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Abstract: A significant number of scientific research groups are still nowadays
dealing with masonry material as the main focus of study since it provides
an open field of research that is far from resolution in a standardized manner.
As masonry structures are highly vulnerable to any level of natural hazards,
especially seismic activity, both traditional and composite materials have been
used as reinforcements in masonry and provide different solutions that meet
the key requirements set out by cultural heritage organizations. Extensive effort
has gone into developing appropriate techniques of assessment, that usually
demand an individualized methodology of analysis which is to be handled through
comparative studies requiring results validation. A suitable field of study is the
Limit Analysis approach towards masonry structures, as it offers quite accurate
and, more importantly, robust results regarding the necessity to resolve the issues
involved in the masonry numerical representation so that reliable outcomes are
drawn to enable the assessment of such structures. The enrichment of a Limit
Analysis homemade code with the inclusion of cohesion and frictional behaviour
at the interface level is able to account, in a simplified but very robust manner, the
perplexing issues involved with the numerical assessment of reinforced masonry
structures with particular reference to arches. The cohesion incorporation is
calibrated for a variety of in-plane applications, accounting for the joints’ indirect
tensile strength, that is able to simulate the strengthening measures. Results
obtained are validated with literature results and included in a comparative study
between discrete numerical models that utilize different modelling strategies.

Keywords: Limit Analysis, Friction, No-tension contacts, Cohesion, Reinforced
Masonry Arches.
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1 Introduction

The structural behaviour of masonry is a challenging task considering its composite nature
as a material. More particularly when dealing with historical masonry that comprise of
dry joints (no mortar) or very weak mortar layers. In such circumstances, the joints act
as structural weak points, resulting in a discrete system of blocks. As blocks that form
historic masonry are usually with good compressive strength, the assumption that they have
infinite compressive strength can be considered. Another reasonable assumption is that the
tensile strength of the joints is null, given their extremely low tensile strength. Heyman [1]
in his novel Limit Analysis approach considers also the infinite friction and impossibility
of sliding along the joints. However, in the case of historic masonry, this assumption for
friction is not always realistic, and it is an important element to consider [2, 3]. This is
crucial to account, particularly when assessing existing structures.

In recent years a significant amount of interest has been given by diverse authors
into tackling this issue. The variety of strategies for the numerical modelling of masonry
structures is enormous and each of them contains its specifics with benefits and drawbacks
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[4]. The most common and spread techniques consider masonry as a non-linear deformable
homogeneous material. Homogeneous modelling does not require special discretization to
describe the exact texture, shape and interlocking of the masonry and as such it provides a
simplified technique without the need of detailed information on the geometry. However,
in order to have a full description and accurately describe the behaviour of masonry, a
more detailed constitutive description of such material is required. The drawbacks are that
the amount of parameters required in this case is very large and not valid for all types of
masonry due to their very diverse nature and as such remains only a rough approximation
requiring calibration through experimental testing or other forms of validation. Finite
Elements Method (FEM) is among the most common ones dealing with such structures
[5, 6, 7, 8]. A more accurate modelling of masonry utilizing such techniques requires the
use of fracture mechanics and the ability to account for the development of cracks [9, 10].
However, understanding the anisotropy and the texture dependence of masonry, a recent
trend on the simulation of the behaviour of masonry structures is through the help of multi-
scale approaches [11, 12, 13, 14, 15, 16] and enriched continuum [17, 18, 19] which are
able to account for the micro structure of masonry.

Another popular method is using the macro element models which are more convenient
in the assessment of masonry structures for professional use as it is easier to handle larger
structures. The main characteristic of the approach consists in the grouping of large panels
into piers connected by spandrels and the assessment is done separately for every component
disregarding the micro structure. In this scope of models the two main approaches are the
equivalent beam-based approach [20, 21] and the spring based approach [22, 23, 24]. In the
former masonry panels are represented as nonlinear beams, while in the latter masonry is
represented as panels connected with springs.

As stated above, masonry is mainly a discontinuous system of rigid blocks and the most
suitable techniques for studying its behaviour are the ones that are able to account for this
discrete behaviour in a block-based manner. Such strategies are able to account for the
bond behaviour and the actual texture of the masonry regardless of its complexity. Another
important feature of such analysis is their ability to localize the weakest spots and the
collapsing mechanisms of the entire structure and provide insight for possible interventions.
Nevertheless some of these strategies require a huge computational cost and effort to provide
results and thus limiting the scale of the studied structure [25, 26], although there are some
cases of large scale structures [27, 28]. Nonetheless such efforts are only required while
utilizing strategies such as Discrete Elements Method (DEM) [29, 30, 31, 32, 33], FEM
with interface elements [34, 35, 36, 37] or Extended Finite Elements Methods (XFEM)
[38, 39].

Within the domain of block-based approaches, Limit Analysis (LA) is able to tackle the
issue of analysing large structures with discrete textures at a lower computational cost. This
approach for masonry has been proposed by Baggio and Trovalusci [2], as a non-standard
LA with sliding at the interfaces accounting for friction, in their seminal work and then
further proposals have been considered for 2D [40, 41, 42] and 3D [43, 44, 45] structures.
Such approaches are able to describe the non-linear behaviour of block masonry with dry
joints or filled with weak mortar, taking into account finite frictional resistance. Among a
large variety of methods and approaches, LA stands out as a rather simple but powerful
method, compared to other approaches in the assessment of existing masonry structures
[46, 47]. LA involves a micro model description of masonry units as rigid blocks with joints
unable to carry tension and resistant to sliding by friction that account for dry joints or
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joints with very weak mortar. It has been proven to be especially useful due to the following
advantages:

• it enables micro modelling of every block and thus allows considering the geometrical
scale influence on the structural response;

• it requires a relatively simple mechanical constitutive model and few input parameters
with no need of extensive testing for material characterization;

• it provides straightforward results in terms of collapse multipliers and collapse
mechanisms;

An in-house code has been developed at Sapienza University of Rome based on the
initial theoretical background of Baggio and Trovalusci [2] named ALMA (Analisi Limite
Murature Attritive) as a non-standard LA approach considering finite friction for the joint
interfaces. The code solves the optimization problem posed by the kinematic upper bound
approach as a solution for the minimum collapse multiplier of the assemblage of masonry
blocks. Under the consideration of finite friction the optimization problem is subjected to
non-linear constraints and obtaining the global minimum is not straightforward. In order to
overcome this issue, the problem is linearized by adopting dilatancy and in this way dealing
with the associative flow rule. Although this provides an overestimation of the actual global
minimum, the solution of the linear problem is very close to the nonlinear one with a large
reduction of the computational burden [48].

After an enhancement of the code to include cohesion on the joints, the new capability
has been exploited in this paper to simulate the reinforcement of masonry arches by utilizing
increased cohesion values as a method for joint reinforcement. Several authors have studied
the reinforcement of arches with composite materials. In particular [49, 50, 51] used partial
and distributed reinforcements for arch strengthening. In order to validate the ability of
ALMA 2.0 to reproduce the strengthening effect of such reinforcements in masonry arches,
two examples have been chosen from literature, namely first and second case study. The first
case study was originally published by Orduña [52] and then numerically reproduced using
different modeling approaches (FEM, DEM and analytical) by Baraldi et al. [51] in order to
apply and assess the effect of partial reinforcement. The second case study is based on the
extensive experimental campaign performed by Oliveira et al. [50] whose main objective,
among others, was to provide results that may be used as calibration/validation benchmarks
for numerical models of composite reinforced masonry arches.

The structure of the paper contains in Section 2 the introduction and the formulations
of in-house code ALMA that solves the Limit Analysis problem in the presence of sliding
mechanisms. Then, in Section 3 it is presented a case study where a semi-circular arch
subjected to a vertical live load is studied using the increased cohesion as reinforcement
method and it is compared with benchmarks from literature for the reinforced and
unreinforced cases. Another case study is analyzed in Section 4 where a segmental arch
subjected to vertical live load is investigated using the same approach and compared to
an experimental campaign as a benchmark for both the unreinforced and reinforced cases.
Finally, in Section 5 the conclusions and some final remarks are reported.

2 Limit Analysis Code - ALMA 2.0

In ALMA masonry blocks are assumed to be rigid and with a infinite compressive strength,
no-tension and frictional joints. Accounting for frictional joints leads towards the non-
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Figure 1: Limit analysis problem formulation for two blocks

associative case of plasticity as a nonlinear problem in optimization with a duality of
solutions. However, the problem is simplified using dilatancy on the joints that results in a
linear programming (LP) problem of optimization where associativity and normality rules
are assumed.

A recent updating of the code to ALMA 2.0 utilizes more recent programming language
as the processor such as Python TM and with the help of various libraries (such as Mosek®)
[53] is able to solve the upper bound optimization problem formulated. The pre-processing
is all carried out in a CAD environment, while the post-processing of the results is achieved
in the open source software Paraview [54]. The generalized formulation of limit analysis
problem for two blocks is shown in Figure 1, namely block i and j with a common interface
as joint k, for the case of a horizontal live load. On Figure 1b is shown the kinematic
compatibility between the blocks while the kinematic and static variables for joint k are
given in Figure 1c and 1d. Considering dilatancy for the joints, the upper bound kinematic
approach is solved as a linear programming optimization problem as originally introduced
by [2], and after some algebraic operations on the main equations takes optimization problem
form as shown in Equations 1.

αc =min
{
−λT (A0N1)

T
f0

}
,

subjected to : (AN1 −N2)λ = 0, (compatibility condition) (1)

λT (A0N1)
T
fL − 1 = 0, (positive live load)

λ ≥ 0 (bounds on the unknown)
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Utilizing a modified Mohr-Coulomb yield domain it is able to upgrade the code to
account different cohesion levels for the joints and indirectly introduce tensile strength on
them. This upgrade can be used to account for mortared joints or in the case of very large
values of cohesion, it can even account for strengthened joints. This feature is an addition to
the various already available code capabilities of ALMA 2.0, namely foundation settlement
[47] and retrofitting tie modeling [55]. The new and modified optimization problem takes
the form as shown in Equations 2.

αc =min
{
λT [c− (A0N1)

T
]f0

}
,

subjected to : (AN1 −N2)λ = 0, (compatibility condition) (2)

λT (A0N1)
T
fL − 1 = 0, (positive live load)

λ ≥ 0 (bounds on the unknown)

In the above equations the unknown of the problem remains αc, a scalar, as the collapse
multiplier, with λ as the plastic multiplier vector that contains the non-negative coefficients
that determine the mode of collapse. A0 is the inverse matrix of the compatibility kinematic
submatrix B1 of maximum rank while the rest of the kinematic matrix B2 is stored in the
A matrix as A = B2 B

−1
1 . N1 and N2 are the submatrices of the block-diagonal gradient

matrix N and correspond to the submatrix of independent and linearly dependent kinematic
variables, respectively. f0 and fL are the vectors of the generalized actions on the centres
of the blocks for the dead and live loads, respectively. Additional details on the derivations
and formulation of the LP problem can be consulted in [48]. Different cohesion values can
be assigned to every joint of the masonry assemblage. These values are stored in the form
of a vector c. A Mohr-Coulomb classical yield domain is considered with the inclusion of
cohesion, thus indirectly involving tensile strength of the joints as σt = c/ tanϕ, for σt as
the tensile strength and ϕ as the friction angle. After some algebraic operations the c vector
is stored in the objective function to be minimized through LP.

3 First case study

3.1 Arch and numerical model description

In this first case, a semi-circular arch first studied by Orduña [52] and then by Baraldi et al.
[51] is considered. The arch has for geometry an internal radius of 235 cm, a ring thickness
of 30 cm and an out-of-plane depth of 100 cm. It is composed of 31 voussoirs (see Figure
2). The specific weight of the masonry is 20 kN/m3, whereas the backfill has a weight of 15
kN/m3. The friction coefficient between the dry joints is taken as tanϕ = 0.75, as reported
on [52]. Finally, null cohesion was considered for all joints.

The loads imposed to the arch consists of its own self-weight, filling material and
a concentrated load applied at quarter span factorized with αc, also called the collapse
multiplier, to account for the limit live load of collapse. This live load, in ALMA 2.0, is
computed by multiplying the self-weight of one block by αc. Accordingly, the backfill is
modelled utilizing concentrated forces applied to the block joints.
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Table 1 Collapse load (in kN) comparison for the first case study arch.

Scenario LA
Orduña

DEM
Baraldi et

al.

FEM
Baraldi et

al.

Analytical
Baraldi et

al.

LA
ALMA

2.0
Unreinforced 18.00 18.00 17.80 17.77 19.67
Reinforced - 22.00 20.75 23.19 26.84

Orduña modelled the arch using a LA approach and at quarter span, the exact point
of live load application, introduced a crack by splitting the block into two pieces allowing
for the formation of a hinge at that exact location. On the other hand Baraldi et al. [51]
studied the same arch, without the split block, using different approaches, namely analytical
method, FEM (Finite Elements Method) and DEM (Discrete Elements Method). While
Orduña focused only on the unreinforced scenario, Baraldi et al. assessed the arch under
the unreinforced and reinforced scenarios. In [51] the reinforcement is applied to the joints
in between blocks 0 and 14 (see Figure 2), thus partially reinforcing the left haunch of the
arch. Similarly, in this work the reinforcement is simulated by applying increased cohesion
values to the joints between those blocks.
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Figure 2: Arch geometry and loading conditions for the first case study reproduced from
Orduña [52]

3.2 Results and discussion

Collapse loads are given in Table 1 for both unreinforced and reinforced scenarios as reported
by Orduña [52], Baraldi et al. [51] and as obtained with ALMA 2.0 in this work. Orduña
reported an ultimate load value of 18.0 kN derived by the LA approach, whereas Baraldi
et al. found comparable values for the FEM approach 18.0 kN and somewhat lower values
for the DEM and analytical approaches, 17.8 kN and 17.77 kN, respectively. The collapse
load obtained with ALMA 2.0 using was 19.67 kN, that is 9.27 % greater that the reference
value achieved by Orduña.

There is a little dissimilarity between the collapse mechanism reported by Orduña and
the one derived by ALMA 2.0 for the unreinforced scenario. Hinges H1, H2, and H4 are
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situated at the same location in both circumstances, as shown in Figure 3. Nevertheless,
in the reference example, hinge H3 occurs between blocks 13 and 15 (for reference see
Figure 2), but in the ALMA 2.0 result, it appears between blocks 21 and 23. This slight
difference of results may be attributed to the division of the block where the concentrated
load is applied, as adopted by Orduña. As a result of this modelling choice, in the arch
of Orduña hinge H2 occurs at quarter span and the hinge H3 appears at a different place,
resulting in a lesser ultimate load. Moreover, there is not information about how the filling
material has been modelled in the referenced work and this may cause a significant impact
in the results as well.

(a) (b)

H1

H2 H3

H4

(c)

H1

H2
H3

H4

(d)

Figure 3: Comparison of collapse mechanisms between Orduña [52]: (a) unreinforced;
Baraldi et al. [51] (b) reinforced; and ALMA 2.0: (c) unreinforced (d) reinforced.

For the reinforced scenario, the collapse mechanisms obtained by Baraldi et al. and the
ones determined with ALMA 2.0 are in perfect agreement. It should be emphasized that their
modelling decision is the same as in ALMA 2.0, which strengthens the above conclusion
for the result on the unreinforced scenario variations. Nonetheless, in this situation, the
discrepancy between collapse load values increases, reaching a 29.35 % greater value with
ALMA 2.0 than the value obtained for the FEM model of Baraldi et al. Finally, as the
cohesion value in the joints where reinforcement is applied increases, the location of hinges
H1 and H2 shifted, resulting in a larger ultimate load. After reaching a cohesion value of
1.4 · 10−4 N/mm2, the collapse load and collapse mechanism are stabilized in the sense
that further cohesion increments result in the same collapse load and mechanism. A linear
relation between cohesion and collapse load clearly shows this observation for the range
of values between 0.00 N/mm2 to 1.4 · 10−4 N/mm2 as can be observed in Figure 4.
A normalized collapse multiplier α̂ is used for comparable values between the two case
studies. This is due to the fact that the collapse multiplier is given in function of the weight
of the block to which the load is being applied and the normalization is achieved through the
ratio between the self-weight of one block to that of entire arch. Subsequently, a continuous
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collapse load is achieved regardless of the increment of cohesion value at the reinforced
joints.
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Figure 4: Collapse load (F) and normalized collapse multiplier (α̂) as a function of the
cohesion value (c) adopted for the unreinforced (UN) and reinfored (RF) first case study

arches.

4 Second case study

4.1 Arch and numerical model description

The second case study corresponds to the study of an experimentally tested segmental arch
[50]. This arch features a 75-cm internal radius, a 45-cm out-of-plane depth and a 5-cm ring
thickness. It is made of 59 voussoirs, that form a single ring arch. Two larger blocks at each
side of the arch act as supports. The loading conditions comprise the arch self-weight plus
a factored concentrated load applied at quarter span (see Figure 5). The value of α, which
is used to factor the concentrated load, represents the collapse multiplier required to cause
the formation of a collapse mechanism within the context of the LA method implemented
within ALMA 2.0.

Two scenarios are considered, namely unreinforced arch and locally reinforced arch.
The unreinforced scenario is based on the two arches tested by Oliveira et al., denoted as
US1 and US2, whereas the reinforced scenario, LS1 and LS2, encompasses the same two
arches but localy reinforced with the use of composites (two 80-mm width GFRP strips
placed along the hinges formed in the US arches.). The experimentally reinforced joints,
those shown in grey in Figure 5, have been numerically simulated by increasing the inter-
block joint’s cohesion value. In this way, an indirect tensile strength is applied on these
joints accounting for the effect of composite reinforcement.
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Figure 5: Arch geometry and loading conditions for second case study reproduced from
Oliveira et al. [50]

.

4.2 Results and discussion

The average values reported by Oliveira et al. for both the unreinforced, US_AVG, and the
reinforced, LS_AVG, scenarios were used for the calibration purposes of the ALMA 2.0
models provided in this paper.

For the unreinforced scenario, all joints in the LA numerical model were assigned a
cohesion value of 0.014 N/mm2. A satisfactory agreement between the reference findings
and the ALMA 2.0 model results was found. The variation was of only 0.6 % (see Table 2).
It should be emphasized that no similarity rules were applied for the scaled experimental
models during the referenced experimental campaign. This fact might have a significant
impact on its outcomes, especially when working with composite materials like masonry.
The large value for the cohesion parameter necessary for the model calibration is perhaps
also due to the fact that the compressive strengths of the brick and mortar employed in
the experimental campaign were almost identical, with bricks having just a 24 % greater
compressive strength.

In order to achieve the hinge location shifting observed during the experimental
campaign for the reinforced scenario, it was necessary to assign a cohesion value of 0.061
N/mm2 to the joints reinforced with GFRP (whereas the remainder of the joints were given
the same cohesion value of 0.014 N/mm2 from the unreinforced scenario). After comparing
the experimental and numerical collapse loads for the reinforced scenario, the ALMA 2.0
value was 14.53 % greater than the one reported by Oliveira et al. This discrepancy might
be attributed to the reinforcement characteristics. Whereas the experimental campaign’s
strengthening consisted of two 8-cm width GFRP strips along the out-of-plane depth of the
arch, in ALMA 2.0 the reinforcement includes the entire width of the arch, thus resulting
into a slightly tougher structure.

In terms of collapse mechanisms, good agreement was found between experimental and
numerical results. For the unreinforced situation, as shown in Figures 6a and 6c, all hinges
appear in comparable places, with just a one-block shifting for hinges H4 and H3. With
regards to the reinforced scenario, the restriction of hinge opening among the reinforced
joints, observed in the experimental specimen, was achieved with the numerical simulation.
Moreover, the experimental and ALMA 2.0 collapse mechanisms are alike in terms of the
position of hinges H4, H3, and H1. Nonetheless, instead of hinge H2 forming adjacent to
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Table 2 Collapse load comparison for the arch reported by Oliveira et al. [50].

Scenario Oliveira et al.
[kN]

ALMA 2.0
[kN]

c1∗
[N/mm2]

c2∗
[N/mm2]

Unreinforced 1.68 1.69 0.014 -
Reinforced 2.96 3.39 0.014 0.061
*cohesion value assigned to the unreinforced joints
**cohesion value assigned to the reinforced joints

the right extrados composite reinforcement as seen in the results of Oliveira et al., it opened
at the end of the (left) intrados reinforcement for the numerical case.

(a) (b)

H4

H1
H3

H2

(c)

H4

H2

H3

H1

(d)

Figure 6: Collapse mechanisms comparison for the unreinforced case (a) Oliveira et al.
[50], (c) ALMA 2.0 and reinforced case (b) Oliveira et al. [50], (d) ALMA 2.0.

The impact of cohesion value on the collapse load and collapse multiplier is shown in
Figure 7. The collapse multiplier in this case is as well normalized α̂ with the self-weight
of the arch, analogously to the first case study. The unreinforced scenario is represented
by the cohesion values ranging from 0 up to 0.014 N/mm2. The cohesion value only at the
reinforced joints is raised after this range until it reaches 0.061 N/mm2 where the collapse
mechanism changes and hinges shift location as previously described. Further increases in
the cohesion value of the reinforced joints resulted in the same collapse load and collapse
mechanism as all the plastic hinges formed already outside the reinforced joints zone like
expected.

5 Final Remarks

Arches with partial composite reinforcement are the focus of this study in validation of the
new enrichment of the inhouse code for LA ALMA 2.0. Two examples are considered from
literature as benchmarks for the validation and calibration.
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Figure 7: Collapse load (F) amd multiplier (α̂) as a function of the cohesion (c) value
adopted for the unreinforced (US) and reinforced (LS) second case study arches.

A semi-circular arch with a backfill is studied as the first case study that is initially
assessed for the unreinforced scenario using LA by [52] and then using FEM, DEM and an
analytical approach by [51]. The outcomes of the two studies are in good accordance with
ALMA 2.0 where slight discrepancies are observed due to some differences in the original
geometry assumptions. Afterwards a partial strengthening technique on the arch extrados
of the left support is applied and numerically modelled in FEM, DEM and analytical, where
distinctly this measure is able to shift the collapse mechanism into providing higher values
for the collapse load. ALMA 2.0 was able to shift the location of the hinge causing the
collapse mechanism, and therefore obtaining a higher collapse load value, by increasing the
cohesion value of the joints where the reinforcement is applied. Exact collapse mechanisms
are achieved with slight differences in the collapse load values with respect to the values
reported in the literature.

The second case study corresponds to a segmental arch for which an extensive
experimental campaign on scaled models has been conducted and reported by [50]. ALMA
2.0 simulations of the unreinforced and partially reinforced cases reported by Oliveira et
al. where performed. By utilizing different values of cohesion, it was possible to calibrate
the collapse load and obtain similar collapse mechanisms as those of the referenced
experimental campaign. Relatively large values of cohesion were necessary to reach the
experimental load for both cases. This may have been due to the considerable thickness
and resistance of the mortar joints of the experimental models. The average collapse load
obtained with ALMA 2.0 for the unreinforced scenario was in perfect correspondence with
the value reported in [50]. On the other hand, for the reinforced scenario slightly higher
collapse loads were obtained with the LA numerical simulations performed.

It has been shown that improvements and enrichments of LA codes, which require few
input parameters, could be capable of providing relatively fast and reliable results for the
assessment of composite reinforced masonry arches. Nonetheless, finding strategies and
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techniques to account for the many impacts that follow the complex nature of masonry
structures and their behaviour when strengthened remains an active field of research.
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