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Abstract. The current basic OpenSees distribution includes several uniaxial 
models for concrete. Among them, the model proposed by Chang and Mander in 
1994 offers a comprehensive setting applicable both to confined and unconfined 
concrete, by a proper selection of material parameters. The model offers the pos-
sibility to smoothly combine Tsai equation, for the first part of the curve, with a 
linear branch for the final part. This option is useful to model spalling of uncon-
fined concrete while keeping the smoothness of the curve.  
Two basic parameters of the Chang-Mander model for compression, denoted by 
n and r, govern initial and post-peak stiffness of the Tsai equation, respectively. 
Besides them, there is a further parameter, denoted by α, which received less 
attention in the literature and determines the position of the switch between non-
linear and linear parts of the curve. 
In the first part of this work, the calibration of the parameters n and r is discussed 
in some detail. In the second part, the problem of the calibration of α is analyzed. 
Changes in the value of α may produce large variations in the evaluation of the 
spalling strain for unconfined concrete. After some comparative analyses with 
existing models, a simple expression to calibrate α parameter is finally proposed. 

Keywords: Unconfined concrete, Chang-Mander model, spalling strain. 

1 Introduction 

Modeling of Reinforced Concrete (RC) structural elements by means of fiber beam-
column elements offers an extremely convenient compromise between accuracy and 
computational cost for the nonlinear analysis of RC structures and can be implemented 
in OpenSees by exploiting the force-based formulation and spreading the plasticity 
along each member. A crucial point for practical applications of this approach is the 
choice of the material laws and properties which determine the uniaxial stress-strain 
laws of the fibers. To this end, a large amount of material models can be found in the 
literature for both confined and unconfined concrete under uniaxial compression [1]. A 
comprehensive review has been given in [2]. 
Concrete spalling is an important phenomenon which received a great deal of attention 
since it can significantly influence ultimate structural behavior as well as durability and 
serviceability. In [3], a review of the main works available in the literature on the sub-
ject can be found. In [4], an analytical method to determine the compressive strain of 



2 

the nearby longitudinal reinforcing bar corresponding to cover concrete spalling is pro-
posed. The main aim of the work was to give a simple and reliable method to predict 
the buckling length of longitudinal reinforcing bars and the spalling of cover concrete 
in RC members. The effect of lateral deformation of longitudinal bars is quantitatively 
evaluated and incorporated in the simulation of cover concrete spalling. In [5], the 
mechanism of concrete spalling is investigated for high and normal strength concrete. 
In the proposed finite element (FE) model, cover spalling is simulated by setting the 
elastic modulus of the cover elements to a low value once a threshold tension strain is 
reached at the cover-core interface, with the threshold tension strain evaluated from 
experimental data. 
The material model proposed by Chang and Mander [1] describes the hysteretic behav-
ior of both unconfined and confined normal and high strength concrete, subjected to 
cyclic tension and compression loading. Differently from the previous models, they 
considered the degradation effects induced by partial cycles and pre-existing cracks that 
can close and open during the loading loops. 
Among the several options available in the literature, Tsai function [6] gained consid-
erable diffusion and was selected by Chang and Mander as basis for the development 
of the model proposed in [1] which is implemented in the current distributions of Open-
Sees. Two basic parameters of the Chang-Mander model for compression, denoted by 
n and r, govern initial and post-peak stiffness of the Tsai equation, respectively. Besides 
them, there is a further parameter, denoted by α, which received less attention in the 
literature and determines the position of the switch between nonlinear and linear parts 
of the curve. 
In the first part of this work, the calibration of the parameters n and r is discussed in 
detail. Concerning the parameter n, this is directly correlated to the initial elastic mod-
ulus Ec and the peak compressive strain εcp. After a review and a comparison of various 
empirical formulas available to correlate Ec and εcp to the compressive strength fcp, a 
simple expression for n is obtained in terms of fcp. In the second part, the calibration of 
α is discussed. Changes in the value of α may produce large variations in the evaluation 
of the spalling strain for unconfined concrete. After some comparative analyses with 
existing models, calibration of α is proposed in such a way that the switch occurs at the 
inflection point of the Tsai curve, which cannot be easily computed in closed form. 
Numerical evaluation of the inflection point for various types of concrete is then carried 
out and, finally, a simple expression to precisely calibrate α as a function of compres-
sive strength fcp is proposed for practical material parameters determination. 

2 Chang-Mander model for unconfined concrete 

When numerical modelling is employed to estimate the structural capacity of a RC 
structure, to obtain real and accurate predictions, it is fundamental to use constitutive 
laws which can realistically describe the material behaviour. The full-range stress-strain 
curves under uniaxial compression are essential for the rational design and analysis of 
concrete structure members, particularly in full-range non-linear analysis and seismic 
analysis [7].  
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Current OpenSees basic distribution includes several uniaxial concrete models like, for 
example, the well-known Concrete02 based on Kent-Scott-Park [8] and Concrete04 on 
Popovic curve [9]. Besides them, Concrete07 and ConcreteCM offer implementations 
of the Chang-Mander model [1]. The various models have similar behavior until the 
material compressive strength is reached with slight variation on the initial stiffness, 
but they differ in the post-peak region. In Concrete04 the shape of the curve is fixed by 
the basic parameters whereas in Concrete02 the slope in the post-peak range can be 
modified independently by setting the values of ultimate strain and stress, but the sof-
tening behaviour is described through a linear branch without constraints on its slope 
so that the overall curve is typically non-smooth. On the other hand, in the Chang-
Mander-based models the softening region is described by a linear curve, like in Con-
crete02, but with the possibility to choose the point where the switch between the two 
parts take place and, very importantly, subject to the constraint of smoothness. 
Generally speaking, stress-strain laws for concrete can be expressed by nondimensional 
coordinates normalized with respect to stress and strain at peak: 

 𝑥𝑥: = 𝜀𝜀
𝜀𝜀𝑐𝑐𝑐𝑐

, 𝑦𝑦: = 𝜎𝜎
𝑓𝑓𝑐𝑐𝑐𝑐

 (1) 

With this notation Popovics [9] function, used by Concrete04, can be expressed as: 

 𝑦𝑦 = 𝑟𝑟𝑟𝑟
𝑟𝑟−1+𝑟𝑟𝑟𝑟

 (2) 

where r is a parameter that governs the descending branch of the stress-strain constitu-
tive law. Denoting with 𝑛𝑛 ≔ 𝑦𝑦′(0) the nondimensional initial elastic modulus of the 
material, it follows that: 
 𝑛𝑛 = 𝑟𝑟

𝑟𝑟−1
 (3) 

The dimensional initial modulus Ec can be obtained from the nondimensional one by 
multiplying by the secant modulus: 𝐸𝐸𝑐𝑐 = 𝑛𝑛 𝐸𝐸𝑠𝑠𝑠𝑠𝑐𝑐  , hence nondimensional modulus can 
be obtained as ratio between initial and secant dimensional ones: 

 𝑛𝑛 = 𝐸𝐸𝑐𝑐
𝐸𝐸𝑠𝑠𝑠𝑠𝑐𝑐

= 𝐸𝐸𝑐𝑐
𝜀𝜀𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐𝑐𝑐

 (4) 

Popovics curve has the advantage to describe with a single smooth equation the whole 
response, however this entails that the slope of the post-peak region is over constrained. 
Tsai equation generalize Popovic one by considering parameter n as an independent 
parameter [6]:  
 𝑦𝑦 = 𝑛𝑛𝑟𝑟

1+�𝑛𝑛− 𝑟𝑟
𝑟𝑟−1�𝑟𝑟+

𝑥𝑥𝑟𝑟
𝑟𝑟−1

 (5) 

It satisfies 𝑛𝑛 = 𝑦𝑦′(0), so the initial slope and descending branch can be calibrated in-
dependently. Considering Eq. (3), Eq. (5) reduces to Popovic’s: 

 𝑦𝑦 = 𝑟𝑟𝑟𝑟
𝑟𝑟−1+𝑟𝑟𝑟𝑟

 (6) 
which gives: 
 𝑦𝑦′(0) = 𝑟𝑟

𝑟𝑟−1
 (7) 
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Chang-Mander [1] claims that for unconfined concrete the descending branch of the 
Tsai equation should be followed until a certain nondimensional strain α > 1 , after 
which the law should switch to a linear behaviour determined by the slope 𝑦𝑦′(𝛼𝛼).  
Nondimensional Chang-Mander equation can then be written as: 

 𝑦𝑦 = �

𝑛𝑛𝑟𝑟

1+�𝑛𝑛− 𝑟𝑟
𝑟𝑟−1�𝑟𝑟+

𝑥𝑥𝑟𝑟
𝑟𝑟−1

𝑥𝑥 ≤ 𝛼𝛼

𝑚𝑚𝑚𝑚𝑥𝑥[𝑦𝑦(𝛼𝛼) + 𝑦𝑦′(𝛼𝛼)(𝑥𝑥 − 𝛼𝛼), 0] 𝑥𝑥 > 𝛼𝛼

 (8) 

Summarizing, the main Chang-Mander parameters necessary to describe the full stress-
strain constitutive law are n, r, and α. 

3 Parameter calibration: n, r 

To set up a rational calibration procedure, it is convenient to relate parameters n and r 
to the compressive strength fcp. To this end let us first note that parameter n can be 
expressed as a function of the peak strain and initial elastic modulus: 

 𝑛𝑛 = 𝐸𝐸𝑐𝑐 𝜀𝜀𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐𝑐𝑐

 (9) 

Since, in the literature, it is possible to find many relationships for peak strain and even 
more for elastic modulus in terms of compressive strength, parameter n can be conven-
iently related to fcp  as discussed in the next sections. 

3.1 Empirical expressions for the initial elastic modulus, Ec 

There are several empirical equations relating the initial elastic modulus to the com-
pressive strength. Chang-Mander [1] reviewed many of them and proposed a further 
one. Other possible equations are given also in [10] and [11] (Table 1). 

Table 1.  Empirical expressions for Young’s modulus, Ec. 

Authors Expressions 

Chang-Mander [1] 𝐸𝐸𝑐𝑐 = 8500 �𝑓𝑓𝑐𝑐𝑐𝑐�
0.375

  

Model Code 2010 [12]  𝐸𝐸𝑐𝑐 = 𝐸𝐸𝑐𝑐0 𝛼𝛼𝐸𝐸 �
𝑓𝑓𝑐𝑐𝑐𝑐
10
�
0.3

  

Samani and Attard [10] 𝐸𝐸𝑐𝑐 = 0.043 𝜌𝜌𝑐𝑐1.5�𝑓𝑓𝑐𝑐𝑐𝑐  

Lim & Ozbakkaloglu [11] 𝐸𝐸𝑐𝑐 = 4400 �𝑓𝑓𝑐𝑐𝑐𝑐  � 𝜌𝜌𝑐𝑐
2400

�
1.4

  

Noguchi et al. [13] 𝐸𝐸𝑐𝑐 = 𝑘𝑘1𝑘𝑘2 3.35 104 � 𝜌𝜌𝑐𝑐
2400

�
2
�𝑓𝑓𝑐𝑐𝑐𝑐
60
�
1
3�   
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The Model Code 2010 (MC) [12] also gives a suitable relationship that contains addi-
tional parameters Ec0 and αE. The parameter αE depends on the aggregate type and varies 
from 0.7 to 1.2, giving a global variation (Ec0 αE) from 15100 MPa (lower), for sand-
stone aggregates, to 25800 MPa (higher), for basaltic or dense limestone aggregates, 
with a typical value of 22000 MPa (medium), for quartzite aggregates.  
The proposals in [10] and [11] include in their expressions the concrete density in kg/m3 

which generally, for normal weight concrete, varies between 2000 and 2400 kg/m3. 
Another formula often used for the determination of the initial elastic modulus is given 
in [13]. In their work, the authors have collected more than 3000 data sets, obtained by 
using various materials, and have analysed them statistically.  

 
Fig. 1. Comparison of the initial elastic modulus expressions for different concrete compressive 

strength and different values of concrete density (2200 and 2400 kg/m3): Model Code10 [12], 
Chang-Mander [1], Samani and Attard [10], Lim and Ozbakkaloglu [11], Noguchi et al. [13]. 

 
The compressive strengths of the considered concrete range from 40 to 160 MPa. As a 
result, a practical and universal equation, which also takes into consideration the types 
of aggregates and mineral admixtures, is defined. In this equation, ρc is in kg/m3 and fcp 
is in MPa. The corrective factors k1 an k2 are included to account for the variety of the 
aggregates and of the admixtures. The expression proposed in [13] is well formulated 
and based of a large amount of experimental data, however, the determination of the 
corrective factors k1 and k2 becomes difficult if no experimental information is available 
on the concrete mixture of the studied case. 
Anyhow in Fig. 1 the relation is plotted in comparison with the other, considering mean 
values of both factors, k1 = 1.0 and k2 = 1.0. In the graph, the series defined as “1” or 
“2” correspond to the same relationships but different values for the concrete density 
ρc, which is taken equal to 2200 kg/m3 for the “1” series and 2400 kg/m3 for the “2” 
series. 
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3.2 Empirical relations for peak strain, εcp 

Compressive peak strain of concrete can be related to compressive strength according 
to various relations. For example, expressions proposed by Eurocode 2 [14], Chang-
Mander [1], Samani and Attard [10] or Lim and Ozbakkaloglu [11] can be used, as 
summarized in Table 2. In particular, the equation proposed in [10] is based on the type 
of the concrete aggregates and the coefficient c is taken equal to 4.26 for crushed ag-
gregates and equal to 3.78 for gravel aggregates. 

Table 2.   Empirical relations for peak strain, εcp. 

Authors Expressions 

Chang-Mander [1] 𝜀𝜀𝑐𝑐𝑐𝑐 = 0.88 ∙ 10−3 𝑙𝑙𝑛𝑛 �𝑓𝑓𝑐𝑐𝑐𝑐�
0.25

  

Eurocode 2 [14] 𝜀𝜀𝑐𝑐𝑐𝑐 = 0.7 ∙ 10−3�𝑓𝑓𝑐𝑐𝑐𝑐�
0.31

  

Samani and Attard [10] 𝜀𝜀𝑐𝑐𝑐𝑐 =  𝑓𝑓𝑐𝑐𝑐𝑐
𝐸𝐸𝑐𝑐

𝑐𝑐

�𝑓𝑓𝑐𝑐𝑐𝑐4   

Lim and Ozbakkaloglu [11] 
 
 

𝜀𝜀𝑐𝑐𝑐𝑐 =  𝑓𝑓𝑐𝑐𝑐𝑐
0.225 𝑘𝑘𝐷𝐷

1000
 𝑘𝑘𝑆𝑆𝑘𝑘𝐴𝐴  

𝑘𝑘𝐷𝐷 =  � 𝜌𝜌𝑐𝑐
2400

�
0.45

, 𝑘𝑘𝑆𝑆 =  �152
𝐷𝐷
�
0.1

, 𝑘𝑘𝐴𝐴 =  �2𝐷𝐷
𝐻𝐻
�
0.13

 

In [11], kD, kS and kA are correcting factors which account for the shape (H and D) of 
the tested specimen and the density of the employed concrete. These factors are in-
cluded based on experimental evidence resulting from a huge number of tests carried 
out on specimens characterized by different geometries, aspect ratios, density, aggre-
gate types and dimensions. 

 
Fig. 2. Comparison of the peak strain expressions for different concrete compressive strengths 

and aggregate types (crushed and gravel): EC2, Chang-Mander [1], Samani and Attard [10]. 
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In particular, the specimen diameter (D) and aspect ratio (H/D) slightly influence the 
axial strain at peak i.e., for a given compressive strength, the axial strain at peak com-
pressive stress (εcp) decreases with either an increase of D or H/D. 
In Fig. 2 the above-mentioned expressions are plotted in the same graph for a compres-
sive strength range of 20-70 MPa. The relation given by [11] is not included since it 
requires additional information regarding the specimen geometry. 

3.3 Proposed expression for n 

The comparisons discussed in previous sections shows that, even if several different 
relationships are available, each one depending on different parameters, the obtained 
values for Ec and εcp show a relatively good agreement. 
Combining the relationships proposed in the Model Code 2010 for the initial elastic 
modulus and in the Eurocode 2 for the peak strain, the following expression for the 
parameter n of the Chang-Mander model as a function of the compressive strength: 

  𝑛𝑛 = 3.5083 ∙ 10−4𝐸𝐸𝑐𝑐0�𝑓𝑓𝑐𝑐𝑐𝑐�
−0.39

 (10) 

The chosen combination (MC10 and EC2) offers a considerable modelling flexibility 
as it contains the additional parameter Ec0 which allows the formula to accommodate 
various types of concrete. If the mean value of  Ec0 = 22000 MPa is used, Eq. (10) gives: 
 𝑛𝑛 = 7.7183�𝑓𝑓𝑐𝑐𝑐𝑐�

−0.39
 (11) 

which is similar to the expression proposed by Chang-Mander: 

 𝑛𝑛 = 7.2�𝑓𝑓𝑐𝑐𝑐𝑐�
−0.375

 (12) 

Concerning the parameter r, Chang-Mander proposed the following expression: 

 𝑟𝑟 = −1.9 + 1
5.2
𝑓𝑓𝑐𝑐𝑐𝑐 (13) 

which gives a good approximation for the first part of the post-peak curve of unconfined 
concrete, for various values of the compressive strength. This relation is to be consid-
ered as an alternative to the Popovic’s expression: 

 𝑟𝑟 = 𝑛𝑛
𝑛𝑛−1

 (14) 

where r is constrained to n so to provide a good approximation for confined concrete. 
Summarizing, the following expressions can be used for the determination of the 
Chang-Mander concrete model: 

𝑛𝑛 = 3.5083 ∙ 10−4𝐸𝐸𝑐𝑐0�𝑓𝑓𝑐𝑐𝑐𝑐�
−0.39

;           𝑟𝑟 = −1.9 + 1
5.2
𝑓𝑓𝑐𝑐𝑐𝑐     (15) 

Employing the above-mentioned expression for the n and r parameters in the Tsai equa-
tion, constitutive laws can be obtained for plain and confined concrete. 
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4 Parameter calibration: α for unconfined concrete 

The third parameter of the Chang-Mander model that can be modified to better describe 
the material law is the switch strain α which determines the spalling strain xsp corre-
sponding to the point where concrete exhibits zero residual stress. Generally speaking, 
parameter α can take any value bigger than 1, however, as clearly shown in Fig. 3a, it 
is important to consider that even small variations of the parameter can yield strong 
changes in the corresponding spalling strain.  
For example, if α = 1, since the tangent at the peak is horizontal, an infinite spalling 
strain xsp = ∞, is obtained. For greater values of α, xsp first decreases until the inflection 
point and then increases again. Fig. 3b shows a typical variation of xsp as a function of 
α with a clear indication of the existence of a minimum. Comparison of Fig. 3b with 
the corresponding curves shows that the minimum value in the curve corresponds to a 
switch at the inflection point. 

 
(a) (b) 

Fig. 3. (a) Influence of the switch parameter in Chang-Mander model; (b) spalling strain as a 
function of the switch parameter in Chang-Mander model (fcp = 38 MPa, Ec0= 22000 MPa). 

In the literature, few expressions can be found to calculate the spalling strain; only in 
[15] some indications are given. However, after consideration of typical experimental 
data, it turns out that a possible way to calibrate the switching strain while keeping 
reasonable values of the spalling strain is to set α in such a way that the switch between 
the two branches takes place at the inflection point εi, where experimental curves show 
a change of sign in the curvature. The location of inflection point of the descending 
branch has been investigated by many authors who proposed various empirical expres-
sions based on regression analyses from experimental data, some of which are summa-
rized in Table 3.   
The expression proposed in [11], shown in the third row of Table 3, is more complicated 
and it is valid also in the case of confined concrete (having peak strength equal to 𝑓𝑓𝑐𝑐𝑐𝑐∗ ) 
where a residual compressive resistance (fc,res) is observed and considered. When plain 
concrete is analysed, 𝑓𝑓𝑐𝑐𝑐𝑐∗ =  𝑓𝑓𝑐𝑐𝑐𝑐    and fc,res = 0. Hence, the above equation can be rewrit-
ten as: 

      𝛼𝛼𝑜𝑜𝑐𝑐𝑜𝑜 = �10  𝑓𝑓𝑐𝑐𝑐𝑐−0.47 �  � 𝜌𝜌𝑐𝑐
2400

�
0.4

                     (16) 
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Using one of the above expressions for the spalling strain to calibrate parameter α gen-
erally leads to the non-smoothness of the curve since the slope constraint is violated. It 
turns out therefore that, to get a reliable formula utilizable with the Chang-Mander 
model, a specific expression for the inflection point of the Tsai equation is needed.  
Although the second derivative of the Tsai equation can be easily computed, its zeros 
are hard to find in closed form. On the other hand, it is possible to compute in closed 
form the spalling nondimensional strain as a function of α: 

 𝑥𝑥𝑠𝑠𝑐𝑐(𝛼𝛼) = 𝛼𝛼 − 𝑦𝑦(𝛼𝛼)
𝑦𝑦′(𝛼𝛼)

= 𝑟𝑟(1−𝛼𝛼𝑟𝑟)−𝑛𝑛(𝑟𝑟−1) 
(𝑟𝑟−1)(1−𝛼𝛼𝑟𝑟)

𝛼𝛼2 (17) 

from which we get: 

 𝑥𝑥′𝑠𝑠𝑐𝑐(𝛼𝛼) = 𝑦𝑦(𝛼𝛼)𝑦𝑦′′(𝛼𝛼)
[𝑦𝑦′(𝛼𝛼)]2

 (18) 

Hence a sufficient condition to get a minimum value of xsp is the vanishing of the second 
derivative of y, that is, the inflection point of the descending branch of the Tsai function. 
Namely 𝑦𝑦′′(𝛼𝛼) = 0 implies 𝑥𝑥′𝑠𝑠𝑐𝑐(𝛼𝛼) = 0 a minimum. 
On the other hand, inflection point can be easily computed for Popovic’s equation as 
𝑥𝑥𝑓𝑓𝑓𝑓𝑠𝑠𝑟𝑟 = √𝑟𝑟 + 1𝑟𝑟  but for Tsai equation this seems not to be possible in closed form. How-
ever, it can be solved numerically as proposed in the next section. 

Table 3.   Expression considered for the evaluation of the inflection point αopt. 

Authors Expressions 

Su and Bei [7] 
 

𝛼𝛼𝑜𝑜𝑐𝑐𝑜𝑜 = 3.86 − 0.54 ln𝑓𝑓𝑐𝑐𝑐𝑐   
𝛼𝛼𝑜𝑜𝑐𝑐𝑜𝑜 = 6.20 − 1.12 ln𝑓𝑓𝑐𝑐𝑐𝑐   
 

Samani and Attard [10] 𝛼𝛼𝑜𝑜𝑐𝑐𝑜𝑜 = 2.76 − 0.35 ln𝑓𝑓𝑐𝑐𝑐𝑐  

Lim and Ozbakkaloglu [11] 

 

 𝛼𝛼𝑜𝑜𝑐𝑐𝑜𝑜 = �
2.8 �𝑓𝑓𝑐𝑐,𝑟𝑟𝑠𝑠𝑠𝑠

𝑓𝑓𝑐𝑐𝑐𝑐∗
�  𝑓𝑓𝑐𝑐𝑐𝑐−0.12 +

10 �1 −  𝑓𝑓𝑐𝑐,𝑟𝑟𝑠𝑠𝑠𝑠
𝑓𝑓𝑐𝑐𝑐𝑐∗

�  𝑓𝑓𝑐𝑐𝑐𝑐−0.47 
�  � 𝜌𝜌𝑐𝑐

2400
�
0.4

 

4.1 Proposed expression for spalling strain  

Using the relations proposed in Sect. 3 for the parameters n and r, it is possible to com-
pute numerically the spalling strain as a function of α for various values of the com-
pressive strength (Fig. 4). 
For each value of the compressive strength, there is a minimum value of the spalling 
strain, xsp,opt, taking place at a value αopt which, as discussed above, coincides with the 
inflection point of the descending branch.  
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Fig. 4. Comparison of the obtained switch parameter for different values of compressive 

strength ranging from 20 to 70 MPa (initial Ec0 = 22000 MPa).  

 
(a) (b) 

Fig. 5. (a) Plot of the optimal inflection point for different values of Ec0, ranging from 15100 
MPa to 25800 MPa; (b) proposed curve (solid blue) for the determination of the optimal inflec-

tion point as a function of compressive strength (Ec0=22000 MPa) and corresponding linear 
(dashed black) and logarithmic interpolation (dashed red). 

In Fig. 5a, α  is plotted as a function of the strength for various values of the parameter 
Ec0 = 22000 MPa. The figure shows that the various curves have a similar shape which 
can be approximated employing both linear (𝛼𝛼𝑜𝑜𝑐𝑐𝑜𝑜 = 1.9473 − 0.0105 �𝑓𝑓𝑐𝑐𝑐𝑐�) and log-
arithmic curves (𝛼𝛼𝑜𝑜𝑐𝑐𝑜𝑜 = 3.151 − 0.448 ln�𝑓𝑓𝑐𝑐𝑐𝑐�), as exemplified in Figure 5b. 
Finally, from the above discussion, simple expressions of the optimal switch parameter 
can be obtained either in linear or logarithmic form (Table 4). In both cases a two-
parameters expression is obtained, with the parameters clearly depending on the param-
eter Ec0. 

In Fig. 6, the predictions of the proposed formulas are compared with the above-dis-
cussed empirical formula for the normalized strain corresponding to the inflection 
point. As previously indicated, the series defined as “1” or “2” correspond to the same 
relationships but different values of specific parameters. In [9], the density ρc varies and 
is equal to 2200 kg/m3 for the “1” series and 2400 kg/m3 for the “2” series, while in [7], 
the series “1” corresponds to 10 mm aggregate size and the series “2” to 20 mm aggre-
gate size. 
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Table 4.  Proposed expression for spalling strain. 
 Expressions 
Linear expression 
 

𝛼𝛼𝑜𝑜𝑐𝑐𝑜𝑜 = 𝐴𝐴 − 𝐵𝐵 �𝑓𝑓𝑐𝑐𝑐𝑐�      

Logarithmic expression 
 

𝛼𝛼𝑜𝑜𝑐𝑐𝑜𝑜 = 𝐶𝐶 − 𝐷𝐷 𝑙𝑙𝑛𝑛 �𝑓𝑓𝑐𝑐𝑐𝑐� 

 

 
Fig. 6. Optimal value for parameter α as a function of the concrete compressive strength, com-

parison between the proposed expression and those obtained from the literature.  
 
The comparison shows that, among the various available expressions, the one proposed 
by Samani-Attard is the one that yields the best agreement with the one here obtained 
from the Tsai equation. 

5 Conclusion 
In the present work, a simple procedure to calibrate the main material parameters of the 
Chang-Mander uniaxial model for unconfined concrete has been proposed. 
By combining the expressions proposed by EC2 and MC10 for peak strain and initial 
elastic modulus, a formula for the parameter n as a function of the compressive strength 
is obtained first. Then, after a numerical optimization, formulas for the parameter α 
corresponding to a smooth switch at the inflection point are obtained. Referring to the 
average value Ec0 = 22000 MPa and to the case of linear approximation for α, the fol-
lowing simple expressions can be used to calibrate the three main parameters of Chang-
Mander model in compression 

𝑛𝑛 = 7.7183�𝑓𝑓𝑐𝑐𝑐𝑐�
−0.39

;    𝑟𝑟 = −1.9 + 1
5.2
𝑓𝑓𝑐𝑐𝑐𝑐 ;    𝛼𝛼𝑜𝑜𝑐𝑐𝑜𝑜 = 1.9473 − 0.01055 𝑓𝑓𝑐𝑐𝑐𝑐 (19) 

 
The proposed expression for α can be directly used in the OpenSees implementations 
to get a smooth switch between the two branches of the curve. 
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