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Abstract: Six Amaranthus species (A. cruentus, A. hybridus, A. hypochondriacus, A. muricatus, A. tuber-
culatus, and A. viridis) were collected in Italy (wild habitats) from crops and roadsides. Amaranth
seed oil was extracted to obtain fractions rich in squalene. Squalene, free fatty acid, tocopherol,
and sterol composition and content were investigated in detail. An analysis of variance and prin-
cipal components was performed. The oil content in the seed ranged from 5.17% (A. muricatus)
to 12.20% (A. tuberculatus). The quantity of squalene in the oil varied from 3.43% (A. muricatus) to
6.09% (A. hypochondriacus). The primary sterols were beta-sitosterol, brassicasterol, campesterol,
and stigmasterol. The main tocopherols in all the samples were alfa-tocopherol, beta-tocopherol,
and delta-tocopherol. Our results exhibited that the smallest seeds (A. tuberculatus) have the high-
est percentages of oil and squalene, whereas the largest seeds size (A. muricatus) show the lowest
percentages. There is also evidence that the samples growing at lower altitudes show the highest
concentration of fatty acids. According to our results, the six wild Amaranthus species exhibited
similar characteristics to commercial species. This study confirms that the site of the collection has an
impact on the oil and squalene content of the Amaranthus species.

Keywords: Amaranthus; fatty acids; Italy; seeds; squalene; statistical analysis; tocopherols; sterols

1. Introduction

The genus Amaranthus L. (Amaranthaceae Juss.) comprises 65–70 species, of which
approximately half are native to the Americas [1]. Some taxa are used as ornamentals,
food, and medicines, and they are able to spread due to cultivation, negatively impacting
agricultural and natural ecosystems [1–3]. Taxonomically, this genus is complex due to
its high phenotypic variability, which has resulted in the current nomenclatural disorders
and misapplication of several names [4–9]. Amaranthus species have the C4 photosynthetic
pathway, which allows them to proliferate at high temperatures and light levels, tolerate
drought, and aggressively compete with warm-season plants for light, moisture, and
nutritive substances. All these characteristics make Amaranth a valuable plant, particularly
in parts of the world with scarce water resources [10]. The interest in Amaranth seeds,
both for their use in the food field (human and animal nutrition) and their application
in the industrial field, is increasing, mainly because its seeds are a source of minerals
and vegetable oil rich in essential fatty acids, vitamins, and unsaponifiable substances,
particularly squalene [11]. Squalene is a biochemical antecedent of sterols and occurs
naturally as a triterpenoid. It has a significant role in medicine, cosmetics, and therapeutic
applications. Recently, it has also had a significant role in drug design as an antioxidant
and anticarcinogen [12]. Additionally, it is also used to reduce cholesterol levels among
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human beings. It also shows promise as an excellent oxidation-resistant lubricant in the
industrial sector [13].

In the past, the primary source of squalene was whale and shark liver, containing
40–80% squalene by weight. Due to marine animal protection concerns, researchers have
turned their attention to exploring and identifying alternative affordable and sustainable
sources of squalene, such as plants [14,15]. Among the different sources of squalene (yeast,
olive oil, rice, corn, soy, peanuts, etc.) identified so far [13], Amaranth seeds are the most
important and reliable source for their high squalene concentration (6–8%) compared to
other sources [16,17]. The importance and value of squalene in cosmetics, pharmaceuticals,
and the food industry allow advances in up-to-date technologies to purify squalene in
higher concentrations from diverse resources [18]. Recently, new innovative and diverse
eco-friendly technologies (thermal and non-thermal) have been developed and successfully
applied in food technology. Next to conventional technologies for extracting essential
and valuable bioactive compounds from plants, researchers have used high hydrostatic
pressure (HHP), microwave (MW), ultrasound (US), infrared (IR), pulsed electric fields
(PEF), and supercritical fluids [13].

Accelerated solvent extraction (ASE) is a helpful extraction technique that gives an
excellent yield of extracted materials, involving the use of different organic solvents with
varying polarity at elevated temperatures and pressure. This technique is time-saving
and reduces solvent use [12,18,19]. Furthermore, it was discovered in a different study
that ASE had the highest squalene yield, followed by Soxhlet and supercritical fluid
extraction [18]. To extend the investigations of Amaranth seeds and broaden knowledge
from a geographical point of view, it was decided to study Amaranthus species that grow
spontaneously in Italy in different environments. Environmental factors such as climate,
altitude, and soil pH should affect the chemical composition and squalene content [20]. In
detail, the present paper aims to evaluate the chemical composition of seed oil extracted
from six Amaranthus species collected in situ using the ASE apparatus. In particular, the
squalene content, free fatty acid content, tocopherol, and sterol composition and content
were investigated. This research aimed to understand the value of seed oils of wild
species belonging to the genus Amaranthus, providing guidelines for future studies on food
chemistry and industrial applications. Furthermore, the collected Amaranth seeds will be
made accessible via GenBank to preserve the plant’s genetic materials. Preserved seeds
may be used in the future in experimental fields.

2. Materials and Methods
2.1. Plant Material

The research was based on our field investigations carried out in Italy in 2021. Six
Amaranth species (Amaranthus cruentus L., A. hybridus L., A. hypochondriacs L., A. muricatus
(Gillies ex Moq.) Hieron., A. tuberculatus (Moq.) J.D. Sauer., and A. viridis L.) were collected
from wild fields in Italy (Table 1 and Figure S1). The species selected were determined
primarily by the absence of data regarding seed oil and squalene in literature, and secondly
by the rare or common status of the species in the Italian territory. For the common species
A. hybridus and A. hypochondriacus, two and three collections, respectively, were made in
NC, Italy, where these species are spread throughout the agricultural landscape.

The collected material was identified using the recent monograph on Italian Ama-
ranthus by [1]. Around 40–50 individuals per site were collected in the fruiting stage.
Synflorescences were later air-dried in the shade, and their fruits were subsequently sep-
arated and placed in closed containers. The voucher specimens were deposited at the
Herbarium of the University of Molise IS (code according to [21] (Table 1). The seeds were
deposited at the gene bank of the University of Molise. Three morphological characteristics
were examined for each seed using a stereoscope (Leica MZ12): seed coat color, and the
mean value of the length and width of the seeds.
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Table 1. List of the collected specimens. Bioclimate is based on [22].

Amaranthus
Species

Voucher
Specimen

Italian
Region (Code) Coordinates Altitude

m (a.s.l.)
Date of

Collection Substrate Bioclimate Habitat

A. cruentus 12,002 Veneto (VEN) 45◦17′49.2” N
11◦53′31.2” E 5 21 October 2021 Clastic, soil

with fertilizers
Temperate

sub-continental
Cereals and
vines crops

A. hybridus 12,005 Friuli Venezia
Giulia (FVG)

46◦03′14.4” N
13◦04′18.8” E 144 8 August 2021 Clastic, soil

with fertilizers
Temperate

sub-continental Crop in full sun

A. hybridus 12,006 Piedmont (PIE) 45◦05′29.0” N
7◦22′53.3” E 348 12 September 2021

Sandy, silty soil
with coarse pebble

component
deriving from
river flooding

Temperate
semi-continental

Abandoned
garden in the
alluvial plain

A. hybridus 12,007 Veneto (VEN) 46◦06′39.2” N
12◦08′20.4” E 380 17 September 2021 Calcareous matrix Temperate

semi-continental Corn crop

A. hypochondriacus 12,008 Veneto (VEN) 46◦07′60.0” N
12◦15′32.5” E 440 22 September 2021 Calcareous matrix Temperate

semi-continental Corn crop

A. hypochondriacus 12,009 Lazio (LAZ) 41◦49′44.4” N
13◦08′24.0” E 625 15 October 2021 Soil rich

in nitrogen Temperate oceanic Roadside

A. muricatus 12,004 Molise (MOL) 42◦00′14.4” N
14◦59′45.6” E 14 17 July 2021 Calcareous matrix Mediterranean

oceanic
Stony wall of

the Svevo castle

A. tuberculatus 12,001 Marche (MAR) 43◦48′39.0” N
13◦02′21.0” E 5 23 September 2021 Terrigenous

matrix
Transitional

semi-continental

Gravelly
riverbed,

in full sun

A. viridis 12,003 Campania
(CAM)

40◦51′07.2” N
14◦16′22.8” E 12 21 July 2021 Soil rich in

nitrogen
Mediterranean

oceanic Roadside

2.2. Oil Extraction and Oil Content Determination

The Amaranthus seeds were cleaned and oven-dried (2 h in a vacuum oven at 45 ◦C).
Afterward, seeds were packed in airtight containers with cotton and silica gel and stored in
a cold room until use. The cleaned and oven-dried seeds (50 g) were then powdered using a
Fritsch Pulverisette 6 planetary mono mill (400 rpm for 4–8 min, depending on the species),
excepting Amaranthus viridis L., which took 15 min to grind. The process of extraction was
performed using an ASE350 apparatus (Dionex). A 22 mL extraction cell was filled with
a mixture of 8–13 g milled seeds and 1.1 g of celite powder. The extraction solvent being
used was n-hexane (100%), and three extraction cycles were performed during the process.
The optimized conditions used for extraction included a temperature of 70 ◦C and static
time of 10 min. As the extraction was completed, the excess solvent was evaporated using
a rotary evaporator (Büchi). The pre-set temperature for the water bath was 60 ◦C, and
the vacuum was set at 370 mbar. After evaporation, the mixture was left overnight in the
refrigerator in a fume hood to allow any residual solvent (n-hexane) to be removed. Finally,
the mass of oil was recorded.

2.3. Determination of Squalene, Free Fatty Acid, Tocopherol, and Sterol Content

The squalene, free fatty acids, tocopherol, and sterol content in the oil was determined
by gas chromatography (Trace 1300 Thermo Scientific Interscience, Louvain-la-Neuve,
Belgium) using a capillary MXT-5 column (30 m × 0.53 mm, film thickness 0.25 µm, Restek,
Interscience, Louvain-la-Neuve, Belgium) equipped with an SSL injector (inlet temperature
350 ◦C) and with a flame ionization detector (GC-FID) (380 ◦C, constant flow, hydrogen
35 mL/min, air 350 mL/min, nitrogen 40 mL/min) under a temperature gradient (50 ◦C
for 1 min, ramp to 180 ◦C at 10 ◦C/min; ramp to 230 ◦C at 3 ◦C/min; ramp to 380 ◦C
at 15 ◦C/min; 380 ◦C for 10 min). A constant helium flow of 1.5 mL/min was applied
as a carrier gas. Samples for GC analysis were prepared by mixing 0.1 g of a 10 m% oil
solution in n-heptane with 0.1 g of 0.1 m% tetradecane solution in n-heptane (internal
standard solution) and diluting up to 1 g with n-heptane. A calibration was performed
using squalene, fatty acid, tocopherol, and sterol standards (Acros Organics) to perform a
quantitative analysis. Analysis results were evaluated using Chromeleon 6 software [23].

2.4. Statistical Analysis

All the experiments in this study were conducted in triplicate, and the data were
reported as the mean ± standard deviation (SD). Principal component analysis (PCA)
was performed using PAST 4.11 [24]. The data were subjected to statistical analysis using
XLSTAT software version 2021.5.1 [25]. Analysis of variance (ANOVA) and Tukey’s HSD
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multiple comparison tests were used to identify significant differences among the different
samples at p ≤ 0.05. Data are available within the article and in Supplementary Materials.

3. Results and Discussion
3.1. Seed Features

The sizes of the nine Amaranthus samples investigated exhibited mean values ranging
from the minimum values in the length of 0.399 mm and width of 0.385 mm (A. tuberculatus
MAR) to the maximum values in the length of 0.642 mm and width of 0.589 mm (A.
muricatus MOL) (Table 2). In detail, A. cruentus VEN and A. tuberculatus MAR were
statistically different (p < 0.001) from each other and from all the other samples. It should be
noted that A. hypocondriacus and A. hybridus, collected in different stands, showed similar
values in order of magnitude. The seed color was quite consistent for the Amaranth samples
collected in different regions: A. hybridus seeds were black while A. hypocondriacus seeds
were dark brown (Table 2). The seed color was also black for A. cruentus, A. muricatus, and
A. virdis, and dark brown for A. tuberculatus (Table 2).

Table 2. Compositional characteristics of seeds of the six Amaranthus species collected from Italian
wild habitats: SDO, seed color; SL, average seed length (mm); SW, average seed width (mm);
OYS, average oil yield in seeds (%); CSO, average concentration squalene in oil (%); CSS, average
concentration squalene in seeds (%); FAS, average free fatty acids in seed oil (%); SSO, average
sterols in seed oil (ppm); TSO, average tocopherols in seed oil (ppm). Different letters (a–e) indicate
significant differences according to Tukey’s HSD test (p < 0.05). **, *** represent significant at p < 0.01,
0.001, respectively. n.s.: not significant.

Amaranthus
Species SDO SL SW OYS CSO CSS FAS SSO TSO

A. cruentus
(VEN) Black 0.476 b

± 0.030
0.436 b

± 0.018
6.29 ab

± 1.08
5.94 b

± 0.87
0.37 abc

± 0.03
1.73 a

± 0.28
208 ab

± 135
152
± 71

A. hybridus
(FVG) Black 0.585 cde

± 0.014
0.494 cd

± 0.018
7.47 ab

± 1.25
4.94 ab

± 0.72
0.36 abc

± 0.02
0.39 a

± 0.30
450 ab

± 309
327
± 238

A. hybridus
(PIE) Black 0.561 cd

± 0.008
0.483 c

± 0.016
9.53 ab

± 1.59
4.75 ab

± 0.40
0.45 bc

± 0.03
0.66 a

± 0.48
147 a

± 14
70
± 27

A. hybridus
(VEN) Black 0.548 c

± 0.004
0.480 c

± 0.005
6.05 ab

± 0.57
5.78 ab

± 1.50
0.35 ab

± 0.09
0.65 a

± 0.31
361 ab

± 299
214
± 133

A. hypochondriacus
(VEN)

Dark
brown

0.576 cd

± 0.015
0.534 d

± 0.022
9.77 ab

± 0.89
6.09 b

± 0.75
0.59 c

± 0.02
0.84 a

± 0.67
219 ab

± 72
140
± 54

A. hypochondriacus
(LAZ)

Dark
brown

0.621 de

± 0.040
0.579 e

± 0.014
6.64 ab

± 3.12
4.01 ab

± 0.80
0.25 ab

± 0.06
0.65 a

± 0.05
857 b

± 492
149
± 8

A. muricatus
(MOL) Black 0.642 e

± 0.006
0.589 e

± 0.021
5.17 a

± 1.45
3.43 a

± 0.30
0.17 a

± 0.03
1.17 a

± 1.04
268 ab

± 44
536
± 212

A. tuberculatus
(MAR)

Dark
brown

0.399 a

± 0.016
0.385 a

± 0.012
12.20 b

± 4.74
4.94 ab

± 0.573
0.59 c

± 0.18
2.42 a

± 2.02
83 a

± 94
223
± 153

A. viridis
(CAM) Black 0.550 c

± 0.035
0.517 cd

± 0.024
6.24 ab

± 1.62
3.51 a

± 0.03
0.22 ab

± 0.05
8.93 b

± 2.17
136 a

± 137
333
± 231

p-Value *** *** ** .*** n.s.

3.2. Oil Content

In accordance with our findings, the oil content in the seeds (OYS) of the six Amaranthus
species ranges from 5.17% for A. muricatus to 12.20% for A. tuberculatus (Table 2 and
Figure 1), and these two species are significantly different from each other. In detail,
A. hybridus gathered from three different regions in northern Italy (PIE, FVG, VEN; see
Table 1 for regional codes) shows overall high values of oil content, with no statistically
significant differences in the three stands: 9.53%, 7.47%, and 6.05% values, respectively.
A. hypochondriacus collected from two different regions reveals divergent values of 9.77%
in the Veneto region (north Italy) and 6.64% in the Lazio region (central Italy), but these
values are not statistically significant. Lastly, the oil content of A. cruentus is 6.29%, whereas
it is 6.24% for A. viridis (Table 2 and Figure 1). According to our research, smaller-sized
seeds (A. tuberculatus MAR) contain the highest percentage of oil, whereas larger seeds
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(A. muricatus MOL) contain the lowest percentage of oil OYS and squalene CSO. The
OYS percentages obtained in this work support those previously reported: they show
that the OYS in A. cruentus ranges from 1.09% to 8.20%, and from 3.03% to 8.70% in A.
hypochondriacus ranges [26–28].
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species of Amaranthus collected. Different letters (a–d) indicate significant differences according to
Tukey’s HSD test (p < 0.05).

3.3. Squalene Content

The investigation of the six Amaranthus species reveals considerable variations in the
squalene content (CSO) depending on the samples (Table 2 and Figure 1). As a whole,
the range of CSO varies from 3.43% for A. muricatus to 6.09% for A. hypochondriacus VEN
(Tables 1 and 2, and Figure 1). In detail, the species that grow at low altitudes and in a
Mediterranean bioclimate (A. muricatus, A. viridis) show the significantly lowest CSO values
(3.43%, 3.51%). On the other hand, A. hypochondriacus VEN and A. cruentus VEN, which
grow in a temperate bioclimate, show the significantly highest CSO values (6.09% and
5.94%) (Tables 1 and 2, and Figure 1). The CSO values for A. hybridus are very similar (PIE:
4.75%, FVG: 4.94%, VEN: 5.78%).

The results obtained for wild species are consistent with previously published results
on squalene content in cultivated Amaranth species (Table 3). Regarding A. cruentus,
A. hypocondriacus, and A. hybridus, our research results confirm the range of the values
and align with the highest values found in the literature [14,26–33]. For A. muricatus, A.
tuberculatus, and A. viridis, our research found values comparable to those reported in [14],
and also contribute to the limited knowledge of CSO for these three species.

3.4. Free Fatty Acid, Sterol, and Tocopherol Content

Our results show a strongly varying amount of free fatty acids (FAS) found in Ama-
ranthus oil for all the samples. The free fatty acid range is from 0.39% for A. hybridus FVG
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to 8.93% for A. viridis CAM (Table 2). A. cruentus, A. muricatus, A. tuberculatus, and A.
viridis, collected at low altitudes (5 m, 14 m, 5 m, 12 m a.s.l.), show high levels of free fatty
acids (1.73%, 1.17%, 2.42%, 8.93%), and only the value of A. viridis is significantly different
from all the others (Table 2). Instead, the species growing at medium and high altitudes
(144 m, 348 m, 380 m, 440 m, and 625 m a.s.l.), namely A. hybridus FVG, A. hybridus PIE, A.
hybridus VEN, A. hypochondriacus VEN, and A. hypochondriacus LAZ, show free fatty acids
levels lower than 1 (0.39%, 0.66%, 0.65%, 0.84%, and 0.65% respectively). The free fatty
acid composition shows the nutritional value and stability of fats and oils. Our findings
support the earlier studies that suggested Amaranth oil is a reliable source of free fatty
acids [14,27,28,31,34–37].

Table 3. Comparison between squalene content in oil CSO from this study and from the major
references data.

Amaranthus Species CSO Reference

A. cruentus 5.94 Current study
6.96 Lyon et al., 1987 [33]
6.56 León-Camacho et al., 2001 [32]

4.2–5.44 He et al., 2002 [28]
2.26–5.94 Bergenza et al., 2003 [29]
3.32–4.93 He et al., 2003 [14]

4.9 Gamel et al., 2007 [30]
5.29–6.25 Bozorov et al., 2018 [26]
5.74–6.95 El Gendy et al., 2018 [31]

A. hybridus 4.75–5.78 Current study
5.23 He et al., 2002 [28]

2.26–7.3 He et al., 2003 [14]
A. hypochondriacus 4.01–6.09 Current study

3.62–5.01 He et al., 2002 [28]
4.74–6.98 He et al., 2003 [14]
6.05–7.12 Bozorov et al., 2018 [26]

A. muricatus 3.43 Current study
3.20 He et al., 2003 [14]

A. tuberculatus 4.94 Current study
4.75 He et al., 2003 [14]

A. viridis 3.51 Current study
3.28–5.74 He et al., 2003 [14]

Our research indicates that beta-sitosterol, brassicasterol, campesterol, and stigmas-
terol are the major sterols (SSO) present in Amaranthus oil (Table S1). Additionally, beta-
sitosterol is the principal sterol present in all the Amaranth samples. The total sterols
(SSO) range is between 83 ppm for A. tuberculatus and 857 ppm for A. hypochondriacus
LAZ (Table 2). According to our study, the ranges of major sterols are 47–738 ppm for
beta-sitosterol, 12–43 ppm for brassicasterol, 2–9 ppm for campesterol, and 8–130 ppm for
stigmasterol (Table S1). Our results are similar to those of prior publications [38,39]. It is
interesting to note that, among the Amaranth samples, the total sterol content (SSO) of A.
hypochondriacus (LAZ) and A. hybridus (FVG and VEN) (Table 2) is higher than that of other
plants studied, such as olive, peanut, palm, coconut, walnut, cashew, and almond [39,40].

Based on our studies, the range for total tocopherols (TSO) is from 70 ppm for the
A. hybridus PIE region to 536 ppm for A. muricatus (Table 2). The ranges for the three
main tocopherols are 6–14 ppm for alfa-tocopherol, 11–158 ppm for beta-tocopherol, and
39–289 ppm for delta-tocopherol (Table S2). These ranges are comparable to other results
stated in the literature [38,41,42].

3.5. Multivariate Analysis

In the principal component analysis (Figure 2), the cumulative percentage of the first
two axes (Components 1 and 2) is 75.464%, with the first one (PC1) contributing 52.039%



Diversity 2023, 15, 237 7 of 9

to the total variance and the second (PC2) contributing 23.425%. A positive correlation
between seed length (SL), seed width (SW), sterols in seed oil (SSO), and tocopherols in
seed oil (TSO) was found along PC1. Conversely, the correlation is negative between the oil
yield in seed (OYS), the concentration of squalene in seed oil (CSO), and the concentration
of squalene in seed (CSS). PC2 shows a positive correlation with altitude (ALT) and a
negative correlation with fatty acids (FAS).
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Figure 2. Scatterplot of the first two principal components from the PCA was carried out with
10 variables and 9 samples. Blue line: ALT (altitude); SDO (seed color); green line: OYS (oil yield in
seed); CSO (conc. squalene in oil); CSS (conc. squalene in seed); TSO (tocopherols in seed oil); SSO
(sterols in seed oil); FAS (free fatty acids in seed oil); SL (seed length); SW (seed width).

PCA confirms the results obtained from the previous analysis: large seeds exhibit a
higher tocopherol (TSO) and sterol (SSO) content, whereas small seeds exhibit a higher
amount of oil yield in seed (OYS), concentration of squalene in seed oil (CSO), and con-
centration of squalene in seed (CSS). A. hybridus and A. hypocondriacus collected from
altitudes from 144 to 625 m have low values of fatty acids (FAS); conversely, the species
A. muricatus, A. tuberculatus, and A. viridis collected at low altitudes (5–14 m) exhibit the
opposite behavior.

4. Conclusions

This study provides, for the first time, data on the squalene, free fatty acid, tocopherol,
and sterol content and composition of six Amaranthus species that grow in wild habitats.
These species exhibited similar characteristics to the commercial species, with both showing
medium–high values for oil and squalene content. This study confirms that the collection
site influences the oil and squalene content of the Amaranthus species. The growing interest
in the seed of the genus Amaranthus all over the world, such as in nutraceutical, industrial,
and medical fields, makes it necessary to expand the spectrum of the Amaranth species to
be cultivated as a good source of squalene and other components.
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Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/d15020237/s1, Figure S1: regions where the Amaranthus
species were collected in Italy: CAM Campania, FVG Friuli-Venezia Giulia, LAZ Lazio, MAR Marche,
MOL Molise, PIE Piedmont, VEN Veneto. Other regions: AOS Val d’Aosta, LOM Lombardia, TRA
Trentino-Alto Adige, LIG Liguria, EMR Emilia-Romagna, SMR Republic of San Marino, TOS Toscana,
UMB Umbria, SCV Vatican City, State ABR Abruzzo, PUG Puglia, BAS Basilicata, CAL Calabria, SAR
Sardegna, SIC Sicilia; Table S1: Sterol (beta-sitosterol, brassicasterol, campesterol, stigmasterol) com-
position of Amaranth seed oil collected from Italian wild habitats; AVG: average value, SD: standard
deviation; Table S2: Tocopherol (alfa-tocopherol, beta-tocopherol, delta-tocopherol) composition of
Amaranth seed oil collected from Italian wild habitats; AVG: average value, SD: standard deviation.
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18. Krulj, J.; Brlek, T.; Pezo, L.; Brkljača, J.; Popović, S.; Zeković, Z.; Bodroža Solarov, M. Extraction methods of Amaranthus sp. grain
oil isolation. J. Sci. Food Agric. 2016, 96, 3552–3558. [CrossRef]

19. Sun, H.; Ge, X.; Lv, Y.; Wang, A. Application of accelerated solvent extraction in the analysis of organic contaminants, bioactive
and nutritional compounds in food and feed. J. Chromatogr. 2012, 1237, 1–23. [CrossRef]

20. Thomas, W.E.; Burke, I.C.; Spears, J.F.; Wilcut, J.W. Influence of environmental factors on slender amaranth (Amaranthus viridis)
germination. Weed Sci. 2006, 54, 316–320. [CrossRef]

21. Di Marzio, P.; Fortini, P. (Eds.) Il Museo Erbario dell’Università del Molise; Università degli Studi del Molise: Campobasso, Italy,
2015; p. 38. ISBN 9788896394151. Available online: https://hdl.handle.net/11695/47228 (accessed on 22 November 2022).

22. Blasi, C.; Capotorti, G.; Copiz, R.; Guida, D.; Mollo, B.; Smiraglia, D.; Zavattero, L. Terrestrial Ecoregions of Italy; Map and
Explanatory Notes; Global Map s.r.l., S.EL.C.A.: Firenze, Italy, 2018; p. 36. Available online: https://hdl.handle.net/11386/4746968
(accessed on 22 November 2022).

23. Szabóová, M.; Záhorský, M.; Gažo, J.; Geuens, J.; Vermoesen, A.; D’Hondt, E.; Hricová, A. Differences in seed weight, amino acid,
fatty acid, oil, and squalene content in γ-irradiation-developed and commercial amaranth varieties (Amaranthus spp.). Plants
2020, 9, 1412. [CrossRef]

24. Addinsoft, A. Addinsoft XLSTAT Statistical and Data Analysis Solution; Long Island: New York, NY, USA, 2023.
25. Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological Statistics Software Package for Education and Data Analysis.

Palaeontol. Electron. 2001, 4, 9.
26. Bozorov, S.S.; Berdiev, N.S.; Ishimov, U.J.; Olimjonov, S.S.; Ziyavitdinov, J.F.; Asrorov, A.M.; Salikhov, S.I. Chemical composition

and biological activity of seed oil of amaranth varieties. Nova Biotechnol. Chim. 2018, 12, 66–73. [CrossRef]
27. Hlinková, A.; Bednarova, A.; Havrlentová, M.; Šupová, J.; Čičová, I. Evaluation of fatty acid composition among selected
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