer, while the mirror displacement is measured
by the interferometer itself.

temperature and the impedance of the system, as

SF (f) = 4kBT Re (Z (f)) (1.85)

Using both the 1.84 and 1.85, the corresponding displacement spectral density can be writ-
ten as

Sx (f)|thermal =
1

2Ãf |Z (f)|
√

4kBT ReZ (f) (1.86)

In [46],[47] this result, originally proven in the statistical mechanics domain, has been
extended to macroscopic thermodynamic domain and generalized for multiple extensive
parameters. Consequently, we are able to predict the spectral displacement of a system due
to thermal noise if we have knowledge of its impedance Z (f) and its temperature. For a
complex extended object the impedance associated to a normal mode with frequency f0 can
be expressed in a general form as

Z (f) = −2Ãi
m

f

[

f2 − f20 + if2ϕ (f)
]

(1.87)

where the dimensionless function ϕ (f) is called loss angle, and accounts for the internal
friction in the materials [48]. The most important noise sources can be grouped into two
families: the thermal noise of the suspensions and the thermal noise of the test-masses.

The suspensions thermal noise is due mainly to the thermal fluctuations that induce an
horizontal motion of the mirrors. There is also a vertical-horizontal coupling that propagates
the vertical fluctuations in horizontal motion, but the coupling is of order ≃ 10−4. This
noise follows a power law and is dominant at the low frequencies, for f < 50Hz. In addition,
there are the violin modes. These are the excitation of the normal modes of the wires, and
produce a set of narrow-band spikes at the multiples of the resonance frequency.

The test-masses thermal noise regards the thermal fluctuations on the mirrors them-
selves. The atoms of the mirrors are subject to a Brownian motion due to their kinetic
energy, exciting the normal modes of the mirror. Another important contribution is due
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to the thermal noise of the coating of the mirrors. Other contributions come from thermo-
elastic and thermo-refractive fluctuations. The test mass noise is the dominant one between
few tens and few hundred Hertz.

In general, the thermal noise depends on the dissipation in the system, and consequently
on the material used. Therefore, one important strategy for its mitigation consists in the
search for materials with optimal properties.

- Newtonian noise. In Sections 1.2.1,1.2.2 it turned out that the detector test masses
can be considered as freely-falling only for the motion that concerns the horizontal plane,
and for GW frequencies above few Hertz. When we approach to that frequency region,
the forces originated by mass density fluctuations can no more be considered as static.
The main source are the micro-seismic waves generated by cyclonic and oceanic activity
already described within the seismic noise. These micro-seismic waves produce mass density
fluctuations, inducing a stochastic gravitational field that couples directly with the test
masses. This results in a Newtonian noise, also known as gravity gradient noise [49]. The
estimated strain sensitivity has the general form of a power law
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where for instance for the Virgo site the amplitude has been estimated to be Anewt ≃
3 · 10−17. A detailed study on Newtonian noise can be found in [50]. In present GW
detectors, low frequencies are dominated by seismic noise and suspensions thermal noise
and the Newtonian noise is not an issue. However, these noises can be in principle reduced
arbitrarily working on attenuation and on the materials. Instead, it is impossible to screen
the gravitational forces that act on the mirrors. So, even if in the future we will be able
to push down the seismic and thermal wall, the Newtonian noise will continue to limit
any ground-based detector. The only way to mitigate it consists in monitoring it with
an extended array of seismometers or accelerometers with a low sampling rate, and then
subtracting it from the data.

The sensitivity curve

The presented noise sources act simultaneously and shape the overall sensitivity of the
detector to a GW, each one at its typical frequency range. In Figure 1.16 the contributions
of the noise sources to the strain sensitivity are plotted together as function of the frequency,
as well as the total noise. At low frequencies (f < 60Hz), the sensitivity is limited by the
seismic noise, the thermal noise of the suspensions and by the radiation pressure. The
Newtonian noise is less strong, but will become significant in future detectors when the
already mentioned noise sources will be mitigated. At intermediate frequencies (70Hz <
f < 400Hz), the main limiting noise comes from the thermal noise of the coating, and then
there is the optical quantum noise. At high frequencies (f > 400Hz), the sensitivity is
mostly limited by the shot noise.

There are also many other noise sources to be considered. One source comes from the
residual gas and organic molecules that remain inside the interferometer after the vacuum is
made: the residual pressure was < 10−7mbar in initial detectors and progressively reduced
to < 10−9mbar in the advanced detectors. The residual gas particles interfere with the laser
beam, inducing scattering on photons. The residual organic molecules can condense and
accumulate on the optical elements, so their partial pressure must be kept below 10−13mbar
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Figure 1.16: An example of theoretically calculated noise budget in LIGO Hanford interfer-
ometer. The most dominant noise sources are plotted as solid lines, while the less dominant
are dashed. The result of the whole contributions, the total noise, is the solid black line.

to avoid this effect for a few years. Another noise source, as already pointed in Section 1.2.2,
is the fluctuation in the input laser power, which has to be kept under control with great
accuracy. Then, there is a big family on noises that are generated by the interferometer
infrastructure itself, comprehensive of all the control noises, both longitudinal and angular,
the light that is scattered during the interaction with all the optical elements, all the
noises generated by the vacuum system, the conditioning system, and so on. The more
the fundamental noise sources are mitigated, the more these other noise sources become
progressively important. The hunt and mitigation of technical noises will be treated in
Chapter 3.

In Figure 1.17 the best sensitivity curves recorded by the LIGO and Virgo detectors in
their initial configuration, just before the long shutdown, are reported. The arms length of
4km in LIGO produce a better sensitivity at frequencies above 100Hz with respect to Virgo.
On the other side, at low frequencies is well visible the effect of the better seismic mitigation
system in Virgo with respect to initial LIGO. While in LIGO the seismic wall is at about
40Hz, in Virgo it is between 10 − 20Hz. This gap disappeared after the upgrades that
brought to the advanced detectors. It is worth to remember that even the best sensitivities
obtained by initial LIGO and Virgo have not been enough to observe any GW signal during
their observing runs. The noise floor at the lower-intermediate frequencies was still too high
to cover an universe volume big enough to have strong events like CBCs with high enough
rates, compatible with observing periods of few months.
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Figure 1.17: Plot of the latest sensitivity curves achieved by initial Virgo and LIGO in-
terferometers before the long shutdown for upgrading to AdV and ALIGO. The two LIGO
sensitivity curves (Livingston in blue, Hanford in red) belong to the LIGO scientific run
named S6, which lasted until May 2010. The Virgo sensitivity curve (in green) is referred
to the Virgo scientific run named VSR4, ended in September 2011. Virgo results way more
sensitive at low frequencies thanks to the superattenuator, while at intermediate and high
frequencies LIGO achieves the best sensitivities thanks to its 4-km-long cavities (Virgo has
3-km arms).

1.3 Advanced detectors and the discoveries during their first

3 observing runs

As already stated, the initial Virgo and LIGO detectors remained in their initial configura-
tion until 2010-2011, even if progressively enhancing their sensitivity. After that, they were
turned off and undergone to a few-years-long upgrade period. The changes were so invasive,
and resulted de-facto in new detectors. The new interferometers are labeled as Advanced

Virgo (AdV) and Advanced LIGO (ALIGO), and are considered as second-generation (2G)
detectors. The full modifications that have been made are described in detail respectively
in [51] and [52]. Here there are some of the major improvements:

• A progressive increase of the input laser power. While in the initial configuration
the injected power was O (10W), in the 2G detectors this power is gradually, step-
by-step increased up to O (100W). The direct effect is a direct reduction of the shot
noise, since Sn|shot ∝ P−1, thus improving the sensitivity at high frequencies. The
circulating power in the cavities would raise up to O (1MW) and some adjustments
are necessary to compensate the thermal lensing of the mirrors.

• Since Sn|rad ∝ P , the increased power raises the radiation pressure, worsening the
sensitivity at low frequencies. However, the radiation pressure is also inversely pro-
portional to the end mirror masses, Sn|rad ∝M−1. Therefore, in order to contrast the
radiation pressure the initial mirrors with M ≃ 20kg are substituted by newer ones
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with M ≃ 40kg.

• ALIGO introduces better seismic isolation, improving the sensitivity at low frequen-
cies, whereas in Virgo the superattenuator has still the needed performances.

• The test-mass suspensions, which in initial detectors were made of steel wires, are
replaced by silica, directly fused to the mirrors in order to obtain a monolithic object.
The effect is a strong reduction of the suspension thermal noise, which become lower
than the radiation pressure and comparable with Newtonian noise.

• Investigation to find better coatings for the mirrors, with lower thermal noises.

• Addition of a new mirror, the signal-recycling mirror, at the output of the interferom-
eter before the photodetectors. With this addition a new cavity, the signal-recycling
cavity, is created. This technique was first implemented in GEO600, even if without
Fabry-Perot cavities [53]. The signal-recycling cavity can be tuned to be resonant with
a given ÉL ± Égw sideband, in order to increase the sensitivity of the interferometer
in a given frequency range at the cost of the bandwidth. Alternatively, the cavity can
be tuned to be anti-resonant, in order to increase the bandwidth of the detector with
respect to the case when no signal-recycling cavity is present. Interferometers with
both power-recycling and signal-recycling cavities are called dual-recycled.

• Implementation of quantum non-demolition techniques, like the frequency-independent
or frequency-dependent squeezing. These techniques have been first theorized in [41],
while the application to modern dual-recycled interferometers is considered in [54].

Some of the presented improvements have been implemented gradually, with different
timelines between LIGO and Virgo. At the present, three observing runs have been com-
pleted, called ”O1”, ”O2” and ”O3”, with progressively increased sensitivity. In Figure 1.18
the typical sensitivity curves of the three detectors are reported and are compared with their
last sensitivities before the upgrade to the advanced stage. Now, at the low frequencies the
LIGO detectors have no gap with respect to Virgo thanks to new-concept suspensions. At
intermediate and high frequencies, Virgo pays the one-kilometer lower length of its cavities
with respect to the LIGO ones. Moreover, Virgo started the upgrade to AdV with a two-
years delay with respect to LIGO and joined the observing run just during the last month
of O2. Consequently, also some upgrades were delayed with respect to LIGO.

Thanks to the great improvement in sensitivity at low and intermediate frequencies,
the Advanced detectors are able to observe an universe volume sufficiently big to make the
first detection likely. On 14th of September 2015, during the engineering run that preceded
the scientific run O1, the two LIGO interferometers observed in coincidence the first GW
[55]. The signal, observed with a ∼ 7ms delay between the detectors, is produced by the
coalescence of two black holes with masses m1 ≃ 36M» and m2 ≃ 29M» at a luminosity
distance DL ≃ 410Mpc. During the whole duration of O1, a total of three GWs have been
observed by the LIGO detectors5 [56].

Advanced Virgo joined Advanced LIGO during the last month of O2, in August 2017.
Its first GW detection, which was also the first three-detector observation, happened on 14th
of August 2017 [57]. The event, labeled as GW170814, was generated by two colliding black

5At the time of the publication one of the three events, labeled as LVT151012, had too low significance to

be confidently claimed as a detection. Further reprocessing have subsequently reconsidered this statement,

and that event was confirmed as a detection, labeled as GW151012.



CHAPTER 1. GRAVITATIONAL WAVES AND DETECTORS 41

Figure 1.18: Plot of the most recent sensitivity curves recorded by Advanced Virgo and
LIGO interferometers during O3 (2020), with a comparison with the best sensitivities before
the upgrade as they are shown in Figure 1.17. The LIGO Livingston O3 curve is shown
in solid blue. LIGO Hanford is plotted in red: the solid line represents O3 data while the
dotted one is the initial S6 (2010). The Virgo sensitivity curve is plotted in green: the solid
line represents O3 data while the dotted one is the initial VSR4 (2011). LIGO detectors
have removed the gap with respect to Virgo at low frequencies thanks to a new suspension
system. In general, the combined effect of lower thermal noise from suspensions and coating,
higher power and larger beam results in a wide-band better sensitivity.

holes with masses m1 ≃ 30M» and m2 ≃ 25M» at a luminosity distance DL ≃ 540Mpc.
Thanks to the contribution of Virgo, the localization of the event have greatly improved: for
GW170814 the area of the 90% credible region passed from the 1160 deg2 that would have
been obtained with only two detectors to the actual 60 deg2 with three-detector observation.
This improvement makes more feasible the search for an electromagnetic (EM) counterpart
of the GW event, sending the localization area coordinates to traditional telescopes. The
first big achievement in this sense arrived just three days after, in 17th of August 2017.
The online triggers revealed a GW from the first-ever coalescence of a binary neutron star
at a luminosity distance DL ≃ 40Mpc, labeled as GW170817 [58]. The event was local-
ized within a sky region of 28 deg2. Independently, the Fermi Gamma-ray Burst Monitor
detected a gamma-ray burst (GRB 170817A) with a delay of ∼ 1.7 s with respect to the
merging time, and with a sky localization compatible with the one inferred through GWs.
After the trigger, an extensive observing campaign has been carried on during the following
hours an days. A bright optical transient was observed 11 hours after by independent tele-
scopes, with a red-ward evolution over ∼ 10 days. Moreover, X-ray and radio emission were
observed respectively ∼ 9 and ∼ 16 days after the merger [59]. Thanks to these observations
it has been possible to confirm the hypotheses that put BNS merger as possible explanation
for gamma-ray bursts. this event officially opened the era of multi-messenger astronomy.
Globally, during O1 and O2 have been observed 11 CBC events, divided in 10 BBH and 1
BNS [8]. A strong jump has been done in O3, which has been divided in two parts called
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O3a and O3b. The reason is that to a sensitivity enhancement corresponds a proportional
increase of the distance at which it is possible to detect signals, and the observable volume
of universe goes as the cube. During O3a and O3b respectively 44 [9, 10] and 35 CBCs
detection have been confirmed [11], bringing the total count of GWs detection in the 2G
detectors era to 90. The trend is shown in Figure 1.19.

Figure 1.19: Plot of the cumulative detections made by the LIGO, Virgo and network during
the first three observing runs in the Advanced configuration, as function of the consecutive
observing days. From public LIGO DCC G2102395

.

The 79 observations in O3 include some exceptional events. There are the second de-
tection of a putative BNS [60], without EM counterpart because of the distance and a poor
sky localization; the detection of two BBHs with highly asymmetric masses [61, 62]; the
detection of the coalescence of the two heaviest observed BHs that led to the formation
of an intermediate BH with M ≃ 142M» [63]; the detection of the first-ever coalescences
from NS-BH systems [64]. Moreover, thanks to the consistent number of detections, several
tests of GR have been made, like putting more severe constraints to post-Newtonian and
Lorentz-violating coefficients, bounding the mass of the graviton, searching for deviations
from Kerr solution in the BBH remnant quasi-normal modes [65, 66].

https://dcc.ligo.org/LIGO-G2102395/public


Chapter 2

Continuous gravitational waves

Have you ever tried to hear someone whispering

from the opposite side of a crowded room?

Continuous waves are among the gravitational signals that still lack a first detection. They
are expected to be emitted by rotating NSs or other more exotic sources, and their expected
amplitude is not greater than ∼ 10−26 − 10−25. This amplitude is at least five orders of
magnitude weaker than the GWs that arrive on Earth by BBH CBCs, but thanks to the
greater duration (∼ 1 year versus ∼ 1 s) the integration time can, in principle, compensate
this gap. Their search was carried on since the resonant-bar detectors were operating.
However, they were not enough sensitive to search for CWs with amplitude weaker than
∼ 10−24. Moreover, the search was strongly limited by the narrow frequency window at
which the detectors were sensitive: just a few tens of Hertz around their resonance frequency,
which was typically O(kHz). Some of the latest CW searches made with resonant-bar
detectors are reported in [67, 68]. As will be shown in Section 2.1, at these search frequencies
the majority of the known NSs is out-of-window. Interferometric wide-band detector are
optimal for these kind of searches, since CWs are expected to be emitted at a wide range
of frequencies, from few Hertz to thousands of Hertz. So, potentially they could be found
in the whole sensitivity band of the interferometers.

The chapter is structured as follows: in Section 2.1 the NSs are described in their origin
and structure, introducing the pulsars and presenting the full population of known NSs.
Then, the main physical mechanisms expected to lead to the emission of CWs are shown.
These include the continuous emission due to the presence of permanent deformations in
the NS body, as well as long-lasting transients generated by instabilities mostly in young
NSs. In Section 2.2 a new potential source of CWs is introduced, represented by ultra-light
boson clouds that could condensate around spinning BHs and then produce CWs through
annihilation. In Section 2.3 the main CW search strategies are presented. These differ one
with respect to the other depending on the available information on the sources. They
can be roughly divided in three families: targeted, directed and all-sky searches. The most
recent results of these searches are also reported.

2.1 Spinning neutron stars

The possibility of the existence of degenerate stars was firs introduced by Lev Landau in
1932, when he mentioned the possible existence of ”dense stars that look like one giant

43
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nucleus”, even if without the concept of the neutron and violating quantum mechanics
rules [69]. However, the first realistic proposal that a NS would be the remnant of a
supernova explosion is from Baade and Zwicky in 1934 [70], after the neutron discovery, and
basic properties and equilibrium solutions for NSs were first worked by Oppenheimer and
Volkoff in 1939 [71]. Their existence was definitively proved in 1967, with the discovery of a
pulsating radio source, named PSR B1919+21 and localized in the Galaxy [72]. The physical
mechanism behind the emission of the pulses by rotating NSs was promptly explained as a
theoretical follow-up of the discovery [73].

At the present state of knowledge, NSs are the outcome of supernova explosions of stars
that are too massive to form white dwarfs after fuel consumption and too light to form a
black hole after the explosion. The estimated progenitor star masses range between ∼ 6M»
and ∼ 20−30M», with many different possibilities depending on the star composition [74].
The observed NSs at the equilibrium have masses of ∼ 1 − 2M» and a radius between
∼ 10−15 km and are prevented from collapse by neutron degeneracy pressure. The structure
of the NS have different phases: there is the crust, with typical thickness of ∼ 0.8 − 1 km,
and the core. The crust have an external layer of ∼ 0.3 km thickness, constituted by
neutron-rich heavy nuclei organized in a rigid lattice. The internal crust, with a thickness
of ∼ 0.5 km, is made by a proton rich matter permeated by a neutron fluid. Going deeper,
the nuclei may become distorted and elongated, forming a “nuclear pasta” of ordered nuclei
and gaps. Still deeper we reach the core, where the density is greater than the nuclear
saturation density: the nuclear pasta gives way to an hyper-dense neutron fluid, composed
by a ∼ 90% of neutron and a ∼ 10% of protons plus a number of electrons similar to the
protons. The fluid is in equilibrium between the beta decay and the inverse beta process
[6, 75]. In the inner core the mass-energy density reaches values many times larger than
the nuclear saturation density. In that situation the hadronic interaction must be treated
within the quantum chromodynamics framework, but at this energy scale the physics is
not well understood and different models are possible. There would be different phase
transitions involving hyperons, perhaps to a quark-gluon plasma, or even perhaps to a solid
strange-quark core [76].

Figure 2.1: Out of scale representation of the internal structure of a NS.

All the different physical models determine the NS composition and consequently their
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equation of state (EoS) that models the pressure-density relation. There is therefore a high
number of possible EoS, each one of them leading to a maximum mass and radius of a NS
[76]. While the mass of a NS in a binary system can be measured from orbital parameters,
NS radii are especially challenging to measure directly. The most recent measurements,
where mass and radius are determined simultaneously from individual stars, are from the
NICER X-ray satellite and they are constraining more tightly the allowed equations of state
than in the past [77, 78, 79].

At the moment, there are about ∼ 3300 known NSs in the Galaxy. Most of them
are pulsars, observed through electromagnetic emission, primarily in the radio band, but
also in X-rays, µ-rays and optical band. In pulsars a beam of radiation is generated by
highly-energetic particles emitted from the magnetic poles, through the curvature radiation
mechanism [80]. This beam is misaligned with respect to the rotation axis, so it rotates
with the NS. If the beam hits the Earth, it is observed as a pulse as it sweeps across the
Earth once per rotation. Thus, the pulses from NS are typically observed at the rotation
frequency of the star itself.

The majority of the known NSs are shown in the P − Ṗ diagram in Figure 2.2, where
Ṗ is the 1st-order derivative of the observed rotation period P . In fact, all the NSs are
slowly losing energy mainly through electromagnetic emission and are therefore slowing
down their rotation. In Figure 2.2, NSs in binary systems are marked with blue circles
while isolated NSs are marked with red triangles. The dashed black lines represent the
inferred surface magnetic fields of the NSs, ranging from 108G to 1015G. Such high values
are a natural result of the collapse that leads to the NS formation. If the magnetic flux is
approximately conserved during the collapse, the reduction of the outer surface of the star
to the typical ∼ 10 − 15 km radius produces surface fields with such high magnitude. The
highest values are reached by the magnetars, highly-magnetized young NSs with ∼ 1− 10 s
period and strong spin-down (top-right corner in Figure 2.2) which are believed to get the
highest magnetic field through a dynamo process [83]. The dashed blue lines represent
the different inferred nominal ages of the NSs, assuming that the rotational energy is lost
entirely through magnetic dipole emission, in the Pobs k Pbirth limit [6, 7]

Ämag =
P

2Ṗ
(2.1)

From Figure 2.2 two distinct populations can be distinguished. The top right group of
pulsars, with periods above 10−1s, have the highest spin-down values and are for the most
part isolated pulsars. They have the highest magnetic fields, with typical values B > 1011G,
and are typically younger, with ages Ä < 108 years for the most part. The bottom left group
of pulsars is characterized by shorter periods and smaller period derivatives. These objects,
called millisecond pulsars (MSPs), are for the majority bound in binary systems. They
are considerably older, with Ä > 109 years for the most part, and have weaker magnetic
fields, typically B < 109G. They are thought to get immense rotational energies from the
accretion of matter from a binary companion. The observed pulsars represent only a small
fraction of the existing NSs. The actual number of NSs in the Galaxy is estimated to be
∼ 108−109. Aside from all the stars that disappear as they evolve toward the death line and
cease pulsations, there are various selection effects that reduce the fraction of observable
population. A pulsar is visible to us only if its radiation beam crosses the Earth; moreover,
its radiation must be bright enough to be seen in the observing band, and must be not
absorbed or scattered at the level to become undetectable with current radio telescopes
[84]. Given the huge pressure on the nuclear matter and the typical rotational periods, one
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Figure 2.2: The population of known NSs, with their measured rotational period P and
period first derivative Ṗ . The dashed purple line represents the death line, beyond which
the radio pulsar mechanism is believed to turn off. The dotted green line represents the
frequency wall that limits the sensitivity to frequencies above 10Hz for Advanced LIGO
and Virgo design, assuming that the pulsars emit CWs at twice their rotational frequency
(see Section 2.1.1). The plot is an elaboration by [81] of the ATNF Pulsar Catalogue [82].

expects a NS to be shaped as an axisymmetric ellipsoid or as a sphere in the non-rotating
limit. In that case, we would not expect any quadrupolar GW emission due to rotation.
All the CW searches assume a small but detectable mass or mass-current that violates the
axisymmetry. In the following, both the possibilities will be examined.

2.1.1 Permanent deformations

A rotating NS that is symmetric with respect to its rotation axis do not emit GWs according
to 1.11, since it has a constant quadrupole moment. If there is a deviation from axisymmetry,
it produces a non-vanishing time-varying quadrupole moment. A common way to model
an oblate NS is to consider it as an ellipsoid with semi-axes a ̸= b ̸= c and momentum of
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inertia, referred to the semi-axes, given by
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Assuming the z axis as the rotation axis, the NS acquires a non-vanishing quadrupole Qij(t)
if Ixx ̸= Iyy, that is, if a ̸= b. A common way to express the deformation is through the
ellipticity ε, which is defined as

ε ≡ Iyy − Ixx
Izz

≃ 2
a− b

a+ b
(2.3)

The magnitude of the quadrupole is then given by [85]

|Qij | =
√

8Ã

15
Izzε (2.4)

There are different mechanisms that can cause a deformation of NSs from the axisymmetry.
One possibility, valid only for NSs in accreting systems, is that temperature gradients
in the crust, created by asymmetries in the accreting matter, induce a local deformation
sustained by the elastic strain [86]. One other possibility, first pointed out by Chandrasekar
and Fermi [87] and valid for all NSs, is that the huge magnetic field of the NS induce
quadrupolar deformations on spherically symmetric stars, with ellipticities ε proportional
to the ratio between magnetic energy and gravitational energy. A detailed study on the
possible mechanisms can be found in [88]. As a general feature, poloidal fields have the effect
to distort the star making it oblate, while toroidal fields deform the star in the opposite way,
giving it a prolate shape. A purely poloidal magnetic field induces an oblateness depending
on its mean value B̄pol as

εobl ≃ 10−12

(

B̄pol

1012G

)2

(2.5)

while a purely toroidal magnetic field induces a prolateness depending on its mean value
B̄tor as

εpro ≃ 10−11

(

B̄tor

1012G

)2

(2.6)

It is clear that poloidal and toroidal fields induce opposite deformation effects on the NS. In a
more realistic description, the magnetic field of a NS has a twisted-torus configuration where
both the poloidal and toroidal components contribute. In this case the magnitude of the
induced ellipticity depends on the ratio between the toroidal and the poloidal components,
see [89] for a detailed discussion. Another constrain comes from the maximum sustainable
ellipticity for elastic stresses, which depends on the crustal breaking strain ubreak as [90]

ε < 2 · 10−5
(ubreak

0.1

)

(2.7)

where the strain has an extimated value ubreak ≃ 0.1. However, the actual constraints
strongly depend on the EoS [89]. If the NS gets a deformation from axisymmetry, acquires
a non-vanishing quadrupole and then emits GWs with frequency twice their rotational
frequency

fgw = 2 frot (2.8)
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The observed signal at Earth detector depends on the detector pattern functions as in
Equation 1.65, where the polarization amplitudes, according to the quadrupole formula
1.11, are given by

h+ = h0
1+cos2 º

2 cos (2Ãfgwt)

h× = h0 cos º sin (2Ãfgwt)

(2.9)

where the amplitude h0 depends on the NS quadrupole moment, on the GW frequency fgw
and on its distance r as

h0 =
4Ã2G

c4
Izzε

r
f2gw (2.10)

Equation 2.10 can be parameterized using a nominal moment of inertia for typical NS
mass and size, an ellipticity compatible with recent upper limits, a distance of ∼ 1 kpc and
considering a GW frequency in the LIGO/Virgo best-sensitivity region, so that

h0 = 1.1 · 10−26

(

Izz
1038kgm3

)

( ε

10−6

)

(

1 kpc

r

)(

fgw
100Hz

)2

(2.11)

The expected GW amplitude results to be about five orders of magnitude weaker than
the signals emitted by stellar-mass CBCs. The reason relies on the amount of mass that
contributes to the quadrupole, which is O(M») for CBCs and O(εM») for deformed NSs.
However, the signal duration is way longer than the typical observed CBCs and covers
the whole duration of the detectors observing runs. As it will be shown in Section 2.3,
integrating on such long observation times gives CWs some detection chances. The GW
carries out from the NS an amount of power given by

Lgw =
32G

5c5
I2zzε

2É6
rot (2.12)

By equating the energy loss from GW emission and the rotational energy of the star, we
get the spin-down evolution of the NS and the GW

ḟgw = −32Ã4G

5c5
Izzε

2f5gw ≃ −1.7 · 10−14Hz/s
( ε

10−6

)2
(

fgw
100Hz

)5

(2.13)

It is worth to note that the typical spin-down values observed in known pulsars produce
little relative variations in the star’s rotational frequency during a nominal observing time
of 1 year. Thus, the emitted CW can be treated as a nearly-monochromatic, considering
the frequency evolution with the perturbation theory, as will be shown in Section 2.3. It is
possible to use the measured P and Ṗ for known pulsars in Figure 2.2 to infer the maximum
expected amplitude of the CW emitted by each one of them. Equating the power loss in
2.12 and the time-derivative of the Newtonian rotational kinetic energy, we can define the
spin-down limit hsd as

hsd =
1

r

√

− 5G

2c3
Izz

ḟgw
fgw

≃ 8.2 · 10−25

(

1 kpc

r

)

√

√

√

√

(

Izz
1038kgm3

)(

100Hz

fgw

)

(

−ḟgw
10−10Hz/s

)

(2.14)
The spin-down limit represents the expected amplitude of the emitted GW if the observed
spin-down in a pulsar was due entirely to GW emission. In the same way, the 2.13 would
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represent the the actual spin-down evolution if the NS loses energy only through GW emis-
sion. However, rotating NSs loose their rotational energy mainly through electromagnetic
emission. This is straightforward, since even a rotating perfect sphere has a permanent mag-
netic dipole and thus radiates in the electromagnetic spectrum. A magnetic momentum M⃗
with inclination ³ with respect to the NS rotation axis emits radiation with luminosity Lem

given by [81]

Lem =
µ0
6Ãc3

M2 sin2 (³)É4
rot (2.15)

As done previously, equating this energy loss to the rotational energy loss, assuming a purely
magnetic dipole M = (2Ã/µ0)BR

3 we get the spin evolution

É̇ = − µ0R
6

6Ãc3Izz
B2 sin2 (³)É3 (2.16)

The Equations 2.13, 2.16 represent two distinct contributions to the star rotational dynamics
and they likely act together, with weights that depend on the particular phase of the NS
evolution. More in general, the NS spin is expected to evolve following a power law of the
kind

É̇ = −k Én (2.17)

where n is called the braking index and can be computed from the measurements of the
rotational frequency É and its first two derivatives, É̇ and É̈, as

n =
É É̈

É̇2
(2.18)

Performing the calculation for the small subset of known pulsars for which the second
derivative É̈ has been measured, it has been found that they evolve with a braking index
n ∼ 2 − 3. This means that, at least in that subset, the electromagnetic emission is the
dominant one, and that GW emission represents a little fraction of the energy loss. The
spin-down limit is actually an upper limit for the amplitudes of CWs emitted by known NSs,
because they emit electromagnetic radiation. A non-detection leads to bound the maximum
contribution of GW emission on the observed NS dynamics.

In Figure 2.3 the measured P − Ṗ parameters of known NSs reported in Figure 2.2 have
been translated in the expected GW frequency fgw, assuming that the 2.8 holds, and in
the strain spin-down limit hsd using the 2.14. Clearly the NSs with the strain hsd above
the sensitivity curve represent the an interesting subset of the whole population, even if we
don’t know how much the actual GW amplitude is . On that population it is worth to make
dedicated CW searches. The kind of search that can be carried on on this sources, where
the intrinsic parameters are mostly known, will be shown in Section 2.3.1.

2.1.2 Long transients from neutron star instabilities

Differently from the previous case, quadrupole perturbations can be generated also by non-
permanent mechanisms, with time-scales that can vary from seconds to days, up to months
in some cases. The ones that are considered here have typical duration of hours up to days,
and are expected to occur in newly-born or young NSs.
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Figure 2.3: Expected GW frequencies and strain spin-down limits for the known NSs shown
in Figure 2.2. Red triangles indicate isolated stars, blue circles indicate binary NSs. The
solid black curve is the reference sensitivity for O3, while the solid magenta one assumes
a 2-years observing run at Advanced LIGO design sensitivity. The blue and green solid
curves represent a 5-year Einstein Telescope data run for two different designs (ETB and
ETC respectively) In both cases an optimal, coherent analysis method has been assumed,
see Section 2.3.1. Source: [81].

R-mode instability in young neutron stars

Any extended object has its own resonant normal modes, depending on its composition and
geometry. Normal modes can be spheroidal or toroidal if the oscillation affects respectively
the radial or the angular coordinates of the star. For non-rotating stars, spheroidal and
toroidal modes are decoupled. In that case, the NS fundamental modes (f-modes) can be
excited, as well as pressure and gravity modes (p-modes and g-modes), and they can be
classified in terms of the spherical harmonic numbers (l,m) [91]. For rotating stars, the
Coriolis force provides a weak restoring force that favours toroidal modes and leads to the
so-called r-modes. R-mode oscillation is a toroidal mode, due to fluid motion of neutrons
(or protons) in the crust or core of the star, that may be excited in rapidly rotating NSs.
They are expected to take place typically on the result of the coalescence of a NS binary, on
a supernova remnant or in accreting NSs. Their non-relativistic equivalent associations are
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the well known Rossby waves that take place in Earth atmosphere. Perturbations of the NS
angular velocity field grow rapidly thanks to the Chandrasekhar–Friedman–Schutz instabil-
ity until they reach a saturation amplitude and then stops [92]. That saturation amplitude
characterizes the emitted wave and is quantified by the dimensionless parameter ³. Being a
toroidal mode, the r-mode does not produce a significant effect on the quadrupole moment
of the NS. Instead, in this case the leading GW emission mechanism is the higher-order
current quadrupole. GWs produced by current quadrupole have a different polarization
with respect to mass quadrupole. As demonstrated in [93], since the difference between
mass and current multipoles is parity, the ’+’ and ’×’ signal amplitudes transform as

(h+ , h×) → (−h× , h+) (2.19)

So, the detector response to a passing current-quadrupole GW is equivalent to the response
to a mass-quadrupole GW with polarization angle rotated by Ã/4. Considering a source
located at a distance r, its r-mode GW strain amplitude h0 (t) is given by [94]:

h0 (t) =

√

29Ã7

5

G

c5
J̃MR3

³f3gw (t)

r
(2.20)

where J̃ is the dimensionless angular momentum of the NS valid for politropic models, M
and R are respectively its mass and radius. The GW frequency fgw is related to the NS
rotational frequency frot as

fgw ∼ 4

3
frot (2.21)

If we consider also relativistic corrections and rotational effects, Equation 2.21 must be
corrected as shown in [94]. Using nominal values of the parameters, the typical expected
signal amplitude can be expressed as

h0 ≃
(

3.6 · 10−26
)

(

R

11.7 km

)3(1 kpc

r

)

( ³

10−3

)

(

fgw
100Hz

)3

(2.22)

where for the dimensionless angular momentum the value corresponding to a Newtonian
polytrope with index 1, J̃ ∼ 0.0164, has been assumed [93]. As in the case of permanent
deformations the ellipticity ε played a crucial role on the signal amplitude, here the de-
tectability of the r-mode signal depends strongly on the saturation amplitude ³. The GW
extracts energy and angular momentum from the mode and the NS itself, so that its slows
down its rotation following a power law [93]

É̇rot = −
(

4096Ã7G

225 c7
M2R6J̃2

Izz

)

³2É7
rot (2.23)

Here, the frequency is expected to vary significantly with respect to its initial value, so
the signal amplitude itself decreases following the frequency as shown in Equation 2.20.
However, as shown in Section 2.1.1, it is clear that r-mode emission would not likely be the
unique acting mechanism, as the electromagnetic emission is dominant. As consequence,
the NS spin evolution is not expected to follow precisely the 2.23. A recent targeted r-mode
search on the ”big glitcher” PSR J0537–6910 can be found in [95]. In the same way of
the permanent deformations, also with r-modes a non-detection can be useful to put upper
limits on the GW amplitude and consequently on the value of the saturation amplitude ³.
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Newborn millisecond magnetars

Magnetars have been already introduced in Section 2.1 as a sub-population in the P−Ṗ dia-
gram. They are NSs whose emission is powered by the release of energy from their extremely
strong magnetic fields, with magnitude ∼ 1015 − 1016G. They are generally associated to
Soft Gamma Repeaters [96] and Anomalous X-ray Pulsars [97], and are typically observed
with rotational periods ∼ 1 − 10 s. However, they are believed to form with millisecond
rotational period and then to rapidly loose a big amount of their rotational energy. They
would represent a non-negligible fraction of the whole population of young NSs. There are
many possible formation channels for millisecond magnetars. The main one is believed to
be the collapse of massive stars, associated to core-collapse supernovae and long gamma-ray
bursts (GRBs), but there is the possibility to have this outcome as a result of a binary NS
merger, thanks to the conservation of the large orbital angular momentum of the two NSs
at the time of coalescence [98]. Anyway, this last possibility depends sensitively on the
not well constrained maximum mass of a NS. The same outcome could arise from binary
white dwarf mergers or neutron star - white dwarf mergers [99]. Recent studies favour the
millisecond magnetar model to explain long GRB observations, showing a rapid energy loss
compatible with the X-ray and dipole emission [100, 101].

There is a great expectation on newly born NSs to have large internal toroidal fields
and correspondingly large ellipticities. Strong differential rotation combined with turbulent
convection in the newly-born NS drives an efficient dynamo, which winds up a toroidal
field as strong as 1016G. Even if the symmetry axis of the wound-up field is aligned to the
rotation axis of the star, the ellipsoidal star will evolve on a viscous dissipation timescale
to become an orthogonal rotator through free-body precession, and therefore an optimal
GW emitter [102]. By using the same notation than in Section 2.1.1 we can quantify the
induced distortion through the ellipticity ε. As stated in [103], internal magnetic fields with
magnitude g 1016G would produce strong ellipticities

ε ∼ 10−4 (2.24)

that in magnetars distant up to few Mpc would produce GWs detectable by Earth-based
detectors. The expected wave strain amplitude for a source is formally the same described
in Equation 2.10, the GW frequency fgw is twice the NS rotational frequency the same way.
Theoretically, also the NS rotation should slow down following the power law in Equation
2.13, but as in Section 2.1.1, we know that the real dynamics is complicated by the most
efficient electromagnetic emission. As stated in [103], magnetars are expected to form at
a rate of g 1yr−1 within the Virgo cluster. Given the Virgo cluster nearness, if a fraction
of these has sufficiently high inner magnetic fields, they would be a promising source of
observable GWs.

2.2 Boson clouds around spinning black holes

Beside the most traditional sources of GW, a new intriguing potential source has been
proposed in the last decade [104]. Among the various dark-matter candidates that have been
proposed, the most interesting one for GW searches is that the dark matter is composed of
ultralight, electromagnetically invisible bosons. There are various possible ultralight bosons,
such as dark photons, the QCD axion or the axion-like particles that arise from the string
theory [104, 105, 106], with masses in the range 10−20eV − 10−9eV. These fields interact



CHAPTER 2. CONTINUOUS GRAVITATIONAL WAVES 53

very weekly with other standard model particles, but they couple with gravitational fields
as the equivalence principle imposes. If such ultra-light bosons exist and they permeate
the space, they would clump around spinning BHs through the superradiance process [107].
Superradiance for rotating BHs was first demonstrated by Roger Penrose for particles as
a way to extract energy from BHs [108]. The same process can apply to bosonic waves,
which can be amplified at the expense of the rotational energy of the BH. The effect is
maximized when the bosonic field, with mass mb, has a Compton wavelength comparable
to the Schwarzschild radius of the BH

ℏ

mbc
∼ 2GMBH

c2
(2.25)

Under this condition, the bosonic field can clump around the BH, growing and forming
a Bose condensate which is analogue to an hydrogen atom, also called gravitational atom

cloud. This gravitational atom, in analogy with the electromagnetic case, can be charac-
terized by the gravitational fine-structure constant ³, defined as

³ =
GMBH

c3
mb

ℏ
≃ 0.075

(

MBH

10M»

)

( mb

10−12eV

)

(2.26)

The superradiant instability has a typical duration of the order of days, depending on
the BH mass and spin. As long as the BH dimensionless spin Çi is above the critical
value Çc ∼ 4³/(1 + 4³2), the cloud grows and subtracts energy from the BH. At the
equilibrium, the cloud could have reached a mass as big as ∼ 10%MBH. Then it starts
dissipating, emitting quadrupole GWs through boson annihilation into gravitons. Here,
we focus only on GWs from scalar bosons. The timescale of the dissipation is way longer
than the superradiant instability one, depending on the BH mass and spin and on the
fine-structure constant as

Ägw ≃
(

6.5 · 104years
)

(

MBH

10M»

)(

1

Çi

)

( ³

0.1

)−15
(2.27)

Given the very different timescales, if there is a bosonic field forming a gravitational atom
cloud, it is likely to be already dissipating. Moreover, the huge duration of the dissipation
makes the gravitational signal a CW with respect to typical Earth-based detectors observing
times. The emitted wave has proper frequency depending mainly on the boson mass mb

with a second-order correction depening on both the boson and the BH masses, as [109, 110]

fgw ≃ 483Hz
( mb

10−12eV

)

[

1− 7 · 10−4
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mb

10−12eV

)2
]

(2.28)

The GW amplitude slowly decreases over the dissipation time. For values ³j 0.1, the GW
emission can be computed with the perturbation theory. Within this limit, the amplitude
depends on the fine-structure constant and on the BH mass (both explicitly and indirectly
through ³) and spin as

h0 ≃ 3 · 10−24
( ³

0.1

)7
(

Çi − Çc
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)(
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t
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)−1

(2.29)

The signal frequency then evolves slowly, with a spin-up due to annihilation and to self-
interacting terms. These self-interactions come from the bosons energy level transition and
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from the change in the self-interaction energy as the cloud dissipates [111]. In the case of
negligible self-interactions, the spin-up is driven by annihilation and is given by

ḟgw ≃ +
(

7 · 10−15Hz/s
)

( mb

10−12eV

)2 ( ³

0.1

)17
(2.30)

Equation 2.29 shows that also CWs from boson clouds have extremely weak amplitude,
if they exist. For this reason, as for NSs we limit the searches to BHs within few kpc at
most, which means inside our Galaxy. Inverting Equation 2.28, it turns out that with the
sensitivity window between ∼ 10Hz and few kHz of Earth-based detectors we can probe only
bosons with masses in the range (10−13−10−11) eV [110, 109]. Searches for CWs from scalar
boson clouds can be directed towards known galactic BHs, or towards directions where they
are thought to be present, e.g. the galactic center or globular clusters. Also blind all-sky
searches can be performed, assuming that there are lots of unknown nearby BHs that could
be potential sources. However, their search hide some difficulties and subtleties that will be
addressed in Chapter 4. From a non-detection, we can set upper limits on the GW strain
amplitude h0. These can be translated in upper limits on the boson mass when BH mass
and spin are known, or in exclusion regions in the MBH−mb plane for unknown BHs. Last
results from a dedicated all-sky search for boson clouds can be found in [112].

2.3 Search strategies

The methods that can be used for CW searches are so different with respect to the ones used
for transient GW searches. The reason is that, while to search for a short transient we have
to analyze independently short data chunks searching for signals that have a starting time
and a duration, a CW is present in the whole data set. Considering a generic CW source,
located at right ascension ³ and declination ¶, with amplitude h0 and a slow frequency
evolution, the strain amplitude at the detector is given by

h (t) = h0

[

F+ (t, ³, ¶, È)
1 + cos2 º

2
cosΦ (t) + F× (t, ³, ¶, È) cos º sinΦ (t)

]

(2.31)

Here, º is the inclination of the source with respect to the line of sight, È is the polarization
angle of the wave and Φ (t) is the phase evolution of the signal. The phase takes into
account both the intrinsic GW frequency evolution in the source frame and the frequency
modulation that affect the observed signal because of the Doppler effect. Since for all CW
sources the frequency evolution is extremely slow (see Equations 2.13 and 2.30) and that
all known pulsars have rotational frequency derivatives generally lower, in modulus, than
10−9Hz/s, the source-frame GW frequency f0(t) can be described by the Taylor expansion

f0 (t) = f0 + ḟ0 (t− t0) +O
(

t2
)

(2.32)

However, the time of arrival of a signal at the detector, t, is shifted with respect to the time
of arrival at the Solar System Barycenter (SSB), Ä(t). The latter can be written in terms
of the signal time of arrival t at the detector as

Ä (t) = t+ ¶t = t− p⃗ (t) · n̂
c

+∆E» +∆S» (2.33)

where p⃗(t) is the position of the detector with respect to the SSB, n̂ is the unit vector point-
ing to the source direction, and ∆E» and ∆S» are respectively the solar system Einstein
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and Shapiro time delays [113]. Their impact on the observed frequency is not negligible
in targeted searches, where the frequency resolution is of the order of 1/year. Due to the
Doppler effect, the observed GW frequency at the detector is spread with respect to the
emitted frequency as

fgw (t) =
1

2Ã

dΦ (t)

dt
= f0 (t)

(

1 +
v⃗ (t) · n̂

c

)

(2.34)

where v⃗(t) is the velocity vector of the detector with respect to the SSB reference frame. As
a consequence, the signal at the detector is no more monochromatic. Instead, the frequency
experiences a drift due to the presence of spin-down/up and eventual subsequent terms
{ḟ0, f̈0, ...}, and a double oscillation due to the annual and daily motion of the Earth. In
fact, the velocity of Earth in the SSB can be decomposed in the orbital and rotational ones,
v⃗ = v⃗orb + v⃗rot. The orbital velocity has annual periodicity and has a mean magnitude
vorb ≃ 10−4c. The rotational velocity has daily periodicity and a mean magnitude vrot ≃
10−6c. The two contributions have act on very different scales, and their amplitude and
phase depend on the sky position of the source. In Figure 2.4 I show an example of Doppler
modulation on the time evolution of the frequency of the expected GW from the known
pulsar PSR J0835-4510, also known as Vela. The blue plot is obtained using the observed
position of Vela, while the red one is obtained using a wrong sky position. The modulation
induced by the rotational motion of the Earth results in daily oscillations of the frequency,
2 orders of magnitude weaker than the yearly oscillation induced by orbital motion. The

Figure 2.4: Expected evolution in time of the GW frequency from the Vela pulsar, in its
actually observed sky position (blue line) and considering a different sky position (red line).
The left plot shows the whole evolution, where the annual modulation is dominant. The
right plot shows a zoom on day-scale, at which the daily modulation becomes visible.

detector pattern functions F+/× encode the varying angle between the wavefront and the
detector arms, because of the Earth rotation with angular velocity Ωr. The formulation
given in Equation 1.66 have some practical limitations for CW searches, since it is computed
in the reference frame of a steady detector. They can be more conveniently written in the
equatorial coordinate system as

F+ (t) = sin (·) [a (t) cos (2È) + b (t) sin (2È)]

F× (t) = sin (·) [b (t) cos (2È)− a (t) sin (2È)]
(2.35)
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where · is the angle between the two arms, which is typically Ã/2 for Virgo and LIGO
detectors, and È defines the polarization angle of the source wave frame. The pattern
functions a(t), b(t) depend both on the orientation of the detector and the source as

a (t) =
1

16
sin 2µ (3− cos 2¼) (3− cos 2¶) cos [2 (³− ϕr − Ωrt)]+

− 1

4
cos 2µ sin¼ (3− cos 2¶) sin [2 (³− ϕr − Ωrt)]+

+
1

4
sin 2µ sin 2¼ sin 2¶ cos [³− ϕr − Ωrt]+

− 1

2
cos 2µ cos¼ sin 2¶ sin [³− ϕr − Ωrt] +

3

4
sin 2µ cos2 ¼ cos2 ¶

b (t) = cos 2µ sin¼ sin ¶ cos [2 (³− ϕr − Ωrt)]+

+
1

4
sin 2µ (3− cos 2¼) sin ¶ sin [2 (³− ϕr − Ωrt)]+

+ cos 2µ cos¼ cos ¶ cos [³− ϕr − Ωrt]+

+
1

2
sin 2µ sin 2¼ cos ¶ sin [³− ϕr − Ωrt]

where (³, ¶) are the equatorial coordinates of the source, ¼ is the detector latitude, µ is the
counterclockwise angle between the bisector of its arms and the eastward direction and ϕr
is a phase defined implicitly by the interferometer’s longitude. The effect of the angular
pattern functions is an amplitude modulation of the GW signal with periodicity of 1/2
and 1 sidereal day. Therefore, the interferometer’s response to a monochromatic source in
the Earth center’s reference frame is splitted in up to five distinct frequency components,
corresponding to the “carrier” frequency and two pairs of positive and negative sidebands,
respectively at fgw, fgw±f· and fgw±2f·, with the sidereal frequency f· = 1.16 ·10−5Hz.
The way the signal power is splitted in the five peaks depend on the sky localization of
the source. In Figure 2.5 a simulated CW signal from an hypothetical source emitting at
f0 ≃ 108.86Hz from a given sky position is shown. The sidereal modulation depends on the
sky coordinates of the source. Algorithms that search for CWs have to take into account for
all the presented features. From one point of view, frequency and amplitude modulations
strongly complicate the signal pattern, which otherwise would be nearly monochromatic.
Search algorithms should have under control the resolution of the parameter space, since
any error on the signal parameters rapidly propagates on the expected phase and over long
observing times. On the other side, these modulations are a powerful tool to distinguish
between CWs, with astrophysical origin, and narrow-band spectral artifacts that are present
in the detectors data.

Depending on the available information on the sources, different search strategies can
be used. A general review on all the existing search methods for CWs can be found in [81].
We can classify them in three families:

• Targeted searches, when all the parameters are known and the timing data are avail-
able (as for known pulsars).

• Directed searches, when the source position is known to a good accuracy, while rota-
tional parameters are unknown (e.g. SN remnants, globular clusters, galactic center).

• All-sky searches, looking for unknown sources from any possible sky direction.

In the following I briefly describe the main features of the different kinds of searches.
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Figure 2.5: An example of the amplitude modulation that characterizes a CW. Left plot
shows a two-day time series of a simulated CW, without noise, with carrier frequency
f0 ∼ 108.86Hz from a fixed sky position. The signal amplitude shows a pattern with
periodicity of a sidereal day. Right plot shown the amplitude spectral density of the signal,
after the removal of the Doppler modulation. The spacing between the peaks corresponds
to the sidereal frequency f· ≃ 1.16 · 10−5Hz.

2.3.1 Targeted searches

Targeted searches assume a complete knowledge of the source parameters which determine
the CW signal. Since the hypothetical waveform is known, fully coherent methods based on
matched filter provide the best sensitivity. The phase of the CWs is assumed to be locked
to the rotational phase of the star. This part is crucial, since for each target we need to get
very precise timing data from electromagnetic observatories. The observations are typically
made in radio and X-ray wavelengths, and are provided by the the CHIME, Hobart, Jodrell
Bank, MeerKAT, Nancay, NICER, and UTMOST observatories [115]. As an ideal case,
we can compute the theoretical SNR of a monochromatic signal with amplitude h0 and
frequency f0 with respect to the detector strain sensitivity Sn(f) as [7]
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where the detector pattern function F+ has been averaged over the solid angle and over
the polarization angle. Thus, the SNR of a CW scales as the square root of the observing
time. Sufficiently long observing times can compensate for the extremely weak amplitudes,
which are at least five orders of magnitude weaker than the ones of coalescing binaries.
However, several factors limit the sensitivity. The matched filter is optimal on stationary
and Gaussian noise, but detector noise is non-stationary over the observing run. As a further
complication, some pulsars randomly exhibit glitches, i.e. jumps on the pulses frequency.
After the glitch, the pulses jump to an higher frequency and progressively slow down to
their previous trend, but they are not in phase with the pre-glitch timing. The presence
of glitches limits the maximum coherent observing time: we can apply the matched filter
on shorter data chunks, cut in correspondence with the glitches, and then combine the
statistics. However, the result is intrinsically sub-optimal with respect to an uninterrupted
analysis.

The general approach for targeted searches consists in demodulating the detector data,
through hetherodyne or resampling methods, in order to correct for Doppler modulation
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and signal spin-down and to get back with a monochromatic signal at the proper frequency
f0. The resampling exploits the fact that the observed modulations are the effect of a
time-dependent delay of the received signal. The time of each sample is re-defined taking
into account the various contributions [116]. This technique has the advantage of being
independent from the frequency (at least the Doppler), but is typically computationally
expensive, since according to the Nyquist theorem the sampling time needed to properly
reconstruct the signal is inversely proportional to the frequency. In heterodyne correction
the data are multiplied by a complex exponential function that removes the phase mod-
ulation [117]. This operation is much cheaper than the resampling, but is referred to a
specific frequency and is limited to it. Given the length of typical observing times, the huge
amount of corresponding data and the narrow-band localization of the signal in frequency,
the analysis are typically carried on sets of sub-sampled data. The main methods currently
used are the Time-domain Bayesian method [117], the F-/G-statistics method [114, 120]
and the 5-vector method [118, 119]. The first two implement the matched filter in time-
domain, the latter implements a matched filter in the Fourier space. The search is typically
focused on the pulsars with highest spin-down limit. A particularly interesting subset, the
so-called high-value pulsars, is composed by those pulsars with spin-down limit greater than
the search sensitivity.

The most recent results for targeted searches are obtained from the O3 run [115]. Since
no significant candidates are found, for each pulsar a 95% credible upper limit on the
amplitude h95%0 is placed. The results are shown in Figure 2.6. Among 236 searched pulsars,
for 23 of them have upper limits lower than their spin-down limit. In particular, the Crab
and Vela pulsars have the highest hsd0 . The Crab pulsar rotates at frot ∼ 29.7Hz with a
period derivative Ṗ ∼ 4.2 ·10−13, which gives a spin-down limit hsd0 = 1.4 ·10−24. The upper
limit for its amplitude is h95%0 = 1.3 · 10−26, meaning that its ellipticity is not grater than
ε95% = 7.2 · 10−6, and that GWs contribute to less than 0.009% to the observed rotational
energy loss. The Vela pulsar rotates at frot ∼ 11.2Hz with a period derivative Ṗ = 1.2·10−13

and so has a spin-down limit hsd0 = 3.4 · 10−24. Its upper limit is h95%0 = 1.8 · 10−25, which
implies an ellipticity not greater than ε95% = 9.3 · 10−5 and that GWs are responsible for
less than 0.05% of the observed energy loss.

2.3.2 All-sky searches

On the opposite side, all-sky searches look for CWs from unknown NS from any possible
direction in the sky. Targeted searches achieve the best sensitivities, but they are limited to
search only for known pulsars, which are a little fraction of the total estimated in the Galaxy.
As far as we know, there may be NSs that are nearest than the known population, or that
exhibit stronger spin-down and have larger ellipticities. This motivates the need to perform
blind searches covering the whole sky directions, frequencies and frequency derivatives.
Unfortunately, such search cannot be performed through the fully-coherent techniques used
for targeted searches. Given the length of the observing times, Tobs ∼ 1 year, since the
resolution of each parameter scales with Tobs, there would be an huge parameter space to
be explored to demodulate the data for each possible combination of sky position, frequency
and frequency derivative. The full broad-band search would be computationally unfeasible,
therefore coherent all-sky searches are practically impossible [121]. Hence, for those searches
the so-called semi-coherent algorithms are typically used.

The basic idea behind the semi-coherent searches consists in splitting the whole data
series in Ns segments of length Tcoh eventually interlaced by a relative factor 1/³, so that
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Figure 2.6: Upper limits for h0 from the O2-O3 targeted search, taken from [115]. Gray
triangles represent the spin-down limits for each targeted pulsar. Blue stars show 95% cred-
ible upper limits on their corresponding amplitudes of h0. The pink curve gives an estimate
of the expected strain sensitivity of all three detectors combined during O3. Green dashed
lines connect h0 upper limits with the spin-down limits for pulsars that have surpassed it.

Tobs = ³NsTcoh. The segments are individually coherently analyzed and then combined
together incoherently, so the phase information across different block is lost. The segment
length is chosen in such a way that CWs inside it would be monochromatic within the
frequency resolution ¶f = 1/Tcoh. The segments have typical duration Tcoh ∼ 103s−104s, so
for 1 year of data their number is typically Ns ∼ 103−104, assuming a typical interlacement
by a factor 1/2. In this way the computational costs are strongly reduced and the search
becomes feasible [121]. On the other side, the lost information on the signal phase implies
a sensitivity loss with respect to a coherent search. In a single stack, the optimal SNR of
a signal is given by substituting Tcoh to Tobs in Equation 2.36. When the Ns stack spectra
are summed, the variance is reduced by a factor 1/

√
Ns, so at the end the global SNR is

given by [7]

S

N
=

√

〈

F 2
+

〉

N
1/4
s

(

Tobs
Sn (f0)

)1/2

h0 (2.37)

This means that semi-coherent searches theoretically achieve a sensitivity lower than the

coherent searches by a factor N
1/4
s , which corresponds roughly to one order of magnitude.
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In practice, the outputs of the analysis have different statistical distributions and one has to
put a maximum threshold on the number of candidates to be selected. This implies different
thresholds for the selection of signal candidates, and results in a reduced sensitivity loss with
respect to coherent searches (see [122] for an example). In any way, the sensitivity distance
is reduced with respect to coherent searches.

There are many different search algorithms that perform all-sky searches. These are
the Frequency-Hough [122], the Sky-Hough [123], the Time-domain F-statistics [124], the
SOAP [125] and Einstein@home [126]. They implement different strategies and often cover
a different parameter space. A comparison of these methods can be found in [127]. The
last LIGO-Virgo all-sky search during the O3 run did not produce significant candidates,
so 95% credible upper limits h95%0 have been placed over the whole frequency space by each
search pipeline. The results are shown in Figure 2.7. Since the search has no targets, the
h95%0 upper limits cannot be translated automatically in upper limits on the NSs ellipticities
[128].

Figure 2.7: Comparison of broadband search sensitivities obtained during the O3 run,
taken fron [128]. The results shown are obtained by the FrequencyHough pipeline (black
triangles), the SkyHough pipeline (red squares), the Time-Domain F-statistic pipeline (blue
circles), the SOAP pipeline (magenta diamonds) and PowerFlux (only on O3a data, green
crosses). Vertical bars mark errors of h95%0 .

2.3.3 Directed searches

Directed searches constitute an intermediate situation between targeted and all-sky searches.
In targeted searches, all the sources parameters are known. In all-sky searches, no parameter
is known. However, there is a variety of cases in which the sky position of a presumed
source is known, but no timing data is available, so the source rotational frequency and
its derivatives are unknown. An example can be given by a non-pulsating X-ray source at
the center of a supernova remnant, or by the Milky Way center, which is thought to host
a large population of NSs. The methods used for directed searches are semi-coherent too,
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but they take advantage from the knowledge of the sky position. The data are typically
demodulated through hetherodyne or resampling methods in order to compensate for the
Doppler effect only. Then, data are split in stacks as in all-sky searches, but in this case
one can take advantage from the corrected Doppler enlarging the length of the stacks. The
directed search in this can achieve better sensitivities with respect to the all-sky. The most
recent searches pursued on the Galactic Center and on the low-mass x-ray binary Scorpius
X-1 are reported in [129] and [130] respectively. Also in these cases no detection has been
made, so upper limits on the CW amplitude are set for the explored frequency range. In
particular, the most stringent limit for the Galactic Center is 7.6 · 10−26 at 142Hz, while
the best upper limit for Scorpius X-1 is 6.16 · 10−26 at 256Hz.



Chapter 3

Noise Hunting for continuous

waves at Virgo

A good wave hunter

is first of all a good noise hunter.

In any experiment where the searched signals are extremely weak with respect to the noise
floor, the experimenter has to master the possible noises that can degrade the sensitivity or
produce spurious artifacts that can mimic some signal features. In this sense, the chances
to detect rare or weak events are increased as the experimenter gets a deep knowledge of the
typical artifacts that affects its search. A good knowledge of those features would allow them
to build search algorithms that are able to distinguish between real signals and spurious
artifacts. In GW searches with Earth-based detectors, the study of noise artifacts can
become also an independent activity that goes in parallel with the dedicated searches. The
work to improve the sensitivity of CW searches can be done not only on the side of software

development, but can also start directly from the mitigation of noise sources that disturb the

search algorithms. This work can be done from two different points of view. One is the
Detector Characterization (DetChar), which is basically a data-analysis activity, focused on
the detector side [131, 132]. Its aim is to identify noises of various origin inside the detector
data and to look for correspondences with the auxiliary channels, i.e., sensors that are
placed all over the detector infrastructure, in order to identify their origin. More in general,
the DetChar activity evaluates the quality of the data taken during the observing time and
permits to assess if candidate signals are more likely due to noise artifacts or to astrophysical
sources. On the other side Noise Hunting is more an instrumental-side activity. The aim
is to characterize the noise sources and the way in which the noise propagates and couples
with the interferometer main channel. The subsequent step, if possible, is the mitigation
of that noise acting directly on the source or on the propagation mechanism and, finally,
to assess the effectiveness of the mitigation action. Clearly, DetChar and Noise Hunting
are complementary activities that constitute a fundamental part of the commissioning and
operation of the interferometer.

In this chapter I present the contribution that I am giving to the commissioning of the
Virgo interferometer, on the noise hunting activity. The work is not yet concluded, since the
commissioning of the interferometer has been delayed for issues on the instrument sensing
and control and other external factors. In fact, from one side the noise hunting activity
can be started independently from other activities, just characterizing the potential noise
sources and possibly mitigating them. On the other side, it needs stable and reproducible
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interferometer locks in order to look at its sensitivity curve, to assess the actual impact
of the noise sources and of the mitigation actions. For this activity I have focused on the
typical noise sources that can limit CW searches.

3.1 Noises affecting continuous waves searches

The kind of noises that impact CW - and also stochastic background - searches are different
from those that disturb short-duration GW searches, like those for CBCs and bursts. While
the latter are degraded mainly by the presence of short-duration glitches [133], CW searches
are mainly affected by long-lived narrow peaks in frequency spectra, typically referred to as
lines [134]. Since CW signals are intrinsically narrow-band, the presence of lines in the same
frequency region can degrade the sensitivity up to the point of makin the search blind at
that frequency. In the Solar System barycenter frame, a CW is nearly monochromatic, while
in the detector frame it is shifted into many frequency bins by the Doppler effect. Instead,
a narrow stationary spectral artifact is nearly monochromatic in the detector frame, and is
spread in many frequency bins when it is projected in the Solar System barycenter. These
opposite characteristics can be used to discriminate the candidate signals. This can be done
more efficiently in targeted searches, where the knowledge of the timing from ephemerides
can be used to demodulate the signal at the expenses of noise lines. Conversely, all-sky
searches are more impacted by the presence of spectral lines, that could make them blind
in the parameter space region interested by the line. The time-frequency plot in Figure 3.1
gives an idea of the problem: in Virgo O3 data, at ∼ 18.6Hz there is a ∼ 0.02Hz wide
wandering line, which has been identified as generated by the air handling unit that served
the clean rooms in the central building. I have generated a simulated CW signal with
frequency overlapping the noise line, and then added it to the Virgo O3 data. The aim was
to show that if a CW is present in that frequency range, it would be probably overwhelmed
by the noise, since typically all-sky algorithms search for excess-of-power from a CW inside
each FFT. In fact, very often the frequency regions containing spectral noises are vetoed
and excluded from the search.

The output data from an interferometer is generally non-stationary and non-Gaussian
if considered over the whole observing run. However, if we restrict to shorter time periods,
they can be considered approximately as stationary within that periods, with the exception
of wandering lines, i.e. spectral narrow noises that change frequency in time. Moreover,
the data can be considered as mainly Gaussian, with the addition of non-Gaussian artifacts
given by short-duration glitches and long-duration lines. Spectral lines can be characterized
through the Q-factor, which is the ratio between the frequency at the maximum and the
line width at half maximum. They can be roughly classified as:

• Stationary lines, whose frequency remains unchanged during the whole observing
time. They are typically associated to resonant modes in mechanical systems, e.g.
the violin modes of the mirrors suspensions or the power mains (typically 50 Hz in
Europe, 60 Hz in USA).

• Wandering lines, whose frequency slowly varies in time, both regularly and ran-
domly. They are typically characterized by lower Q-factors with respect to resonant
modes, and are often generated by the detector infrastructure, like motors, fans, belts
and pumps in the air conditioning system.
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Figure 3.1: Time-frequency PM of Virgo O3 data for the whole run duration in the 18 - 19
Hz band. The plot is zoomed on a wandering line ∼ 0.02Hz wide at a ∼ 18.6Hz frequency,
originated from an air handling unit in the central building of Virgo. In the data has been
added a simulated CW signal with parameters f0 ≃ 18.6Hz and ḟ0 = −3.0 · 10−10Hz/s, an
unrealistically strong amplitude h0 = 2 · 10−23 (in order to make it visible by eye) and sky
localization ³ ≃ 37.4 deg, ¶ ≃ −29.5 deg.

• Comb, sets of lines occurring in distinct pattern with even spacing. Their frequencies
at a given time can be expressed as fn(t) = f0(t) + n∆f , where ∆f is the spacing
and n is an integer indicating the n-th line. They can be either stationary and time-
varying. Some possible sources are errors in timing systems, modulations induced in
power supplies, too coarse digitization used in digital-to-analog conversions and so on.

Indicatively, the instrumental lines that degrade CW searches have typical Q-factors ∼ 103

or greater. For comparison, CWs from astrophysical sources are broadened by a factor
∼ f0 · 10−4 because of Earth’s orbital Doppler. There are many different ways the noise
disturbances can couple to the GW channel [134]. One of the most common is the coupling
through shared power or ground: if an electronic component drags current with periodic
voltage drops, it will propagate these drops with all the components that share the supply
with it. If there are optical or magnetic actuators that share the current, they will be
affected by the same drop. Another typical noise comes from the scattered light inside the
interferometer. Scattered light noise occurs for example when a tiny stray light beam hits
an interferometer part, the scattering source, that is ground connected (e.g. a wall of the
vacuum chamber) and vibrate. Scattering back into the main beam path this light carries
a phase noise with the signature of the vibration of the scattering source. Coil-magnet
actuators on the Virgo test masses and along the suspension chain can also couple directly
with magnetic or electrostatic fields present in the experimental buildings [135]. Some noise
sources can enter the interferometer directly through mechanic coupling, e.g. through the
thermally excited resonances of the suspension wires of the optics. Finally, noise lines can
be generated directly by data acquisition artifacts and non-linear couplings.

Aside spectral lines, CW searches obviously also benefit from broad-band noise reduc-
tion. Recalling Figure 2.3, a not negligible number of known pulsars have their spin-down
limit just above the Advanced LIGO design sensitivity curve. Most isolated pulsars has
expected GW frequency < 100Hz, while the majority of pulsars in binary systems has GW
frequency > 100Hz. If we assume that the subset of known pulsars is representative of the
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whole NS galactic population, this means that, generally speaking, searches for isolated pul-
sars benefit from low-frequency noise reduction and searches for pulsars in binary systems
mainly benefit from high-frequency noise reduction. While lowering the noise floor at high
frequencies is currently mainly a matter of circulating power, quantum noise and coating
thermal noise, the low-frequency noise wall (i.e. below 100 Hz), after lowering quantum and
thermal noise, is limited by seismic noise. Since my focus is on isolated pulsars, in my work
I have focused mainly on low-frequency noise. In particular, my activity has regarded the
hunt for noise lines associated to the vacuum system, the air conditioning infrastructure
and to the external environment.

3.2 Technical and environmental noises

In Section 1.2.4, the main fundamental noise sources that determine the sensitivity curve of
an interferometric detector have been introduced. Beside them, there are the so-called tech-

nical noises and environmental noises. The impact of the environment on Virgo observing
runs is discussed in great detail in [136, 137]. Technical noises include all the disturbances
generated by the interferometer components, from the laser injection to the final detection
passing through all the intermediate stages. From the beginning, the generated laser is not
perfectly stable: it introduces some noise on its intensity, frequency and polarization, and
moreover the beam pointing mechanism is affected by uncertainties. The injection system
uses multiple modulation oscillators (the EOM introduced in 1.2.3) which are affected by
intrinsic phase and amplitude noise. The control loops used for beam pointing and more
generally in the input benches produce a noise associated to the sensors and the actuators.
The injection system introduces also scattered light noise, due to low frequency motions
of suspended benches or to environment-driven vibrations for in-air benches and not sus-
pended benches. More in general, the scattered light issue involves also the detection system
and all the suspended baffles associated to the optics. The detection system includes the
output mode cleaner and the suspended benches that host the array of photo-detectors.
The output mode cleaner introduces noises in terms of length noise and fluctuations in the
mode polarization. The photo-detectors have their own electronic noise, and in general all
the controls associated to the suspended benches that host them are affected by sensor and
actuator noise. The thermal compensation system, which adjusts the radius of curvature
of the optics to compensate for the curvature induced by the circulating laser, introduces
magnetic, electrostatic and thermal noise associated to the ring heaters, which are placed
in correspondence of each optic. The superattenuator and the payload, i.e. the last stage
of the pendulum to which the optics are connected, are affected by the control noises, and
moreover the presence of residual charges on the mirrors induce electrostatic noise on the
actuators. The longitudinal and angular controls used to keep the interferometer locked are
affected by sensing noise due to the interface with injection and detection systems, by the
actuation noise due to the interface with superattenuators and payloads and by numerical
noise due to the interface with the data acquisition system. The data acquisition itself
introduces phase and amplitude noise on the demodulation of the output signal. Also the
calibration process is affected by noise through the photon calibrator and the Newtonian
calibrator.

The technical noises on which I have worked are associated to the infrastructure and
vacuum systems. The former includes all the noises generated by Heating, Ventilation and
Air Conditioning (HVAC) devices: air handling units (AHU), hot and cold water pumps,
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Figure 3.2: Map of the EGO site, taken from [138, 136]. The Virgo detector is shown,
with the location of the main buildings identified in the text. The central insert shows a
zoom around the interferometer vertex, with the Central Building (CEB) and Mode-Cleaner
Building (MCB) highlighted.

Figure 3.3: Virgo environmental probes, taken from [139, 136]. Top left: mode cleaner
building (MCB). Middle: North end building (NEB). West end building (WEB) is identical.
Right: central building (CEB).

air compressors, heaters and chillers. The latter includes the noise generated by turbo-
molecular pumps, dry pumps and cryogenic traps. All these units are displaced along all
the experimental buildings of Virgo, shown in Figure 3.2. The Central Building (CEB)
hosts the majority of the optics, which are put under vacuum towers: the beam splitter
tower (BS), the West and North input towers (WI, NI) that host the West and North input
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mirrors, and the power-recycling and signal-recycling towers (PR, SR) hosting the power-
recycling and signal-recycling mirrors. Then, there are the input tower (IT) bringing to
the input benches, which include an under-vacuum part and in-air parts like laser, external
injection benches and the pre-stabilized laser, and the detection tower (DT) which brings
to the detection laboratory. The North-End and West-End Buildings (NEB, WEB) host
the North-End and West-End towers respectively, each one containing the corresponding
end mirror and the suspended benches with the photo-detectors to control the locking of
the Fabry-Perot cavities. With respect to the scheme described in Sections 1.2.2,1.2.3, the
North and West arms correspond to the ’x’ and ’y’ arms respectively. Finally, the Mode
Cleaner Building (MCB) hosts the end mirror of the input mode cleaner.

To monitor the conditions of the surrounding environment, a distributed network of
probes is used all over the experimental buildings, as shown in Figure 3.3 [140]. There are
accelerometers, episensors and velocimeters placed on the ground and on towers and benches
to measure seismic vibrations, microphones and infra-sound microphones to detect acoustic
vibrations, magnetometers to monitor magnetic fields in each structure, voltage and current
probes and thermometers. In particular, accelerometers, episensors and velocimeters are
sensitive to local seismic noise. However, there is a superposition of vibrations associated to
human activity on the site and in the nearing and vibrations produced by the infrastructure
and vacuum devices mentioned above. The effect is the raising of the seismic floor with
respect to purely seismic vibrations. With the progressive improvement of the detectors
sensitivity, we expect the interferometer to become more and more sensitive to technical
noises.

Figure 3.4: Effect of turning off the conditioning systems at the beginning of the O3 run
[140, 141]. The left plot shows the impact of the switch-off on the floor displacement in
CEB, while the right plot shows the impact on the detector strain sensitivity. The red
curves represent the situation in which all the devices are properly working, while the black
curves when all the devices are turned off.

In the plots in Figure 3.4 a test done in 19th of April 2019, at the beginning of the O3
run, is shown when all the conditioning systems of Virgo have been switched off for half
an hour. The test is explained more in detail in [140, 141]. Here, it is useful to note how
the seismic noise floor reduces when the units are switched off, as well as many noise lines
associated to AHU fans and motors. The positive effect on the detector strain sensitivity
is well visible, with a broad-band noise reduction in the 10 - 60 Hz region. For broad-band
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GW searches like CBCs, it has been estimated that the impact of this reduction corresponds
in an increase of ∼ 3Mpc in the distance at which a binary NS coalescence can be detected,
a ∼ +6% relatively to the sensitivity reached at the time [140].

Obviously, it is not possible to keep all the conditioning units switched off, as they play
a central role in maintaining the stability of the physical parameters, like temperature,
humidity and cleanliness, in the experimental buildings. However, this measure motivates
an increasing effort in insulating or at least mitigating the potential noise sources, since
their impact will be stronger as the detector sensitivity improve.

There are various methods used for noise hunting [140]. The first step is typically the
data mining. From the reconstructed strain of the detector, noise features are identified and
analyzed to track their evolution and eventually link a change in their trend to actions made
or events occurred at the same time. Then, a dedicated software searches for coherence
between the strain output and the thousands of auxiliary sensors displaced over all the
Virgo site. The searches are done looking for linear coupling but also for more challenging
non-linear coupling, like beatings or scattered light. With the help coming from data
mining, several experimental actions are done to find the source of a noise. One method
is the so-called sniffing, which consists in inspecting the experimental area with portable
sensors looking for the specific noise. Another method, the switch-off test, consists in
switching off the various devices one at a time. The right source is identified when the
noise disappears as it is turned off. Another method consists in doing noise injections,
causing localized enhancements of the ambient noise up to produce a measurable effect
in the detector strain: in this way it is possible to compute the noise coupling function.
Once the source is identified, several mitigation actions can be performed. All these actions
can be made also in a preliminary way, in absence of a fully locked detector, in order to
characterize the noise emitted by the present devices.

A very interesting example of how CW searches can directly benefit from noise hunting
comes from the second scientific run of initial Virgo, VSR2, in 2009. In that occasion,
during off-line data analysis the NoEMi pipeline (Noise frequency Event Miner) found a
double wandering line [142]. This noise partially was superposing the frequency band of the
expected GW from the Vela pulsar, which at that time was emitting at ∼ 22.38Hz, causing
a sensitivity loss by about 20%. Its pattern is shown in Figure 3.5(a,b). NoEMi found
a coincidence between that noise and an accelerometer put on the thermal compensating
system optical bench (Figure 3.5(c)). Further searches identified the source in the two
chillers, which refrigerate and circulate water to cool down the lasers used by the system.
In particular, the source was in a mechanical component with nominal rotational frequency
at 22.4Hz, which transmitted its noise to the optical bench through the cooling pipes. To
solve the problem, in order to move the disturbance away from the Vela region, it was
installed a variable frequency driver. Its task was to move the rotation frequency of the
chillers sufficiently away from the Vela frequency. The effect of this installation, done from
the subsequent scientific run VSR3, is shown in Figure 3.5(d).
In the next sections I present the contributions that I have done to the noise hunting activity.

3.3 Noise from water pumps at terminal buildings

In this section I report the first activity in which I have been involved joining the noise
hunting group. The noise sources to investigate are the hot and cold water pumps that
serve the AHUs. These pumps are placed, in couple, in the technical rooms located behind
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Figure 3.5: The disturbance produced during VSR2 by the chillers of the thermal compen-
sating system at the Vela pulsar frequency seen in the NoEMi Events DB (a), in the Lines
DB (b) and in the Events DB of an accelerometer (c). Plot d) shows the effect (on the
accelerometer data) of the shift away from the Vela region of the frequency of the chiller en-
gine causing the disturbance, on the 49th day of VSR3. The purple band show the Doppler
band of the Vela pulsar frequency. Plots taken from [142].
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Figure 3.6: Top: wide angle picture of the WEB (blue building on the right) and the
technical buildings (on the left) that host AHU, hot and cold water pumps, heater, chillers,
air compressors and the electric groups. Bottom: planimetry of the same buildings, with the
red-bounded picture showing the hot and cold water pumps. The ”A” red bullet indicate
approximately the location of the temporary accelerometers placed in the pumps room.

the NEB and WEB. They take hot and cold water from heaters and chillers and then
pump it to the AHU through water pipes. In Figure 3.6 the organization of the WEB is
shown, together with a picture taken in the pumps room. In the MCB, instead, there is
only the cold water pump. The pumps are expected to generate a noise line at a frequency
corresponding to their rotation frequency. That noise line is expected to be wandering,
since the rpm rates depend first on the supply frequency, which is not perfectly stable, and
is influenced by pressure and temperature of the circulating water and of the environment.
Moreover, they can contribute to the wide-band increase of the seismic floor. Differently
from the past, the pumps now are no more placed directly on ground but there is a spring
mitigation that reduces the vibrations transmitted to the ground. In fact, their noise can
propagate through the buildings up to the towers in many different ways. The most obvious
one is through seismic waves in the underground. The path followed by the seismic waves
is not necessarily straightforward, since it depends on the stratification in the underground.
In addition, the pumps vibrations can also propagate through the water pipes. These
vibrations can propagate beyond the AHU following the air ducts and arrive directly on the
experimental building floor. However, they can also propagate from the pipes to the building
walls and then go through floor and pipes as a secondary way of propagation. Moreover,
the vibration noise propagates also through the fluid itself, in the form of pressure noise.
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The understanding of the main propagating channels is essential in order to establish the
right mitigation actions.

At the first step, there is the need to correctly identify the noise lines associated to the
pumps in order to monitor them. On 21th of November 2020, a series of selective switch-off
tests of HVAC devices have been done at different times in all the experimental buildings
[143]. At different times, the devices linked to the AHUs, water pumps included, have been
turned off. In this way the devises can be associated to the noise lines that interrupt at
their turn-off time. I have analyzed the data of these switch-off tests, looking at the most
representative environmental sensors. On the magnetic side, I have found no hints of noise
line from the water pumps in the magnetometers. More precisely, I have searched for lines
at the frequency of the pumps rpm rates and for sidebands of the power mains (50 Hz) and
its second harmonics. In fact the friction of the pump, together with its natural imbalance,
can create ripples in its power supply, which propagate back through the electric cables and
thus create sidebands in the current and in the associated magnetic field. In practice, if
frpm is the pumps frequency, I have searched in the magnetometers for interrupting lines at
frequencies frpm, ∼ 50Hz± frpm and ∼ 100Hz± frpm. No magnetic lines have disappeared
in coincidence with the time the pumps are turned off. Instead, I have found that the
pumps noise propagate mainly as seismic and acoustic waves at the pumps rpm frequency
and harmonics. The inspected sensors are microphones, placed inside the experimental
buildings, and velocimeters/accelerometers placed on the ground near to the towers and
directly on the vacuum chambers. The noise lines are visible in the left side spectrograms
in Figure 3.7. Even in the short time considered (∼ 1 hour window), their frequency trend
results quite irregular. When taking the averaged amplitude spectral densities (ASDs),
shown in the right side of Figure 3.7, this results in typical Q-factors about ∼ 0.3−0.4 ·103.
These lines have typical frequencies around 47 - 48 Hz, with the cold water pumps lines
stronger than the hot pump ones because they are more powerful by a ∼ 2 factor. Their
frequencies are summarized in Table 3.1, together with their amplitudes.

Building Device Line frequency Line amplitude

NEB Cold water pump 48.00 Hz 5.18 · 10−11m/
√
Hz

NEB Hot water pump 47.50 Hz 2.14 · 10−11m/
√
Hz

WEB Cold water pump 47.95 Hz 3.93 · 10−11m/
√
Hz

WEB Hot water pump 46.70 Hz 2.37 · 10−11m/
√
Hz

MCB Cold water pump 48.55 Hz 3.90 · 10−10m/
√
Hz

Table 3.1: Summary of the noise lines associated to water pumps as measured in the test
on 21th November 2020 [143] and shown in Figure 3.7. The frequency resolution used for
the analysis is ¶f = 0.05Hz.

Once the link between sources and noises has been established, various mitigation strate-
gies can be pursued. The first intervention has involved the vibrations generated by the
pumps themselves. The aim was to assess if the amplitude of the vibrations can be reduced
slowing the rotation frequency of the pumps. So, together with the noise hunting crew, I
have performed a slow-down test on the hot water pump in WEB [144]. The hot pump
have been connected to a variable frequency driver (inverter) in order to change its mains
frequency, since the pumps rpm rates are expected to scale proportionally. The first test
was done in 16th of June 2021. Both cold and hot pumps are mounted together with a
spare one which is usually inactive and is used in case of malfunctioning of the main pump.
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Figure 3.7: Most representative plots of the switch-off test done in [143]. The plots on the
left side are amplitude spectrograms of the data recorded from the seismic sensors, zoomed
on the switch-off times and on the expected noise frequencies. The vertical, dashed white
lines indicate when the water pumps are turned off and coincide with a noise line stopping.
The plots on the right side are the averaged ASDs extracted at a time when both the
pumps are working (red curves) and at a time when both the pumps are turned off (black
curves). The stars indicate the frequency lines associated with the sources. Top and middle
plots: displacement in the north direction recorded from the velocimeter in WEB and NEB,
respectively. Note that in NEB the hot pump line is very weak, so in the spectrogram it is
not well visible. Bottom plots: displacement in the north direction recorded in MCB from
the accelerometer. All the plots are done with a frequency resolution of ¶f = 0.05Hz.
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During the test, the supply was switched alternatively on both the main and the spare
pump, and the input frequency was progressively reduced starting from the nominal 50 Hz
down to 35 Hz, at steps of 5 Hz, through the inverter, as described in [144]. We have found
that the minimum sustainable frequency is 40 Hz, since at this value after few minutes
the water pressure in the circuit becomes too low and the security system shut down the
boiler. To end the test we then increased gradually the inverter frequency up to 50 Hz with
steps of 1 Hz. To analyze the effects of the test, we have installed four extra sensors in the
pumps room: two of them have been put onto the hot and cold water pumps, one on the
ground floor between them and one on the hot water pipe. In addition, two water pressure
probes have been installed on the inlet and outlet water pipes. The spectrogram in Figure
3.8 shows the evolution of the vibration line associated to the hot pumps, as sensed by the
accelerometer mounted on it. From the original frequency of 46.70 Hz, the noise line of the
main hot pump drops correspondingly to each 5-Hz-jump of the inverter. The measured
frequency lines, together with the inverter frequency, are shown in Table 3.2.

Figure 3.8: Spectrogram of data from the accelerometer mounted on the hot water pump
during the slow-down test described in [144]. The noise line associated to the pump rate
moves from the usual 46.70 Hz down to 42.10 Hz, 37.40 Hz and 32.25 Hz as the inverter
frequency decreases, from 50 Hz to 35 Hz, at steps of 5 Hz. The frequency resolution is
¶f = 0.05Hz.

Inverter frequency Pump rotation frequency

50 Hz 46.70 Hz
45 Hz 42.10 Hz
40 Hz 37.40 Hz
35 Hz 32.25 Hz

Table 3.2: Summary of the changes in the WEB hot water pump rotation frequency (second
column) as function of the inverter frequency (first column).

I have made a subsequent analysis on the four different configurations obtained looking
at the ASDs of all the sensors. The most relevant results are shown in Figure 3.9. Looking
at the lines directly on the hot pump, their amplitude does not seem to be affected by the
changing rotation frequency. Looking at the same lines on the ground sensors (the first two
from the top in Figure 3.9) still there is no hint of reduction in the amplitude, rather in
some cases they result to be slightly stronger. However, the most significant change is a
broadband noise reduction observed when jumping from 50 Hz to 45 Hz.
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Figure 3.9: Averaged ASDs from most representative sensors during the slow-down test
[144]. Blue, red, green and purple curves represent data taken with the pump inverter set
respectively to 50, 45, 40 and 35 Hz. From the top to the bottom, the plots show data
from: the acclerometer put on the ground floor in the pumps room; the velocimeter on the
ground floor in WEB near to the tower; the accelerometer put on the hot water pipe; the
water pressure probe installed on the outlet water pipe.
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Looking at the accelerometer on the pipe and at the water pressure probe (the last two
from the top in figure 3.9) it is clear that the pumps vibrations propagate efficiently through
the water circuit: the noise is carried both inside the pipes by the fluid, as pressure noise,
and on the pipes surface as vibrations. Except for the accelerometers put on the pumps
and on the ground in the pumps room, which are dominated by the engines vibrations,
the sensors on the pipes and in the experimental building sense a broad-band noise that
spreads from 30 Hz up to 35 - 40 Hz. This noise is present only when the inverter is set
to the nominal value of 50 Hz and then for all the lower levels tried the sensors sense the
same, lower, noise floor. However, we have noticed that the noise bump has not come back
promptly when we have restored the pump at the nominal speed. Instead, it have taken the
whole day to come back. The day after, on 17th of June 2021, we have performed a second,
longer slow-down test which lasted 7.5 hours during which the inverter was set to 45 Hz
[145]. This time the noise bump did not disappear promptly as in the previous test, even
if some reduction is observed in the water pressure, as can be seen in Figure 3.10. In 2nd
of July 2021 a further slow-down test has been done, while having both the AHU and the
cold water pump turned off. In that occasion, there has been observed some broad-band
noise reduction in different regions between 10 Hz and 25 Hz, not strictly coincident with
the performed actions. It seems to be the result of a slow reassessment occurring in the
following hours. The hints collected in these tests suggest that the presence of varying noise
bumps in different frequency regions are linked with some changing turbulence regime of
the water flowing in the pipes. These changes seem to be triggered by many components
of the water circuit, including the water pumps. The investigation on this noise have been
then object of dedicated tests.

Figure 3.10: Spectrograms of the long slow-down test done in [145]. Top plot: data from
the accelerometer put on the hot water pipe. Middle plot: data from the water pressure
probe on the outlet water pipe. Bottom plot: data from the velocimeter on the ground floor
near to the tower. The vertical dashed black lines indicate the starting and ending times of
the first and second slow-down tests.
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I have analyzed the data of the first slow-down test looking at the spatial distribution
of the pumps noise lines. After the end of the O3 run, an array of Newtonian seismic
sensors has been installed in both CEB, NEB and WEB with the purpose of studying the
Newtonian noise on Virgo site and implement a subtraction from the detector data. The
same array can be used to monitor the amplitude of a noise line in different locations in the
buildings. I have developed a tool in Matlab to plot the measured amplitudes at a given
frequency (or in an extended band) and at a given time, placing them in the right locations
of the Newtonian sensors in the building map and representing the amplitude with a color
scale. The tool can plot also further elaborations of the data, as SNR, root-mean-square
values or coherence with a witness channel.

Figure 3.11: Plots of the root-mean-square displacement measured by the Newtonian array
in WEB at the frequency 46.7 Hz corresponding to the hot pump noise line. The dis-
placements are represented logarithmic on a color scale. The top plot shows the measured
displacements before the slow-down test. The bottom plot shows the same quantities, at
46.7 Hz, when the hot water pump inverter was set at 45 Hz and the noise line moved in
frequency. The most impacted area is in the left side, nearest to the pump (out of map on
the left) and to the walls.

In Figure 3.11 I show the ASD measured by each Newtonian sensor in logarithmic color
scale. By comparing the noise sensed by the array before and after the switch-down, it turns
out that the impact of the 46.7 Hz noise line is stronger on the area near to the entrance
(on the left side in the plots). This is not surprising, since the water pumps and generally
all the technical buildings are behind the WEB, on the entrance side (see the map in Figure
3.6). A straight-line propagation of the underground seismic waves obviously hit the nearest
sensors when the vibrations are stronger. However, this path partially superposes with the
one followed by the vibrations that propagate through the pipes and are transmitted to the
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Figure 3.12: First two plots from top: ASDs measured by Newtonian array in WEB at
the cold water pump frequency 48 Hz, before the installation done in [147] (first plot) and
after that installation (second plot), in logarithmic color scale. The bottom plot reports
the difference between the two measures per each sensor, in linear color scale. The highest
impact of the interventions is on the North-West area of the building, where the pipes
connecting the AHU with the clean room cross the wall and their vibrations spread down
to the ground. The crossed sensors were out of order.
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walls at their intersection. It is worth also to note that the black rectangular area including
the WE indicates a more stable floor, called ”tower platform”, since it lays on a deeper
foundation. In fact, the sensors inside that platform sense a less intense noise line.

Further tests at NEB demonstrated that the water pipes feeding cold water to the AHU
of the tower clean rooms act as a seismic short circuit (see [146] and comments therein).
Thanks to the experience gained at NEB, on 05/10/2021 a valve and an anti-vibration joint
have been installed on clean-air AHU cold water pipe, inside the pumps room [147]. The
subsequent tests and results are reported in [148]. The effect is the reduction of the cold
pump noise line at the environmental sensors, by an average factor 2. This noise reduction
seems associated to the insertion of the bellows, while other actions like opening and closing
the valve have no relevant systematic effects on the residual noise. This can be the hint that
the actual residual 48Hz noise sensed at the tower platform is following different paths. For
this reason I have done an analysis on the Newtonian array before and after the installation
in WEB. The results are shown in Figure 3.12. From the top plot it is clear that the impact
of the cold water pump noise line is stronger in the North-West side of the building, where
the pump room is located. The most interesting information comes from the bottom plot,
which shows the difference between the measures taken before and after the installation.
From that plot, we can see that the noise reduction due to the insertion of the bellows is
stronger on the path between the tower platform and the North-West corner. It is important
to underline that the pipes that connect the AHU with the tower clean room cross the West-
side wall of the building just at that corner. Thus, the hypothesis that the pipes vibrations
spread down to the ground through the wall is strongly supported by this result. This seems
to confirm that the obtained mitigation is due to the partial interruption of the short circuit
of vibrations coming through the water pipes that connect the AHU with the tower clean
rooms. The impact of the installation is a reduction of the 48 Hz noise line by an average
factor of ∼ 2.4 over all the building, with maxima of ∼ 4 − 5 in the North-West corner.
Unfortunately, at the time of these works the interferometer was not working, so there is
no information of the impact that the noise lines generated by water pumps would have
on the detector outcome with the O4 run sensitivity. Future tests with a stably working
interferometer would give more information.

3.4 Seismic noise lines at Central Building

From the beginning of 2022 I have started a work to identify the sources of some noise lines
observed in CEB seismic spectrum and still not well understood at that moment. The lines
on which I have worked are shown in the zoomed ASD in Figure 3.13.

The structure of CEB is way more complicated than WEB and NEB, since it hosts the
laser laboratory, the input benches, the detection laboratory, the thermal compensation
system room and many other structures, and obviously all the towers that host the mirrors.
It is organized in four levels, which are shown in Figure 3.14. Level 1 is placed at second
underground floor. It is limited in the area under the towers and hosts the clean rooms
to enter into the towers. Level 2 is the first underground floor, and is the main level,
where the towers are leaning and where are the laser laboratory, the injection benches, the
detection laboratory and so on. Level 3 is at ground floor. There are the main entrance,
the data acquisition room, vacuum and electronics laboratories. Level 4 is at first floor.
There are mainly storage rooms and terraces. The majority of electronic and mechanic
devices is at level 2, but there are also some vacuum devices in level 3, besides an AHU
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Figure 3.13: Plot of the ASD of the seismometer data in CEB at 23/02/2022, 00:00 UTC.
The blue, red and green curves show the vibrations in the north, vertical and west directions
respectively. The labeled lines are unknown in their origin.

Figure 3.14: Map of the four levels of CEB. Top left plot is level 1, at second underground
floor. Top right plot is level 2, at first underground floor. Bottom left plot is level 3, at the
ground floor. Bottom right plot is level 4, at first floor.
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serving the data acquisition room. The possible sources for unidentified noise lines should
be searched between level 2 and level 3. There are many ways the vibrations can enter the
interferometer.

Figure 3.15: Maps of the level 2 of CEB with the ASDs measured at 23th of February
2022, 00:00 UTC, by the Newtonian array and plotted in color scale, with a resolution
of ¶f = 0.05Hz. Circles indicate the locations of sensors in level 2. Squares indicate the
locations of sensors in level 1. Top left: ASDs measured at 18.75 Hz, indicating the area with
maximum noise around the detection tower. Top right: ASDs measured at 28.80 Hz, that
maximize towards the wall after the detection tower. Bottom left: ASDs measured at 31.90
Hz, showing the injection, power-recycling and signal-recycling towers as most impacted
area, indicating the direction of the AHU serving the clean rooms. Bottom right: ASDs
measured at 37.15 Hz, maximum between the beam splitter and signal-recycling towers.

In order to get hints on the origin of noise lines I have used the tool that I have developed,
and introduced in Section 3.3, to make 2D maps of the noise sensed by the Newtonian
array. It has the great advantage to give a rapid estimate of localization coinciding with
the area where the noise sensed is maximum. Once the most impacted area is individuated,
one can search for the nearest possible noise sources compatible with the noise frequency
and features. I have generated a map of CEB level 2 for each one of the four selected
lines, superposing the Newtonian sensors placed at level 1 to the sensors placed at level
2. In each map I plot the ASD of the peak measured by the sensors at the searched
frequency at 23/02/2022, 00:00 UTC. The results for the four noise lines are shown in
Figure 3.15. Looking at the maps, they give useful -and very different- information on the
lines origin. The lines at 18.75 Hz and 37.15 Hz are strongly localized and decay rapidly in
amplitude when going farther. The lines at 28.80 Hz and 31.90 Hz, instead, spread along the
whole building affecting almost all the sensors. Each one of these lines has been addressed
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separately.

3.4.1 Noise line at 18.75 Hz

Looking at the top-left plot in Figure 3.15, it indicates that the most impacted area is mainly
around the detection tower and secondarily in the injection area. The interest on this noise
is due to the fact that its frequency is very near to the one of the 18.55 Hz noise line,
generated by the clean room AHU and seen in the detector data during O3 (see Figure 3.1),
and with a comparable intensity. Differently from the 18.55 Hz line, which has a slightly
wandering frequency, the 18.75 line is extremely sharp and constant in frequency. This
suggests that it does not originate from active mechanical devices like pumps, motors, fans.
Another argument against the devices is that there is no acoustic noise at that frequency
in the microphones, neither the ones near to the detection chamber, and there is no a
magnetic noise associated. Triggered by the localization given by the Newtonian array,
we have made a further search on the sensors present on the detection tower and in the
detection laboratory.

Figure 3.16: Displacement spectra measured by the most representative sensors at the
frequency 18.75 Hz at 23/02/2022, 00:00 UTC. The blue curve shows the West-direction
vibrations measured by the seismometer placed on ground near to the beam splitter tower.
The red curve shows the most affected Newtonian sensor, on ground. The green curve is
the accelerometer placed on the detection tower. The purple curve shows the sensor on the
first stage of the superattenuator in the detection tower.

The results have supported this indication, measuring a signal ∼ 10 times stronger with
respect to ground sensors. The maximum is reached on the accelerometer located on the
East flange of the detection tower. We have made a sniffing test in 24/05/2022 with a
portable accelerometer and a portable digital analyzer [149]. Looking at the output in real-
time we have taken several measurements all over the building, founding the strongest signal
on North side of the detection tower. We have made then other measurements, excluding
possible noise propagation through the pipe. We have detected on the rack that serves
the detection laboratory, located on level 3, a noise signal 10 times stronger with respect
to the tower. However, after further tests we get convinced that the line is not produced
by the cooling fan of the vacuum module present in the rack, neither is associated to a
mechanical resonant mode of the rack itself. In fact, tapping and pushing the rack we have
measured some resonances around 5 Hz and 25 Hz, but no changes around 18.75 Hz ([150]
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Figure 3.17: Spectograms of the data around the 18.75 Hz line taken at different times.
Left plot shows the data from the displacement sensor placed on the top stage of the
superattenuator during the test described in the report in [150]. Right plot shows the data
from the accelerometr placed on the detection tower corresponding to the venting done in
November 2021.

and attached report). Instead, the same noise is well visible with vibrations stronger by
more than one order of magnitude on the first stage of the superattenuator, by the sensors
that monitor its displacement from the safety structure. This suggests that the noise line
could be generated from the tower itself of from internal components. The most significant
measures are reported in Figure 3.16, where is evident the increasing amplitude of the noise
line as the sensors are nearest to the source. Then, with the portable sensor placed on the
top shell of the detection chamber, about one meter above the tower platform, we have
tapped the shell from the opposite side of the tower and then pushed from the bottom.
In this occasion, we have observed an amplification of the noise line, which gets excited
in correspondence with the time of the actions. This is clearly visible in the spectrogram
plotted on the left side of Figure 3.17. This fact strongly favours the hypothesis for the
line to be associated to a resonance mode of the detection tower or something inside it. In
particular, the 18.75 Hz might be a resonance mode of the safety structure which is located
inside the vacuum chamber of the detection tower and mechanically coupled to it. Looking
in the past data, we have found that in November 2021 this line completely disappeared
during a venting that was done on the tower. This is clearly visible in the right plot of
Figure 3.17. This is probably the most evident clue that the noise line originates from
the mentioned resonance mode. However, the dynamics of this disturbance remain still
mysterious. We have no explanation of why in some periods the line amplitude grows and
in some others it decreases, neither we know if there is a way to mitigate the resonance.
Thus, at the moment this noise line remains unidentified.

3.4.2 Noise line at 28.80 Hz

Among all the checked noise lines, the one at 28.8 Hz is the one localized most precisely
in the CEB map. Looking at the top-right plot in Figure 3.15, we can note that the noise
line is sensed by almost all the sensors in the map and that the measured amplitude grows
gradually towards the direction of the sensor number 233, where it reaches its maximum.
There are not many engines in that direction that can produce that noise line. We have soon
individuated a vacuum dry pump at level 3 as a possible source. The pump, an Edwards
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nXDS15 model, is part of a large set of vacuum dry pumps that are distributed over all
the interferometer and maintain stably its vacuum state. It is placed in a soundproof room
in level3, in front of the data acquisition room, as shown in Figure 3.18, and serves as a
first-level pumping to all CEB towers. Its nominal working rate is at 29 Hz, well compatible
with the observed noise line, which is slowly wandering in frequency and has a Q-factor of
∼ 1.4 · 103.

Figure 3.18: Perspective map of the first three levels of CEB, with the coloured circles
showing the ASDs measured by the Newtonian array, with the same color scale of Figure
3.15 (top-right plot). The red-contour star a level 3 indicates the location of the vacuum
dry pump shown in the picture next to it. Following the red dashed vertical line, the floor,
the walls and the pipes act as a shortcut for the vibration to spread in the lower floors.

Looking at Figure 3.18, the vertical projection of the pump location intersects the lower
levels at a point very near to the sensor that actually senses the stronger noise. Since the
pump is not leaning on the ground floor, its vibrations can spread both through walls,
level 3 floor and pipes which act as a shortcut to the lower floors. In order to confirm this
hypothesis, in 21/03/2022 we have installed a temporary accelerometer directly on the dry
vacuum pump [151]. During the night time, which is seismically quieter than day time, I
have checked the coherence1 between that probe and the Newtonian array on the 28.8 Hz

1The coherence between two processes x(t), y(t) is defined as the squared absolute value of the cross-
spectrum divided by the product of their power spectra: Cxy(f) = |Sxy(f)|

2/[Sx(f)Sy(f)] ∈ [0, 1]
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line. Then, I have used my tool to represent the computed coherences on the CEB map
localized on the Newtonian sensors. The results are incredibly clean: most of the Newtonian
sensors show a ∼ 1 coherence with the accelerometer over all the building, at both first and
second level, as can be seen in the left plot of Figure 3.19. As a further prove, during a
switch-off test in 25/05/2022 the pump has been stopped, disconnected and then resumed
[152]. The noise line, well visible in the right plot of Figure 3.19 in the accelerometer put
on the dry pump (top spectrogram) and in the CEB seismometer (bottom spectrogram),
moves, gets interrupted and resumed in the same way in the two sensors corresponding
with the operations times. These results taken together confirm without any doubt that the
vacuum dry pump in level 3 is the source of the 28.8 Hz line.

Figure 3.19: Left plot: Coherence between the Newtonian sensors and the accelerometer
installed on the vacuum dry pump in CEB, measured at 22/03/2022, 00:00 UTC at the
28.80 Hz frequency. The measures are plotted in color scale, localized in correspondence
with the actual positions of the sensors. Right plot: spectrograms of the accelerometer
placed on the dry pump and of the most impacted Newtonian sensor during the operations
described in [152]. The line associated to the dry pump moves and disappears corresponding
to the pump switch-off.

Since the dry vacuum pump has been confirmed as source, we have implemented a series
of mitigating actions in order to reduce the impact of its noise line over the building. First
of all, the pump has been sent to maintenance and substituted with a spare one. This
action is periodically done, since it is known that worn out pumps result to be more noisy.
The spare pump, differently from the previous, has a built-in inverter that adapts the rpm
rate according to local temperature and pressure. This means that the frequency of the
noise line changes during the day, but always within the range 28.8 Hz - 29.1 Hz. Then,
the pump has been insulated from the floor by adding a double layer of sorbothane rubber
interspersed with a steel plate. It was also added a softer section of corrugated pipe between
the pump and the pipe, in order to mitigate the propagation through pipes. I have then
analyzed the data of the sensors comparing the noise line before and after the actions, both
on the environmental sensors in CEB, in praticular those on the detection tower, and on
the Newtonian array, through my analysis tool.

In Figure 3.20 I have reported the CEB map with the ASDs of the Newtonian sensors.
The positive impact of the operations is evident, with the number of sensors measuring
an ASD greater than the nominal value of 10−8m/s/

√
Hz dropping from the 60.4% to the

4.4%. The results of the analysis are synthesized in Table 3.3, where I have reported both
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Figure 3.20: Direct comparison of the ASDs measured by the Newtonian array in CEB on
the 28.8 Hz noise line, before (left plot) and after (right plot) the mitigation actions on the
vacuum dry pump at level 3. The line almost disappeared from a big part of the building.
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the average and maximum ASDs and the SNR of the peak against the noise floor, comparing
the situation before and after the mitigation.

28.80 Hz line ASD
[

m/s√
Hz

]

SNR

Before Mean = (1.85± 0.36) · 10−8 Mean = 9.1± 3.1
mitigation Max = 1.91 · 10−7 Max = 16.9

After Mean = (3.56± 0.48) · 10−9 Mean = 1.9± 0.6
mitigaiton Max = 2.19 · 10−8 Max = 4.5

Mitigation Average ratio: 5.2 Average ratio: 4.8
factor Max ratio: 10.0 Max ratio: 10.1

Table 3.3: Synthesis of the mitigation achieved on the vacuum dry pump in CEB level 3,
measured from the Newtonian array and shown in Figure 3.20. The first column reports
the average ASD and the maximum measured value, before and after the mitigation, and
the corresponding ratios. The second column shows the SNRs, calculated between the ASD
at the peak and the average ASD of the local floor.

We have achieved an average attenuation over all the CEB by a factor ∼ 5, with peaks
up to a factor 10 on the sensors nearest to the pump. Moreover, in order to disentangle
the effect of the various actions, we have done a switch-off test where we have temporarily
removed the insulation to the new pump [152]. It turns out that the application of the
insulation layers and the soft corrugate pipe are responsible for the ∼ 68% of the total
attenuation observed, while the remaining 32% is due to the changed pump. This proves
the effectiveness of the mitigation strategy adopted.

3.4.3 Noise lines at 31.90 Hz and 37.15 Hz

The remaining two noise lines have not received the same attention of the previous ones.
As I will show, in one case the source was an already known one, while in the other it was
not possible to proceed with the search.

Noise line at 31.90 Hz

Looking at the map of the 31.90 Hz line in CEB in the bottom left plot of Figure 3.15,it
is evident that it impacts most of the CEB, at level 1 and 2. The line has a Q-factor
about 0.6 · 103, because of its wandering frequency. There is a wide group of Newtonian
sensors that measures this line with the maximum ASD value, and they form a L-shaped
pattern pointing the South-East corner of CEB. The most noisy device that is located in
that direction is the AHU that serves the clean rooms of level 1, and is on level 2. This AHU
is the source of a well-known noise line at 18.55 Hz, already mentioned because near to the
18.75 Hz line and visible in Virgo O3 data in Figure 3.1. Specifically, the 18.55 Hz line is
associated to the fan speed of the supply machine. The amplitude pattern described by the
Newtonian sensors measuring that line is almost identical to the one that we see for the
31.90 Hz line. Following this hint, on 2nd of May 2022 a temporary accelerometer has been
installed on the supply AHU of the CEB clean room to verify the hypothesis that it is the
source of the 31.90 Hz line too. A simple comparison between the ASD of the data recorded
by that probe and the data from the seismometer in CEB, together with the coherence
between the two sensors, has confirmed that hypothesis without doubts. Figure 3.21 shows
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Figure 3.21: Detail of the data around the 37.15 Hz noise line, to confirm the supply CEB
AHU as the source. Top plot: ASD measured from the accelerometer installed on the supply
AHU. Middle plot: ASD measured from the seismometer in CEB in the vertical direction.
Bottom plot: coherence between the data of the two sensors.

a detail of the data from the two sensors and their coherence, where it is possible to see
that at the frequency of the noise line there is a ∼ 1 coherence. A further classification
work on the noise lines generated by the device revealed that the 31.90 Hz line is the 5th

harmonic of the belts driving the AHU supply fan, which works at a rate of 6.38 Hz. In
particular, both the harmonics of the supply belt spread over the building. The fact that
these lines are associated to the AHU makes the mitigation difficult, since it should regard
the entire machine. Various strategies have already been tried to mitigate the 18.55 Hz line
since O3, but none of them turned out to be successful. We are considering whether to
keep the clean rooms AHU turned off during the O4 run. At the moment, some tests are
carried on to evaluate how this would impact the clean rooms environmental parameters
like temperature, humidity and cleanliness. Anyway, differently from the 18.55 Hz line, the
31.90 Hz was not sensed by the interferometer during O3.

Noise line at 37.15 Hz

Looking at the map of the 37.15 Hz noise line in the bottom right plot of Figure 3.15, it
seems much more localized in the map with very little spread in the surroundings. The
Q-factor of the line is quite high, 4 · 103. These characteristics suggest that also this line,
like the 18.75 Hz, could be associated to some resonant mode in some mechanical structure
in the nearing of signal-recycling or the beam splitter towers. However, the line myteriously
disappeared on April 2022, so it was not possible to make any investigation on it.

3.5 Identification of an external magnetic noise

During the 13th of July 2021 an unknown magnetic disturbance appeared in the whole
Virgo site. However, we did not notice it since the 17th of November 2021, when the exter-
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Figure 3.22: Spectrogram of one week of data, from 04/12/2021 to 11/12/2021, from the
external magnetometer measuring along the West direction. A magnetic noise is visible as
a set of moving harmonics polluting the whole spectrum.

nal magnetometers were restored after they were damaged by a lighting in June 2020 [153].
In fact, even if this new disturbance is seen by the magnetometers in all the experimental
buildings, they are so polluted by local magnetic noises that partially hide it. The external
magnetometers, instead, are free from almost all the noises related to the interferometer. It
is basically a noise line with odd and even harmonics. When it appeared, it had a constant
frequency of ∼ 3Hz and multiples. Then, from August 2021 its frequency started varying
and jumping, mainly between 3 Hz and 5 Hz, with all the harmonics following the variations.
In Figure 3.22 the spectrogram of a week of data from the external magnetometer along the
West direction is shown. The external magnetometers monitor the external environment
and are used, together with analogue sensors placed outside the LIGO detectors, to mea-
sure the correlated magnetic noise that affects the global network of GW detectors. The
problem of correlated noise is relevant for stochastic GW searches. Analysis algorithms for
stochastic background are typically based on cross-correlation between data from different
detectors. The implicit assumption is that the noise in different detectors is uncorrelated.
However there are some disturbances, like Schumann resonances, that introduce some global
correlation. Schumann resonances are resonance modes of the waveguide formed by Earth
surface and ionosphere, that gets excited by lighting phenomena over all the globe [154].
These resonances couple with GW detectors data on long timescales, producing non-GW
correlations between different detectors. Whereas the O3 run was free of an impact from
correlated magnetic field fluctuations, future runs could be affected [155]. Monitoring this
correlated noise with external magnetometers would allow to subtract these effects. How-
ever, it is evident that the newly appeared magnetic noise strongly dominates the external
magnetometers, making them almost blind to Schumann resonances and thus useless for
their purpose.

The investigation on this noise has taken various months of work. This noise is only
visible in the magnetometers. There is no coherence with any other sensor in Virgo, with
the only exception of a probe that measures the voltage difference between the CEB safety
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ground and the vacuum chambers of the interferometer. However, the fact that this probe
senses the disturbance does not imply any causal relation, since this voltage difference could
be caused by external magnetic lines intersecting the Virgo infrastructure. The key point
is that neither the sensors monitoring the Interruptible Power Supply (IPS, the experiment
power supply grid) nor the ones on the Uninterruptible Power Supply (UPS, the backup
power supply grid) sense this noise.

Figure 3.23: Plots of the ASD measured by the environmental magnetometers at 06/03/2022
at 00:00 UTC, zoomed around the first harmonic of the magnetic noise that at that time
was at 4.85 Hz. The blue, red, green and purple curves represent the data from the mag-
netometers respectively in CEB, NEB, WEB and the external. The horizontal dashed lines
with the texts indicate the peak ASD measured from each sensor.

Moreover, it does not disappear even when mains supply interruptions occur from the
ENEL electric company. All these facts lead us to hypothesize that the noise source was
external from Virgo. Another argument in favour of this hypothesis was that the jumps
in frequency seem to be correlated with variations in the external temperature [156]. The
signal has the features of Direct Current (DC) side-bands, that typical for pulse-width
modulation systems. So, I have started an extended sniffing campaign with a portable
three-axial magnetic sensor and a portable analyzer. The first hints come from the ASD
measured by the environmental magnetometers: as can be seen in Figure 3.23, the noise is
sensed as stronger in CEB above all. Then, in decreasing order of amplitude, it is sensed
by the external magnetometers, then by the WEB ones and finally by the NEB ones. From
those measures we have understood that the source should be located somewhere in South
direction with respect to Virgo. However, it was not clear if the source was point-like or
linearly-extended.

The first measurement campaign has been done in the Virgo area. We have checked
the signal amplitude below the mains medium-voltage aerial lines crossing Virgo, but no
sudden local increase has been found. We have found generally stronger amplitudes near to
extended metallic objects, including the interferometer arms vacuum pipe themselves, but it
is not surprising that magnetic field lines become more dense in proximity of ferromagnetic
materials. In general, the signal was maximum approaching to the entrance. The next
measurements have been done outside the Virgo site, probing all possible magnetic sources.
We have taken measurements under the ”Ferrovie dello Stato” commercial railway, which
passes at Vicarello, approximately 2 km from Virgo WEB, heading South, but nothing
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significant was found. We have taken measurements under the electric line poles, belonging
to the Terna company, without observing any local change on the signal or even without
observing it at all. We have gone to the wind farms, that are about 6 km East from the
NEB, but we have found nothing. We have visited all the photovoltaic systems that are
distributed in 1 km range from Virgo, but none of them has revealed local changes in the
magnetic noise. Finally we have started to map the area outside Virgo in order to find
local variations that could give us some clues about the direction to explore. We have taken
three-axial measurements in the roads near Virgo, even entering in the accessible areas in
cultivated fields. Finally, we have found fruitful information on the roads that brings to the

Figure 3.24: Map of the Virgo site with some of the most relevant measures taken during
the sniffing campaign, reported in logarithmic color scale. There is a line collecting the
measures with highest value, and coincides with the underground path of the gas ducts
belonging to the SNAM company which pass under the Virgo entrance. There is another
strong measurement out of the line, in the South of the map, that coincides with another
ramification of the duct.

entrance (e.g. Via dello Zannone, Via Macerata, Via Edoardo Amaldi). The measurements
reach local maxima over the poles that indicate the presence of the gas duct belonging to the
SNAM company. Following the path of the ducts (i.e. following the straight line collecting
two adjacent poles) we have found results compatible with a linear source coinciding with
the gas ducts. A selection of the most indicative measurements is shown in Figure 3.24.
The orange-red measurements are taken almost above the gas ducts that run parallel to the
Arno spillway just on South of Virgo. Different measured values are due to different depth
of the ducts with respect to the ground, as well as morphology of the places. When going
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far from the ducts, towards the south direction, the magnetic noise amplitude has decreased
as it is expected from longitudinal sources. However, going farther towards South the noise
amplitude stopped decreasing and keep growing.

Figure 3.25: Two details of the measurement campaign done near Virgo. The top picture
shows the location of two selected measurement spots (red squares) with respect to the
Virgo CEB. Bottom left and right pictures show the measurements done in that spots,
respectively in front of the Virgo entrance and on the East side after Virgo. The measured
rms values are reported both in color scale and in the labels. I also report the inclination of
the field with respect to the horizontal plane towards the North, inferred from the measured
components. In the case of the right plot, also the ratio between the components and the
total field is reported. The dashed orange lines indicate the path of the gas duct.

After a while, we have encountered a branch of an oil duct that belongs to the same
company, and there the measures reached another maximum. It is the last orange square in
the bottom of the map. Then, I have done a detailed analysis on the measurements taken
in this campaign, focusing on the measurements taken near to the gas ducts.

In Figure 3.25 I have reported the most representative measure spots, plotting the rms
computed on the first harmonics of the noise. As shown in the top picture, these sets of
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measures have been taken in front of the Virgo entrance (bottom left picture) and on a
more isolated area on the East, adjacent to farms (bottom right picture). Other similar
measures have been acquired all along the ducts path. The first thing worth to note is that
the intensity of the field is maximum when the measure is taken exactly over the tube, and
then decreases proportionally to the inverse of the distance. This is in accordance with the
expected magnetic field generated by a linearly-distributed current, B ∝ 1/d. The second
important observation is on the field direction. The magnetic field generated by a current is
directed as tangent to the circumferences centered on the current. In both the measurements
reported in Figure 3.25, I indicate the inclination of the magnetic field with respect to the
horizontal plane, North direction, computed through the measured components. It can be
seen that the inclination obtained above the gas duct is mostly in the North, with a small
inclination, 13 deg−21 deg in front of the entrance and 4 deg in the cultivated fields. The
measures taken at the Virgo entrance can be slightly more disturbed because of the near
metallic structures like the gate. The inclination grows rapidly when the distance increases,
passing to ∼ 50 deg and becoming mostly vertical at ∼ 5m or more, with inclinations of
70 deg−75 deg. So, also the magnetic field orientation is consistent with the model of a
linear current distribution, identified with the gas duct.

Once we have convinced that the source of the magnetic noise are the gas ducts, we
have tried to understand how and why there was that emission. Another important thing
to understand was if that phenomena was generalized to the whole duct system or if it
was a local disturbance. So, we performed another measurement campaign following the
gas duct beyond the last measure taken on it (the leftmost measure in Figure 3.24, 6.2
nT), towards the West direction. We have gone farther following the path of the pipe
and taking magnetic measures. The results are shown in Figure 3.26. Surprisingly, we
have found that the magnetic field on the duct drops as we go farther from Virgo. This
measurement campaign has proved that the magnetic disturb on the gas duct is local and
does not affect the whole pipe network. So, the source of the noise must be on the gas
ducts around the Virgo site. In the subsequent days we have followed the Snam pipes

Figure 3.26: Rms measurements of the magnetic noise taken going West from Virgo, fol-
lowing the path of the gas duct. The magnetic field amplitude drops when going farther
from Virgo.

towards other directions. Finally, we have found the signal becoming much more intense in
correspondence with a 1-volt, 2-ampere DC power supply placed 4 km far from Virgo. This
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is a system used to maintain an underground gas pipeline at a given voltage level relative to
the ground, in order to avoid the so-called Galvanic corrosion [157]. The pipeline starts from
the SNAM Mortaiolo center station, towards Cenaia - Palaia, as shown in the top picture
in Figure 3.27. However, the disturbance does not come from the induced current in the
pipeline itself, since a constant current or voltage it would not produce that noise. The
problem was in the power supply, used by the company to regulate current or voltage by
means of the pulse-width modulation. The pulse-width modulation consists in regulating
the current or voltage to the requested values through alternately turning on and off at
5Hz rate. Consequently the generated current gets a typical saw-tooth waveform, which
contains all the odd and even harmonics of the fundamental one, which corresponds to what
we were actually observing. Once contacted the SNAM company, it has become aware of
the problem and has started collaborating to solve it. Finally, on 20th of April 2022 at 14:31
UTC the SNAM staff has set the galvanic power supply to ”constant current” mode, and
the magnetic disturbance instantaneously disappeared, as can be seen in the spectrogram
in the bottom of Figure 3.27.

Figure 3.27: On the top: map of the area in the South of Virgo, indicated by the top
right red square. The orange lines describe roughly the SNAM gas pipeline. The bottom
left square indicates the position of the galvanic power supply that originates the magnetic
disturbance, which can be seen in the red-bounded picture. On the bottom: spectrogram of
the external magnetometer at the time when the SNAM company has set the power supply
to constant current mode. The magnetic noise has stopped correspondingly.



Chapter 4

All-sky searches with clustering

continuous waves

In this chapter I present a study of some relevant steps of the hierarchical Frequency-Hough
(FH) pipeline. I have briefly introduced it in Section 2.3.2 as a semi-coherent method, used
within the LIGO and Virgo Collaborations for all-sky CW searches. These steps, namely
the spectral estimation, the peakmap construction and the procedure to select candidates
in the parameter space, will be explained in Section 4.2. As I will show, they are critical
as they contribute to determine the final search sensitivity. The FH procedure has been
developed to search for signals emitted by spinning isolated NSs. In this section I investigate
the performance of the FH to handle several CW signals, which cluster together in the same
frequency band. From now on, a set of CW signals, which are emitted by several and strong
CW sources, which are clustered in a frequency range smaller than 1 Hz is referred to as CW
clusters. Such type of CW clusters could be also detectable by next generation detectors,
like LISA, Einstein Telescope and Cosmic Explorer. Moreover, this possibility has been
recently raised even for current Earth-based detectors, in the scenario presented in Section
2.2 of CW emission from ultralight boson clouds around stellar-mass BHs. I quantitatively
evaluate the robustness of the FH analysis procedure, designed to minimize the loss of single
CW signals, under the unusual situation of signal clusters.

The chapter is organized as follows. In Section 4.1, I introduce the possibility that some
steps of the FH analysis are negatively affected by the presence of several concurrent large
CW signals confined in a very small frequency range. In Section 4.2 I briefly remind the main
steps of the FH pipeline, describing in detail (Subsection 4.2.1) two relevant analysis steps,
i.e., spectral estimation and construction of the time-frequency peakmap. In fact, these
are the steps which could be affected by the presence of dense clusters of signals. Section
4.3 shows qualitatively the behavior of these steps when multiple overlapping signals are
present. In Section 4.4 an observable - the detection efficiency - is introduced to study the
impact of the signal clusters and a first simulation of low-density clusters is done. Finally, in
Section 4.5 a full simulation of high-density CW clusters is done, exploring different regimes.
A brief discussion on the results in Section 4.6 closes the chapter. The results discussed in
this chapter have been published in [159].
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4.1 The problem of CW clusters

Starting from the O2 run [158], the LIGO-Virgo collaboration has begun to search for CW
emitted from boson clouds. In particular, the results obtained for the O2 all-sky CW search
have also been used to derive constraints for clouds of ultralight bosons around BHs [160].
Even if more specific methods have been developed to search for this kind of signals, see for
example [161, 112], it is possible to map the results of a standard all-sky CW search into ex-
clusions limits in a plane defined by the mass mb of the scalar boson field and the massMBH

of the BH, as discussed in [160]. From an analytic point of view, the expected waveform from
boson clouds is well compatible with the ones expected from NSs, except for the frequency
derivative which is weakly positive (see Equation 2.30). The basic assumption is that all the
steps of the hierarchical FH procedure, especially designed and tested for the weak and rare
CW signals emitted by isolated NSs, are compatible with the characteristics of the boson
cloud population. In particular, it is important to verify if the sensitivity is degraded when
the emitted signals are clustered in frequency. Such scenario could arise under optimistic
assumptions on the number of stellar mass BHs present in our Galaxy [105, 162]: if we
assume that the boson clouds formation mechanism affects a significant fraction of galactic
BHs, we could have a large number of concurrent CW emitters. According to Equation 2.28,
these signals would have proper frequency centered at a value corresponding to the boson
mass (which reasonably takes just one universal value), with a second-order spread due to
the BH mass distribution. If many signals are concentrated in a small frequency range and
the signals are significant enough1(see Section 4.2), it might happen that stronger signals
hide weaker ones and/or that there is a consequent degradation of sensitivity due to the
mix of signals, thus making difficult their identification. Such possible complication might
happen especially in future GW detectors, like Cosmic Explorer [163] and Einstein Tele-
scope [164], which will be the first pan-European ground-based GW antenna [165]. Their
expected improved sensitivity with respect to current detectors, especially in the band 3-20
Hz, could make the issue of signal ensembles important. In particular, it could play a role
not only for the case of emission from boson clouds around Kerr BHs, but especially for the
early inspiral of NS binary systems, that would produce long duration signals and could be
searched adapting techniques derived from standard CW searches. On the other side, the
space-based detector LISA [166] will give us access to the mHz frequency band. In that
case, the detector data are expected to be polluted by the early inspiral GWs emitted by
galactic compact binaries, which may form a stochastic background.

In a recent publication [167], the impact of signal clusters on the spectral estimation
used in the FH approach has been very qualitatively discussed. Specifically, plots suggesting
the estimation procedure cancels signal peaks have been shown, when the signals are con-
centrated in such a way to produce bumps in the detector noise, thus reducing the search
sensitivity. In this chapter I will demonstrate these conclusions are wrong in most cases.
I quantify these qualitative predictions, studying how the first steps of FH behave in this
situation. In fact, these are the steps of the procedure that might suffer from problems
related to the presence of many strong signals. I inject simulated CW signals into O2 data
to mimic this effect and to see if, and at which level of density and strength of the sig-
nals, ther would be the need to apply modifications to the procedure. For simplicity, this
study is done using one week of data, which is enough to evaluate possible problems and
sensitivity losses. In fact, by analyzing a longer data set the discriminatory power of the

1There are presently estimations which give quite different results, depending on the basic assumptions.
See for example [105, 162].
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Doppler modulation, that will be shown in Section 4.3, would be even stronger making our
robustness tests conservative.

4.2 The Frequency-Hough procedure

One of the standard search methods for all-sky searches is the FH pipeline, described in
detail in [122]. The FH pipeline is a hierarchical procedure that aims at identifying the most
significant CW candidates in a wide parameter space. A follow-up procedure, described in
[168], is then applied to these candidates, in order to confirm or reject them. Recently,
a GPU implementation of the FH was run to analyze the highest, and computationally
demanding, part of the O3 all-sky search, showing a computational gain of more than
one order of magnitude [169]. As stated in Section 2.3.2, the FH hierarchical procedure
strongly reduces the computational cost with respect to a fully coherent search, but at the
price of a sensitivity loss. In particular, some thresholds and selection criteria are applied at
various stages of the analysis. Any possible signal lost during one of these steps will not be
recoverable by later steps. For this reason, each step of the procedure is designed to reduce
as much as possible the loss of possible CW signals, which could be hidden by the presence
of strong disturbances or even by other superposing signals. Here, I review the procedures
for spectral estimation, peakmap (PM) construction and candidate selection applied on O2
LIGO-Virgo data, with the aim of testing their effectiveness when clusters of signals are
present. All these steps play a relevant role in determining the signal detectability and may
bring to unwanted sensitivity losses if not properly addressed. A scheme of the FH pipeline
is given in figure 4.1 and is briefly described in the following.

• [A] Creation of the short fast Fourier transform (FFT) database (SFDB).

Detector calibrated data are split into chunks of duration TFFT = 8192, 4096, 2048
and 1024 seconds, interlaced by half their duration. Each chunk is then windowed
with flat-cosine window and then Fourier transformed, using the FFT algorithm.
With the different chunk duration we obtain four different sets of frequency domain
data covering, respectively, the frequency range [0-128] Hz, [128-512] Hz, [512-1024]
Hz, and [1024-2048] Hz. The chunk duration for each frequency band is chosen in
order to maintain the frequency variation of a signal because of Doppler effect within
the resolution ¶f = 1/TFFT. In this way, if a CW is present in the data it will be
monochromatic within the single data chunk, transforming in a delta-peak in the
periodogram. A scheme of the SFDB construction is shown in Figure 4.2. At each
FFT chunk are also associated additional data, such as position and velocity of the
detector at the chosen reference time. There is a work in progress to make this step
in a more flexible way, making use of the band-sampled data (BSD) [170] framework.

• [B] Autoregressive spectral estimation.

An autoregressive (AR) algorithm, described in [171], is used produce a smoothed
noise spectral density of each data segment with the scope of whitening the data. It
is designed in such a way to preserve possible CW signals, which in a single FFT
would be confined within one single frequency bin, and at the same time to be able to
follow slower spectral variations. The filtering is usually done backwards through the
frequency bins, that is from higher to smaller frequencies, to better adapt recursion
to the noise behavior of the detectors, which shows much higher and rapidly varying
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Figure 4.1: Scheme of the hierarchical FH procedure, in the case of data from 2 detectors,
as described in Section 4.2.

values in the low frequency band, i.e., below ∼ 30Hz. The AR algorithm will be
reviewed more in detail in Section 4.2.1.

• [C] Peakmap creation.

For each FFT, labeled with the integer index j, the ratioRj(f) among the periodogram
SP ;j(f) (square modulus of the FFT) and the AR spectrum estimation SAR;j(f) is
computed in order to whiten the spectrum. From the ratio vector Rj(f), local max-
ima above a given threshold, called peaks, are selected. The peakmap (PM) is the
collection of all the peaks, each one identified by a value of the frequency and a time
(the middle time of the corresponding FFT), both measured at the detector. AR
spectral estimation and PM construction have been used since many years for these
analyses and their mathematics (and statistics) is described in [171, 122].

• [D] FH transform.

For each sky position, the peaks in the PM are shifted in frequency to remove the
Doppler effect for that position at the peak time. Figure 4.3 shows an example of a
PM zoomed around a simulated signal from a pulsar, before and after the Doppler
correction (top left and top right plots, respectively). When the annual and daily
modulations are removed, the signal results nearly-monochromatic, with a linear spin-
down at most. The shifted peaks are fed to the Hough transform, which maps the
time-frequency peaks to the source frequency and spin-down plane. The Hough map
is basically a 2-dimensional histogram of the PM in the (f0, ḟ0) plane. This procedure
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Figure 4.2: Schematic representation of how the SFDB is built. The full data series is split-
ted in chunks of length TFFT , interlaced by ∆T = TFFT /2. Each data chunk is windowed
and then its FFT is stored in the SFDB, together with additional data. In the example, a
simulated CW is present in the data.

is repeated for each different sky position, having constructed a discrete grid in the
sky optimized to the search resolution.

• [E] Candidate selection and coincidence analysis.

Candidates are selected in the FH plane by finding, for each sky position, the points
with highest number count in each frequency and spin-down sub-interval. Candidates
from the analysis of a given data set are cross-checked against candidates found in the
analysis of another data set (of the same detector or of a different detector) by means
of coincidences in the signal parameter space.

• [F] Candidates follow-up and verification.

A deeper analysis is done on those candidates which survive the coincidence step,
in order to confirm their astrophysical origin or demonstrate they are compatible
with noise or due to detector artifacts. The standard follow-up approach consists in
rerunning the search starting from longer duration FFTs, in a limited portion of the
parameter space around each candidate. In case of no detection, upper limits (UL)
on the signal strain amplitude are computed as a function of the frequency.



CHAPTER 4. ALL-SKY SEARCHES WITH CLUSTERING CONTINUOUS WAVES 99

The first 3 points - SFDB creation, AR estimation and PM construction - are typically
performed during the observing run, as the calibrated data are recorded. Contextually, also
a cleaning procedure is applied to remove all transient features that disturb CW searches.
The point D - the loop to correct the PM for the Doppler effect from all sky positions and
the Hough transform - must be done at the end of the run, when all the data have been
collected, and is the most computationally demanding part.

Figure 4.3: Example of the transformation on a simulated signal with f0 ∼ 848.93Hz,
ḟ0 ∼ −3 · 10−10Hz/s, ³ ∼ 37.4 deg and ¶ ∼ −29.5 deg. The top-left plot shows the PM
containing the signal, with the annual Doppler modulation well visible. The plot shows
also the peaks normalized power even if they are not used by the Hough transform. In the
top-right plot, the PM has been corrected for the Doppler effect and the signal has become
a straight line with parameters f0, ḟ0. In the bottom plot, the Hough map is shown.
The (f0, ḟ0) coordinates show an excess of pixel counts with respect to the foreground in
correspondence with the signal parameters.

4.2.1 Spectral estimation and peakmap construction

After the construction of the SFDB, an important step with an impact on the sensitivity
of the FH procedure is the estimation of the average power spectral density (point [B] in
previous section). The procedure is described in details in [171] and here its basic aspects are
reviewed, showing some examples using O2 data [158]. A nearly monochromatic wave with
enough high amplitude will produce a delta spike above the noise floor in the periodogram.
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When performing the whitening (point [C] in previous section), the periodogram is divided
by the AR estimate. The whitened spectrum has exponential distribution with unit mean
value, except where a narrow peak is present in the periodogram. That peak will be selected
into the PM only if its whitened power, i.e. after the division, is greater than a fixed
threshold ¹thr. If the AR estimator follow that peak, its whitened power results decreased
and its chances to be selected in the PM decrease. So, a good spectral estimator for CW
searches should have the following properties:

• If narrow peaks in the frequency domain are present, the estimator should not be
affected by that peaks. This should be as much as possible independent on the SNR
of the peak.

• If the noise level varies, either slowly or rapidly, the estimator should be able to follow
the noise variations.

Let xi be the data samples of the FFT, with the integer i ranging from 1 to the number
of samples in the FFT. The amplitude spectral density is estimated from an AR estimation,
as shown in the equations below:

y1 = x1

yi = xi + w · yi−1

w = e−δf/τf

where yi are the samples of the not normalized AR mean, obtained using w as weight, with
¶f being the FFT resolution and Äf the memory of the AR mean (with dimensions of a
frequency). The values of the normalized AR estimations are given by

µi =
yi
Zi
,

where the normalization constant is Zi = 1+w ·Zi−1, initialized as Z0 = 0. Besides this, in
order to have a “clean” estimator, that is not affected by spectral peaks, a threshold Vmax

and an age Amax are defined. While r = xi

µi−1
is lower than (or equal to) the threshold, the

new datum xi is used to evaluate the actual mean and the age of the estimator is set to
zero (expressed in number of samples).
When r = xi

µi−1
is larger than the threshold Vmax, the new datum is not used to evaluate the

actual mean and the age of the estimator is incremented by 1 bin (that is, by a frequency
equal to the resolution). This eliminates or at least reduces the effect of peaks from the
estimation.
If the estimator becomes too old, i.e., if the age becomes greater than the maximum age we
have set, we deduce that we are not in presence of a peak (and thus of a possible signal),
but only that the noise characteristics have changed. The estimator thus goes back by a
number of samples n = A, and begin a new evaluation of the mean, restarting from zero at
the sample i− A. This is needed to deal with all those situations when the noise is highly
non-stationary.

Figure 4.4 shows an example, where the AR estimation is plotted together with the
absolute value of the corresponding FFT. From the plots on the left and from the zoom on
the right it is possible to note how, when narrow peaks are present in the FFT, they do
not appear, or appear significantly reduced, in the AR estimation, and so are not (or only
slightly) suppressed in the PM. More examples are given in Section 4.3, where we show the
results after adding fake CW signals to the O2 data.
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Figure 4.4: An example of one FFT (green dots, blue lines), of duration 8192 s, done using
LIGO Livingston O2 data [158], and the corresponding AR amplitude spectral density
estimation (red). Here, for comparison, the FFT has been normalized to represent the
amplitude spectral density and its absolute value is plotted. The left plot covers the band
[5-512] Hz and the second plot is a zoom in the frequency region from 11 Hz up to 21 Hz.
It is possible to appreciate that the AR estimation follows sharp changes on noise floor, like
those around 14 Hz and 17 Hz. On the other side, narrow peaks like those labeled in right
plot do not appear in the AR estimation, as required.

After the ratio bib-by-bin is computed, the peaks are saved in the PM if they are local
maxima with normalized power above a threshold ¹thr. A signal h(t) in a single chunk
would have normalized power

¼ =
4
∣
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∣
h̃ (f)

∣

∣

∣

2

TFFTSn (f)
(4.1)

Then, the probability p0 of selecting a noise peak above ¹ in absence of signals is [122]

p0 = p (¹; 0) = e−θ − e−2θ +
1

3
e−3θ (4.2)

while, if a signal with normalized power ¼ is present, the probability pλ to select it in the
PM in the limit of small signals is [122]

pλ = p (¹;¼) = p0 +
¼

2
¹
(

e−θ − 2e−2θ + e−3θ
)

+O
(

¼2
)

(4.3)

Thus, the choice of the threshold influences the search sensitivity. Its value is set to ¹thr = 2.5
as an optimal trade-off between sensitivity loss and the expected number of selected peaks
(which influences the computational costs). With this choise, the probability to select a
noise peak is p0 ≃ 0.0755.

4.3 Qualitative impact of multiple signals

Since the goal is to study the robustness of the FH method, it has to be tested relaxing the
assumption that there are no superposing signals. In the following, the focus will be set
on the AR spectral estimation and PM characterization steps, showing how they behave in
presence of many CW signals spread in a narrow frequency interval.



CHAPTER 4. ALL-SKY SEARCHES WITH CLUSTERING CONTINUOUS WAVES102

4.3.1 Qualitative effect on autoregressive estimation

Following the steps described in Section 4.2, I have simulated a number of signals from 10 to
50 and I have added them to 4096 seconds of data from LIGO Livingston during the O2 run
[158]. Then, I have generated the SFDB, with resolution ¶f = 1/4096 s ≃ 2.44 ·10−4Hz, and
the AR estimate using the procedure described in 4.2.1, and I have checked the different
impact of different configurations of signals. The signals have random sky localization,
random source frequencies within few frequency bins around 338.5 Hz and, for simplicity,
without spin-down. Their amplitude is in the range 2 · 10−25 − 10−24, which is above the
ULs found in O2 [160] around their frequencies. Details of the used configurations are given
in Table 4.1.

label n.sig f0 range [Hz] h0

1 10 [338.5, 338.5 + ¶f ] 1× 10−24

2 20 [338.5, 338.5 + 2¶f ] 1× 10−24

3 50 [338.5, 338.5 + 5¶f ] 1× 10−24

4 50 [338.5, 338.5 + 5¶f ] 6× 10−25

Table 4.1: Parameters used to simulate CWs in different density configurations, labeled from
1 to 4 in the first column. The second column reports the number of simulated signals, the
third column the frequency range used to randomly generate the source frequencies and the
fourth column the signal amplitudes.

Figure 4.5 shows what happens to the AR estimation inside a single FFT, in the four
different injection configurations. Note that all added signals have their proper frequencies
f0 within few frequency bins, but because of their randomly distributed sky position they
are further spread by Doppler modulation. By looking at the trend of the AR estimation
(red curve in Figure 4.5), it is clear that generally it is not strongly affected by the presence
of an ensemble of signals: it gets non-negligibly higher values around 338.5 Hz only in case
3, when I have added 50 strong signals with f0 within 5 bins, i.e. within 1.23mHz. In this
case, the whitened power that will be obtained around 338.5 Hz will be reduced by ∼ 30%.
This fact obviously motivates a further investigation.

4.3.2 Peakmaps with multiple signals

In the previous subsection I have shown that a concentration of signals in a narrow frequency
band can influence the AR estimation and consequently cause a loss in the whitened power.
However, this does not imply automatically that the signal peaks in that frequency region
are lost. It is important not to lose possible signal peaks at this level, as they cannot be
recovered after. After the periodogram (square modulus of the FFT) and the AR spectrum
estimation are computed and divided bin-by-bin, local maxima with whitened power above
the fixed threshold ¹thr are selected. It is worth to note that the actual value of the whitened
power is not used in the analysis. In fact, the Hough map is just 2-dimensional histogram
in the signal parameter space: each bin counts the number of peaks corresponding to the
signal described by the bin coordinates. This choice has the positive effect to reduce the
impact of large noise spectral disturbances. This also implies that the reduction of whitened
power influences only the probability of selecting the peaks, and does not influence the next
steps.
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Figure 4.5: Plots of the 4 different injections listed in Table 4.1 made on one FFT calculated
using 4096 s of LIGO Livingston O2 data [158]. Top left, top right, bottom left, bottom
right show the configurations respectively of label 1, 2, 3 and 4.Blue lines and black dots
represent the absolute value of one normalized FFT, in a 3 Hz band, around 338.5 Hz. The
red line is the corresponding AR amplitude spectral density estimation. The effect of the
signal peaks in the AR estimation is negligible in the first two cases, very small in the last
case, while it reduces the contribution of some of the strongest peaks in the third case (50
strong signals, with source frequency f0 within 5 bins).

When peaks from different FFTs are put together in the PM, the peaks of an astrophys-
ical signal follow a time-dependent pattern determined by the Doppler effect. This effect
has to be corrected before running the Hough transform. The Doppler correction plays a
crucial role also when more signals are present. The correction is done by properly shifting
the peaks frequency in the input PM, for each sky position for which the search is running.
As shown in Figure 4.6, even in the case of multiple signals belonging to the same frequency
bin at a given time, the Doppler correction, which is different for each sky position, permits
to clearly distinguish the various signals. This is a very powerful feature as, moreover, it
enhances the SNR of CW signals with respect to noise lines. The first plot in Figure 4.6
shows a zoom of a PM with 10 injected signals. The signals have been generated with
the same intrinsic frequency f0, that is within the same frequency bin, but with randomly
chosen sky positions, so that their frequencies at the detector appear separated, due to the
Doppler effect which introduces a maximum frequency shift of

∆fdop ≃ 2f0

∣

∣

∣

∣

v⃗ · n̂
c

∣

∣

∣

∣

≃ 2f0 × 10−4, (4.4)

where, according with Section 2.1.1, v⃗ is the detector velocity vector and n̂ is the unit vector
identifying the source position in the sky. When the Doppler effect is removed correctly for
each of these signals, we can see the injected signal as a sequence of peaks along a straight
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Figure 4.6: The top left plot shows a zoom on a PM of LIGO Livingston O2 data [158],
where different fake CW signals are added. Those signals have all the same proper fre-
quency, f0 = 338.5 Hz, but different sky positions. They are strong enough to produce
patterns visible by eye: each one follows a different time-frequency trajectory, having dif-
ferent Doppler modulations. In the other plots (top right, bottom left and bottom right)
the Doppler correction is applied respectively for one of the signals sky direction. When the
Doppler correction matches the sky localization of a signal source, its corresponding trajec-
tory becomes a straight line confined on f0. On the other side, the other signals trajectories
get further distortion.
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line at the right f0 frequency. This is shown from the second to the fourth plots of Figure
4.6. It is possible to note here that there is only one straight line, which corresponds to the
properly Doppler corrected peaks.

In conclusion, these plots show that, even if signals are clustered in frequency, the
presence of the Doppler modulation gives a powerful tool to distinguish them. Thus, in all
analyses where candidates are selected separately for each sky position, as in the case of the
FH pipeline, the presence of signal clusters does not blind the search. Clearly, the resolving
power is limited by the resolution of the sky grid used, which depends on the frequency
resolution [122]. The candidate separation effect is clearly stronger as the observing time
improves, and it is maximum for one year of data, when the Doppler annual modulation
completes one cycle.

4.4 Study on the detection efficiency

In the previous sections we have qualitatively discussed the possible negative effects due to
the presence of signal clusters. This section is devoted to properly quantify the effect of
multiple signals and their impact on the pipeline performances. In order to do this, we need
to define an observable. The simulated signals have negligible spin-up with respect to the
analysis resolution so that after the Doppler correction they are monochromatic, meaning
they are represented in the PM by a straight line at the constant emission frequency f0.
After the Doppler correction, the next step is to construct an histogram counting the number
of peaks as a function of the frequency, using the same frequency resolution of the search.
The expectation is to find an excess of counts in the histogram bin associated to the source
frequency f0. Let we define the detection efficiency as

¸ =
nsig − n̄noise

nFFT
, (4.5)

where nsig is the histogram number count at the frequency f0, n̄noise is the average number
of counts at all the other frequencies except for f0, and nFFT is the number of FFTs used to
construct the PM. Figure 4.7 shows an example of an histogram built on the frequency grid,
having injected a signal at f0 = 338.5 Hz, constructed the PM and removed the Doppler
effect. It is important to underline that the detection efficiency ¸ defined here does not
determine the full sensitivity of the FH procedure, even if the two concepts are strictly
related. The expected value of ¸ is the difference between the probability pλ of selecting a
peak when a signal with normalized spectral amplitude ¼ is present and the probability p0
of selecting a peak when only Gaussian noise is present,

E[¸] = pλ − p0. (4.6)

In the following, there will be computed estimates of ¸ in different situations. In order to
limit the computational cost of the study, the simulations are done using one week of data,
as the goal of the work is a comparison of different situations on the same data set. The data
set is extracted from the LIGO Livingston O2 run [158], starting from GPS=1186606177.
The efficiency is computed as a function of the density of signals injected in given frequency
intervals and compared to the case when no signal cluster is present. Let we call ∆f0
the interval in which the source-frame frequencies are randomly generated. Because of
the random sky localization of the sources, the detector-frame observed frequency will be
unevenly distributed into a frequency range given by

∆f = ∆f0 ±∆fdop. (4.7)
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Figure 4.7: Example of an histogram of a PM, built using the frequency resolution as bin
width. Here an excess of counts is clearly visible at the frequency 338.5 Hz, where a signal
has been injected into nFFT = 1000 discrete FFTs. The red line represents the theoretically
calculated expected noise counts, E[n̄noise] = p0 · nFFT .

where ∆fdop is the spread of the signal frequency at the detector frame due to the Doppler
effect, given by Equation 4.4. In this way we can establish how many signals to inject in a
given frequency interval by tuning f0 and ∆f0. The number of frequency bins covered by
the signals is

nbin =
∆f

¶¿
(4.8)

and we can refer to the resulting mean density of signals-per-frequency-bin as

Äsig =
Nsig

nbin
. (4.9)

The detection efficiency will be used in the following sections to quantify the results of
Monte Carlo simulations, using different distributions for the signal amplitudes.

As a first example of how the efficiency can be used, let we consider a rather extreme
scenario. In what follows 50 signals, all with the same amplitude, are simulated with
proper frequency in two bands covering, respectively, a 5¶f and 10 Hz width. This last one
corresponds practically to a situation with non-clustered signals. The injection parameters
are listed in Table 4.2. Figure 4.8 shows all the obtained efficiencies in both cases, together
with mean values, median and standard deviation of the results. Estimations of the overall
efficiency, also with the signal-per-bin densities, are reported in Table 4.2.

label ∆f0 h0 Äsig E [¸]± Ãη

5¶f [338.5, 338.5 + 5¶¿] 1× 10−24 ∼ 0.15 0.58± 0.09

10Hz [333.5, 343.5] 1× 10−24 ∼ 10−3 0.72± 0.09

Table 4.2: Parameters used to simulate CWs in two different density configurations, labeled
as 5¶f and 10Hz, the obtained signal densities Äsig and efficiency estimations.

Looking at the outcome, we observe a loss in efficiency of ∼ 19% between the clustered
signals configuration and the one with non-clustered signals. In other words, in presence
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Figure 4.8: Efficiency ¸ in the two cases of: 50 injected signals with h0 = 10−24 distributed
in ∆f0 = 5¶f ∼ 1.2 mHz - left plot - and widely spaced (over 10 Hz) - right plot. Mean,
median and standard deviation of the efficiency are also shown.

of the cluster we recover in average the 81% of signal pixels with respect to non-clustered
signals. Obviously the presence of only strong signals, all with the same amplitude, is an
unrealistic limit-case, since in general the signals are distributed in amplitude.

4.4.1 Varying amplitude signals with low densities

In this subsection I present the results of multiple injections in a more realistic regime in
which signal amplitudes are not constant, as in the previous case, but uniformly distributed.
In order to get a complete understanding, the whole frequency region where the detectors
have the best sensitivity, [70 - 512] Hz, is covered. The signals have been simulated with
source frequencies around 12 different values in that interval and with source positions
randomly chosen. For each one of that 12 central frequencies, 10 signals have been injected
with proper frequencies distributed in six different ranges ∆f0. The choice is done to search
for evidence of a decreasing efficiency when the signals are concentrated in a smaller range.
All the chosen parameters are reported below:

h0 ∈
[

2 · 10−25, 1 · 10−24
]

f0 ∈ {70.5; 105.5; 120.5; 170.5; 205.5; 220.5; 270.5; 330.5; 380.5; 420.5; 442.5; 492.5} Hz

∆f0 ∈ {¶f ; 10¶f ; 20¶f ; 50¶f ; 100¶f ; 10 Hz}

Thus, the signal densities Äsig explored in this section are in the range [0.001 - 0.1]. We can
refer to this test as a ”low density” regime.

Figure 4.9 shows bar plots of median values of the obtained efficiencies. They are
grouped according to the different ∆f0 (represented by different colors), for the different
injection frequencies. The efficiency values do not show any systematic decrease when going
toward the smaller ∆f0. In Figure 4.10 the bar plots are combined together and the average
efficiencies (with respect to the injection frequency), together with standard deviations, are
shown as a function of ∆f0. The highest standard deviation in the case of signals injected
in 10 Hz is due to the fact that within such a large band it is more likely to find strong
narrow disturbances that worsen the detection efficiency in that band. Also in this plot,
there is no clear effect on efficiencies due to the clustering of source frequencies. We can
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Figure 4.9: Bar plots of the simulation done in Section 4.4.1. The bars show the median
efficiency computed for 10 signals with source frequency within respectively 1, 10, 20, 50, 100
frequency bins ¶f and 10 Hz (equivalent to 40960·¶f bins). The color code is: 10 signals in 1
(red) 10 (green) 20 (cyan) 50 (yellow) 100 (magenta) bins and 10 Hz (black). On the bottom
of each box the central source frequency of the injected signals is shown. Signal amplitudes
have been generated from a uniform distribution in the range h0 = 2 · 10−25 − 1 · 10−24.
Those plots show that there is not an evident efficiency loss when signals are concentrated
in smaller ∆f0.

conclude that in the low density regime, that is Äsig < 0.1, there is not efficiency reduction
and the procedure is able to recover all the signals.

4.5 Simulation of signal clusters from boson clouds

In this section, I simulate situations that are expected in the most extreme cases of CWs
emitted by boson clouds around galactic BHs. In the study proposed in [167], it has been
suggested that an high number of galactic BHs could potentially produce up to thousands
of signals with amplitude above the O2 ULs at the detectors. Depending on galactic BH
population and the boson mass, those signals could cluster into a frequency region having a
width that spans from ∼ 0.01Hz to ∼ 1Hz. Based on these indications, I have reproduced
two scenarios, namely one with signals clustered into a [0.04 - 0.06] Hz band and another
with signals in a 0.8 Hz band, one order of magnitude larger. Also in these cases I have
repeated the simulations injecting signals in ranges of different width around different central
frequencies, in the range [70 , 512] Hz. Over 4,000 signals were generated with random
parameters and amplitude in the range [1 − 20] · 10−25, following a power law distribution
∼ h3 such to mimic the ratio of detectable signals below and above the O2 UL as found in
[167]. These signals are added in one week of data from LIGO Livingston during O2. Then,
I have constructed the FFTs and the PM and I have repeatedly corrected for the Doppler
for all the signals. After each Doppler correction, I have constructed the histogram on the
frequencies and evaluated the detection efficiency for that signal. Then, I have repeated the
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Figure 4.10: Error plot of the simulation described in Section 4.4.1, in the ”low-density”
regime. Differently from Fig. 4.9, efficiencies are combined together grouping for the
different 12 injection frequency. Average efficiency ¸ (stars) and standard deviation (bars)
are shown as function of ∆f0.

whole procedure injecting the same signal alone in the data in order to get a direct estimate
of the losses.

In Figure 4.11 the results of the simulation are shown. The plotted quantity is the ratio
between the detection efficiency of signals in the clustered configuration and the efficiency
of the same signals, when injected alone. This is done in order to compare efficiency
variations at different frequencies and on signals with different amplitudes, which have
different detection efficiencies. This efficiency ratio is plotted as function of the mean signal
density. Colored areas span from minimum to maximum values of the mean ratio obtained
from injections around different frequencies, in the range [100,400] Hz, in clean bands. The
blue area represents the ratio for the whole ensemble of injected signals, whereas the green
and red belts refer to the subsets of signals with h0 respectively above and below O2 ULs.
Looking at the different regimes, we recognize qualitatively different behaviors.

1) In the case of signals injected into a ∼ 0.06 Hz band (Figure 4.11, left plot), for
signals with amplitude above O2 ULs, the efficiency loss ratio is of few percents at the
most. After a minimum of ≈ 0.9 reached between Äsig ≈ 1− 2, the ratio grows up to 1. On
the other side, for signals with amplitude below O2 ULs the efficiency ratio increases for
growing signal densities, which means their detection efficiency increases - i.e. we recover
more pixels belonging to those signals. As I will explain in the following, this effect is due
to the superposition of signals in the same frequency bin. On the whole set of signals, the
result is a global efficiency gain in the range [1, 2.2], the highest reached at the highest signal
densities. An analogous reinforcement effect is used in [172, 173], where the contributions
of multiple sub-threshold CWs are combined to enhance their detection chances in the
context of targeted searches. Consequently, in this configuration there is no overall efficiency
loss and, moreover, also weak signals have a growing probability to be recovered. Since
also stronger signals do not suffer a significant efficiency loss, the conclusion is that both
detection efficiency and evaluation of ULs are not affected.

2) The case of signals injected into a ∼ 0.8 Hz wide band (Figure 4.11, right plot)
corresponds to the most extreme situation depicted in [167]. In this case the behavior of
the efficiency ratio changes significantly. First of all, the two distinct signal subsets have
no opposite dynamics as they show both an efficiency loss as the signals density increases.
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While the efficiency ratio of signals with amplitude below O2 ULs stops decreasing at a
signal density Äsig ≈ 1 (with a corresponding efficiency ratio of ∼ 0.8 ± 0.05), the efficiency
ratio for the subset of signals with amplitude above the UL continues decreasing, reaching
values around 0.6 for signal densities Äsig ≈ 2. For the whole set of signals, values in
the range 0.75 ± 0.05 are reached. Since the detection efficiency is directly related to the
individual probability pλ to select a peak if a signal is present, and given that the overall
search sensitivity is proportional to the square root of that probability [122], the conclusion
is that in the most extreme - and probably very unrealistic - cases the search procedure
could lose up to ∼ 15% of the “optimal” search sensitivity (i.e. that with no superposition
of signals). As discussed in the following, a mean signal density of two is actually much
larger than predicted in [167].

Figure 4.11: Injections in the “high-density” regime. Mean values of the ratio between
detection efficiencies in the case of signals clustered together (Eff) and in the case of each of
those signals taken alone (Eff0), as function of the signals-per-bin density (bottom x axis)
and number of injected signals (top x axis). The signals are injected around 170 Hz, 240
Hz, 338 Hz, 380 Hz: colored areas span from minimum to maximum values obtained at the
different frequencies. The blue area shows the overall efficiency ratio for the whole signal
ensemble, whereas green and red areas refer to signals that are respectively above and below
O2 ULs. Left plot shows the result when signals are clustered in a wide 0.06 Hz frequency
range. Right plot shows the result when signals are clustered in a wide 0.8 Hz frequency
range. In both cases the same order of magnitude of signals has been injected, but in the
right plot the wider frequency range leads to lower signal densities.

Both the described dynamics have a clear explanation in the way the AR spectral esti-
mator works. When the signal density is such to produce a wide excess power in frequency,
the answer of the AR estimator depends on how wide the bump is with respect to the AR
memory Äf defined in Section 4.2.1. The chosen value for AR memory is typically fixed for
each frequency band. In the present case, in the frequency range [128-512] Hz, a memory
Äf = 0.02 Hz was used. In case 1), the signal cluster covers a 0.06 Hz frequency range,
which is the same order of Äf . Consequently, AR estimate is not fast enough to adapt to
the increased noise (plus signal) level. When Äsig g 1, every frequency bin has an expected
occupation of 1 signal. After that, any added signal would superpose to signals already
present in the same bin, thus increasing its power content. The result is that the signal
power in all bins of interest increases with respect to the noise floor. If the AR estimation
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is not fast enough to adapt, its level will result lower than the majority of those bins, so
that also weaker signals get more detection chances. This explains the observed growing
efficiency in case 1). On the other hand, in case 2) the signal cluster covers a wide 0.8
Hz frequency range, which is one order of magnitude bigger than Äf . In this case, even
if signals continue to accumulate in the same frequency bins at Äsig g 1 and their power
content increases, the AR estimation is able to adapt to the changed level. Thus, weak
signals remain below the AR level, while strong signals are weakened with respect to the
previous noise level.

There are two important considerations to do. First, the loss happens when we have
actually high numbers of detectable signals (i.e., above the upper limit), while it affect much
less the estimation of ULs. Second, the efficiency loss is plotted as a function of the mean
signal density. For instance, a density of two signals per bin, means that on average in all
bins of the injection band (e.g., 0.8 Hz in 4.11, right plot) we have such density. Looking at
the results of [167], in one of their “worst” situations - see [167] figure 40, left panel - where
BH spins up to an unrealistically large value of 1 are considered, the signal density above
the UL can reach values as large as 5 in few bins, while in the vast majority of bins is below
2 (and, actually, is zero in most bins). The corresponding average density is difficult to
estimate, but it is quite likely well below 0.5. As a consequence, the sensitivity loss is likely
of the order or smaller than 5%, as the impact on the AR estimation would be smaller.
Anyway, these results suggest that in presence of signal clusters as large as the tested 0.8
Hz there would be worth to perform the search trying different values of AR memory Äf .

4.6 Discussion

In the work presented in this chapter, mainly inspired by the claims of [167], I have studied
in detail how the basic steps of the FH algorithm for CW searches could be affected by
the presence of clusters of signals. Two regimes, of ”low-density” (with up to ∼ 0.1 signals
per frequency bin) and ”high-density” signals (with up to 10 signals per frequency bin),
have been considered. In particular I have evaluated the impact of signal clusters in the
estimation of the average spectrum, and on the construction of the PMs, finding them very
robust. I have found that the procedure used to estimate the average spectrum, needed to
normalize the FFTs and then to construct the PMs, is robust with respect to the presence
of ensemble of signals and works even in the most extreme situations. The small signal
peak amplitude loss is compensated by the fact that signals do have a different evolution
in time (due to their position in the sky) and then through the proper Doppler correction
each signal can be properly reconstructed. In addition to this, in the case of homogeneous
high density of signals across a small frequency band, I have shown that when the signals
are spread in a frequency interval smaller than ∼ 0.1 Hz, the overall efficiency increases
thanks to the presence of signal clusters, as the probability to select a peak at a given time
is enhanced. When the signals are spread on a much larger frequency range of ∼ 0.8 Hz,
this results in an efficiency loss of up to ∼ 15%, when the mean signal density approaches
a value of two, due to the impact the signals have in the AR estimation of the average
power spectrum. On the other hand, the ”worst” cases considered in [167] correspond to
a mean signal density significantly smaller than two, so that the corresponding sensitivity
loss is reduced to a few percent at the most. The conclusion is that the Frequency-Hough
procedure is robust with respect to the presence of signal ensembles, with negligible losses
even in extreme cases.



Chapter 5

Image filtering for long-lasting

transients

The work presented in this chapter is focused on the search of long-lasting GWs from
young NSs. This kind of signals, which includes those associated to r-mode emission or
millisecond magnetars, has been introduced in Section 2.1.2. In particular, I focus on
signals with duration of the order of 1000 seconds. The search strategies for this kind of
signals are typically done using semi-coherent procedures which, as I have explained in
Section 2.3, have a sensitivity lower than those based on matched filtering. However this
sensitivity gap can be reduced thanks to the application of new techniques. Here, I present
the development and application of a 2-dimensional filter, called triangular filter, to be used
with numerical matrices, like monochromatic images or spectrograms, in order to increase
the SNR of signals buried inside the noise. The chapter is organized as follows: in Section
5.1 I introduce the Generalized Frequency-Hough search method, describing the assumed
signal model and the first steps procedure. In fact, in my work I have reproduced these
first steps in order to generate the spectrograms that are the input of the triangular filter.
In Section 5.2 I describe how the information on the shapes inside an image, in particular
the inclinations of curves and lines, is stored in the 2D Fourier space. Since the information
on inclinations of curves is stored in different regions in the Fourier space, I have chosen
to implement the filter in the Fourier space. In Section 5.3 I define the triangular filter
and characterize it by applying it on maps containing only white noise. In Section 5.4 I
present a Monte Carlo simulation where I have reproduced the first steps of the Generalized
Frequency-Hough procedure in order to estimate the sensitivity gain achievable with the
filter.

5.1 The Generalized Frequency-Hough procedure

Since the possible processes that can take place in a newborn NS are various and are likely
superimposed, we have not a full comprehension of its early-life phase. It is therefore
difficult to make GW searches based on optimal matched filter strategies: on one side, we
have not a solid basis to build a bank of waveform templates; on the other side, even if
we had a reliable set of templates, the parameter space to be explored would be huge and
would make such search computationally unfeasible. From this point of view, the problem
is analogous to the one of persistent CWs.

A search procedure has been developed to deal with long-transient searches, called
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Generalized Frequency-Hough (GFH). It is a semicoherent search that takes inspiration
from the FH pipeline, developed for the all-sky searches of CWs from unknown sources and
studied in depth in Chapter 4. The target signal, however, is strongly different. Moreover,
the GFH pipeline assumes to know the sky location of the candidate signal source, e.g.
through a GRB observation or a binary NS coalescence detection. The GFH pipeline is
fully described in [174]. Here I recall its first steps since this is relevant for introducing my
work.

5.1.1 A generic model for long duration gravitational waves

The signal model taken in consideration is a generic long-lived transient, as suggested in
[175], with the GW frequency evolving following a power law with no fixed braking index
n (already defined in Equation 2.17 in Section 2.1.1):

ḟ = −k fn (5.1)

where different values of n correspond to different mechanisms driving the frequency evo-
lution and k is a constant, whose value depends on the specific emission mechanism and
has to be measured by the search procedure. According to Section 2.1.2, the braking index
would assume value n = 5 for magnetically-induced deformations or n = 7 for r-mode oscil-
lations, but since electromagnetic emission is always present (n = 3), most likely its value
will be somewhere in between. The time-frequency evolution of the signal is obtained just
integrating Equation 5.1:

fgw (t) = f0
[

1 + k (n− 1) fn−1
0 (t− t0)

]− 1

n−1 = f0

(

1 +
t− t0
Ä

)
1

1−n

(5.2)

where we have defined a spin-down timescale Ä = Ω1−n
0 /k (n− 1) and labeled f0 as the GW

frequency at t = t0. The signal amplitude is therefore

h0 (t) = h0

(

1 +
t− t0
Ä

)
2

1−n

(5.3)

where h0 is the initial amplitude of the signal, which can be related to the star’s ellipticity ε
or to the r-mode saturation amplitude ³ depending on the model, and the power factor 2 has
to be changed to 3 when the emission mechanism is the r-mode. Note that, differently from
standard CWs, the signal amplitude is time-varying. This is because the GW amplitude is
proportional to f2

gw in the case of magnetically-induced deformations and to f3
gw in the case

of r-modes and the GW frequency, differently from CWs, is expected to vary significantly.

5.1.2 The first steps of the search

The GFH analysis works with SFBD data for the first steps and on the BSD framework for
the follow-up of signal candidates. For each detector, data are divided into short chunks
with optimized coherence time. As explained in Section 4.2, the segment duration is chosen
in order to have approximately monochromatic signals within the FFT resolution. The
general criteria is that the variation of signal frequency, from the beginning to the end of
the segment, is less than the frequency resolution

|fgw (t0 + Tfft)− fgw (t0)| < ¶f =
1

Tfft
(5.4)
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While in the first stage of the FH the Doppler effect dominates the frequency variation of
CWs and is unknown, in the present case we assume that the source position is known
through electromagnetic observations. In this case the Doppler can be corrected as a pre-
liminary step of the analysis, the signal spin-down dominates the variation of the observed
frequency. Thus, the criteria for choosing the optimal FFT length is

Tfft <
1

√

|ḟ0|
(5.5)

The SFDBs are built with multiple resolutions, with Tfft = 2− 8 s, which account for initial
spin-down rates of 10−1− 10−2Hz/s. They cover the frequency range [50, 2000] Hz, consid-
ering the signal starting frequency f0 in the range[500, 2000] Hz because of the conservation
of the total angular momentum of the NS progenitor (typically binary NS merger or core-
collapse SNe) [176]. The following part is analogue to the FH procedure: from each FFT,
the power spectral density is evaluated and then whitened through an AR estimate. From
the power spectra, the PM is built selecting only local maxima with whitened power above
a fixed threshold. An example of PM with a simulated r-mode GW signal is shown in the
top left plot of Figure 5.1. A GW signal like the long transient ones produces an excess of
power along a time-frequency trajectory described by Equation 5.2, and consequently and
excess of pixels in the PM. The next step consists in transforming the PM. Since the signal
pattern is a power-law curve with unknown n, a nonlinear transformation is done on the
PM frequencies in order to transform it in a straight line. A new variable x is introduced,
defined as

x =
1

fn−1
; x0 =

1

fn−1
0

(5.6)

which has physical dimensions of Hz1−n. The time evolution of the signal ’x’ parameter
under this transformation is given by

x = x0 + (n− 1) k (t− t0) (5.7)

The transformation done in Equation 5.6 is repeated for different values of the braking index
n. A grid of possible braking indexes n is constructed within the range [2.5− 7], with a step
that is calculated requiring that the frequency variation stepping from a value of n to the
next is within the frequency resolution [174]. If a signal with braking index n∗ inside the grid
is present, it is transformed in a straight line when the correction for that n∗ is performed.
This effect is shown in the top right plot of Figure 5.1. Then, the corrected PM is fed to
the GFH transform which maps the peaks to the signal parameter space. The Hough map
obtained is a 2D histogram on the signal parameters x0, k: for each given x∗0, k

∗ pair, it
counts the number of pixels belonging to the time-frequency trajectory corresponding to
that pair. GW candidates are selected in the different Hough maps created for the different
values of n in the grid. A relevant difference with respect to the traditional FH procedure is
that, because of the non-linear mapping, the noise in the transformed space is not uniform.
In fact, the change of coordinates takes points that are equally spaced in frequency and
concentrates them at higher frequencies, that is at lower x values, and spreads them out
at lower frequencies, that is at high x values. This effect is well recognizable in the top
right plot in Figure 5.1. The effect on the GFH map is to produce an higher number of
noise counts at the lower x values. This is visible in the bottom left plot in Figure 5.1.
Since candidate signals are selected comparing their number of counts with the number of
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Figure 5.1: First stages of the GFH search pipeline. Top left plot shows a 1000-seconds
PM where a long transient signal, with f0 = 750Hz, ḟ0 = −0.06Hz/s and n = 7 has
been injected. Top right plot shows the transformed PM, where the frequencies have been
transformed following Equation 5.6. The signal after this transformation has become a
straight line and the noise is no more uniformly distributed, with higher concentration at
low values of x. Bottom left plot shows a large view of the Hough map computed from
the transformed PM. The higher noise concentration a lower x values has produced higher
noise counts. Bottom right plot shows a zoom of the Hough map on the square containing
the signal parameters, corresponding to the highest counts. Note that, restricting to the
square, the noise counts are approximately uniform.



CHAPTER 5. IMAGE FILTERING FOR LONG-LASTING TRANSIENTS 116

noise counts, this non-uniformity would disfavour signals with lower x values. To overcome
this problem the Hough map is divided in a number of squares determined by the number
of candidates to be selected in each map. In each square, the two local candidates with
the highest number count are selected. This practice has also the advantage to cover the
parameter space as uniformly as possible. In the bottom right plot of Figure 5.1, a square
of the Hough map obtained from the corrected PM (top right plot), containing the counts
produced by the signal, is shown.

5.1.3 A way to enhance the search sensitivity

It is worth to underline that the steps presented above are crucial to determine the overall
search sensitivity of the GFH procedure. If a GW signal is strong enough to be selected as a
candidate from the Hough map and survive the coincidence veto between detectors, then it
undergoes the follow-up described in [174]. Otherwise, there is no possibility to recover that
signal in the subsequent steps. This search strategy results to be computationally feasible,
but it loses about one order of magnitude in terms of sensitivity with respect to an ideal
matched filter search. So, in principle there is room for enhancing the search sensitivity,
thus increasing the maximum distance at which we can confidently detect a signal.

The method presented here introduces an intermediate step among the ones described
in Section 5.1.2. When building the PM, the probability for a signal peak to be selected
from a single spectrum depends only on its own power content and on the other adjacent
frequencies. This process is done segment-by-segment, and the peaks selected from a FFT do
not influence the selection in the next one. However, I have analyzed whitened spectrograms
containing signals with borderline amplitudes, i.e. that produce a time-frequency pattern
with whitened power oscillating around the selection threshold. I have found that in many
cases those signals could be still recoverable. The reason is that signals with slightly sub-
threshold power in the single power spectra can be reinforced if we correlate power spectra
at adjacent times. In order to do this, we need to consider the whole spectrogram, instead of
analyzing the spectra independently. The way to exploit the correlations between pixels is
typical of image processing techniques, and I will end up building a two-dimensional image
filter. Such filter will be implemented in the 2D Fourier domain.

5.2 How information is stored in 2D Fourier transform

Since the time-frequency pattern I want to extract is a simple regular monotonic decreasing
curve, it is important to understand how the shape information is stored in the Fourier
components of an image. Given an R

2 space with coordinates x⃗ = (x, y) and a scalar
function f(x⃗), the 2D Fourier transform and its inverse are defined as

f̃ (u, v) = F2 [f (x, y)] =

∫

R2

dxdy f (x, y) e−i 2π (ux+vy) (5.8)

f (x, y) = F−1
2

[

f̃ (u, v)
]

=
1

(2Ã)2

∫

R2

dudv f̃ (u, v) ei 2π (ux+vy) (5.9)

where the u⃗ = (u, v) are the reciprocal coordinates in the Fourier space. Since spectrograms
are represented as scalar matrices, I focus only on monochromatic images. When passing
from continuous to discrete space, there are some detail to pay attention to. Consider a
scalar M×N matrix F [j, k] with discrete indices j = 1, ...,M and k = 1, ..., N . To make the
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Fourier transform work, in analogy with the one-dimensional case, we consider this table
infinitely replicated on a periodic table, so that

F [j ±M,k] = F [j, k ±N ] = F [j ±M,k ±M ] = F [j, k]

The 2D discrete Fourier transform of a matrix works as a sequence of 1D Fourier transforms
- typically using the FFT algorithm - applied first on all the column vectors of the matrix
then on all the raw vectors, or vice-versa. It is defined, together with its inverse, as

F̃ [u, v] =
M−1
∑

j=0

N−1
∑

k=0

F [j, k] e−i2π(uj

M
+ vk

N ) (5.10)

F [j, k] =
1

MN

M−1
∑

u=0

N−1
∑

v=0

F̃ [u, v] ei 2π (
uj

M
+ vk

N ) (5.11)

Given the formal analogies with the 1D version, the 2D transform has the following sym-
metries:

1) If F [j, k] is real, i.e. F ∗ [j, k] = F [j, k], then F̃ ∗ [u, v] = F̃ [−u,−v]

2) If F [j, k] is even, i.e. F [−j,−k] = F [j, k], the transform is too: F̃ [−u,−v] = F̃ [u, v]

3) If F [j, k] is odd, i.e. F [−j,−k] = −F [j, k], the transform is too: F̃ [−u,−v] =
−F̃ [u, v]

4) If F [j, k] is real and even, the same the transform F [u, v].

5) If F [j, k] is real and odd, then F̃ [u, v] is purely immaginary and odd.

Regarding the operations that can be done, the 2D transform has the following properties:

• Linearity: given two arrays F [j, k], G [j, k] with the same dimensions M × N , the
transform of the linear combination of the two is the linear combination of the single
transforms, with the same weights:

F2 {³F [j, k] + ´ G [j, k]} = ³ F̃ [u, v] + ´ G̃ [u, v] (5.12)

• Scaling: given an array F [j, k] and its transform F̃ [u, v], by performing a contrac-
tion/dilation to the variables with two constants a, b, the transform will undergo an
inverse effect:

F2 {F [a j, b k]} =
1

|ab| F̃
[u

a
,
v

b

]

(5.13)

• Translations/Phase modulations: given a matrix F [j, k] and a couple of integers
p, q, the translated array F [j − p, k − q] transforms with a phase modulation:

F2 {F [j − p, k − q]} = e−i 2π (up

M
+ vq

N )F̃ [u, v] (5.14)

Inversely, applying to the array F [j, k] a phase modulation through the couple p, q,
that becomes a translation of the 2D transform:

F2

{

ei 2π (
jp

M
+ kq

N )F [j, k]
}

= F̃ [j − p, k − q] (5.15)

The straightforward consequence is that power spectra are invariant under transla-
tions.
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• Cross-correlation: the cross-correlation between an array F [j, k] and an array
G [p, q] gives in output an array H [j, k] defined as:

H [j, k] = F [j, k] ⋆ G [j, k] =
∑

p,q

F [p, q]G [j + p, k + q] (5.16)

The Fourier transform of the resulting array is obtained through the multiplication
of the Fourier transforms of the original arrays. Thus, the cross-correlation can be
computed also as the inverse 2D transform

F [j, k] ∗G [j, k] = F−1
2

{

F̃ [u, v] · G̃ [u, v]
}

(5.17)

• Parseval’s identity: it holds for any dimension and guarantees the Fourier series
of a function is square-integrable. In discrete terms, for 2D matrices it states the
identity:

M−1
∑

j=0

N−1
∑

k=0

|F [j, k]|2 = 1

MN

M−1
∑

u=0

N−1
∑

v=0

∣

∣

∣
F̃ [u, v]

∣

∣

∣

2
(5.18)

or, more generally,

M−1
∑

j=0

N−1
∑

k=0

F [j, k]G∗ [j, k] =
1

MN

M−1
∑

u=0

N−1
∑

v=0

F̃ [u, v] G̃∗ [u, v] (5.19)

The above properties provide all is needed to implement Fourier domain image filtering.
The power spectrum is defined as in 1D by the square modulus of the transformed array

SF [u, v] =

∣

∣

∣
F̃ [u, v]

∣

∣

∣

2

M N
dxdy (5.20)

where M,N are the array dimensions and dx, dy are the steps in the physical space.
The additional degree of freedom with respect to 1D arrays introduces new possibilities.

In particular, we are interested in how straight and curve lines are transformed. In 1D, the
continuous Fourier transform of two Dirac delta functions is a sinusoidal curve with period
the inverse of half their separation:

f (t) = 1
2¶ (t− a) + 1

2¶ (t+ a)

f̃ (¿) = F1 [f (t)] = cos (2Ãa¿)

(5.21)

In the same way, in 2D real space with coordinates x⃗ (x, y) we can take two delta functions
symmetrically translated from the origin by a vector x⃗0 (x0, y0). Its 2D continuous Fourier
transform, with reciprocal coordinates u⃗ (u, v), is a sinusoidal function:

F (x⃗) = 1
2¶ (x⃗− x⃗0) +

1
2¶ (x⃗+ x⃗0)

F̃ (u⃗) = F2 [F (x⃗)] = cos [2Ã (u⃗ · x⃗0)]
(5.22)

The top plots in Figure 5.2 show the two delta functions in the physical space and the
2D continuous Fourier transform corresponding to Equation 5.22. The first thing to note
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Figure 5.2: Examples of 2D continuous Fourier transform of a set of delta functions. The
top right plot show the transform of a pair of delta functions (top left plot). The bottom
right plot shows the transform of five pairs of delta functions (bottom left plot), placed with
the same step and direction of the previous pair.

is how directions transform: while in the physical space the two delta are aligned on the
slope y0/x0, the level lines of the transform have slope −x0/y0. For instance, the level lines
F̃ (u, v) = 1 are given by

cos [2Ã (u⃗ · x⃗0)] = 1 → v = −x0
y0

u+
k

y0
(5.23)

where k is an integer number. This is formally like an orthogonality relation, even if the
two objects live in different spaces. Second, the wavelength of the sinusoidal function is the
inverse of the separation between the delta functions. If we express the translation vector
x⃗0 in polar coordinates, with magnitude a and angle φ, the distance between the maxima
is 1/a:

x0 = a cosφ
y0 = a sinφ

→ ¼ =
1

√

x20 + y20
=

1

a
(5.24)

Third, if we add further pairs of delta functions with the same step and the same alignment,
the effect on the Fourier transform is to add sinusoidal functions at odd multiples of the
original frequency. Indicating with n the number of equally-spaced delta pairs, the total
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function and its transform are given by

F (x⃗) =
1

2n

n−1
∑

K=0

[¶ (x⃗− x⃗0 (1 + 2k)) + ¶ (x⃗+ x⃗0 (1 + 2k))] (5.25)

F̃ (u⃗) =
1

n

n−1
∑

k=0

cos [2Ã (u⃗ · x⃗0) (1 + 2k)] (5.26)

The linear superposition of sinusoidal functions with same starting phase and odd-multiple
frequencies generates a constructive interference on the points where u⃗ · x⃗0 = k/2, and
a destructive interference elsewhere. The bottom plot shows an example of this process,
with five pairs of equally-spaced delta functions. The 2D Fourier transform has the same
absolute maxima and minima than the transform in the top plot, but it is sharper around
those maxima/minima. The more delta functions are added, the sharper the transform
becomes around maxima/minima and the flatter becomes elsewhere. This trend is well
visible in Figure 5.3. This effect is crucial, since lines in discrete space can be considered as
a set of equally-spaced delta functions.

Figure 5.3: Realization of different transforms of 2n points with different number of pairs
following Equation 5.26, showing only the u dimension. As n increases, the destructive
interference between the sinusoidal curves becomes more effective, leaving the peaks with
ever narrower periodicity 1/a.

5.2.1 Discrete spectra of straight lines

When discrete and finite matrices are considered, some changes have to be taken into
account with respect to the continuous R

2 space. A slope mjk in a M × N matrix is
mapped in a muv slope in the reciprocal space with a correction factor that accounts for
the uneven dimensions M ̸= N . The relation to transform the slopes is given by

muv = − 1

mjk

(

N

M

)

(5.27)

Considering again the example of the points in a plane, these will become single pixels in
the discrete; however, while in R

2 there is no limit to the number of points that can be
added, in a M ×N matrix this number is limited. Furthermore, by treating the space as a
2D torus, different behaviors will occur based on the mutual distance of the points. Starting
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from just two points, two distances are associated with them: a direct one, identified by
the joining line, and a complementary one, identified by crossing the border of the map and
starting from the opposite extreme. If these distances are multiples of an integer divisor
a of the dimensions of the map, the points identify two sites of a periodic lattice on the
torus: in this case the pitch of this lattice, i.e. the minimum distance between two sites,
determines the distance between the crests of the sinusoid in the transform. For example,
if two points arranged horizontally, where the matrix has dimension M , identify a periodic
lattice with pitch a such that M = nx a, with nx ∈ N, then the 2D amplitude spectrum
will be a sum of sinusoids on the conjugate variable v with crests spaced by d = M

a = nx in
units of pixels. By adding further points on the empty sites of the lattice, once saturation
is reached the situation corresponds to the limit of infinite points of the continuous case:
the oscillations outside the peaks make destructive interference and only the isolated crests
remain. If, on the other hand, the distances between the points do not comply with this
condition, no periodic lattice is identified and the oscillations produced by the 2D FFT are
irregular.

Figure 5.4: Top left plot: 1000 × 1000 empty image containing nx = 100 dots aligned on
a straight line with 30◦ inclination. Top right plot: power spectrum of the top left map.
It results in a comb of modulated lines with inclination −60◦ and distance d = nx

√
3/2.

Bottom left plot: 1000 × 1000 empty image containing a straight line made of nx = 1000
dots aligned without holes, with 30◦ inclination. Bottom right plot: power spectrum of the
bottom left map. The distance of the comb has become d = 1000

√
3/2, so it results in a

single line with inclination −60◦.

By arranging the points on an inclined straight line, things change: while still identifying
a periodic lattice, this is incomplete, as the sequence of points, once it reaches the end of the
matrix, should continue its path from the opposite end. We must then consider the sequence
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of aligned points as the product between an infinitely extended sequence and a rectangular
domain of the dimensions of the matrix, which produces an amplitude modulation on the
transformed lines in Fourier space. Finally, when the maximum number of pixels has been
reached, i.e. the pixels are adjacent, we have a straight line. In this situation the periodicity
of the crests in the 2D transform coincides with the dimensions of the matrix: the lattice
pitch identified corresponds to the entire length of the map, i.e. a = 1 and nx = M . In
practice, the effect is that all the crests superimpose on the same line. In the top plots in
Figure 5.4 the power spectrum of a set of points aligned on a straight line in a 1000× 1000
plane is shown. The points are spaced along the horizontal dimension by ax = 10 pixels,
therefore they are in number nx = M/ax = 100, and the straight line on which they lie is
inclined by 30◦ with respect to the horizontal. The reticular step identified is a = (2/

√
3)ax,

therefore in the transform we have straight lines inclined by −60◦ with reciprocal distance
d = nx

√
3/2. It should also be noted that these straight lines are modulated in amplitude as

expected. In the bottom plot in Figure 5.4 the spacing between the dots has been removed
so that ax = 1 and nx = M . This situation corresponds to a straight line, with no holes.
Therefore the distance between the straight lines in the 2D power spectrum is d = M

√
3/2,

i.e. they are coincident. The consequence of this argument is crucial: the information of
a straight line in a monochromatic image is confined in a straight line in the 2D Fourier
transform, with inclination given by Equation 5.27.

5.2.2 Discrete spectra of curved lines

Once the working mechanism of 2D FFT on a domain containing a straight line is under-
stood, it is easy to understand how the mechanism works when curved lines are present.
In the 1D case, the information contained in the FFT modulus regards the presence of
signals at a given frequency. Passing to 2D analysis, the same logic of a single dimension
can obviously be applied to the two separate dimensions. On the other hand, the combined
dimensions give information on the gradients that individuate patterns in the image. A
curve can be approximated as a set of short, approximately linear segments, each one of
them mapped in a straight line in the power spectrum. So, the modulus of the FFT of a
curve contains the information concerning all the first derivatives present on it. The left
plot in Figure 5.5 shows an image containing a simple curve with the typical shape of a
long transient GW in a spectrogram. The map, with dimensions 1000 × 1000, is shown in
the pixel scale without physical units to keep the explanation more general. The dashed
cyan lines indicate the tangents to the curve at its extremes. All the intermediate points of
the curve have first derivative between the slopes of the plotted tangents. The right plot in
Figure 5.5 shows the 2D amplitude spectrum of the map in the left plot, rotated in order
to put the (0,0) frequency at the center of the matrix. The information is concentrated in
a triangular region symmetrical with respect to the center and whose amplitude, from the
maximum reached in the centre, fades as it moves away towards the high frequencies. This
region represents a proper beam of straight lines which correspond to the different inclina-
tions assumed by all the tangents to the curve. Since the curve is a monotone decreasing
function of time, it follows that the maximum and minimum slopes of the tangents are given
by the inclinations at the extremes of the curve. The cyan dashed lines added in the plot
indicate where the information on the two tangents at the extremes of the curve (the cyan
dashed lines in the left plot) is located, according to Equation 5.27. They represent the
boundaries of the region in the Fourier space where the information on the curve is concen-
trated. In particular, it can be noted that the more vertical side has an higher power: this
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is because in the curve pattern the lower slopes are more recurrent than the higher ones, i.e.
the density of the low slopes is greater. It should also be noted that since we are dealing
with a monotonic decreasing curve, the modulus of its transform is located in the first and
third quadrants of the Fourier map. A curve with a regularly increasing trend like chirp
signals in time-frequency diagrams, on the contrary, would have the information stored in
the second and fourth quadrant in the Fourier space.

Figure 5.5: Left plot: 1000 × 1000 array containing a curve with the typical pattern of
a long transient GW. The cyan dashed lines are the tangents to the curve at its extreme
points. Right plot: amplitude spectrum of the array in the left plot. The cyan dashed lines
indicate the tangents in the left plot transformed following Equation 5.27. Note that the
majority of the information on the curve (red-coloured area) is confined between that two
lines.

5.3 Triangular filter definition and characterization

Once the main mechanisms underlying the 2D Fourier transform of a numerical matrix have
been clarified, it is possible to apply the filtering principles, typically used on 1D arrays, to
2D arrays. When implementing a specific filtering technique the main goal is to eliminate
or reduce the noise in which a given signal is buried. An optimal technique is the Wiener
filter, which applies a statistical approach [178]. The assumption of this filter is that the
spectral characteristics of the signal and of the noise are known, and that the data can be
decomposed in signal h[j,k] and noise n[j,k] components, d[j, k] = h[j, k] + n[j, k], which is
very reasonable. In the 2D physical domain the Wiener filter works as a matrix w[j, k] that,
applied in convolution to the data matrix d[j, k], gives at output the signal estimate

ĥ[j, k] = w[j, k] ∗ {h[j, k] + n[j, k]} (5.28)

The condition which defines the Wiener filter is that the quadratic error between the output
estimate and the signal is minimized, E[(h− ĥ)2] = 0. The solution is given, in the Fourier
domain, by

w̃ [j, k] =
Sh [u, v]

Sd [u, v]
=

Sh [u, v]

Sn [u, v] + Sh [u, v]
(5.29)
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According to the convolution theorem, the Wiener filter can be applied equivalently in the
Fourier domain as follows

ĥ [j, k] = F−1
2

{

d̃ [u, v] · w̃ [u, v]
}

= F−1
2

{

d̃ [u, v] · Sh [u, v]

Sd [u, v]

}

(5.30)

In order to better estimate the output, we can use a smooth estimate of the noise power
spectrum at the denominator of 5.29. Basically, the best filter to filter out the noise where
a signal is buried is given by the power spectrum of that signal itself up to a normalization
factor.

Figure 5.6: Top plot: spectrogram of simulated white noise with a simulated long transient
GW, with parameters f0 = 750Hz, ḟ0 = −0.06Hz/s and n = 7. The signal, barely visible,
has an average SNR≃ 0.335 with respect to the noise floor. Bottom plot: the same spectro-
gram after the application of the Wiener filter using the power spectrum of the simulated
signal. The signal is strongly visible, with a SNR≃ 4.67 which is enhanced by a factor 14
with respect to the original SNR.

In Figure 5.6 an example of the application of the Wiener filter is shown. In the top
plot a spectrogram of simulated white noise containing a simulated long transient GW with
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parameters f0 = 750Hz, ḟ0 = −0.06Hz/s and n = 7 is shown. The signal amplitude is
such to produce a time-frequency pattern barely visible. To quantify the signal power with
respect to the noise I use an average SNR defined as

¯SNR =
mean

in
(f [j, k])−mean

out
(f [j, k])

std
out

(f [j, k])
(5.31)

where the in and out labels indicate the subsets of points of the array that lay on the signal
pattern and outside that pattern respectively, and the ”mean” and ”std” labels indicate
the average and standard deviation operations respectively. In the top spectrogram the
average SNR is ¯SNR0 ≃ 0.335, meaning that the signal peaks are above the noise floor
by 0.335 times the standard deviation of the noise. In the bottom plot of Figure 5.6 the
spectrogram has been filtered with the Wiener filter built with the signal spectrogram. The
SNR is significantly improved, by a factor ∼ 14, up to ¯SNRw ≃ 4.67, and has become well
visible. So, the Wiener filter has the great power to bring out a given signal from the noise,
increasing its SNR. However, this filtering technique has two problems. First, the Wiener
filter lacks of generality: it works optimally if we have access to the time-frequency pattern
of the signal, but in targeted searches we have no knowledge of the signal parameters. If
we know the frequency evolution of the signal, we would not need to perform semi-coherent
searches. Second, even if the filter strongly enhances the SNR of the signal, its fine time-
frequency pattern is not well preserved. This is because the filter is not flat: as we have
seen, the power is more concentrated in the region of the Fourier space corresponding to
the lower slopes in the spectrogram. Moreover, the information in the 2D power spectrum
is concentrated in the low frequencies, since the signal alone has a smooth time-frequency
pattern in amplitude. Consequently the Wiener filter is also a low-pass filter. However, the
low-frequency cut-off produces a coarse estimate of the signal pattern. This is a problem for
semi-coherent searches like the GFH, since the time-frequency pattern of the signal needs
to sum on a single pixel of the Hough map.

To overcome these problems I have developed a 2D filter which mimics the effect of a
Wiener filter but preserving the generality of the search and the fine time-frequency pattern
of the signal. I have called it triangular filter because of its shape in the 2D Fourier space.
The triangular filter takes in input two numbers, m1 and m2, that represent the maximum
and minimum inclinations of a curve inside an image. According to Equation 5.27 and to
Figure 5.5, the information of the curve is contained inside the triangular area between
the two straight lines in the Fourier space corresponding to the m1, m2 inclinations. The
triangular filter is generated as a matrix with the same dimensions M × N of the image.
It is a binary matrix in the Fourier space, where the pixels belonging to the area between
the two straight lines are set to one, and the remaining others are set to zero. If we take
m1 > m2 and label a generic inclination in the Fourier space as muv, the condition is given
by

muv ∈
[−1

m1

N

M
,
−1

m2

N

M

]

(5.32)

There is room for an additional degree of freedom, which is a cut along the ’v’ conjugate
dimension. This parameter is an adimensional number in the range [0, 1] that represents
the cut to be done along the v dimension, proportionally to the size of the filter, as shown
in Figure 5.7. In the following, I will implicitly refer to this cut as to a ”frequency cut”.

The triangular filter acts on the noise distribution by removing the correlations between
pixels with orientation outside the chosen range. It is important to be aware that this
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Figure 5.7: Examples of the triangular filter defined in the 2D Fourier space. The inclina-
tions are set to filter curves with slopes between −26◦ and 0◦. The left, middle and right
plots show configurations with frequency cut set to 0.2, 0.5 and 1 respectively.

operation introduces some degree of correlation between the adjacent columns of the spec-
trogram. After the filtering, the noise has got some structure along the directions allowed
by the filter, and this effect is more or less strong depending on the angle width of the
filter. Moreover, its distribution is no more exponential as in the original spectrogram1. I
have characterized the filter on 1000×1000 maps with simulated white noise, exponentially
distributed with unit mean value, in different configurations:

1) Keeping the boundaries of the filter to a fixed width of 5◦, I have rotated the filter
spanning from 0◦ to 90◦, with no frequency cut. At each rotation I have applied it to
the noisy map and recorded mean value and standard deviation of the output map.
These values are reported in the top plot in Figure 5.8 as function of the offset angle
between the low boundary and the ’u’ axis. As can be seen, the global distribution of
the noise after the filter is almost independent on the chosen offset angle. There is a
little bump around 45◦, corresponding to a +5% increase in the standard deviation,
that is due to the rectangular geometry of the map: at these inclinations, the filter
covers an higher number of pixels in the map. As it was expected, the triangular filter
does not affect the global mean value of the map, so in the next tests I have focused
only on the standard deviation.

2) I have progressively enlarged the angle width of the filter from 0◦ up to 180◦, keeping
the cut at one (i.e. no frequency cut). For each different angle width I have applied the
triangular filter and recorded the standard deviation of the noise at the output. The
results are shown in the middle plot in Figure 5.8 as function of the angle width. The
width of the noise distribution strongly depends on the width of the filter. The noise
distribution also changes qualitatively: when the filter spans 180◦, it covers the whole
map and practically there is no filtering, so the output noise is still exponentially
distributed with unit standard deviation, corresponding to the horizontal red line
in the plot. As the angle width decreases, the noise distribution distorts towards a
chi-squared, progressively reducing the standard deviation.

3) I have changed the level of the frequency cut from 0.05 up to 1 keeping fixed the
angular width of the filter and repeating the procedure for different angular widths.
Also in this case, I have recorded the standard deviation of the output maps. In
the bottom plot in Figure 5.8 I have reported the results for three angular widths,

1According to a preliminary study, it seems to follow a chi-squared distribution, but more investigations
are needed.
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Figure 5.8: Results of the tests done to characterize the triangular filter, using a 1000×1000
map containing white Gaussian noise. The top plot shows error bars with mean value and
the standard deviation of the output noise after the application the triangular filter with
the same angular width of 5◦ but with different inclinations. The middle plot shows the
standard deviation of the output noise after the application of the triangular filter with
different choices of the angular width. The horizontal red line indicates the reference value
for the unfiltered noise map. The bottom plot shows the standard deviation of the noise
after the application of the triangular filter, at fixed values of the angular width, varying
the frequency cut from 0.05 to 1. The blue, red and green lines represent the results with
angular width of 10◦, 25◦ and 46◦ respectively.
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namely 10◦, 25◦ and 40◦. The trend of the standard deviation of the noise results to
be linear with respect to the frequency cut. Note that the maximum values for each
angular width, reached at cut=1, coincide with the values obtained for that width in
the previous (middle) plot.

Even if it has been developed with the purpose of enhancing the sensitivity of long
transient GW searches, the triangular filter could in principle be applied in various contexts,
even far from the field of GW search. The characterization I have done allows to establish
the optimal configuration of the filter depending on its use. In the present context, the
purpose is the possible application as an intermediate step of the GFH procedure. The
constraints related to the way the GFH works impose some specific choices on the filter
configuration.

• Frequency cut. As I have showed in Section 5.1, the parameters of the GFH proce-
dure are optimized in order to have the GW signal power concentrated in one single
frequency bin in each FFT. The resolution of the grid in the braking index n, used to
correct the PM, is optimized in order to transform the signal in a straight line when
the right value of n is used. If all these parts work properly, the Hough transform con-
centrates all the counts belonging to the signal in the same pixel in the Hough map.
For this reason, we do not want the triangular filter to coarsen the time-frequency
pattern of the signal through a low-pass filter. Hence, the frequency cut is set to 1.

• Limit inclinations. Since the parameters of the signal are unknown, I set the the
limits for the filter inclinations in the most general way. The frequency derivative of
the signal is maximum in absolute value at the beginning and then progressively re-
duces according to 5.2. The limit for the final frequency derivative is set conservatively
to zero. The other limit is given by the resolution chosen for the FFT. In fact, the
SFDBs are constructed with multiple resolutions that correspond to different maxima
frequency derivatives of the signal according to Equation 5.5. The most reasonable
choice is to set the limit frequency derivative as coincident to the resolution limit of
the spectrogram. So, the most general choise is

ḟ1 = − 1

T 2
fft

; ḟ2 = 0 (5.33)

The corresponding limits in geometric units, m1 and m2, are computed through the
frequency and time resolution, ¶f = 1/Tfft and ¶t = Tfft/2 respectively, of the spec-
trogram.

In Figure 5.9 an example of the application of the triangular filter to a spectrogram with
simulated white noise and a simulated r-mode signal (n = 7) with parameters f0 = 750Hz,
ḟ0 = −0.06Hz/s. For reference, in time domain the initial amplitude h0of the signal has
been set as 60-times weaker than the Gaussian noise amplitude. The spectrogram has been
built using Tfft = 4 s, so the triangular filter is set with ḟ1 = −0.0625Hz/s, ḟ2 = 0 and a
cut equal to 1. The output of the filter is shown in the bottom plot in Figure 5.9. The
signal average SNR, starting from the original value ¯SNR0 ≃ 0.335, is enhanced by a factor
∼ 3.77 up to the value ¯SNRt ≃ 1.26. The enhancement is clearly lower than the one
achieved with the Wiener filter, but in this case the time-frequency pattern of the signal
has been preserved and can be fed to the Hough transform. In the next section I show
an application of the triangular filter to the first stages of the GFH procedure to get an
estimate of the potential achievable improvement of the search sensitivity for long transient
GWs.
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Figure 5.9: Top plot: spectrogram of simulated white noise with a simulated r-mode GW,
with parameters f0 = 750Hz, ḟ0 = −0.06Hz/s and n = 7. The signal, barely visible, has
an average SNR≃ 0.335 with respect to the noise floor. Middle plots: 2D power spectrum
of the signal time-frequency pattern (left) and triangular filter applied to the spectrogram
with parameters ḟ1 = −0.0625Hz/s, ḟ2 = 0 and frequency cut equal to 1 (right). Bottom
plot: the same spectrogram after the application of the triangular filter. The signal is well
visible, with a SNR≃ 1.26 enhanced by a factor ∼ 3.77 with respect to the original SNR.
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5.4 Sensitivity gain estimation

In the previous section I have shown that the application of the triangular filter to white
noise can actually enhance the SNR of a long transient GW. However, the increased SNR
does not translate directly in search sensitivity. As we have seen, the peaks selected in
the PM are just counted by the Hough transform, but their power is not considered. The
probability for a signal peak to be selected in the PM is proportional to its whitened power,
so the application of the triangular filter has the effect of increasing the probability for
signal peaks to be selected. Thus, the effectiveness of the filter can be measured looking at
the total number of peaks counted in the Hough map.

I have repeated the first steps of the GFH procedure using public data from the LIGO
Livingston detector during the O3 run, from GPS time 1253179440 s to 1253239440 s [179]. I
have simulated a total of 1078 r-mode GW signals, with random parameters in the following
ranges:

n = 7

f0 ∈ [700 − 770] Hz

k ∈ [3.9 − 7.6] · 10−22Hz−5

Ä ∈ [1 − 2] · 103s
h0 ∈

[

10−24 − 5 · 10−23
]

Table 5.1: Parameters used to simulate r-mode signals to be injected in LIGO Livingston
O3 data to test the triangular filter.

I have injected these signals in time domain. For each injected signal I have repeated
the SFDB construction using Tfft = 4 s, but differently from the GFH procedure I have
not built the PM for each single FFT. Instead, I have saved the whole spectrogram and
applied the triangular filter. Then, I have repeated the procedure of peaks selection, non-
linear correction of the PM and Hough transform for both the original and the filtered
spectrogram. Note that in the case of the filtered spectrogram I have adapted the threshold
for peaks selection in order to follow the new noise distribution, maintaining the same
percentile of the old threshold for exponential noise. From the two obtained Hough maps,
I have taken the number of counts from the point corresponding to the signal parameters
and I have computed its critical ratio, i.e. the ”standardized” counts with respect to the
average counts due to the noise

CR =
ns − n̄

Ãn
(5.34)

I have also registered the mismatch between the parameters of the pixel with the highest
count, taken around the actual signal parameters, and the signal parameters themselves.

The results of the simulation are reported in Figure 5.10. In the top plot I show the
number of counts associated to the pixel corresponding to the signal in the Hough map,
before (blue curve) and after the filtering (green curve), as function of the signal initial
amplitude h0. The number of counts from the filtered maps increase by an average +55%
with respect to the non-filtered maps, with maxima up to the +80%. However, in the bottom
plot I show the critical ratio as function of h0, both before (blue curve) and after the filtering
(green curve). In this case the curve of the critical ratio for the filtered spectrograms has a
different trend: when the signal amplitude is lower than 2 · 10−23, the critical ratio is larger
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Figure 5.10: Results of the simulation described in Section 5.4. 1078 r-mode signals, with
parameters reported in Table 5.1, have been added to O3 data of LIGO Livingston [179].
The blue lines represent the results from unfiltered spectrograms, the green lines represent
the results from the same spectrograms after having applied the triangular filer. The top
plot shows the number of counts associated to the signal pixel. The middle plot shows the
critical ratio estimated from the previous counts using Equation 5.34. The bottom plot
shows the parameters mismatch, i.e. the distance between the selected pixel and the signal
parameters computed through Equation 5.35.
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than that for the non-filtered case by about +30% on average, but for stronger signals the
trend is inverted. The reason for this phenomenon is to be found in the filter mechanism.
The triangular filter achieves the best performances when weak signals are buried in the
noise. But when the signal amplitude grows, its power shows up from the spectrogram with
SNR many times above the unit value. In this situation the noise surrounding the time-
frequency pattern of the signal interferes with the triangular filter giving raise to spurious
correlations and thus producing deformations on its path. This means that the triangular
filter can be actually a good tool to enhance the search sensitivity for weak signals, but also
that it has a negative impact when signals have high SNR. We can see a further confirmation
of this explanation from the bottom plot. Here, I have reported the parameters mismatch
estimation, i.e. the distance in the parameter space between the pixel with the highest
count and the signal parameters, measured in terms of parameters resolution

d =

√

(

x0,max − x0,sig
¶x0

)2

+

(

kmax − ksig
¶k

)2

(5.35)

The trend for unfiltered data (blue line) and filtered ones (green line), as function of the
signal amplitude, shows that for hf6 · 10−24 the average mismatch is the same for both the
data sets. After that value of ho, parameter estimation is worse for the filtered data with
respect to non-filtered data. This trend confirms that the triangular filter has a negative
impact when the signal has an high SNR. However, this is not an issue since realistic signals
are expected to be very weak.

In order to get an estimate of the potential gain in search sensitivity, we need to put
a threshold to the estimated critical ratio to consider an outlier of the Hough map as a
candidate to be further processed with a follow-up. I have set a nominal threshold to the
critical ratio of CRthr = 5, which means that candidates are selected if their CR is 5Ã
above the noise floor. I have estimated the detection efficiency as the fraction of injected
signals with CR above that threshold, for each value of h0. In Figure 5.11 I have reported
the curves of the detection efficiency as function of h0, obtained from the analysis of the
original spectrograms of the data (blue curve) and from the filtered spectrograms (green
curve). The two efficiency curves are very similar, but the one representing the filtered data
is shifted towards lower h0 values by an average ∼ 2 · 10−24. It can be seen that triangular
filter can actually lower the threshold for the minimum detectable GW amplitude. For
instance, in this example, from 77 injected signals with h0 = 4 · 10−24, the 35% of them
have surpassed the selection threshold, but after applying the triangular filter that fraction
has grown up to the 85%. If we set a typical fiduciary efficiency level to 90 − 95%, this
corresponds to an increase of +20% in the search sensitivity. I have done a preliminary
presentation of this result in [180].

This result confirms the potentiality of the triangular filter to increase the sensitivity
of long transient GW searches. However, the present work does not represent yet the
implementation of a search procedure with the triangular filter. To implement the triangular
filter as an intermediate step of a search procedure more work will be needed in order set
the working point in relation with the changed noise distribution. A crucial aspect to be
evaluated will be the impact of the filter on the production of noise artifacts, i.e. assess how
the false alarm probability is influenced by the changes in the noise. The implementation
of this filter will probably require a new tuning of the selection thresholds to optimize the
equilibrium between the need to maximize the detection efficiency and minimize the false
alarm probability. The implementation of a new, more sensitive search procedure will be
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the object of a next work.

Figure 5.11: Detection efficiency curves as function of h0, computed by putting a selection
threshold of CRthr = 5 to the individual critical ratios associated to the simulated signals
shown in Figure 5.10. The blue curve represents the detection efficiency for unfiltered
spectrograms, while the green ones represent the spectrograms after the application of the
triangular filter.



Chapter 6

All-sky searches exploiting the

sidereal modulation

In this chapter I present the initial steps of a work which aims at developing a new all-sky
search method, based on the so-called sidereal filter. This is a new filtering method for
CW searches [181], which exploits the detector-induced sidereal modulation on signals of
astrophysical origin. It can be either used for directed searches and as a follow-up scheme
for candidates returned by all-sky searches. I have performed preliminary tests to use the
sidereal filter as a first step to construct time-frequency maps and perform an all-sky search
for CW signals. Although the work is still at an early stage, results show that all the
components of the search work properly in sequence and the full chain is able to recover
simulated signals. The chapter is organized as follows: in Section 6.1 I introduce the sidereal
modulation of astrophysical signal, showing how it is related to the position of the sources
and of the detector and explaining where the information on this modulation is stored. In
Section 6.2 I present the procedure to extract the sidereal components from the detector
data in order to produce time-frequency maps. In Section 6.3 I develop the tools to extract
signals from the time-frequency maps and estimate their parameters. I also run the search
on a limited parameter space, showing that the it is able to recover simulated signals present
in the data.

6.1 Sidereal pattern of astrophysical signals

I have already shown in Section 2.3 that the two response functions of a detector, the antenna
pattern functions, produce an amplitude modulation of the signal at the detector output.
In fact the signal at the detector is given, according to Equation 2.31, by a combination
of the two polarization weighted by the antenna pattern functions shown in Equation 2.35.
These functions have a periodic dependence on the sidereal time. As a consequence, a
monochromatic signal with angular frequency É0 and duration longer than a sidereal day
(T· ≃ 86164.09 s) at the detector output is completely defined by its Fourier components
at the angular frequencies É0, É0 ± Ω·, É0 ± 2Ω·, where Ω· = 2Ãf· ≃ 7.292 · 10−5rad/s.
To better visualize this feature it is convenient to express the signal at the detector output
with the so-called 5-vector formalism. The 5-vector formalism was introduced in [118] in
the context of targeted searches, and is a very compact way to represent the CW signal.

134
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The signal at the detector output is described in terms of five components as

h (t) = Re

{

H0 e
i ω0t

2
∑

k=−2

Ak e
i kΩ⊕t

}

(6.1)

where the amplitude H0 is related to the standard strain amplitude h0 by a relation depend-
ing on the emission mechanism and Ak are the complex components of the signal 5-vector,
whose explicit expression can be found in [118]. Here, it is important to underline that the
5-vector is fully determined by the localization and orientation of both the source and the
detector. In the case of CWs from permanent deformations in NSs, we have

H0 = h0

√

1 + 6 cos2 º+ cos4 º

4
(6.2)

If we take the time-dependent signal power at the detector, i.e. the squared modulus of the
signal P (t) = |h(t)|2, we find out that the power is fully described by its first five Fourier
components as

P (t) = H2
0 Re

{

4
∑

r=0

cr e
i rΩ⊕t

}

(6.3)

where the coefficients cr are related to the 5-vector components Ak as follows [118]

c0 =

2
∑

k=−2

|Ak|2

c1 =2Re
[

A0A
∗
−1 +A1A

∗
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∗
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∗
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]
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[
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∗
−2 +A1A

∗
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∗
0

]

c3 =2Re
[

A1A
∗
−2 +A2A

∗
−1

]

c4 =2Re
[

A2A
∗
−2

]

where the asterisk denotes the complex conjugate. The sidereal pattern is periodic on the
sidereal day, and is not explicitly dependent on the frequency. Once the detector is fixed,
the sidereal pattern is determined only by the source location. In the left plot of Figure 6.1
a theoretical sidereal pattern, computed for a source located at the equatorial coordinates
of the Vela pulsar (³, ¶) = (128.8365◦,−45.1758◦) and the Virgo detector, is shown (blue
curve). There are a minimum and a maximum of the absorbed power, that occur periodically
at each sidereal day. The red and green curves are the sidereal pattern obtained by shifting
the source location by ³ + 20◦ and ¶ − 20◦ respectively. A change in declination changes
the weights of the harmonics combination, whereas a change in right ascension determines
a simple phase shift of the curve. In the right plot of Figure 6.1 the power spectra of the
three curves is shown. According to Equation 6.3, the power is concentrated only in the
first five harmonics. It is worth to note that the first five harmonics of the blue and red
curves, which represent sources shifted along the right ascension, are coincident.

Looking at the sidereal patterns and their spectra, the crucial fact we want to exploit
is that if a signal has an astrophysical origin, its power will be modulated with a sidereal
pattern and its information will be stored only in the first five harmonics. All the other
harmonics of the spectrum are not related to astrophysical signals, and in the case of the
simulated pattern in Figure 6.1 their value is due to the intrinsic numerical noise for double-
precision data. At the detector output, the CW signal is added to the detector noise, which
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Figure 6.1: Left plot: sidereal pattern for three sources with different sky positions with
respect to the Virgo detector. The blue curve represents a source located at (³, ¶) =
(128.8365◦,−45.1758◦), which is the position of the Vela pulsar, the red and green represent
sources translated by +20◦ in right ascension and −20◦ in declination respectively. Right
plot: power spectral density of the sidereal pattern curves shown in the left plot, as function
of the harmonic number. The information is fully contained in the first five harmonics. The
values for other harmonics are due to numerical noise.

is not affected by sidereal modulation. The basic idea is therefore to use the feature of the
sidereal pattern as a filter to discriminate between astrophysical signals and noise artifacts.
By extracting the first five harmonics from the power spectrum, we are actually filtering
the power componens that are related to the astrophysical origin of a signal. In the next
Section I will explain how this sidereal filter is implemented.

6.2 Implementation of the sidereal filter

In order to extract the sidereal pattern from the detector data, some processing is necessary.
Starting from the BSD data framework [170], data covering frequency sub-bands of 1-Hz
and the whole run duration Tobs are extracted. Each extracted sub-band can be processed
independently. Let us focus on a given sub-band x(t), which covers a frequency interval
[fk, fk + 1Hz]. We take the Fourier transform of the series, x̃(f), and divide it into Nf

interlaced sub-intervals x̃i(f), with i = 1, ...Nf . Each sub-interval has a width ∆f , centered
at a frequency fi and interlaced with the next one by a factor R = Nf (∆f/1Hz).

The choice of the sub-interval width ∆f is crucial for the sensitivity of the whole search.
From one side, there is the need to keep it large enough to contain the whole signal. Since the
signal power is split in five peaks with frequency separation f·, this width cannot be smaller
than 5 f·, but we have to take into account also that the signal moves in frequency. On
the other side, there is the need to keep as less noise as possible, which tends to overwhelm
the signal modulation. I have found a reasonable compromise by setting ∆f = 20 f· and
interlacing the sub-intervals by one fourth, i.e. taking R = 4. This means that each 1-
Hz band is divided in N = 17233 sub-intervals. For each sub-interval, its inverse Fourier
transform xi(t) is taken and it is then divided in shorter time segments xi,j(t). A scheme
of the procedure is shown in Figure 6.2. The choice of the segment duration is another
crucial part. It cannot be as short as a sidereal day because we need to observe more than
one period of the sidereal pattern, but if it is too long we would likely lose the signal as
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Figure 6.2: Schematic representation of the data pre-processing. The blocks on the left
represent the detector output data divided in 1-Hz sub-bands covering the whole observing
run Tobs. Each block is processed as shown in the right side: it is divided in Nf sub-intervals
∆f wide and interlaced by a factor R (in this scheme an R = 1 is used, to make it easily
readable), and each sub-interval is divided in Nt segments with duration ∆t.

its frequency variation can exceed the frequency interval ∆f . The reasonable choice I have
adopted for the application I am going to describe consists in segments one sidereal week
long, ∆t = 7T·, so one sub-interval is divided in Nt = Tobs/∆t segments. This choice could
be changed after future tests when the full procedure will be completed.

We have then a set of Nf × Nt time series xi,j(t), each one covering a [fi, fi + ∆f ]
frequency range and a [tj , tj + ∆t] time range, and that globally cover 1 Hz of data over
the whole observing time. Then, their power Pi,j(t) = |xi,j(t)|2 is evaluated. In order
to estimate the sidereal pattern, Sp;i,j(t), the estimated power is folded over one sidereal
day T·. The quantity Sp;i,j(t) should describe the power impinging on the detector as a
function of the sidereal time, however it is distorted by the presence of gaps in the data.
In practice, the time segments where the duty cycle, i.e. the percentage of science mode
data, is lower are disfavoured with respect to other time segments. To get a non-distorted
estimation of the sidereal pattern, the quantity Sp;i,j(t) is averaged over a number K (e.g.
K = 10) of time intervals ¶t = T·/K in which the sidereal day is divided and weighted by
the percentage of science-mode data in each interval:

ïSp;i,j (t)ð =
K
∑

k=1

Sp;i,j (t)

wi (k)

∣

∣

∣

∣

t∈[tk, tk+δt]

(6.4)

where the function wi(k) is the fraction of the time covered by the segment in the i-th
sub-interval in the time interval (tk, tk + ¶t).

From the square modulus of the Fourier transform of the non-distorted estimation we
get the sidereal power spectrum estimation

S̃i,j;m = |FFT (ïSp;i,j (t)ð)|2 (6.5)

where the integer index m indicates the sidereal frequency harmonic component. In Figure
6.3 I show a detail of the estimated sidereal amplitude spectra (i.e. the square root of the
power spectral density) in the frequency band [108, 109] Hz over a sidereal week during
the O2 run of the LIGO Livingston detector[158], starting at GPS time 1182729618 s. I
have cut from the plot the fundamental m = 0 harmonic, since by definition of the FFT
algorithm it gives the data total power and is generally dominated by the noise, distorting
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the color scale of the plot. The spectra are zoomed around the frequency of a specific
hardware injection, called pulsar3, which simulates a CW signal with frequency of about
108.85 Hz1. The estimated sidereal spectrum of the detector noise, visible at frequencies
different from the hardware injection, is not flat as one might assume. Instead, it shows
a slight excess of power at the lower harmonics, from harmonic number 20 downwards.
This non-uniformity originates from the fact that in an Earth-based detector the noise is
often modulated by night-day effects linked both to human activity and to oscillations of
air pressure, temperature and so on. Consequently, the astrophysical harmonics of the
power spectrum have to emerge from that noise floor. The excess of power at the first five
harmonics, at the frequency of the hardware injection, is well visible.

Figure 6.3: Detail of the estimated sidereal amplitude spectra in the frequency band
[108, 109] Hz from a sidereal week during the O2 run [158], starting at GPS time 1182729618
s, from LIGO Livingston detector. The spectra are zoomed around the frequency of a spe-
cific hardware injection called pulsar3.

In Figure 6.4 two different sidereal pattern estimates from the data set shown in Figure
6.3 are reported, one (the blue curve) at the frequency of the hardware injection pulsar3,
108.848 Hz, and one (the red curve) from a 108.847 Hz. The sidereal modulation (left plot)
of the segment containing the signal is clearly visible with respect to the pure noise. The
absorbed power has a maximum corresponding to the expected sidereal hour, given the
source right ascension. In the right plot the corresponding sidereal spectra are shown. The
first thing to note is that the fundamental harmonic is dominated by the noise, therefore
it cannot be used to estimate the sidereal power. Harmonics from the first to the fourth
contain the power related to the astrophysical origin of the signal, and in the example they
are significantly stronger than the pure noise ones. The remaining harmonics are related to
noise and the power in the two curves is comparable. This distinct contribution of signal
and noise is at the base of the sidereal filter. Starting from the sidereal power spectrum
S̃i,j;m of a data segment xi,j(t), we can define three quantities. The first one is the total
power, corresponding just to the m = 0 harmonic

P0; i,j = S̃i,j;m=0 (6.6)

The second one is the signal power, defined as the sum of the sidereal harmonics from the

1Hardware injections are generated by directly displacing the mirrors through an actuator [182].
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Figure 6.4: Estimated sidereal pattern (left plot) and sidereal power spectrum (right plot) of
two data segments of one sidereal week starting from GPS=1182729618 s. The blue curve
corresponds to the frequency bin around 108.848 Hz containing the hardware injection
pulsar3, while the red curve is taken at a close frequency.

first to the fourth:

Ps; i,j =

4
∑

m=1

S̃i,j;m (6.7)

Last, the third one is the noise power, defined as the sum of the harmonics of order greater
than four:

Pn; i,j =
1

M − 4

M
∑

m=5

S̃i,j;m (6.8)

At the end of the processing, the information from each segment, labeled with indices (i, j)
and covering a frequency range [fi, fi +∆f ] and a time range [tj , tj +∆t], is condensed in
just three scalar numbers, namely P0; i,j , Ps; i,j and Pn; i,j . One possibility is to construct a
statistics based only on the absolute signal power. This choice provides the higher signal-
to-noise ratio (SNR), but is not so robust with respect to strong noise disturbances. In fact,
a strong noise line would distribute a higher power across all harmonics, including the first
four. To get a more robust statistics a reasonable choice is to consider the ratio between the
signal power and the total power, Ps/P0, or between the signal power and the noise power,
Ps/Pn. The former produces a more regular statistics but inevitably loses some SNR, since
part of the signal power is included in the denominator. The latter should avoid SNR losses
but produces a more noisy statistics.

Once the statistics is chosen, each data segment is represented by just one number and
the information of a 1-Hz data block over the whole observing time is condensed into a
Nt×Nf matrix. In the example in Figure 6.5 I have reported the detail of the sidereal map
built over the [108, 109] Hz data block of LIGO Livingston detector during O2. The plot is
zoomed around the frequency of the hardware injection pulsar3, which is well visible with
the characteristic annual Doppler modulation. The quantity plotted in this example is the
signal-to-total power ratio Ps/P0. Each single pixel in the map represents the synthesis of
the processing done on a one-sidereal-week time segment. In the next Section I show the
further steps I have done towards the development of an all-sky search method.
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Figure 6.5: Detail of a sidereal map obtained from a [108, 109] Hz data block of LIGO
Livingston detector during O2, zoomed on the frequency of the hardware injection pulsar3.
The quantity plotted in color scale is the ratio between the signal power Ps and the total
power P0.

6.3 First steps for a fully incoherent all-sky search

Sidereal maps like the one shown in Figure 6.5 are the basis on which I have implemented
a procedure to detect the signal time-frequency pattern. Similarly to the FH procedure
discussed in Chapter 4, the steps to be done are the correction of the Doppler effect and
a transformation of the map to recover the signal parameters. However, there are many
differences.

First of all, I have not used the phase information at all. From the beginning, taking the
power of the time segments, the resulting quantities are independent on the signal phase.

Semicoherent methods increase their sensitivity with the segment duration as T
1/4
fft [122],

but the more the segment duration increases, the more the resolution of the search increases.
Analyses based on longer segment duration are more subject to possible deviations of the
signal from the expected models, with a resulting sensitivity loss that could cancel the
advantage of longer segments. In the sidereal filter framework, time resolution and frequency
resolution are related in the sense that the frequency resolution must be tuned to take into
account the frequency shift of the signal within the time resolution, but are not inversely
proportional. A semicoherent search with a time resolution of a sidereal week would have a
frequency resolution of ∼ 1.65 ·10−6Hz. The sidereal filter, instead, works with ¶f = 5 f· ≃
5.8 · 10−5Hz, so any deviation of the signal from models within that frequency range does
not impact the sensitivity.

Second, I don’t need to select a sparse subset of the sidereal maps, since their dimen-
sions are negligible with respect to the SFDB and PM used in the FH procedure. Here,
the computational load is more focused on the pre-processing phase, which can be done
progressively during the observing run, as the detector output data are produced.

Third, the processed data segments have duration of a sidereal week. During this time,



CHAPTER 6. ALL-SKY SEARCHES EXPLOITING THE SIDEREALMODULATION141

the Earth has completed ∼ 7 rotations around its axis. Therefore, the daily rotational
Doppler effect is averaged and does not influence the time-frequency signal pattern. The
Doppler correction must be done only for the annual Doppler.

Doppler correction

The correction of the Doppler effect is done by shifting the frequency of the individual pixels
of the sidereal map. The shift in frequency due to the annual orbit, according to [122], is
more easily described in ecliptic coordinates (´, ¼) and is given by

f(t) ≃ f0

[

1 +
ΩorbRorb

c
cos´ sin (Ωorbt− ¼)

]

(6.9)

where Rorb is the radius of the Earth’s orbit and Ωorb is the orbital period. For a given
sky position of the source, the amount of the shift for a frequency bin is obtained by
inverting Equation 6.9. For the explicit estimate of the shift, the Earth barycentric velocity
with respect to the mean equator and equinox is computed, using a version of the Ron &
Vondrak trigonometric series [183]. The Doppler correction is repeated for a grid of points
in the sky. The needed resolution of that grid is determined by the frequency resolution. A
given frequency f0 would be shifted, at most, by a quantity f0(ΩorbRorb)/c, so the maximum
shift in terms of number of frequency bins is given by

ND =
f0
¶f

ΩorbRorb

c
(6.10)

where the value of ND is rounded to an integer. By imposing that the frequency shift
corresponding to a variation in ¼ or ´ correspond to one frequency bin, the sky resolution
in ecliptic coordinates is given by [122]

¶¼ =
1

ND cos´
; ¶´ =

1

ND sin´
(6.11)

The corresponding sky grid is built by means of the algorithm described in [122].

Radon transform

The Doppler correction is performed covering the whole discrete sky grid. Each correction
produces a sidereal map where the frequencies have been shifted in a different way. If a map
contains a CW signal with sky position matching the one used for the correction, that signal
has become a straight line. The top plot in Figure 6.6 shows an example: the sidereal map
already shown in Figure 6.5 has been corrected for the Doppler effect by the sky position
of the hardware injection pulsar3, and the signal has become a straight line.

In order to recover the signal parameters I have implemented a Radon transform. The
Radon transform is an integral transform that in the original formulation maps a two-
dimensional function onto its integral projections. Its use for shape detection dates back
to 1965 [184]2. The Radon transform is formally equivalent to the Hough transform, but
in the practical implementation the latter results optimized for sparse data input. In my

2In the publication, the authors describe a technique that is essentially a Radon transform, even if its
name was not recognized.
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Figure 6.6: Top plot: sidereal map from LIGO Livingston O2 data between 108 Hz and 109
Hz, already shown in Figure 6.5, where the Doppler effect has been corrected for the sky
position of the hardware injection pulsar3. Bottom plot: Radon transform of the sidereal
map in the top plot, as function of the source frequency and first-order spindown.
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implementation, I have parameterized the function to be searched using the 1st-order Taylor
series for the frequency evolution, already presented in Section 2.3

f (t) = f0 + ḟ0 (t− t0) (6.12)

By labeling with I(t, f) the sidereal map given as input, the Radon transform R returns a
map in the parameter space (f0, ḟ0) given by

R{I}
(

f0, ḟ0

)

=

∫

I (t, f) ¶
[

f − ḟ0 (t− t0)− f0

]

dt df (6.13)

where ¶(·) is the delta function. The frequency resolution used for the Radon map coincides
with the one, ¶f , of the sidereal maps. The resolution in spin-down is given by the minimum
detectable frequency shift, ¶f , over the whole observing time:

¶f0 = ¶f ; ¶ḟ0 =
¶f

Tobs
(6.14)

An example of the output of the Radon transform is given in the bottom plot in Figure
6.6. The plot shows a detail of the Radon transform applied to the Doppler-corrected
sidereal map in the top plot in the same Figure. The content of each pixel in the radon
map represents the sum of the pixels in the sidereal map aligned on the line described by its
(f0, ḟ0) coordinates. The maximum of the sum in the example corresponds to the physical
parameters that describe the pulsar3, at the beginning of the O2 run.

Figure 6.7: Sky map showing the measured CR values of the most significant candidates
selected selected in each point of the sky grid in the frequency band [31.0, 31.5] Hz. The
black ”X” marker indicates the position of the hardware injection pulsar11, with parameters
f0 ≃ 31.424Hz, ḟ0 ≃ −5.07 · 10−13, corresponding to the maximum CR found.



CHAPTER 6. ALL-SKY SEARCHES EXPLOITING THE SIDEREALMODULATION144

Candidate selection

From each output of the Radon transform, the two most significant candidates are selected.
The significance is evaluated by defining a critical ratio as

CR =
s− µs

Ãs
(6.15)

where s is the measured value of a pixel in the Radon map, µs is the mean value of all the
pixels in the Radon map and Ãs is their standard deviation.

Figure 6.7 shows a sky map representing the CR of the most significant candidate
selected for each point in the sky grid, in the frequency band [31.0, 31.5] Hz. In that band
an hardware injection, called pulsar11, with parameters f0 ≃ 31.424Hz, ḟ0 ≃ −5.07 · 10−13

at GPS=1130529362 s and sky location ³ ≃ 285.1◦, ¶ ≃ −58.3◦. Its location is marked by
a black ”X” in the sky map, which actually coincides with the maximum CR recovered at
that frequency, confirming the consistency of the procedure.

Even if the search loop is still not optimized and many steps are rough at the moment,
I have performed a full search loop on the data from LIGO Livingston detector during
the O2 run [158]. To save computational resources, I have run the search in the frequency
range [20, 1000] Hz and covering the range of spin-down [−1, 1]×10−9 Hz/s, with resolution
¶f = 5 f· ≃ 5.8 · 10−5Hz and ¶ḟ0 = 0.5 · 10−10Hz/s. The recovered hardware injections
are reported in Table 6.1. Four hardware injections, namely pulsar4, pulsar7, pulsar13 and
pulsar14, have not been found because their frequencies were out of the searched range.
Other three injections, namely pulsar6, pulsar8 and pulsar12, have not been found because
their spin-down values were out of the searched range.

H.I. name CR f0 [Hz] ḟ0 [Hz/s]

pulsar1 36.2 848.9551 −3 · 10−10

pulsar2 35.7 575.1638 0

pulsar3 60.2 108.8568 0

pulsar5 60.5 52.8091 0

pulsar9 31.1 763.8476 −0.5 · 10−10

pulsar10 28.2 26.3380 −1 · 10−10

pulsar11 37.0 31.4256 0

Table 6.1: Recovered hardware injections after performing an all sky loop over the [20, 1000]
Hz frequency range and covering the range of spin-down [−1, 1] × 10−9 Hz/s. The first
column indicates the name of the hardware injection, the second column the measured
critical ratio, the third and fourth columns show the inferred frequency and spin-down
parameters.

6.4 Discussion and open points

The steps presented in this chapter represents the first part of the work to build a new all-
sky search method. Starting from frequency band-sampled data divided in blocks covering
1 Hz and the whole observing time, I have built a bank of short interlaced segments with
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duration a sidereal week and covering a frequency width ∆f = 5 f·. On each segment I have
estimated the sidereal pattern by folding on one sidereal day and weighting to compensate
for holes in the data. After computing the sidereal power spectrum, I have extracted the
total power, the signal power and the noise power to construct a detection statistics and
build time-frequency sidereal maps. The sidereal maps are then shifted in frequency to
compensate the annual Doppler effect, for each point of a discrete sky grid, and fed as
input at the Radon transform, which maps the data from the time-frequency plane to the
parameter space (f0, ḟ0). Candidate signals are then selected from the Radon map according
to a critical-ratio statistics.

At this stage of the work, all the components of the procedure have been developed,
tested and operated in sequence. However, a big amount of work is still missing in order
to have a full, working search pipeline. I have tuned many fundamental quantities, like the
frequency and time resolution of the base time segments, the width of the time intervals to
produce a non-distorted estimate of the sidereal pattern, the resolution of the sky grid for
the Doppler correction and the resolution of the Radon map, in a reasonable way. However,
to make a robust tuning of all that quantities I will need to run the full search adjusting that
quantities in order to maximise the final detection statistics. I am evaluating the possibility
to implement a rough Doppler pre-correction to the data before starting the procedure, in
order to keep the signals frequencies inside the segments for a longer time. I will have to
implement the checks and follow-up procedure to be done on the candidate signals selected
from the Radon maps. Finally, a further work will be needed in order to characterize the
sensitivity of the procedure and compare it with other existing methods for all-sky searches.
All these missing items will be the completed in a future work.



Conclusions

This PhD thesis has been fully devoted to the search for continuous gravitational waves, with
the purpose of enhancing their sensitivity and thus increasing the chances of a first detection.
Such a detection would have a huge impact on the gravitational-wave physics field, with
important implications for fundamental physics, nuclear-matter physics and testing theories
beyond the standard model. My effort has been devoted both to the data-analysis and
instrumental science, as they all contribute to increase the detection chances.

The noise hunting work done at the Virgo site, described in Chapter 3, was focused on
technical noises generated by HVAC, vacuum systems and the external environment. I have
identified noise sources from the water pumps in the terminal buildings, from vacuum dry
pumps and air handling units in the central building and from the external gas pipelines.
In all the reported cases a combination of sniffing campaigns and analysis of measurements
has been necessary to correctly identify the sources. The analysis tool I have developed
to visualize the spatial propagation of seismic noise has proved to be very effective for
quickly locating noise sources, and is currently used by other components of the noise
hunting team. In the majority of the identified noise sources we have been able to perform
mitigation actions that have been very effective.

On the data analysis side, one of the topic I have studied is the possible impact of
several continuous-wave signals, which are clustered together in the same frequency band,
on the Frequency-Hough procedure. The study, reported in Chapter 4, was motivated by
recent new scenarios that predict the emission of continuous waves by ultra-light boson
condensates around rotating black holes. It has been predicted that many superposing
signals from galactic black holes would be unresolvable and produce some confusion noise.
I have found that the first steps of the search, namely the spectral autoregressive estimation,
the construction of the peakmap and the selection of candidates from histograms of Doppler-
corrected peakmaps as function of the frequency, are robust with respect to the presence
of clusters of signals. I have found that moderate signal clusters, i.e. with frequency width
less than 0.1 Hz, do not impact the search sensitivity. Larger clusters can cause a ∼ 5%
sensitivity loss when they reach densities of the order of thousands of signals confined in a
∼ 0.8Hz wide band. However, this would likely represent an unrealistic situation. In the
most realistic scenarios predicted by simulations, the sensitivity loss is negligible. I have
individuated the cause in the way the autoregressive estimation follows the changing noise
floor, i.e. the so-called memory. I indicate a possible solution in running the autoregressive
estimate with different memory resolutions, in order to adapt to different configurations.
These results are very relevant also in view of future detectors like Einstein Telescope or
LISA, for which the problem of signal clusters will be more relevant.

A further topic of my Thesis has been the development of a two-dimensional filter, so-
called triangular filter, to enhance the signal-to-noise ratio of fast-evolving signals, with the
frequency changing by several Hertz over few hours or days, in whitened spectrograms. The
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considered signals have typical duration of ∼ 103 seconds and are emitted by newly-born
neutron stars, endowed with a very strong inner magnetic field or when unstable oscillation
modes of the star are excited.

In Chapter 5 I have introduced the two dimensional Fourier transform, and I have shown
how the information on curves in a monochromatic image is stored in the Fourier transform
of the image itself. I have exploited that information to develop the triangular filter, which
works in the Fourier domain and reinforces the pattern of signals against the noise. I have
characterized the effect of the filter on white noise and I have performed a Monte Carlo
simulation to estimate its potential impact on the searches, finding that a ∼ 20% sensitivity
gain is achievable.

In Chapter 6 I have presented the first steps of a wide work to develop a new procedure
for all-sky continuous-wave searches, exploiting the sidereal modulation that the detector
imprints to astrophysical signals. I have developed and tested the components of the new
method and I have verified that the full chain works properly. In particular, performing
a search on a limited parameter space I was able to recover the hardware injections that
are present in the detector output data. Some further work will be needed to complete,
characterize and test the full search method.

At the moment, the start of the next O4 observing run by the LIGO-Virgo-KAGRA col-
laboration is scheduled for the end of May 2023. During the shutdown period the detectors
have been subject to numerous upgrades which will lead to an improvement in sensitivity
across the entire frequency spectrum. Further strong improvements will be implemented
also for the subsequent O5 run, and a study to exploit the full potentiality of the existing
infrastructures is on the way. A strong synergy between instrumental science and the de-
velopment of more efficient and sensitive methods is the best way to maximize the chances
of a forthcoming discovery.
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