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2Sorbonne Université, CNRS, LIP6, F-75005 Paris, France
{maria.potop-butucaru, sebastien.tixeuil}@lip6.fr
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Abstract

This paper proposes the first implementation of a self-stabilizing regular register
emulated by n servers that is tolerant to both Mobile Byzantine Agents and transient
failures in a round-free synchronous model. Differently from existing Mobile
Byzantine Tolerant register implementations, this paper considers a weaker model
where: (i) the computation of the servers is decoupled from the movements of
the Byzantine agents, i.e., movements may happen before, concurrently, or after
the generation or the delivery of a message, and (ii) servers are not aware of their
failure state i.e., they do not know if and when they have been corrupted by a
Mobile Byzantine agent. The proposed protocol tolerates (i) any finite number
of transient failures, and (ii) up to f Mobile Byzantine agents. In addition, our
implementation uses bounded timestamps from the Z13 domain and it is optimal
with respect to the number of servers needed to tolerate f Mobile Byzantine agents
in the given model (i.e., n > 6f when ∆ = 2δ, and n > 8f when ∆ = δ, where ∆
represents the period at which the Byzantine agents move and δ is the upper bound
on the communication latency).

Keywords: Shared Register, Mobile Byzantine Failure, Bounded Timestamps,
Self Stabilization.
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1. Introduction

Byzantine Fault Tolerance (BFT) is a fundamental building block in distributed
systems as Byzantine failures include all possible faults, attacks, virus infections
and arbitrary behaviours that can occur in practice (even unforeseen ones). Such
bad behaviours have been typically abstracted by assuming an upper bound f on
the number of Byzantine failures in the system. However, such an assumption
has two main limitations: (i) it is not suited for long-lasting executions and (ii) it
does not consider the fact that compromised processes/servers may be restored as
infections may be blocked and confined or rejuvenation mechanisms can be put in
place [33] making the set of faulty processes changing over time.

Mobile Byzantine Failure (MBF) models have been introduced to mitigate
those concerns. Failures are represented by Byzantine agents that are managed
by an omniscient adversary that “moves” them from a host process to another
and when an agent is in some process it can corrupt it in an unforeseen manner.
Models investigated so far in the context of Mobile Byzantine Failures consider
mostly round-based computations, and can be classified according to Byzantine
mobility constraints: (i) constrained mobility [12] agents may only move from one
host to another when protocol messages are sent (similarly to how viruses would
propagate), while (ii) unconstrained mobility [3, 5, 20, 28, 29, 31] agents may
move independently of protocol messages. In the case of unconstrained mobility,
several variants were investigated [3, 5, 20, 28, 29, 31]: Reischuk [29] considers
that malicious agents are stationary for a given period of time, Ostrovsky and
Yung [28] introduce the notion of mobile viruses and define the adversary as an
entity that can inject and distribute faults; finally, Garay [20], and more recently
Banu et al. [3], Sasaki et al. [31] and Bonnet et al. [5] consider that processes
execute synchronous rounds composed of three phases: send, receive, and compute.
Between two consecutive such synchronous rounds, Byzantine agents can move
from one node to another. Hence the set of faulty processes at any given time
has a bounded size, yet its membership may evolve from one round to the next.
The main difference between the aforementioned four works [3, 5, 20, 31] lies
in the knowledge that hosts have about their previous infection by a Byzantine
agent. In Garay’s model [20] and in Banu et al.’s model [3], a host can detect its
own infection after the Byzantine agent left it and move to a cured state where it
recovers from the compromising. Sasaki et al. [31] investigate a model where hosts
cannot detect when Byzantine agents leave. Finally, Bonnet et al. [5] considers
an intermediate setting where cured hosts remain in control on the messages they
send (in particular, they send the same message to all destinations, and they do
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not send fake information, e.g. fake id). Those subtle differences in the power of
Byzantine agents turn out to have an important impact on the bounds for solving
distributed problems.

A first step toward decoupling algorithm rounds from mobile Byzantine moves
is due to Bonomi et al. [9]. In their solution to the regular register implementation,
mobile Byzantine movements are synchronized, but the period of movement is
independent of that of algorithm rounds.

Alternatively, self-stabilization [15, 16] is a versatile technique to recover from
any number of Byzantine participants, provided that their malicious actions last
for a finite amount of time. More in detail, starting from an arbitrary global state
(that may have been caused by Byzantine participants), a self-stabilizing protocol
ensures that the problem specification is satisfied again in finite time, without
external intervention.

Register Emulation. Traditional solutions to build a Byzantine tolerant storage
service (a.k.a. register emulation) can be divided into two categories: replicated
state machines [32], and Byzantine quorum systems [4, 23, 25, 24]. Both ap-
proaches are based on the idea that the current state of the storage is replicated
among processes, and the main difference lies in the number of replicas that are
required to run the state maintenance protocol. Indeed, Schneider [32] assumes
that n > 2f (i.e., the number of Byzantine processes is a strict minority of the
system) as operations are assumed to be ordered, and replicas just need to vote for
their commitment. Conversely, in Byzantine quorum systems [4, 23, 25, 24], the
ordering assumption is removed, and the number of servers required to tolerate
f Byzantine failures increases at least to n > 3f (i.e., a strict double majority of
correct processes is required).

Multi-tolerance. Extending the effectiveness of self-stabilization to permanent
Byzantine faults is a long time challenge in distributed computing. Initial results
were mostly negative [14, 27] due to the impossibility to distinguish an honest yet
incorrectly initialized participant from a truly malicious one. On the positive side,
two notable classes of algorithms use some locality property to tolerate Byzantine
faults: space-local and time-local algorithms. Space-local algorithms [26, 27, 30]
try to contain the fault (or its effect) as close to its source as possible. This is useful
for problems where information from remote nodes is unimportant (such as vertex
colouring, link colouring, or dining philosophers). Time-local algorithms [17, 18,
19] try to limit over time the effect of Byzantine faults. Time-local algorithms
presented so far can tolerate the presence of at most a single Byzantine node. Thus,
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neither approach is suitable to register emulation.
Recently, several works investigated the emulation of self-stabilizing or pseudo-

stabilizing1 Byzantine tolerant SWMR or MWMR registers [1, 8, 7]. All these
works do not consider the complex case of Mobile Byzantine Failures (MBFs).

To the best of our knowledge, the problem of tolerating both arbitrarily tran-
sient faults and mobile Byzantine faults has been considered only in round-based
synchronous systems [6]. The authors propose optimal unbounded self-stabilizing
atomic register implementations for round-based synchronous systems under the
four Mobile Byzantine models [3, 5, 20, 31].

Our Contribution. The main contribution of the paper2 is a protocol Preg emulat-
ing a regular register in a distributed system where both arbitrary transient failures
and mobile Byzantine failures can occur. In particular, the proposed solution differs
from previous work on round-free 3 register emulation [9, 10] as we add the self-
stabilization property. In more detail, we present a regular register implementation
that uses bounded timestamps from the Z13 domain and it is optimal4 with respect
to the number of replicas needed to tolerate f mobile Byzantine agents. Finally, we
prove that the maximum amount of time needed by our solution to recover a correct
behavior after arbitrary transient faults occur (i.e., for starting to return a valid value
as result of a read() operation) is upper bounded by T12write(), where T12write() is
the time needed to execute twelve complete write() operations. Intuitively, this is
due to the fact that the system stabilizes only when all servers have fired potentially
corrupted timestamps. Considering that the number of available timestamps is 13
and that at each write() operation every server adopts the most recent between the

1According to Burns, Gouda, and Miller [13], the difference between self-stabilization and
pseudo-stabilization is subtle. On the one hand, self-stabilization requires that if the system starts
from an arbitrary state, then it is guaranteed to reach, within a finite number of transitions, a state
wherefrom the system cannot deviate from its intended specification while pseudo-stabilization
requires that if the system starts from an arbitrary state, then it is guaranteed to reach, within a finite
number of transitions, a state after which the system does not deviate from its intended specification.
The direct implication is that pseudo-stabilization is strictly weaker than self-stabilization, as it only
guarantees that any infinite execution has a suffix that satisfies its intended specification (but does
not guarantee that a legitimate configuration is ever reached, so its stabilization time is unbounded).

2This paper is actually the full version of [11].
3A round-free computation is a computation that does not evolve in rounds and such computation

model differs from those used in most of the related works considering MBF [3, 5, 20, 31].
4Our solution is optimal in the sense that using fewer replicas for tolerating f mobile Byzantine

agents is impossible.
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one stored locally and the one associated to the write, to stabilize and converge to
a shared timestamp we need at most 12 operations.

2. System Model

We consider a distributed system composed of an arbitrary large set of client
processes C and a set of n server processes S = {s1, s2 . . . sn}. Each process in the
distributed system (i.e., both servers and clients) is identified by a unique identifier.
Servers run a distributed protocol emulating a shared memory abstraction and such
protocol is transparent to clients (i.e., clients do not know the protocol executed
by servers). The passage of time is measured by a fictional global clock (e.g., that
spans the set of natural integers). At each time t, each process (either client or
server) is characterized by its internal state, i.e., by the set of all its local variables
and the corresponding values.

Communication model. Processes communicate through message passing. In
particular, we assume that: (i) each client ci ∈ C can communicate with every
server through a broadcast() primitive, (ii) each server can communicate with
every other server through a broadcast() primitive, and (iii) each server can com-
municate with a particular client through a send() unicast primitive. We assume
that communications are authenticated (i.e., given a message m, the identity of its
sender cannot be forged) and reliable (i.e., spurious messages are not created and
sent messages are neither lost nor duplicated).

Timing assumptions. Given the impossibility result proved by Bonomi et al. [9],
we consider a synchronous system. The system is synchronous in the following
sense: (i) the processing time of local computations (except for wait() statements)
is negligible with respect to communication delays and is assumed to be equal to 0,
and (ii) messages take time to travel to their destination processes. In particular,
concerning point-to-point communications, we assume that if a process sends a
message m at time t then it is delivered by time t+δp (with δp > 0). Similarly, let t
be the time at which a process p invokes the broadcast(m) primitive, then there is a
constant δb (with δb ≥ δp) such that all servers have delivered m at time t+ δb. For
the sake of presentation, in the following, we consider a unique message delivery
delay δ (equal to δb ≥ δp), and we assume δ is known to every process. Finally, we
assume that any process is equipped with a drift-free physical clock, provided by
an external not corruptible trusted component, and perfectly synchronized.
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Computation model. Each process of the distributed system executes a distributed
protocol Preg that consists of a set of distributed algorithms. Each algorithm in
Preg is represented by a finite state automaton whose transitions correspond to
computation and communication steps. A computation step denotes a computation
executed locally by a given process, while a communication step denotes a sending
or a receipt of a message. Computation steps and communication steps are generally
called events. Each process maintains a set of variables, and the current values
of those variables denote the state of a process. Each communication channel
maintains a multiset of messages. A message is added (resp. removed) in (from)
this multiset when an adjacent process sends (resp. receives) a message to (resp.
from) the other adjacent process. The set of messages in a communication channel
at a given time defines the channel state.

The distributed protocol Preg evolves in time across different configurations
that define the protocol execution. More formally:

Definition 1 (Configuration). A configuration C is a snapshot of the distributed
system at some time t that includes (i) the state of every process pi in the system
(including both client and servers), and (ii) the state of every communication
channel existing in the system.

Definition 2 (Execution). An execution E is a sequence of configurations C1, C2, . . .
such that for any i > 1, Ci is reachable from Ci−1 by executing one event (be it a
computation or a communication event).

Definition 3 (Execution History). Given an execution E , an execution history
HE is a finite prefix of E at some time t.

We will consider round-free executions [9] i.e., executions in which the dis-
tributed protocol Preg does not evolve in synchronous rounds but where messages
can be sent (according to the protocol) at any point in time and computation steps
are executed as soon as their enabling conditions in the protocol are satisfied.
This means that two different processes may manage the delivery of the same
broadcast message at different times and may react and progress with the protocol
independently.

We stress that the computation does not evolve in rounds to highlight the
difference with most of the previous works on Mobile Byzantine Faults [3, 5, 20,
31] and highlight the impact that this additional degree of freedom has on the
number of replicas required for enabling solutions (more details at the end of this
section).
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Given a process pi and the protocol Preg, we say that pi is executing Preg in a
time interval [t, t′] if pi never deviates from Preg in [t, t′] (i.e., it always follows the
automata transitions and never corrupts its local state).

Definition 4 (Valid State at time t). Let Preg be a distributed protocol, let p̄ be a
process, and let E(p̄) be the set of all possible execution histories of Preg such that
p̄ follows the protocol Preg. Let t0 be the time at which Preg starts. Let statepi be
the state of a process pi at some time t. We say that statepi is valid at time t if it
is equal to one of the possible state of process pi at time t in one of the execution
histories in E(pi).

Intuitively, the state of a process p is valid at time t if it could have been
obtained by a process that remained correct until time t.

Failure Model. On the client-side, we simply assume that an arbitrary number
of them may crash. On the server-side, we assume that servers are affected by
Mobile Byzantine Failures i.e., failures are represented by Byzantine agents that
are controlled by a powerful external adversary “moving” them from one server to
another. Furthermore, we assume that at any time t, at most f mobile Byzantine
agents are in the system.

In this work we consider the ∆-Synchronized and Cured Unaware Model,
i.e., the (∆S,CUM) MBF model, introduced by Bonomi et al. [9] that is suited
for round-free computations5. More in detail, (∆S,CUM) can be specified as
follows:

• The external adversary moves all the f mobile Byzantine agents at the same
time instant, and movements happen periodically (i.e., movements happen at
time t0 + ∆, t0 + 2∆, . . . , t0 + i∆, with i ∈ N).

• At any time t ≥ t0, no process is aware of its failure state (i.e., processes do
not know if and when they have been affected by a Byzantine agent), but
each process is aware of the time at which mobile Byzantine agents move.
In other words, since processes are equipped with drift-free synchronized
clocks with the same origin t0, and that ∆ is known, then they are aware of
the time instants when movements of the Byzantine agents occur.

5More specifically, the (∆S,CUM) model abstracts distributed systems subjected to proactive
rejuvenation [33] where processes have no self-diagnosis capability.
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Let us note that when we are considering Mobile Byzantine agents, no single
process is guaranteed to be in the same failure state forever. Processes, in fact,
may alternate between correct and incorrect behaviour infinitely often. As a conse-
quence, it is fundamental to re-define the notion of correct and faulty processes as
follows:

Definition 5 (Faulty process at time t). A process is faulty at time t if it is con-
trolled by a mobile Byzantine agent (so it may behave arbitrarily). We denote by
B(t) the set of faulty processes at time t while, given a time interval [t, t′], we
denote by B([t, t′]) the set of processes that are faulty during the whole interval
[t, t′] (i.e., B([t, t′]) =

⋂
τ ∈ [t,t′] B(τ)).

Definition 6 (Correct process at time t). A process is correct at time t if (i) its
state is valid at time t, and (ii) it is not controlled by a Byzantine agent. We denote
by Co(t) the set of correct processes at time t while, given a time interval [t, t′], we
denote by Co([t, t′]) the set of processes that are correct during the whole interval
[t, t′] (i.e., Co([t, t′]) =

⋂
τ ∈ [t,t′] Co(τ)).

Definition 7 (Cured process at time t). A process is cured at time t if (i) its state
is not valid at time t, and (ii) it is not controlled by a Byzantine agent. We denote
by Cu(t) the set of cured processes at time t while, given a time interval [t, t′], we
denote by Cu([t, t′]) the set of processes that are cured during the whole interval
[t, t′] (i.e., Cu([t, t′]) =

⋂
τ ∈ [t,t′] Cu(τ)).

Let us note that, according to Definition 5, a faulty process may behave ar-
bitrarily executing a protocol P ′ 6= P . By contrast, cured and correct processes
execute the correct protocol P . The main difference in the latter case is that cured
processes may execute P based on an incorrect state that thus need to be cleaned.
As in the case of round-based MBF models [3, 5, 12, 20, 31], we assume that every
process has access to a tamper-proof memory storing the correct protocol code. So,
the only processes that do not execute their prescribed protocol are those controlled
by a mobile Byzantine agent. We denote by the term honest a process that is either
correct or cured (i.e., a process that honestly executes its code). Let us stress that
even though at any time t, at most f servers can be controlled by Byzantine agents,
during the system lifetime, all servers may be affected by a Byzantine agent (i.e.,
none of the servers is guaranteed to be correct forever).

In addition to being controlled by Byzantine agents, processes may also suffer
from transient failures, i.e., the state of any process (client or server) can be arbi-
trarily modified [16]. Let us recall that the (local) state of a process is characterized
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(a) Example of a round-based computation run in Garay’s
MBF model.

pi

pj

pk

ph

px

py
Δ Δ Δ

(b) Example of a round-free computation run in (∆S, ∗)
MBF model.

Figure 1: Comparison of round-based and round-free executions in presence of f = 2 mobile
Byzantine agents.

by all its local variables, including its program counter and its input buffers. It is
nevertheless assumed that transient failures are quiescent, i.e., in any execution
of the system, there exists a time τno tr (unknown to the processes) after which
no new transient failure occurs. However, the effect of those transient faults may
persist after τno tr, as arbitrarily modified local states may persist (after τno tr) or
propagate to other processes unless they are dealt with by the protocol.

Figure 1 provides a graphical intuition about the main differences between a
round-based computation and a round-free one in presence of Mobile Byzantine
Failures. In the round-based execution, we consider that the mobile Byzantine
agents move at the beginning of every round (Figure 1a) as in Garay’s model [20],
while they move with a period of ∆ in Figure 1b. We consider a period equal to
the communication latency to compare the round-free execution with the round-
based one. The round-based computation evolves in synchronous and synchronized
rounds, where all messages are sent together at the beginning of the round, and then
processed just before the end of the round. Conversely, in round-free computations,
messages can be sent by any process independently from the others (see e.g., blue
areas for pi, pj and pk). The main consequence is that in round-based computations,
the f mobile Byzantine agents affect processes “symmetrically” (i.e., all equally
with respect to messages), and in a specific phase of the round (e.g., in Garay’s
model, they affect the send phase), with effects limited to messages generated
by faulty processes in the considered round (see the blue area in Figure 1a). A
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mobile agent may still move periodically in a round-free computation, but its
movement is independent from messages potentially exchanged between processes.
As a result, a mobile Byzantine agent may impact “asymmetrically” messages
exchanged concurrently by processes (see the blue area in Figure 1b).

3. Self-Stabilizing Regular Register Specification

A register is a shared variable accessed by a set of processes, i.e. clients, through
two operations, namely read() and write(). Informally, the write() operation
updates the value stored in the shared variable while the read() obtains the value
contained in the variable (i.e. the last written value). In distributed settings,
every operation issued on a register is, generally, not instantaneous and it can be
characterized by two events occurring at its boundary: an invocation event and
a reply event. An operation op is complete if both the invocation event and the
reply event occur (i.e. the process executing the operation does not crash between
the invocation and the reply). Contrary, an operation op is said to be failed if it is
invoked by a process that crashes before the reply event occurs. According to these
time instants, it is possible to state when two operations are concurrent with respect
to the real-time execution. Given two operations op and op′, their invocation event
times (tB(op) and tB(op′)) and their reply event times (tE(op) and tE(op′)), we
say that op precedes op′ (op ≺ op′) iff tE(op) < tB(op′). If op does not precede
op′ and op′ does not precede op, then op and op′ are concurrent (op||op′). Given a
write(v) operation, the value v is said to be written when the operation is complete.
We assume that locally any client never performs read() and write() operations
concurrently (i.e., for any given client ci, the set of operations executed by ci is
totally ordered). In case of concurrency while accessing the shared variable, the
meaning of last written value becomes ambiguous. Depending on the semantics of
the operations, three types of registers have been defined by Lamport [22]: safe,
regular and atomic.

In this paper, we consider a Self-Stabilizing Single-Writer/Multi-Reader (SS-
SWMR) regular register, i.e., an extension of Lamport’s regular register that
considers transient failures.

Let us consider a distributed protocol P and let EP be the set of all the possible
executions generated by P . Then, P satisfies the Single-Writer/Multi-Reader
(SWMR) register specification if and only if it satisfies the following properties:

• Termination: Every operation op invoked by a non-crashed client running P
terminates in every execution of P .
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• Validity: in every execution e ∈ EP , every completed read() operation returns
either the value written by the last completed write(), or a value written by a
concurrent write() operation.

Now, self-stabilization, introduced by Dijkstra [15], is a forward recovery
mechanism that permits distributed systems to resume correct behaviour after
arbitrary transient faults hit the system. The faults are transient in the sense they
are supposed to have occurred before the execution is started. This is conveniently
abstracted as starting the execution from an arbitrary configuration (that could have
been caused by arbitrary transient faults). However, no further memory corruptions
occur after the execution starts6.

Let us consider a distributed protocol P and let EP be the set of all the pos-
sible executions generated by P . Then, P satisfies the Self-Stabilizing Single-
Writer/Multi-Reader (SS-SWMR) register specification if and only if there exists
a non-empty subset of configurations L such that the following properties are
satisfied:

• ss− Correctness: Starting from a configuration in L, every execution of P
satisfies Termination and Validity.

• ss− Convergence: in every execution e ∈ EP , there exists a configuration in
L.

In general, the set L of legitimate configurations depends on the considered
algorithm. The particular set we use is presented in Section 5.1.

In the sequel, we will say that the execution of a self-stabilizing algorithm is
in a stable phase when it reaches a legitimate configuration l ∈ L. By extension,
any configuration occurring after the first legitimate configuration l ∈ L is a stable
configuration.

4. A Self-Stabilizing Regular Register Implementation

In this section we propose a protocol Preg implementing a self-stabilizing
SWMR regular register in the (∆S,CUM) MBF model. Our algorithm copes with

6Observe that, in our case, we assume both arbitrary transient faults and mobile Byzantine faults.
So, the initial configuration is arbitrary, and processes may be corrupted infinitely often by mobile
agents. Of course, it is impossible to distinguish an honest process whose memory is corrupted (but
executes genuine code) from a faulty one (that executes malicious code).
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the (∆S,CUM) model following the path of Bonomi et al. [9], yet improves the
result by making the solution self-stabilizing while retaining bounded timestamps.
Our solution considers two particular movement frequencies that induce different
requirements with respect to the required number of servers:

1. ∆ = δ, requiring n ≥ 8f + 1 servers and
2. ∆ = 2δ, requiring n ≥ 6f + 1 servers.

We implement read() and write() operations following a classical quorum-
based approach[2] and exploiting the system synchrony to guarantee their termina-
tion. Informally, when the writer client wants to write, it simply propagates the
new value to servers, that update their local copy of the register. Then, when a
reader client wants to read, it asks for the current value of the register and waits
for sufficiently many replies: after 3δ time, “enough”7 replies are received, and a
consistent value can be selected and returned as the result of the read() operation.

Of course, the duration of the read() operation has an impact on the number
of server replicas that are required to guarantee a correct implementation. Indeed,
the longer the read() operation lasts, the higher the number of servers that can be
corrupted by a mobile Byzantine agent (and that can send a corrupted value as a
reply to the client) is. As a consequence, there is a direct relationship between
the duration of the read(), and the number of replies (i.e., the size of the quorum)
needed to ensure the validity of the operation.

To deal with Mobile Byzantine agents that can progressively compromise local
copies of the register and lead to the loss of persistence of the last written value,
we introduce a maintenance() operation whose aim is to guarantee the existence
of a sufficient number of servers storing a valid value v for the register i.e., a
value v that has been written during the last write() operation or during one (or
more) write() operation(s) running concurrently with the maintenance() operation.
The basic idea behind the maintenance() operation is to implement a propagation
mechanism (using echoes) that spreads the state of correct servers to cured ones
and allows cured servers to recover from a possibly corrupted state to a valid one.
In doing this, the maintenance() needs to take care of the following issues:

1. ensuring that cured servers (i.e., servers that were previously compromised
by a Byzantine agent) get a valid value at the end of maintenance() and
restore their state to a valid one,

7The exact number of expected replies is provided in Table 1, as it depends on the values of ∆
and δ.
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2. written values that are possibly concurrent with a read() are always taken
into account by cured servers running maintenance(), and

3. correct servers do not overwrite a valid value with a non-valid one.

Each server si stores three pairs 〈value, timestamp〉 corresponding to the last
three written values, and periodically (that is, when Byzantine agents move at every
Ti = t0 + i∆, with i ∈ N) executes the maintenance() operation.

The key idea to recover a valid state at the end of the maintenance() is to keep
separated the information that can be trusted (e.g., values received directly from the
writer or values received from “enough” servers), from the untrusted information
(e.g., values stored locally that could have been compromised by the Byzantine
agent).

To this aim, the maintenance() operation makes use of three set variables stored
by every server si:

• Vi is used to store the knowledge of si at the beginning of each maintenance()
operation. It contains the last three values of the register and their correspond-
ing timestamps as per si knowledge. This set contains untrusted information,
as the values and/or timestamps may have been corrupted by the Byzantine
agent before the beginning of the maintenance() operation.

• Vsafei is used to collect safe values, i.e., values that can be considered valid
since they were selected among those that received enough echoes recently.
This variable is emptied at the beginning of every maintenance() operation
after its value is propagated.

• Wi is used to store values (and their corresponding timestamps) received
from the writer during the execution of a maintenance() operation. This set
contains untrusted information, as it could have been compromised by the
Byzantine agent before it leaves the server.

In the following, we informally explain how the maintenance() operation is
implemented, and we highlight the main issues and how we address them through
an example. Let us consider the execution depicted in Figure 2 showing the i-th
and the (i+ 1)-th maintenance() operations starting respectively at time t0 + i∆
and t0 + (i + 1)∆. Let us consider two servers s0 and s1 that are respectively
correct and cured at time t0 + i∆. In the figure, both servers report values of
their respective sets (i.e., Wi, Vi, Vsafei) during the execution of two maintenance()
operations and we also consider the case of a concurrent write() operation. Note
that s0 is correct, so values stored in V0 (i.e., V0 = {0, 1, 2}) are valid values. Now,
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Figure 2: A possible execution segment of the protocol for a correct server s0 and a cured server
s1, with ∆ = 2δ. For the sake of simplicity, we report only timestamps instead of the pair
〈value, timestamp〉.

s1 starts the maintenance() operation with V1 = {7, 8, 9} and W1 = {10} that
have been altered by the Byzantine agent before departing and leaving s1 in the
cured state. Vsafei is empty for both processes since it is the set of values that has
to be set during the maintenance(). In the figure, we use l for the broadcast of
the ECHO messages and the WRITE messages from the client. We use incoming
diagonal arrows for the delivery of the echo and write messages.

When maintenance() starts, every honest server si echoes the relevant infor-
mation stored locally (i.e., list of pending read() operations, together with the sets
Vi and Wi represented in Figure 2 with the l symbol at the beginning of the run).
Such information is then collected by every server sj and can be used (based on
the number of occurrences of each pair 〈value, timestamp〉 received) to update
the set Vsafej . In particular, Vsafej receives the values that have been echoed at
least #echoCUM times8. Let us note that, due to system synchrony and reliable
communication primitives, after δ time units (i.e., at time t0 + i∆+δ), si collects at

8The exact number of required echoes depends on the relationship between ∆ and δ, and is
discussed later in the text.
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least all the values sent by all honest servers, and si is able to decide and update its
local variables. Thus, si selects the values occurring at least #echoCUM times (see
Table 1) from echoes, updates Vsafei , and empties Vi. In Figure 2 at time t0 +i∆+δ,
s0 sets Vsafe0

= V0 (as expected since we assume s0 is correct), while s1 updates
Vsafe1

= V0 set consistently with s0 thanks to the values collected through the echo
messages.

However, the maintenance() operation is not yet complete as a write() oper-
ation may occur concurrently with a value not yet in Vsafei (and thus in Vi). In
order to manage this case, any time a value is written, it is relayed to all servers.
In addition, to avoid overwriting values newly written with those selected by the
maintenance() operation, concurrently written values are temporarily stored in Wi

with an associated timer (i.e., like a time-to-live) set to 2δ. On the one hand, the
timer is set in such a way that each value in Wi remains stored long enough to
ensure its propagation to all servers and guarantees that written values eventually
appear in Vsafei set for every honest server (e.g., the value 3 in Figure 2). On the
other hand, the 2δ period is not long enough to allow mobile Byzantine agents
to take advantage of the propagation of corrupted values through echoes and to
make reader clients return a corrupted value (e.g., the value 10 left by the mobile
Byzantine agent in W1 at the beginning of the i-th maintenance() operation).

Let us recall the importance of values stored in the Vsafei set. Indeed, those
values are echoed by si at the beginning of each maintenance(), and then recol-
lected to assess their validity, while values in the other sets are simply reset. In the
scenario depicted in Figure 2, the value 3 appears in the Vsafei set of both servers
only at time t0 + (i + 1)∆ + δ. At the beginning of the second maintenance()
operation, the value 3 contained in Wi is echoed along with the values in Vi (that
contains the values that were in the Vsafei set before Vi was reset). Thus, after δ
time from the beginning of the second maintenance() operation, the value 3 is
in Vsafei . We call the time necessary for a value to be present in Vsafei the write
persistence time.

Note that, depending on the relationship between ∆ and δ, a maintenance()
operation may be triggered while the previous one is not yet complete. This is
not an issue since the set Vi is updated before the second maintenance() operation
starts, and Wi is the only set that is not reset between the two maintenance()
operations. Furthermore, Wi values remain for a specific time-to-live of 2δ that is
sufficient to propagate them before they are discarded.

Finally, concurrently with the maintenance() and write() operations, servers
are required to answer also to clients that perform read() operations. To preserve
the validity of read() operations, and cope with the possible corruptions made

15



k = d 3δ
∆
e n∆ ≥ (2k + 2)f + 1 #replyCUM ≥ 2kf + 1 #echoCUM ≥ kf + 1

∆ = δ, k = 3 8f + 1 6f + 1 3f + 1
∆ = 2δ, k = 2 6f + 1 4f + 1 2f + 1

Table 1: Parameters for Preg Protocol.

by mobile Byzantine agents when leaving, a server si replies with all the values
it is currently storing (i.e., providing Vi, Vsafei , and Wi). Note that, given the
update mechanism of those variables (designed to separate trusted information
from untrusted information), there could be a period of time where the last written
value is removed from Wi (as its timer is expired), yet it is not inserted in Vsafei
nor Vi (as the corresponding propagation message is still travelling - cf. the red
zone in Figure 2). To cope with this issue, the read() operation lasts 3δ time, i.e.,
an extra waiting period is added for collecting sufficiently many replies, so that
values are not lost. The way the client analyzes values collected from the servers
in order to return a value is explained in detail in the sequel.

In Table 1 we report parameters used by the algorithm for both scenarios ∆ = δ,
and ∆ = 2δ. In particular, those parameters include:

• n∆: the number of servers for the specific mobile Byzantine agent movement
period ∆ (when ∆ is clear from the context or it is not relevant we will
simplify the notation by using n to denote the number of servers);

• #replyCUM : the number of occurrences of the same value v a client needs
to receive to trust value v and consider it valid;

• #echoCUM : the number of occurrences of the same value v that a server
needs to receive to trust value v and consider it valid for the maintenance()
operation (i.e., to store it in Vsafei).

All those parameters are a function of k = d3δ
∆
e, where 3δ is the duration of

both maintenance() and read() operations. Thus, k is a measure of how many
times Byzantine agents may move between servers during those operations. Let
us recall that this parameter has a direct impact on the number of servers required
to tolerate f Mobile Byzantine agents. Interestingly, #echoCUM < #replyCUM ,
since the maintenance() operation starts exactly when Byzantine agents move, thus
fewer servers can be affected during maintenance() than during read() (which can
start at any time, and can overlap multiple movements periods).

Finally, there remains to discuss the way bounded timestamps are employed. To
stabilise in finite time and manage transient failures, Preg employs bounded times-
tamps. It is important to note that timestamps are necessary in the (∆S,CUM)
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model as, during the maintenance(), servers must be able to distinguish new and
old values, to guarantee that a new value (possibly received from the writer) is
not overwritten by the maintenance() operation. In the following, we explain how
using bounded timestamps guarantees a finite and known stabilization period.

Let us note that, in the presence of transient failures, a necessary condition
for stabilization is that at least one write() operation is executed after time τno tr.
However, this condition is not sufficient. Since this operation is the first one after
τno tr, its associated timestamp could be arbitrary as well as other timestamps
stored in the system. For example, if timestamps can take all values in N as in
previous work [6, 9, 10], and the usual total order relationship on integers is used
to compare them, the timestamp used by the writer might be strictly smaller than
those stored locally by servers. Then, the newly written value is ignored by servers
as it is perceived as too old. This process may repeat until the writer timestamp
exceeds the highest timestamp initially stored by servers, yielding an unbounded
stabilization time.

To avoid this issue, we use a bounded set of timestamps in the domain Zm9 and
we define an order relation on the timestamps. Let us note that using a bounded
number of timestamps requires to periodically reuse the same sequence number
to label different write() operations. On the other side, to guarantee the validity
property of a regular register, we need that clients are able to distinguish between
the current value of the register and its previous ones. Thus, it is fundamental to
define a sound ordering relation between timestamps that allows clients to compare
among two different timestamps, and to guarantee that eventually, the algorithm
can safely reuse a previously used timestamp without generating conflicts. This
can be implemented using arithmetic with module i.e., by placing timestamps over
a ring, and cycling as new timestamps are selected. If we can guarantee that only
timestamps “close to each other” are used at any time, then we can compare them
without ambiguity, and uniquely choose the greatest one.

To this aim, we define the addition operation +m to increment timestamps
(modulo m), and we define how to order timestamps based on the intuitive notion
of distance.

Definition 8 (Addition operation in Zm). Let Zm be the subset of the first m
consecutive integers. We define as addition +m : Zm × Zm → Zm, a +m b =
(a+ b) (mod m).

9We will show in the correctness proofs that m = 13 is enough for our algorithm to work
correctly.
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Definition 9 (Distance between timestamp). Let tsi and tsj be two timestamps
such that tsi, tsj ∈ Zm. The distance between tsi and tsj , denoted by dist(tsi, tsj),
is given by the smallest number k that needs to be added (modulo m) to tsi to get
tsj (i.e., dist(tsi, tsj) = k iff tsi +m k = tsj).

As an example, if we consider tsi, tsj ∈ Z13, we get that the dist(1, 4) = 3
and dist(10, 2) = 5. Let us observe that for a given m, given a pair of timestamps
tsi, tsj ∈ Zm, dist(tsi, tsj) + dist(tsj, tsi) = m.

Definition 10 (Ordering relation between timestamps). Letm be the maximum
number of possible timestamps, and let Zm be the set of possible timestamps. For
any given pair tsi, tsj ∈ Zm we say that:

• tsi is equal to tsj i.e., tsi =m tsj if dist(tsi, tsj) = dist(tsj, tsi) = 0

• tsi is greater than tsj i.e., tsi >m tsj if dist(tsj, tsi) < dist(tsi, tsj)

• tsi is smaller than tsj i.e., tsi <m tsj if dist(tsi, tsj) < dist(tsj, tsi)

• tsi is incomparable to tsj i.e., tsi 6=m tsj if dist(tsi, tsj) = dist(tsj, tsi)
and dist(tsi, tsj) 6= 0

As an example, considering timestamps in Z13, 4 >13 1 (that is, dist(1, 4) = 3
is smaller than dist(4, 1) = 10), and 2 >13 12 (that is, dist(12, 2) = 3 is smaller
than dist(2, 12) = 10).

Let us note that our ordering relation is not transitive, i.e., if we have three
timestamp tsi, tsj, tsk ∈ Zm with tsi >m tsj and tsj >m tsk, this does not imply
that tsi >m tsk. Indeed, if we consider timestamps 1, 5, and 11 in Z13, we have
11 >13 5, 5 >13 1, but 1 >13 11.

Definition 11. Let TS be a subset of timestamps in Zm (i.e., TS ⊆ Zm). Then,
TS is unequivocally ordered if it is possible to construct a sequence STS =
{ts1, ts2, . . . ts|TS|} such that (i) STS includes every timestamp in TS, and (ii)
for any pair of timestamps tsi, tsj ∈ STS (with j > i), we have tsi <m tsj (i.e.,
∀i ∈ [1, |TS| − 1], ∀j > i, tsi <m tsj).

The pseudo-code for Preg is shown in Figures 3 - 5.

Local variables at client ci. Each client ci maintains a set reply i that is used
during the read() operation to collect replies coming from servers. In particular,
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reply i contains tuples 〈v, sn〉j , where j is the sender server, and 〈v, sn〉 refers
to a value v and its associated timestamp sn. Additionally, if ci is the writer, it
maintains a timestamp variable csni.

Local variables at server si. Each server si maintains the following local vari-
ables:

• Vi and Vsafei: two sets both storing pairs 〈v, sn〉, where v is a value, and sn
is its corresponding timestamp. Those sets are used to collect values and
select valid ones. The size of the set Vi is restricted to store up to 3 pairs.

• Wi: a set storing temporary values coming directly from the writer. The
set contains triples 〈v, sn, timer〉, where v is a value, sn is its associated
timestamp, and timer is a time-to-live timer. When the timer expires, the
triple is deleted from Wi.

• echo vals i: a set used to collect information propagated through ECHO

messages. It stores tuples in the form 〈v, sn〉j , where v is a value, sn is its
associated timestamp, and j is the server who sent the tuple encapsulated in
the ECHO message.

• pending read i: a set containing identifiers of the clients that are currently
performing a read() operation.

To simplify the code of the algorithm and make it modular, we define the
following functions:

• select pairs(echo vals i): this function takes as input the set echo vals i, and
returns tuples 〈v, sn〉, such that there exist at least #echoCUM occurrences
of 〈v, sn〉 in echo vals i.

• insert(Vsafei , 〈vk, snk〉): this function inserts 〈vk, snk〉 in Vsafe according to
the order on Zm. If there are more than three values after insertion, then
the oldest one is discarded. In case it is not possible to uniquely order the
elements in the set after insertion, then Vsafei is reset (this may happen due
to transient failures).

• select value(reply i): if the subset of pairs 〈v, sn〉 that occur #replyCUM
times or more in replyi can be uniquely ordered (according to their times-
tamp), this function returns the newest such pair 〈v, sn〉. If no such ordering
exists, this function returns ∅.
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• checkOrderAndTrunc(Vsafei): this function checks if it is possible to uniquely
order the elements in Vsafei with respect to their timestamps. If yes, the 3
newest elements are kept, and the other elements are removed from Vsafei .
If it is impossible to uniquely establish an order, then all the elements are
deleted from Vsafei .

• merge(Vi,Wi): this function returns a set of tuples 〈v, sn〉 obtained by
merging pairs from Vi and pairs extracted from Wi by removing timers from
triples occurring in Wi.

• conCut(Vi, Vsafei ,Wi): this function takes as input the three sets Vi, Vsafei ,
and Wi, and returns a set of pairs 〈v, ts〉. The returned set is obtained by
(i) merging the pairs 〈v, ts〉 extracted from Vsafei , Vi, and Wi, (ii) selecting
the 3 newest values (with respect to the timestamps). As an example, let
us consider Z13 and the following sets: Vi = {〈va, 1〉, 〈vb, 2〉, 〈vc, 3〉} and
Vsafei = {〈vb, 2〉, 〈vd, 4〉, 〈vf , 5〉}, and Wi = ∅, then the returned set is

{〈vc, 3〉, 〈vd, 4〉, 〈vf , 5〉}

If the set of timestamps cannot be unequivocally ordered, then the function
returns ∅.

• checkTimer(Wi): this function checks all triples 〈v, sn, timer〉 in Wi, and
removes those whose timer has expired, or is greater than 2δ (this may only
happen due to a transient failure).

The maintenance() operation (Figure 3). This operation is executed by servers
periodically at every time tj = t0 + j∆, for every j ∈ N and its triggered
when timer maintenance expires (lines 1 - 3 and lines 15 - 17). Each time
maintenance() is executed, a server si stores the content of Vsafei in Vi, and all Vsafei
and echo vals i sets are reset. Each server si then broadcasts an ECHO message
with Vi, Wi, and pending read i set. When a server sj receives the ECHO message,
it updates its local variable storing the current received information and then, when
there is at least one value in echo valsj set that occurs at least #echoCUM times,
sj tries to update Vsafej to store values occurring “enough” time (lines 19 - 27). To
conclude, after δ time since the beginning of the current maintenance() operation,
Vi is reset. Informally speaking, during the maintenance() operation, Vsafei is filled
with safe values, then the content in Vi is no longer necessary. Remind that the
content of Wi is continuously monitored so that expired values are removed (line
18).
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init() :
(1) trigger maintenance();
(2) timer maintenance← ∆;
(3) start (timer maintenance);
——————————————————————————————————

operation maintenance():
(4) checkOrderAndTrunc(Vsafei );
(5) checkTimer(Wi);
(6) echo valsi ← ∅; Vi ← Vsafei ; Vsafei ← ∅;
(7) S ← merge(Vi,Wi);
(8) broadcast ECHO(i, S, pending readi);
(9) wait(δ);
(10)Vi ← ∅;
————————————————————————————————————-

when ECHO (j, S, pr) is received:
(11) for each (〈v, sn〉j ∈ S)
(12) echo valsi ← echo valsi ∪ 〈v, sn〉j ;
(13) endFor
(14) pending readi ← pending readi ∪ pr;
——————————————————————————————————

when timer maintenance expires:
(15) trigger maintenance();
(16) timer maintenance ← ∆;
(17) start (timer maintenance);
————————————————————————————————————-

when Wi changes and |Wi| > 0 do:
(18) checkTimer(Wi);
————————————————————————————————————-

when echo valsi changes do:
(19) pairs← select pairs(echo valsi);
(20) if |pairs| > 0;
(21) for each 〈vk, snk〉 ∈ pairs;
(22) insert(Vsafei , 〈vk, snk〉);
(23) endFor
(24) for each j ∈ pending readi do
(25) send REPLY (i, conCut(Vi, Vsafei ,Wi)) to cj ;
(26) endFor
(27) endif

Figure 3: AM algorithm implementing the maintenance() operation (code for server si) in the
(∆S,CUM) model with bounded timestamp.

21



operation write(v):

(1) csn← csn+m 1;
(2) broadcast WRITE(v, csn);
(3) wait (δ);
(4) return write confirmation;

when WRITE(v, csn) is received from cj :
(5) Wi ←Wi ∪ 〈〈v, csn〉, setTimer(2δ)〉;
(6) broadcast ECHO(i, {〈v, csn〉}, pending readi);
(7) for each k ∈ pending readi do
(8) send REPLY (i, {〈v, csn〉}) to ck;
(9) endFor

Figure 4: AW algorithms, client-side and server side respectively, implementing the write(v)
operation in the (∆S,CUM) model with bounded timestamp.

The write() operation (Figure 4). When the write() operation is invoked, the
writer ci increments its local sequence number to timestamp the current operation,
sends WRITE(〈v, csn〉) to all servers, and finally returns from the operation after
waiting δ time (i.e., the maximum time needed to deliver the WRITE message to
honest servers). When an honest server sj delivers a WRITE(〈v, csn〉) message
it stores v in Wj , and forwards ECHO(j, 〈v, csn〉, pending read j) to every server.
Let us note that such value is further echoed at the beginning of each subsequent
maintenance() operation, as long as 〈v, csn〉 is in Wj or Vj10. Finally, every honest
server will also answer to any pending read request stored in pending readi by
sending the newly written value (to ensure that the reader will eventually collect
“enough” replies to return a valid value).

The read() operation (Figure 5). When the read() operation is invoked, the reader
ci empties reply i, sends to all servers the READ(i) message and remains waiting for
3δ time to collect replies. At the end of this waiting period, the reader ci picks the
newest value (according with the timestamp unique ordering sequence) occurring
at least #echoCUM times by invoking select value(reply i), and returns it. Notice
that before returning, ci sends to every server the read termination notification
READ ACK(i) message.

On the server side, when sj delivers the READ(i) message, client ci’s identifier
is stored in the pending read j set. This set is part of the content of the ECHO

messages in every maintenance() operation, which populates the pending read j
set, so that cured servers can be aware of the reading clients. Afterwards, sj
invokes conCut(Vj, Vsafei ,Wi) function to prepare the reply message for ci. The
result of this function is sent back to ci in the REPLY message. Lastly, sj broadcast
a READ FW(i) message to spread the information that client ci is currently reading.
This is done to let cured servers aware about the read as they could have potentially
miss it due to a mobile Byzantine agent. When a READ FW(j) message is delivered

10This holds for at least #echoCUM correct servers.
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operation read():
(1) replyi ← ∅;
(2) broadcast READ(i);
(3) wait (3δ);
(4) 〈v, sn〉 ← select value(replyi);
(5) broadcast READ ACK(i);
(6) return v;
————————————————————-
when REPLY (j, Vset) is received:
(7) for each(〈v, sn〉 ∈ Vset) do
(8) replyi ← replyi ∪ {〈v, sn〉j};
(9) endFor

when READ (j) is received from cj :
(10) pending readi ← pending readi ∪ {j};
(11) send REPLY (i, conCut(Vi, Vsafei ,Wi)) to cj ;
(12) broadcast READ FW(j);
———————————————————————–
when READ FW (j) is received:
(13) pending readi ← pending readi ∪ {j};
———————————————————————–
when READ ACK (j) is received:
(14) pending readi ← pending readi \ {j};

Figure 5: AR algorithms, client-side and server-side respectively, implementing the read() operation
in the (∆S,CUM) model with bounded timestamp.

by server si, the identifier of client cj is stored in the pending readi set. When the
READ ACK(i) message is delivered from ci, then its identifier is removed from the
pending read j .

5. Correctness proofs

In this Section, we prove that Preg is correct, and is optimal with respect to the
number of servers needed to cope with f Mobile Byzantine agents in the system
model we consider. In particular, the Section is structured as follows:

1. in Section 5.1, we introduce some preliminary definitions that will be used
in the proofs;

2. in Section 5.2, we prove that Preg satisfies the Termination property indepen-
dently from the initial state of the algorithm;

3. in Section 5.3, we show the sufficient conditions forPreg to reach a legitimate
configuration L starting from an arbitrary initial configuration;

4. in Section 5.4, we prove that when starting from a legitimate configu-
ration l ∈ L, Preg satisfies the Validity property. Thus, Preg satisfies
ss− Correctness as soon as it starts from a legitimate configuration l ∈ L;

5. finally, Section 5.5 provides a proof that Preg is optimal with respect to the
number of servers needed in the considered system model to cope with f
Mobile Byzantine agents.

5.1. Preliminary Definitions
In this section, we define legitimate configurations for Protocol Pref . Since

our convergence proof in Section 5.3 makes use of convergence stairs [21] (that is,
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intermediate predicates satisfied by configurations), we also define semi-legitimate
configurations, a weaker requirement than legitimate configurations. In addition,
we introduce notations to denote and identify the set of faulty servers in a time
interval and the maximum number of faulty servers in a time interval. Finally, we
show that under our MBF system model, it is possible to establish an upper bound
on the maximum number of faulty processes in a given time interval, based on
model parameters.

Definition 12 (Semi-legitimate configuration SL for Preg). A configuration c is
a semi-legitimate configuration for Protocol Preg (and its set is denoted by SL)
if it is a configuration at time t where there exists at least n− 2f servers storing
the last value v written on the register by a completed write() operation (i.e.,
〈v,−〉 ∈ statepi for at least n− 2f servers si).

Definition 13 (Legitimate Configuration for Preg). A configuration c is a legiti-
mate configuration for Protocol Preg (and its set is denoted by L) if it is a configu-
ration at time t where there exists at least n− 2f servers with a valid state at time
t.

Informally, a legitimate configuration is a snapshot where at least n−2f servers
are maintaining locally valid values according to the execution history generated.
Let us note that, since we are considering a single-writer regular register, the state
of every server can be updated only by the writer itself and it is valid if it stores
values associated with the last completed write() operation or to the concurrent
written one. Considering that the system is synchronous and that at most two valid
states exist at any given time, it follows that requiring just n− 2f valid states is
enough as they will always be consistent among them.

Definition 14 (Faulty servers in an interval). Let us define as B̃([t, t + T ]) the
set of servers that are affected by a Byzantine agent for at least one time unit in the
time interval [t, t+ T ]. More formally: B̃([t, t+ T ]) =

⋃
τ∈[t,t+T ] B(τ).

Definition 15 (Maximum number of faulty servers in an interval). Let [t, t+T ]
be a time interval. The cardinality of B̃([t, t+ T ]) is maximum if for any t′, t′ > 0,
it is true that |B̃([t, t+ T ])| ≥ |B̃([t′, t′ + T ])|. Let MaxB̃([t, t+ T ]) denote the
maximum such cardinality.

Lemma 1. Let ∆ be the time period between two consecutive movements of the
Mobile Byzantine agents and let T be the length of a specific time period. If ∆ > 0,
then MaxB̃([t, t+ T ]) = (d T

∆
e+ 1)f .
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Proof For simplicity, let us first consider a single Mobile Byzantine agent ma1

(i.e., f = 1), and let us consider a generic time interval [t, t + T ]. In this period,
if T ≥ ∆, ma1 can affect a different server moving every ∆ time (in the worse
cast at every time ti = t + i∆ with ti ≤ t + T ). It follows that the number of
times that ma1 may “jump” from a server to another is T

∆
. In the worst case, ma1

moves every time to compromise a server that is still correct and thus the affected
servers are at most d T

∆
e plus the server on which ma1 is at t. Now, if 0 < T < ∆,

a Byzantine agent can affect at most two nodes during T . In any case, a Byzantine
agent can corrupt up to d T

∆
e+ 1 nodes during T . Generalizing the reasoning to f

agents we get MaxB̃([t, t+ T ]) = (d T
∆
e+ 1)f . 2Lemma 1

5.2. Termination proof
The termination property is guaranteed by design, as the proposed protocol

exploits the synchronous timing assumption to infer when every operation can be
considered completed based on the worse case message communication pattern,
i.e., after a fixed period of time all operations invoked by correct clients terminate.

Lemma 2. If a client ci invokes write(v) at time t, and does not crash, then write(v)
terminates at time t+ δ.

Proof The claim simply follows from the fact that a write confirmation event is
returned to the writer client ci after δ time, regardless of the servers’ behaviour (see
lines 3-4, Figure 4). 2Lemma 2

Lemma 3. If a client ci invokes a read() operation at time t, and does not crash,
then read() terminates at time t+ 3δ.

Proof The claim simply follows from the fact that read() returns a value to the
client after 3δ time, regardless of the behaviour of the servers (see lines 3-6, Figure
5). 2Lemma 3

Theorem 1. If a client ci invokes an operation op on the register and does not
crash, then op eventually terminates.

Proof The claim simply follows from Lemma 2 and Lemma 3. 2Theorem 1
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5.3. Convergence Proof
In this section, we show the conditions for which our protocol Preg converges

to a legitimate configuration l ∈ L starting from an arbitrary configuration C.

Lemma 4. Let us consider a write(v) operation op starting at time tB(op) (with
tB(op) > tno tr) from an arbitrary configuration C, and labeled by the client writer
with a timestamp ts ∈ Zm. Let n∆ be the number of servers defined according
to Table 1. At time tE(op), the system reaches a configuration C ′ such that, for
every honest server si at time tE(op), either Vsafei = ∅, or 〈v, ts〉 ∈ Vsafei , or all
timestamps known by si are uniquely ordered and greater than ts.

Proof At the beginning of the write(v) operation op, the client executes lines 1-2
of Figure 4, incrementing its local timestamp to ts, and then propagating the pair
〈v, ts〉 to all servers at time tB(op). Every honest server delivers this pair by time
tB(op) + δ, and executes lines 5-9 of Figure 4, inserting v in Wi, and propagating it
through an ECHO message. Let us note that during the period [tB(op), tB(op) + δ],
the Byzantine adversary may move its agents at most once. Thus, the number of
honest servers that execute correctly lines 5-9 of Figure 4 is at least n∆ − 2f . Let
us note that the ECHO message takes at most δ time to be delivered to all honest
servers. Thus, the ECHO message is delivered by time tB(op) + 2δ by at least
n∆ − 2f honest servers, that in turn execute lines 11-14 and lines 19-27 of Figure
3. Considering that n∆ − 2f > #echo CUM , it follows that 〈v, ts〉 is returned
by select pairs(echo valsi) by at least n∆ − 2f honest servers. Given an honest
server si, while executing line 22 Figure 3 the following cases may happen:

1. ts cannot be uniquely ordered with respect to values already stored in Vsafei :
in this case si drops all values, and Vsafei is emptied due to the inconsistency.
In this case, the claim follows.

2. ts can be uniquely ordered with respect to values already stored in Vsafei:
in this case, two sub-cases may happen depending on how ts is ordered by
si. In particular, if ts is smaller than any other timestamp stored by si, it is
discarded. Now, if ts is one of the most recent values, it is stored in Vsafei .
In both cases, the claim follows.

2Lemma 4

Lemma 5. Let Zm be the set of timestamps used by Protocol Preg, with m ≥ 13.
Let n∆ be the number of servers defined according to Table 1. If there exists a
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sequence S = op1, op2, . . . , opk of write(v) operations (with k ≥ m−3) that starts
after transient failures cease to occur (i.e., tB(op1) > tno tr), then Preg converges
to a configuration C ′ at time tE(opk), where for every honest server si, the value v
written by opk is the state of si (i.e., v ∈ Vi or v ∈ Vsafei or v ∈ Wi).

Proof Let us note that at the beginning of the write(v) operation op, the client
executes lines 1-4 of Figure 4, incrementing its local timestamp and then propa-
gating the pair 〈v, ts〉 to all servers at time tB(op). Considering that (i) no new
transient failure occurs, (ii) timestamps are selected sequentially in Zm, and (iii)
during every maintenance, every server echoes at most 6 pairs 〈v, ts〉11, we deduce
that to avoid reusing timestamps too early, the maximum distance between any
pair of timestamps to be ordered must be smaller than half the number of available
timestamps, then it follows that Preg requires m ≥ 13. Due to Lemma 4, with
m ≥ 13, it follows that at most m− 3 values can be discarded by an honest server
si before reaching a configuration C ′ where si stores v ∈ Vsafei . Iterating the
following reasoning for every honest server, the claim follows. 2Lemma 5

Corollary 1. Let Zm be the set of timestamps used by Protocol Preg, with m ≥ 13.
Let n∆ be the number of servers defined according to Table 1. If there exists a
sequence S = op1, op2, . . . , opk of write(v) operations (with k ≥ m − 3) starts
after transient failures cease to occur (i.e., tB(op1) > tno tr), then Preg converges
to a semi-legitimate configuration s ∈ SL at time tE(opk).

Proof The claim follows from Lemma 5 considering that (i) at the beginning of
opk, there are n∆ − f honest servers, (ii) during a write() operation, the Byzantine
adversary may move the f Byzantine agents at most once, and thus at the end of
opk, there are at least n∆ − 2f correct servers that correctly executed Preg and
stored v in Wi. 2Corollary 1

Lemma 6. Let n∆ be the number of servers defined according to Table 1. If the
system is in a semi-legitimate configuration s ∈ SL at time t, and no new write()
operations are issued after t, then Preg guarantees that any configuration s′ at time
t′ > t is a semi-legitimate configuration s′ ∈ SL.

11Let us note that for every server si, at the beginning of the maintenance() operation |Vi| ≤ 3
as its content is replaced with the one of V safei and, by construction of the algorithm, it can store
at most 3 ordered pairs 〈v, ts, 〉. In addition, also |Wi| ≤ 3 as every entry has an associated timer
of 2δ and in every 2δ time period there could be at most 3 write() operations that can require to
store a pair 〈v, ts, 〉 in Wi.
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Proof If s ∈ SL is a semi-legitimate configuration at time t, it follows that the
last written value v is stored in some local variable by at least n∆ − 2f servers at
time t. In particular, looking at Figures 3-5, we have the following cases:

1. v ∈ Wi: this happens when a honest server si delivers a WRITE message
(Figure 4), and stores the new value (together with its timestamp and a 2δ
timer) in Wi;

2. v ∈ Vsafei : this happens during the maintenance() operation when an honest
server si checks the values (and related timestamps) gathered during the
echo phase and selects v as it is occurring #echo cum times, and it is
associated with one of the last 3 timestamps in the uniquely ordered sequence
of collected timestamps (Figure 3);

3. v ∈ Vi: this happens during the maintenance() operation when an honest
server si copies values previously stored in Vsafei , i.e., those selected dur-
ing the previous maintenance() operation as they were occurring at least
#echo cum times, and were associated with one of the last 3 timestamps in
the uniquely ordered sequence of collected timestamps (Figure 3).

Let us note that those local variables are updated during every maintenance()
by every honest server si. Thus, to prove our claim, we have to show that the main-
tenance (i) does not delete those values from correct servers, and (ii) propagates
them to cured servers.

Let us consider the time t where a semi-legitimate configuration s ∈ SL is
reached. From Corollary 1, t is the time when the last write() operation (in the
sequence of at least 10) terminates. Let us note that at time t, at least n∆ − 2f
honest servers si store v in their Wi local variable, and that v remains stored in Wi

until time t+ 2δ, for any honest server.
Let us consider the first maintenance() operation op m starting at time tB(op m) >

t. Let us note that t < tB(op m) ≤ t+ 2δ, as the maintenance is executed periodi-
cally every ∆ time period (with ∆ = δ, or ∆ = 2δ).

At time tB(op m), every honest server si executes lines 4-8 of Figure 3, and
spreads trough an ECHO message the pairs 〈v, ts〉 that are stored locally in Vi and
Wi.

Every honest servers sj collects such pairs in its echo valsj variable, and by
time tB(op m), sj has collected at least n∆ − f ECHO messages coming from the
other honest servers. Then, at least n∆ − 3f such ECHO messages contain the pair
〈v, ts〉 that holds the last written value v (as it was propagated inside Wi).

Considering that (i) during the current maintenance() operation, the Byzantine
adversary may fake at most 2f ECHO messages with fake timestamps (those sent
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by Byzantine servers and those sent by cured servers), (ii) those timestamps are not
sufficiently many to be selected by the select pairs() function, (iii) the timestamp
associated to v is now one of the three most recent in the uniquely ordered sequence
of selected timestamps, and (iv) 〈v, ts〉 occurs more than #echo CUM times, it
follows that any honest server si selects v, and store it in its Vsafei variable.

Since there are at least n∆ − f honest servers at time tB(op m) + δ, and that
all of them store v in their Vsafei variable, it follows that the system reaches a
semi-legitimate configuration s′ ∈ SL at time tB(op m) + δ.

Now, since 〈v, ts〉 ∈ Vsafei for at least n∆ − f honest servers, and is asso-
ciated with one of the three most recent timestamps, and that no other write()
operation is executed, we can iterate the previous reasoning for all the subsequent
maintenance() operations, and the claim follows. 2Lemma 6

Lemma 7. Let Zm be the set of timestamps used by Protocol Preg, with m ≥ 13.
Let n∆ be the number of servers defined according to Table 1. If there exists a
sequence S = op1, op2, . . . , opk of write() operations (with k ≥ m− 1) that start
after transient faults occur (i.e., tB(op1) > tno tr), then Protocol Preg converges to
a legitimate configuration l ∈ L at time tE(opk).

Proof Due to Lemma 5, after a sequence of m−3 write() operations, every honest
server no longer drops values coming from the writer, and the system reaches a
semi-legitimate configuration s ∈ SL. However, compromised pairs 〈v, ts〉 may
still be stored in Vsafei for some server si, and thus its state is not yet valid. Let us
note that such compromised timestamps are comparable with the one associated by
the writer to the last written value. In particular, since we are considering a single
writer and the system is synchronous, the last written value has a timestamp among
the three most recent stored by at least n∆ − 2f honest servers. After two more
write() operations, this stale information is cleaned, and no fake timestamps remain
in the state of honest processes. All honest processes (i.e., at most n− 2f ) store
the same pairs 〈v, ts〉, and the system reaches a legitimate configuration l ∈ L.

2Lemma 7

Corollary 2. Let Zm be the set of timestamps used by Protocol Preg with m ≥
13. Let n∆ be the number of servers defined according to Table 1. Let S =
op1, op2, . . . , opk be the sequence of write() operations (with k ≥ m−1) that starts
after transient faults occur (i.e., tB(op1) > tno tr), and let l ∈ L be the legitimate
configuration at time tE(opk). For every correct server si at time tE(opk), Vsafei
stores three pairs 〈v, ts〉 with consecutive timestamps.
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Proof The claim follows from Lemma 5 observing that the client uses sequential
timestamps. 2Corollary 2

Theorem 2. Let Zm be the set of timestamps used by the Protocol Preg with
m ≥ 13. Let S = op1, op2, . . . , opk be the sequence of write() operations (with
k ≥ m − 1) that starts after transient faults occur (i.e., tB(op1) > tno tr). Let
n∆ be the number of servers defined according to Table 1. Protocol Preg satis-
fies ss− Convergence (i.e., in every execution e ∈ EP , there exists a legitimate
configuration l ∈ L).

Proof The claim follows from Lemma 7. 2Theorem 2

5.4. Validity proof starting from a legitimate configuration l ∈ L
Lemma 8. Let op be a maintenance() operation starting at time t from a legitimate
configuration l ∈ L. Let n∆ be the number of servers defined according with Table
1. For every time t′ > t, we have:

|Co(t′)| ≥ n∆ − 2f.

Proof Let us note that if l ∈ L is a legitimate configuration at time t, then
|Co(t)| ≥ n∆ − 2f . To prove our claim, we need to show that the size of the set of
cured processes does not increase when the mobile Byzantine agents move.

Without loss of generality, let us assume that op is the first maintenance()
operation executed, and let us prove our claim by induction.

Let us recall that the adversary moves the f mobile Byzantine agents every ∆
time units and that a maintenance() operation starts when the agents move. Thus,
the next movements happen at time t+ ∆. Hence, to prove our claim, we just need
to prove that by time t + ∆, sufficiently many cured processes become correct.
Since a cured process becomes correct when its state becomes valid, we have to
show that by time t+ ∆, the state of a cured process is equal to that of a correct
process.

At the beginning of the maintenance, every honest process executes lines 4-7
of Figure 3, and updates its state by cleaning echo vals i, copying the content of
Vsafei in Vi, and then cleaning Vsafei . Let us note that at this point, the variables
that may store a value that differs between correct and cured servers are reduced
to Vi and Wi. Thus, we have to show that before time t + ∆, those variables are
updated consistently.
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Every honest server si then executes line 8 of Figure 3, and broadcasts the
content of Vi and Wi. Those values are stored by every honest server in echo vals i
by time t + δ. Let us note that correct processes propagate the same Vi, and a
potentially different set Wi depending on the existence of a concurrent write()
operation. Let us consider the two cases independently:

• Case 1 - no concurrent write() exists. In this case, Wi becomes the same
for every correct server (and could be empty, or may store a pair 〈v, ts〉
related to the last completed write() whose timer elapsed during the current
maintenance()). Thus, every cured server si has at least n∆ − 2f copies of
the same sets, and thus when updating Vsafei , all of them consider the same
input, terminate with the same values, and the claim follows.

• Case 2 - there exists a write() operation executed concurrently with
the maintenance. Let us denote with op m the current maintenance()
operation, and with op w the concurrent write() operation. Let us note
that if tB(op w) > tB(op m) (i.e., the write() operation starts after the
current maintenance() sent out the ECHO messages), we are in a situa-
tion similar to the previous case. Thus, we now consider the case where
tB(op m) − δ ≤ tB(op w). In this case, the WRITE(v, csn) message may
be delivered by some server before time tB(op m), and by some other af-
ter. Thus, some honest servers may have already executed line 5, Figure 4
at time tB(op m), storing 〈v, cns〉 in Wi, and then propagating it with the
ECHO message while some other do not. However, such servers only delay
sending 〈v, cns〉 in an ECHO message, as they eventually do it executing line
6, Figure 4 upon delivery. It follows that by time tB(op m) + 2δ, at least
n∆ − 2f honest servers sent an ECHO message containing the pair 〈v, cns〉.
Then, at time tB(op m) + 2δ, cured servers may execute lines 19-27, Figure
3, and get a valid state (hence becoming correct). Let us now show that this
period is long enough to ensure that enough servers remain correct, and let
us consider the following sub-cases:

– ∆ = 2δ. In this case, all servers that are cured at the beginning of
the current maintenance() operation become correct before the next
movement of the mobile Byzantine agents, and the claim follows.

– ∆ = δ. In this case, the Byzantine adversary may compromise f
additional processes before servers that were cured at the beginning
of the current maintenance complete their cure to become correct.
However, there also exists f honest servers that started their cure at

31



time tB(op m)−∆ (i.e., in the previous maintenance() operation) that
become correct before the next movement of the Byzantine agents, and
the claim follows.

2Lemma 8

Corollary 3. Let γ be the maximum amount of time a server remains in the cured
state. When executed starting from a legitimate configuration l ∈ L, Protocol Preg
implements a maintenance() operation that ensures γ ≤ 2δ.

Theorem 3. Let n∆ be the number of servers defined according to Table 1. Any
read() operation executed using Protocol Preg starting from a legitimate configu-
ration l ∈ L returns the last value written before its invocation, or a value written
by a write() operation concurrent with it.

Proof Let us consider a read() operation op r at client ci. Such operation waits 3δ
time before analyzing the reply i data structure and selecting the value that should
be returned i.e., the value associated with the latest timestamp and occurring at
least #reply CUM (i.e., n∆ − 2f ) times in reply i. The reply i variable is emptied
at the beginning of the read() and it is updated with a pair 〈v, ts〉 each time that a
REPLY message is delivered by the client. Such a message is sent by servers as an
answer to a READ message and contains at most three pairs 〈v, ts〉 selected by the
sending server among those stored locally (the Vi, Wi and Vsafei local variables). In
particular, those 3 pairs are those having timestamps that can be uniquely ordered,
and that are the highest in the sequence. Thus, to prove our claim, we have to show
that, starting from a legitimate configuration l ∈ L, (i) a value v is always selected
by the select value() function, and (ii) this value is a valid value according to the
register execution history.

To prove the first point, we have to show that there are always “enough” honest
servers that can provide a reply to the client. Due to Lemma 8, at time tB(op r)
we have at least n∆ − 2f correct servers, and f that are executing a maintenance()
operation (i.e., we have n∆ − f honest servers). Considering that the system is
synchronous (messages take at most δ time to be delivered) and that messages
cannot be lost, it follows that at time tB(opr) + δ the READ message is delivered
to every honest server, and the number of servers that remain honest while the
READ message is spread, and that answer providing a suitable reply is at least
n∆ − 2f ≥ #replyCUM .
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Now, we have just to prove that replies sent by honest servers allow the client
to select a valid value. We need to consider two cases: opr is concurrent with some
write() operations or not.

• Case 1 - opr is not concurrent with any write() operation. Let opw be
the last write() operation such that tE(opw) ≤ tB(opr), and let v be the last
written value. Due to Lemma 8, at any time twe have that |Co(t)| ≥ n∆−2f .
It follows that also between time tB(opr) (i.e., when the read() operation
starts) and time tB(opr) + δ (i.e., the latest time when a READ request can
be received) there always exists at least n∆ − 2f ≥ #replyCUM correct
servers. Considering that the read() starts from a legitimate configuration
l ∈ L, and that no write() is executed concurrently, it follows that every
correct process stores the same valid state (that includes v), and replies to
the client by sending v. Finally, considering that timestamps associated with
values in legitimate configurations are evolving sequentially and that when
the system reaches a legitimate configuration l ∈ L, the highest timestamp is
the one associated with the last completed write, it follows that v is the value
selected by the select value() function at the client-side (it is occurring at
least #replyCUM times, and its associated timestamp is the latest one in the
uniquely ordered sequence of provided timestamps). Thus, the claim follows
in this case.

• Case 2 - opr is concurrent with some write() operation. Let opW0 be the
last write() operation completed before opr, and let v be the value written
by such operation. Let us consider the time interval [tB(opr), tB(opr) + δ]
(i.e., the maximum time interval needed to ensure that the READ message
is delivered to any honest process). Considering that a write() operation
lasts δ time units, it follows that in this time interval, there can be at most
two sequential write() operations, namely opW1 and opW2 . Let us consider
the worst case scenario where opW1 and opW2 are executed one after the
other without any delay between them. Due to Lemma 8, at any time t we
have that |Co(t)| ≥ n∆ − 2f . It follows that also between time tB(opr)
(i.e., when the read() operation starts) and time tB(opr) + δ (i.e., the latest
time when a READ request can be received), there always exists at least
n∆ − 2f ≥ #replyCUM correct servers. Let us note that when starting from
a legitimate configuration l ∈ L, timestamps are generated sequentially, and
every correct server stores locally in its valid state only the last three that
can be uniquely ordered. It follows that any correct server that is answering
provides three pairs including 〈v, ts〉. Thus, v is one of the valid values
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that could be returned. Let us now show that no other values except those
concurrently written could be returned. Let us note that the concurrently
written values may be returned if the WRITE() and REPLY() messages are fast
enough to be delivered before the end of the read() operation. To conclude,
from Lemma 8, Byzantine and cured servers cannot force correct servers
to store (and thus to reply) with a never written value (otherwise their state
would not be valid). Only cured and Byzantine servers can reply with values
that are not valid. Let us note that, if ∆ = 2δ, then up to 4f servers are not
correct. If ∆ = δ, then up to 6f servers are not correct. In both cases, the
threshold #replyCUM is higher than the number of occurrences of invalid
values that a reader can deliver. Mobile agents cannot force the reader to
read another (or older) value, and even if an older value has #replyCUM
occurrences, the one with the highest timestamp is chosen, hence the claim
follows.

2Theorem 3

Theorem 4. Let n be the number of servers emulating the register, and let f be
the number of Byzantine agents in the (∆S,CUM) round-free Mobile Byzantine
Failure model. Let δ be the upper bound on the communication latency in the
synchronous system. If (i) n ≥ 6f + 1 for ∆ = 2δ, and (ii) n ≥ 8f + 1 for
∆ = δ, then Preg implements a Self-Stabilizing SWMR Regular Register in the
(∆S,CUM) round-free Mobile Byzantine Failure model.

Proof The proof simply follows from Theorem 1, Theorem 2, and Theorem 3.
2Theorem 4

5.5. Preg optimality proof
In this section, we reuse the results from Bonomi et al. [10] about the minimum

number of replicas nCUMLB
to solve the Regular Register problem with Mobile

Byzantine Failures in the CUM model. In particular, the general formula is the
following:

nCUMLB
= [2(MaxB̃([t, t+ Tr]) +MaxCu(t))−min ˜CBC([t, t+ Tr])]f

where MaxCu(t) and min ˜CBC([t, t+ Tr])]f are respectively the maximum
number of servers that are in a cured state at time t, and the minimum number of
servers that are first Byzantine or cured, and then correct (or vice versa) during the
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MaxB̃([t, t+ 3δ]) MaxCu(t) MaxSil([t, t+ 3δ])

(∆S,CUM) d3δ
∆
e+ 1 R(d3δ−ε−d 3δ

∆
e∆+γ

∆
e) dγ+δ−ε−d 3δ

∆
e∆

∆
e

min ˜CBC([t, t+ 3δ])

(∆S,CUM) d3δ−ε−δ
∆
e+R(d3δ

∆
e − dγ+δ

∆
e) + (MaxCu(t)−MaxSil([t, t+ 3δ]))

Table 2: Values for a general read() operation that terminates after 3δ time [10].

time interval [t, t+ Tr]. In Table 2, we state how to compute such values using the
following Ramp function:

R(x) =

{
x if x ≥ 0
0 if x < 0

For completeness, MaxSil([t, t + Tr]) is the maximum number of correct
servers that do not participate in the operation computation in the time interval
[t, t+ Tr], e.g., at the beginning of the time interval those servers were in a cured
state, and by the end of the time interval they get into a correct state but there is
not enough time left to send a reply to a client or server. An interested reader can
find more details in the aforementioned work [10].

Theorem 5. Protocol Preg is optimal with respect to the number of replicas.

Proof The proof follows considering that Theorem 4 proved that Preg implements
a Regular Register with the upper bounds provided in Table 1. Those bounds
match the lower bounds proved in Theorem 1 of Bonomi et al. [10]. In particular
this theorem states that no safe register problem can be solved if nCUMLB

=
[2(MaxB̃([t, t + Tr]) + MaxCu(t)) −min ˜CBC([t, t + Tr])]f , where Tr is the
upper bound on the read() operation duration. Each term can be computed applying
Table 2 considering γ = 2δ (Corollary 3). In particular if ∆ = δ, then nCUMLB

=
[2(4 + 2) − 4]f = 8f , while if ∆ = 2δ then nCUMLB

= [2(3 + 1) − 2]f = 6f ,
concluding the proof. 2Theorem 5

6. Concluding remarks

This paper proposed a self-stabilizing regular register emulation in a distributed
system where both transient failures and mobile Byzantine failures can occur, and
where messages and Byzantine agent movements are decoupled. The proposed
protocol improves existing works on mobile Byzantine failures [9, 6, 10] being the
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first self-stabilizing regular register implementation in a round-free synchronous
communication model and to do so it uses bounded timestamps from the Z13

domain to guarantee finite and known stabilization time. In particular, the conver-
gence time of our solution is upper bounded by the time it takes to complete twelve
write() operations. Contrary to the (∆S,CAM) model, the (∆S,CUM) model
required to design a longer maintenance() operation (that lasts 2δ time). As a side
effect, the read() operation completion time also increased and directly impacted
the size of the bounded timestamp domain that characterizes the stabilization time.
However, it is interesting to note that all these improvements have no additional
cost with respect to the number of replicas that are necessary to tolerate f mobile
Byzantine processes and our solution is optimal with respect to established lower
bounds.

An interesting future research direction is to study upper and lower bounds
for (i) memory, and (ii) convergence time complexity of self-stabilizing register
emulations tolerating mobile Byzantine faults. We are currently studying how
to generalize our approach and study the required number of replicas also for
different relationships of ∆ and δ. Another interesting future work is to study the
implication of moving from a regular register to an atomic one. Regular and atomic
registers have the same computational power but they differ in the complexity
of the proposed solutions that require to implement a write-back mechanism to
transform a regular register into an atomic one. This implies modifying the read()
operation and to make it longer. In our settings, this may have an impact on the
number of servers needed to ensure correctness and it may be interesting to study if
it is possible to keep the same lower bounds obtained for the regular register case.
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