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Abstract

As is well-known, real financial markets depart from simplifying hypotheses of
classical no-arbitrage pricing theory. In particular, they show the presence of
frictions in the form of bid-ask spread. For this reason, the aim of the thesis is to
provide a model able to manage these situations, relying on a non-linear pricing rule
defined as (discounted) Choquet integral with respect to a belief function.

Under the partially resolving uncertainty principle, we generalize the first funda-
mental theorem of asset pricing in the context of belief functions. Furthermore, we
show that a generalized arbitrage-free lower pricing rule can be characterized as a
(discounted) Choquet expectation with respect to an equivalent inner approximating
(one-step) Choquet martingale belief function.

Then, we generalize the Choquet pricing rule dinamically: we characterize a
reference belief function such that a multiplicative binomial process satisfies a
suitable version of time-homogeneity and Markov properties and we derive the
induced conditional Choquet expectation operator.

In a multi-period market with a risky asset admitting bid-ask spread, we assume
that its lower price process is modeled by the proposed time-homogeneous Markov
multiplicative binomial process. Here, we generalize the theorem of change of
measure, proving the existence of an equivalent one-step Choquet martingale belief
function. Then, we prove that the (discounted) lower price process of a European
derivative is a one-step Choquet martingale and a k-step Choquet super-martingale,
for k ≥ 2.
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Abstract

Come è ben noto, i mercati finanziari reali si discostano dalle ipotesi semplificative
della teoria classica del pricing di non-arbitraggio. In particolare, essi mostrano
la presenza di frizioni sotto forma di bid-ask spread. Per questa ragione, lo scopo
della tesi è quello di fornire un modello in grado di gestire queste situazioni, facendo
affidamento su un funzionale di prezzo non lineare definito come integrale di Choquet
(scontato) rispetto ad una belief function.

Assumendo un contesto di incertezza parzialmente risolvibile, generalizziamo il
primo teorema fondamentale dell’asset pricing, nel contesto delle belief functions.
Inoltre, mostriamo che un funzionale di prezzo inferiore che soddisfa il no-arbitrage
generalizzato può essere caratterizzato come valore atteso alla Choquet (scontato)
rispetto a una belief function equivalente e martingala di Choquet a un passo ottenuta
come approssimazione dall’interno.

Successivamente, generalizziamo il funzionale di prezzo di Choquet nel con-
testo dinamico: caratterizziamo una belief function di riferimento tale che un
processo binomiale moltiplicativo soddisfi una versione (appropriata) delle proprietà
di stazionarietà e Markovianità, e deriviamo il relativo valore atteso condizionato di
Choquet.

In un mercato multiperiodale con un asset rischioso che ammette spread bid-ask,
assumiamo che il suo processo di prezzo inferiore sia modellato dal processo binomiale
moltiplicativo Markoviano e stazionario proposto. Qui, generalizziamo il teorema del
cambiamento di misura, dimostrando l’esistenza di una belief function equivalente e
martingala di Choquet a un passo. Quindi, dimostriamo che il processo di prezzo
inferiore (scontato) di un derivato europeo è una martingala di Choquet a un passo
e una super-martingala di Choquet a k passi, per k ≥ 2.
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Introduction

Most of the standard pricing models in discrete time suppose that uncertainty, both
the real-world and the risk-neutral, is quantified by a unique probability measure.
Starting from a real-world (or natural) probability measure that reflects the subjective
uncertainty of agents, standard pricing theory assumes that the market is frictionless
and competitive (Allingham, 1991). In this setting, the first fundamental theorem of
asset pricing assures that a market is free of arbitrage opportunities if and only if
there exists an equivalent martingale measure (Harrison and Kreps, 1979; Dybvig
and Ross, 1989). Hence, the no-arbitrage assumption essentially materializes in the
linearity and time-consistency of the dynamic pricing rule, which allows to define
the price of any derivative which is not already traded in the market.

The completeness of the market guarantees that the equivalent martingale
measure, and then the pricing rule, is unique (Pliska, 1997; Pascucci and Runggaldier,
2011). In a complete market, assuming the no-arbitrage condition, any derivative
can be replicated by a self-financing strategy. The importance of the concept of
completeness is due to the fact that it allows to price and hedge a derivative with a
procedure that is preference-independent. This classical probabilistic results have
been also justified through the game-theory setting (see, e.g., Shafer and Vovk, 2001,
2017, 2019).

As is well-known, the binomial model (Cox et al., 1979) is the simplest example
of financial market that shows all features of no-arbitrage theory. Assuming that the
no-arbitrage condition holds (under a suitable choice of parameters), the binomial
model is complete, that is, there exists a unique equivalent martingale measure (also
called risk-neutral measure) that enables the computation of no-arbitrage prices as
a discounted expectation. As soon as we allow more than two possible values for
the risky asset, obtaining a n-nomial model, completeness is lost. In this case, the
no-arbitrage condition is equivalent to the existence of an infinite class of equivalent
martingale measures and there are derivatives whose payoffs cannot be replicated by
any self-financing strategy.

In the preceding example, incompleteness results from the fact that there are
more sources of risk than (linearly independent) tradeable risky assets. Some
techniques to face incompleteness look for a criterion to choose a particular Q ∈ Q:
for instance, Miyahara (1995) selects the probability measure that minimizes the
relative entropy with respect to the natural probability. From the perspective of
replication methods, the market is usually completed by adding the missing number
of assets (see, e.g., Melnikov, 1999). Nevertheless, each completion uniquely defines
an equivalent martingale measure in the set that arises from the incomplete market
model. In turn, working with all possible completions of the market is equivalent to
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work with the class Q (Vasilev and Melnikov, 2021).
Since a perfectly replicating self-financing strategy may not exist, the "best"

among imperfect ones can be chosen by means of approximations and algorithms.
For instance, one can choose the strategy whose payoff is greater (less) than the
derivative’s payoff (super(sub)-replicating strategy); they result to be the no-arbitrage
bounds for the non-replicable contract (Pascucci and Runggaldier, 2011). Other
approximations can be achieved by minimizing, for instance, the quadratic risk (see,
e.g., Bertsimas et al., 2001), or the shortfall risk, that penalizes only deviations in
defect but it is less mathematically tractable (Cerný, 2009).

Besides incompleteness, real markets show other violations of the basic assump-
tions of classical no-arbitrage theory. Indeed, real markets are characterized by
transaction costs, bid-ask spreads, portfolio constraints (see, e.g., Amihud and
Mendelson, 1986, 1991), and situations of ambiguity, which occurs when we are not
able to assign a specific probability measure that models uncertainty.

In this sense, the literature developed techniques to assess the impact of trans-
action costs on asset’s equilibrium prices (Garman and Ohlson, 1980) in order to
price European derivatives (Merton, 1990; Boyle and Vorst, 1992), or looked for
a non-linear pricing rule defined through the envelopes of the class of equivalent
martingale measures. In particular, the literature focused on a lower (upper) pricing
rule expressed as a (discounted) Choquet expectation (Choquet, 1953) (see, e.g.,
Chateauneuf et al., 1996; Cerreia-Vioglio et al., 2015). This functional has the
peculiarity that, when it is computed with respect to a particular non-additive
measure (capacity) such as a belief function in Dempster-Shafer theory (Dempster,
1967; Shafer, 1976a), it is the lower envelope of expectations computed with respect
to the dominating probabilities. In turn, working with the envelopes induced by
the set of equivalent martingale measures is equivalent to work with the supremum
and infimum self-financing portfolios computed, respectively, with respect to the
set of all possible sub-replicating and super-replicating portfolios (Melnikov, 1999).
Therefore, working with belief functions allows to introduce non-linearity departing
the less from the classical no-arbitrage theory based on probability measures and to
address dual representations in terms of strategies.

For a pricing theory to be accepted, a normative justification must be provided.
For this, a generalization of the classical concept of arbitrage opportunity and the
classical fundamental theorems of asset pricing are needed. In this vein, Carr et
al. (2001) introduce two sets of probability measures (called valuation and stress)
together with a definition of no strictly acceptable opportunity as the absence of an
investment with zero price and expected value greater than zero, with respect to all
probabilities in the sets. Under this condition, the pricing rule is a linear combination
of the valuation probability measures. Their generalized second fundamental theorem
of asset pricing, in turn, proves that if a market is acceptable complete, the linear
combination is unique. In this way they enlarge the set of replicable derivatives.
Also, the definitions of ask and bid prices are generalized, requiring that they are
the smallest (greatest) value of the super(sub)-replicating portfolio comprising an
acceptable loss of a given value.

This thesis inserts in this line of research. In detail, we present a research
published in Cinfrignini et al. (2023) where we study a one-period n-nomial market
model, that is already proved to be incomplete, by dealing with the whole class of
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equivalent martingale measures, each of them being consistent with the classical
no-arbitrage assumption. We characterize the set of equivalent martingale measures
and prove that the lower envelope of the closure of the class is a belief function. This
suggests to directly work in the framework of belief functions which also allows to
incorporate frictions in the market, in a natural way. Hence, our aim is to construct
a lower pricing rule as a (discounted) lower expectation by means of the Choquet
integral.

Anyhow, the closure of the set of equivalent martingale measures does not
coincide with the credal set of the lower envelope, hence the (discounted) Choquet
expectation with respect to the lower envelope is generally lower than the lower
expectation computed with respect to the class of equivalent martingale measures.

After reformulating the one-period pricing problem over a finite state space
in the framework of belief functions, we provide a generalization of the one-step
no-Dutch book condition and of the one-step no-arbitrage condition with respect
to a lower price assessment, based on the partially resolving uncertainty principle
proposed by Jaffray (1989). Such principle allows to say that an agent may only
acquire the information that an event occurs, without knowing which is the true state
of the world. In turn, this translates in considering payoffs of portfolios on every
event adopting a systematically pessimistic behaviour, that is always considering the
minimum of random payoffs. This is in contrast to the usual completely resolving
uncertainty assumption according to which the agent will always acquire which is
the true state of the world and on which classical pricing theory is based.

We show that the generalized one-step no-Dutch book condition is necessary
and sufficient for the existence of a belief function whose corresponding discounted
Choquet expectation functional agrees with the lower price assessment, even though
the positivity of the belief function cannot be guaranteed. The lack of positivity
is an issue in the context of pricing since assets with non-negative and non-null
payoff should have positive lower price. For this reason, we prove that the proposed
generalized one-step no-arbitrage condition is equivalent to the existence of a strictly
positive belief function whose corresponding discounted Choquet expectation func-
tional agrees with the lower price assessment. The theorem we prove is the analogue
of the first fundamental theorem of asset pricing, formulated in the context of belief
functions and in a one-period setting. In particular, our result specializes results
given in Chateauneuf et al. (1996); Cerreia-Vioglio et al. (2015), where the authors
characterize an upper pricing rule that can be expressed as a discounted Choquet
expectation with respect to a concave (or 2-alternating) capacity and require that a
form of put-call parity relation has to hold. As already pointed out, working with
belief functions in place of 2-monotone capacities (that are dual of 2-alternating
capacities), allows to introduce non-linearity departing the less from the classical
no-arbitrage setting.

Coming back to the original problem of specifying a lower pricing rule from the
lower envelope arising in the n-nomial market model, the (discounted) Choquet
expectation with respect to the lower envelope of the class of equivalent martingale
measures does not satisfy the generalized no-Dutch book condition. To solve this
issue, the idea is to ϵ-contaminate (Huber, 1981; Moral, 2018) a reference probability,
suitably chosen in the set of equivalent martingale measures, with a belief function
that is an inner approximation of the lower envelope and such that it satisfies the
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generalized no-arbitrage principle. The minimization procedure is achieved with
respect to a suitable distance, similarly to what is done in Miranda et al. (2021, 2022);
Montes et al. (2018, 2019). In this way we get an equivalent inner approximating
one-step Choquet martingale belief function that is consistent with the lower price
assessment of the market, it is equivalent to the (initial) lower envelope and it
satisfies the generalized no-arbitrage principle. We conclude showing that, requiring
that the equivalent Choquet martingale belief function is also consistent with the
upper price assessment, it reduces to a probability measure.

Our analysis of the one-period n-nomial market model embodies frictions in
the market by switching to the Dempster-Shafer theory. Hence, instead of defining
a class of (martingale) probability measure and working with the corresponding
envelopes, the next idea is to extend the one-period market model just defined to
the multi-period case by taking the framework of belief functions as our natural
environment to model uncertainty. Therefore, a necessary step is to define and
characterize an imprecise multiplicative binomial random process in the multi-period
setting with respect to a belief function such that it can be interpreted as a lower
price process.

In order to define a multiplicative random process with respect to a belief function
such that it is mathematically tractable, in analogy with the binomial process under
a probability measure, we impose the time-homogeneity and Markov properties
and we choose a suitable conditioning rule for belief functions that is the product
conditioning rule (Suppes and Zanotti, 1977). Our study of binomial processes under
Dempster-Shafer uncertainty started with the additive case (see Cinfrignini et al.,
2022), that can be used to model log-returns. In the additive case, we defined a
suitable version of the properties above, and proved that there exist some belief
functions that satisfy just one of the desired properties (or that the property only
holds one-step). Here, we characterize a global Markov and time-homogeneous
multiplicative binomial random process (that we call DS-multiplicative binomial
process) that differs from other proposals of imprecise Markov process that are in
literature since they typically focus on local models rather than on a global one and
they work with interval probabilities or capacities (in particular, we refer to Kast et
al., 2014; Krak et al., 2019; Nendel, 2021; Škulj, 2016; T’Joens et al., 2021).

Since the usual Chapman-Kolmogorov equations do not hold in the Dempster-
Shafer theory, we can characterize a multiplicative binomial process that meets the
time-homogeneity and Markov properties by defining the structure of the k-step
transition belief functions, that we additionally require to be interpretable and
computationally tractable. We prove that a global belief function that meets all the
desiderata exists and the transition belief functions are completely determined by the
choice of only two parameters that can be interpreted as "up" and "down" one-step
transition beliefs and such that when they sum up to one, the model reduces to the
probabilistic one. This allows us to introduce a dynamic lower pricing rule expressed
by a (discounted) conditional Choquet expectation operator of any function of a
variable of the process with a closed form expression.

Thus, we consider a market composed by a frictionless risk-free bond and
a non-dividend paying risky stock with frictions in the form of bid-ask spread,
whose lower price process is modeled by the DS-multiplicative binomial process we
characterized. In this market we prove a theorem that guarantees the existence of
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an equivalent one-step Choquet martingale belief function such that the (discounted)
lower price process of the stock is a one-step Choquet martingale while, when
more than one-step is considered, the lower price process is only a global Choquet
super-martingale.

Next, considering the payoff of a European type derivative whose value depends
only on the lower price of the stock, we propose a dynamic pricing rule that accounts
for bid-ask spreads. The lower price process of the derivative is defined as a one-step
(discounted) conditional Choquet expectation; the upper price process is defined
one-step-wise through duality. For this pricing rule, the lower price process is shown
to be always dominated by the upper price process and its discounted version turns
out to be a Choquet super-martingale. Finally, we need to provide a normative
justification of the proposed dynamic lower pricing rule by referring to a dynamic
generalized no-arbitrage condition. Such condition, that is the extension to the
multi-period setting of what we introduced in the one-period n-nomial model, based
on the partially resolving uncertainty principle, justifies the choice of a parameter
that is not consistent with the classical no-arbitrage condition but that is consistent
with the existence of an equivalent one-step Choquet martingale belief function such
that the generalized arbitrage opportunities are avoided.

The thesis is structured as follows.
Chapter 1 provides the mathematical foundations to introduce the models that

follow, in particular the ambiguity and the Dempster-Shafer theory of belief functions.
Chapter 2 presents the classical no-arbitrage theory in discrete time models,

focusing on the fundamental theorems and on the binomial and trinomial market
models.

Chapter 3 reviews the main literature on incomplete markets, in particular the
techniques to overcome the incompleteness in a market with transaction costs and
bid-ask spreads, with non-linear pricing rules, together with the main literature on
imprecise stochastic processes.

In Chapter 4 we present the work published in Cinfrignini et al. (2023), where
the study of a n-nomial market model is developed, through the characterization
of the envelopes of the set of equivalent martingale measures. We define a lower
pricing rule by means of an equivalent inner approximating Choquet martingale
belief function and we provide a generalization of the one-step no-arbitrage principle
and of the relative theorems in the framework of belief functions.

Chapter 5 extends the one-period model of Chapter 4, studying a multiplicative
binomial random process with respect to a belief function, asked to satisfy the
time-homogeneity and Markov properties. Next, a dynamic Choquet pricing rule is
proposed.

Finally, we gather conclusions and future perspectives.
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Chapter 1

Uncertainty and ambiguity

In this Chapter we provide the mathematical foundations on which the following
chapters are built. Then, we introduce the concept of ambiguity and we study
non-additive measures, that generalize the classical probability measures, focusing on
Dempster-Shafer theory of belief functions and on their conditioning rules proposed
in literature.

1.1 Mathematical preliminaries

The set Ω is the non-empty set of all possible states of the world, called sample
space (or certain event). In our framework, it is a finite set Ω = {1, . . . , n}, with
n ∈ N, and we indicate by i a generic element (atom) in Ω and by A a generic
subset of Ω, such that AC = {i ∈ Ω : i /∈ A} is the complement of the subset A. A
collection of subsets of Ω, denoted by F , is called algebra (or field) if it is closed
under the formation of complements and finite unions, i.e. it satisfies the following
conditions (Grimmett and Stirzaker, 2020):

(a) if A,B ∈ F , then A ∪B ∈ F and A ∩B ∈ F ;

(b) if A ∈ F , then AC ∈ F ;

(c) ∅ ∈ F .

It follows that the finite unions closure holds:

A1, . . . , An ∈ F ⇒
n⋃

i=1
Ai ∈ F . (1.1)

A family of sets B1, B2, . . . , Bn is called a partition of Ω if Bi ∩Bj = ∅ for i ̸= j,
and

⋃n
i=1Bi = Ω.

If the state space Ω is infinite, the collection of events is required to be closed
under operations of countable unions. A field that satisfies the countable unions
closure is called σ-algebra (or σ-field):

A1, A2, . . . ∈ F ⇒ A1 ∪A2 ∪ · · · ∈ F . (1.2)
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The smallest σ-field of Ω is F = {∅,Ω} while the σ-field that contains all subset
of Ω is called power set and is denoted by P(Ω) = 2Ω. The pair (Ω,F) is called
measurable space.

Since in the sequel we will restrict to a finite Ω, the notion of σ-algebra reduces
to that of an algebra, thus the distinction becomes immaterial.

Uncertainty about the occurrences of events is generally modeled by a probability
measure.

Definition 1.1 (Probability measure) A probability measure P on the finite proba-
bility space (Ω,F) is a function P : F → [0, 1] such that:

(1) P (∅) = 0 and P (Ω) = 1;

(2) for all A,B ∈ F with A ∩B = ∅

P (A ∪B) = P (A) + P (B).

The triple (Ω,F , P ) is called a probability space.

Note 1: In case of an infinite Ω, condition (2) in Definition 1.1, that is referred to
as finite additivity property, is usually replaced by the countable additivity property:

(2’) if A1, A2, . . . ∈ F are pairwise disjoint (i.e. Ai ∩Aj = ∅ for all pairs i, j with
i ̸= j), then

P

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

P (Ai).

Since in the sequel we deal with a finite Ω, countable additivity collapses into finite
additivity and the distinction is actually immaterial.

An increasing sequence of σ-algebras {Ft : t ∈ T }, with T ⊆ R, such that
Ft ⊆ Fs ⊆ F , for all t, s ∈ T , with t < s, is called a filtration. Each Ft represents
the information available at time t and the filtration {Ft}t∈T is the information
flow that increases with time. In what follows we assume that T = {0, . . . , T} with
T ∈ N, and F0 = {∅,Ω} and FT = P(Ω) = F . A probability space endowed with a
filtration is called filtered probability space and it is denoted by (Ω,F , {Ft}t∈T , P ).

Supposing that the "true" state of the world belongs to B ⊆ Ω, with B ̸= ∅, the
conditional probability given B is customarily defined as

P (A|B) = P (A ∩B)
P (B) , ∀A ∈ F , (1.3)

provided that P (B) > 0. This definition of conditioning leaves P (·|B) undefined
when P (B) = 0 and introduces the conditional measure as a "surrogate" of the
unconditional measure. For this, starting from de Finetti (see, also, Dubins, 1975;
Rényi, 1956) an axiomatic approach to conditional probability has been proposed,
defining it as a two-place function P : F × (F \ {∅}) → [0, 1] asked to satisfy:

(I) P (A|B) = P (A ∩B|B), for every A ∈ F , B ∈ F \ {∅};

(II) P (·|B) is a (finitely additive) probability of F , for every B ∈ F \ {∅};
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(III) P (A ∩ C|B) = P (A|B)P (C|A ∩B), for every A,C ∈ F , B,A ∩B ∈ F \ {∅}.

A random variable on a probability space (Ω,F , P ) is a function X : Ω → R
such that {i ∈ Ω : X(i) ≤ x} ∈ F , for each x ∈ R: it is said to be F -measurable and
we writeX ∈ F . In what follows we simply write {X ≤ [≥]x} = {i ∈ Ω : X(i) ≤ [≥]x}.
Let A ∈ F be an event, then 1A : Ω → R denotes the indicator function of A.

A collection of random variables indexed by time {Xt : t ∈ T }, with T = {0, . . . , T}
and T ∈ N, is called random process or stochastic process. Each Xt is a func-
tion Xt : Ω → X , where X is called state space, such that for any i ∈ Ω there is a
corresponding collection {Xt(i) : t ∈ T } of elements of X and it is called realization
or sample path of X at i. A stochastic process is said to be adapted to the filtration
{Ft}t∈T if each Xt is Ft-measurable, i.e., Xt ∈ Ft, for all t ∈ T . There exists a
filtration associated to each random process {FX

t }, that is generated by {Xt}t∈T ,
called natural filtration where FX

t is the smallest σ-algebra that makes all random
variables {Xs}s≤t Ft-measurable.

The expectation or expected value of a random variable X is defined to be

E(X) =
∫

Ω
X dP =

∫ +∞

0
P (X ≥ t) dt+

∫ 0

−∞
[P (X ≥ t) − 1] dt. (1.4)

Since Ω is finite, we actually have

E(X) =
∑
i∈Ω

P ({i})X(i). (1.5)

We specify that, in what follows, we will write EP if we need to specify the prob-
ability measure P . For finite Ω, the expectation operator is a function E : RΩ → R
that satisfies the following properties:

(1) if X ≥ 0, then E(X) ≥ 0;

(2) if α, β ∈ R, then E(αX + βY ) = αE(X) + βE(Y );

(3) if X and Y are independent, then E(XY ) = E(X)E(Y ).

The conditional expectation of a random variable X on a finite filtered
probability space (Ω,F , {Ft}t∈T , P ), is defined as a random variable

E(X|Ft) = Y, (1.6)

that is Ft-measurable and that minimizes the quantity E[(X−Y )2]. Since Ω is finite,
then

E(X|Ft)(i) =
∫
X dP (·|A), (1.7)

for all i ∈ A with A atom of Ft.
The conditional expectation operator satisfies the tower property, or law of

iterated expectations, that is defined, for t ≤ s, as

E [E(X|Fs)|Ft] = E(X|Ft). (1.8)

Definition 1.2 (Martingale) Let {Xt : t ∈ T } be a random process on the probability
space (Ω,F , P ) and let {Ft : t ∈ T } be a filtration, then the sequence (Xt,Ft) is a
martingale if, for all s > t ≥ 0:
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(a) E(|Xt|) < ∞;

(b) each Xt ∈ Ft (the process is adapted to the filtration);

(c) E(Xs|Ft) = Xt.

If FX
t is the natural filtration generated by the process, then obviously Xt is

FX
t -measurable and the martingale property, for t ≤ s, reduces to

E(Xs|FX
t ) = E(Xs|X0, . . . , Xt) = Xt. (1.9)

The process is called a super-martingale if condition (c) holds with ≤; in turn,
it is called a sub-martingale if condition (c) holds with ≥.

Notice that, in case of a finite Ω, condition (a) is automatically satisfied.

Definition 1.3 (Markov process) A discrete time random process {Xt : t = 0, . . . , T}
on a filtered probability space (Ω,F , {Ft}T

t=0, P ), adapted to the filtration {Ft}T
t=0

and where each Xt takes value in the state space X , is said to be a Markov process
if, for each t = 0, . . . , T − 1, and 1 ≤ k ≤ T − t, the distribution of Xt+k conditioned
on Ft is the same as the distribution of Xt+k conditioned on Xt. This property can
be written in the following equivalent ways:

(a) (agreement of distributions) for every i0, . . . , it+k ∈ X we have

P (Xt+k = it+k|Ft) = P (Xt+k = it+k|X0 = i0, . . . , Xt = it)
= P (Xt+k = it+k|Xt = it)
= E(1i(Xt+k)|Xt);

(b) (agreement of expectations of all functions) for every function h : R → R for
which E(|h(Xt+k)|) < ∞, we have

E (h(Xt+k)|Ft) = E (h(Xt+k)|Xt) .

In words, a Markovian random process is such that the future is independent of
the past, given the present value of the process; the past values of the process can be
ignored as long as we know the present state, indeed the Markov property is also
called memoryless property.

The probability of crossing from a state i ∈ X at time t to state j ∈ X at time
t+ 1 is called (one-step) transition probability and we denote it as

P (Xt+1 = j|Xt = i) = p
(t)
i,j . (1.10)

Definition 1.4 (Time-homogeneity) A Markov process {Xt} on a probability space
(Ω,F , P ) is said to be (one-step) time-homogenous (or stationary) if transition
probabilities do not depend on time

P (Xt+1 = j|Xt = i) = P (X1 = j|X0 = i) = pi,j .
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In a (one-step) stationary Markov process, transition probabilities are usually
denoted as a matrix P = [pi,j ] that is squared and the number of rows is equal to
the number of elements in X . In order to define the k-step transition probabilities
P (Xt+k = j|Xt = i) = p

(k)
i,j , i.e., the probability that a process in state i will be in

state j after k steps, with 1 ≤ k ≤ T − t, the Chapman-Kolmogorov equations
are used (Ross, 2019). Denoting the initial probability with P (X0 = i) = αi, the
chain rule for conditional probabilities gives, for instance, for T = 2, the following
result

P (X0 = i0, X1 = i1, X2 = i2)
= P (X0 = i0)P (X1 = i1|X0 = i0)P (X2 = i2|X1 = i1, X0 = i0)

= αi0pi0,i1pi1,i2 .

In general, the following relation holds for 1 ≤ t ≤ T and 0 ≤ k ≤ T − t,

P (Xt+k = j|Xt = i) = pi,it+1pit+1,it+2 · . . . · pit+k−1,j . (1.11)

It follows that the k-th order transition probabilities are given by

p
(k)
i,j = P (Xt+k = j|Xt = i) =

∑
i1,...,ik−1

pi,i1 · . . . · pik−1,j . (1.12)

1.1.1 Theorems of the alternative

Theorems of the alternative show that a linear system can be associated with a dual
system of constraints such that one system is feasible if and only if the other one is
infeasible; in other words, they state that a condition is true if and only if the other
is false. We provide a summary of the most useful theorems since they will be used
in proofs and applications in the following chapters, referring to Ben-Israel (2001).

Let us consider two matrices A ∈ Rm×n and B ∈ Rm×n with rank(A) = m, and
vectors x ∈ Rn, b ∈ Rm, c ∈ Rm. Note that 0 denotes a vector of zeros in Rn. Linear
problems can appear in different forms (called primal) in which the following are
the typical (Ben-Israel, 2001):

Ax ≤ b; ([a])
Ax = b, x ≥ 0; ([b])
Ax ≤ b, Bx < c; ([c])
Ax = 0, x ≩ 0; ([d])
Ax = 0, x > 0; ([e])
Ax > 0, Bx ≥ 0, Cx = 0. ([f])

First of all Ben-Israel (2001) stresses that all primal representations reduces to
([c]). In fact, ([a]) and ([b]) are special case of ([c]). Moreover, ([d]) and ([e]) are
special case of ([f]). In turn, ([f]) is a special case of ([c]) with b = 0 and c = 0.
Hence, each linear problem can be written as ([c]).

Theorem 1.1 (Motzkin’s Transposition Theorem)
Given matrices A,B ∈ Rm×n and vectors b, c ∈ Rm, then the following are equivalent:
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(1) the system ([c]) Ax ≤ b, Bx < c has a solution x ∈ Rn;

(2) for all vectors y, z ∈ Rm with y ≥ 0 and z ≥ 0,
AT y +BT z = 0, z = 0 ⇒ bT y + cT z ≥ 0 and
AT y +BT z = 0, z ̸= 0 ⇒ bT y + cT z > 0.

The Farkas’s Theorems are special cases of the Motzkin’s Theorem, in particular
for solving systems ([a]) and ([b]).

Theorem 1.2 (Farkas’s Theorem ([a]))
Given a matrix A ∈ Rm×n and a vector b ∈ Rm, the following are equivalent

(a) the system ([a]) Ax ≤ b has a solution x ∈ Rn;

(b) for all y ∈ Rm,
AT y = 0, y ≥ 0 ⇒ bT y ≥ 0.

Theorem 1.3 (Farkas’s Theorem ([b]))
Given a matrix A ∈ Rm×n and a vector b ∈ Rm, the following are equivalent

(i) the system ([b]) Ax = b, x ≥ 0 has a solution x ∈ Rn;

(ii) for all y ∈ Rm,
AT y ≥ 0 ⇒ bT y ≥ 0.

1.2 Ambiguity and Dempster-Shafer theory
In real world, an agent is usually not able to assign a specific probability measure
to the events of interest, while she/he often needs to consider a set of probability
measures or an imprecise probability measure. In the literature this situation is called
ambiguity (Epstein and Schneider, 2010, 2007; Gilboa and Marinacci, 2016; Epstein
and Schneider, 2008; Pennesi, 2018; Klibanoff et al., 2009; Gilboa and Schmeidler,
1989). The seminal paper of Ellsberg (1961) shows that, in a setting in which
agents have a set of probability measures resulting from imperfect information (that
represents the prototype of ambiguity), the agents’ behaviour cannot be justified in
terms of expected utility.

On the contrary, this violation can be supported by the presence of ambiguity
adverse agents who prefer a situation of known probabilities rather than unknown.

The following motivating example (see also Coletti et al., 2015), based on the
Ellsberg paradox (Ellsberg, 1961) and originally set up in a decision theoretic
framework, shows a situation of partial knowledge that leads to a set of probabilities,
with respect to which we compute the envelopes.

Example 1.1 Suppose to have an urn from which we draw a ball. The urn
contains 1

3 of white balls (w) and the remaining balls are black (b) and red (r) in a
proportion that is completely unknown to us. We denote by Ω = {w, b, r} and with
P(Ω) = {∅, {w}, {b}, {r}, {w, b}, {w, r}, {b, r},Ω}. The composition of the urn leads
to the following probabilities:

Pλ({w}) = 1
3 , Pλ({b}) = λ, Pλ({r}) = 2

3 − λ,
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with λ ∈
[
0, 2

3

]
. This means that, by varying λ, we have a class of infinitely many

probability measures
P =

{
Pλ : λ ∈

[
0, 2

3

]}
.

Since we cannot work with an infinite number of probability measures, we compute
the lower and the upper envelope of the class, respectively denoted by P = min P
and P = max P where minimum and maximum are computed pointwise on P(Ω).
Results are reported below

P(Ω) ∅ {w} {b} {r} {w, b} {w, r} {b, r} Ω

Pλ=0 0 1
3 0 2

3
1
3 1 2

3 1
Pλ=2/3 0 1

3
2
3 0 1 1

3
2
3 1

P 0 1
3 0 0 1

3
1
3

2
3 1

P 0 1
3

2
3

2
3 1 1 2

3 1

It is easily verified that the lower envelope P and the upper envelope P are not
probability measures since they do not satisfy (2) in Definition 1.1.

♦

Instead of choosing one specific probability measure from the class (that would
require to specify a criterion of choice such as using the agent’s subjective probability,
as the Bayesian paradigm prescribes), our approach is to work with the entire class
of probability measures through its envelopes. The envelopes of a set of probability
measures are typically not probabilities, though. Thus, the probabilistic framework
presented in the preceding section does not apply in this situation, necessitating a
generalisation because conditioning and expectation refer to additive probability.

Therefore, we need to introduce non-additive measures such that they reduce to
probability if the additive property ((2) of Definition 1.1) is satisfied.

Belief functions, proposed by Dempster and Shafer (Dempster, 1967; Shafer,
1976a)1, are one example of non-additive measures that require to assign a degree of
belief to every subset of the sample space, rather than focusing just to atoms, as a
probability measure does.

1.2.1 Non-additive measures

Let (Ω,F) be a finite measurable space with F = P(Ω). A subset A ∈ F is an
event such that a function ν(A) quantifies the amount of uncertainty that the event
A realizes, in other words, that the true state of nature lies in A. In the starting
section we considered that ν was a probability measure P . However, the probabilistic
information can be incomplete or imprecise, then a generalization of the probabilistic
setting has to be provided.

Definition 1.5 (Non-additive measure) A function ν : F → R is called a non-additive
measure or a capacity if it is:

1In some cases we will shorten "Dempster-Shafer" as "DS".
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(i) (normalized) ν(∅) = 0, and ν(Ω) = 1;

(ii) (monotone) ν(A) ≤ ν(B) for all A,B ∈ F , with A ⊆ B.

The capacity ν is called:

(a) 2-monotone (or convex, supermodular capacity) if, for every A,B ∈ F ,

ν(A ∪B) ≥ ν(A) + ν(B) − ν(A ∩B);

(b) k-monotone if, for every A1, . . . , Ak ∈ F ,

ν

(
k⋃

i=1
Ai

)
≥

∑
∅̸=I⊆{1,...,k}

(−1)|I|+1ν

(⋂
i∈I

Ai

)
;

(c) completely monotone or a belief function, denoted by Bel, if, for every
A1, . . . , Ak ∈ F with k ≥ 2,

ν

(
k⋃

i=1
Ai

)
≥

∑
∅̸=I⊆{1,...,k}

(−1)|I|+1ν

(⋂
i∈I

Ai

)
;

(d) necessity measure if, for every A,B ∈ F ,

ν(A ∩B) = min{ν(A), ν(B)};

(e) (coherent) lower probability if there exists a set P of probability measures
on F such that, for every A ∈ F ,

ν(A) = inf
P ∈P

P (A).

(f) probability measure if, for every A,B ∈ F such that A ∩B = ∅,

ν(A ∪B) = ν(A) + ν(B).

A k-monotone capacity is also k′-monotone for 2 ≤ k′ ≤ k and a k-monotone
capacity, for each k, is a (coherent) lower probability. Necessity measures (denoted
as N) are particular belief functions and belief functions are particular (coherent)
lower probabilities. On the other hand, lower order monotonicities do not imply
higher order monotonicities.

We denote by V(Ω,F), B(Ω,F) and P(Ω,F), respectively, the set of all capac-
ities, belief functions and probability measures on (Ω,F), and we point out that
P(Ω,F) ⊂ B(Ω,F) ⊂ V(Ω,F).

For every capacity ν there exists a function called conjugate function or dual
capacity, denoted by ν : F → R, such that, for all A ∈ F , it is

ν(A) = 1 − ν(AC). (1.13)

The dual of a lower probability is called upper probability; the dual of a k-monotone
capacity is said k-alternating capacity; the dual of a belief function is said plausibility
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function (denoted as Pl); the dual of a necessity measure is said possibility measure
(denoted as Π); the dual of a probability is itself: this property is called self-duality.

For every (coherent) lower probability there exists a non-empty set of dominating
probability measures called core (or credal set) (Gilboa and Schmeidler, 1994; Walley,
1991; Denneberg, 1994)

core(ν) = {P ∈ P(Ω,F) : P (A) ≥ ν(A), ∀A ∈ F} , (1.14)

such that ν = min core(ν).
If ν is a (coherent) lower probability determined by the class of probabilities P

on F , then we get a lower expectation operator by setting, for every random variable
X ∈ RΩ

EP(X) = inf
P ∈P

EP (X). (1.15)

In particular, by taking the closure of P with respect to the product topology cl(P),
infima are attained, that is

EP(X) = min
P ∈cl(P)

EP (X). (1.16)

In general, since cl(P) ⊆ core(ν), then

Eν(X) = min
P ∈core(ν)

EP (X) ≤ min
P ∈cl(P)

EP (X) = EP(X). (1.17)

If ν has non-empty core but it is not a lower probability, we can still introduce a
lower expectation operator said natural extension, in the jargon of Walley,

EN
ν (X) = min

P ∈core(ν)
EP (X). (1.18)

Notice that EN
ν (1A) ≥ ν(A), for all A ∈ F .

Working with the dual function ν, there exists a non-empty set of dominated
probability measures, called anticore(ν), such that

anticore(ν) = {P ∈ P(Ω,F) : P (A) ≤ ν(A), ∀A ∈ F}. (1.19)

If ν (and then ν) are 2-monotone (2-alternating) capacities, then core(ν) = anticore(ν).
To have a lighter notation, in what follows we will often refer to core also in case of
a 2-alternating capacity, always intending the core of its dual.

If ν is a 2-monotone capacity, the set of extreme points of the core is

ext(core(ν)) = {νσ : σ ∈ Σ},

where Σ is the set of all permutations of indices {1, . . . , n}, and

νσ = (ν (σ(1)) , . . . , ν (σ(n))) , (1.20)

with ν(σ(i)) = ν({σ(1), . . . , σ(i)}) − ν({σ(1), . . . , σ(i− 1)}).
We stress that νσ gives rise to a probability measure (Destercke and Dubois,

2014).



16 1. Uncertainty and ambiguity

As already mentioned, a coherent lower probability is the lower envelope of its
core and the same property holds if the lower probability reduces to a belief function,
i.e., for all A ∈ F holds that

P (A) = min
P ∈core(P )

P (A), (1.21)

Bel(A) = min
P ∈core(Bel)

P (A). (1.22)

Each capacity can be expressed in terms of another function called Möbius
inverse.

Definition 1.6 (Möbius inverse) For any capacity ν : F → R there is a one-to-one
correspondence with another function called Möbius inverse or mass function µ : F → R,
where

µ(A) =
∑

B⊆A

(−1)|A\B|ν(B), ν(A) =
∑

B⊆A

µ(B). (1.23)

It implies that µ(∅) = 0 and
∑

A∈F µ(A) = 1. Events A ∈ F such that µ(A) > 0
are called focal elements and µ(i) = ν(i) ≥ 0, ∀i ∈ Ω.

Properties of the capacity ν reflect into properties of its Möbius inverse µ.

Proposition 1.1 (Chateauneuf and Jaffray, 1989)
Given a function ν : F → R and its Möbius inverse µ : F → R, then

(a) ν is a capacity if and only if

(a.1) µ(∅) = 0;
(a.2)

∑
B∈F µ(B) = 1;

(a.3)
∑

{i}⊆B⊆A µ(B) ≥ 0, for all A ∈ F and for all i ∈ A;

(b) ν is a 2-monotone capacity if and only if condition (a) holds and, ∀A ∈ F
and {i, j} ⊆ A with i ̸= j, ∑

{i,j}⊆B⊆A

µ(B) ≥ 0;

(c) ν is a belief function if and only if condition (a) holds and µ is non-negative:
µ(A) ≥ 0, for all A ∈ F ;

(d) ν is a necessity measure if and only if condition (a) holds and the set of its
focal elements is totally ordered by the inclusion relation;

(e) ν is a probability measure if and only if condition (a) holds, µ is non-negative
and it can be positive only on singletons.

We note that, dealing with belief functions, the Möbius inverse is also called
basic probability assignment and µ(A) can be interpreted as the evidence that the
true value of a random variable is in A ∈ F (Shafer, 1976a).

Example 1.1 showed that non-additive measures can be achieved as envelopes of
a set of known probabilities; in particular, the lower envelope P in the example is a



1.2 Ambiguity and Dempster-Shafer theory 17

belief function. In turn, a belief function, through its Möbius inverse, can be directly
assigned by an agent to events, based on the evidence in favour or not, such that
this can easily point out the degree of ignorance. In the following example, inspired
by Boivin (2019), we show this approach.

Example 1.2 Let’s say that we are interested in the weather in Rome and, more
specifically, we want to know how many days there will be sunshine or not in a
month, hence our states of the world can be only "sun" and "not sun", respectively
denoted by Ω = {{s}, {s}}. Sadly, there are no historical data on the number of
sunny days but there are on the number of rainy days, that are 45% of the month’s
days. Since we are interested about the sun, if it rains, there is not sun, hence we
assign a mass to the event "not sun"

µ({s}) = 0.45.

Conversely, event "no rain" does not mean "sun", but, for instance, it can be cloudy.
Hence "no rain" is compatible with the event {"sun", "not sun"}. Then we assign the
remaining mass to

µ({s, s}) = µ(Ω) = 1 − 0.45 = 0.55.
Let us compute the associated capacity, that results to be a belief function since µ
satisfies condition (c) of Proposition 1.1

∅ {s} {s} Ω
µ 0 0 0.45 0.55
Bel 0 0 0.45 1

Hence, Bel({s}) = 0 is the evidential support in favour of "sun" and Bel({s}) = 0.45
is the evidential support in favour of "not sun". We can easily verify that Bel is not
a probability measure since it does not satisfy the additivity property

Bel(s ∪ s) = Bel({s, s}) = 1 ≥ Bel({s}) +Bel({s}) = 0.45.

♦

The above setting can be equivalently expressed in terms of coherent lower
expectation (prevision).

Definition 1.7 ((coherent) lower expectation) A coherent lower expectation (previ-
sion) E : RΩ → R, is characterized by the following axioms:

(E.1) inf i∈ΩX(i) ≤ E(X) ≤ supi∈ΩX(i);

(E.2) (positive homogeneity) E(αX) = αE(X), with α > 0;

(E.3) (super-linearity) E(X + Y ) ≥ E(X) + E(Y ).

The lower probability of an event A ∈ F is defined as the lower expectation of
its indicator ν(A) = E(1A).

In analogy with coherent lower probability, any coherent lower expectation E
has a conjugate (coherent) upper expectation defined, for all X ∈ RΩ, by

E(X) = −E(−X). (1.24)
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Moreover, any coherent lower expectation induces a closed and convex set of com-
patible expectations

M (E) =
{
E expectation : ∀X ∈ RΩ,E(X) ≤ E(X) ≤ E(X)

}
, (1.25)

such that E(X) = minE∈M(E) E(X), and E(X) = maxE∈M(E) E(X).

1.2.2 Choquet integral

Within the framework of probability measures, equation (1.4) showed how to compute
the expected value of a random variable. Once that additivity is lost, we must design
a functional that yields the same meaning of the expected value and that reduces to
it when ν is additive.

The answer is not unique and, in what follows, we consider the Choquet integral
(Choquet, 1953) that can be computed with respect to any capacity ν.

Let us consider a measurable finite space (Ω,F). We recall that RΩ denotes the
set of all real-valued random variables on Ω.

Definition 1.8 (Choquet integral) Given a capacity ν and a random variable
X ∈ RΩ, the Choquet integral of X with respect to ν, denoted by Cν(X), is defined
as

Cν(X) = C
∫

Ω
X dν =

∫ ∞

0
ν(X ≥ t) dt+

∫ 0

−∞
[ν(X ≥ t) − 1] dt.

Since we assume a finite Ω and F = P(Ω), the Choquet integral can be computed
as

Cν(X) =
n∑

i=1
[X(σ(i)) −X(σ(i+ 1))] ν(Eσ

i ), (1.26)

where σ is a permutation of Ω such that X(σ(1)) ≥ · · · ≥ X(σ(n)), X(σ(n+ 1)) = 0,
and Eσ

i = {σ(1), . . . , σ(i)}, for i = 1, . . . , n.
If ν reduces to a probability measure P , the Choquet integral reduces to the

expected value of X

CP (X) = C
∫

Ω
X dP =

∫ ∞

0
P (X ≥ t) dt+

∫ 0

−∞
[P (X ≥ t) − 1] dt = EP (X).

Moreover, for every capacity ν ∈ V(Ω,F), the Choquet integral can be computed
through the corresponding Möbius inverse of ν.

Theorem 1.4 (Gilboa and Schmeidler, 1994)
For every ν ∈ V(Ω,F) with corresponding µ, and X ∈ RΩ, it holds that

Cν(X) =
∑

B∈F\{∅}
µ(B)

(
min
i∈B

X(i)
)
.

Now we mention some properties of the Choquet integral that will be helpful in
the next sections. Let ν be any capacity in V(Ω,F), and X a random variable in
RΩ, then:
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(Ch.1) for all A ⊆ Ω, we have that Cν(1A) = ν(A), where 1A is the indicator function
of A;

(Ch.2) for any other capacity φ ∈ V(Ω,F), X ∈ RΩ and α, β ∈ R, it holds that

Cαν+βφ(X) = αCν(X) + βCφ(X);

(Ch.3) (non-negative homogeneity) for all α ≥ 0 and X ∈ RΩ, it holds that

Cν(αX) = αCν(X);

(Ch.4) (constant additivity) for all α ∈ R, it holds that

Cν(α+X) = α+ Cν(X);

(Ch.5) (monotonicity) for all X,Y ∈ RΩ such that X ≤ Y , it holds that

Cν(X) ≤ Cν(Y );

(Ch.6) (comonotone additivity) if X,Y ∈ RΩ are comonotone, meaning that for all
i, j ∈ Ω [X(i) −X(j)][Y (i) − Y (j)] ≥ 0, it holds that

Cν(X + Y ) = Cν(X) + Cν(Y );

(Ch.7) (asymmetry) if ν is the dual capacity of ν, it holds that

Cν(−X) = −Cν(X);

(Ch.8) if ν reduces to a 2-monotone capacity, for all X,Y ∈ RΩ, the Choquet integral
is a coherent lower expectation as given in Definition 1.7, i.e. it is super-additive

Cν(X) + Cν(Y ) ≤ Cν(X + Y ),

and, combined with non-negative homogeneity, it satisfies the super-linearity
property2. Moreover, the Choquet integral computed with respect to (at least)
a 2-monotone capacity is the lower expectation with respect to the core of the
capacity (we point out that this property continues to hold if ν reduces to a
belief function) (Gilboa and Schmeidler, 1994)

Cν(X) = min
P ∈core(ν)

∑
i∈Ω

P ({i})X(i) = min
P ∈core(ν)

EP (X) = E(X). (1.27)

It follows that the Choquet integral coincides with the natural extension
(1.18).3

2We stress that for a 2-alternating (concave) capacity, the Choquet integral is sub-additive and,
combined with non-negative homogeneity, it is sub-linear.

3Notice that, if ν is a (coherent) lower probability not 2-monotone, then core(ν) ̸= ∅ but there
exists at least a random variable X such that the Choquet integral is smaller than the natural
extension: ∃X ∈ RΩ : C(X) < EN (X).



20 1. Uncertainty and ambiguity

In turn, given a family of probabilities P, if its lower envelope ν = min cl(P)
is a 2-monotone (or completely monotone) capacity, but cl(P) is strictly con-
tained in core(ν), then the equality (1.27) may fail to hold. Indeed, computing
the Choquet integral with respect to ν we are actually computing the lower
expectation functional on RΩ determined by core(ν), which is dominated by
the lower expectation functional on RΩ determined by P (see, e.g., de Cooman
et al., 2008). This latter functional is 2-monotone (completely monotone)
on indicators of events but may fail 2-monotonicity (complete monotonic-
ity) on the whole RΩ. This means that for some X ∈ RΩ we can have
Cν(X) < minP ∈cl(P) EP (X).

(Ch.9) (complete monotonicity) if ν reduces to a belief function Bel, for all k ≥ 2 and
all X1, . . . , Xk ∈ RΩ, the Choquet integral is completely monotone

CBel

(
k∨

i=1
Xi

)
≥

∑
∅̸=I⊆{1,...,k}

(−1)|I|+1CBel

(∧
i∈I

Xi

)
. (1.28)

1.2.3 Conditioning

Working with generalized measures requires also an adequate generalization of the
conditioning rule in the non-additive measure’s environment since it is fundamental
to develop dynamic pricing models. Literature proposed several definitions of
conditional capacities which continue to hold when we deal with a belief function.
The following conditioning rules are proposed in terms of belief and plausibility
functions even if they can be stated more generally in terms of capacities (Denneberg,
1994; Grabish, 2016): this is because we will mainly work in the Dempster-Shafer
framework. In particular, we refer to Shafer (1976a,b); Fagin and Halpern (1990);
Gilboa and Schmeidler (1993); Coletti et al. (2016); Coletti and Vantaggi (2008).

Let Bel be a belief function on (Ω,F), Pl its dual plausibility function and
A ∈ F , B ∈ F \ {∅}.

General (Bayes) conditioning rule. The general conditional belief function of A
given B, firstly recognized in Dempster (1967) and also called Bayes conditional
belief function, is defined as

BelG(A|B) = Bel(A ∩B)
Bel(A ∩B) + Pl(AC ∩B) , (1.29)

where Bel(A ∩B) + Pl(AC ∩B) > 0.
Its conjugate function, the general (Bayes) conditional plausibility function,
has the same structure:

PlG(A|B) = 1 −Bel(AC |B) = 1 − Bel(AC ∩B)
Bel(AC ∩B) + Pl(A ∩B)

= Pl(A ∩B)
Pl(A ∩B) +Bel(AC ∩B) ,

(1.30)

where Pl(A ∩B) +Bel(AC ∩B) > 0.



1.2 Ambiguity and Dempster-Shafer theory 21

A general (Bayes) conditional belief (plausibility) function continues to be a
belief (plausibility) function and it is the lower (upper) envelope of the set of
all conditional probabilities defined by its core

BelG(A|B) = min
P ∈core(Bel)

P (A|B), (1.31)

PlG(A|B) = max
P ∈core(Bel)

P (A|B), (1.32)

where P (·|·) is a conditional probability (see, also, Coletti et al., 2016). This
property is also called coherence in the sense of Walley (Walley, 1982).

The general conditioning rule continues to hold in terms of a capacity ν and
its dual function ν; if ν is a 2-monotone (alternating) capacity, the general
conditional capacity continues to be 2-monotone (alternating) and equations
(1.31)–(1.32) continue to hold (Denneberg, 1994).

If A1, A2 ∈ F and the conditional beliefs BelG(Ai|B) for i = 1, 2 are defined,
then A1 ⊆ A2 ⇒ BelG(A1|B) ≤ BelG(A2|B) (the property continues to hold
if Bel reduces to a capacity).

Dempster conditioning rule. Proposed in terms of plausibility function Pl by
Dempster (1967), the Dempster conditioning rule is defined, with Pl(B) > 0,
as

PlD(A|B) = Pl(A ∩B)
Pl(B) . (1.33)

Its conjugate belief function is

BelD(A|B) = 1 − Pl(AC |B) = 1 − Pl(AC ∩B)
Pl(B)

= Bel(A ∪BC) −Bel(BC)
1 −Bel(BC) .

(1.34)

The Dempster conditioning rule continues to hold in terms of a capacity ν and
the Dempster conditional belief (plausibility) function BelD (PlD) continues
to be a belief (plausibility) function.

The conditionals BelD and PlD are, respectively, the lower and the upper en-
velope of a set of conditional probabilities denoted as core(BelD(·|B)): starting
from the conditional belief BelD(·|B) and taking its core

core(BelD(·|B)) = {P ∈ P(Ω,F) : P (A) ≥ BelP (A|B), ∀A ∈ F}, (1.35)

then BelD(·|B) and PlD(·|B) are, respectively, the lower and the upper enve-
lope (Denneberg, 1994):

BelD(A|B) = min
P ∈core(BelD(·|B))

P (A|B); (1.36)

PlD(A|B) = max
P ∈core(BelD(·|B))

P (A|B). (1.37)
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Note 2: Conditions (1.31)–(1.32) say that the general conditional belief is the
lower (upper) envelope of a set of probability measures, then all information
have a relevant role. On the contrary, conditions (1.36)–(1.37) show that in
the Dempster conditioning rule just the local information restricted to the
conditioning event B have a role.

Product conditioning rule. The product conditioning rule is analogous to the
Dempster conditioning rule but it is defined in terms of a belief function, and
it is also called geometric conditioning rule (Suppes and Zanotti, 1977; Shafer,
1976b) or strong conditioning rule (Planchet, 1989). The product conditioning
rule is defined, with Bel(B) > 0, as

BelP (A|B) = Bel(A ∩B)
Bel(B) . (1.38)

Its conjugate function PlP (A|B) has the same structure of (1.34), hence

PlP (A|B) = 1 −BelP (AC |B) = Pl(A ∪BC) − Pl(BC)
1 − Pl(BC) . (1.39)

A product conditional belief (plausibility) function BelP (PlP ) continues to
be a belief (plausibility) function.
The conditionals BelP and PlP are, respectively, the lower and the upper
envelope of the core(BelP (·|B)) (see, e.g., Denneberg, 1994)

BelP (A|B) = min
P ∈core(BelP (·|B))

P (A|B); (1.40)

PlP (A|B) = max
P ∈core(BelP (·|B))

P (A|B); (1.41)

and an equivalent interpretation as that in Note 2 holds.
The following relations between rules hold:

BelG(A|B) ≤ BelD(A|B) ≤ PlD(A|B) ≤ PlG(A|B); (1.42)
BelG(A|B) ≤ BelP (A|B) ≤ PlP (A|B) ≤ PlG(A|B). (1.43)

Weak conditioning rule. Proposed by Planchet (1989) in terms of a belief func-
tion Bel on (Ω,F), the weak conditioning rule of A, given B with Pl(B) ̸= 0,
is defined by

BelW (A|B) = Bel(A) −Bel(A ∩BC)
1 −Bel(BC) . (1.44)

The weak conditional BelW is still a belief function on (Ω,F) and its conjugate
plausibility function is

PlW (A|B) = Pl(A) + Pl(B) − Pl(A ∪B)
Pl(B) . (1.45)

The link between the weak conditioning rule and the Dempster conditioning
rule is given by the following inequalities

PlW (A|B) ≥ PlD(A|B), BelW (A|B) ≤ BelD(A|B). (1.46)
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In order to define a criterion for the choice of a specific conditioning rule, Yu
and Arasta (1994) list a set of desirable properties and study which of these are
satisfied by the proposed conditioning rules. For a conditional belief Bel(·|·), the
list of desirable properties is:

(1) Bel(·|B) remains a belief function of (Ω,F), for any B ∈ F with Bel(B) ̸= 0;

(2) if Bel reduces to a probability measure P , then Bel(·|·) reduces to a conditional
probability;

(3) given B ∈ F , with Bel(B) ̸= 0, the set A ∈ F and A ∩ B have the same
meaning, hence Bel(A|B) = Bel(A ∩B|B);

(4) Bel is normalized: Bel(B|B) = 1 for any B ∈ F with Bel(B) ̸= 0;

(5) Bel(·|·) is commutative: Bel(A|C|B) = Bel(A|B|C) for any A,B,C ∈ F and
Bel(B) ̸= 0, Bel(C) ̸= 0;

(6) the conditioning rule allows repeated updating: Bel(A|C|B) = Bel(A|B ∩ C)
for any A,B,C ∈ F with Bel(B ∩ C) ̸= 0;

(7) the conditional function satisfies the sandwich principle:
min(Bel(A|B), Bel(A|BC)) ≤ Bel(A) ≤ max(Bel(A|B), Bel(A|BC)) for
A,B ∈ F with Bel(B) ̸= 0 and Bel(BC) ̸= 0.

They prove that the product conditioning rule and the Dempster conditioning rule
satisfy all properties except (7); the weak conditioning rule satisfies properties
(1),(2),(5); the general (Bayes) conditioning rule satisfies properties (1)-(4) while
(5)-(6) are satisfied just for some specific belief space.

The Dempster conditioning rule for belief functions records the effect of additional
information, in fact, in terms of Möbius inverse, the masses of the focal events that
meet both B and BC are transferred into intersections between the event and the
conditioning one; formally, denoting by B = {A ∈ F : µ(A) ̸= 0} the set of focal
events of Bel, then µ(A), with A ∈ B, such that A ∩ B ̸= ∅ and A ∩ BC ̸= ∅, is
transferred to events A ∩B.

On the contrary, the general (Bayes) conditioning rule selects the relevant
information and, in terms of Möbius inverse, the masses of focal events that meet
both B and BC are transferred to subset larger that A ∩ B, in particular, given
A ∈ B such that A ∩B ̸= ∅ and A ∩BC ̸= ∅, then µ(A) is transferred to subsets of
C ∩B that are only larger than A∩B, where C = ∪A∈B. Jaffray (2008) gives a way
to directly compute µG(·|B) from µ (for details, see Theorem 1 in Jaffray, 2008).

In the following example, inspired by Jaffray (2008), we show how the general
(Bayes), Dempster and product conditioning rules work.

Example 1.3 Consider Ω = {1, 2, 3}, F = P(Ω) and the lower probability given in
Example 1.1, that is a belief function since µ(A) ≥ 0 for all A ∈ F . We report it,
denoted as Bel, and its Möbius inverse (to avoid cumbersome notation we denote
events omitting commas).
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F ∅ {1} {2} {3} {12} {13} {23} Ω
Bel 0 1

3 0 0 1
3

1
3

2
3 1

µ 0 1
3 0 0 0 0 2

3 0

We compute the conditional belief functions with respect to the event B = {12}
with (i) the general (Bayes) conditioning rule BelG(·|B) (and its Möbius inverse µG),
with (ii) the Dempster conditioning rule BelD(·|B) (and its Möbius inverse µD)
and with (iii) the product conditioning rule BelP (·|B) (and its Möbius inverse µP ).

F \ {∅} {1} {2} {3} {12} {13} {23} Ω
Bel 1

3 0 0 1
3

1
3

2
3 1

µ 1
3 0 0 0 0 2

3 0

BelG(·|B) 1
3 0 0 1 1

3 0 1
µG 1

3 0 0 2
3 0 0 0

BelD(·|B) 1
3

2
3 0 1 1

3
2
3 1

µD 1
3

2
3 0 0 0 0 0

BelP (·|B) 1 0 0 1 1 0 1
µP 1 0 0 0 0 0 0

Note that µi ≥ 0 for i = {“G”, “D”, “P”}, then the conditional functions continue
to be belief functions. In particular, BelD(·|B) and BelP (·|B) reduce to a probability
measure. We stress that it is a particular case due to the values of the example. In
this case, since their core reduces to a singleton

core(BelD(·|B)) =
{
BelD(·|B)

}
=
{
PD

}
,

core(BelP (·|B)) =
{
BelP (·|B)

}
=
{
PP
}
,

(1.36) and (1.40) are automatically satisfied.
On the contrary, we investigate if the general conditioning rule is coherent, i.e.,

it is the lower envelope of the set {P (A|B) : P ∈ core(Bel), ∀A ∈ F}.
The set of extreme points ext(core(Bel)) = {P σ : σ ∈ Σ}, where Σ = {1, 2, 3},

is the following

P (1,2,3) =
(

1
3 , 0,

2
3

)
= P1, P (1,3,2) =

(
1
3 ,

2
3 , 0
)

= P2,

P (2,1,3) =
(

1
3 , 0,

2
3

)
= P1, P (2,3,1) =

(
1
3 , 0,

2
3

)
= P1,

P (3,1,2) =
(

1
3 ,

2
3 , 0
)

= P2, P (3,2,1) =
(

1
3 ,

2
3 , 0
)

= P2,

with respect to which we compute the conditional probabilities and the lower condi-
tional probability P (·|B) = minP ∈ext(core(Bel)) P (·|B).
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F \ {∅} {1} {2} {3} {12} {13} {23} Ω

P1
1
3 0 2

3
1
3 1 2

3 1

P1(·|B) 1 0 0 1 1 0 1

P2
1
3

2
3 0 1 1

3
2
3 1

P2(·|B) 1
3

2
3 0 1 1

3
2
3 1

P (·|B) 1
3 0 0 1 1

3 0 1

Since BelG(A|B) = minP ∈core(Bel) P (A|B), for all A ∈ F , then BelG(·|B) is coher-
ent. Also, relations between conditioning rule given in (1.42)–(1.43) hold.

Note that, as explained before, the Dempster conditioning rule transfers the
masses of events that meet both B and BC to events A ∩ B. In this the events
that meet both B and BC is only A = {23} with mass µ({23}) = 2

3 . Since we have
A ∩ B = {23} ∩ {12} = {2}, the mass µ({23}) is transferred to event {2}, in fact
µDS({2}) = 2

3 .
On the contrary, the general (Bayes) conditioning rule transfers the mass of A

to events larger than A∩B that are subsets of C ∩B. In this example, events larger
than {2} that are subsets of C ∩ B = Ω ∩ {12} = {12} is only {12} itself. In fact
µG({12}) = 2

3 .
♦

Arguments for belief functions

The theory of belief function firstly proposed by Dempster and Shafer provides the
foundation for the majority of this thesis. The selection of belief functions over other
non-additive measures, in particular 2-monotone capacities that share the lower
envelope property (1.21) and the lower expectation property (1.27), is due to the
clear interpretability and the lower computational cost. The Möbius inverse of a
belief function can be easily interpreted as a measure of evidence in favour of a set,
as Examples 1.1–1.2 show. On the other side, the 2-monotone framework does not
require µ to be non-negative, hence, from a "real-world" point of view, it may be
more difficult to interpret. For a deeper discussion see, e.g., Cuzzolin (2021); Shafer
(1990).

Multivalued mapping. For finite Θ and Ω, given a probability space (Θ, 2Θ, P )
and a multivalued mapping Γ : Θ → 2Ω, they induce a belief function Bel :
2Ω → [0, 1] computing for each θ ∈ Θ the degree of belief of an event A ⊆ Ω as
the total probability of all θ

Bel(A) =
∑

θ∈Θ|Γ(θ)⊆A

P (θ). (1.47)

In other words, the Möbius inverse µ : 2Ω → [0, 1] is given by µ(·) = P (Γ = ·).
Conditioning to an eventH ∈ 2Ω, we have to considerH∗ = {θ ∈ Θ : Γ(θ) ⊆ H}
and the following relation holds

P (·|H∗) = P (· ∩H∗)
P (H∗) = µ(· ∩H)

Bel(H) . (1.48)
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Generalized non-additive probabilities. As characterized in Section 1.2.1, be-
lief functions are particular non-additive measures such that they are the lower
envelope of their core (see (1.21)) and the Choquet integral with respect to Bel
is the lower expectation among each P ∈ core(Bel) (see (1.27)). 2-monotone
capacities also satisfies these properties.

Inner measures. Given a measurable space (Ω,F), let us suppose to have a proba-
bility measure P defined over a σ-field of subsets I of F . The inner probability
of P is such an extension of P to F and it measures the degree we should
believe in an event for which the probability P is not defined. The inner
measure P∗ is defined, for all A ∈ F , as

P∗(A) = max{P (B) : B ⊆ A, B ∈ I}, (1.49)

and it is proved to be a belief function (the converse, in general, is not true,
see, e.g., Fagin and Halpern, 1991).
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Chapter 2

Arbitrage theory in discrete
time models

In this Chapter, we look at the fundamental theorems and models that are based
on classical no-arbitrage assumptions in a one-period setting (Section 2.1) and then
we consider the generalization to a multi-period setting (Section 2.2). The absence
of arbitrage opportunities, that is the absence of a chance to gain without risk,
is a reasonable and necessary assumption in the primary literature that leads to
fundamental theorems on which pricing is based. Finally, the binomial and trinomial
market models are investigated (Sections 2.2.1–2.2.2).

2.1 One-period setting
Consider a financial market open at times t = 0 and t = 1. The market is composed
by a set of assets (or securities), each defined as a contract between two investors
which specifies, for each state of the world i ∈ Ω, an amount (positive or negative)
of money or commodity that the seller of the contract has to transfer to the buyer.

The cash flow is deterministic (i.e., it does not depend on future states of the
world) when the asset is riskless, otherwise the cash flow is a random variable
depending on which state of the world will occur and it is called risky. An example
of riskless asset is the risk-free bond: an asset that gives to the holder the right to
receive a predetermined amount of money in each future state of the world. The
rate of return of a risk-free bond is called risk-free interest rate.

The financial market is commonly assumed to satisfy the following fundamental
assumptions (Allingham, 1991; Dybvig and Ross, 1989):

(i) absence of frictions (there are no transaction costs, taxes and other restrictions
on trading);

(ii) competitiveness (every quantity can be traded at market’s price).

A one-period market model is composed by a set of K risky assets, denoted by
S1, . . . , SK , and by a riskless asset (bond), denoted by S0. Risky assets have a price
process denoted as

{
Sk

0 , S
k
1

}
, for k = 1, . . . ,K, where Sk

0 = sk
0 > 0 is a deterministic

value called price, and Sk
1 is a random variable depending on which state of the
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world will occur, called payoff. The riskless bond S0, without loss of generality, has
price process {

S0
0 = 1, S0

1 = (1 + r)S0
0 = (1 + r)

}
, (2.1)

where r > −1 is the risk-free interest rate of the market. Its price is usually used
as a numéraire (see, e.g., Pliska, 1997), meaning that it allows to discount risky
price processes and to define a new process called discounted price process which we
denote by

{
S̃k

0 , S̃
k
1

}
, where S̃k

0 = Sk
0 and S̃k

1 = Sk
1

S0
1

= (1 + r)−1Sk
1 , for k = 1, . . . ,K.

The set of assets of the market is denoted as a process {S0,S1} on RK+1 where
S0 =

(
S0

0 , . . . , S
K
0

)
is the vector of prices and S1 =

(
S0

1 , . . . , S
K
1

)
is the vector of

payoffs.
Price processes are defined on a filtered probability space (Ω,F , {F0,F1}, P )

where Ω = {1, . . . , n}, with n ∈ N, is a finite state space, {F0,F1} is a filtration
such that F0 = {∅,Ω} and F1 = P(Ω) = F is the power set of Ω, and P is
a probability measure on F , with P ({i}) > 0, that can be interpreted as the
"real-world" probability (also called natural probability).
Note 3: In classical finite-state no-arbitrage pricing models (see, e.g., Delbaen and
Schachermayer, 2006; Pliska, 1997), the positivity of the "real-world" probability P is
motivated by the fact that only "realistic" states of nature are taken into account, i.e.,
states with null measure are discarded; this assures that an asset with non-negative
and non-null payoff will have a positive price at time t = 0. Furthermore, a common
assumption in finance is that all market agents share the same probabilistic opinions,
i.e., they have the same P .

In agreement with Chapter 1, we denote by RΩ the set of all F-measurable
random variables and by P(Ω,F) the set of all probability measures on (Ω,F).

Definition 2.1 (Price assessment) A function π′ : S1 → R is called price assessment
if and only if π′(Sk

1 ) = Sk
0 , for all k = 0, . . . ,K.

We suppose that the price assessment function π′(·) is given.

Definition 2.2 (One-period portfolio) A portfolio (or trading strategy) is a collec-
tion of assets that an agent can hold. It is denoted by a vector λ = (λ0, . . . , λK) ∈ RK+1

whose k-th component λk expresses the number of units purchased (λk > 0) or sold
(λk < 0) of the k-th asset in the one-period time interval [0, 1].

At time t = 0 the price of the portfolio λ ∈ RK+1 is computed as the weighted
sum of prices and it is denoted by

V0 = λT S0 =
K∑

k=0
λkSk

0 =
K∑

k=0
λkπ′(Sk

1 ). (2.2)

At time t = 1 the payoff of the portfolio λ ∈ RK+1 is a random variable
V1 : Ω → R defined, for every i ∈ Ω, as

V1 = λT S1 =
K∑

k=0
λkSk

1 . (2.3)
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2.1.1 Dutch-book and arbitrage opportunities

“An arbitrage opportunity is an investment strategy that guarantees a positive payoff in
some contingency with no possibility of a negative payoff and with no net investment.
By assumption, it is possible to run the arbitrage possibility at arbitrary scale; in
other words, an arbitrage opportunity represents a money pump. A simple example
of arbitrage is the opportunity to borrow and lend costlessly at two different fixed
rates of interest. Such a disparity between the two rates cannot persist: arbitrageurs
will drive the rate together.” (Dybvig and Ross, 1989, p.57)

Definition 2.3 (Dutch-book) A portfolio λ ∈ RK+1 avoids a Dutch-book opportu-
nity if the following condition holds

max
i∈Ω

K∑
k=0

λk
(
S̃k

1 (i) − π′(Sk
1 )
)

≥ 0. (2.4)

The no-Dutch-book portfolio is also called coherent since it does not allow a sure
loss for the holder. On the contrary, a portfolio λ ∈ RK+1 that allows a Dutch-book
opportunity is called incoherent (Walley, 1982, 1991).

The concept of arbitrage opportunity is stronger than the Dutch-book one, since
an arbitrage portfolio allows to acquire a positive amount of money without risk, also
called free lunch. The existence of an arbitrage portfolio allows agents to acquire an
unlimited amounts of money without risk, called money pump, so it is a possibility
that has to be forbidden.

Definition 2.4 (One-period arbitrage opportunity) A portfolio λ ∈ RK+1 is an
arbitrage portfolio if it guarantees a positive payoff with a non-positive price, or the
opposite, i.e., it satisfies one of the following two conditions:

(i) V0 < 0 and V1 = 0;

(ii) V0 ≤ 0 and V1 ≥ 0 with V1 ̸= 0 (i.e., there is a strict inequality for at least one
i ∈ Ω), equivalently written as

K∑
k=0

λk
(
S̃k

1 (i) − π′(Sk
1 )
)

≥ 0, (2.5)

for all i, with a strict inequality for at least one i ∈ Ω.

A Dutch-book opportunity implies the existence of an arbitrage opportunity but
the converse does not hold as showed in the following example from Schervish et al.
(2008).

Example 2.1 Let be Ω = {0, 1}, X a random variable that takes values X(0) = 0,
X(1) = 1. Let be π′(X) = 0. For λ = 1, we have that

max{λ(X(0) − π′(X)), λ(X(1) − π′(X))} = max{0, 1} = 1,

hence, condition (2.4) is satisfied, that is this portfolio avoids a Dutch-book opportu-
nity. Nevertheless, condition (2.5) is satisfied, then it is an arbitrage opportunity.

♦
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The assumption that arbitrage opportunities must not exist stems from individual
rationality since a rational agent who prefers more to less will maintain an arbitrage
position in the absence of a scale constraint. For this reason, pricing theory commonly
makes the assumption that the market must be arbitrage-free (see, e.g., Pliska, 1997;
Pascucci and Runggaldier, 2011; Dybvig and Ross, 1989; Bjork, 2009).

The following fundamental theorems demonstrate how the assumption of no-arbitrage
has significant implications.

2.1.2 Fundamental theorems

Theorem 2.1 (Fundamental theorem of asset pricing (Dybvig and Ross, 1989))
The following statements are equivalent:

(i) absence of arbitrage opportunities;

(ii) existence of a consistent positive linear pricing rule;

(iii) existence of an optimal demand for some agent who prefers more to less.

Condition (iii) is not pointed out in this work, then we refer to Dybvig and
Ross (1989) for details. In what follows, we continue to assume a finite setting, in
agreement with Chapter 1.

Definition 2.5 (Pricing rule) A pricing rule (or price functional) is a function,
denoted by π : RΩ → R, that assigns a value to all possible random payoffs X ∈ RΩ.
A pricing rule is linear if, given two random variables X,Y ∈ RΩ, it holds that
π(αX + βY ) = απ(X) + βπ(Y ), with α, β ∈ R.

The pricing rule has to be consistent with the marketed assets, i.e., it has to be
such that, for all k = 0, . . . ,K, the following equality holds

Sk
0 = π(Sk

1 ) = π′(Sk
1 ). (2.6)

Note 4: The pricing rule π(·) is an extension of the price assessment π′(·) defined
on S1, to all assets, also hypothetical, defined over the same set of states.

A positive linear pricing rule can be represented in alternative ways that could
be more or less useful depending on the context. This will be discussed after the
next fundamental theorem.

Theorem 2.2 (Pricing rule representation theorem (Dybvig and Ross, 1989))
The following statements are equivalent:

(a) existence of a positive linear pricing rule;

(b) existence of positive risk-neutral probabilities and an associated riskless rate
(the martingale property);

(c) existence of a positive state price density.
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Approaches (b) and (c) are equivalent but they can be more or less preferred
depending on the framework of study. In particular, the risk-neutral approach (b) is
useful for valuation’s problems without going through individual preferences since
we ignore individual utilities and beliefs expressed by P ; the state price density (c)
is preferred if we want to study choice problems. We will not focus on the state
price density, for details we refer to Dybvig and Ross (1989).

The Pricing Rule Representation Theorem assures that the positive linear pricing
rule π is equivalent to the existence of a probability Q ∈ P(Ω,F) called risk-neutral,
such that:

(1) it is equivalent to the natural probability (in symbol, Q ∼ P ): for every A ∈ F ,
it holds that P (A) = 0 ⇔ Q(A) = 0;

(2) the price assessment is a discounted expected value:

π′(Sk
1 ) = (1 + r)−1EQ(Sk

1 ) = Sk
0 , (2.7)

for k = 1, . . . ,K. It can be equivalently written in terms of discounted price
process in the following way: π′(Sk

1 ) = EQ

(
S̃k

1

)
= Sk

0 . In this way we can note
that the discounted process is a martingale with respect to Q; for this reason
Q is also called equivalent martingale measure.

The no-arbitrage assumption assures that there exists a pricing rule given by the
discounted expected value of payoffs which extends the price assessment π′, defined
over the marketable assets S1, to a pricing rule π over the whole set RΩ.

This result is stated in the first fundamental theorem of asset pricing that
summarizes Theorem 2.1 and Theorem 2.2. By a financial point of view, the next
theorem has the following interpretation: the no-arbitrage assumption asks that
there could not be sure gains generated by buying and short-selling assets, then the
price process cannot be increasing on average but it has to be constant on average
(i.e., a martingale process).

Theorem 2.3 (First fundamental theorem of asset pricing)
The following statements are equivalent:

(i) absence of arbitrage opportunities;

(ii) existence of an equivalent martingale measure.

The first fundamental theorem of asset pricing does not assure the uniqueness of
the equivalent martingale measure. In general, it assures that there exists a class of
equivalent martingale measures defined as

Q = {Q ∈ P(Ω,F) : Sk
0 = (1 + r)−1EQ(Sk

1 ), k = 1, . . . ,K}. (2.8)

Suppose that X is a European-type derivative, that is a financial contract defined
over the filtered probability space (Ω,F , {F0,F1}, P ) with price process {X0, X1},
where the payoff at maturity T = 1 is a random variable X1(i) depending on which
i ∈ Ω occurs, and X0 is the price of the derivative at time t = 0. The derivative
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is called replicable if there exists a portfolio λ ∈ RK+1 (called replicating portfolio)
such that the derivative and the replicating portfolio have the same payoff: X1 = V1.

If the market is free of arbitrage opportunities the law of one price holds: the
value of a replicable derivative is the same of its replicating portfolio

X0 = V0 =
K∑

k=0
λkSk

0 . (2.9)

Theorem 2.4 (Risk neutral valuation principle (Pliska, 1997))
If the one-period market model is arbitrage-free, then the price of a replicable
derivative X is the discounted expected value of its payoff

X0 = (1 + r)−1EQ(X1), (2.10)

where Q is any equivalent martingale measure in Q. Hence, under the no-arbitrage
hypothesis, a pricing rule is expressed as π(·) = (1 + r)−1EQ(·).

Remark 1. Theorem 2.4 does not guarantee that the price X0 is unique, since different
Q ∈ Q could lead to different prices, each of them consistent with the no-arbitrage
assumption.

Definition 2.6 (Completeness) A market model in which each derivative X is
replicable is called complete.

We introduce the matrix notation to deal with incompleteness. Payoffs of the
riskless asset and of K risky assets, for each i ∈ Ω, are defined in the matrix
A ∈ Rn×(K+1)

A =

S
0
1(1) S1

1(1) · · · SK
1 (1)

...
...

...
S0

1(n) S1
1(n) · · · SK

1 (n)

 , (2.11)

and the vector of payoffs of the derivative is denoted by X = (X1(1), . . . , X1(n)) ∈ Rn.
The next theorem links the completeness of the market (that is equivalent to say

that there exists a replicating portfolio for each derivative) with the uniqueness of
the equivalent martingale measure.

Theorem 2.5 (Second fundamental theorem of asset pricing)
If the market model is free of arbitrage opportunities, the following statements are
equivalent:

(i) there exists a portfolio λ ∈ RK+1 such that the linear problem AλT = X has a
unique solution, for all X ∈ RΩ. It occurs if and only if rank(A) = n = K + 1
(supposing that there are no redundant assets);

(ii) the market is complete;

(iii) the set of equivalent martingale measures Q reduces to a singleton Q = {Q}.
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Note 5: The importance of the completeness of a market comes from the fact that
it allows to price and hedge all possible contingent claims, also hypothetical, in a
preference-independent way.

On the contrary, if the market is incomplete, each equivalent martingale measure
in the set Q leads to a different prices for X, as said in Remark 1. Anyhow, the fair
price of X1 (i.e., the price that does not give rise to an arbitrage opportunity) is
proved to be in the interval

(
V (X1), V (X1)

)
, defined through the closest replicable

derivative of X (Pliska, 1997)1.
The simplest approach to overcome market incompleteness is to complete the

market; other techniques look for the best replicating strategy and they will be
discussed in Chapter 3.

2.2 Multi-period setting
A multi-period financial market is a market with T ∈ N finite trading dates
t = 0, 1, . . . , T , defined on a finite filtered probability space (Ω,F , {Ft}T

t=0, P ).
As the one-period market model, we consider a multi-period market composed

by K risky assets with non negative price process {Sk
t }T

t=0, for k = 1, . . . ,K, and by
one riskless asset with price process {S0

t }T
t=0 such that

S0
0 = 1, S0

t = (1 + r)t, (2.12)

where r > −1 is the constant risk-free interest rate of the market in the time interval
[t, t+ 1].

Price processes are adapted to the filtration {Ft}T
t=0 with F0 = {∅,Ω} and

FT = P(Ω) = F , such that Ft ⊂ Ft+1 for every t = 0, . . . , T − 1; each algebra Ft is
generated by a unique partition Pt of Ω and, at time t, agents know which A ∈ Pt

contains the true state of the world2.

Definition 2.7 (Multi-period portfolio) In a multi-period setting with times
t = 0, . . . , T , a portfolio (or trading strategy) is a random process {λt}T −1

t=0 such that,
at time t, it is a random vector λt = (λ0

t , λ
1
t , . . . , λ

K
t ) ∈ RK+1, where λ0

t > 0 (λ0
t < 0)

is the bond’s units bought (sold) in the time interval [t, t+ 1], and λk
t > 0 (λk

t < 0)
is the number of units of the k-th asset bought (sold) in the time interval [t, t+ 1].

We stress that the trading strategy is set up to time T − 1 and that the trading
strategy λt has to be measurable with respect to Ft and constant on the partition
Pt.

The value of the portfolio is a random process {V0, . . . , VT } where Vt is the value
on the t-th one-period interval [t, t+ 1], for t = 0, . . . , T − 1, computed with respect
to the strategy λt settled at time t, and it is denoted as

Vt =
K∑

k=0
λk

t S
k
t = λ0

t (1 + r)t +
K∑

k=1
λk

t S
k
t , (2.13)

1If Z1 is the payoff of the closest replicable derivative of X, bound are computed in the following
way: V (X1) = inf Z1≤X1,

Z1 is replicable
(1 + r)−1EQ(Z1), V (X1) = sup Z1≤X1,

Z1 is replicable
(1 + r)−1EQ(Z1).

2This feature will be later called completely resolving uncertainty.
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while, for t = T , the value of the portfolio in the one-period interval is given by

VT =
K∑

k=0
λk

T −1S
k
T = λk

T −1(1 + r)T +
K∑

k=1
λk

T −1S
k
T . (2.14)

Once that information at time t are revealed, the investor changes his strategy
from λt to λt+1 and the value of the portfolio immediately becomes

λ0
t+1(1 + r)t+1 +

K∑
k=1

λk
t+1S

k
t+1. (2.15)

Definition 2.8 (Self-financing portfolio) A portfolio {λt}T −1
t=0 is self-financing if,

for t = 1, . . . , T − 1, it satisfies the following equality

Vt = λ0
t−1(1 + r)t +

K∑
k=1

λk
t−1S

k
t = λ0

t (1 + r)t +
K∑

k=1
λk

t S
k
t . (2.16)

In words, a self-financing portfolio is such that the investor does not add or
withdraw founds from the value of the portfolio at any of the times. We stress that
in the one-period setting each portfolio is vacuously self-financing.

Considering the discounted price process of the k-th asset in t

S̃k
t = Sk

t

S0
t

= (1 + r)−tSk
t , (2.17)

then the discounted price process of the portfolio is given by

Ṽt = λ0
t +

K∑
k=1

λk
t S̃

k
t = Vt(1 + r)−t, (2.18)

for t = 0, . . . , T − 1. For t = T it holds that

ṼT = λ0
T −1 +

K∑
k=1

λk
T −1S̃

k
T = VT (1 + r)−T . (2.19)

The no-arbitrage principle and the fundamental theorems of asset pricing defined
in the one-period setting can be straightforwardly extended to the multi-period
setting as follows.

Definition 2.9 (Multi-period arbitrage opportunity) An arbitrage opportunity in
multi-period setting is a self-financing strategy {λt}T −1

t=0 such that it satisfies one of
the following two conditions, where comparisons are intended over Ω:

(i) V0 < 0 and VT = 0;

(ii) V0 ≤ 0 and VT ≥ 0 with VT ̸= 0.
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Theorem 2.6 (Multi-period first fundamental theorem of asset pricing (Pliska,
1997))
In a multi-period market model there are no arbitrage opportunities if and only
if there exists an equivalent probability measure Q ∼ P such that the discounted
price process {S̃k}T

t=0 is a martingale under Q, meaning that, for every k and
1 ≤ t ≤ T, 0 ≤ s ≤ T − t,

EQ(S̃k
t+s|Ft) = S̃k

t . (2.20)

The link between the one-period setting and the multi-period one is given by
the following theorem.

Theorem 2.7 (Equivalence one-period multi-period arbitrage (Pliska, 1997))
If the multi-period model does not allow any arbitrage opportunity, then none of the
underlying one-period models has any arbitrage opportunities in the single period
sense.

Also, the law of one price, the definition of completeness and the second funda-
mental theorem of asset pricing continue to hold in multi-period setting.

2.2.1 Binomial model

The simplest example of market model showing all peculiarities of the no-arbitrage
theory just discussed is the binomial market model proposed by Cox et al. (1979).

The binomial model is a discrete time model in which the market is open at
times t = 0, 1, . . . , T , defined over a filtered probability space (Ω,F , {Ft}T

t=0, P ),
where Ω = {1, . . . , 2T }, composed by a riskless bond S0 and a risky asset S1.

The bond has price process

S0
0 = 1, S0

t = (1 + r)t, (2.21)

for t = 1, . . . , T , where r > 0 is the constant risk-free interest rate of the market.
The risky asset has price process

S1
0 = s0 > 0, S1

t =
{
uS1

t−1 with probability p
dS1

t−1 with probability (1 − p)
(2.22)

for t = 1, . . . , T , where u > d > 0 are, respectively, the “up” and the “down”
parameters, and p ∈ (0, 1) is the probability of an up movement.

The price process of the risky asset is characterized by a natural probability
measure P ∈ P(Ω,F) such that the probability of S1 follows a binomial probability
distribution

P (S1
t = ujdt−js0) =

(
t

j

)
pj(1 − p)t−j , (2.23)

for j = 0, . . . , t. The price process {S1
t }T

t=0 is Markovian and time-homogeneous:
this is due to independence of log-returns over the single periods.

Theorem 2.8 (Pascucci and Runggaldier, 2011)
The binomial market model is free of arbitrage opportunities if and only if

u > (1 + r) > d. (2.24)
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It is equivalent to the existence of a unique equivalent martingale measure Q ∼ P ,
that is given by the risk-neutral parameter

q = (1 + r) − d

u− d
. (2.25)

Note 6: A Markovian random process with respect to a probability measure P
may not continue to be Markovian with respect to an equivalent probability measure
Q ∼ P . However, in this setting, Pliska (1997) proves that if the market model is
free of arbitrage opportunities, the discounted price process {S̃t}T

t=0 is Markovian
with respect to P and the filtration F is the one generated by {S̃t}T

t=0, then there
exists a martingale measure Q under which {S̃t}T

t=0 is a Markov chain.
It follows that the discounted price process is a martingale with respect to Q,

that is, for every t = 1, . . . , T , it holds that

EQ

(
S̃1

t |Ft−1
)

= S̃1
t−1. (2.26)

Moreover, the equivalent martingale measure Q determines a binomial probability
distribution for the risky asset

Q
(
S1

t = ujdt−js0
)

=
(
t

j

)
qj(1 − q)t−j , (2.27)

for j = 0, . . . , t.
Hence, condition (2.24) assures that the binomial market model is arbitrage-free

and complete. Given a European-type derivative X, whose value depends on the
underlying asset S1, its payoff is XT = φ(S1

T ), where φ(·) : R → R is a suitable
contract function, and its value (price) at time t, for t = 0, . . . , T−1, can be computed
in the following way

Xt = (1 + r)−(T −t)EQ(XT |Ft)

= (1 + r)−(T −t)∑T −t
j=0

(T −t
j

)
qj(1 − q)(T −t−j)φ(ujd(T −t−j)s0).

(2.28)

Note 7: An interesting feature of the binomial model proposed by Cox et al. (1979),
which is in line with the one-period case, is that the natural probability P does not
appear in the pricing functional, which is defined in terms of risk-neutral probability
Q. This implies that several investors with various subjective probabilities will result
in the same price.

Additionally, a replicating portfolio or an hedging portfolio produces the same
result as using the corresponding equivalent martingale measure approach. Since
the binomial market model is complete, there exists a portfolio such that its value
equals the value of the derivative at each time and at each node

Vt(j) = Xt(j), (2.29)

where j = 0, . . . , t is the number of "up" movements. The replicating portfolio at
time t in node j is denoted by λ0

t (j) and λ1
t (j).
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Proposition 2.1 (Bjork, 2009)
In a binomial market model, a derivative with maturity T and payoff XT = φ(S1

T )
can be perfectly replicated by a self-financing portfolio {λt}T −1

t=0 . If Vt(j) denotes
the value of the replicating portfolio at time t in node with j "up" movements, with
j = 0, . . . , t, then it can be recursively computed setting that{

Vt(j) = (1 + r)−1 [qVt+1(j + 1) + (1 − q)Vt+1(j)]
VT (j) = XT (j) = φ(ujdT −js0).

(2.30)

The replicating portfolio is given by Vt(j) = λ0
t (j)S0

t + λ1
t (j)S1

t (j), where
λ0

t (j) = 1
1+r

uVt(j)−dVt(j+1)
u−d ,

λ1
t (j) = 1

St−1
Vt(j+1)−Vt(j)

u−d .
(2.31)

2.2.2 Trinomial model

The trinomial market model is the extension of the binomial one where the risky
asset’s price can evolve in three possible ways.

As the binomial, the trinomial market model is open at times {0, 1, . . . , T}, with
T ∈ N, and is composed by a riskless bond S0 with price process as in (2.21), and
by one risky asset S1 with the following price process

S1
0 = s0 > 0, S1

t =


uS1

t−1 with probability p1

mS1
t−1 with probability p2

dS1
t−1 with probability p3

(2.32)

for t = 1, . . . , T , where u > m > d > 0 are parameters, pi ∈ (0, 1) for i = 1, 2, 3, and∑3
i=1 pi = 1. The trinomial market model composed by only one risky asset is called

standard trinomial market model.
As in the binomial framework, in order to have an equivalent martingale measure,

we impose the martingality property

EQ

(
S1

t

S1
t−1

|F0

)
= (1 + r), (2.33)

that leads to the following linear problem
q1 + q2 + q3 = 1,
qi ∈ (0, 1), for i = 1, 2, 3
q1u+ q2m+ q3d = (1 + r),

, (2.34)

where q1 = Q(S1
t = uS1

t−1), q2 = Q(S1
t = mS1

t−1), and q3 = Q(S1
t = dS1

t−1).
Problem (2.34) does not have, generally, a unique solution, then there exists a

class of equivalent martingale measures denoted as

Q =
{
Q ∈ P(Ω,F), Q ∼ P : (1 + r)−1EQ(S1

1) = S1
0

}
. (2.35)
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Hence, the standard trinomial model is incomplete.
We denote by cl(Q) and ext(cl(Q)), respectively, the closure of Q and the set of

extreme points of the closure of the class Q.
The class Q is a convex set that can be characterized by the extreme points of

its closure (Q is an open convex set, since it has to be composed by a set of strictly
positive measures) (Runggaldier, 2006), that are

Q1 = (q(1)
1 , q

(1)
2 , q

(1)
3 ) =


(
0, (1+r)−d

m−d , m−(1+r)
m−d

)
if m ≥ (1 + r),(

(1+r)−m
u−m , u−(1+r)

u−m , 0
)

if m < (1 + r),

Q2 = (q(2)
1 , q

(2)
2 , q

(2)
3 ) =

(
(1+r)−d

u−d , 0, u−(1+r)
u−d

)
.

(2.36)

We stress that extreme points Q1 and Q2 are not equivalent to P since they
are not strictly positive on F ; hence, the class of equivalent martingale measures is
given by the strict convex combination of extreme points

Q = {Qα : Qα = αQ1 + (1 − α)Q2, α ∈ (0, 1)}. (2.37)

Then Qα ∼ P , for each Qα ∈ Q. Since each Q ∈ Q is an equivalent martingale
measure, it is consistent with the no-arbitrage assumption, but this can give rise
to several prices for a derivative X with underlying asset S1. An example of this
problem is introduced in Example 2.1. in Cinfrignini (2022).

At this point we should define a suitable criterion to choose a specific Q ∈ Q.
Nevertheless, in this way we lose some information that are given by the whole
class Q. This problem is faced in the work of Cinfrignini et al. (2023) that will be
presented in Chapter 4.

Anyhow, the incompleteness of the standard trinomial model can be straight-
forwardly overcome by considering the completed trinomial market model, that is
composed by two risky assets, S1 and S2, each of them has price process as in (2.32)
with parameters u1 ̸= u2, m1 ̸= m2 and d1 ≠ d2. The martingale property (2.33)
requires to solve the following linear problem

q1 + q2 + q3 = 1,
qi ∈ (0, 1),
u1q1 +m1q2 + d1q3 = 1 + r,

u2q1 +m2q2 + d2q3 = 1 + r.

(2.38)

It has a unique solution for q1, q2, q3 and there exists a self-financing replication
portfolio for every European derivative (for details, see Pascucci and Runggaldier,
2011).

We stress that each n-nomial model, with n ≥ 3 and (K + 1) assets such that
(K + 1) < n, is incomplete. Nevertheless, each incomplete market model can be
completed by adding n − (K + 1) risky assets, so that the class Q reduces to a
singleton Q with a unique solution for q1, . . . , qn.
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Chapter 3

State of art

In this Chapter we review the main literature concerning frictional markets and
imprecise stochastic processes.

In Section 3.1 we start with the literature on markets which do not satisfy the
fundamental assumptions showed in Chapter 2: they are incomplete and/or they
show the presence of frictions such as bid-ask spreads, taxation, transaction costs
or other constraints on trading. We recall that an incomplete market model is
characterized by a set of equivalent martingale measures and each derivative may
not be perfectly replicated by a self-financing strategy.

Market incompleteness can be caused by a wide range of factors. It occurs when
the number of (independent) risky assets is less than the market’s sources of risk. One
of the simplest example is the standard trinomial model. In this case, a technique
to overcome the incompleteness is the completion of the market or the choice of a
specific self-financing portfolio between the imperfect portfolios (that do not satisfy
perfect replication or/and self-financing condition) such as the super/sub-replicating
portfolio, or the choice of a specific equivalent martingale measure Q ∈ Q (we will
see that the last two approaches are equivalent).

Another violation of the fundamental assumptions occurs when there are fric-
tions or in presence of ambiguity, i.e., when we are not able to assign a specific
model/probability measure that perfectly encodes the uncertainty of the market.
They lead to the lack of linearity of the pricing rule. Then, literature focused on
non-linear pricing rules, in particular defined in terms of the Choquet integral,
thanks to the properties listed in Section 1.2.2.

Next, in Section 3.2, we review the main literature concerning imprecise random
processes. Transition probabilities and/or the initial probability of a random process
may be not precisely known or may come from different sources of uncertainty. In
this setting, an approach could be to take the best estimates or choose one of the
sources.

Another way to overcome the problem is to consider an imprecise random
process, where the uncertainty measure, usually assumed to be a probability measure,
is a non-additive measure. Usually, in this setting, one of the two properties
between time-homogeneity and Markovianity can be lost. Moreover, the same
generalization can be achieved from the expectation point of view, considering
non-linear expectations such as the (coherent) lower expectation in Definition 1.7.
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3.1 Incomplete and frictional markets

3.1.1 Replicating strategies for incomplete markets

A derivative traded on an incomplete market model, generally, cannot be replicated
by a self-financing strategy. In the one-period setting, if rank(A) ̸= n ̸= K + 1,
Theorem 2.5 does not hold and the following possibilities and solutions can occur
(Cerný, 2009):

• rank(A) = n < (K + 1). The market is complete since the number of assets is
equal to the number of events but there are K + 1 − n redundant assets that
lead to K + 1 − n free parameters in the solution of the problem AλT = X.
In particular, a solution can be found by partitioning the matrix A into the
matrix of n independent assets A′ ∈ Rn×n and the matrix of (K + 1 − n)
redundant assets A′′ ∈ Rn×(K+1−n). In turn, the vector of portfolio weights
λ is partitioned into λ′ ∈ Rn and λ′′ ∈ RK+1−n such that the linear problem
can be equivalently written as

AλT = A′(λ′)T +A′′(λ′′)T = X. (3.1)

Since redundant assets are linearly dependent, there exists a matrix C such
that A′′ = A′C; then (3.1) reduces to

A′(λ′)T +A′C(λ′′)T = X. (3.2)

By arbitrarily choosing the portfolio of redundant weights λ′′, the portfolio of
independent weights is computed by

λ′ = A−1
1 X − Cλ′′. (3.3)

• rank(A) = (K + 1) < n. There are no redundant assets but the market is
incomplete since n− (K + 1) assets are lacking. The first method to complete
the market is to decrease the number of states of the world, declaring that some
states are "improbable", i.e., they have a zero probability (see, e.g., Melnikov,
1999). The second method, that is the most used, is to increase the number
of assets. In particular, it is convenient to introduce n − (K + 1) linearly
independent assets on the same probability space such that the completed
system has a unique solution (e.g., Melnikov (1999) gives a criterion for a
minimal completion of the market).
Note 8: Each completion of the matrix A, reached by adding the missing
number of assets such that rank(A) = n, uniquely defines a single equivalent
martingale measure in the class Q (Vasilev and Melnikov, 2021). In turn,
working with all possible completions of the market is equivalent to work with
the class Q.

• rank(A) < n, rank(A) < (K + 1). The market is incomplete and there are
(K + 1) − rank(A) redundant assets. The market has to be completed and
then, if rank(A) < (K + 1) occurs situation as in the first point.
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Another technique that, unlike completion, does not alter the market structure
is the selection of the "best" self-financing replicating strategy among the imperfect
ones using approximations and algorithms. For instance, in the one-period setting,
some criteria to do that are (Pascucci and Runggaldier, 2011):

sub(super)-hedging strategy. It looks for a strategy such that, in each i ∈ Ω, the
payoff of the replicating portfolio is at least less (greater) than the payoff of
the derivative: V λ

1 ≤ (≥)X1. The sub-hedging price V λ
0 and the super-hedging

price V λ
0 are the no-arbitrage bounds for the non-replicable payoff X1.

quadratic risk minimization. It looks for a strategy that minimizes the expected
value of the quadratic distance between the payoff of the derivative and the
value of the portfolio. The following optimization problem has to be solved
(for the application see, e.g., Bertsimas et al., 2001):

min
λ

E
[
(X1 − V1)2

]
.

shortfall risk minimization. It looks for a strategy that minimizes the shortfall
risk. It penalizes only deviations in defect but it is less mathematically tractable.
The following problem has to be solved:

min
λ

E
[
(X1 − V1)+

]
.

Equivalently, we can select an equivalent martingale measure in the class Q with
a suitable criterion. For instance, Miyahara (1995) selects the probability measure
that minimizes the relative entropy with respect to the natural probability.
Note 9: Working with the envelopes of the set of equivalent martingale measures is
equivalent to work with the supremum and infimum portfolios computed, respectively,
in the set of all possible sub-replicating and super-replicating portfolios (see, e.g.,
Melnikov, 1999). In turn, choosing a specific Q ∈ Q is equivalent to choose a specific
portfolio in the set of super(sub)-replicating portfolios.

3.1.2 Frictional market models

Frictional markets have been examined in various ways in the literature depending
on the goal of the study. The key literature on frictional markets in discrete time
is examined in this section with a particular emphasis on frictions in the form of
transaction costs and bid-ask spreads. We also examine the many methods suggested
in literature for pricing financial contracts accounting for frictions.

First, we focus on the studies of Amihud and Mendelson (1986, 1991) which show
the existence of frictions in the market (namely bid-ask spreads) and prove how
they affect return and price of securities. Then, we take into account transaction
costs and pricing strategies based on the replication of the derivative’s terminal
value, which can be perfectly replicated or super-replicated. Finally, we consider the
bid-ask spread on prices and we review the literature regarding the existence and
the properties of pricing rules allowing bid-ask spreads, focusing on pricing rule by
means of the Choquet integral.
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Empirical studies

Early research concentrated on determinants of bid-ask spread on prices. The
term-to-maturity and yield-to-maturity have a positive relationship with bid-ask
spread because a higher term-to-maturity or a higher yield-to-maturity means a
higher risk of price change, according to Tanner and Kochin (1971) who examined
Canada government bonds. Instead, a greater issue implies more buyer and sellers,
which leads to a more liquid market, and a higher coupon rate indicates a reduced
chance of price fluctuation. As a result, they have a negative relationship with
bid-ask spread.

Amihud and Mendelson (1986) examined how bid-ask spreads affected returns
of securities. They investigate the impact of liquidity on asset pricing under the
assumption that the bid-ask spread is a measure of market liquidity. They believe
that a security’s expected return is an increasing and concave function of its bid-ask
spread. This can be interpreted as follows: an investor facing a higher trading cost
requires a higher return. However, there exists a clientele effect, which states that
investors with longer holding periods hold stocks with wider spreads in order to cover
transaction costs. As a result, returns of stocks with higher spread are less sensitive
to the spread increase. They test these hypotheses on monthly returns and on the
relative bid-ask spreads of NYSE stocks. They observe that their results support
these assumptions. In turn, the influence of a firm-size variable, despite a negative
association between company size and returns was seen (Banz, 1981; Reinganum,
1981a,b), is negligible once it was incorporated in their models.

Another research of Amihud and Mendelson (1991) looks at U.S. government
securities with maturities under 6 months and tests the effect of liquidity on yield.
They take Treasury Notes and Bills with same maturities1. These securities all share
the same structure in terms of their tax, yield, maturity and duration, but their
liquidity features vary. Security’s liquidity is affected by the bid-ask spread and by
any additional fees charged by brokers: smaller bid-ask spreads or fees are indicative
of higher liquidity. Firstly, they examine at the distinct liquidity characteristics that
quoted Bills and Notes exhibit, since they have, respectively, fees of 12.5$ − 25$
and 78$ per million and a bid-ask spread of 1/128 of point and 1/32 of point. They
make the assumption that Bills, since they have lower transaction costs, have a lower
yield-to-maturity and they test this hypothesis on data. They show that the Notes’
bid-ask spread is about 4 times greater that the Bills’ spread and that the Notes’
yield is greater than the Bills’ yield. It proves how liquidity has a negative impact on
yield-to-maturity and how yield-to-maturity is an inverse function of the liquidity.

Replicating strategies with transaction costs

One of the simplest methods that can be used to address the problem of pricing
under the presence of transaction costs in a market model is setting up a replicating
portfolio such that it replicates the value of a derivative in each node of the path and
it takes into account transaction costs. Some authors have chosen to duplicate only

1Bills are short-term discount bonds whereas Notes are longer-term coupon-bearing bonds;
however, Notes with maturity under 6 months become short-term single-payment securities like
Bills.
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the terminal value of the derivative, since a frictional model may be more challenging
to implement.

As in the frictionless model, the replicating strategy under transaction costs is
assumed to be self-financing and the no-arbitrage condition assures that the cost
of the perfect replicating portfolio is the same as the cost of the derivative at the
initial time. However, the replicating portfolio is not always the best option, since,
as we will see throughout, there may be cheaper strategies that offer the same (or
even bigger) payoff.

Garman and Ohlson (1980) develop a technique to assess the impact of (non-
proportional) transaction costs in the equilibrium price of assets by avoiding arbitrage
opportunities. They prove that there exists a linear operator such that the equilibrium
price of assets coincides with the frictionless price added by an extra factor that
they call fudge factor. Given a one-period market model defined over a finite filtered
space (Ω,F), where, as usual, Ω = {1, . . . , n} and FT = F1 = P(Ω) = F , the market
is composed by one asset with no transaction costs, with price process {S0

0 , S
0
1}

and by K risky assets with price processes {Sk
0 , S

k
1 }, for k = 1, . . . ,K, and with

non-proportional state-contingent transaction costs at time t = 0 and t = 1 (i.e., the
agent does not hold an initial position). There exist the following transaction costs:

• ck
b , c

k
s are the transaction costs, respectively, to buy (b) and sell (s) the k-th

asset at time t = 0;

• ck
b (i), ck

s(i) are the transactions costs to buy (b) and sell (s) the k-th asset at
time t = 1 in state i ∈ Ω.

The no-arbitrage condition in presence of these transaction costs is defined as
the non-existence of a portfolio (λ0

+, λ
0
−, . . . , λ

K
+ , λ

K
− ), where λk

+ ≥ 0 is the share
of the k-th asset bought and λk

− ≥ 0 is the share of the k-th asset sold, with
negative price and (at least) zero payoff. Formally, denoting by (λk

+ − λk
−) = λk,

a portfolio (λ0
+, λ

0
−, . . . , λ

K
+ , λ

K
− ) does not allow an arbitrage opportunity if the

following condition holds

K∑
k=0

λkSk
0 +

K∑
k=0

(λk
+c

k
b + λk

−c
k
s) ≥ 0 ⇒

K∑
k=0

λkSk
1 (i) −

K∑
k=0

(λk
+c

k
s(i) + λk

−c
k
b (i)) ≥ 0. (NA-GO)

In the frictionless framework, the (NA-GO) condition is equivalent to the exis-
tence of a linear functional or a vector of state prices (i.e., we reduce to the classical
results in Theorem 2.1). In turn, Garman and Ohlson (1980) want to reach the
following representation of prices, analogous to the frictionless one

Sk
0 =

n∑
i=1

D(i)Sk
1 (i) + ϵk, (3.4)

where D = (D(1), . . . , D(n)) ∈ Rn is the vector of state price in the frictionless
setting and ϵk is a component which directly depends on transaction costs, that they
call fudge factor. They prove the following equivalence:

(GO.1) the market is (NA-GO);
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(GO.2) there exists a non-negative state price vector D ∈ Rn and K positive compo-
nents {wk, uk}, with k = 1, . . . ,K, such that (3.4) holds, where

ϵk = ck
s +

n∑
i=1

D(i)ck
b (i) − uk = −(ck

b +
n∑

i=1
D(i)ck

s(i) − wk). (3.5)

Despite the straightforward structure, Garman and Ohlson (1980) claim that
transaction costs only affect assets’ prices, while leaving the overall economy un-
changed. It follows that the state price vector D can be computed in the classical
frictionless model and (3.4) reduces to

Sk
0 = S̃k

0 + ϵk, (3.6)

where S̃k
0 is the price in the frictionless model.

From another point of view, Merton (1990) faces the problem of proportional
transaction costs in a two-period binomial model in order to price a European call
option through replicating strategy. The market is composed by one riskless asset
(bond) S0 without transaction costs and by one risky asset S1 with proportional
transaction costs. The bond’s price process is

S0
0 = 1, S0

1 = 1 + r, S0
2 = (1 + r)2, (3.7)

where r > −1 is the one-period risk-free interest rate. The risky asset’s price evolves
as in the binomial model

S1
0 = s0, S1

t =
{
uS1

t−1
dS1

t−1
(3.8)

for t = 1, 2, with coefficients u > d > 0. The risky asset can be bought at its ask
price aS

1
t = (1 + τ)S1

t and sold at its bid price bS
1
t = (1 − τ)S1

t , where τ ≥ 0 is a
fixed rate. As the frictionless binomial model, the Merton’s model is free of arbitrage
opportunities if and only if the following constraints are all satisfied:

us0 < (1 + r)s0 <
ds0(1 − τ)

1 + τ
; (3.9)

u2s0 < (1 + r)us0 <
uds0(1 − τ)

1 + τ
; (3.10)

uds0 < (1 + r)ds0 <
d2s0(1 − τ)

1 + τ
. (3.11)

Assuming that the agent does not have an initial position and all stocks held at
maturity will be sold (this leads to assume the highest estimate of costs), Merton
(1990) sets up a portfolio that perfectly replicates the payoff of a European call
option CT at each node of the path. The portfolio is denoted by (τ λt) = (τλ

0
t ,τ λ

1
t )

where τλ
0
t is the amount of S0 held at time t after paid transactions costs for S1, and

τλ
1
t is the amount of S1 held at time t after rebalancing. The price of the portfolio

that undertakes a long position in a European call option with underlying asset S1
2 is

τV0 = V0 + (τλ
1
0 − λ1

0)(s0 − (1 + r)−1us0) + ττλ
1
0(s0 + (1 + r)−1us0), (3.12)



3.1 Incomplete and frictional markets 45

where V0 is the cost of the replicating portfolio in the frictionless setting and λ1
0 is

the weight on asset S1 without transaction costs. For the computation of τλ
1
0 we

refer to Merton (1990) (equations (14.4a)-(14.4b)). τV0 is the call ask price, that is
greater than its production cost with no transaction costs. Setting up a replicating
strategy for the short position in the European call option, the author checks that it
is not the reverse of the replicating strategy on the long position and he obtains the
following relationship,

−τV0 < V0 < τV0, (3.13)
where −τV0 is the cost of the perfect replicating strategy for the short position in
the same European call option. Finally, he stresses that in empirical examples the
replicating portfolio’s spread is larger than the τ spread in the underlying asset.

Boyle and Vorst (1992) extend the two-period model of Merton (1990) to several
periods, setting up the replication portfolio at each node for a long and a short
position in a European call option with physical delivery settlement. They show
that if transaction costs tend to be zero, the model converges to the frictionless
binomial model while, if the number of periods tend to be large, the closed formula
they derive can be approximated by the formula of Black and Scholes (1973) with
a modified variance. They set a self-financing replicating portfolio λt = (λ0

t , λ
1
t ) in

each node of the process, assuming that the initial position λ0 was already hold by
the agent (i.e., there are no transaction costs at initial time). In a two-period model,
they point out that the self-financing portfolio is unique for the long call option if
and only if

λ1
2 ≤ λ1

0 ≤ λ1
1;

in turn, in the n-period model, the perfect replication of the short call option has a
unique solution if and only if the following constraints are satisfied:

u(1 − τ) ≥ (1 + r)(1 + τ); (3.14)

d(1 + τ) ≤ (1 + r)(1 − τ); (3.15)

S1
t /∈

[
K̃(1 + τ)−1; K̃(1 − τ)−1

]
, (3.16)

where K̃ is the strike price of the call option2. Moreover, the long call price process,
with proportional transaction costs τ , in a n-period model can be represented as a
discounted expectation of an adjusted process. This adjusted process, denoted by
{X1, . . . , Xn}, is a Markov process with two states and values ln u and ln d and with
transition probability matrix given by

Q =
[

qu qd

1 − qu 1 − qd

]
, (3.17)

where

qu = (1 + r)(1 + τ) − d(1 − τ)
u(1 + τ) − d(1 − τ) , qd = (1 + r)(1 − τ) − d(1 − τ)

u(1 + τ) − d(1 − τ) .

2Palmer (2001) proves that, for a generic derivative that is not assumed to be physical delivery
settled, the unique solution is reached just assuming that if τ λ1

1 <τ λ1
2 then τ(u+d)

u−d
< 1, otherwise

τ < 1.
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The first column of Q represent the probability of Xt+1 given that Xt = ln u, the
second column represents the probability of Xt+1 given that Xt = ln d. Hence, they
characterize the following pricing formula

C0 = (1 + r)−nEQ

[((
1 +Xnτ

)
s0e

Y − K̃
)

1{s0eY ≥K̃}
]

(3.18)

where Y =
∑n

i=1Xi and Xn =
{

1 if Xn = ln u
−1 if Xn = ln d

.

If τ = 0 the expected value reduces to the standard no-transaction costs pricing
rule.

The authors conclude showing that, for large n and small transaction costs,
the value of the replicating portfolio is approximately equal to the value computed
with the Black-Scholes formula with a modified variance. For details, we refer to
Theorem 3 of Boyle and Vorst (1992).

Bensaid et al. (1992) start from the model of Boyle and Vorst (1992) and they
relax the assumption of rebalancing at each node of the process. They look for an
optimal strategy among those dominating the payoff of the derivative at maturity
and prove that, in some circumstances such as large transaction costs, the cost of
a super-replicating strategy may be lower than the cost of the perfect replicating
strategy as proposed by Boyle and Vorst (1992). This can be due to the fact
that, when transaction costs are high, perfect replication is more expensive since
it often requires to rebalance the portfolio. Given a binomial model with T + 1
dates (t = 0, . . . , T ) defined on filtered state space (Ω = {u, d}T ,F , {Ft}T

t=0)3, it
is composed by a riskless asset S0 and a risky asset S1 whose price processes are
Ft-adapted. The riskless asset is constantly equal to 1, while the risky asset’s price
process follows a multiplicative binomial process with parameters u > 1 and d < 1,
as in (3.8). There exist proportional transaction costs τ but they are not at the
starting time neither at the expiration time: it means that the investor already has
an initial position and at maturity the portfolio is not liquidated. For notation
advantages, they define the transaction costs function

ψ(x) =
{
x(1 + τ) if x ≥ 0,
x(1 + τ)−1 if x < 0.

(3.19)

As usual, a portfolio is a couple of adapted processes
(
{λ0

t }T −1
t=0 , {λ1

t }T −1
t=0

)
where

λ0
t (i) denotes the amount of money (bond) holds in [t, t+ 1] and λ1

t (i) denotes the
share of stock S1

t holds in [t, t+ 1], for i ∈ Ω and t = 0, . . . , T − 1. Given a derivative
X ∈ RΩ, they consider a weaker version of the self-financing condition at maturity,
requiring that the portfolio holder can have an amount of cash greater than what is
needed to replicate the derivative at maturity, then she/he has a greater payoff than
the derivative’s payoff, i.e., for all i ∈ Ω, the following condition holds

λ0
T −1(i) − λ0

T (i) ≥ S1
T (i)ψ

(
λ1

T (i) − λ1
T −1(i)

)
. (SFw)

3We stress that in this framework, each i ∈ Ω is a particular path, i.e. a specific sequence of "up"
and "down" movements.



3.1 Incomplete and frictional markets 47

They set up the following optimization problem P1:

min
λ0,λ1

λ0
0 + λ1

0S
1
0 ,

subject to:
λ0

T −1(i) − λ0
T (i) ≥ S1

T (i)ψ(λ1
T (i) − λ1

T −1(i));
λ0

t−1(i) − λ0
t (i) = S1

t (i)ψ(λ1
t (i) − λ1

t−1(i)), ∀t ≤ T − 1 and ∀i ∈ Ω;
λ0

T −1(i) + λ1
T −1(i)S1

T (i) = XT (i).
(3.20)

The solution of problem P1 (denoted by P1(X)) is the smallest cost of a portfolio with
payoff at least equal to the payoff of the derivative. They prove that P1(X) always
exists, it is bounded above by the perfect replication cost and it is subadditive, this
means that P1(X) ≥ −P1(−X). Then, absence of arbitrage opportunities implies
that

−P1(−X) ≤ X ≤ X ≤ P1(X), (3.21)

where X and X are, respectively, the ask price and the bid price of the derivative.
They propose a recursive algorithm to compute the solution of P1 and they note
that an agent does not trade at each date t if the portfolio’s weights lies in a specific
interval. It means that agents adjust their portfolio only in some circumstances,
otherwise they continue to hold the position despite it does not perfectly replicate
the derivative’s value but, in this way, they save on transaction costs. They conclude
by applying their algorithm to some kind of options and they obtain the following
results: the perfect replicating strategy of Boyle and Vorst (1992) is the optimal
solution for long European call option with physical delivery of the underlying
asset and for both long and short calls when restrictions of Boyle and Vorst (1992)
(3.14)–(3.16) are satisfied. Otherwise, for exotic call options and for both long and
short call options with cash settlement, the perfect replicating strategy of Boyle and
Vorst (1992) is suboptimal since the super-replicating strategy is cheaper.

Pliska (1997) stresses that the algorithm of Bensaid et al. (1992) can be difficult
to apply and it is dependent on the assumption that options are automatically
(not) exercised whenever S1

T (<) ≥ K̃, while there exist situations in which the
option’s holder would exercise or not the option depending on her/his preferences
and portfolio composition. Then, Pliska (1997) reformulates the terminal condition
in (3.20) and, relaxing the assumptions (3.14)–(3.16), presents an alternative method
to get a closed-form solution in many cases.

Also, Edirsinghe et al. (1993) extend the model of Bensaid et al. (1992) considering
other constraints such as size constraints and position limits. The market they propose
shows the presence of different kinds of frictions: fixed transaction costs τ , variable
transaction costs φ and quantity constraints, that is, the trading is restricted to be
in multiples of a certain quantity δλ, such that

λ1
t (i) − λ1

t−1(j) = Mδλ, (3.22)

where M ∈ N.
They prove that, when transaction costs are low, the solution of their optimization

problem is similar to that obtained by Boyle and Vorst (1992); on the contrary, when
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transaction costs arise, the replication cost proposed by Boyle and Vorst (1992) is
larger than the minimum they obtain. This is due to the fact that Edirsinghe et
al. (1993) require a super-replication condition also in the terminal constraint and
it leaves the model free to reach a cheapest strategy. They conclude proposing a
two-stage dynamic program that can solve the optimization problem and, differently
from Boyle and Vorst (1992), it can be applied to non-convex payoffs.

Pricing rules with bid-ask spreads

The bid-ask spread is a kind of friction in a financial market that, differently from
transaction costs we have just analysed, can be seen as an implicit transaction cost
already incorporated by market prices. The bid price is the price such that a dealer
offers to buy a financial contract while the ask price is the price she/he offers to sell
it. It follows that, in order to have a positive profit for the dealer, the ask price is
greater that the bid price.

In this section, as usual, we denote a pricing rule as π(·), the bid price as X and
the ask price as X, for X ∈ RΩ.

First of all, we point out that bid-ask price processes are usually assumed to be
independent each others, then this study is different from the study of proportional
transaction costs that, as we have seen (in particular in Boyle and Vorst, 1992), can
be seen as a scaled price process.

Jouini and Kallal (1995a) study a one-period and a multi-period market model
with bid-ask price processes for a derivative with cash delivery settlement. Given a
filtered probability space (Ω,F , P ) (they do not require Ω to be finite), they start
from a one-period model where X = L2(Ω,F , P ) denotes the set of all (square
integrable) random variables and X+ the set of random variables X ∈ X such that
P (X ≥ 0) = 1 and P (X > 0) > 0 (i.e., there exists at least one i ∈ Ω such that
X(i) > 0, in our formulation). They denote the set of positive linear functionals on
X as Ψ, that is equivalent to consider a set of positive probability measures. The
set of marketed claims is a convex cone4 M ⊆ X and each marketable contract
X ∈ M ⊆ X has a (upper) price at time t = 0 equal to π(X), where π : M → R is
a sublinear pricing rule5.

They define a free lunch as "a way to get a net payoff tomorrow arbitrarily close
to a given positive claim at no cost today, or to get a net payoff tomorrow arbitrarily
close to a non-negative claim for a negative cost today." (Jouini and Kallal, 1995a,
p.182).

Definition 3.1 (Free lunch) Given a sequence of real numbers rn ∈ Rn, and
two sequences of contingent claims {Xn}, {mn} ∈ M, a free lunch is given by the
following conditions:

(i) limn→+∞ rn = r∗ ≥ 0;
4M is a convex cone of X if, for X, Y ∈ M and for all λ ≥ 0 we have that X + Y ∈ M and

λX ∈ M. We stress that this setting is a generalization in an infinite space of what we will set up
in Section 4.3. In particular, as will be focused later, if we take a finite set Ω = {1, . . . , n}, X = RΩ

and a sublinear pricing rule π, approaches are comparable.
5Recall that sublinearity means that π satisfies both subadditivity and positively homogeneity

and it is required to incorporate bid-ask spread since it leads to the following inequality: π(X) ≥
−π(−X).
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(ii) limn→+∞Xn(i) = X∗(i) ≥ 0, for all i ∈ Ω;

(iii) r∗ +X∗(i) ≥ 0 for all i ∈ Ω with at least a strict inequality;

(iv) mn(i) ≥ Xn(i), for all i ∈ Ω;

(v) rn + π(mn) ≤ 0.

Theorem 3.1 (Jouini and Kallal, 1995a)
Given a one-period model with a price system (M, π), where M is a convex cone of
X and π is a sublinear pricing rule on M, the following conditions are equivalent:

(a) the price system (M, π) avoids free lunch;

(b) there exists a positive linear functional ψ ∈ Ψ, with ψ : M → R, that lies
under the sublinear pricing rule

ψ(X) ≤ π(X), ∀X ∈ M. (3.23)

ψ(·) is called underlying frictionless price of (X , π) and, generally, it is not unique
but each of them has to coincide on M. The model reduces to the frictionless one
with ψ and π that coincide, if π is linear.

Remark 2. Results of Jouini and Kallal (1995a) continue to hold in a finite state
space Ω = {1, . . . , n}, with X = RΩ and M = RΩ.

Then, they extend the model to a multi-period setting with t = 0, . . . , T with
the restriction that the trading dates are a subset of {0, . . . , T} and that they are
defined in advance. The market is composed by K assets with ask price Sk

t and bid
price Sk

t , for k = 1, . . . ,K, and by one (k = 0) frictionless asset constantly equal to
1, (i.e., amounts are already discounted), S0

t = S
0
t = 1. This assumption does not

reduce the generality of the model.
After requiring some technical assumptions6, they prove that the absence of free

lunch in the multi-period setting, in which consumption can occur only at initial and
final date, is equivalent to the absence of free lunch in the induced one-period model
(M, π), where M is the set of contracts that can be obtained by a self-financing
strategy. The main theorem of Jouini and Kallal (1995a) is summarized as follows:

(JK.1) the frictional multi-period pricing model avoids multi-period free lunch7 if and
only if there exists at least an equivalent probability measure Q ∼ P and a
process {St}T

t=0 that lies between the bid and ask processes (i.e., St ≤ St ≤ St

for all t) such that {St}T
t=0 is a martingale with respect to Q;

6 They suppose that prices processes are (i) right-continuous and adapted to Ft, (ii) E((Sk
t )2) < ∞

and E((Sk
t )2) < ∞ for all k = 0, . . . , K, and (iii) S

k
t > Sk

t > 0 for all t and for almost all i ∈ Ω.
7A multi-period free-lunch is defined as a sequence of contingent claims Xn ∈ M converging to

some X∗ ∈ X+ such that there exists a self-financing strategy (λ+
t , λ−

t ) such that (λ+
t − λ−

t )+ST −
(λ+

t − λ−
t )−ST ≥ Xt for all t and limt λ+

0 S0 − λ−
0 S0 ≤ 0.
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(JK.2) there is a one-to-one correspondence between the set of linear functionals
ψ ∈ Ψ such that ψ|M ≤ π, and the set of expectation operators associated
with Q:

Q(B) = ψ(1B), for all B ∈ F , and ψ(X) = EQ(X), for all X ∈ X ;
(3.24)

(JK.3) for all marketable contracts X ∈ M, we have that

[−π(−X), π(X)] = cl{EQ(X), Q ∼ P}. (3.25)

Point (JK.3) proves that the bid price of X is the smallest expected value with
respect to martingale measures equivalent to P and, in turn, the ask price is the
greatest expected value among the same set of equivalent martingale measures. Point
(JK.1) shows that the no-arbitrage bid-ask price process can be seen as a perturbation
of the frictionless no-arbitrage price process and that for each marketable contract8,
bid and ask prices are, respectively, the lower and the upper envelope of the set of
expected values computed among each martingale measure equivalent to P .

In another research (see Jouini and Kallal, 1995b), they develop the same model
as Jouini and Kallal (1995a) with a sublinear pricing rule and the set of contracts as
a convex cone, adding more restrictions on the market: short-selling constraints and
lending interest rate is different from the borrowing one. In a multi-period setting
t = 0, . . . , T , on a filtered probability space (Ω,F , {Ft}T

t=0, P ), they consider two
kinds of securities: the first one cannot be short-sold while the second one can be
only short-sold. They prove that this model is arbitrage-free if and only if there
exists a positive process that acts as a numéraire and an equivalent probability
measure such that the normalized (by the numéraire) price processes of securities
that cannot be short-sold is a super-martingale and the normalized price processes
of securities that can be just short-sold is a sub-martingale. Moreover, as in Jouini
and Kallal (1995a), the arbitrage bounds on the bid-ask prices of a derivative are,
respectively, the smallest and the largest expectation of the derivative’s payoff with
respect to all the numéraire processes and super-martingale probability measures.
The interpretation they give is the following: when short-selling is prohibited, an
asset can give the possibility of a loss without the possibility to cover this risk with
a short-selling, then price processes only need to be non-increasing on average, i.e.,
super-martingales, to prevent arbitrage opportunities.

Roux (2011) studies a model under the same constraints of Jouini and Kallal
(1995b) on a finite probability space (Ω,F , P ) with F = P(Ω) and P is strictly
positive, with discrete time and finite time horizon t = 0, . . . , T . The model is
composed by K risky assets with proportional transaction costs, and the lending
interest rate is different from the borrowing lending rate rB

t ≥ rL
t > −1 for all t. He

proves the following equivalence:

(R.1) there are no-arbitrage opportunities;

8A marketable contract is such that there exists a self-financing strategy composed by K + 1
assets that replicates the payoff of the contract X.
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(R.2) there exists a probability measure P̃ (not necessarily equivalent to P ), an
adapted price process {S∗

t }T
t=0 and an interest rate r∗ such that, for all t,

S1
t ≤ S∗

t ≤ S
1
t , rL ≤ r∗ ≤ rB, (3.26)

and the discounted price process {S∗
t /(1 + r∗)}T

t=0 is a martingale with respect
to P̃ .

Jouini (2000) extends the framework of Jouini and Kallal (1995a) to generic
contracts X ∈ RΩ (here we take Ω to be finite), that can be not only cash settled,
and he focuses on pricing rule properties. In particular, given the same filtered
probability space in multi-period setting, composed by K assets with bid and ask
prices and by one frictionless asset constantly equal to 1, such that the model satisfies
the same assumptions of Jouini and Kallal (1995a) in footnote 6, they call a pricing
rule π : RΩ → R admissible if the following axioms on the pricing rule hold:

(A1) it is sublinear;

(A2) it induces no-arbitrage, defined as the condition such that for each contract
with X ≥ 0, then π(X) > 09;

(A3) the price that π assigns to each contract has to be less or equal to the
super-replication price obtained with respect to the smallest admissible port-
folio, that is π(XT ) ≤ c(XT ), where c(·) is the smallest cost necessary to get a
self-financing portfolio with at least the same payoff of X at time maturity;

(A4) it is lower semi-continuous.

The main results of Jouini (2000) are summarized as follows:

(J.1) there exists an admissible pricing rule π if and only if there exists (at least)
an equivalent probability measure Q ∼ P and a process {St}T

t=0 such that
S1

t ≤ St ≤ S
1
t for all t, and such that {St}T

t=0 is a martingale with respect to
Q;

(J.2) the admissible pricing functional is such that for all X ∈ RΩ

π(X) ∈
[

inf
Q∈Q

EQ(XS1
T ), sup

Q∈Q
EQ(XS1

T )
]
. (3.27)

Another stream of research is devoted to consider sets of probabilities in pricing,
since this allows to model frictions in the form of bid-ask spreads. For a pricing
theory to be accepted, a normative justification must be provided. For this, a
generalization of the classical concept of arbitrage opportunity and the classical
fundamental theorems of asset pricing are needed. In this vein, Carr et al. (2001)
introduce a generalization of the classical arbitrage theory, in turn, generalizing the
concept of arbitrage opportunity, in order to face the problem of pricing and hedging
in incomplete markets. Given a market composed by a riskless bond with price

9The no-arbitrage condition of Jouini (2000) is weaker than the condition proposed by Jouini
and Kallal (1995a) since the previous is defined in a static setting.
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process {S0
0 = 1, S0

1 > 0}, and by K risky assets, with payoff Sk
1 (i), with i ∈ Ω, and

price Sk
0 , they define an opportunity as a situation with price equal to zero. Agents

specify a set of probability measures P, indexed by M = {1, 2, . . . ,m}, that are
divided into them (stress probabilities) such that, for every X ∈ RΩ, the expected
value is limited by a negative value

EP s(X) ≥ fs, (3.28)

where fs < 0 and s ∈ Ms ⊆ M, and into them (valuation probabilities) such that
the expected value is limited to zero

EP v (X) = fv = 0, (3.29)

where v ∈ Mv ⊆ M and v + s = m. In this setting, an acceptable opportunity is
as an investment opportunity such that its expected value is greater than the floor
of each possible probability (stress or valuation), i.e., it is weakly risky for a wide
range of investors:

EP m(X) ≥ fm, ∀m ∈ M. (3.30)

An opportunity is strictly acceptable if probabilities are all valuation measures,
i.e., Mv = M and EP m(X) > 0 for all m ∈ M. The set of all strictly acceptable
opportunities is denoted as A+. Given a vector of state prices q, that is a vector
such that Sk

0 = 1
S0

1

∑
i∈Ω q(i)Sk

1 (i), it is defined as a representative state price vector
(RSPF) if there exists a vector of positive "pricing weights" wv, for all v ∈ Mv, such
that the state price vector is a combination of valuation probabilities, that is, for all
i ∈ Ω,

q(i) =
∑

v∈Mv

wvP
v(i). (3.31)

A strictly acceptable opportunity (SAO) does not exists if there is no portfolio λ
such that

K∑
k=1

λkSk
0 = 0, and

K∑
k=1

λkSk
1 ∈ A+. (no-SAO)

They generalize the first fundamental theorem of asset pricing proving the equivalence
between the (no-SAO) and the existence of RSPF. However, it does not prove the
uniqueness of the RSPF. The generalization of completeness, called acceptable
completeness, is defined as the existence of a portfolio λ such that, for all m ∈ M,

∑
i∈Ω

Pm(i)
K∑

k=1
λkSk

1 (i) −
∑
i∈Ω

Pm(i)X(i) = fm. (3.32)

The condition is equivalently satisfied if K + 1 ≥ |M|. We stress that this com-
pleteness condition is weaker than the classical one, hence, it introduces more
opportunities. Under the assumption that n ≥ |M|, the generalization of the second
fundamental theorem of asset pricing assures that the market is acceptable complete
if and only if the RSPF is unique. It is equivalent to the condition that the number
of assets (K + 1) > v. Moreover, if v ≤ K + 1 ≤ n, the market continues to be
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acceptable complete and then there exists a unique vector of "pricing weights". They
also generalize the definition of ask and bid price requiring, respectively, that they
are the smallest value of the super-replicating portfolio that includes a possible loss
of f ′ ≥ 0 and the greatest value of the sub-replicating portfolio that includes the
same possible loss of f ′ ≥ 0. The pricing through the RSPF will lie between the bid
and the ask prices.

Choquet pricing rules

A considerable piece of literature focused on a specific pricing functional that is
expressed by the (discounted) Choquet integral. Thanks to its properties, the
Choquet integral has a link with the standard expected value since it results to be
the upper (lower) expectation among the expectations computed with respect to the
probabilities in the core of a (at least) concave/convex capacity. This property, in
a financial model that shows the presence of bid-ask spreads, supports the aim to
obtain a Choquet pricing rule for the bid and the ask price such that they can be
regarded as the upper and lower expectation of a set of probabilities.

One of the first contribution is given by Chateauneuf et al. (1996). They consider
a one-period market which shows the presence of bid-ask spreads on prices, endowed
with a pricing rule π : RΩ → R that assigns a (upper) price at time t = 0 to each
payoff X ∈ RΩ available at time t = 1. The pricing rule satisfies the following
properties:

(CKL.1) monotonicity: X ≥ Y ⇒ π(X) ≥ π(Y ), for all X,Y ∈ RΩ;

(CKL.2) linearity on the frictionless asset: given the existence of 1Ω = 1 for all i ∈ Ω,
then π(α1Ω) = α, for α ∈ R;

(CKL.3) subadditivity: π(X + Y ) ≤ π(X) + π(Y ), for all X,Y ∈ RΩ and with equality
that holds only if X and Y are comonotone.

Let us note that (CKL.2) and (CKL.3) do not imply sublinearity since it should
be required positive homogeneity on frictional assets and we also note that they
consider already discounted amounts, i.e., r = 0, since the frictionless asset is
constantly equal to 1.

The main result of Chateauneuf et al. (1996) is that if a pricing rule satisfies
axioms (CKL.1)-(CKL.3) then there exists a unique concave capacity ν such that
the pricing rule is given by the Choquet expectation of the payoff

π(X) = C
∫
X dν. (3.33)

By properties of the Choquet integral, the Choquet pricing rule is sublinear and it is
the upper expectation with respect to the probability measures in the core(ν) (see
(Ch.8), p.19). They suggest that the Choquet pricing rule can account for violations
of the Put-Call parity relation that empirical researches proved to exist (see, e.g.,
Gould and Galai, 1974; Klemkosky and Resnick, 1979; Sternberg, 1984). Given a
European put and call option with the same underlying asset X, strike price K̃ and
expiration date (we suppose to be in a one-period setting, that is t ∈ {0, 1}), whose
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payoffs are P1 = max(K̃ − X1, 0) and C1 = max(X1 − K̃, 0), the Put-Call parity
relation is usually derived by the equality at maturity

P1 = C1 −X1 + K̃. (3.34)

Under a linear pricing rule, we should have

π(PT ) = π(CT ) − π(XT ) + K̃10; (CPP)

however, the non-linearity of the pricing rule (such as the Choquet pricing rule)
explains the violations of the parity that are observed in real markets.

Bastianello et al. (2022) specify that if we require a pricing rule computed with
respect to a monotone capacity to satisfy (CPP), it is a Choquet-Šipoš11 pricing rule,
denoted as πCS(·), that does not allow bid-ask spreads since πCS(X) = −πCS(−X).
Chateauneuf and Cornet (2022b) remark the same result and they prove that if a
Choquet pricing rule satisfies (CPP) and core(ν) ̸= ∅, that occurs if ν is a concave
capacity, then π is linear and ν is additive (i.e., it reduces to a probability measure).

In turn, Chateauneuf and Cornet (2022b) consider the following weaker version
of (CPP):

π(P1) ≤ π(C1) + π(−X1) + K̃12. (CPP’)

They prove that, if a non-zero and monotone (they do not assume the subadditivity
property) Choquet pricing rule satisfies (CPP’), it allows the presence of bid-ask
spreads. Moreover, they prove that, given that π is a monotone Choquet pricing
rule, the following conditions are equivalent:

(CC.1) core(ν) ̸= ∅ or equivalently ν is a concave capacity (resp. core(ν) ̸= ∅ and it is
strictly positive);

(CC.2) there exists a (resp. strictly positive) probability measure P such that
(1 + r)−1P ≤ ν;

(CC.3) π satisfies the following no-arbitrage condition (NA) (resp. (NA+)): ∀Xk ∈ RΩ,
with k = 1, . . . ,K, and for all K,

K∑
k=1

Xk ≥ 0 ⇒
K∑

k=1
π(Xk) ≥ 0. (NA)

(
K∑

k=1
Xk > 0 ⇒

K∑
k=1

π(Xk) > 0.
)

(NA+)

10It is assumed that the risk-free interest rate of the market is r = 0, then the discounting factor
is (1 + r) = 1; otherwise it should be K̃(1 + r)−T .

11The Šipoš integral with respect to ν is
∫ S

X dν = C
∫

X+ dν − C
∫

X− dν, for all X ∈ RΩ. It does
not allow bid-ask spread while the Choquet integral satisfies translation invariance. The Choquet
and Šipoš integrals coincide if X is non-negative. Then, a pricing rule is a Choquet-Šipoš pricing
rule if the Choquet integral and the Šipoš integral coincide when computed with respect to the
same capacity.

12Chateauneuf and Cornet (2022b) suppose that there exists a riskless asset not constantly equal
to 1, then the parity they show has the term K̃π(1Ω).
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Condition (NA+) implies (NA) and if π is subadditive, the no-arbitrage conditions
reduce to

∀X ≥ 0 ⇒ π(X) ≥ 0, (NAs)

∀X > 0 ⇒ π(X) > 0. (NAs+)

Assuming subadditivity of π, the no-arbitrage conditions (NAs) and (NA+) are
satisfied, respectively, if and only if ν is non-negative and ν is strictly positive.

Results of Chateauneuf et al. (1996) and Chateauneuf and Cornet (2022b) can
be summarized in this way: a pricing rule satisfying (CKL.1)-(CKL.3) (in particular
subadditivity) is a Choquet pricing rule with respect to a concave capacity. It means
that the core of the concave capacity is non-empty, then the Choquet pricing rule
satisfies the no-arbitrage condition (NAs).

The relationship between put and call options prices is further studied in Cerreia-
Vioglio et al. (2015) who axiomatically define the pricing rule. In a finite probability
space (Ω,F , P ), they consider a one-period model with K risky assets, one riskless
bond denoted as 1Ω, and a pricing rule π : RΩ → R. They study the following
put-call parity relation:

π(C1) + π(−P1) = π(X1) − K̃π(1Ω)13. (PCP)

Supposing that the market is complete, the main result of Cerreia-Vioglio et al.
(2015) is given by the following equivalence:

(CV.1) a pricing rule π satisfies (PCP), it is monotone and positively homogeneous;

(CV.2) there exists a risk-neutral capacity ν and a riskless interest rate r > −1 such
that, for all X ∈ RΩ, the pricing rule is given by the discounted Choquet
integral

π(X) = (1 + r)−1 C
∫
X dν. (3.35)

If core(ν) ̸= ∅ (which occurs if ν is concave), the pricing rule allows positive bid-ask
spreads, since π(X) ≥ −π(−X). Chateauneuf and Cornet (2022b) stress that the
converse is not true unless π is subadditive (see, e.g., Example 1 in Chateauneuf and
Cornet, 2022b). Bastianello et al. (2022) go into detail of (PCP) and prove that the
assumption of positively homogeneity in (CV.1) is redundant.

Additionally, at first Cerreia-Vioglio et al. (2015) do not require the subadditivity
of the pricing rule as Chateauneuf et al. (1996) do, but they prove that assuming the
pricing rule to be subadditive, the capacity is concave and the Choquet pricing rule
agrees with the upper expectation with respect to its core. It follows that, thanks
to the properties of concave capacities, its core is non-empty and it allows bid-ask
spreads. In turn, condition (CC.1) of Chateauneuf and Cornet (2022b) is satisfied,
then the subadditive Choquet pricing rule π assures the no-arbitrage condition (NA).

Bastianello et al. (2022) make a comparison between Put-Call parities studied
by Chateauneuf et al. (1996) and Cerreia-Vioglio et al. (2015). First of all, we
highlight that parities (PCP) and (CPP) are the same if π reduces to a linear

13We stress that Cerreia-Vioglio et al. (2015) do not consider that the riskless bond is constantly
equal to 1; for this reason in (PCP) appears the term π(1Ω). However, it is a deterministic value
since 1Ω is riskless.
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pricing rule, otherwise, we generally have that π(−P ) ̸= −π(P ). Without assuming
particular properties on the pricing rule, Bastianello et al. (2022) prove the following
equivalence:

(B.1) π satisfy parity (CPP);

(B.2) π satisfy parity (PCP) and there are no bid-ask spreads.

As already pointed out, the parity (CPP) is stronger and its achievement does not
allow the presence of bid-ask spreads.

In this line of research, Chateauneuf and Cornet (2022a) consider a one-period
model where assets’ prices are characterized by the presence of bid-ask spread and
they axiomatically define the super-hedging (or super-replicating) price of an arbitrage-
free frictional market, denoted as c(·). It has to satisfy positively homogeneity,
subadditivity, monotonicity and existence of a frictionless bond. Given a market
composed by K frictional and risky assets with bid price Sk

0 and ask price Sk
0, for

k = 1, . . . ,K, and by a frictionless and riskless bond S0 that it constantly equal
to 1, i.e. S0 = S

0 = 1, the market is arbitrage free (AF) if, for every portfolio
(λ+,λ−) ∈ RK × RK , where λk

+ is the quantity of k-th asset bought and λk
− is the

quantity of k-th asset sold, both conditions are verified:

K∑
k=1

Sk
1 (λk

+ − λk
−) ≥ 0 ⇒

K∑
k=1

λk
+S

k
0 − λk

−S
k
0 ≥ 0; (PAF)

K∑
k=1

Sk
1 (λk

+ − λk
−) > 0 ⇒

K∑
k=1

λk
+S

k
0 − λk

−S
k
0 > 0. (FAF)

For all X ∈ RΩ, its super-hedging price is the cheapest portfolio with a payoff at
least equal to X

c(X) = inf
(λ+,λ−)∈RK×Rk

{
K∑

k=1
λk

+S
k
0 − λk

−S
k
0 :

K∑
k=1

Sk
1 (λk

+ − λk
−) ≥ X1

}
. (3.36)

The super-hedging price c(·) is a pricing rule since it satisfies the properties
of finiteness, positively homogeneity, monotonicity, subadditivity and it allows the
presence of a frictionless bond. The main result of Chateauneuf and Cornet (2022a)
is that, given a market that is (PAF), the following assertions are equivalent:

(C.1) the market is submodular14;

(C.2) the super-hedging pricing rule c(·) is a Choquet pricing rule with respect to a
concave capacity.

14A market is submodular if its super-hedging price c(·) is such that c(max(X, Y ))+c(min(X, Y )) ≤
c(X) + c(Y ) with X, Y ∈ RΩ. For the financial interpretation, see Remark 2 in Chateauneuf and
Cornet (2022a).
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3.2 Imprecise stochastic processes
In real world, Markov and time-homogeneous processes may be difficult to char-
acterize since transition probabilities as well as initial probabilities can be not
precisely known because evidence supporting the occurrence of an event can be
subjective or partial. Moreover, transition probabilities may be not constant in time
(time-homogeneous). Then, a way to overcome this problem is to incorporate the
imprecision into the model and relax the assumption of time-homogeneity, assuming
that the initial distribution as well as transition probabilities are not precisely known
and/or not constant in time.

Imprecise stochastic processes have been studied in literature starting from
Hartfiel (1998) with the theory of Markov set-chains where uncertainty is introduced
in parameters by means of intervals.

One of the first contribution in order to incorporate imprecision in a Markov
process is given by Kozine and Utkin (2002) who construct coherent interval-valued
probabilities in order to generalize discrete time Markov processes assuming that
transition probabilities are time-homogeneous. As usual, we consider a finite filtered
probability space (Ω,F , {Ft}T

t=0, P ), with P (i) > 0 for all i ∈ Ω.
Kozine and Utkin (2002) start from the classical Markov and time-homogeneous

process {Xt}T
t=0 where

P (Xt = j) =
n∑

i=1
P (Xt−1 = i)P (Xt = j|Xt−1 = i) =

n∑
i=1

P (Xt−1 = i)pi,j , (3.37)

for t = 1, . . . , T and i, j ∈ Ω.
They suppose that the initial probability αi and the transition probabilities pi,j

are not precisely known but they belong to intervals, denoted as

P (X0 = j) = αj ∈ [αj , αj ], (3.38)
pi,j ∈ [p

i,j
, pi,j ], (3.39)

such that bounds αj , αj , pi,j
and pi,j are known, for all i, j ∈ Ω.

The intervals of the state probability at time t = 1, denoted as P (X1 = j) and
P (X1 = j), are computed by solving, for all j ∈ Ω, the following problem

P (X1 = j) = inf
α∈[α,α],

pi,j∈[p
i,j

,pi,j ]

n∑
i=1

αipi,j , (3.40)

P (X1 = j) = sup
α∈[α,α],

pi,j∈[p
i,j

,pi,j ]

n∑
i=1

αipi,j , (3.41)

subject to:


∑n

i=1 αi = 1,∑n
j=1 pi,j = 1, for all i ∈ Ω,

αi ≤ αi ≤ αi, for all i ∈ Ω,
p

i,j
≤ pi,j ≤ pi,j , for all i, j ∈ Ω.

(3.42)
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They prove that, given that the transition bounds p
i,j

and pi,j are coherent lower
and upper probabilities (as defined in Section 1.2.1) and that initial bounds αi, αi

avoid sure loss15, problem (3.40)–(3.42) reduces to the following linear programming
problem

P (Xt = j) = inf
P

n∑
i=1

P (Xt−1 = i)p
ij
, (3.43)

P (Xt = j) = sup
P

n∑
i=1

P (Xt−1 = i)pi,j , (3.44)

for j = 1, . . . , n, subject to:{ ∑n
i=1 P (Xt−1 = i) = 1, for i = 1, . . . , n,

P (Xt−1 = i) ≤ P (Xt−1 = i) ≤ P (Xt−1 = i), for i = 1, . . . , n. (3.45)

Nevertheless, they do not provide a closed form for the solution of the linear
programming.

Škulj (2006, 2009) generalizes the model proposed by Kozine and Utkin (2002) in
two ways: omitting the time-homogeneity assumption on transition probabilities and
allowing that all subsets belong to intervals, not only singletons j ∈ Ω. In particular,
the latter generalization means that, instead of working with probability intervals
(PRI)16, he works with (partially determined) interval probabilities, as defined by
Weichselberger (2000).

Given a measurable space (Ω,F) (not necessarily finite) with F = 2Ω, an interval
probability is a couple of functions [P , P ] such that P and P are two set functions on
F with P ≤ P and P (Ω) = P (Ω) = 1. To each interval probability [P , P ] there is an
associate set M of additive probability measures that lie between P and P , that we
usually call core. The interval probabilities are called F-field if P (A) = infP ∈M P (A)
and P (A) = supP ∈M P (A), for all A ∈ F .

Remark 3. The F-field property is different from coherence in the Walley’s sense
since coherence allows finitely additive probabilities while Weichselberger model
only allows σ-additive probabilities. In the case of finite probability spaces the two
properties coincide and we refer to (e) in Definition 1.5. Moreover, as coherent lower
probabilities, the relation P (A) = 1 − P (AC) holds and it implies that P and P are
monotone.

The initial probability is fixed

P (X0 = j) = αj ≥ P (0), (3.46)

15They define the principle of avoiding sure loss as the conditions such that P (Ω) ≥ 1, P (Ω) ≤ 1,
0 ≤ P (A) ≤ P (A) ≤ 1, for all A ∈ F and i ∈ Ω.

16A probability interval (PRI) is a special case of partially determined interval probabilities where
the domain of the lower and upper bound is the set of all elementary events i ∈ Ω. They are given
by the interval [P̃ , P̃ ]. As the (completely determined) probability intervals, they are called F-field
if they are the lower and the upper envelope of the set of probability measures that lie between
them.
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for j ∈ Ω , while P (0) is the lower probability at time t = 0 that is constant for all
j ∈ Ω. The transition Markov (non time-homogeneous) probabilities are given in
terms of interval stochastic matrices

P (Xt+1 = j|Xt = i) = p
(t)
i,j ≥ p

i
, (3.47)

where p
i

is constant between j and t, and it is the lower bound of the following
interval stochastic matrix

p =


p1 p1
...

...
p

n
pn

 , (3.48)

where M(p) denotes the set of all stochastic matrices (pi,j) such that pi ≥ p
i
. The

aim of Škulj (2006, 2009) is to compute the probability distribution at next steps
with a procedure analogous to that in the probabilistic setting, that, we recall, allows
to compute, for t = 1, P (X1 = j) =

∑n
i=1 P (X0 = i)p(1)

i,j .
In the non-additive framework, since the initial probability belongs to a set M(α)

and transition probabilities belong to the set of stochastic matrices p(t) ∈ M(p), the
set of probability distributions at time t is the set of all possible initial probability
distributions multiplied by all possible sequences of transition matrices

Mt = {α · p(1) · . . . · p(t) : α ∈ M(α), p(i) ∈ M(p), for i = 1, . . . , t}. (3.49)

Sets Mt are generally not structured as interval probability measures but Hart-
fiel (1998) proves that if the initial set M(α) is convex and the set of transition
matrices M(p) is convex with separately specified rows17, then Mt is a convex set
of probabilities, for every t ∈ N.

In order to compute the lower bound of Mt, denoted as P (t)(X) = infP ∈Mt P (X),
Škulj (2006) obtains the following result: assuming that the probability at time
t is given by an interval of probabilities with bounds P t, P t, he computes the
ext(cl(core(P t))), denoted as P πA (see Section 1.2.1). It follows that

P (t+1)(A) =
n∑

i=1
P πA(i)p

i
(A). (3.50)

In the following example we apply the proposed procedure.

Example 3.1 Given Ω = {1, 2, 3} and F = 2Ω \ {∅,Ω}, with |F| = 6, suppose to
have the following initial lower probability18 P (0) and lower transition probabilities
p1, p2, p3 (we omit braces and commas to avoid cumbersome notation):

F 1 2 3 12 13 23
P (0) 0.1 0.3 0.4 0.5 0.6 0.7
p1 0.5 0.1 0.1 0.7 0.7 0.4
p2 0.1 0.4 0.3 0.6 0.5 0.8
p3 0.2 0.2 0.4 0.5 0.7 0.7

17Rows of a matrix A ∈ A are separately specified if the i-th row of A, denoted as ai, and the
i-th row of another matrix A′ ∈ A, denoted as a′

i are such that replacing a′
i with ai, the resulting

matrix also belongs to A.
18We stress that whenever |Ω| ≤ 3, a lower probability is 2-monotone.
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Let us compute the lower bound of the first step state probability P (1). The
permutations πA such that p

πA(i)(A) ≥ p
πA(i+1)(A) are:

π1 : < 1, 2, 3 > π2 : < 2, 3, 1 > π3 : < 3, 2, 1 >
π12 : < 1, 2, 3 > π13 : < 1, 3, 2 > π23 : < 2, 3, 1 >

and the probability measure for each permutation is reported below

1 2 3
P π1 0.1 0.4 0.5
P π2 0.3 0.3 0.4
P π3 0.3 0.3 0.4
P π12 0.1 0.4 0.5
P π13 0.1 0.4 0.5
P π23 0.3 0.3 0.4

It follows that, by (3.50), the lower probability for step t = 1 is

1 2 3 12 13 23
P (1) 0.19 0.23 0.28 0.56 0.62 0.64

♦

In another study (see Škulj, 2009) he considers 2-monotone lower probabilities
and develop two simplified procedures in order to compute the lower bound of the
state probability at time t. The backward procedure keeps the initial probability
P (0) as fixed and computes P (t)(A) = C

∫
c

(t)
A dP (0), with c(t)

A =
(
p

(t)
1 (A), . . . , p(t)

n
(A)

)
,

for all A ∈ F \ {∅,Ω}. It gives the precise estimates with a constant integrating
measure. The forward procedure computes the lower state probability at each step
and keeps as constant the integrated function P (t)(A) = C

∫
cA dP (t−1) as constant,

with cA =
(
p1(A), . . . , p

n
(A)

)
, for all A ∈ F \ {∅,Ω}.

From another starting point, Kast et al. (2014) study an imprecise random
process whose uncertainty is modeled by a capacity ν such that it allows the presence
of ambiguity in agent’s preferences. They start from a binomial process endowed
with a capacity and they show that it converges to a type of Brownian motion as limit
of the Choquet binomial random process. Such process is proved to be dynamically
consistent. Their approach is axiomatic and subjective, since they do not refer to an
objective probability measure that is "influenced" by subjective preferences. Given a
symmetric binomial additive process, denoted as {St}0≤t≤T , with

St =
{
St(u) = St−1 + 1 if "up",
St(d) = St−1 − 1 if "down",

(3.51)

each {S0, . . . , St} is a trajectory of the process and at each node St(i), with 0 ≤ t ≤ T
and i = {”u”, ”d”}, the conditional capacity is constant and it is

ν(St(u)|St−1) = ν(St(d)|St−1) = c, (3.52)

with 0 < c < 1. If c = 1
2 , ν reduces to a probability measure.
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Assuming a set of axioms on preferences (see Appendix 1 in Kast et al., 2014),
for any random variable X ∈ RΩ, for all τ ∈ {0, . . . , T} and for all Fτ ⊆ F , the
following condition holds:

C0(Xt) = C0 (C(Xt|Fτ )) . (3.53)

A random process satisfying (3.53) is called dynamically consistent Choquet
random walk and it is completely characterized by a unique capacity such that

ν(St(u)|St−1) = ν(St(d)|St−1) = c. (3.54)

They stress that a binomial tree that is path-dependent cannot be determined
by a unique capacity as done for a path-independent process since the dynamically
consistency condition does not work because it would lead to different values at time
t from the following "up" and "down" nodes. On the contrary, if {Xt}0≤t≤T is a sym-
metric Choquet random walk, the Choquet expectation reduces to C(Xt) = t(2c− 1).
Finally, they prove that, when the time interval converges to 0, the dynamically
consistent Choquet random walk in (3.53) converges to a general Wiener process
with mean m = 2c− 1 and variance s2 = 4c(1 − c).

Another field of research studied stochastic processes under non-linear expecta-
tions. For instance, Nendel (2021) gives a definition of convex Markov chain (see
Definition 2.2 in Nendel, 2021) with respect to a convex non-linear expectation,
defined (in a finite formulation) as Ẽ : RΩ → R such that:

(i) Ẽ(X) ≤ Ẽ(Y ), for all X(i) ≤ Y (i), for all i ∈ Ω;

(ii) Ẽ(α1Ω) = α, for all α ∈ R;

(iii) Ẽ(αX + (1 − α)Y ) ≤ αẼ(X) + (1 − α)Ẽ(Y ), for all X,Y ∈ RΩ and α ∈ [0, 1].

We also mention the study of de Cooman et al. (2016) in the setting of coherent
lower (upper) expectations, (Definition 1.7). They study an imprecise Markov chain
that is not a collection of precise Markov chains since the Markov property is
satisfied by the set of transition probabilities, while each element of the set may not
be Markovian. Starting from a local model, that is a coherent lower prevision about
the uncertainty of Xt+1 after having observed {X0 = x0, . . . , Xt = xt}, they extend
it to a global lower (upper) conditional expectation function considering the entire
path such that it satisfies Markov and time-homogeneity properties. An analogous
model is developed by T’Joens et al. (2021) starting from a local conditional upper
expectation of Xt+1 and extending it to a global conditional upper expectation as
an extension of the local, without requiring the property of coherence but assuming
another set of properties. Among the set of compatible global upper expectations,
they require other conditions in order to select the global expectation that is most
conservative. However they generally do not require the Markov property.
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Chapter 4

A one-period n-nomial pricing
model under Dempster-Shafer
uncertainty

In the line of research on incomplete and frictional market models, which are
described in Section 3.1, in this Chapter we present a work that has been published
in Cinfrignini et al. (2023).

We start with the study of a one-period n-nomial market model, which is
composed by a risk-free asset with deterministic price process and a risky asset
whose price process follows a n-nomial multiplicative process.

Since we lose the market completeness, there exists an infinite class Q of equivalent
martingale measures. Also, the linearity of the price functional is lost and it can
be recovered by completing the market with extra securities or by choosing one
of the equivalent martingale measures by some suitable criterion of choice. The
incompleteness of the market in a n-nomial market model generates a form of
“objective” ambiguity as one needs to deal with the class of equivalent martingale
measures.

After having showed that the lower envelope Q of the class of equivalent mar-
tingale measures is a belief function, we try to derive a lower pricing rule from it
as a (discounted) Choquet expectation, in a way to take care of bid-ask spreads.
However, the closure of the set of equivalent martingale measures Q does not coin-
cide, in general, with core(Q). To overcome this problem, we could think to use a
suitable closed subset Q′ ⊆ Q to define a lower pricing rule as a (discounted) lower
expectation. Unfortunately, in Section 4.2 we show that in general this problem
could not have a solution.

The belief function’s framework allows to incorporate naturally frictions in the
market, nevertheless, for a Choquet pricing rule to be acceptable the classical
notion of arbitrage must be generalized. For that, in Section 4.3 we reformulate
a general one-period pricing problem over a finite state space in the framework of
belief functions. We provide a generalized one-step no-Dutch book condition and a
generalized one-step no-arbitrage condition for a lower price assessment based on
the partially resolving uncertainty principle proposed by Jaffray.

We prove that the generalized one-step no-Dutch book condition is necessary
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and sufficient for the existence of a belief function whose corresponding (discounted)
Choquet expectation functional agrees with the lower price assessment. Next, we
prove an analogue of the first fundamental theorem of asset pricing in the context
of belief functions and in the one-period setting, showing that the generalized
one-step no-arbitrage condition that we propose is equivalent to the existence of a
strictly positive belief function whose corresponding discounted Choquet expectation
functional agrees with the lower price assessment.

Concerning the original problem of deriving a lower pricing rule from the “risk-
neutral” belief function Q arising in the n-nomial market model, in Section 4.4 we
show that the discounted Choquet expectation with respect to Q does not satisfy
the generalized no-Dutch book condition. Firstly, we take a specific Q0 ∈ Q and we
ϵ-contaminate it with the set of probabilities in cl(Q). Although being positive, its
lower envelope induces a discounted Choquet expectation that continues to be not
consistent with the lower price assessment. Hence, the idea is to ϵ-contaminate the
reference probability Q0 with a belief function B̂el that is an inner approximation
of Q and such that it satisfies the generalized no-arbitrage principle. We propose a
procedure for determining a belief function which inner approximates Q, complying
only with the lower price assessment of the stock. The task is achieved by minimizing
a suitable distance, subject to a system of linear constraints, similarly to Miranda et
al. (2021, 2022); Montes et al. (2018, 2019). In this way we get an equivalent inner
approximating one-step Choquet martingale belief function B̂elϵ.

Finally, we show that if we further require B̂el to comply also with the upper price
assessment (arriving to an inner approximating strong one-step Choquet martingale
belief function), both B̂el and B̂elϵ reduce to probability measures.

4.1 A n-nomial market model and its envelopes

We consider a one-period n-nomial market model, with times t = 0 and t = 1,
composed by a risk-free asset (bond) and a risky asset (stock), as the binomial
model in Section 2.2.1. The prices of the two securities are modeled by the processes
{S0

0 , S
0
1} and {S1

0 , S
1
1} defined on the filtered probability space (Ω,F , {F0,F1}, P ),

with Ω = {1, . . . , n}, P ({i}) = pi > 0 for all i ∈ Ω, F0 = {∅,Ω} and F1 = F = P(Ω).
We assume that S0

0 = 1 and S1
0 = s0 > 0, while the prices at the end of the

period satisfy

S0
1
S0

0
= 1 + r, and S1

1
S1

0
=


m1, with probability p1,
m2, with probability p2,
...
mn, with probability pn,

(4.1)

where m1 > m2 > · · · > mn > 0 and 1 + r > 0.
As usual, Q ∈ P(Ω,F) is said to be equivalent to P , in symbol Q ∼ P ,

when P (A) = 0 ⇐⇒ Q(A) = 0, for all A ∈ F . To avoid cumbersome nota-
tion, in what follows, every element Q ∈ P(Ω,F) is identified with the vector
Q ≡ (q1, . . . , qn)T ∈ [0, 1]n, where Q({i}) = qi, for all i ∈ Ω.
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In this model, the set of equivalent martingale measures is defined as

Q = {Q ∈ P(Ω,F) : (1 + r)−1EQ(S1
1) = S1

0 , Q ∼ P}. (4.2)

As is well-known, this set is not empty if m1 > 1 + r > mn, moreover, Q is
convex but generally not closed. In the particular case n = 2 this set reduces to the
singleton Q = {Q} where Q ≡ (q, 1 − q) defined in (2.25), with u = m1 and d = m2.

In what follows we assume n > 2 and, as usual, we denote by cl(Q) and ext(cl(Q))
the closure of Q and the set of extreme points of the closure.

We characterize the properties of the set of equivalent martingale measures Q
because, despite each Q ∈ Q complies with the no-arbitrage assumption, we cannot
account the whole set. Hence, our aim is to work with the lower envelope Q of cl(Q)
defined, for every A ∈ F , as

Q(A) = min
Q∈cl(Q)

Q(A). (4.3)

We first provide a characterization of ext(cl(Q)).

Theorem 4.1
For n > 2, if ms−1 > 1 + r ≥ ms for some s ∈ {2, . . . , n} and 1 + r ̸= mn, let
I = {1, . . . , s− 1} and J = {s, . . . , n}, then

ext(cl(Q)) = {Qi,j ∈ P(Ω,F) : (i, j) ∈ I × J},

where Qi,j ≡ (0, . . . , 0, qi, 0, . . . , 0, qj , 0, . . . , 0)T , with

qi = (1 + r) −mj

mi −mj
and qj = mi − (1 + r)

mi −mj
.

Proof. We have that Q ≡ (q1, . . . , qn)T is an element of cl(Q) if and only if it solves
the system 

∑n
k=1 qk = 1,∑n
k=1mkqk = 1 + r,

qk ≥ 0, for k = 1, . . . , n.
It is immediate to see that the coefficient matrix associated with the first two
equations has full rank, so it admits infinite solutions depending on n − 2 real
parameters. The set of such solutions is a closed subset of Rn, while cl(Q) is the
intersection of such set with the non-negative orthant.

As the rank is 2 (see, e.g., Faigle et al., 2002), the set ext(cl(Q)) can be generated
by selecting all the possible pairs of distinct indices i, j ∈ {1, . . . , n}, and verifying
if the vector Qi,j , defined as in the statement of the theorem, is a solution of the
above system. In turn, since Qi,j is a solution of the above system if and only if
i ∈ I and j ∈ J , the claim follows.

In particular, if 1 + r > ms, we have qi, qj ∈ (0, 1) for every i ∈ I and j ∈ J . On
the other hand, if 1 + r = ms, we have qi, qj ∈ (0, 1) for every i ∈ I and j ∈ J \ {s},
while for j = s

qi = (1 + r) −ms

mi −ms
= ms −ms

mi −ms
= 0 and qj = qs = mi −ms

mi −ms
= 1,
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thus Qi,j reduces to

Qi,j = Qs ≡ (0, . . . , 0, qs = 1, 0, . . . , 0)T .

Now we provide a characterization of the lower envelope Q.

Theorem 4.2
For n > 2, if ms−1 > 1 + r ≥ ms for some s ∈ {2, . . . , n} and 1 + r ≠ mn, let
I = {1, . . . , s− 1} and J = {s, . . . , n}, then, for every A ∈ F ,

Q(A) =



1 if A = Ω,

(1+r)−mj

m1−mj

if 1 + r ̸= ms and I ⊆ A ̸= Ω,
or 1 + r = ms and I ∪ {s} ⊆ A ̸= Ω,

m
i
−(1+r)

m
i
−mn

if J ⊆ A ̸= Ω,

0 otherwise,

where j = min{j ∈ J : j /∈ A} and i = max{i ∈ I : i /∈ A}.

Proof. We first prove the case 1 + r ̸= ms. We have that Q(A) = 1 if and only if
for all (i, j) ∈ I × J , {i, j} ⊆ A, and this happens if and only if A = Ω. Moreover,
Q(A) = 0 if and only if there exists (i, j) ∈ I × J,A ⊆ {i, j}c, and this happens if
and only if I ̸⊆ A and J ̸⊆ A.

For the remaining A’s, two situations can occur: either (a) I ⊆ A ̸= Ω or (b)
J ⊆ A ̸= Ω.

(a). If I ⊆ A ̸= Ω, then

Q(A) = min
(i,j)∈I×J

[
1A(i)(1 + r) −mj

mi −mj
+ 1A(j)mi − (1 + r)

mi −mj

]

= min
(i,j)∈I×J
i∈A,j /∈A

(1 + r) −mj

mi −mj
.

Suppose i ∈ I and let j ∈ J be such that j /∈ A, with m1 > mi > 1 + r > mj .
Since

(1 + r) −mj

m1 −mj
− (1 + r) −mj

mi −mj
= ((1 + r) −mj)(mi −m1)

(m1 −mj)(mi −mj) < 0

we have (1+r)−mj

m1−mj
<

(1+r)−mj

mi−mj
. Suppose j, j′ ∈ J are such that j, j′ /∈ A with

m1 > 1 + r > mj > mj′ . Since

(1 + r) −mj

m1 −mj
−

(1 + r) −mj′

m1 −mj′
= ((1 + r) −m1)(mj −mj′)

(m1 −mj)(m1 −mj′) < 0

we have (1+r)−mj

m1−mj
<

(1+r)−mj′
m1−mj′

. Hence, if j is the minimum element of J such that
j /∈ A we have that

Q(A) = min
(i,j)∈I×J
i∈A,j /∈A

(1 + r) −mj

mi −mj
=

(1 + r) −mj

m1 −mj
.
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(b). If J ⊆ A ̸= Ω, then

Q(A) = min
(i,j)∈I×J

[
1A(i)(1 + r) −mj

mi −mj
+ 1A(j)mi − (1 + r)

mi −mj

]

= min
(i,j)∈I×J
i/∈A,j∈A

mi − (1 + r)
mi −mj

.

Suppose j ∈ J and let i ∈ I be such that i /∈ A with mi > 1 + r > mj > mn.
Since

mi − (1 + r)
mi −mj

− mi − (1 + r)
mi −mn

= (mi − (1 + r))(mj −mn)
(mi −mj)(mi −mn) > 0

we have mi−(1+r)
mi−mj

> mi−(1+r)
mi−mn

. Suppose i, i′ ∈ I are such that i, i′ /∈ A with
mi > mi′ > 1 + r > mn. Since

mi − (1 + r)
mi −mn

− mi′ − (1 + r)
mi′ −mn

= ((1 + r) −mn)(mi −mi′)
(mi −mn)(mi′ −mn) > 0

we have mi−(1+r)
mi−mn

>
mi′ −(1+r)
mi′ −mn

. Hence, if i is the maximum element of I such that
i /∈ A we have that

Q(A) = min
(i,j)∈I×J
i/∈A,j∈A

mi − (1 + r)
mi −mj

=
mi − (1 + r)
mi −mn

.

Finally, we prove the case 1 + r = ms. As before, we have that Q(A) = 1 if and
only if A = Ω. Moreover, Q(A) = 0 if and only if I ∪ {s} ̸⊆ A and J ̸⊆ A.

For the remaining A’s, two situations can occur: either (a’) I ∪ {s} ⊆ A ̸= Ω or
(b’) J ⊆ A ≠ Ω. Situation (b’) coincides with (b), thus it is proved in the same way.

(a’) If I ∪ {s} ⊆ A ̸= Ω, then proceeding as in the proof of (a) we have

Q(A) = min
(i,j)∈(I∪{s})×J

[
1A(i)(1 + r) −mj

mi −mj
+ 1A(j)mi − (1 + r)

mi −mj

]

= min
(i,j)∈(I∪{s})×J

i∈A,j /∈A

(1 + r) −mj

mi −mj
=

(1 + r) −mj

m1 −mj
.

In the next theorem we characterize the Möbius inverse of Q.

Theorem 4.3
For n > 2, if ms−1 > 1 + r ≥ ms for some s ∈ {2, . . . , n} and 1 + r ̸= mn, let
I = {1, . . . , s− 1} and J = {s, . . . , n}. Let µ : F → R be the Möbius inverse of Q.
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Then, for every A ∈ F ,

µ(A) =



(1+r)−ms

m1−ms
if 1 + r ̸= ms and A = I,

(1+r)−mk+1
m1−mk+1

− (1+r)−mk

m1−mk
if A = {1, . . . , k} and I ⊂ A ̸= Ω,

ms−1−(1+r)
ms−1−mn

if A = J,

mk−1−(1+r)
mk−1−mn

− mk−(1+r)
mk−mn

if A = {k, . . . , n} and J ⊂ A ̸= Ω,

0 otherwise.

Proof. We first prove the case 1 + r ̸= ms, by considering all the possibilities for
A ∈ F .

(a). If I ̸⊆ A and J ̸⊆ A, then µ(A) = 0. Indeed, by Theorem 4.2 we have that
Q(B) = 0 for every B ⊆ A and this implies µ(B) = 0 for every B ⊆ A.

(b). If A = I, then by Theorem 4.2 the only B ⊆ A with Q(B) ̸= 0 is B = A = I.
Hence,

µ(I) = Q(I) = (1 + r) −ms

m1 −ms
,

as s is the minimum element of J not in A = I.
(c). If A = J , then by Theorem 4.2 the only B ⊆ A with Q(B) ̸= 0 is B = A = J .

Hence,
µ(J) = Q(J) = ms−1 − (1 + r)

ms−1 −mn
,

as s− 1 is the maximum element of I not in A = J .
(d). If A ̸= {1, . . . , k} and I ⊂ A ≠ Ω, then µ(A) = 0. To see this, let

A = {1, . . . , k} ∪ B with I ⊆ {1, . . . , k} ̸= Ω, B ̸= ∅, and B ∩ {1, . . . , k + 1} = ∅.
Since for all E ⊆ A not containing I we have Q(E) = 0, we can write

µ(A) =
∑

I⊆E⊆A

(−1)|A\E|Q(E).

For every s− 1 ≤ t ≤ k, if E contains {1, . . . , t} but not {1, . . . , t+ 1}, it follows that
Q(E) = (1+r)−mt+1

m1−mt+1
and all of such sets are of the form {1, . . . , t} ∪ C with C ⊆ F ,

where F = {t+ 2, . . . , k} ∪B if t+ 2 ≤ k and F = B otherwise. Moreover, we have

Q({1, . . . , t} ∪ F ) −
∑

D⊆F
|D|=|F |−1

Q({1, . . . , t} ∪D)

+
∑

D⊆F
|D|=|F |−2

Q({1, . . . , t} ∪D) + · · · + (−1)|F |Q({1, . . . , t}) = 0,

since all terms are equal in absolute value and the number of positive terms is equal
to that of negative terms. In turn, this implies that µ(A) = 0.

(e). If A ≠ {k, . . . , n} and J ⊂ A ≠ Ω, then µ(A) = 0. The proof of this claim is
analogous to point (d).

(f). If A = {1, . . . , k} and I ⊂ A ̸= Ω, i.e., s ≤ k ≤ n − 1, then, taking into
account points (a)–(e),

Q(A) =
k∑

t=s−1
µ({1, . . . , t}) = (1 + r) −mk+1

m1 −mk+1
.
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Hence, we have that

µ(A) = Q(A) −
k−1∑

t=s−1
µ({1, . . . , t}) = (1 + r) −mk+1

m1 −mk+1
− (1 + r) −mk

m1 −mk
.

(g). If A = {k, . . . , n} and J ⊂ A ̸= Ω, i.e., with 2 ≤ k ≤ s− 1, then proceeding
as in point (f) we get µ(A) = mk−1−(1+r)

mk−1−mn
− mk−(1+r)

mk−mn
.

(h). If A = Ω, then µ(Ω) = 0. Indeed, by points (a)–(g), for every A ∈ F \ {Ω},
µ(A) ≥ 0 and, in particular, µ is strictly positive on the families

C1 = {{1, . . . , s− 1}, {1, . . . , s}, . . . , {1, . . . , n− 1}} ,
C2 = {{s, . . . , n}, {s− 1, . . . , n}, . . . , {2, . . . , n}} ,

while it is 0 otherwise. By the properties of the Möbius inverse, it must be∑
A∈F µ(A) = 1, and since

∑
A∈F\{Ω}

µ(A) =
∑

A∈C1

µ(A) +
∑

A∈C2

µ(A) = (1 + r) −mn

m1 −mn
− m1 − (1 + r)

m1 −mn
= 1,

it follows that µ(Ω) = 0.
Finally, we prove the case 1 + r = ms. Proceeding as in points (a)–(g) by taking

I ∪ {s} in place of I, it is possible to show that µ is strictly positive on the families
C2 and

C′
1 = {{1, . . . , s}, . . . , {1, . . . , n− 1}},

while it is 0 on F \ ({Ω} ∪ C′
1 ∪ C2). Thus, in analogy to point (h), since∑

A∈F\{Ω}
µ(A) =

∑
A∈C′

1

µ(A) +
∑

A∈C2

µ(A) = 1,

it follows that µ(Ω) = 0.

The previous theorem implies that Q is completely monotone (i.e., a belief
function) and it can be expressed as the strict convex combination of two necessity
measures N1, N2 defined on F , as stated in the following corollary.

Corollary 4.1 The lower probability Q satisfies the following properties:

(i) Q is completely monotone, that is, for every k ≥ 2 and every A1, . . . , Ak ∈ F ,
it holds that

Q

(
k⋃

i=1
Ai

)
≥

∑
∅≠I⊆{1,...,k}

(−1)|I|+1Q

(⋂
i∈I

Ai

)
;

(ii) there exist two necessity measures N1, N2 : F → [0, 1] and α ∈ (0, 1) such that,
for every A ∈ F ,

Q(A) = αN1(A) + (1 − α)N2(A).
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Proof. Statement (i) is an immediate consequence of Theorem 4.3 since µ(A) ≥ 0,
for every A ∈ F . For statement (ii), we prove only the case 1 + r ̸= ms as the other
case can be proved similarly. By Theorem 4.3, the focal elements of µ form two
chains ordered by set inclusion:

C1 = {{1, . . . , s− 1}, 1, . . . , s, . . . , 1, . . . , n− 1},
C2 = {{s, . . . , n}, {s− 1, . . . , n}, . . . , {2, . . . , n}}.

Let α =
∑

A∈C1 µ(A) = (1+r)−mn

m1−mn
and (1 − α) =

∑
A∈C2 µ(A) = m1−(1+r)

m1−mn
and define

µ1, µ2 on F setting, for every A ∈ F ,

µ1(A) =


µ(A)

α if A ∈ C1,

0 otherwise,
and µ2(A) =


µ(A)
1−α if A ∈ C2,

0 otherwise.

A simple verification shows that µ1, µ2 are non-negative Möbius inverses with nested
focal elements, so they induce, respectively, two necessity measures N1, N2 on F .
Then, by construction we have that, for every A ∈ F ,

Q(A) = αN1(A) + (1 − α)N2(A).

The following example shows the computation of the lower envelope Q and its
representation as a strict convex combination of two necessity measures.

Example 4.1 Let Ω = {1, 2, 3, 4} and m1 = 4, m2 = 2, m3 = 1
2 , m4 = 1

4 , and
1 + r = 1. As usual, to avoid cumbersome notation, we denote events omitting braces
and commas. In this case we have I = {1, 2}, J = {3, 4} and
ext(cl(Q)) = {Q1,3, Q1,4, Q2,3, Q2,4} inducing the Q reported below

F ∅ 1 2 3 4 12 13 14 23 24 34 123 124 134 234 Ω

Q1,3 0 15
105 0 90

105 0 15
105 1 15

105
90
105 0 90

105 1 15
105 1 90

105 1
Q1,4 0 21

105 0 0 84
105

21
105

21
105 1 0 84

105
84
105

21
105 1 1 84

105 1
Q2,3 0 0 35

105
70
105 0 35

105
70
105 0 1 35

105
70
105 1 35

105
70
105 1 1

Q2,4 0 0 45
105 0 60

105
45
105 0 60

105
45
105 1 60

105
45
105 1 60

105 1 1

Q 0 0 0 0 0 15
105 0 0 0 0 60

105
21
105

15
105

60
105

84
105 1

µ 0 0 0 0 0 15
105 0 0 0 0 60

105
6

105 0 0 24
105 0

Since µ(A) ≥ 0 for every A ∈ F , then Q is a belief function, and we have that
C1 = {12, 123} and C2 = {34, 234}, with

α = µ(12) + µ(123) = 21
105 and β = 1 − α = µ(34) + µ(234) = 84

105 .

The Möbius inverses µ1, µ2 and the corresponding necessity measures N1, N2 are
defined below
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F ∅ 1 2 3 4 12 13 14 23 24 34 123 124 134 234 Ω

µ1 0 0 0 0 0 15
21 0 0 0 0 0 6

21 0 0 0 0
N1 0 0 0 0 0 15

21 0 0 0 0 0 1 15
21 0 0 1

µ2 0 0 0 0 0 0 0 0 0 0 60
84 0 0 0 24

84 0
N2 0 0 0 0 0 0 0 0 0 0 60

84 0 0 60
84 1 1

αN1 + βN2 0 0 0 0 0 15
105 0 0 0 0 60

105
21
105

15
105

60
105

84
105 1

♦

4.2 A lower pricing rule
As pointed out in Section 3.1.2, real markets show the presence of frictions, mainly in
the form of bid-ask spreads, that translate in the non-linearity of the price functional.
Since the n-nomial model leads to a set of equivalent martingale measures Q, we
could think to allow frictions in the market by defining a lower pricing rule π as a
discounted lower expectation.

As is well-known (see, e.g., Delbaen and Schachermayer, 2006), given a random
variable X ∈ RΩ expressing the payoff at time t = 1 of a contract, its no-arbitrage
price at time t = 0 can be computed relying on the set of equivalent martingale
measures Q, by computing
π∗(X) = min

Q∈cl(Q)
(1 + r)−1EQ(X) and π∗(X) = max

Q∈cl(Q)
(1 + r)−1EQ(X). (4.4)

It holds that (see, e.g., Pliska, 1997; Cerný, 2009):
• if π∗(X) = π∗(X), then their common value π(X) is the no-arbitrage price at

time t = 0 of X;

• if π∗(X) < π∗(X), then the no-arbitrage price π(X) at time t = 0 of X belongs
to the open interval (π∗(X), π∗(X)).

If we have two contracts with payoffs X,Y ∈ RΩ at time t = 1, then their
no-arbitrage price intervals are

(π∗(X), π∗(X)) and (π∗(Y ), π∗(Y )),
nevertheless, we are not free to choose a value in one interval independently of the
other, as shown in the following example.

Example 4.2 Let Ω = {1, 2, 3}, m1 = 4, m2 = 2, m3 = 1
2 , 1 + r = 1 and S1

0 = 20.
In this case we have I = {1, 2}, J = {3} and ext(cl(Q)) = {Q1,3, Q2,3} inducing the
Q reported below

F ∅ 1 2 3 12 13 23 Ω

Q1,3 0 21
105 0 84

105
21
105 1 84

105 1
Q2,3 0 0 45

105
60
105

45
105

60
105 1 1

Q 0 0 0 60
105

21
105

60
105

84
105 1

µ 0 0 0 60
105

21
105 0 24

105 0
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Consider the following payoffs at time t = 1

Ω 1 2 3

X 20 10 10
Y 10 10 20

We have that

π∗(X) = min{EQ1,3(X),EQ2,3(X)} = 10,
π∗(X) = max{EQ1,3(X),EQ2,3(X)} = 12,

π∗(Y ) = min{EQ1,3(Y ),EQ2,3(Y )} = 110
7 ≈ 15.7,

π∗(Y ) = max{EQ1,3(Y ),EQ2,3(Y )} = 18,

so, we can consider the price assessment π′(S1
1) = 20, π′(X) = 11, π′(Y ) = 17.

It holds that the partial price assessments {π′(S1
1), π′(X)} and {π′(S1

1), π′(Y )} are
arbitrage-free, while the global price assessment {π′(S1

1), π′(X), π′(Y )} is not, as
there is no Q ∈ Q such that π′(S1

1) = EQ(S1
1), π′(X) = EQ(X), π′(Y ) = EQ(Y ).

♦

Since the lower envelope of the set Q is a belief function, the idea is to define a
lower pricing rule by means of the Choquet integral with respect to Q. However, as
the following example shows, we have that, for n > 2, cl(Q) ̸= core(Q) in general.
Follows that the Choquet expectation with respect to Q is the lower expectation
among core(Q), but it is not the lower expectation among the closure of the set
of equivalent martingale measures cl(Q) appeared from the market model (see
discussion in (Ch.8), p.19).

Example 4.3 Consider Ω = {1, 2, 3, 4}, m1 = 4, m2 = 2, m3 = 1
2 , m4 = 1

4 ,
1 + r = 1, Q and Q of Example 4.1.

A straightforward computation shows that cl(Q) ̸= core(Q), since (see (1.26), p.18),
assuming S1

0 = s0 > 0,

CQ

(
S1

1
S1

0

)
= 54

105 < 1 = min
Q∈cl(Q)

EQ

(
S1

1
S1

0

)
.

Recall that ext(core(Q)) = {Qσ : σ ∈ Σ}, where Σ is the set of permutations of Ω
(see (1.20), p.15). In particular, taking the permutation σ = ⟨1, 2, 3, 4⟩ and defining
the probability measure

Qσ ≡
(
Q(1), Q(12) −Q(1), Q(123) −Q(12), Q(1234) −Q(123)

)T

≡
(

0, 15
105 ,

6
105 ,

84
105

)T

we have that Qσ /∈ cl(Q) which further proves that cl(Q) ⊂ core(Q).
♦
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Since the lower envelope of cl(Q) cannot be used to define a Choquet expectation
functional that agrees with lower expectations, we could look for a suitable closed
subset Q′ ⊆ Q to define a lower pricing rule. However, the choice of Q′ is not free of
issues since a reasonable criterion should be provided. The most natural way to get
Q′ is to consider a finite G ⊂ RΩ, and a lower price assessment π′ : G → R. Here,
the problem is to look for a closed Q′ ⊆ Q such that

π′(X) = min
Q∈Q′

(1 + r)−1EQ(X), for every X ∈ G.

A first (trivial) constraint for π′ is that, for every X ∈ G,

π∗(X) < π′(X) < π∗(X), if π∗(X) < π∗(X),

and π′(X) = π∗(X) = π∗(X) otherwise. However, this trivial constraint does not
assure the existence of such a Q′, as shown in the following example.

Example 4.4 Let Ω, m1, m2, m3, 1+r, S1
0 , X and Y as in Example 4.2. Consider

the lower price assessment π′(S1
1) = 20, π′(X) = 11 and π′(Y ) = 17. We have

that there is no closed subset Q′ ⊆ Q such that the corresponding discounted lower
expectation functional agrees with π′, in fact the following system

q1 + q2 + q3 = 1,
4q1 + 2q2 + q3

4 = 1,
20q1 + 10q2 + 10q3 = 11,
10q1 + 10q2 + 20q3 ≥ 17,
qk ≥ 0, k = 1, 2, 3,

is not compatible. Notice that the constraint related to π′(S1
1) = 20 is not reported

since it is implied by the second equation.
We stress that, more generally, for the above assessment there is no closed subset

Q′′ ⊆ P(Ω,F) whose corresponding discounted lower expectation functional agrees
with π′. To see this, it is sufficient to consider the above system and relax the second
constraint in a greater than or equal to constraint, as this result in an incompatible
system.

♦

If we take the lower prices of securities in G as fixed, then the non-existence of
a suitable closed Q′ ⊆ Q forces us to depart from the set Q, in a way to derive a
consistent discounted lower expectation. Thus, we should face a problem of correction
of the set Q that necessarily introduces some imprecision with respect to Q.

On the other hand, instead of looking for a closed Q′ ⊆ Q, we could try to
derive a lower pricing rule from the lower envelope Q, which has been proved to be
a belief function. The most natural way to get a lower pricing rule is to consider a
discounted Choquet expectation derived from the “risk-neutral” belief function Q.

The framework of belief functions allows to incorporate “naturally” frictions in
the market, nevertheless, for such a lower pricing rule to be acceptable the classical
notion of arbitrage must be generalized. This will be the aim of the next section. By
considering only the lower envelope Q we forget of the set Q and actually work with
core(Q), thus also in this case we introduce some imprecision with respect to Q.
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4.3 A one-step generalized no-arbitrage principle

In this section we still refer to a finite measurable space (Ω,F), with Ω = {1, . . . , n}
and F = P(Ω), with the filtration {F0,F1} with F0 = {∅,Ω} and F1 = F . We
assume that the measurable space is endowed with a belief function Bel encoding
the market beliefs.

Throughout this section we assume Bel(A) > 0, for every A ∈ F \ {∅}. Such a
belief function Bel plays the same role of the “real-world” probability measure P in
the classical formulation of a one-period market model. For this, Bel can be dubbed
as “real-world” belief function.

We follow the probabilistic interpretation as pointed out in Section 2.1. Indeed,
the belief function Bel gives rise to ext(core(Bel)), which is a finite set of "extreme"
probabilistic opinions on the market, that can be associated with some reference
agents. Such probabilistic opinions, though possibly different, are assumed to agree
on states that are perceived as "unrealistic". Hence, the positivity of Bel generalizes
the classical assumption on market beliefs as reference agents can have different
probabilistic opinions, though it still requires some agreement among them on
"realistic" states.
Note 10: A more general formulation can be given referring to an arbitrary belief
function Bel, still adopting the notion of equivalent belief function given in Definition
2. In turn, this requires to keep track of events with null belief, that will play a
role in the formation of prices: this is a non-trivial generalization that could be the
subject of future research. However, this generalization could be questionable from the
financial point of view since we may have an asset with non-negative and non-null
payoff with zero price.

Definition 4.1 Given two belief functions Bel, B̂el on F , we say that B̂el is
equivalent to Bel, in symbol B̂el ∼ Bel, if Bel(A) = 0 ⇐⇒ B̂el(A) = 0, for every
A ∈ F .

Let us stress that, since Bel is positive on F \ {∅}, B̂el ∼ Bel if and only if the
same holds for B̂el and this happens if and only if its Möbius inverse µ̂ is positive
over the singletons.

We still consider a one-period market model related to times t = 0 and t = 1
where there is a risk-free bond assuring the return 1 + r > 0. Such a bond has
price S0

0 = 1 at time t = 0 and payoff S0
1 = 1 + r at time t = 1. Here, the goal is

to allow frictions in the market by considering, for a random variable X ∈ RΩ, a
lower price π(X) at time t = 0 and, if available, a corresponding upper price π(X),
with π(X) ≤ π(X), to be interpreted as bid-ask prices. In the case of the risk-free
bond we assume absence of frictions, meaning that the lower price coincides with
the upper price π(S0

1) = π(S0
1) = S0

0 , thus we simply call it price.
We consider a finite non-empty collection of random variables

G = {S1
1 , . . . , S

m
1 } ⊂ RΩ, (4.5)

expressing random payoffs at time t = 1 and a lower price assessment π′ : G → R
related to time t = 0. In analogy with the classical formulation of no-arbitrage
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pricing, we do not require the risk-free bond to be part of G as it possesses a special
role being used as numéraire.

Our aim is to determine a necessary and sufficient condition for the existence of
a belief function B̂el ∼ Bel such that, for k = 1, . . . ,m, it holds that

(1 + r)−1C
B̂el

(Sk
1 ) = π′(Sk

1 ).

By the positive homogeneity property of the Choquet integral (see (Ch.3), p.19),

(1 + r)−1C
B̂el

(Sk
1 ) = C

B̂el
((1 + r)−1Sk

1 ),

thus we can consider the discounted payoff S̃k
1 = (1 + r)−1Sk

1 , for k = 1, . . . ,m, and
write

C
B̂el

(S̃k
1 ) = π′(Sk

1 ). (4.6)

Also in this case we have that S̃0
1 = 1Ω.

Here we assume to know only the lower price of every Sk
1 , for k = 1, . . . ,m. This

is not restrictive since, if also the upper price assessment π′ : G → R is available,
then the problem can be reformulated by considering

G′ = {S1
1 , . . . , S

m
1 ,−S1

1 , . . . ,−Sm
1 } (4.7)

together with π′′ : G′ → R such that, for k = 1, . . . ,m,

π′′(Sk
1 ) = π′(Sk

1 ) and π′′(−Sk
1 ) = −π′(Sk

1 ). (4.8)

As usual, a portfolio is a vector λ = (λ0, . . . , λm)T ∈ Rm+1 as in Definition 2.2,
referred to contracts with random payoffs in G.

Here, in contrast with the probabilistic setting, we assume the partially resolving
uncertainty principle proposed by Jaffray (Jaffray, 1989) according to which the
agent may only acquire the information that an event B ̸= ∅ occurs, without knowing
which is the true state of the world i ∈ B. Further, we assume that the agent is
systematically pessimistic in his/her quantitative evaluations. As such, both in
computing his/her (discounted) payoff related to a portfolio of securities and in the
corresponding gain, the agent considers all non-impossible events in B ∈ U = F \{∅}
further, for every X ∈ RΩ, he/she considers the corresponding [X]L ∈ RU built
taking minima of X

[X]L(B) = min
i∈B

X(i). (4.9)

This is in contrast with the principle of completely resolving uncertainty which is
usually tacitly adopted and amounts in assuming that the agent will always acquire
the information on the true state of the world i ∈ Ω.

Working under partially resolving uncertainty, the final (discounted) payoff of
the portfolio is the function Zλ : U → R defined, for every B ∈ U , as

Zλ(B) = λ0 +
m∑

k=1
λk[S̃k

1 ]L(B), (4.10)

while we interpret the quantity πλ = λ0 +
∑m

k=1 λ
kπ′(Sk

1 ) as the hypothetical price at
time t = 0 of the portfolio that we would have if we were in a situation of completely
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resolving uncertainty. Hence, we can define the function Gλ : U → R setting, for
every B ∈ U ,

Gλ(B) = Zλ(B) − πλ =
m∑

k=1
λk
(
[S̃k

1 ]L(B) − π′(Sk
1 )
)
, (4.11)

that can be interpreted as a random gain under partially resolving uncertainty.

Theorem 4.4
The following conditions are equivalent:

(i) there exists a belief function B̂el such that C
B̂el

(S̃k
1 ) = π′(Sk

1 ), for k = 1, . . . ,m;

(ii) for every λ = (λ0, . . . , λm)T ∈ Rm+1 it holds that

min
B∈U

Gλ(B) ≤ 0 ≤ max
B∈U

Gλ(B).

Proof. The proof can be obtained applying Theorem 4.1 in Coletti et al. (2020),
working with the dual capacity of B̂el, which is a plausibility function. Here we
provide a direct proof for the sake of completeness.

Fix an enumeration of U = {B1, . . . , B2n−1}. Condition (i) is equivalent to the
solvability of the following system {

Ax = b,
x ≥ 0,

where x = (µ̂(B1), . . . , µ̂(B2n−1))T ∈ R2n−1 is an unknown column vector, A ∈
R(m+1)×(2n−1) is the coefficient matrix with

A =


1L

Ω(B1) · · · 1L
Ω(B2n−1)

[S̃1
1 ]L(B1) · · · [S̃1

1 ]L(B2n−1)
...

...
[S̃m

1 ]L(B1) · · · [S̃m
1 ]L(B2n−1)

 ,
and b = (1, π′(S1

1), . . . , π′(Sm
1 ))T ∈ Rm+1.

By Farkas’ lemma (Theorem 1.3), the system above is compatible if and only if
the following system is not compatible{

AT y ≤ 0,
bT y > 0,

where y = (λ0, . . . , λm)T ∈ Rm+1 is an unknown column vector. It holds that
AT y ∈ R2n−1 and, for i = 1, . . . , 2n − 1, the ith component of constraint AT y ≤ 0 is

λ0 +
m∑

k=1
λk[S̃k

1 ]L(Bi) ≤ 0,

moreover, subtracting the positive quantity bT y we get
m∑

k=1
λk
(
[S̃k

1 ]L(Bi) − π′(Sk
1 )
)
< 0.
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Thus, condition (i) is equivalent to the existence of i ∈ {1, . . . , 2n − 1} such that the
above inequality does not hold, which, in turn, is equivalent to (ii).

The above theorem says that, working under partially resolving uncertainty, in
order to have a discounted totally monotone Choquet expectation representation
of the lower price assessment π′ independent of the “real-world” belief function of
the market, it is necessary and sufficient that every portfolio λ does not give rise
to a sure loss or a sure gain over U . In other terms, the above condition can be
considered a generalized (one-step) avoiding Dutch book condition, working under
partially resolving uncertainty.
Note 11: Theorem 4.4 specializes results of Jouini and Kallal (1995a) summarized
in Theorem 3.1 in a finite setting. Given that the generalized no-Dutch book condition
(ii) holds, there exists a belief function B̂el that extends the price assessment to RΩ

and gives rise to the lower pricing rule π : RΩ → R such that π(·) = (1 + r)−1C
B̂el

(·).
Each belief function B̂el defines its conjugate plausibility function P̂ l, with respect
to which we define an upper pricing rule
π(X) = (1 + r)−1C

P̂ l
(X), for all X ∈ RΩ. Considering that M is the convex

cone generated by G, and X = RΩ, then π′ gives rise to a restriction of π on
M, that is analogue to the (upper) pricing rule considered by Jouini and Kallal
(1995a). Each belief/plausibility function implies the existence of a non-empty
core(B̂el) ≡ core(P̂ l) = {P ∈ P(Ω,F) : P ≥ B̂el} ≠ ∅, that is equivalent to say
that there exists (at least) a probability measure P such that the expectation with
respect to that is dominated by the upper expectation

(1 + r)−1EQ(X) ≤ (1 + r)−1C
P̂ l

(X) = π′(X), (4.12)

for all X ∈ M.
The functional π′ is sublinear over M thanks to the properties of the Choquet

integral, then condition (b) of Theorem 3.1 is satisfied. It follows that our B̂el
satisfies the no free-lunch condition in Definition 3.1.

Nevertheless, the condition (ii) of Theorem 4.4 does not assure that B̂el ∼ Bel,
that is we do not have any guarantee that B̂el(A) > 0, for every A ∈ U .

We stress that, like in the classical no-arbitrage theory (see Note 3), the request
of positivity of B̂el is a desideratum in the context of pricing since it assures that a
security with a non-negative and non-null payoff at time t = 1 will have a positive
lower price at time t = 0. Hence, we provide a necessary and sufficient condition for
the existence of an equivalent belief function positive on the entire U that can be
dubbed “risk-neutral” belief function. Besides equivalence between B̂el and Bel no
other relation is asked to hold.

Such theorem is the analogue of the first fundamental theorem of asset pricing,
formulated in the Dempster-Shafer theory of evidence.

Theorem 4.5
The following conditions are equivalent:

(i) there exists a belief function B̂el ∼ Bel, i.e., B̂el(A) > 0, for every A ∈ U ,
such that C

B̂el
(S̃k

1 ) = π′(Sk
1 ), for k = 1, . . . ,m;
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(ii) for every λ = (λ0, . . . , λm)T ∈ Rm+1 none of the following conditions holds:

(a) Zλ({i}) = 0, for i = 1, . . . , n, Zλ(B) ≥ 0, for all B ∈ U \ {{i} : i ∈ Ω}
and πλ < 0;

(b) Zλ({i}) ≥ 0, for i = 1, . . . , n, with at least a strict inequality, Zλ(B) ≥ 0,
for all B ∈ U \ {{i} : i ∈ Ω}, and πλ ≤ 0.

Proof. Since every belief function is completely characterized by its Möbius inverse,
statement (i) is equivalent to the existence of a non-negative function µ̂ : F → R
such that

µ̂(∅) = 0,
∑
A∈F

µ̂(A) = 1, and B̂el(A) =
∑

B⊆A

µ̂(B), for every A ∈ F ,

further satisfying µ̂({i}) > 0, for all i ∈ Ω, and

C
B̂el

(S̃k
1 ) =

∑
B∈U

[S̃k
1 ]L(B)µ̂(B) = π′(Sk

1 ), for k = 1, . . . ,m.

Fix an enumeration of U = {B1, . . . , B2n−1} such that Bi = {i}, for i = 1, . . . , n,
and consider the matrices A ∈ R(2(m+1)+2n−(n+1))×(2n−1) and B ∈ Rn×(2n−1) defined
as

A =
(

C
O1| − I(2n−(n+1))

)
and B = (−In |O2) ,

where C ∈ R2(m+1)×(2n−1) is defined as

C =



1L
Ω(B1) · · · 1L

Ω(B2n−1)
−1L

Ω(B1) · · · −1L
Ω(B2n−1)

[S̃1
1 ]L(B1) · · · [S̃1

1 ]L(B2n−1)
−[S̃1

1 ]L(B1) · · · −[S̃1
1 ]L(B2n−1)

...
...

[S̃m
1 ]L(B1) · · · [S̃m

1 ]L(B2n−1)
−[S̃m

1 ]L(B1) · · · −[S̃m
1 ]L(B2n−1)


,

in which I(2n−(n+1)) ∈ R(2n−(n+1))×(2n−(n+1)) and In ∈ Rn×n are identity matrices,
and O1 ∈ R(2n−(n+1))×n and O2 ∈ Rn×(2n−(n+1)) are null matrices. Take the vector

b = (1,−1, π′(S1
1),−π′(S1

1), . . . , π′(Sm
1 ),−π′(Sm

1 ), 0, . . . , 0)T

with b ∈ R(2(m+1)+2n−(n+1)) and consider the unknown vector

x = (µ̂(B1), . . . , µ̂(B2n−1))T

with x ∈ R2n−1. Condition (i) turns out to be equivalent to the solvability of the
following system {

Ax ≤ b,
Bx < 0.

By the Motzkin’s theorem of the alternative (Theorem 1.1) the above system is
solvable if and only if for every y = (y0, y

′
0, y1, y

′
1, . . . , ym, y

′
m, αn+1, . . . , α2n−1)T ∈

R(2(m+1)+2n−(n+1)) and z = (z1, . . . , zn)T ∈ Rn with y ≥ 0 and z ≥ 0, none of the
following conditions holds:
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• AT y + BT z = 0, z = 0 and bT y < 0;

• AT y + BT z = 0, z ̸= 0 and bT y ≤ 0.

In turn, setting λk = yk−y′
k, for k = 0, . . . ,m, and considering ỹ ∈ R((m+1)+2n−(n+1)),

Ã ∈ R((m+1)+2n−(n+1))×(2n−1) and b̃ ∈ R((m+1)+2n−(n+1)), with

ỹ = (λ0, . . . , λm, αn+1, . . . , α2n−1)T such that αn+1, . . . , α2n−1 ≥ 0,

Ã =
(

C̃
O1| − I(2n−(n+1))

)
and b̃ = (1, π′(S1

1), . . . , π′(Sm
1 ), 0, . . . , 0)T ,

where C̃ ∈ R(m+1)×(2n−1) is defined as

C̃ =


1L

Ω(B1) · · · 1L
Ω(B2n−1)

[S̃1
1 ]L(B1) · · · [S̃1

1 ]L(B2n−1)
...

...
[S̃m

1 ]L(B1) · · · [S̃m
1 ]L(B2n−1)

 ,

the above conditions can be rewritten as:

• ÃT ỹ + BT z = 0, z = 0 and b̃T ỹ < 0;

• ÃT ỹ + BT z = 0, z ̸= 0 and b̃T ỹ ≤ 0.

Denoting λ = (λ0, . . . , λm)T ∈ Rm+1, we have that

(ÃT ỹ + BT z)i =
{
Zλ(Bi) − zi, for i = 1, . . . , n,
Zλ(Bi) − αi, for i = n+ 1, . . . , 2n − 1,

and further b̃T ỹ = πλ.
Hence, for every λ = (λ0, . . . , λm)T ∈ Rm+1, the above conditions can be

rewritten as

(a’) Zλ({i}) = 0, for i = 1, . . . , n, Zλ(B) ≥ 0, for all B ∈ U \ {{i} : i ∈ Ω} and
πλ < 0;

(b’) Zλ({i}) ≥ 0, for i = 1, . . . , n, with at least a strict inequality, Zλ(B) ≥ 0, for
all B ∈ U \ {{i} : i ∈ Ω}, and πλ ≤ 0.

To avoid heavy notation, we will sometimes omit the term "one-step" referred to
the generalized arbitrage and generalized Dutch book, since we are always working
in one-period setting, hence it is implied.

Recall that we interpret πλ as the hypothetical price of the portfolio λ as if we
were in a situation of completely resolving uncertainty. In this light, conditions
(ii.a) and (ii.b) of previous theorem can be interpreted as two generalized forms
of (one-step) arbitrage, working under partially resolving uncertainty. Avoiding
condition (ii.a) assures that we cannot find a portfolio λ whose hypothetical price πλ

is negative (that is we are paid for it), resulting in a uniformly non-negative payoff
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Zλ in all the possible events in U , with null value on the singletons (i.e., on those
events where we have completely resolving uncertainty). Avoiding condition (ii.b)
assures that we cannot find a portfolio λ whose hypothetical price πλ is negative or
null (that is we are paid or we do not pay anything for it), resulting in a uniformly
non-negative payoff Zλ in all the possible events in U , with at least a strictly positive
value on the singletons (i.e., on those events where we have completely resolving
uncertainty).

It is immediate to see that the generalized (one-step) no-arbitrage principle
expressed by statement (ii) of Theorem 4.5 implies the generalized (one-step) avoiding
Dutch book condition in statement (ii) of Theorem 4.4. In particular, if a portfolio
λ satisfies condition (ii.a) of Theorem 4.5 then the corresponding gain Gλ is such
that min

B∈U
Gλ(B) > 0, thus violating the generalized avoiding Dutch book condition.

Note 12: The generalized (one-step) no-arbitrage principle of Theorem 4.5 is
actually weaker than the classical no-arbitrage principle in one-step setting (Definition
2.4). This is due to the fact that if a portfolio λ gives rise to a generalized arbitrage
of the form (ii.a) or (ii.b) then it also gives rise to a classical arbitrage, while
a portfolio λ giving rise to a classical arbitrage does not generally give rise to a
generalized arbitrage, as we show in the following Example 4.6.

Let us stress that the price functional determined by the discounted Choquet
expectation with respect to a B̂el with Möbius inverse µ̂ as in Theorem 4.5 is
generally not linear. In particular, we have that

∑
B∈U

Zλ(B)µ̂(B) =
∑
B∈U

(
λ0 +

m∑
k=1

λk[S̃k
1 ]L(B)

)
µ̂(B) (4.13)

= λ0 +
m∑

k=1
λk

(∑
B∈U

[S̃k
1 ]L(B)µ̂(B)

)

= λ0 +
m∑

k=1
λkC

B̂el
(S̃k

1 ) = λ0 +
m∑

k=1
λkπ′(Sk

1 ) = πλ.

Nevertheless, considering the random variable λ0 +
∑m

k=1 λ
kS̃k

1 ∈ RΩ, though
C

B̂el

(
λ0 +

∑m
k=1 λ

kS̃k
1

)
= λ0 + C

B̂el

(∑m
k=1 λ

kS̃k
1

)
, in general we have that

C
B̂el

(
m∑

k=1
λkS̃k

1

)
̸=

m∑
k=1

C
B̂el

(λkS̃k
1 ) and

m∑
k=1

C
B̂el

(λkS̃k
1 ) ̸=

m∑
k=1

λkC
B̂el

(S̃k
1 ).

Clearly, in the above formulas we have equalities in case B̂el reduces to a probability
measure. On the other hand, in the particular case S̃h

1 , S̃
k
1 are comonotone and

λ1, λ2 ≥ 0, it holds that (see (Ch.6), p.19)

C
B̂el

(
λ1S̃h

1 + λ2S̃k
1

)
= λ1C

B̂el
(S̃h

1 ) + λ2C
B̂el

(S̃k
1 ) = λ1π′(Sh

1 ) + λ2π′(Sk
1 ).

Furthermore, denoting by P̂ l the dual plausibility function of B̂el, we have that for
a generic random variable X ∈ RΩ, it holds that

(1 + r)−1C
B̂el

(X) ≤ (1 + r)−1C
P̂ l

(X), (4.14)
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i.e., the two values above should be interpreted as lower and upper prices.
The following example shows a lower price assessment violating the generalized

(one-step) no-arbitrage principle expressed in Theorem 4.5.

Example 4.5 Let Ω = {1, 2, 3, 4}, F = P(Ω) and consider three contracts whose
payoffs in euros at time t = 1 are

Ω 1 2 3 4
S1

1 10 10 20 20
S2

1 0 10 0 10
S3

1 10 30 20 40

Assume that the lower prices at time t = 0 are fixed to π′(S1
1) = 15, π′(S2

1) = 5 and
π′(S3

1) = 20 and that the risk-free interest rate is r = 0, so we have S̃k
1 = Sk

1 , for
k = 1, 2, 3.

This lower price assessment violates the generalized no-arbitrage principle of
Theorem 4.5 as, in particular, it violates the generalized avoiding Dutch book condition
expressed in Theorem 4.4. Indeed, every belief function B̂el on F induces a Choquet
expectation functional on RΩ which is positively homogeneous and superadditive,
therefore, assuming C

B̂el
(Sk

1 ) = π′(Sk
1 ), for k = 1, 2, 3, it should be, as S3

1 = S1
1 +2S2

1 ,

C
B̂el

(S3
1) = C

B̂el
(S1

1 + 2S2
1) ≥ C

B̂el
(S1

1) + 2C
B̂el

(S2
1) = 25.

Denoting U = F \ {∅} and omitting braces and commas to have a lighter set
notation, if we consider the portfolio λ = (0,−1,−2, 1)T we have that πλ = −5 and

U 1 2 3 4 12 13 14 23 24 34 123 124 134 234 1234
[S1

1 ]L 10 10 20 20 10 10 10 10 10 20 10 10 10 10 10
[S2

1 ]L 0 10 0 10 0 0 0 0 10 0 0 0 0 0 0
[S3

1 ]L 10 30 20 40 10 10 10 20 30 20 10 10 10 20 10
Zλ 0 0 0 0 0 0 0 10 0 0 0 0 0 10 0
Gλ 5 5 5 5 5 5 5 15 5 5 5 5 5 15 5

Hence, since min
B∈U

Gλ(B) > 0, the generalized avoiding Dutch book condition is

not satisfied, therefore there is no belief function B̂el such that C
B̂el

agrees with
the assessed lower prices. Moreover, the same λ shows that we have a generalized
arbitrage in the form of (ii.a) of Theorem 4.5, since Zλ({i}) = 0, for i = 1, . . . , 4,
Zλ(B) ≥ 0, for all B ∈ U \ {{i} : i ∈ Ω} and πλ < 0.

On the other hand, taking the portfolio λ′ = (0,−2,−10, 4)T we have that πλ′ = 0
and

U 1 2 3 4 12 13 14 23 24 34 123 124 134 234 1234
Zλ′ 20 0 40 20 20 20 20 60 0 40 20 20 20 60 20

therefore, we have a generalized arbitrage in the form of (ii.b) of Theorem 4.5, since
Zλ′({i}) ≥ 0, for i = 1, . . . , 4, with at least a strict inequality, Zλ′(B) ≥ 0, for all
B ∈ U \ {{i} : i ∈ Ω} and πλ′ ≤ 0.

♦
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The following example shows a lower price assessment violating the classical
(one-step) no-arbitrage principle but not the (one-step) generalized no-arbitrage
principle.

Example 4.6 Let Ω, F , r, and S1
1 , S

2
1 , S

3
1 as in Example 4.5. Consider the lower

price assessment π′(S1
1) = 15, π′(S2

1) = 5 and π′(S3
1) = 26. Such an assessment

violates the classical (one-step) no-arbitrage principle, indeed, every probability
measure Q on F gives rise to a positive, linear and normalized functional EQ on RΩ.
Hence, assuming EQ(Sk

1 ) = π′(Sk
1 ), for k = 1, 2, 3, it should be, as S3

1 = S1
1 + 2S2

1 ,

EQ(S3
1) = EQ(S1

1 + 2S2
1) = EQ(S1

1) + 2EQ(S2
1) = 25.

On the other hand, there exists a belief function B̂el on F which is strictly
positive on F \ {∅}, whose corresponding Choquet expectation functional C

B̂el
agrees

with the given lower price assessment. For instance, we can take the B̂el whose
Möbius inverse µ̂ is such that

U 1 2 3 4 12 13 14 23 24 34 123 124 134 234 1234
[S1

1 ]L 10 10 20 20 10 10 10 10 10 20 10 10 10 10 10
[S2

1 ]L 0 10 0 10 0 0 0 0 10 0 0 0 0 0 0
[S3

1 ]L 10 30 20 40 10 10 10 20 30 20 10 10 10 20 10
µ̂ 2

10
1
10

1
10

4
10

1
10 0 0 1

10 0 0 0 0 0 0 0

For such a B̂el we have that

C
B̂el

(S1
1) = 10 · 2

10 + (10 + 20 + 10 + 10) · 1
10 + 20 · 4

10 = 15,

C
B̂el

(S2
1) = 10 · 1

10 + 10 · 4
10 = 5,

C
B̂el

(S3
1) = 10 · 2

10 + (30 + 20 + 10 + 20) · 1
10 + 40 · 4

10 = 26.

Hence, by Theorem 4.5 we cannot find a portfolio λ giving rise to a gener-
alized arbitrage in the form of (ii.a) or (ii.b). On the other hand, the portfolio
λ = (0, 1, 2,−1)T gives rise to a classical arbitrage since πλ = −1 < 0 and

Ω 1 2 3 4
S1

1 10 10 20 20
S2

1 0 10 0 10
S3

1 10 30 20 40
λ0 +

∑3
k=1 λ

kSk
1 0 0 0 0

♦

Remark 4. A non-linear pricing rule defined as a discounted Choquet expectation
with respect to a convex (concave) capacity has been characterized in literature as we
summarized in Section 3.1.2. In particular, Chateauneuf et al. (1996); Cerreia-Vioglio
et al. (2015); Chateauneuf and Cornet (2022b) proposed a Choquet pricing rule
satisfying a form of put-call parity. Their functional can be interpreted as an upper
pricing rule and those proposed by Cerreia-Vioglio et al. (2015) and Chateauneuf and
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Cornet (2022b) allow to model frictions in the market. Our model results to be a more
specific case of the quoted works since they propose an axiomatic characterization
of the non-linear pricing rule without giving a normative justification in terms of
no-arbitrage condition of the proposed pricing rule. On the contrary, our generalized
one-step no-arbitrage condition has a clear interpretation like the classical one (see
Section 2.1) and it is equivalent to the existence of a (possibly not unique) completely
monotone discounted Choquet expectation that can be interpreted as a lower pricing
rule still allowing for frictions in the market.

The completeness of the market is, generally, not achieved, since Theorem 4.5 does
not guarantee the uniqueness of B̂el. However, we stress that, if {1B : B ∈ U} ⊆ G
and π′ : G → R satisfies the generalized no-arbitrage principle, then there exists a
unique B̂el, positive on F \ {∅}, such that the corresponding discounted Choquet
expectation functional on RΩ agrees with π′. The payoffs in {1B : B ∈ U} can be
considered as generalized Arrow-Debreu securities (see, e.g., Dybvig and Ross, 1989;
Pliska, 1997; Cerný, 2009), working under partially resolving uncertainty. Indeed,
the family of lower prices {π′(1B) : B ∈ U} uniquely determines B̂el since, for every
B ∈ U , we have that

π′(1B) = (1 + r)−1B̂el(B), (4.15)

therefore such lower prices can be dubbed generalized Arrow-Debreu lower prices.
Note 13: The wider framework of 2-monotone capacities could be considered instead
of Dempster-Shafer theory. The reason why we stick to Dempster-Shafer theory is
that the generalized one-step no-arbitrage condition we get has a clear interpretation
and its connection to the classical setting is evident. Like the classical no-arbitrage
principle, our generalized no-arbitrage principle has a normative purpose: respecting
it we derive a (non-necessarily unique) lower pricing rule that allows us to price
securities taking care of bid-ask spreads. Besides equivalence, B̂el has no other
relation with Bel nor with market agents’ utility functions as it is only determined by
the generalized no-arbitrage principle. Switching to the 2-monotone setting, though
mathematically possible, makes the no-arbitrage condition much more involved and
its interpretation is difficult to justify from a normative point of view.

4.4 Equivalent inner approximating Choquet martingale
belief functions

We turn back to the lower envelope Q of the class Q of equivalent martingale
measures induced by the n-nomial market model characterized in Section 4.1. Recall
that in this context we have only one risky asset whose price process is {S1

0 , S
1
1}.

In what follows we assume that the lower price of the risky asset is π′(S1
1) = S1

0 ,
which is justified by the fact that min

Q∈cl(Q)
(1 + r)−1EQ(S1

1) = S1
0 . Moreover, here

the “real-world” probability P can play the role of the “real-world” belief function
introduced in Section 4.3.

As already pointed out in Corollary 4.1, Q is a belief function that we know
is not positive over U , for n > 2. Moreover, we have that assessing π′(S1

1) = S1
0

is generally not consistent with the lower pricing rule obtained as the discounted
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Choquet expectation with respect to Q. Indeed, if we define π′ : G → R on
G = {S1

1} ∪ {1B : B ∈ U} such that

π′(S1
1) = S1

0 and π′(1B) = (1 + r)−1Q(B), for all B ∈ U , (4.16)

we get that π′ violates both the generalized avoiding Dutch book condition and the
generalized no-arbitrage principle, as Example 4.7 shows.

Example 4.7 Consider Ω = {1, 2, 3, 4}, m1 = 4, m2 = 2, m3 = 1
2 , m4 = 1

4 ,
1 + r = 1, Q and Q of Example 4.1. Let S1

0 = 100 and take the lower price
assessment π′ on G = {S1

1} ∪ {1B : B ∈ U} defined as in (4.16).
Denote by λS0

, λS1 the numbers of units of the risk-free and risky assets, and
by λi, λij , λijk, λ1234 those associated with 1{i},1{i,j},1{i,j,k},1Ω, respectively, in a
portfolio λ on G. If we take

λS0
λS1

λ1 λ2 λ3 λ4 λ12 λ13 λ14 λ23 λ24 λ34 λ123 λ124 λ134 λ234 λ1234

0 − 4
25 7 10 −10 −10 8 10 5 −1 −5 −10 5 10 9 −5 10

we get that πλ = −7 and further

U 1 2 3 4 12 13 14 23 24 34 123 124 134 234 1234
Zλ 0 0 0 0 1 26 30 1 6 0 7 16 15 1 6

In turn, since πλ < 0 and Gλ is defined by (4.11), it follows that min
B∈U

Gλ(B) > 0,
thus λ violates the avoiding Dutch book condition. We also notice that this portfolio
gives rise to a generalized arbitrage of type (ii.a) in Theorem 4.5, since Zλ({i}) = 0,
for i = 1, . . . , 4, Zλ(B) ≥ 0, for all B ∈ U \ {{i} : i ∈ Ω} and πλ < 0.

We stress that π′ fails the generalized avoiding Dutch book condition (and, there-
fore, the generalized no-arbitrage principle) since S1

1 is mispriced as it should be
π′(S1

1) = CQ(S1
1) = 5400

105 to be consistent with the generalized Arrow-Debreu lower
prices.

Furthermore, if we take the portfolio λ̃ on G with entries

λ̃S0
λ̃S1

λ̃1 λ̃2 λ̃3 λ̃4 λ̃12 λ̃13 λ̃14 λ̃23 λ̃24 λ̃34 λ̃123 λ̃124 λ̃134 λ̃234 λ̃1234

0 −1
5 10 10 10 10 10 10 10 10 10 6 10 10 10 −5 10

we get that πλ̃ = 0 and

U 1 2 3 4 12 13 14 23 24 34 123 124 134 234 1234
Zλ̃ 0 25 51 56 0 30 35 15 20 16 10 15 15 0 5

It is easily seen that the portfolio λ̃ gives rise to a generalized arbitrage of type (ii.b)
in Theorem 4.5, since Zλ̃({i}) ≥ 0, for i = 1, . . . , 4, with at least a strict inequality,
Zλ̃(B) ≥ 0, for all B ∈ U \ {{i} : i ∈ Ω}, and πλ̃ ≤ 0.

♦

Let us stress that another problem related to Q is its non-positivity on U . To
see this, let G′ = {1B : B ∈ U} and consider the restriction of the lower price
assessment (4.16) defined as π′′ = π′

|G′ . In this case, since the lower price assessment is
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consistent with the discounted Choquet expectation with respect to Q, no generalized
arbitrage in the form of (ii.a) in Theorem 4.5 can be built, as it would imply the
violation of the generalized avoiding Dutch book condition. On the other hand,
a generalized arbitrage in the form of (ii.b) in Theorem 4.5 can be found as the
following Example 4.8 shows.

Example 4.8 Let Ω, m1, m2, m3, m4, 1 + r, Q, Q, and S1
0 be defined as in

Example 4.7. Denote by λ̂ a portfolio on G′, whose components are λ̂S0, and
λ̂i, λ̂ij , λ̂ijk, λ̂1234, referring to 1{i},1{i,j},1{i,j,k},1Ω, respectively. If we take

λ̂S0
λ̂1 λ̂2 λ̂3 λ̂4 λ̂12 λ̂13 λ̂14 λ̂23 λ̂24 λ̂34 λ̂123 λ̂124 λ̂134 λ̂234 λ̂1234

0 10 10 10 10 −10 10 10 10 10 −10 −10 10 10 −10 10

we get that πλ̂ = 0 and also

U 1 2 3 4 12 13 14 23 24 34 123 124 134 234 1234
Zλ̂ 40 20 20 40 0 20 40 0 20 0 0 20 20 0 10

One immediately observes that the portfolio λ̂ gives rise to a generalized arbitrage of
type (ii.b) in Theorem 4.5.

♦

The previous examples show that if we seek a positive belief function whose
discounted Choquet expectation is consistent with the generalized no-arbitrage
principle and the assessment π′(S1

1) = S1
0 , then we must depart from Q.

It is easily seen that every equivalent martingale measure Q ∈ Q is a belief
function, positive on U , nevertheless, the choice of a particular Q0 in the class Q is a
problematic task, as one needs to provide a reasonable choice criterion. For instance,
a possible choice is Q0 = 1

|ext(cl(Q))|
∑

Q∈ext(cl(Q))Q, which belongs to Q since it is a
strict convex combination of elements of ext(cl(Q)).

Once an equivalent martingale measure Q0 has been chosen, some of the infor-
mation contained in the class Q can be preserved if we consider (see, e.g., Huber,
1981; Walley, 1991) the ϵ-contamination of Q0 with respect to cl(Q), where ϵ ∈ (0, 1).
This amounts to consider the closed subset of Q given by

Qϵ = {Q ∈ Q : Q = (1 − ϵ)Q0 + ϵQ′, Q′ ∈ cl(Q)}, (4.17)

whose lower envelope Q
ϵ

= min Qϵ is defined, for every A ∈ F , as

Q
ϵ
(A) = (1 − ϵ)Q0(A) + ϵQ(A). (4.18)

In particular, since Q
ϵ

is the strict convex combination of the two belief functions
Q0 and Q, we have that Q

ϵ
is a belief function which, in turn, is strictly positive

over U , as Q0 is.
The idea is to directly use Q

ϵ
in order to derive a lower pricing rule through a

discounted Choquet expectation. In the light of previous section, the obtained lower
pricing rule would be acceptable if it satisfied the generalized (one-step) no-arbitrage
condition expressed by Theorem 4.5.
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The following Example 4.9 shows that, even if Q
ϵ

is a positive belief function, the
corresponding lower pricing rule obtained as discounted Choquet expectation is not
consistent with π′(S1

1) = S1
0 . In particular, this means that we can build portfolios

resulting in generalized arbitrage opportunities and generalized Dutch books. Indeed,
the lower pricing rule with respect to Q

ϵ
can be expressed as a convex combination

of the discounted Choquet expectations with respect to Q and Q0. The problem
with Q

ϵ
is that cl(Qϵ) is strictly contained in core(Q

ϵ
) (as discussed in (Ch.8) p.19).

Example 4.9 Consider Ω = {1, 2, 3, 4}, m1 = 4, m2 = 2, m3 = 1
2 , m4 = 1

4 ,
1 + r = 1, Q and Q of Example 4.1, and let Q0 be an arbitrary element of Q. Take
ϵ ∈ (0, 1) and consider the ϵ-contamination class of Q0 with respect to cl(Q), whose
lower envelope is Q

ϵ
= (1 − ϵ)Q0 + ϵQ.

The lower pricing rule obtained as the discounted Choquet expectation with respect
Q

ϵ
is not consistent with the assessment π′(S1

1) = S1
0 as it should be

(1 + r)−1CQ
ϵ
(S1

1) = S1
0 ,

which is equivalent, since S1
0 = s > 0, to

CQ
ϵ

(
S1

1
S1

0

)
= 1 + r.

Nevertheless, due to property (Ch.2) (p.19) of the Choquet integral, we have that

CQ
ϵ

(
S1

1
S1

0

)
= C(1−ϵ)Q0+ϵQ

(
S1

1
S1

0

)
= (1 − ϵ)CQ0

(
S1

1
S1

0

)
+ ϵCQ

(
S1

1
S1

0

)

= (1 − ϵ) + ϵ
54
105 < 1 + r,

since CQ

(
S1

1
S1

0

)
= 54

105 .
♦

Note 14: The result in Example 4.9 does not depend on Q0. Indeed, for every choice
of Q0 ∈ Q, then Q

ϵ
gives rise to a lower pricing rule that assigns positive lower price

to every security with non-negative and non-null payoff but is not consistent with
π′(S1

1) = S1
0 . Indeed, the issue of ϵ-contamination in this case is due to the fact that

cl(Q) is strictly contained in core(Q), so we have a situation like that described in
property (Ch.8) (p.19) for the corresponding Choquet expectation CQ.

A possible way to keep the assessment π′(S1
1) = S1

0 and fulfill the generalized
no-arbitrage principle is to ϵ-contaminate Q0 (Huber, 1981; Moral, 2018) with an
inner approximation B̂el of Q, similarly to the approach of Miranda et al. (2022),
requiring, in addition, to satisfy the generalized avoiding Dutch book condition. We
would define, for ϵ ∈ (0, 1),

B̂elϵ = (1 − ϵ)Q0 + ϵB̂el. (4.19)

The belief functions B̂el and B̂elϵ will be referred to as inner approximating one-step
Choquet martingale belief function and equivalent inner approximating one-step
Choquet martingale belief function, according to the following definition.
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Definition 4.2 A belief function B̂el on F is called:

• an inner approximation for Q if, for every A ∈ F , it holds that

Q(A) ≤ B̂el(A);

• a one-step Choquet martingale belief function if

(1 + r)−1C
B̂el

(S1
1) = S1

0 ;

• an inner approximating one-step Choquet martingale belief function
for Q if it is both an inner approximation for Q and a one-step Choquet
martingale belief function;

• an equivalent inner approximating one-step Choquet martingale
belief function for Q if it is an inner approximating one-step Choquet
martingale belief function for Q and B̂el ∼ P .

Our goal is to select a belief function B̂el ∈ B(Ω,F) which is an inner approxi-
mating one-step Choquet martingale belief function for Q and is closest to Q with
respect to a suitable distance d defined on the set B(Ω,F).
Note 15: Our approach differs from that of Montes et al. (2018); Miranda et al.
(2021); Montes et al. (2019) since they look for an outer approximation, i.e., a
belief function such that B̂el ≤ Q, where comparisons are pointwise on F . On the
contrary, we follow the approach of Miranda et al. (2022), where they look for a
2-monotone and belief function inner approximating a (coherent) lower probability.
Our choice of an inner approximation, rather than an outer approximation, is due
to the fact that the latter would imply a greater dilation in the price interval with
respect to the inner approximation. Moreover, an outer approximation B̂el would
induce core(B̂el) that contains core(Q), and we already know that cl(Q) ⊂ core(Q),
so the martingale property for the stock cannot be enforced.

Moreover, since the entire focus of the study is under Dempster-Shafer uncertainty
(due to the fact that Q is a belief function), the aim is to arrive to a consistent
lower pricing rule inside of the same framework. However, the same process could
be carried out in the more general framework of 2-monotone capacities, as shown in
Montes et al. (2018, 2019).

The trivial solution to the problem of inner approximating Q should be taking a
Q ∈ cl(Q). It is easy to see that every Q ∈ cl(Q) is an inner approximating one-step
Choquet martingale belief function for Q, while every Q ∈ Q is an equivalent inner
approximating one-step Choquet martingale belief function for Q. Thus, a possible
procedure would be to choose a probability measure Q ∈ Q. Nevertheless, this
procedure suffers from the well-known problem of providing a criterion to choose
a Q ∈ Q and further it does not allow to model frictions in the market as bid-ask
spreads. Hence, we avoid this trivial case and look for a non-additive equivalent
inner approximating one-step Choquet martingale belief function.
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In order to choose an approximation, following Montes et al. (2018, 2019);
Miranda et al. (2022), two possible choices for the distance d are

d1(Bel1, Bel2) =
∑
A∈F

|Bel1(A) −Bel2(A)|, (4.20)

d2(Bel1, Bel2) =
∑
A∈F

(Bel1(A) −Bel2(A))2, (4.21)

that can be seen as distances induced by the L1 and L2 norms on [0, 1]F . In
particular, d2 is the squared Euclidean distance.

Thus, for a fixed distance d, an optimal inner approximating one-step Cho-
quet martingale belief function B̂el for Q can be found by solving the following
optimization problem:

minimize d(B̂el,Q)
subject to:

B̂el(A) ≥ Q(A), for every A ∈ F ,
(1 + r)−1C

B̂el
(S1

1) = S1
0 ,

B̂el ∈ B(Ω,F).

(4.22)

The searched B̂el is completely characterized by its Möbius inverse µ̂ that must
satisfy µ̂(∅) = B̂el(∅) = Q(∅) = 0. Moreover, since S1

0 = s0 > 0, it holds that

(1 + r)−1C
B̂el

(S1
1) = S1

0

is equivalent to

C
B̂el

(
S1

1
S1

0

)
= 1 + r,

where

C
B̂el

(
S1

1
S1

0

)
=
∑
B∈U

(
S1

1
S1

0

)L

(B)µ̂(B) =
n∑

i=1
mi

 ∑
{i}⊆B⊆{1,...,i}

µ̂(B)

 .
Hence, the above problem (4.22) is equivalent to the following optimization

problem with linear constraints, whose unknowns are the values of µ̂ on U :

minimize d(B̂el,Q)

subject to:

∑
∅̸=B⊆A

µ̂(B) ≥ Q(A), for every A ∈ U ,

n∑
i=1

mi

( ∑
{i}⊆B⊆{1,...,i}

µ̂(B)
)

= 1 + r,

∑
B∈U

µ̂(B) = 1,

µ̂(B) ≥ 0, for every B ∈ U .

(4.23)
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It is easily seen that every Q ∈ cl(Q) gives rise to a Möbius inverse that satisfies
all the constraints in problem (4.23). Hence, the feasible region of problem (4.23) is
a non-empty convex compact subset of R2n−1, endowed with the product topology.

We notice that, as already pointed out in Montes et al. (2018, 2019), if we
consider the distance d1 and take into account that B̂el ≥ Q, we have that

d1(B̂el, Q) =
∑
A∈U

 ∑
∅≠B⊆A

µ̂(B)

−Q(A)

 (4.24)

=
∑
A∈U

2|Ω\A|µ̂(A) −
∑
A∈U

Q(A),

where
∑

A∈U
Q(A) is a constant, since Q is given. Therefore, problem (4.23) reduces

to a linear programming problem.
The following example shows the computation of an equivalent inner approxi-

mating one-step Choquet martingale belief function, relying on the distance d1.

Example 4.10 Consider Ω = {1, 2, 3, 4}, m1 = 4, m2 = 2, m3 = 1
2 , m4 = 1

4 ,
1 + r = 1, and Q and Q of Example 4.1.

An inner approximating one-step Choquet martingale belief function B̂el mini-
mizing the d1 distance is reported below

F ∅ 1 2 3 4 12 13 14 23 24 34 123 124 134 234 Ω

Q 0 0 0 0 0 15
105 0 0 0 0 60

105
21
105

15
105

60
105

84
105 1

µ 0 0 0 0 0 15
105 0 0 0 0 60

105
6

105 0 0 24
105 0

µ̂ 0 21
105 0 0 0 0 0 0 0 0 60

105 0 0 0 24
105 0

B̂el 0 21
105 0 0 0 21

105
21
105

21
105 0 0 60

105
21
105

21
105

81
105

84
105 1

for which we have that d1(B̂el,Q) = 96
105 .

Define Q0 = 1
|ext(cl(Q))|

∑
Q∈ext(cl(Q))Q, whose values are reported below

F ∅ 1 2 3 4 12 13 14 23 24 34 123 124 134 234 Ω

Q1,3 0 15
105 0 90

105 0 15
105 1 15

105
90
105 0 90

105 1 15
105 1 90

105 1
Q1,4 0 21

105 0 0 84
105

21
105

21
105 1 0 84

105
84
105

21
105 1 1 84

105 1
Q2,3 0 0 35

105
70
105 0 35

105
70
105 0 1 35

105
70
105 1 35

105
70
105 1 1

Q2,4 0 0 45
105 0 60

105
45
105 0 60

105
45
105 1 60

105
45
105 1 60

105 1 1

Q0 0 36
420

80
420

160
420

144
420

116
420

196
420

180
420

240
420

224
420

304
420

276
420

260
420

340
420

384
420 1

Finally, for ϵ = 1
2 , define B̂elϵ = 1

2Q0 + 1
2B̂el, whose values are reported below

F ∅ 1 2 3 4 12 13 14 23 24 34 123 124 134 234 Ω

B̂elϵ 0 60
420

40
420

80
420

72
420

100
420

140
420

132
420

120
420

112
420

272
420

180
420

172
420

332
420

360
420 1

µ̂ϵ 0 60
420

40
420

80
420

72
420 0 0 0 0 0 120

420 0 0 0 48
420 0
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We have that B̂elϵ is an equivalent inner approximating one-step Choquet martingale
belief function for Q, furthermore, it is the lower envelope of the class of probability
measures on F

Q̂ϵ = {Q ∈ P(Ω,F) : Q = (1 − ϵ)Q0 + ϵQ′, Q′ ∈ core(B̂el)}.

A direct computation shows that

C
B̂elϵ

(
S1

1
S1

0

)
= min

Q∈Q̂ϵ

EQ

(
S1

1
S1

0

)
= 1 + r.

♦

The use of d1 has been justified in Miranda et al. (2021, 2022); Montes et al.
(2018, 2019) since this distance is the most intuitive as it measures the imprecision
added when we replace Q with Bel. Despite using d1 we get a linear programming
problem the main disadvantage is that the optimal solution is generally not unique,
as shown in the following example.

Example 4.11 Consider Ω = {1, 2, 3, 4}, m1 = 5, m2 = 3, m3 = 2, m4 = 1
2

and 1 + r = 4. According to Theorem 4.1, we have I = {1}, J = {2, 3, 4} and
ext(cl(Q)) = {Q1,2, Q1,3, Q1,4} inducing Q and µ reported below

F ∅ 1 2 3 4 12 13 14 23 24 34 123 124 134 234 Ω

Q1,2 0 9
18

9
18 0 0 1 9

18
9
18

9
18

9
18 0 1 1 9

18
9
18 1

Q1,3 0 12
18 0 6

18 0 12
18 1 12

18
6
18 0 6

18 1 12
18 1 6

18 1
Q1,4 0 14

18 0 0 4
18

14
18

14
18 1 0 4

18
4
18

14
18 1 1 4

18 1

Q 0 9
18 0 0 0 12

18
9
18

9
18 0 0 0 14

18
12
18

9
18

4
18 1

µ 0 9
18 0 0 0 3

18 0 0 0 0 0 2
18 0 0 4

18 0

The following two belief functions have Möbius inverse minimizing the distance
d1

F ∅ 1 2 3 4 12 13 14 23 24 34 123 124 134 234 Ω

µ̂1 0 12
18 0 0 0 0 0 0 4

18 0 0 2
18 0 0 0 0

B̂el1 0 12
18 0 0 0 12

18
12
18

12
18

4
18 0 0 1 12

18
12
18

4
18 1

µ̂2 0 11
18 0 0 0 3

18 0 0 4
18 0 0 0 0 0 0 0

B̂el2 0 11
18 0 0 0 14

18
11
18

11
18

4
18 0 0 1 14

18
11
18

4
18 1

and it holds that d1(B̂el1, Q) = d1(B̂el2, Q) = 20
18 .

♦

The problem of not uniqueness of the solution could be dealt with some further
procedures adopting different criteria as, for example, taking into account measures
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of specificity (Yager, 1983) or other distances (Miranda et al., 2021) in order to
select a unique solution among those that are optimal according to d1.

The main feature of distance d2 is that problem (4.23) admits a unique optimal
solution as the objective function turns out to be strictly convex (see, e.g., Montes
et al., 2018, 2019; Miranda et al., 2022). In other terms, the choice of d2 amounts
in computing the orthogonal projection of Q onto the set of inner approximating
one-step Choquet martingale belief functions for Q.

Example 4.12 Consider Ω, m1, m2, m2, m4, and 1 + r as in Example 4.11. In
this case, the unique optimal solution B̂el minimizing d2 has Möbius inverse µ̂
such that µ̂(1) = 0.628655, µ̂(2) = 0.0087719, µ̂(12) = 0.149123, µ̂(23) = 0.18421,
µ̂(234) = 0.0292399, and 0 otherwise.

In this case we have d2(B̂el, Q) = 0.169591.
♦

Distances d1 and d2 face the problem of approximation from a metric point
of view. Another possibility is to take as d the Bregman divergence induced by a
bounded (strictly) proper scoring rule (see, e.g., Censor and Zenios, 1997; Predd et al.,
2009). Indeed, as shown in Petturiti and Vantaggi (2023), proper scoring rules allow
to introduce a notion of coherence for belief functions through a penalty criterion
that generalizes classical results for probabilities (see, e.g., Predd et al., 2009). In
particular, as shown in Gilio and Sanfilippo (2011), every bounded proper scoring
rule gives rise to a Bregman divergence that can be used in the approximation. It
actually turns out that d2 is the Bregman divergence induced by the Brier quadratic
scoring rule, so it has a justification in terms of the penalty criterion for belief
functions (see Petturiti and Vantaggi, 2023). We stress that if we take a Bregman
divergence for d, then (4.23) is generally a non-linear problem with linear constraints.

Furthermore, besides minimizing a distance or a divergence, other approaches
are available, like minimizing a measure of non-specificity (or imprecision) as done
in Denœux (2006).

Finally, we consider the Čebišëv distance, denoted by d∞, defined as

d∞(Bel1, Bel2) = max
A∈F

|Bel1(A) −Bel2(A)|. (4.25)

The optimization problem (4.23), that is equivalent to (4.22), taking into account
that B̂el ≥ Q, can be written in terms of Möbius inverse as

d∞(B̂el, Q) = max
A∈F

(B̂el(A) −Q(A)) = max
A∈U

 ∑
∅̸=B⊆A

µ̂(B) −Q(A)

 . (4.26)

Since Q(A), for every A ∈ U , is constant, the objective function is a maximum of
linear (affine) functions, i.e., it is a continuous piecewise-linear function. In this case,
problem (4.23) can be transformed in an equivalent linear programming problem by
adding a new variable t and a linear constraint for every component in the maximum
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of the objective function

minimize t

subject to:

∑
∅̸=B⊆A

µ̂(B) −Q(A) ≤ t, for every A ∈ U ,∑
∅̸=B⊆A

µ̂(B) ≥ Q(A), for every A ∈ U ,

n∑
i=1

mi

( ∑
{i}⊆B⊆{1,...,i}

µ̂(B)
)

= 1 + r,

∑
B∈U

µ̂(B) = 1,

µ̂(B) ≥ 0, for every B ∈ U .

(4.27)

As occurs with d1, distance d∞ does not give, generally, a unique solution to problem
(4.27).

The following example shows that the inner approximating one-step Choquet
martingale belief function that minimizes distance d∞ is not unique. Further, the
optimal solutions can fail to be undominated.

Example 4.13 Consider Ω = {1, 2, 3, 4}, m1 = 4, m2 = 2, m3 = 1
2 , m4 = 1

4 ,
1 + r = 1, and Q and Q of Example 4.1. Its lower envelope Q has two (and so it has
infinitely many) inner approximating one-step Choquet martingale belief functions
B̂el1, B̂el2 minimizing the distance d∞:

F ∅ 1 2 3 4 12 13 14 23 24 34 123 124 134 234 Ω

Q 0 0 0 0 0 15
105 0 0 0 0 60

105
21
105

15
105

60
105

84
105 1

µ 0 0 0 0 0 15
105 0 0 0 0 60

105
6

105 0 0 24
105 0

µ̂1 0 272
2100

152
2100 0 0 148

2100 0 0 120
2100 0 1200

2100 0 0 0 208
2100 0

B̂el1 0 272
2100

152
2100 0 0 572

2100
272
2100

272
2100

272
2100

152
2100

1200
2100

692
2100

572
2100

1472
2100

1680
2100 1

µ̂2 0 272
2100

181
2100 0 0 119

2100 0 0 91
2100 0 1200

2100
29

2100 0 0 208
2100 0

B̂el2 0 272
2100

181
2100 0 0 572

2100
272
2100

272
2100

272
2100

181
2100

1200
2100

692
2100

572
2100

1472
2100

1680
2100 1

for which we have that d∞(B̂el1, Q) = d∞(B̂el2, Q) = 272
2100 . Moreover, we have

that B̂el1 ≠ B̂el2 but Q ≤ B̂el1 ≤ B̂el2, thus the d∞-optimal solution B̂el2 is
dominated by the d∞-optimal solution B̂el1.

♦

Up to now, we have considered only the lower price assessment π′(S1
1) = S1

0 .
Nevertheless, we also know that max

Q∈cl(Q)
(1+r)−1EQ(S1

1) = S1
0 , thus we could consider

an upper price assessment for the stock. If we further impose to respect the upper
price assessment π′(S1

1) = S1
0 , then the notion of one-step Choquet martingale belief

function given in Definition 4.2 can be strengthened as follows.

Definition 4.3 A belief function B̂el on F is called:
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• a one-step strong Choquet martingale belief function if

(1 + r)−1C
B̂el

(S1
1) = S1

0 and (1 + r)−1C
B̂el

(−S1
1) = −S1

0 ;

• an inner approximating one-step strong Choquet martingale belief
function for Q if it is both an inner approximation for Q and a one-step
strong Choquet martingale belief function;

• an equivalent inner approximating one-step strong Choquet martin-
gale belief function for Q if it is an inner approximating one-step strong
Choquet martingale belief function for Q and B̂el ∼ P .

Still referring to a distance d defined on B(Ω,F), an optimal inner approximating
one-step strong Choquet martingale belief function B̂el for Q can be found by solving
the following optimization problem:

minimize d(B̂el,Q)
subject to:

B̂el(A) ≥ Q(A), for every A ∈ F ,
(1 + r)−1C

B̂el
(S1

1) = S1
0 ,

(1 + r)−1C
B̂el

(−S1
1) = −S1

0 ,

B̂el ∈ B(Ω,F).

(4.28)

Also in this case, problem (4.28) can be reformulated as follows

minimize d(B̂el,Q)

subject to:

∑
∅≠B⊆A

µ̂(B) ≥ Q(A), for every A ∈ U ,

n∑
i=1

mi

( ∑
{i}⊆B⊆{1,...,i}

µ̂(B)
)

= 1 + r,

n∑
i=1

mi

( ∑
{i}⊆B⊆{i,...,n}

µ̂(B)
)

= 1 + r,

∑
B∈U

µ̂(B) = 1,

µ̂(B) ≥ 0, for every B ∈ U .

(4.29)

The following theorem states that any inner approximating one-step strong
Choquet martingale belief function B̂el for Q is actually a probability measure
belonging to cl(Q).

Theorem 4.6
For every distance d defined on B(Ω,F), the set of feasible solutions of problem
(4.28) is cl(Q). Further, if d = d1 then the set of optimal solutions of problem (4.28)
coincides with cl(Q), while if d = d2 then there is a unique optimal solution.
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Proof. First notice that inner approximating one-step strong Choquet martingale
belief functions forQ, that is feasible solutions of problem (4.28), are in one-to-one cor-
respondence with feasible solutions of problem (4.29). Define V = U \ {{i} : i ∈ Ω}.
Subtracting memberwise the second equation to the third equation of problem (4.29)
we get ∑

B∈V

(
max
i∈B

mi − min
i∈B

mi

)
µ̂(B) = 0.

Hence, since for every B ∈ V,
(

max
i∈B

mi − min
i∈B

mi

)
> 0 and µ̂(B) ≥ 0, any feasible

solution of problem (4.29) is such that µ̂(B) = 0, for every B ∈ V. In turn, this
implies that any feasible solution of problem (4.29) is the Möbius inverse of a
probability measure which is a feasible solution of problem (4.28). Thus, if B̂el is a
feasible solution of problem (4.28) we have C

B̂el

(
S1

1
S1

0

)
= E

B̂el

(
S1

1
S1

0

)
= 1 + r, implying

that B̂el ∈ cl(Q). Vice versa, every element of cl(Q) is easily seen to be a feasible
solution of problem (4.28).

If d = d1, since every feasible solution B̂el of problem (4.28) is a probability
measure with Möbius inverse µ̂, by (4.24) we get that

d1(B̂el,Q) =
∑

{i}∈U
2|Ω\{i}|µ̂({i}) −

∑
A∈U

Q(A) = 2n−1 −
∑
A∈U

Q(A), (4.30)

that does not depend on B̂el. Hence, all the elements of cl(Q) are optimal according
to d1.

If d = d2, then the uniqueness of the optimal solution immediately follows since
the objective function of (4.28) is strictly convex.

Hence, using d1 any element of cl(Q) turns out to be optimal, while using d2
we get the orthogonal projection of Q onto the set of inner approximating one-step
strong Choquet martingale belief functions for Q, which is, by Theorem 4.6, the set
cl(Q).

Example 4.14 Consider Ω, m1, m2, m3, m4, and 1 + r as in Example 4.11. Using
d1, the set of optimal inner approximating strong Choquet martingale belief functions
for Q is cl(Q) and for every B̂el ∈ cl(Q) we have d1(B̂el,Q) = 8

3 .
On the other hand, if we use the distance d2 we have a unique optimal solution

which is the following inner approximating one-step strong Choquet martingale belief
function (probability measure)

Ω 1 2 3 4

B̂el 0.638889 0.188596 0.102339 0.0701755

for which we have d2(B̂el, Q) = 0.572124.
♦

Let us stress that, for a fixed Q0 ∈ Q, if B̂el is an inner approximating
one-step strong Choquet martingale belief function (probability measure), then
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core(B̂el) = {B̂el}. In this case Q̂ϵ reduces to the singleton
Q̂ϵ = {(1 − ϵ)Q0 + ϵB̂el}, thus the lower envelope Q

ϵ
is an equivalent martingale

measure, that is Q
ϵ

= (1 − ϵ)Q0 + ϵB̂el ∈ Q.
The following proposition states that, both for d1 and d2, an optimal inner

approximating one-step martingale (strong martingale) belief function does not
dominate any other inner approximating one-step martingale (strong martingale)
belief function. This is inline with results proved in Miranda et al. (2022); Montes
et al. (2018, 2019).

Proposition 4.1
Let d = d1 or d = d2. If B̂el is an optimal solution of problem (4.22) (problem
(4.28)) then there is no feasible solution B̂el

′
of problem (4.22) (problem (4.28))

such that B̂el
′
̸= B̂el and Q ≤ B̂el

′
≤ B̂el.

Proof. The proof can be obtained by a straightforward adaptation of Lemma 14 in
Montes et al. (2018).

If d = d∞, problem (4.29) can be turned into the following equivalent linear
programming problem

minimize t

subject to:

∑
∅≠B⊆A

µ̂(B) −Q(A) ≤ t, for every A ∈ U ,∑
∅≠B⊆A

µ̂(B) ≥ Q(A), for every A ∈ U ,

n∑
i=1

mi

( ∑
{i}⊆B⊆{1,...,i}

µ̂(B)
)

= 1 + r,

n∑
i=1

mi

( ∑
{i}⊆B⊆{i,...,n}

µ̂(B)
)

= 1 + r,

∑
B∈U

µ̂(B) = 1,

µ̂(B) ≥ 0, for every B ∈ U .

(4.31)

By Theorem 4.6, all feasible solution of problem (4.31) are Möbius inverses of
probability measures which are equivalent martingale measures. In particular, every
such µ̂ is zero on V = U \ {{i} : i ∈ Ω}. This implies that

d∞(B̂el,Q) = max
A∈F

(B̂el(A) −Q(A)) = max
A∈U

(∑
i∈A

µ̂({i}) −Q(A)
)
. (4.32)





97

Chapter 5

A multi-period binomial pricing
model under Dempster-Shafer
uncertainty

The one-period n-nomial market model characterized in Chapter 4 leads us to think
to a model that can allow frictions in the pricing process where the (lower) pricing
rule is defined as a (discounted) Choquet expectation. However it does not allow to
model a multi-period process.

Our aim is to extend the one-period model under Dempster-Shafer uncertainty
to a multi-period binomial random process, taking the framework of belief functions
as our natural environment to model uncertainty.

As stressed in the previous Chapter, this framework allows us to incorporate
naturally frictions that are present in real markets.

In Section 5.1 we define a binomial random process in a multi-period setting
with respect to a belief function that can be interpreted as a lower price process.

In order to generalize the binomial model with respect to a (additive) prob-
ability measure (in Section 2.2.1) into an imprecise binomial model such that it
is mathematically tractable, we ask to satisfy a suitable version of Markov and
time-homogeneity properties with respect to belief functions, through the product
(geometric) conditioning rule (see Section 1.2.3). A global belief function that satisfies
the desired properties and that is also mathematically interpretable is proved to
exist and it is characterized through its set of k-step transition belief functions, since
the usual Chapman-Kolmogorov equation does not apply (see Section 1.1). The
transition belief functions are completely determined by the choice of two parameters
such that, if they sum up to one, the process collapses into the classical multiplicative
binomial process.

In order to define a (lower) pricing rule by means of the conditional Choquet
expectation operator, the belief function has to satisfy the martingale property, as
proposed in the one-period setting in Definition 4.2.

Our notion of Dempster-Shafer multiplicative binomial process differs from other
proposals of imprecise Markov process, summarized in Section 3.2, since they focus
on local models rather than on a global one and they work with interval probabilities
or capacities.
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The random process we characterize allows us to introduce, in Sections 5.2 and
5.3, a dynamic lower pricing rule expressed by a (discounted) conditional Choquet
expectation operator with a closed form expression that is a one-step Choquet
martingale but it is only a global Choquet super-martingale, i.e., when more than
one-step is considered.

In Section 5.4, we propose a dynamic (lower) pricing rule for a European type
derivative whose payoff depends only on the lower price of a stock whose (lower)
price process is a Dempster-Shafer multiplicative binomial process. Then, we need
to provide a normative justification of the proposed dynamic lower pricing rule by
referring to a dynamic generalized no-arbitrage condition that is the extension to
the multi-period setting of Theorems 4.4–4.5 in Chapter 4, continuing to be under
partially resolving uncertainty.

5.1 Dempster-Shafer multiplicative binomial processes
Our goal is the extension of the one-period model in Chapter 4 to a multi-period
setting, taking the framework of belief functions as our natural environment, with
the hope that the generalized no-arbitrage principle presented in Section 4.3 could
be suitable in this novel setting. Another argument in favor of belief functions, as
underlined in Chapter 1, is the interpretability of the belief function as a measure of
evidence that other non-additive measures, such as 2-monotone capacities, may not
have (see note p. 25).

As in the previous Chapters, we continue to denote a belief function by Bel, its
Möbius inverse by µ. We refer to the product (or geometric) conditioning rule for
belief functions, presented in Section 1.2.3 (in order to overcome heavy notation, we
denote it without the apex P ): for every E,H ∈ F with Bel(H) > 0

Bel(E|H) = Bel(E ∩H)
Bel(H) . (5.1)

The above rule of conditioning can be reformulated as a chain rule for belief
functions: for every E,H ∈ F with Bel(H) > 0 it holds that

Bel(E ∩H) = Bel(E|H)Bel(H). (5.2)

Remark 5. Whenever Bel(H) > 0, Bel(·|H) is a belief function on F inducing
core(Bel(·|H)). Thus, locally on every H with positive belief, Bel(·|H) can be
interpreted as a coherent lower probability on F . Nevertheless, setting H = {H ∈
F : Bel(H) > 0}, the function Bel(·|·) on G = F × H may fail to be a coherent
lower conditional probability in the sense of Williams (Williams, 2007).
Note 16: The choice of the product (geometric) conditioning rule, in addition to
the greater simplicity of calculation, is motivated by the fact that relations between
conditioning rules (see (1.42)–(1.43)) imply that, for all X ∈ RΩ,

C
∫
X(i) dBelG(i|H) ≤ min

{
C
∫
X(i) dBel(i|H), C

∫
X(i) dBelD(i|H)

}
. (5.3)

Although the product (geometric) conditioning rule cannot be interpreted as the lower
envelope of conditional probabilities computed with respect to core(Bel), it produces
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less dilation with respect to the general (Bayes) conditioning rule. It has an important
consequence on bid-ask pricing since, for a fixed unconditional belief function, we
generally obtain narrower bid-ask price intervals.

Given Bel(·|H) on F , then it uniquely extends to a conditional completely
monotone functional defined on RΩ through the Choquet integral by setting, for all
X ∈ RΩ,

C
∫
X(i) dBel(i|H) =

n∑
i=1

(X(σ(i)) −X(σ(i+ 1)))Bel(Eσ
i |H), (5.4)

where σ is a permutation of Ω as defined in Section 1.2.2. As in the unconditional
setting (see (Ch.8), p.19), the above Choquet integral can be given a lower expectation
interpretation locally on H, by referring to core(Bel(·|H)), as it holds that

C
∫
X(i)dBel(i|H) = min

P ∈core(Bel(·|H))

∫
X(i)dP (i), (5.5)

where the integrals in the minimum are of Stieltjes type.
Consider a discrete time finite-horizon stochastic process {X0, . . . , XT } with

T ∈ N, X0 = x0 > 0 and, for t = 1, . . . , T , that is the analogous of the binomial
risky asset’s price process in (2.22)

Xt =
{
uXt−1 if “up”,
dXt−1 if “down”, (5.6)

where u > d > 0 are the “up” and “down” coefficients. In what follows, such a
process will be called a multiplicative binomial process. The process above is defined
on a filtered measurable space (Ω,F , {Ft}T

t=0), where Ω = {1, . . . , 2T } and Ft is
the algebra generated by random variables {X0, . . . , Xt}, for t = 0, . . . , T , with
F0 = {∅,Ω} and FT = F = P(Ω).

The trajectories of {X0, . . . , XT } can be represented graphically on a binomial
tree. In particular, every state i ∈ Ω is identified with the path corresponding to the
T -digit binary expansion of number i− 1, in which zeroes are interpreted as “up”
movements and ones as “down” movements.

Figure 5.1. Binomial tree for T = 3.

Assume that uncertainty on the evolution of the process is not additive but
is handled in the Dempster-Shafer theory of evidence through a belief function
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Bel : F → [0, 1]. From now on, we assume there is a filtered belief space
(Ω,F , {Ft}T

t=0, Bel) with a fixed belief function Bel.
For t = 1, . . . , T , denote

At = {aj = ujdt−j : j = 0, . . . , t}, (5.7)

for which we have a0 < a1 < . . . < at and, for ai ≤ ah, let

[ai, ah] = {aj ∈ At : ai ≤ aj ≤ ah}. (5.8)

For every x > 0 and A ∈ P(At), denote

Ax = {ajx : aj ∈ A}, (5.9)

where Ax = ∅ if A = ∅. In particular, each random variable Xt takes values xt in
Xt = Atx0.

Definition 5.1 Given a filtered belief space (Ω,F , {Ft}T
t=0, Bel), the process {X0, . . . , XT }

is said to satisfy the:

Markov property: if for every 0 ≤ t ≤ T − 1 and 1 ≤ k ≤ T − t, A ∈ P(Ak), and
x0 ∈ X0, . . . , xt ∈ Xt on a trajectory with positive belief it holds that

Bel(Xt+k ∈ Axt|X0 = x0, . . . , Xt = xt) = Bel(Xt+k ∈ Axt|Xt = xt);

time-homogeneity property: if for every 0 ≤ t ≤ T − 1 and 1 ≤ k ≤ T − t,
A ∈ P(Ak), and x0 ∈ X0, . . . , xt ∈ Xt on a trajectory with positive belief it
holds that

Bel(Xt+k ∈ Axt|X0 = x0, . . . , Xt = xt) = βk(A),

where βk : P(Ak) → [0, 1] is a fixed belief function.

If the process satisfies both the properties above is called a DS-multiplicative
binomial process (where DS reads “Dempster-Shafer”).

In the particular case where the process {X0, . . . , XT } satisfies the Markov
property, then the time-homogeneity property reduces to

Bel(Xt+k ∈ Axt|Xt = xt) = βk(A). (5.10)

The properties above are called one-step if they hold only for k = 1.
The first issue to face is the existence of a belief function Bel on F that makes

the process {X0, . . . , XT } Markov and time-homogeneous (i.e., a DS-multiplicative
binomial process).
Note 17: A DS-multiplicative binomial process singles out a family of belief functions
{βk : k = 1, . . . , T} defined on the family of power sets {P(Ak) : k = 1, . . . , T}
that, in turn, are determined by the particular Bel that is chosen. If Bel is not
additive, then we need the entire family of βk’s since the usual Chapman-Kolmogorov
equation (see Section 1.1) does not apply due to the lack of additivity. Such βk’s are
actually k-step transition belief functions.
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Let bu, bd be two strictly positive parameters with bu + bd ≤ 1 that are intuitively
interpreted as one-step "up" and "down" conditional beliefs.

As discussed in Cinfrignini et al. (2022) related to a DS-additive binomial process,
the first idea is to recover the probabilistic construction by imposing an analogue
of (2.23) for the terminal value: for every trajectory on the binomial tree with
x0 ∈ X0, . . . , xT ∈ XT and xT = ujdT −jx0, with j = 0, . . . , T , we have

Bel(X0 = x0, . . . , XT = xT ) = bj
ub

T −j
d . (5.11)

Since the event {X0 = x0, . . . , XT = xT } ∈ XT corresponding to a trajectory
reduces to a singleton i ∈ Ω, then (5.11) implies the following Möbius inverse

µ(X0 = x0, . . . , XT = xT ) = bj
ub

T −j
d . (5.12)

The first immediate consequence is that Bel satisfying (5.12) is positive on F \ {∅},
hence conditioning through the product rule is always well-defined.

Assumption (5.11) provides just few constraints for the Bel since, given that the
sum over all the possible trajectories of the binomial tree is∑

x0,...,xT

µ(X0 = x0, . . . , XT = xT ) = (bu + bd)T , (5.13)

if bu + bd < 1, we need to allocate the remaining mass of (1 − (bu + bd)T ).
Between the infinite number of belief functions satisfying (5.11) there are some

failing both Markov and time-homogeneity properties and some others just failing
one of them.

Proposition 5.1
Let Bel be the belief function on F whose Möbius inverse satisfies (5.12) and such
that µ(Ω) = 1 − (bu + bd)T . Then the process {X0, . . . , XT } satisfies the Markov
property.

Proof. It can be straightforwardly proven considering the proof of Proposition 1 in
Cinfrignini et al. (2022) with respect to a multiplicative binomial process instead of
an additive binomial process.

However, the belief function defined as in Proposition 5.1 fails the time-homogeneity
property, as shown in the following example adapted from Cinfrignini et al. (2022).

Example 5.1 Let T = 3 and consider the belief function Bel defined in Proposition
5.1. Simple computations show that

Bel(X3 = ud2x0|X0 = x0, X1 = ux0, X2 = udx0) = bd

bu + bd
,

Bel(X1 = dx0|X0 = x0) = bd(bu + bd)2.

The (one-step) time-homogeneity property is not satisfied.
♦
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Moreover, the belief function introduced in Proposition 5.1 does not respect the
intuitive meaning of parameters bu and bd, since we have, for every 0 < t ≤ T − 1,
that

Bel(Xt+1 = uxt|X0 = x0, . . . , Xt = xt) = bu

bu + bd
(5.14)

Bel(Xt+1 = dxt|X0 = x0, . . . , Xt = xt) = bd

bu + bd
. (5.15)

Hence, we directly impose the one-step time-homogeneity requiring Bel to satisfy,
for every 0 ≤ t ≤ T − 1 and x0 ∈ X0, . . . , xt ∈ Xt on a trajectory with positive belief

Bel(Xt+1 = uxt|X0 = x0, . . . , Xt = xt) = bu, (5.16)
Bel(Xt+1 = dxt|X0 = x0, . . . , Xt = xt) = bd. (5.17)

Note 18: A straightforward application of the chain rule (5.2) shows that (5.16)–(5.17)
imply (5.11). Hence, imposing (5.16)–(5.17) produces much more constraints for the
belief function Bel.

The following proposition (adapted from Cinfrignini et al., 2022) proves that
there exists (at least) one belief function Bel satisfying constraints (5.16)–(5.17).

Proposition 5.2
A belief functionBel on F satisfies (5.16)–(5.17) (that is, one-step time-homogeneity)
if and only if the corresponding Möbius inverse µ satisfies the following conditions:

(i) for xT = ujdT −jx0 ∈ XT with j = 0, . . . , T

µ({X0 = x0, . . . , XT = xT }) = bj
ub

T −j
d ; (5.18)

(ii) for xT −1 = ujdT −1−jx0 ∈ XT −1 with j = 0, . . . , T − 1

µ({X0 = x0, . . . , XT −1 = xT −1}) = bj
ub

T −1−j
d (1 − bu − bd); (5.19)

(iii) for every 0 < t < T − 1, for xt = ujdt−jx0 ∈ Xt,∑
B⊆{X0=x0,...,Xt=xt}

B ̸⊆{X0=x0,...,Xt+1=uxt}
B ̸⊆{X0=x0,...,Xt+1=dxt}

µ(B) = bj
ub

t−j
d (1 − bu − bd); (5.20)

(iv) ∑
B⊆{X0=x0}

B ̸⊆{X0=x0,X1=ux0}
B ̸⊆{X0=x0,X1=dx0}

µ(B) = (1 − bu − bd); (5.21)

where all events {X0 = x0, . . . , Xt = xt} correspond to partial trajectories on the
binomial tree.

Proof. It can be straightforwardly proven from Proposition 2 in Cinfrignini et al.
(2022).
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However, the following example shows that Bel as defined in Proposition 5.2, that
satisfies the (one-step) time-homogeneity property, does not imply time-homogeneity
or Markov property.

Example 5.2 Let T = 3 and Ω = {1, 2, 3, 4, 5, 6, 7, 8} with

Ω X0 X1 X2 X3
1 x0 ux0 u2x0 u3x0
2 x0 ux0 u2x0 u2dx0
3 x0 ux0 udx0 u2dx0
4 x0 ux0 udx0 ud2x0
5 x0 dx0 udx0 u2dx0
6 x0 dx0 udx0 ud2x0
7 x0 dx0 d2x0 ud2x0
8 x0 dx0 d2x0 d3x0

Consider the Möbius inverse µ on F satisfying conditions (i),(ii) of Proposition
5.2, and

µ({2, 3}) = bu(1 − (bu + bd)), µ({5, 6, 7, 8}) = bd(1 − (bu + bd)),

µ({3, 5}) = µ(Ω) = 1
2(1 − (bu + bd)),

while it is zero otherwise.
Such µ satisfies conditions (iii) and (iv) of Proposition 5.2, thus the corresponding

Bel satisfy the one-step time-homogeneity property (5.16)–(5.17).
However, such Bel does not satisfy the Markov property, as

Bel(X3 = u2dx0|X0 = x0, X1 = ux0, X2 = udx0) = bu,

Bel(X3 = u2dx0|X2 = udx0) =
2b2

ubd + 1
2(1 − (bu + bd))

2bubd + 1
2(1 − (bu + bd))

.

Such Bel does not satisfy time-homogeneity for k > 1 since, for a1 = ud ∈ A2,
we have

Bel(X3 = ua1x0|X0 = x0, X1 = ux0) = 2bubd + (1 − (bu + bd)),

Bel(X2 = a1x0|X0 = x0) = 2bubd + 1
2(1 − (bu + bd)).

In turn, let bu = bd = δ ∈ (0, 1
2) and consider the Möbius inverse µ̃ on F

satisfying conditions (i),(ii) of Proposition 5.2 and

µ̃({1, 2, 3, 4}) = µ̃({5, 6, 7, 8}) = µ̃({3, 5}) = µ̃({4, 6}) = δ(1 − 2δ),
µ̃({3, 4, 5, 6}) = (1 − 2δ)2,

and it is 0 otherwise. It is easily verified that also conditions (iii) and (iv) of
Proposition 5.2 are satisfied, thus the corresponding B̃el satisfies the one-step
time-homogeneity. We notice that

B̃el(X3 = x3|X0 = x0, X1 = x1, X2 = x2) = B̃el(X3 = x3|X2 = x2) = δ,

B̃el(X3 ∈ Ax1|X0 = x0, X1 = x1) = B̃el(X3 ∈ Ax1|X1 = x1),
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for every A ∈ P(A2) and xt ∈ P(At), with t = 0, 1, 2, 3, hence, B̃el satisfies the
Markov property. However, for a1 = ud ∈ A2 we have

B̃el(X3 = ua1x0|X0 = x0, X1 = ux0) = 2δ2,

B̃el(X2 = a1x0|X0 = x0) = 2δ2 + 1 − 2δ.

Hence the time-homogeneity property does not hold.
♦

In general, we can have infinitely many belief functions on F that make the
process {X0, . . . , XT } a DS-multiplicative binomial process as the following example
shows.

Example 5.3 Let T = 3 and Ω = {1, . . . , 8} with the same identification of states
as Example 5.2. Let α ∈ [0, 1] and consider the Möbius inverse µα on F satisfying
conditions (i) and (ii) of Proposition 5.2 and such that, denoting h = (1 − bu − bd):

µα({1, 2, 3, 4}) = buh, µα({5, 6, 7, 8}) = bdh,

µα({1, 2, 3, 4, 5, 6, 7}) = αh,

µα({2, 3, 4, 5, 6, 7, 8}) = (1 − α)h.

It is easily shown that the corresponding belief function Bel is a DS-multiplicative
binomial process. The family of belief functions {βα

1 , β
α
2 , β

α
3 }, with At defined in

(5.7) and At
i1,...,im

= {at
i1 , . . . , a

t
im

}, is

P(A1) ∅ A1
0 A1

1 A1
βα

1 0 bd bu 1

P(A2) ∅ A2
0 A2

1 A2
2 A2

0,1 A2
0,2 A2

1,2 A2
βα

2 0 b2
d 2bubd b2

u bubd + bd b2
u + b2

d bubd + bu 1

P(A3) ∅ A3
0 A3

1 A3
2

βα
3 0 b3

d 3bub
2
d 3b2

ubd

P(A3) A3
3 A3

0,1 A3
0,2 A3

0,3

βα
3 b3

u 2bub
2
d + b2

d b3
d + 3b2

ubd b3
d + b3

u

P(A3) A3
1,2 A3

1,3 A3
2,3 A3

0,1,2

βα
3 bub

2
d + b2

ubd + 2bubd 3bub
2
d + b3

u 2b2
ubd + b2

u bd(b2
u + bu + 1) + (1 − α)h

P(A3) A3
0,1,3 A3

0,2,3 A3
1,2,3 A3

βα
3 2bub

2
d + b2

d + b3
u 2b2

ubd + b2
u + b3

d bu(b2
d + bd + 1) + αh 1

Therefore we have an infinite class of belief functions {Belα : α ∈ [0, 1]} that
make the process a DS-multiplicative binomial process.

♦

Actually, some choices of Bel on F could lead to a lack of interpretation for the
family {βk : k = 1, . . . , T} induced by Bel, and to a large amount of parameters
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that could make difficult a calibration procedure. This is why, in what follows, we
restrict to a particular family of k-step transition belief functions that guarantee a
clear interpretation and a nice parametrization.

We continue to require that, for every 0 ≤ t ≤ T − 1, and x0 ∈ X0, . . . , xt ∈ Xt

on a trajectory with positive belief, the belief function Bel satisfies the one-step
time-homogeneity (5.16)–(5.17), since, in this way, bu and bd are interpreted as
one-step "up" and "down" conditional beliefs.
Remark 6. In case bu + bd = 1, conditions (5.16)–(5.17) determine a unique additive
belief function (probability measure) that satisfies time-homogeneity and Markov
properties.

Assuming that bu + bd < 1, we need to characterize Bel by means of the k-step
transition belief functions βk’s.

Assumption 1. We endow F with a belief function Bel whose Möbius inverse µ is
such that

(a) for xT = ujdT −jx0 ∈ XT with j = 0, . . . , T

µ({X0 = x0, . . . , XT = xT }) = bj
ub

T −j
d ; (5.22)

(b) for 0 < t < T and xt = ujdt−jx0 ∈ Xt with j = 0, . . . , t

µ({X0 = x0, . . . , Xt = xt}) = bj
ub

t−j
d (1 − (bu + bd)); (5.23)

(c)
µ({X0 = x0}) = µ(Ω) = 1 − (bu + bd); (5.24)

(d) µ is zero otherwise.

Our aim is to derive the conditional belief distributions of random variables Xt’s.
For that, we consider the belief function βk : P(Ak) → [0, 1] that is interpreted
as the k-step transition belief functions. Consider that the belief function βk is
characterized by the following Möbius inverse µ′

k : P(Ak) → [0, 1]:

(1) for j = 0, . . . , k

µ′
k({aj}) =

(
k

j

)
bj

ub
k−j
d ; (5.25)

(2) for h = 1, . . . , k and j = 0, . . . , k − h

µ′
k([aj , aj+h]) =

(
k − h

j

)
bj

ub
k−h−j
d (1 − (bu + bd)); (5.26)

(3) µ′
k is zero otherwise.

The following proposition shows that µ′
k is indeed the Möbius inverse of a belief

function βk on P(Ak).
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Proposition 5.3
Let µ′

k : P(Ak) → [0, 1] be defined as in (5.25)–(5.26) and it is zero otherwise, then
µ′

k is the Möbius inverse of a belief function βk : P(Ak) → [0, 1] defined, for all
A ∈ Ak as

βk(A) =
∑

aj∈A

(
k

j

)
bj

ub
k−j
d +

∑
[aj ,aj+h]⊆A

h≥1

(
k − h

j

)
bj

ub
k−h−j
d (1 − (bu + bd)). (5.27)

Proof. First we need to show that µ′
k is the Möbius inverse of a belief function. The

function µ′
k is easily seen to be non-negative, moreover it sums up to 1 since

k∑
j=0

µ′
k({aj}) +

k∑
h=1

k−h∑
j=0

µ′
k([aj , aj+h]) =

= (bu + bd)k +
k∑

h=1
(bu + bd)k−h(1 − (bu + bd)) = 1.

Finally, the claim follows since, for all A ∈ P(Ak), we have that

βk(A) =
∑

aj∈A

µ′({aj}) +
∑

[aj ,aj+h]⊆A
h≥1

µ′([aj , aj+h]),

that is µ′
k is the Möbius inverse of the belief function βk.

Note 19: Notice that βk in (5.27) is consistent with (5.16)–(5.17) (one-step
time-homogeneity) as it holds that β1(∅) = 0, β1({u}) = bu, β1({d}) = bd, and
β1(A1) = 1. This leads to a clear interpretation where ambiguity that amounts to the
excessive weight to unity (1 − (bu + bd)) is attached to the entire frame of evidence
A1 = {d, u}.

The belief function βk in (5.27) generalizes the binomial distribution with param-
eters k and bu, to which it reduces in case bu + bd = 1, since the second summation
vanishes. On the other hand, if bu + bd < 1, then the second summation takes into
account a contribution of intervals contained in A which receive a binomial-like
weighting deflated by the excessive weight to unity (1 − (bu + bd)). More in detail,
we have that intervals of length h contribute by weights mimicking the binomial
distribution with parameters k− h and bu, multiplied by the deflator (1 − (bu + bd)).
Looking at the binomial tree representation of process {X0, . . . , XT } we get that,
starting from a node xt at time t and looking ahead of k steps, the interval [aj , aj+h]
of length h represents the set of all trajectories starting at node xt and continuing
for k steps that have a fixed state xk−h at time k − h. Indeed, all the continua-
tions of partial trajectory xt, . . . , xk+h for the remaining h times will end in a state
belonging to [aj , aj−h]xt. Therefore, interpreting such weights as evidence in the
spirit of Dempster-Shafer theory (Shafer, 1976a), βk(A) is obtained by summing the
binomial-like weights of all partial trajectories with decreasing length starting from
node xt, that support the evidence of having a final state of the process after k steps
belonging to Axt.
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The following theorem states that the belief function Bel whose Möbius inverse
is given in Assumption 1 meets all the desiderata.

Theorem 5.1
Let Bel : F → [0, 1] be characterized by a Möbius inverse µ : F → [0, 1] as defined
in Assumption 1. Then, a multiplicative binomial process on the filtered belief space
(Ω,F , {Ft}T

t=0, Bel) meets the following properties:

(i) Bel(B) > 0, for every B ∈ F \ {∅};

(ii) {X0, . . . , XT } is a DS-multiplicative binomial process whose transition belief
functions {βk : k = 1, . . . , T} satisfy (5.27).

Proof. We assume µ : F → [0, 1] as defined is Assumption 1. We prove statement
(i). We have that µ(B) ≥ 0, for all B ∈ F , moreover

•
∑

xT ∈XT

µ({X0 = x0, . . . , XT = xT }) = (bu + bd)T ,

• for all 0 < t < T ,
∑

xt∈Xt

µ({X0 = x0, . . . , Xt = xt}) = (bu + bd)t(1 − (bu + bd)),

• µ({X0 = x0}) = µ(Ω) = 1 − (bu + bd),

while µ is zero otherwise. Hence, we get that∑
B∈F

µ(B) = (bu + bd)T +
∑

0<t<T

(bu + bd)t(1 − (bu + bd)) + (1 − (bu + bd)) = 1,

that is µ is the Möbius inverse of a belief function. Moreover, since elements of
Ω can be identified with the trajectories on the binomial tree, i.e., with events
{X0 = x0, . . . , XT = xT }, µ is such that µ({i}) > 0, for all i ∈ Ω. In turn, this
implies that Bel is such that Bel(B) > 0, for every B ∈ F \ {∅}.

We prove statement (ii). For every 0 ≤ t ≤ T , we let xt = ujdt−jx0 ∈ Xt and
prove that

Bel(X0 = x0, X1 = x1, . . . , Xt = ujdt−jx0) = bj
ub

t−j
d . (5.28)

In order to get the events with strictly positive µ contained in the event
{X0 = x0, X1 = x1, . . . , Xt = ujdt−jx0}, the corresponding partial trajectory on the
binomial tree must be completed for the remaining T − t times indexed by l with
l = T − t, T − t− 1, . . . , 0, working backward.

For l = T − t we have to add iT −t = 0, . . . , T − t movements to the state of the
random variable Xt. For a fixed iT −t, by summing over all the possible completions
of the trajectory, we have that∑

xt+1,...,xT −1

µ(X0 = x0, . . . , Xt = ujdt−jx0, . . . , XT = uj+iT −tdt−j+(T −t)−iT −tx0) =

=
(
T − t

iT −t

)
bj+iT −t

u b
k−j+(T −t)−iT −t

d .

Then, summing over iT −t we have that
T −t∑

iT −t=0

(
T − t

iT −t

)
bj+iT −t

u b
t−j+(T −t)−iT −t

d . (5.29)
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For a generic 0 ≤ l ≤ T − t−1 we need to add il = 0, . . . , l movements to the state of
the random variable Xt. For a fixed il, by summing over all the possible completions
of the trajectory, we have that∑

xt+1,...,xt+l−1

µ(X0 = x0, . . . , Xt = ujdt−jx0, . . . , Xt+l = uj+ildt−j+l−ilx0) =

=
(
l

il

)
bj+il

u bt−j+l−il
d (1 − (bu + bd)).

Then, summing over il we have that

l∑
il=0

(
l

il

)
bj+il

u bt−j+l−il
d (1 − (bu + bd)). (5.30)

Therefore we obtain that

Bel(X0 = x0, X1 = x1, . . . , Xt = ujdt−jx0) =

=
T −t∑

iT −t=0

(
T − t

iT −t

)
bj+iT −t

u b
t−j+(T −t)−iT −t

d +

+
T −t−1∑

l=0

l∑
il=0

(
l

il

)
bj+il

u bt−j+l−il
d (1 − (bu + bd)) =

= bj
ub

t−j
d

[
(bu + bd)T −t + (1 − (bu + bd))

T −t−1∑
l=0

(bu + bd)l

]
=

= bj
ub

t−j
d .

Now we prove that

Bel(Xt = ujdt−jx0) =
(
t

j

)
bt

ub
t−j
d . (5.31)

(5.29) considers the trajectory from time t to time T , having fixed the part before t.
Summing over all the possible completions of the trajectory before time t, we get

(
t

j

)
T −t∑

iT −t=0

(
T − t

iT −t

)
bj+iT −t

u b
t−j+(T −t)−iT −t

d .

Analogously, for a generic 0 ≤ l ≤ T − t − 1, (5.30) considers the trajectory from
time t to time t+ l, having fixed the part before t. For a fixed l, summing over all
the possible completions of the trajectory before time t, we get

(
t

j

)
l∑

il=0

(
l

il

)
bj+il

u bt−j+l−il
d (1 − (bu + bd)).
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Hence, we obtain

Bel(Xt = ujdt−jx0) =

=
(
t

j

)
T −t∑

iT −t=0

(
T − t

iT −t

)
bj+iT −t

u b
t−j+(T −t)−iT −t

d +

+
T −t−1∑

l=0

(
t

j

)
l∑

il=0

(
l

il

)
bj+il

u bt−j+l−il
d (1 − (bu + bd)) =

=
(
t

j

)
bj

ub
t−j
d .

Now let 1 ≤ k ≤ T − t and A ⊆ Ak = {az = uzdk−z : z = 0, . . . , k}. Let µ′
k be

the Möbius inverse of βk defined in Proposition 5.3 through (5.25)–(5.26). We prove
that

Bel({Xt+k ∈ Aujdt−jx0} ∩ {X0 = x0, . . . , Xt = ujdt−jx0}) = bj
ub

t−j
d βk(A). (5.32)

If az ∈ A, summing over the partial trajectories from time t+ 1 to time t+ k− 1,
we get that

∑
xt+1,...,xt+k−1

µ(X0 = x0, . . . , Xt = ujdt−jx0, . . . , Xt+k = uz+jdt+k−(z+j)x0) =

=
(
k

z

)
bz+j

u b
t+k−(z+j)
d =

= bj
ub

t−j
d µ′

k({az}).

If h ≥ 1 and [az, az+h] ⊆ A, summing over the partial trajectories from time t+ 1
to time t+ k − h− 1, we get that

∑
xt+1,...,xt+k−h−1

µ(X0 = x0, . . . , Xt = ujdt−jx0, . . . , Xt+k−h = uz+jdt+k−h−(z+j)x0) =

=
(
k − h

z

)
bz+j

u b
t+k−h−(z+j)
d (1 − (bu + bd)) =

= bj
ub

t−j
d µ′

k([az, az+h]).



110 5. A multi-period binomial pricing model under DS uncertainty

Hence

Bel({Xt+k ∈ Aujdt−jx0} ∩ {X0 = x0, . . . , Xt = ujdt−jx0}) =

=
∑

az∈A

(
k

z

)
bz+j

u bt+k−z−j
d +

+
∑

[aj ,aj+h]⊆A
h≥1

(
k − h

z

)
bz+j

u bt+k−h−z−j
d (1 − (bu + bd)) =

= bj
ub

t−j
d

 ∑
az∈A

µ′
k({az}) +

∑
[aj ,aj+h]⊆A

h≥1

µ′
k([az, az+h])

 =

= bj
ub

t−j
d βk(A).

Proceeding in analogy with the derivation of (5.31) we get that

Bel({Xt+k ∈ Aujdt−jx0} ∩ {Xt = ujdt−jx0}) =
(
t

j

)
bj

ub
t−j
d βk(A). (5.33)

Finally, Markovianity and time-homogeneity follow from (5.25)–(5.26), (5.31)–(5.33)
since we obtain

Bel(Xt+k ∈ Aujdt−jx0|X0 = x0, . . . , Xt = ujdt−jx0) =
= Bel(Xt+k ∈ Aujdt−jx0|Xt = ujdt−jx0)
= βk(A).

We summarize the proposed belief functions’ structure and their properties.

µ one-step t.h. t.h. Markov Interpretation
(5.12)

µ(Ω)=1−(bu+bd)T × × ✓ no

(5.18)–(5.21) ✓ × × bu and bd are one-step
"up" and "down" conditional beliefs

(5.22)–(5.24) ✓ ✓ ✓ βk is a generalization
of the binomial distribution

Assumption 2. From now on, we assume the belief function Bel meeting conditions
(i)–(ii) of Theorem 5.1 to be fixed. Therefore, we always refer to transition belief
functions {βk : k = 1, . . . , T} satisfying (5.27).
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Every DS-multiplicative binomial process can be associated with an additive
binomial process through a logarithmic transformation. In detail, we consider the
process {R0, . . . , RT } where

Rt = ln Xt

X0
, for t = 0, . . . , T . (5.34)

Setting lu = ln u and ld = ln d, we have that R0 = 0 and Rt ranges in the set

Rt = {rj = jlu + (t− j)ld : j = 0, . . . , t}. (5.35)

The process {R0, . . . , RT } is still a time-homogeneous Markov process under Bel,
since it satisfies:
(Markovianity) For every 0 ≤ t ≤ T − 1 and 1 ≤ k ≤ T − t, and B ∈ P(Rk),

Bel(Rt+k ∈ B|R0 = 0, . . . , Rt = rt) = Bel(Rt+k ∈ B|Rt = rt).

(Time-homogeneity) For every 0 ≤ t ≤ T −1 and 1 ≤ k ≤ T − t, and B ∈ P(Rk),

Bel(Rt+k ∈ B|Rt = rt) = βk(exp(B)).

Remark 7. From a financial point of view, if {X0, . . . , XT } is used to model the price
evolution of a stock, then {R0, . . . , RT } is the corresponding log-return process. We
also notice that {R0, . . . , RT } is an example of DS-random walk as introduced in
Cinfrignini et al. (2022).

We denote, for every 0 ≤ t ≤ T , a random variable as Y : Ω → R that, as usual
(see Section 1.1) is said to be Ft-measurable if it is constant on the atoms of the
(natural) algebra Ft generated by {X0, . . . , Xt}. Notice that, all random variables
Y ∈ RΩ are FT -measurable, since FT = F = P(Ω)

Definition 5.2 Let {X0, . . . , XT } be a DS-multiplicative binomial process on the
filtered belief space (Ω,F , {Ft}T

t=0, Bel). Then, for every random variable Y ∈ RΩ,
define

C[Y |Xt = xt] = C
∫
Y (i)Bel(di|Xt = xt),

C[Y |X0 = x0, . . . , Xt = xt] = C
∫
Y (i)Bel(di|X0 = x0, . . . , Xt = xt).

In turn, we define the random variables C[Y |Xt] and C[Y |X0, . . . , Xt] setting,
for all i ∈ {Xt = xt},

C[Y |Xt](i) := C[Y |Xt = xt], (5.36)
and, for all i ∈ {X0 = x0, . . . , Xt = xt},

C[Y |X0, . . . , Xt](i) := C[Y |X0 = x0, . . . , Xt = xt]. (5.37)

We also simply write
C[Y |Ft] := C[Y |X0, . . . , Xt], (5.38)

which is easily seen to be Ft-measurable. The operator C[·|Ft] will be referred to as
conditional Choquet expectation, in the rest of the Chapter. The Choquet integral
with respect to a belief function implies that C[·|Ft] satisfies properties (Ch.3),
(Ch.6), (Ch.9), (Ch.8) (p.19), and it further satisfies the following property.



112 5. A multi-period binomial pricing model under DS uncertainty

Proposition 5.4
The conditional Choquet expectation C[·|Ft] associated with the filtered belief space
(Ω,F , {Ft}T

t=0, Bel) satisfies:

(conditional constant) for all Ft-measurable Y ∈ RΩ and all Z ∈ RΩ,

C[Y |Ft] = Y,

and, if Y ≥ 0,
C[Y Z|Ft] = Y C[Z|Ft].

Proof. The property is an immediate consequence of properties of the Choquet
integral with respect to a belief function, see Section 1.2.2, and with respect to
(5.36)–(5.37).

Remark 8. It is easy to verify that the conditional Choquet expectation C[·|Ft] may
fail to satisfy the tower property (see (1.8), p.9), that is, in general, for 0 ≤ t ≤ T − 1
and 1 ≤ k ≤ T − t, we have that

C[C[Y |Ft+k]|Ft] ̸= C[Y |Ft].

If φ(x) is a real-valued function of one real variable defined on the range of Xt+k,
then the following proposition characterizes the conditional Choquet expectation
when Y = φ(Xt+k).

Proposition 5.5
Let {X0, . . . , XT } be a DS-multiplicative binomial process on the filtered belief space
(Ω,F , {Ft}T

t=0, Bel). Then, for every 0 ≤ t ≤ T − 1 and 1 ≤ k ≤ T − t, and every
real-valued function of one real variable φ(x) defined on the range of Xt+k, we have
that

C[φ(Xt+k)|Xt = xt] =
k∑

z=0
φ(azxt)

(
k

z

)
bz

ub
k−z
d

+
k∑

h=1

k−h∑
z=0

[
min

ai∈[az ,az+h]
φ(aixt)

](
k − h

z

)
bz

ub
k−h−z
d (1 − (bu + bd))

and C[φ(Xt+k)|X0 = x0, . . . , Xt = xt] = C[φ(Xt+k)|Xt = xt].
In particular,

(i) if φ(x) is non-decreasing

C[φ(Xt+k)|Xt = xt] =
k∑

z=0
φ(uzdk−zxt)

(
k

z

)
bz

ub
k−z
d

+
k−1∑
z=0

φ(uzdk−zxt)
k−z∑
h=1

(
k − h

z

)
bz

ub
k−h−z
d (1 − (bu + bd));
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(ii) if φ(x) is non-increasing

C[φ(Xt+k)|Xt = xt] =
k∑

z=0
φ(uzdk−zxt)

(
k

z

)
bz

ub
k−z
d

+
k−1∑
z=0

φ(uk−zdzxt)
k−z∑
h=1

(
k − h

z

)
bk−h−z

u bz
d(1 − (bu + bd));

(iii) in the particular case Y = φ(Xt+k) = Xt+k

C[Xt+k|Xt = xt] =
k∑

z=0
uzdk−zxt

(
k

z

)
bz

ub
k−z
d

+
k−1∑
z=0

uzdk−zxt

k−z∑
h=1

(
k − h

z

)
bz

ub
k−h−z
d (1 − (bu + bd)),

and C[Xt+k|X0 = x0, . . . , Xt = xt] = C[Xt+k|Xt = xt].

Proof. Conditionally on {Xt = xt}, the random variable Xt+k takes values in Akxt

and has belief distribution given by βk on P(Ak). Let µ′
k be the Möbius inverse

of βk defined in Proposition 5.3 through (5.25)–(5.26). The general expression of
C[φ(Xt+k)|Xt = xt] easily follows by the properties of the Choquet integral. We
have that

C[φ(Xt+k)|Xt = xt] = C
∫
φ(Xt+k(i))Bel(di|Xt = xt) =

= C
∫

Ak

φ(axt)βk(da) =

=
k∑

z=0
φ(azxt)µ′

k({az})

+
k∑

h=1

k−h∑
z=0

[
min

ai∈[az ,az+h]
φ(aixt)

]
µ′

k([az, az+h]),

and the claim follows by (5.25)–(5.26). The equality
C[φ(Xt+k)|X0 = x0, . . . , Xt = xt] = C[φ(Xt+k)|Xt = xt] follows by the time-homogeneity
and Markov properties of the process. The cases of a non-decreasing or non-increasing
φ(x) are obtained by computing minima and gathering terms. Finally, the particular
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case φ(Xt+k) = Xt+k is obtained

C[Xt+k|Xt = xt] = C
∫
Xt+k(i)Bel(di|Xt = xt) =

= C
∫

Ak

axtβk(da) =

=
k∑

z=0
azxtµ

′
k({az}) +

k∑
h=1

k−h∑
z=0

azxtµ
′
k([az, az+h]) =

=
k∑

z=0
uzdk−zxt

(
k

z

)
bz

ub
k−z
d

+
k−1∑
z=0

uzdk−zxt

k−z∑
h=1

(
k − h

z

)
bz

ub
k−h−z
d (1 − (bu + bd)).

Also, in this particular case, the equality C[Xt+k|X0 = x0, . . . , Xt = xt] = C[Xt+k|Xt = xt]
follows by the time-homogeneity and Markov properties of the process.

Note 20: Our DS-multiplicative binomial process differs from other proposals of
imprecise Markov process, summarized in Section 3.2, basically not (only) for the
assumption of time-homogeneity but because they generally characterize a local model
(i.e., for one-step time-interval) and extend it to a multi-step model, or do not work
in the belief functions setting, which makes them unsuitable for achieving our desired
properties. In particular, T’Joens et al. (2021); Krak et al. (2019); Nendel (2021)
work with lower/upper expectations without characterizing a family of transition
non-additive measures. Also, Kast et al. (2014) characterize a symmetric random
walk with respect to a constant conditional capacity and dynamic consistency is
axiomatically obtained, while Škulj (2009, 2006) considers random walks and does
not assume time-homogeneity. Finally, the binomial (probability) distribution is a
particular case of our DS-multiplicative binomial process, that does not hold for all
the quoted approaches.

5.2 Equivalent Choquet martingale belief functions
We consider a financial market composed by two assets: a risk-free bond and a risky
stock that does not pay dividends. Contrary to the classical binomial pricing model
in Section 2.2.1, we allow frictions in the market in the form of bid-ask spreads.
Therefore, every security is characterized by a lower and an upper price and we will
focus in modelling the lower prices evolution. We assume that the evolution of the
lower prices of the two securities is described by the processes{

S0
0, . . . , S

0
T

}
and

{
S1

0, . . . , S
1
T

}
,

both defined on the filtered belief space (Ω,F , {Ft}T
t=0, Bel) introduced in Section 5.1.

In particular, {S1
0, . . . , S

1
T } is assumed to be a DS-multiplicative binomial process

as defined in the previous section, with S1
0 = s0 > 0, u > d > 0, whose transition
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belief functions are given by βk determined by (5.27), with parameters bu, bd > 0,
bu + bd ≤ 1.

On the other hand, the process {S0
0, . . . , S

0
T } is deterministic with S0

0 = 1 and,
for t = 1, . . . , T ,

S0
t = (1 + r)S0

t−1, (5.39)

where r > −1 is the risk-free interest rate over the single period. We further assume
that the bond is frictionless, meaning that its lower price S0

t and its upper price S0
t

coincide, for all t = 0, . . . , T , then we denote it by S0
t .

As usual, given the filtered belief space (Ω,F , {Ft}T
t=0, Bel), a process {X0, . . . , XT }

defined on such space is said to be adapted if Xt is Ft-measurable, for t = 0, . . . , T .
Using the process {S0

0 , . . . , S
0
T } as numéraire, we can define the (lower) discounted

process {S∗
0, . . . , S

∗
T } setting, for t = 0, . . . , T

S∗
t = S1

t

S0
t

= S1
t

(1 + r)t
, (5.40)

which is trivially seen to be adapted.
In analogy with Definition 4.2, we define the martingale property in the multi-period

setting.

Definition 5.3 An adapted process {X0, . . . , XT } on the filtered belief space
(Ω,F , {Ft}T

t=0, Bel) is said to be a:

one-step Choquet martingale if, for t = 0, . . . , T − 1, it holds that

C[Xt+1|Ft] = Xt.

one-step Choquet super[sub]-martingale if, for t = 0, . . . , T − 1, it holds that

C[Xt+1|Ft] ≤ [≥]Xt.

global Choquet martingale if, for every 0 ≤ t ≤ T − 1 and 1 ≤ k ≤ T − t, it
holds that

C[Xt+k|Ft] = Xt.

global Choquet super[sub]-martingale if, for every 0 ≤ t ≤ T − 1 and
1 ≤ k ≤ T − t, it holds that

C[Xt+k|Ft] ≤ [≥]Xt.

The following theorem is the analog under Dempster-Shafer uncertainty of the
classical theorem of change of measure for the probabilistic binomial pricing model
(Cerný, 2009; Pliska, 1997). In what follows, analogously to probability theory and
to Section 4.3, a belief function B̂el : F → [0, 1] is said to be equivalent to the belief
function Bel if it satisfies Definition 4.1. In particular, since the reference belief
function Bel is strictly positive on F \ {∅}, an equivalent B̂el will satisfy the same
property.
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Note 21: The assumption of positivity of the belief function Bel follows a financial
interpretation as remarked in Note 10. Moreover, it assures that the proposed
conditioning rules, in particular the product (geometric) conditioning rule, can be
applied. However, from a mathematical point of view, the assumption we made is not
innocuous and it may be overcome by considering conditioning rules for belief (or
plausibility) functions, as proposed in an axiomatic way in Petturiti and Vantaggi
(2022), that generalize the conditioning rules in Section 1.2.3 and take into account
events of null measure.

In what follows Ĉ[·|Ft] denotes the conditional Choquet expectation with respect
to B̂el.

Theorem 5.2
The condition u > 1 + r > d > 0 is necessary and sufficient to the existence of a
belief function B̂el : F → [0, 1] equivalent to Bel such that the (lower) discounted
process {S∗

0, . . . , S
∗
T } on the filtered belief space (Ω,F , {Ft}T

t=0, B̂el) satisfies the
following properties:

(a) it is a DS-multiplicative binomial process with transition belief functions
{β̂k : k = 1, . . . , T} satisfying (5.27) with parameters

u∗ = u

1 + r
, d∗ = d

1 + r
, b̂u = (1 + r) − d

u− d
and b̂d ∈ (0, 1 − b̂u],

(b) it is a one-step Choquet martingale, i.e., for t = 0, . . . , T − 1 it holds that

Ĉ[S∗
t+1|Ft] = S∗

t ,

(c) it is a global Choquet super-martingale, i.e., for every 0 ≤ t ≤ T − 1 and
1 ≤ k ≤ T − t, it holds that

Ĉ[S∗
t+k|Ft] ≤ S∗

t .

Proof. We prove only sufficiency as necessity is readily verified. Hence, suppose
u > 1 + r > d > 0. Property (a) follows immediately, by taking the discounted “up”
and “down” coefficients u∗ = u

1+r and d∗ = d
1+r and taking

b̂u = (1 + r) − d

u− d
and b̂d ∈ (0, 1 − b̂u].

Property (b) follows by Proposition 5.5, noticing that {S∗
0 = s∗

0, . . . , S
∗
t = s∗

t } =
{S1

0 = s0, . . . , S
1
t = st}, since

Ĉ[S∗
t+1|S∗

0 = s∗
0, . . . , S

∗
t = s∗

t ] = d∗s∗
t [̂bd + 1 − (b̂u + b̂d)] + u∗s∗

t b̂u

= s∗
t

[
d(u− (1 + r))
(1 + r)(u− d) + u((1 + r) − d)

(1 + r)(u− d)

]
= s∗

t .

We prove property (c) by conditioning on {S∗
0 = s∗

0, . . . , S
∗
t = s∗

t }. By Proposi-
tion 5.5, we have that

Ĉ[S∗
t+k|S∗

0 = s∗
0, . . . , S

∗
t = s∗

t ] =
k∑

z=0
δzu

∗zd∗k−zs∗
t ,
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where δ0, . . . , δk ≥ 0 and
∑k

z=0 δz = 1, and the δz’s are defined, for z = 0, . . . , k, as

δz =
(
k

z

)
b̂u

z b̂d
k−z +

k−z∑
h=1

(
k − h

z

)
b̂u

z b̂d
k−h−z(1 − (b̂u + b̂d)),

in which the second summation is 0 for z = k. Moreover, by well-known results on
the classical binomial model we have that

s∗
t =

k∑
z=0

αzu
∗zd∗k−zs∗

t ,

where α0, . . . , αk ≥ 0 and
∑k

z=0 αz = 1, and the αz’s are defined, for z = 0, . . . , k, as

αz =
(
k

z

)
b̂u

z(1 − b̂u)k−z.

If b̂d = 1 − b̂u, then δz = αz, for z = 0, . . . , k, and so

Ĉ[S∗
t+k|S∗

0 = s∗
0, . . . , S

∗
t = s∗

t ] = s∗
t .

Thus, suppose b̂d ∈ (0, 1 − b̂u). If k = 1, then by property (b) we still have that
Ĉ[S∗

t+1|S∗
0 = s∗

0, . . . , S
∗
t = s∗

t ] = s∗
t . Therefore, suppose k > 1. In this case, after a

straightforward algebraic manipulation we have that, for z = 0, . . . , k − 1,

δz = b̂u
z

{
k−z∑
h=1

[(
k − h+ 1

z

)
−
(
k − h

z

)]
b̂d

k−h−z+1 + 1 − b̂u

k−z∑
h=1

(
k − h

z

)
b̂d

k−h−z

}

and δk = b̂u
k. From this, since b̂d < 1 − b̂u, we get that

δ0 = 1 − b̂u

k∑
h=1

b̂d
k−h > 1 − b̂u

k∑
h=1

(1 − b̂u)k−h = α0,

moreover,

δ0 + δ1 = 1 − b̂u

k∑
h=1

b̂d
k−h + b̂u

{
k−1∑
h=1

b̂d
k−h + 1 − b̂u

k−1∑
h=1

(k − h)̂bd
k−h−1

}

= 1 − b̂u
2

k−1∑
h=1

(k − h)̂bd
k−h−1

> 1 − b̂u
2

k−1∑
h=1

(k − h)(1 − b̂u)k−h−1 = α0 + α1.

More generally, for j = 0, . . . , k − 2, we have that

j∑
z=0

δz = 1−b̂u
j+1

k−j∑
h=1

(
k − h

j

)
b̂d

k−h−j > 1−b̂u
j+1

k−j∑
h=1

(
k − h

j

)
(1−b̂u)k−h−j =

j∑
z=0

αz,
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while we get that
k−1∑
z=0

δz = 1 − b̂u
k =

k−1∑
z=0

αz,

k∑
z=0

δz = 1 =
k∑

z=0
αz.

Hence, we have shown that δ0, . . . , δk and α0, . . . , αk are probability distributions
on Akst such that α0, . . . , αk first-order stochastically dominates δ0, . . . , δk. In turn,
this implies that

Ĉ[S∗
t+k|S∗

0 = s∗
0, . . . , S

∗
t = s∗

t ] < s∗
t ,

and this concludes the proof.

Note 22: Due to the time-homogeneity and Markov properties of the process
{S∗

0, . . . , S
∗
T } and the fact that {S∗

t = s∗
t } = {S1

t = st}, properties (b) and (c)
of Theorem 5.2 reduce to

(b’) for t = 0, . . . , T − 1 it holds that

Ĉ[S∗
t+1|S∗

t ] = S∗
t ,

(c’) for every 0 ≤ t ≤ T − 1 and 1 ≤ k ≤ T − t, it holds that

Ĉ[S∗
t+k|S∗

t ] ≤ S∗
t .

We also have that the original process {S1
0, . . . , S

1
T } continues to be a DS-multiplicative

binomial process, seen in the new filtered belief space (Ω,F , {Ft}T
t=0, B̂el).

Following the usual terminology of mathematical finance, the belief function B̂el
singled out by the choice of b̂u and b̂d as in Theorem 5.2, will be called an equivalent
one-step Choquet martingale belief function or, simply, one-step risk-neutral belief
function. By contrast, the original belief function Bel will be called real-world belief
function. We remark that there are actually infinitely many one-step risk-neutral
belief functions, depending on the choice of b̂d ∈ (0, 1− b̂u]. The adjective risk-neutral
for such a belief function B̂el is justified by the fact that the Choquet expectation at
time t of the return of the stock over the period [t, t+ 1] coincides with the risk-free
return 1 + r, that is

Ĉ
[
S1

t+1
S1

t

∣∣∣∣∣Ft

]
= 1 + r. (5.41)

Note 23: Asking that the (lower) discounted process {S∗
0, . . . , S

∗
T } satisfies one-step

Choquet martingale and two-step Choquet martingale, i.e., it holds that

Ĉ
[
S∗

t+1
∣∣Ft

]
= S∗

t ,

Ĉ
[
S∗

t+2
∣∣Ft

]
= S∗

t ,

then B̂el reduces to a probability measure since b̂u = (1+r)−d
u−d and b̂d = 1 − b̂u. We

stress that it coincides with the equivalent martingale measure Q of the classical
binomial pricing model (see Section 2.2.1).
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The following corollary proves what is stated in Note 23 for every 1 ≤ k ≤ T − t
and it is an immediate consequence of the proof of Theorem 5.2.

Corollary 5.1 If T > 1 and u > 1 + r > d > 0, then the (lower) discounted process
{S∗

0, . . . , S
∗
T } satisfying the properties (a)–(c) of Theorem 5.2 further satisfies the

property:

(d) it is a global Choquet martingale, i.e., for every 0 ≤ t ≤ T−1 and 1 ≤ k ≤ T−t,
it holds that

Ĉ[S∗
t+k|Ft] = S∗

t ,

if and only if b̂d = 1 − b̂u, that is B̂el is a probability measure.

5.3 A dynamic pricing rule with bid-ask spreads
Consider the market introduced in Section 5.2, described by the price processes

{S0
0 , . . . , S

0
T } and {S1

0, . . . , S
1
T },

defined on the real-world filtered belief space (Ω,F , {Ft}T
t=0, Bel). We recall that

{S1
0, . . . , S

1
T } is assumed to be a DS-multiplicative binomial process with transition

belief function βk (5.27), while {S0
0 , . . . , S

0
T } is a deterministic process.

We face the problem of finding the lower price of a simple European-type
derivative contract with maturity T , whose underlying asset is the stock. Such a
contract has payoff at the maturity T given by

Y T = φ(S1
T ), (5.42)

where φ is a suitable contract function defined on the range of S1
T . From a financial

point of view, the process {Y 0, . . . , Y T } can be interpreted as the lower price
evolution of the derivative with payoff Y T = φ(S1

T ).
Note 24: The payoff of the derivative is assumed to be frictionless, i.e., if {Y 0, . . . , Y T }
is the upper price process of the same derivative, we assume that Y T = φ(S1

T ) = Y T = YT .
Remark 9. We continue to assume that b̂u and b̂d are defined as in Theorem 5.2,
determining the one-step risk-neutral belief function B̂el and the corresponding
risk-neutral filtered belief space (Ω,F , {Ft}T

t=0, B̂el).
We define a lower price process for the derivative contract by setting, for

t = 0, . . . , T − 1,
Y t = 1

1 + r
Ĉ[Y t+1|Ft], (5.43)

where Ĉ[·|Ft] denotes the conditional Choquet expectation with respect to B̂el. We
actually have that, since YT = φ(S1

T ), then Y t = φt(S1
t ) where φt is a function on

the range of S1
t , for t = 0, . . . , T − 1, and φT = φ, that is all random variables Y t’s

turn out to be functions of the corresponding random variables S1
t ’s. In particular,

by the time-homogeneity and Markov properties of the process {S1
0, . . . , S

1
T } under

the one-step risk-neutral belief function B̂el, we get that

Y t = 1
1 + r

Ĉ[Y t+1|S1
t ]. (5.44)
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The above construction defines a process {Y 0, . . . , Y T }, still adapted to the
risk-neutral filtered belief space (Ω,F , {Ft}T

t=0, B̂el).
Using again the process {S0

0 , . . . , S
0
T } as numéraire, we can define the (lower)

discounted process {Y ∗
0, . . . , Y

∗
T } setting, for t = 0, . . . , T

Y ∗
t = Y t

S0
t

= Y t

(1 + r)t
, (5.45)

which is trivially seen to be adapted.

Theorem 5.3
The discounted process {Y ∗

0, . . . , Y
∗
T } on the risk-neutral filtered belief space

(Ω,F , {Ft}T
t=0, B̂el) satisfies the properties:

(a) it is a one-step Choquet martingale, i.e., for t = 0, . . . , T − 1, it holds that

Ĉ[Y ∗
t+1|Ft] = Y ∗

t ,

(b) it is a global Choquet super-martingale, i.e., for every 0 ≤ t ≤ T − 1 and
1 ≤ k ≤ T − t, it holds that

Ĉ[Y ∗
t+k|Ft] ≤ Y ∗

t ,

(c) it is a global Choquet martingale, i.e., for every 0 ≤ t ≤ T−1 and 1 ≤ k ≤ T−t,
it holds that

Ĉ[Y ∗
t+k|Ft] = Y ∗

t ,

when b̂d = 1 − b̂u.

Proof. Property (a) is an immediate consequence of (5.45) and the positive homo-
geneity property of the conditional Choquet expectation, indeed

Y ∗
t = Y t

(1 + r)t
= 1

(1 + r)t

1
1 + r

Ĉ[Y t+1|Ft]

= Ĉ
[

Y t+1
(1 + r)t+1

∣∣∣∣Ft

]
= Ĉ[Y ∗

t+1|Ft].

We prove property (b). Due to its definition, the (lower) discounted process
{Y ∗

0, . . . , Y
∗
T } can be expressed as Y ∗

t = ψt(S1
t ) for a suitable ψt : St → R, for

t = 0, . . . , T , where ψT (S1
T ) = φ(S1

T )
(1+r)T . Fix 0 ≤ t ≤ T − 1, 1 ≤ k ≤ T − t, and st ∈ St.

By Proposition 5.5, it holds that

Ĉ[Y ∗
t+k|S1

t = st] =
k∑

z=0
µ′

k({az})ψt+k(azst)

+
k∑

h=1

k−h∑
z=0

µ′
k([az, az+h]) min

ai∈[az ,az+h]
ψt+k(aist)

We also have that, for h = 0, . . . , k − 1 and st+h ∈ St+h

ψt+h(st+h) = b̂dψt+h+1(dst+h) + b̂uψt+h+1(ust+h)
+ min{ψt+h+1(dst+h), ψt+h+1(ust+h)}(1 − (b̂u + b̂d)).
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Since
min{ψt+h+1(dst+h), ψt+h+1(ust+h)} ≥ min

ai∈Ak−h

ψt+k(aist+h),

starting from ψt(st), an iterative substitution and minorization shows that

ψt(st) ≥
k∑

z=0
µ′

k({az})ψt+k(azst)

+
k∑

h=1

k−h∑
z=0

µ′
k([az, az+h]) min

ai∈[az ,az+h]
ψt+k(aist)

= Ĉ[Y ∗
t+k|S1

t = st],

thus the claim follows.
Property (c) is an immediate consequence of well-known results on the classical

binomial model (see Section 2.2.1).

We stress that condition b̂d = 1 − b̂u is sufficient for the (lower) discounted
process {Y ∗

0, . . . , Y
∗
T } to be a global Choquet martingale but it is not necessary. To

see this, it is enough to take a constant contract function φ defined on the range
of S1

T , for which {Y ∗
0, . . . , Y

∗
T } is a global Choquet martingale, independently of

b̂d ∈ (0, 1 − b̂u].
Since we interpret the undiscounted process {Y 0, . . . , Y T } as the lower price

evolution of the derivative, such process can be associated with an upper price process
{Y 0, . . . , Y T } under the assumption in Note 24, by setting for t = 0, . . . , T − 1,

Y t = − 1
1 + r

Ĉ[−Y t+1|Ft]. (5.46)

The pair of processes {Y 0, . . . , Y T } and {Y 0, . . . , Y T } can thus be used to model
the time evolution of bid-ask spreads in a market with frictions.

Proposition 5.6
The following statements hold:

(i) Y t ≤ Y t, for t = 0, . . . , T ;

(ii) if φ is non-decreasing then the lower price process {Y 0, . . . , Y T } does not
depend on the choice of b̂d ∈ (0, 1 − b̂u];

(iii) if φ is non-increasing then the upper price process {Y 0, . . . , Y T } does not
depend on the choice of b̂d ∈ (0, 1 − b̂u].

Proof. Statement (i) is an immediate consequence of (5.43) and (5.46). If φ is non-
decreasing, statement (ii) follows by (5.43) and Proposition 5.5 since, for t = 0, . . . , T ,
it is easy to show that Y t = φt(S1

t ), where φt : St → R is non-decreasing. If φ
is non-increasing, statement (iii) follows by (5.46) and Proposition 5.5 since, for
t = 0, . . . , T , it is easy to show that Y t = φt(S1

t ), where φt : St → R is non-increasing.
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Example 5.4 Let T = 3, r = 0.04, S1
0 = e100, u = 1.2, d = 0.8, and consider a

European put option on the stock with maturity T and strike price K̃ = e100, whose
final payoff is

PT = max{K̃ − S1
T , 0}.

This is the binomial tree representation of the evolution of the underlying asset:

Figure 5.2. (Lower) price process of the underlying asset
{
S1

0, S
1
1, S

1
2, S

1
3
}

.

In this case we have b̂u = 0.6 and b̂d ∈ (0, 0.4].
Figures 5.3–5.4 show, respectively, the lower and the upper price processes of the

put option for b̂d = 0.4 · 0.999.

Figure 5.3. Lower price process of the put option {P 0, P 1, P 2, P 3}.

Setting b̂d = 0.4ϵ, we have that

P 0 = 11.136ϵ2 − 1.3312ϵ3

(1.04)3 and P 0 = 3 · 0.6 · 0.42 · 23.2 + 0.43 · 48.8
(1.04)3 ,

where P 0 does not depend on ϵ by Proposition 5.6.
Figure 5.5 shows the graph of the bid-ask spread P 0 − P 0 as a function of

ϵ ∈ (0, 1].
♦

We point out that another possibility for defining a lower price process is to set
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Figure 5.4. Upper price process of the put option
{
P 0, P 1, P 2, P 3

}
.

Figure 5.5. Bid-ask spread P 0 − P 0 as a function of ϵ ∈ (0, 1].
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Y
T

= φ(S1
T ) and, for t = 0, . . . , T − 1, define a (multi-step) lower price process

Y
t

= 1
(1 + r)T −t

Ĉ
[
Y

T
|Ft

]
. (5.47)

The resulting lower price process {Y 0, . . . , Y T
} coincides with {Y 0, . . . , Y T } if

b̂d = 1 − b̂u, while in general we have Y
t

≤ Y t, by virtue of Theorem 5.2. The
fact that {Y 0, . . . , Y T

} gives rise to a greater dilation (as shown in the following
Example 5.5) in lower prices makes us favor the one-step approach given by (5.43).

Example 5.5 Consider the put option of Example 5.4. Let us compute

P 0 = 1
(1 + r)−3 Ĉ[P3|F0]

with b̂u = 0.6 and b̂d = 0.4 · 0.999 through (5.47). We have that

P 0 = 8.6976 < P 0 = 8.7.

Then condition (b) of Theorem 5.3 is satisfied.
♦

Example 5.6 Let us consider T , r and the lower price process of S1 as in Example
5.4, and a straddle option on the stock with maturity T and strike price K̃ = e100,
whose final payoff is

YT = PT + CT = max{K̃ − S1
T , 0} + max{S1

T − K̃, 0}.

As in Example 5.4, we have b̂u = 0.6 and b̂d ∈ (0, 0.4].
Since φ is a non-monotone function, both the lower price process {Y 0, Y 1, Y 2, Y 3}

and the upper price process {Y 0, Y 1, Y 2, Y 3} depend on the choice of b̂d.
Figures 5.6–5.7 show, respectively, the binomial tree representation of the lower

and upper price processes for b̂d = 0.4 · 0.999.

Figure 5.6. Lower price process of the straddle option {Y 0, Y 1, Y 2, Y 3}.

Setting b̂d = 0.4ϵ, we have that

Y 0 = 27.6416 + 3.3280ϵ+ 1.1264ϵ2

(1.04)3 ,
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Figure 5.7. Upper price process of the straddle option
{
Y 0, Y 1, Y 2, Y 3

}
.

Y 0 = 24.416 − 6.016(1 − 0.4ϵ) − 3.2(1 − 0.4ϵ)2 + 57.6(1 − 0.4ϵ)3

(1.04)3 .

Figure 5.8 shows the graph of the bid-ask spread Y 0 − Y 0 as a function of
ϵ ∈ (0, 1].

Figure 5.8. Bid-ask spread Y 0 − Y 0 as a function of ϵ ∈ (0, 1].

Consider the lower price Y 0 = 1
(1+r)3 Ĉ[Y 3|F0] (we stress that Y 3 = Y 3 = Y3).

For b̂d = 0.4 · 0.999, we have that

Y 0 = 28.5239 < Y 0 = 28.5283.

In analogy, the upper price Y 0 = 1
(1+r)3 − Ĉ[−Y 3], where Y 3 = Y3, is

Y 0 = 28.5716 > Y 0 = 28.5519.

Hence, condition (b) of Theorem 5.3 is satisfied.
♦

On the other hand, the (multi-step) lower price process defined through (5.47)
assures that a dynamic version of the put-call parity relation introduced in Cerreia-
Vioglio et al. (2015) (see Section 3.1.2) is satisfied. Indeed, denoting by
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CT = max{S1
T − K̃, 0} and PT = max{K̃ − S1

T , 0} the payoffs of European call and
put options on S1

T with strike price K̃, the decomposition

CT − PT = S1
T − K̃ (5.48)

and the comonotonic additivity of Ĉ[·|Ft] imply that

Ĉ[CT |Ft] + Ĉ[−PT |Ft] = Ĉ[S1
T |Ft] − K̃ (5.49)

which, after discounting, reduces to

C
t
+ Ĉ[−PT |Ft]

(1 + r)T −t
= S1

t
− K̃

(1 + r)T −t
, (5.50)

where C
t
, S1

t
refer to (5.47). Let us stress that, since the lower stock price process

under B̂el is only a global Choquet super-martingale and a one-step Choquet
martingale, we actually have that S1

t
≤ S1

t .
However, under ambiguity, different forms of put-call parity relations arise: for

instance, the form introduced in Chateauneuf et al. (1996) (see (CPP) p. 54) is
generally not satisfied in our framework, as it holds only if it is a Choquet-Šipoš
integral, which does not allow the presence of frictions, as pointed out in Section
3.1.2.
Note 25: The proposed DS-multiplicative binomial process could be analogously
defined in terms of the wider framework of 2-monotone capacities, instead of belief
functions, since properties (1.21), (1.27) continue to hold. However, departing from
the additive probability setting, the tower property and the Chapman-Kolmogorov
equation do not hold and, also working with 2-monotone capacities, it is required
to characterize the whole family of k-step transition 2-monotone capacities. More-
over, the one-step time-homogeneity in (5.16)–(5.17) should be defined in terms of
2-monotone capacities as well as the reduction to the probability model as a special
case. It means that the generalized theorem of change of measure (Theorem 5.2) would
lead to the same characterization of bu and bd in order to have (in the hypothetical
new framework) a one-step risk-neutral 2-monotone capacity. The multi-step lower
pricing rule (that we do not take into account because of the wider dilation of prices)
would be different, but the one-step lower pricing rule would remain unchanged. It
results that the wider framework of 2-monotone capacities would not have significant
benefits but certainly more computational difficulties.

5.4 A dynamic generalized no-arbitrage principle
The construction carried out in the previous section subsumes the classical linear
formulation, obtained when we restrict to work with additive belief functions. In this
case, we get back to probability theory where the conditional Choquet expectation
operator defined in (5.37) reduces to the classical conditional expectation operator,
which is linear and satisfies the tower property.
Remark 10. We recall that the classical binomial pricing model builds upon the
assumption of a perfect (frictionless and competitive) market under the classical
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no-arbitrage principle. In particular, the hypothesis of absence of frictions in
the market implies that the lower and upper price processes {S1

0, . . . , S
1
T } and

{S1
0, . . . , S

1
T } always coincide. Such processes, that are considered to be defined on

the real-world filtered probability space, can be seen as a special case of a filtered
additive belief space (Ω,F , {Ft}T

t=0, Bel) where bu ∈ (0, 1) and bd = 1 − bu, i.e., Bel
reduces to a strictly positive probability measure P .

We continue to denote a portfolio or trading strategy as a bivariate stochastic
process {λ0, . . . ,λT −1} with λt = (λ0

t , λ
1
t ), and with {V0, . . . , VT } the corresponding

portfolio price process (see (2.13)–(2.14), p.33, with K = 1).
The additive formulation of the market above is dynamically complete as shown

in Proposition 2.1, in particular, for K = 1, every simple European-type derivative
with payoff YT = φ(S1

T ) can be replicated by a self-financing strategy {λ0, . . . ,λT −1}.
Also in this case, the process {Y0, . . . , YT } is interpreted as the price evolution of
the derivative, as we work in a frictionless market.
Note 26: In the classical binomial model of Section 2.2.1, we can interpret Q ∼ P
as an additive belief function B̂el with b̂u = (1+r)−d

u−d and b̂d = 1− b̂u. In this case, the
risk-neutral conditional one-step Choquet expectation operator Ĉ[·|Ft] reduces to a
classical one-step expectation operator Ê[·|Ft] and we have that, for t = 0, . . . , T − 1

Yt = 1
1 + r

Ê[Yt+1|Ft]. (5.51)

Additionally, in the classical setting, the discounted process {Y ∗
0 , . . . , Y

∗
T } is a global

(Choquet) martingale and, so, we have that (2.28) holds. The classical construction
recalled above is intrinsically based on the additivity of Bel and B̂el, that in Section
2.2.1 are denoted, respectively, as P and Q. Indeed, in case of additive belief
functions, the one-step Markov and time-homogeneity properties imply the general
Markov and time-homogeneity properties. The same holds for the one-step martingale
and global martingale properties.

Since real markets are quite far from being perfect as they can show frictions,
mainly in the form of bid-ask spreads (see Section 3.1.2), allowing frictions in the
market, i.e., giving up on the additivity of Bel and B̂el, the above construction
necessarily breaks down since Ĉ[·|Ft] is not linear and does not satisfy the tower
property. In financial terms, the lack of linearity of Ĉ[·|Ft] translates in the lack of
duality between the direct definition of the lower price process {Y 0, . . . , Y t} as a
global discounted Choquet expectation and the replicating portfolio representation.
Remark 11. The failure of the tower property in the belief framework implies that
working on single periods [t, t+ 1] is not equivalent to working on larger periods as
it is when the additivity is satisfied. Then, the (multi-step) "classical" pricing rule
in (2.28) cannot be applied when we work in terms of (non-additive) belief function.
In fact, the (one-step) lower pricing rule (5.43) is not equivalent to the (multi-step)
lower pricing rule (5.47).

We provide a detailed analysis of implications due to the lack of additivity. If
we assume Bel and B̂el are non-additive belief functions, i.e., bd ∈ (0, 1 − bu) and
b̂d ∈ (0, 1 − b̂u), then we can still define the lower price process {Y 0, . . . , Y T } of a
simple derivative with payoff YT = φ(S1

T ) through (5.43), for which we have that
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Y t = φt(S1
t ) with φt : St → R. In order to have a replicating strategy, in every

period [t, t+ 1], working conditionally on the history of the stock lower price process
up to time t, the random vector λt = (λ0

t , λ
1
t ) must be chosen by solving the linear

system {
λ0

tS
0
t+1 + λ1

tuS
1
t = φt+1(uS1

t ),
λ0

tS
0
t+1 + λ1

tdS
1
t = φt+1(dS1

t ),
(5.52)

where we recall that S0
t = S

0
t = S0

t = (1 + r)t. The linear system has a unique
solution. In turn, the replication constraint can be compactly rewritten as

λ0
tS

0
t+1 + λ1

tS
1
t+1 = Y t+1. (5.53)

The lack of linearity of Ĉ[·|Ft] implies that the resulting trading strategy {λ0, . . . ,λT }
is generally not self-financing. Denoting the (lower) price process as {V 0, . . . , V T },
where V t = λ0

tS
0
t + λ1

tS
1
t , we may have

Y t = 1
1 + r

Ĉ[Y t+1|Ft]

= 1
1 + r

Ĉ[λ0
tS

0
t+1 + λ1

tS
1
t+1|Ft]

= 1
1 + r

(
λ0

t (1 + r)S0
t + Ĉ[λ1

tS
1
t+1|Ft]

)
= 1

1 + r

(
λ0

t (1 + r)t+1 + Ĉ[λ1
tS

1
t+1|Ft]

)
= λ0

t (1 + r)t + 1
1 + r

Ĉ[λ1
tS

1
t+1|Ft]

= λ0
tS

0
t + 1

1 + r
Ĉ[λ1

tS
1
t+1|Ft]

̸= λ0
tS

0
t + λ1

tS
1
t = V t,

where Ĉ[λ1
tS

1
t+1|Ft] ̸= λ1

t Ĉ[S1
t+1|Ft] unless λ1

t ≥ 0 (see (Ch.3) p.19). This shows
that we generally lose the replicating strategy representation of the lower price
process.

On the other hand, by virtue of Theorem 5.3, the failure of the tower property of
Ĉ[·|Ft] implies that the (lower) discounted process {Y ∗

0, . . . , Y
∗
T } is only a one-step

Choquet martingale and a global Choquet super-martingale, but it is generally not
a global Choquet martingale. In particular, we only have that

Y 0 ≥ 1
(1 + r)T

Ĉ[Y T |F0]. (5.54)

We now investigate further how the choice of b̂d ∈ (0, 1− b̂u) can be justified from
a normative point of view. Indeed, as already highlighted, the classical no-arbitrage
principle is inconsistent with this choice, as the only admissible choice is to set
b̂d = 1 − b̂u.

To see this, we reformulate the no-arbitrage condition restricting to every single pe-
riod [t, t+1]. At this aim, working conditionally on the history {S1

0 = s0, . . . , S
1
t = st},

we can define the events U(st) = {S1
t+1 = ust} and D(st) = {S1

t+1 = dst}, which are
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functions of the value S1
t can take, thus we can write U(S1

t ) and D(S1
t ) to stress this

fact. In turn, the one-period market formed by the bond and the stock over [t, t+ 1]
can be augmented by adding the artificial securities whose payoff at time t+ 1 is

Au
t+1 = 1U(S1

t ) and Ad
t+1 = 1D(S1

t ), (5.55)

that turn out to be Arrow-Debreu securities (Cerný, 2009). Pricing through (5.43),
the prices at time t of Arrow-Debreu securities are set equal to

Au
t = 1

1 + r
Ĉ[Au

t+1|Ft] = b̂u

1 + r
, (5.56)

Ad
t = 1

1 + r
Ĉ[Ad

t+1|Ft] = b̂d

1 + r
. (5.57)

In the augmented one-period market over [t, t + 1], a portfolio is a vector
δt = (δ0

t , δ
1
t , δ

2
t , δ

3
t ), where the δi

t’s are Ft-measurable random variables expressing,
respectively, the number of units of bond, stock and Arrow-Debreu’s securities to
buy (if positive) or short-sell (if negative) at time t up to time t+ 1. Furthermore,
we can define a local (lower) price process {Πt,Πt+1} associated with δt over [t, t+1]
by defining the random variables

Πt = δ0
t S

0
t + δ1

t S
1
t + δ2

tA
u
t + δ3

tA
d
t , (5.58)

Πt+1 = δ0
t S

0
t+1 + δ1

t S
1
t+1 + δ2

tA
u
t+1 + δ3

tA
d
t+1. (5.59)

Given the history {S1
0 = s0, . . . , S

1
t = st}, U(st) and D(st) form a partition of

each event {S1
t = st}, moreover, the random variables Πt and Πt+1 can be simply

regarded as functions with domain W(st) = {U(st), D(st)}, where Πt is actually
constant over W(st).

If we are at time t, the tacit assumption of the classical no-arbitrage condition
concerning time t+ 1 is to work under completely resolving uncertainty. This means
that, given the history {S1

0 = s0, . . . , S
1
t = st}, at time t+ 1 the market agent will be

always able to determine which one between the mutually exclusive events U(st) and
D(st) has occurred. In this setting, the one-step arbitrage opportunity is a portfolio
δt that satisfies one of the following two conditions, where comparisons are intended
over W(st) given the history {S1

0 = s0, . . . , S
1
t = st}:

(i) Πt < 0 and Πt+1 = 0;

(ii) Πt ≤ 0 and Πt+1 ≥ 0 with Πt+1 ̸= 0.

It is well known that the absence of one-step arbitrage opportunities is equivalent to
u > 1 + r > d > 0, b̂u = (1+r)−d

u−d and b̂d = 1 − b̂u. In turn, this is equivalent to the
existence of a unique strictly positive additive risk-neutral belief function B̂el that
reduces to the already quoted probability measure Q.

Hence, choosing b̂d ∈ (0, 1 − b̂u) we can always build a one-step arbitrage
opportunity. Therefore, to justify the choice of b̂d ∈ (0, 1 − b̂u) from a normative
point of view, we need to generalized the one-step no-arbitrage condition by working
under partially resolving uncertainty, as done in Chapter 4. The concept of partially
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resolving uncertainty (Jaffray, 1989) in the present context means that, given the
history {S1

0 = s0, . . . , S
1
t = st}, at time t+ 1 the market agent may not be able to

determine which one between the two mutually exclusive events U(st) and D(st)
has occurred. Thus, she/he needs to consider the set of all the possible pieces of
information she/he may acquire once uncertainty is resolved at time t + 1 which
form the set U(st) = {U(st), D(st), U(st) ∪D(st)}.

To address partially resolving uncertainty, the local (lower) price process needs to
be changed to {Π̃t, Π̃t+1} by defining its components as functions defined over U(st)
instead of over W(st), given the history up to time t. To do so, we notice that, given
the history up to time t, S0

t , S
1
t , A

u
t , A

d
t as well as S0

t+1, S
1
t+1, A

u
t+1, A

d
t+1 can be seen

as functions with domain W(st). As usual, given a function X defined on W(st),
we assume that the market agent adopts a systematically pessimistic behaviour
under partially resolving uncertainty, considering in place of X the quantity [X]L, as
defined in (4.9), that, in this setting is defined on U(st), where, for every E ∈ U(st),
is

[X]L(E) = min{X(F ) : F ⊆ E,F ∈ W(st)}. (5.60)
We finally define

Π̃t = δ0
t [S0

t ]L + δ1
t [S1

t ]L + δ2
t [Au

t ]L + δ3
t [Ad

t ]L, (5.61)

Π̃t+1 = δ0
t [S0

t+1]L + δ1
t [S1

t+1]L + δ2
t [Au

t+1]L + δ3
t [Ad

t+1]L. (5.62)

Also in this case, Π̃t is actually constant over U(st).
In agreement with Chapter 4, we define a generalized one-step arbitrage op-

portunity a portfolio δt that satisfies one of the following two conditions, where
comparisons are intended over U(st) given the history {S1

0 = s0, . . . , S
1
t = st}:

(i’) Π̃t < 0 and Π̃t+1 ≥ 0 with Π̃t+1 = 0 over W(st);

(ii’) Π̃t ≤ 0 and Π̃t+1 ≥ 0 with Π̃t+1 ̸= 0 over W(st).
As an immediate consequence of Theorem 4.5 in Section 4.3, avoiding generalized
one-step arbitrage opportunities is equivalent to the existence of a conditional belief
function B̂el(·|S1

0 = s0, . . . , S
1
t = st) defined on the ring generated by W(st) such

that

B̂el(S1
t+1 = ust|S1

0 = s0, . . . , S
1
t = st) = b̂u, (5.63)

B̂el(S1
t+1 = dst|S1

0 = s0, . . . , S
1
t = st) = b̂d, (5.64)

1
1 + r

Ĉ[S1
t+1|S1

0 = s0, . . . , S
1
t = st] = st. (5.65)

In other terms, the choice of b̂d ∈ (0, 1−b̂u) is consistent with the generalized one-step
no-arbitrage condition, i.e., it does not produce generalized one-step arbitrage
opportunities. It is important to notice that abandoning additivity we lose the
self-financing property and, therefore, dynamic completeness. In the additive case
the one-step no-arbitrage principle alone assures the uniqueness of the global Q
defined on the whole F ; on the other hand, this is not the case for the generalized
one-step no-arbitrage principle since we generally have infinitely many non-additive
risk-neutral belief functions B̂el compatible with the fixed one-step transition belief
functions.
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Main results

• The n-nomial market model is incomplete, i.e., there exists a (non-closed) set
of equivalent martingale measures Q, whose closure is characterized by the set
of its extreme points;

• The lower envelope Q of the closure of the set of equivalent martingale measures
is proved to be a belief function;

• The closure of the set of equivalent martingale measures does not generally
coincide with the core of the lower envelope (belief function) Q. It follows that
the (discounted) Choquet expectation with respect to Q does not coincide
with the lower expectation with respect to cl(Q);

• A generalized no-Dutch book condition and no-arbitrage condition are proposed
and a generalized first fundamental theorem of asset pricing is proved;

• Inner approximation procedures of the lower envelope are suggested in order to
get a risk-neutral belief function such that its ϵ-contamination with respect to
cl(Q) is an equivalent inner approximating Choquet martingale belief function.
This leads to a (lower) pricing rule which is able to embody bid-ask spreads;

• In the multi-period setting, a multiplicative binomial random process is charac-
terized in terms of belief functions (called DS-multiplicative binomial process);

• Since the Chapman-Kolmogorov equation (and then the tower property) does
not hold, the characterization of the whole set of transition belief functions βk

is required. The choice of this particular βk is due to its interpretation as a
generalized binomial distribution;

• In a market model composed by one frictional risky asset (whose lower price
process is modeled by the proposed DS-multiplicative binomial process), a
generalized theorem of change of measure is proved;

• A dynamic lower pricing rule which accounts bid-ask spreads is characterized
and it is proved that it is a one-step Choquet martingale and a global Choquet
super-martingale;

• The reference belief function is finally showed to be consistent with the absence
of generalized arbitrage opportunities in every one-step time interval.
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Conclusion

This thesis addresses the issue of frictions, largely shown to exist in real markets.
After analysing non-linear pricing rules that are proposed in the literature, in order
to characterize lower (upper) prices, specifically by means of the Choquet integral,
this thesis investigates a one-period n-nomial market model composed by a riskless
bond and a risky asset that does not pay dividends. Since it is an incomplete market,
the properties of the class of equivalent martingale measures are investigated, and
the lower envelope of the class is shown to be a belief function in Dempster-Shafer
theory. This suggests a characterization of a lower pricing rule as a (discounted)
Choquet expectation. However, two issues arise: the frictional setting violates the
classical no-arbitrage principle and the class of equivalent martingale measures is
generally a subset of the core of its lower envelope (belief function).

The one-period pricing problem is reformulated in the belief functions framework
in order to generalize the (one-step) no-Dutch book condition and the (one-step)
no-arbitrage condition, under the paradigm of partially resolving uncertainty. We
first prove a generalized first fundamental theorem of asset pricing and show that
the (discounted) Choquet expectation with respect to the lower envelope of the class
of equivalent martingale measures does not satisfy the no-Dutch book condition.
Then, we propose a lower pricing rule relying on the ϵ-contamination technique.

The ϵ-contamination of a reference equivalent martingale measure with respect
to the class of equivalent martingale measures results in a lower envelope that
continues to fail the no-Dutch book condition. To address this issue, we consider the
ϵ-contamination of a reference equivalent martingale measure with a belief function
that is an inner approximation of the lower envelope and such that it satisfies the
generalized no-Dutch book condition.

A pricing rule based on the (discounted) Choquet expectation is provided and it
is shown to be able to embody bid-ask spreads. Then, we consider a multi-period
binomial pricing model composed by a riskless and frictionless bond and a frictional
asset whose lower price process uncertainty is modeled by a belief function.

The (lower) price process is characterized through a specific family of k-step
transition belief functions which make the process a Markov and time-homogeneous
process. The choice of this reference belief function is justified by its mathematical
tractability and interpretation as a generalization of the binomial process under
(additive) probability measures.

This characterization allows us to introduce a dynamic lower pricing rule by means
of the (discounted) conditional Choquet expectation. Thus, a generalized theorem
of change of measure is proved, in order to assess an equivalent one-step Choquet
martingale belief function. Given the payoff of European type derivative whose
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underlying asset is the frictional one, a dynamic (lower) pricing rule that accounts
bid-ask spreads is proposed and the lower price process of the derivative results
to be a one-step Choquet martingale. Since the classical no-arbitrage principle is
consistent with our model only if the belief function reduces to a probability measure,
we conclude with a normative justification, proving that the proposed reference
belief function is consistent with the absence of generalized arbitrage opportunities,
in every one-step time interval.

The present model, though simple, can be easily calibrated on market data, due
to its significant parameterization. Nevertheless, a natural evolution of the present
thesis could aim at looking for more complex models, whose development is reserved
to the future. In particular, some of the possible future expansions are:

• characterize the DS-multiplicative binomial process considering other condi-
tioning rules, in particular taking into account events with zero belief (Petturiti
and Vantaggi, 2022);

• define a more complex model of that proposed in Section 5.2, where more
stocks evolve as DS-multiplicative binomial processes. This would require to
express dependencies between the processes by referring, for instance, to a
suitable notion of correlation for belief functions (Jiang, 2018);

• characterize a DS-multiplicative n-nomial process, i.e., the stock is allowed to
have n > 2 future developments after one-step. This would require to define
and characterize a suitable family of transition belief function, in analogy with
(5.27);

• study the convergence to continuous time of the proposed DS-multiplicative
binomial process. This requires to adopt a suitable convergence criterion (see,
e.g., Feng and Nguyen, 2007) in order to get a sort of DS-geometric Brownian
motion mimicking the limit derivation of the model due to Black and Scholes
(1973).



135

Bibliography

Allingham, M. (1991). Arbitrage. Palgrave Macmillan.

Amihud, Y. and Mendelson, H. (1986). Asset pricing and the bid-ask spread. Journal
of Financial Economics, 17: 223–249.

Amihud, Y. and Mendelson, H. (1991). Liquidity, Maturity, and the Yields on U.S.
Treasury Securities. The Journal of Finance, 46(4): 1411–1425.

Aouani, Z., Chateauneuf, A. and Ventura, C. (2021). Propensity for hedging and
ambiguity aversion. Journal of Mathematical Economics, 97, 102543.

Banz, R.W. (1981). The relationship between return and market value of common
stocks. Journal of Financial Economics, 9: 3–18.

Bastianello, L., Chateauneuf, A. and Cornet, B. (2022). Put-Call Parities, absence
of arbitrage opportunities and non-linear pricing rules. arXiv:2203.16292

Ben-Israel, A. (2001). Motzkin’s transposition theorem, and the related theorems
of Farkas, Gordan and Stiemke. Encyclopedia of Mathematics, Supplement III,
Kluwer Academic Publisher, Dordrecht.

Bensaïd, B., Lesne, J-P., Pages, H. and Scheinkman, J. (1992). Derivative asset
pricing with transaction costs. Mathematical Finance, 2(2): 63–86.

Bertsimas, D., Kogan, L. and Lo, A.W. (2001). Hedging Derivative Securities
and Incomplete Markets: An ϵ-Arbitrage Approach. Operations Research, 49(3):
372–397.

Billingsley, P. (1995). Probability and measure (3rd ed.). New York: Wiley.

Bjork, T. (2009). Arbitrage Theory in Continuous Time. (3rd ed.). Oxford University
Press.

Black, F. and Scholes, M. (1973). The Pricing of Options and Corporate Liabilities.
Journal of Political Economy, 8: 637–654.

Boivin, C. (2019). Introduction to Belief Functions: The Monty Hall Game.
10.13140/RG.2.2.14018.53446

Boyle, P.P. and Vorst, T. (1992). Option Replication in Discrete Time with Transac-
tion Costs. The Journal of Finance, 47(1): 271–293.



136 Bibliography

Carr, P., Geman, H. and Madan, D.B. (2001). Pricing and hedging in incomplete
markets. Journal of Financial Economics, 62(1): 131–167.

Censor, Y. and Zenios, S.A. (1997). Parallel Optimization: Theory, Algorithms and
Applications. Oxford University Press.

Cerný, A. (2009). Mathematical Techniques in Finance: Tools for Incomplete Markets.
Princeton: Princeton University Press.

Cerreia-Vioglio, S., Maccheroni, F. and Marinacci, M. (2015). Put-Call Parity and
market frictions. Journal of Economic Theory, 157: 730–762.

Chateauneuf, A. (1991). On the use of capacities in modeling uncertainty aversion
and risk aversion. Journal of Mathematical Economics, 20(4): 343–369.

Chateauneuf, A. and Cornet, B. (2022a). Submodular financial markets with frictions.
Economic Theory. Society for the Advancement of Economic Theory (SAET),
73(2): 721–744.

Chateauneuf, A. and Cornet, B. (2022b). The risk neutral non-additive probability
with market frictions. Economic Theory Bulletin, 10(1): 13–25.

Chateauneuf, A. and Jaffray, J.Y. (1989). Some characterizations of lower prob-
abilities and other monotone capacities through the use of Möbius inversion.
Mathematical Social Sciences, 17(3): 263–283.

Chateauneuf, A., Kast, R. and Lapied, A. (1996). Choquet pricing for financial
markets with frictions. Mathematical Finance, 6(3): 323–330.

Choquet, G. (1953). Theory of capacities. Annales de l’Institut Fourier, 5: 131–295.

Cinfrignini, A. (2022). Pricing through the Choquet integral. Annali del dipartimento
di Metodi e Modelli per l’Economia, la Finanza e il Territorio, On-line first Special
Issue PhD-2022 : 1–17, ISSN 2611-6634.

Cinfrignini, A., Petturiti, D. and Vantaggi, B. (2022). Markov and Time-Homogeneity
Properties in Dempster-Shafer Random Walks. In: Ciucci, D., Couso, I., Medina, J.,
Slezak, D., Petturiti, D., Bouchon-Meunier, B. and Yager R.R. (Eds.), Information
Processing and Management of Uncertainty in Knowledge-Based Systems, vol. 1601
of Communications in Computer and Information Science, Springer: 784–797.

Cinfrignini, A., Petturiti, D. and Vantaggi, B. (2023). Envelopes of equivalent
martingale measures and a generalized no-arbitrage principle in a finite setting.
Annals of Operations Research, 321: 103–137.

Coletti, G., Petturiti, D. and Vantaggi, B. (2015). Rationality principles for prefer-
ences on belief functions. Kybernetika, 51(3): 486–507.

Coletti, G., Petturiti, D. and Vantaggi, B. (2016). Conditional belief functions as
lower envelopes of conditional probabilities in a finite setting. Information Sciences,
339: 64–84.



Bibliography 137

Coletti, G., Petturiti, D. and Vantaggi, B. (2020). A Dutch book coherence con-
dition for conditional completely alternating Choquet expectations. Bollettino
dell’Unione Matematica Italiana, 13(4): 585–593.

Coletti, G. and Vantaggi, B. (2008). A view on conditional measures through
local representability of binary relations. International Journal of Approximate
Reasoning, 47(3): 268–283.

Cox, J.C., Ross, S.A. and Rubinstein, M. (1979). Option pricing: A simplified
approach. Journal of Financial Economics, 7(3): 229–263.

Cuzzolin, F. (2021). The Geometry of Uncertainty. Artificial Intelligence: Founda-
tions, Theory, and Algorithms. Springer.

de Cooman, G., De Bock, J. and Lopatatzidis, S. (2016). Imprecise stochastic
processes in discrete time: global models, imprecise Markov chains, and ergodic
theorems. International Journal of Approximate Reasoning, 76: 18–46.

de Cooman, G., Hermans, F. and Quaeghebeur, E. (2009). Imprecise Markov
chains and their limit behaviour. Probability in the Engineering and Informational
Sciences, 23(4): 597–635.

de Cooman, G., Troffaes, M. and Miranda, E. (2008). n-Monotone exact functionals.
Journal of Mathematical Analysis and Applications, 347(1): 143-156.

Delbaen, F. and Schachermayer, W. (2006). The mathematics of arbitrage. Springer,
Berlin.

Dempster, A. (1967). Upper and Lower Probabilities Induced by a Multivalued
Mapping. Annals of Mathematical Statistics, 38(2): 325–339.

Denneberg, D. (1994). Conditioning (updating) non-additive measures. Annals of
Operations Research, 52: 21–42.

Denœux, T. (2006). Constructing belief functions from sample data using multinomial
confidence regions. International Journal of Approximate Reasoning, 42(3): 228–
252.

Destercke, S. and Dubois, D. (2014). Special cases. In: Augustin, T., Coolen, F.P.A.,
de Cooman, G. and Troffaes, M.C.M. (Eds.), Introduction to Imprecise Probabilities.
Wiley.

Dubins, L.E. (1975). Finitely additive conditional probabilities, conglomerability
and disintegrations. Annals of Probability, 3(1): 89–99.

Dubois, D. and Prade, H. (1990). Updating with Belief Functions, Ordinal Condi-
tioning Functions and Possibility Measures. Proceedings of the Sixth Conference
on Uncertainty and Artificial, Cambridge: 307–315.

Dybvig, P.H. and Ross, S. (1989). Arbitrage. In: Eatwell, J., Milgate, M. and
Newman, P. (Eds.), Finance. Palgrave Macmillan.



138 Bibliography

Edirsinghe, C., Naik, V. and Uppal, R. (1993). Optimal Replication of Options
with Transactions Costs and Trading Restrictions. The Journal of Financial and
Quantitative Analysis, 28(1): 117–138.

El Karoui, N. and Quenez, M.C. (1995). Dynamic Programming and Pricing of
Contingent Claims in an Incomplete Market. SIAM Journal on Control and
Optimization, 33(1): 29–66.

Ellsberg, D. (1961). Risk, Ambiguity, and the Savage Axioms. The Quarterly Journal
of Economics, 75(4): 643–669.

Epstein, L.G. and Schneider, M. (2007). Learning Under Ambiguity. The Review of
Economic Studies, 74(4): 1275–1303.

Epstein, L.G. and Schneider, M. (2008). Ambiguity, Information Quality, and Asset
Pricing. The Journal of Finance, 63(1): 197–228.

Epstein, L.G. and Schneider, M. (2010). Ambiguity and Asset Markets. Annual
Review of Financial Economics, Annual Reviews, 2(1): 315–346.

Fagin, R. and Halpern, J.Y. (1990). A new approach to updating beliefs. Proceedings
of the Sixth Conference on Uncertainty in Artificial Intelligence, Cambridge:
347–374.

Fagin, R. and Halpern, J.Y. (1991). Uncertainty, belief, and probability. Computa-
tional Intelligence, 7: 160–173.

Faigle, U., Kern, W. and Still, G. (2002). Algorithmic principle of mathematical
programming. (Texts in the Mathematical Sciences, 24), Springer.

Feng, D. and Nguyen H.T. (2007). Choquet weak convergence of capacity functionals
of random sets. Information Sciences, 177(16): 3239–3250.

Garman, M.B. and Ohlson, J.A. (1980). Valuation of risky assets in arbitrage-free
economies with transactions costs. Journal of Financial Economics, 9: 271–280.

Gilboa, I. and Marinacci, M. (2016). Ambiguity and the Bayesian Paradigm. In:
Arló-Costa, H., Hendricks, V. and van Benthem. J. (Eds.). Readings in Formal
Epistemology. Springer Graduate Texts in Philosophy, 1. Springer, Cham.

Gilboa, I. and Schmeidler, D. (1989). Maxmin expected utility with non-unique
prior. Journal of Mathematical Economics, 18(2): 141–153.

Gilboa, I. and Schmeidler, D. (1993). Updating ambiguous beliefs. Journal of
Economic Theory, 59: 39–49.

Gilboa, I. and Schmeidler, D. (1994). Additive representations of non-additive
measures and the Choquet integral. Annals of Operations Research, 52(1): 43–65.

Gilio, A. and Sanfilippo, G. (2011). Coherent conditional probabilities and proper
scoring rules. ISIPTA 2011 - Proceedings of the 7th International Symposium on
Imprecise Probability: Theories and Applications.



Bibliography 139

Gould, J.P. and Galai, D. (1974). Transaction Costs and the Relationship between
Put and Call Prices. Journal of Financial Economics, 1(2): 105–129.

Grabish, M. (2016). Set Functions, Games and Capacities in Decision Marking.
Springer.

Grimmett, G. and Stirzaker, D. (2020). Probability and Random Processes. Oxford
University Press.

Harrison, J.M. and Kreps, D.M. (1979). Martingales and arbitrage in multiperiod
securities markets. Journal of Economic Theory, 20(3): 381–408.

Harrison, J.M. and Pliska, S.R. (1980). Martingales and stochastic integrals in the
theory of continuout trading. Stochastic Processes and their Applications, 11(3):
215–260.

Hartfiel, D.J. (1998). Markov Set-Chains. Springer-Verlag, Berlin.

Hermans, F. and Škulj, D. (2014). Stochastic processes. In: Augustin, T., Coolen,
F.P.A., de Cooman, G. and Troffaes, M.C.M. (Eds.), Introduction to Imprecise
Probabilities. Wiley.

Huber, P.J. (1981). Robust Statistics. Wiley, New York.

Hull, J.C. (2014). Option, Futures and Other derivatives. (9th edition). Pearson.

Jaffray, J.Y. (1989). Coherent bets under partially resolving uncertainty and belief
functions. Theory and Decision, 26(2): 99–105.

Jaffray, J.Y. (2008). Bayesian Updating and Belief Functions. In: Yager, R.R. and
Liu, L., Classic Works of the Dempster-Shafer Theory of Belief Functions. Studies
in Fuzziness and Soft Computing, 219. Springer, Berlin, Heidelberg.

Jiang, W. (2018). A correlation coefficient for belief functions. International Journal
of Approximate Reasoning, 103: 94–106.

Jouini, E. (2000). Price functionals with bid–ask spreads: an axiomatic approach.
Journal of Mathematical Economics, 34(4): 547–558.

Jouini, E. and Kallal, L. (1995a). Martingales and Arbitrage in Securities Markets
with Transaction Costs. Journal of Economic Theory, 66: 178–197.

Jouini, E. and Kallal, L. (1995b). Arbitrage in securities markets with short-sales
constraints. Mathematical Finance, 5(3): 197–232.

Kast, R., Lapied, A. and Roubaud, D. (2014). Modelling under ambiguity with
dinamically consistent Choquet random walks and Choquet-Brownian motions.
Economic Modelling, 38: 495–503.

Klemkosky, R.C. and Resnick, B.G. (1979). Put-Call Parity and Market Efficiency.
Journal of Finance, 34: 1141–1155.



140 Bibliography

Klibanoff, P., Marinacci, M. and Mukerji, S. (2009). Recursive smooth ambiguity
preferences. Journal of Economic Theory, 144(3): 930–976.

Kozine, I.O. and Utkin, L.V. (2002). Interval-Valued finite markov chains. Reliable
Computing, 8: 97–113.

Krak, T., T’Joens, N. and De Bock, J. (2019). Hitting Times and Probabilities
for Imprecise Markov Chains. Proceedings of Machine Learning Reserach, 103:
265–275.

Liu, L. and Yager, R.R. (2008). Classic works of the Dempster-Shafer Theory of
Belief Functions: An Introduction. Studies in Fuzziness and Soft Computing,
Volume 219. Springer.

Melnikov, A.V. (1999). Financial Markets: Stochastic Analysis and the Pricing
of Derivative Securities. Translations of Mathematical Monographs, American
Mathematical Society.

Merton, R.C. (1990). Continuous-time finance. Blackwell.

Miranda, E., Montes, I. and Presa, A. (2022) Inner Approximations of Credal
Sets by Non-additive Measures. In: Ciucci, D., Couso, I., Medina, J., Slezak,
D., Petturiti, D., Bouchon-Meunier, B. and Yager R.R. (Eds.), Information
Processing and Management of Uncertainty in Knowledge-Based Systems, vol.
1601 of Communications in Computer and Information Science, Springer: 743–756.

Miranda, E., Montes, I. and Vicig, P. (2021). On the selection of an optimal outer
approximation of a coherent lower probability. Fuzzy Sets Systems, 424: 1–36.

Miyahara, Y. (1995). Canonical Martingale Measures of Incomplete Assets Markets.
Probability Theory and Mathematical Statistics: Proceedings of the Seventh Japan-
Russia Symposium, Tokyo.

Montes, I. and Destercke, S. (2017). On extreme points of p-boxes and belief functions.
Annals of Mathematics and Artificial Intelligence, 81: 405–428.

Montes, I., Miranda, E. and Vicig, P. (2018). 2-Monotone outer approximations of
coherent lower probabilities. International Journal of Approximate Reasoning, 101:
181–205.

Montes, I., Miranda, E. and Vicig, P. (2019). Outer approximating coherent lower
probabilities with belief functions. International Journal of Approximate Reasoning,
110: 1–30.

Moral, S. (2018). Discounting Imprecise Probabilities. In: Gil, E., Gil, E., Gil, J. and
Gil, M. (Eds.), The Mathematics of the Uncertain, vol. 142 of Studies in Systems,
Decision and Control, Springer: 685–697.

Munk, C. (2013). Financial Asset Pricing Theory. Oxford University Press.

Nendel, M. (2021). Markov chains under nonlinear expectation. Mathematical Fi-
nance, 31: 474–507.



Bibliography 141

Palmer, K. (2001). A note on the Boyle-Vorst discrete-time option pricing model
with transactions costs. Mathematical Finance, 11(3): 357–363.

Pascucci, A. and Runggaldier, W.J. (2011). Financial Mathematics. Theory and
problems for multi-period models. Springer.

Pennesi, D. (2018). Asset prices in an ambiguous economy. Mathematics and Finan-
cial Economics, 12: 55–73.

Perrakis, S. and Lefoll, J. (1997). Derivative Asset Pricing with Transaction Costs:
An Extension. Computational Economics, 10: 359–376.

Petturiti, D. and Vantaggi, B. (2020). Modeling agent’s conditional preferences
under objective ambiguity in Dempster-Shafer theory. International Journal of
Approximate Reasoning, 119: 151–176.

Petturiti, D. and Vantaggi, B. (2022). Conditional decisions under objective and
subjective ambiguity in Dempster-Shafer theory. Fuzzy Sets and Systems, 447:
155–181.

Petturiti, D. and Vantaggi, B. (2023). How to assess coherent beliefs: A comparison of
different notions of coherence in Dempster-Shafer theory of evidence. Reflections on
the Foundations of Probability and Statistics: Essays in Honor of Teddy Seidenfeld,
Theory and Decision Library A, 54, DOI: 10.1007/978-3-031-15436-2_8.

Planchet, B. (1989). Credibility and conditioning. Journal of Theoretical Probability,
2(3): 289–299.

Pliska, S.R. (1997). Introduction to mathematical finance: Discrete time models.
Blackwell, Malden, MA.

Predd, J.B., Seiringer, R., Lieb, E.H., Osherson, D.N., Poor, H.V. and Kulkarni, S.R.
(2009). Probabilistic Coherence and Proper Scoring Rules. IEEE Transactions on
Information Theory, 55(10): 4786–4792.

Reinganum, M.R. (1981a). Misspecification of capital asset pricing: Empirical
anomalies based on earnings yields and market values. Journal of Financial
Economics, 9: 19–46.

Reinganum, M.R. (1981b). The arbitrage pricing theory: Some empirical evidence.
Journal of Finance, 36(2): 313–320.

Rényi, A. (1956). On conditional probability spaces generated by a dimensionally
ordered set of measures. Theory of Probability and its Applications, 1(1): 55–64.

Ross, S.M. (2019). Introduction to Probability Models. (13th ed.) Academic Press,
San Diego, CA, USA.

Roux, A. (2011). The fundamental theorem of asset pricing in the presence of bid-ask
and interest rate spreads. Journal of Mathematical Economics, 47: 159–163.

Runggaldier, W.J. (2006). Portfolio optimization in discrete time. Accademia delle
scienze dell’Istituto di Bologna.



142 Bibliography

Savage, L.J. (1954). The Foundations of Statistics. New York, Wiley.

Schervish, M.J., Seidenfeld, T. and Kadane, J.B. (2008). The fundamental theorems
of prevision and asset pricing. International Journal of Approximate Reasoning,
49: 148–158.

Schmeidler, D. (1986). Integral representation without additivity. Proceedings of the
American Mathematical Society, 97(2): 255–261.

Shafer, G. (1976a). A Mathematical Theory of Evidence. Princeton University Press,
Princeton, NJ.

Shafer, G. (1976b). A theory of statistical evidence. In: Harper, W.L. and Hooker,
C.A., Foundation of probability theory, statistical inference, and statistical theories
of science. The University of Western Ontario Series in Philosophy of Science, 6b.
Springer, Dordrecht.

Shafer, G. (1990). Perspectives on the Theory and Practice of Belief Functions.
International Journal of Approximate Reasoning, 4 (5-6): 323–362.

Shafer, G. and Vovk, V. (2001). Probability and finance: it’s only a game. Wiley.

Shafer, G. and Vovk, V. (2017). Towards a probability-free theory of continuous
martingales. arXiv:1703.08715

Shafer, G. and Vovk, V. (2019). Game-Theoretic Foundations for Probability and
Finance. Wiley.

Shreve, S. (1996). Stochastic Calculus and Finance. Springer.

Škulj, D. (2006). Finite Discrete Time Markov Chains with Interval Probabilities.
In: Lawry, J., Miranda, E., Bugarin, A., Li, S., Gil, M.A., Grzegorzewski, P.
and Hyrniewicz, O. (Eds.), Soft Methods for Integrated Uncertainty Modelling.
Advances in Soft Computing, 37. Springer, Berlin, Heidelberg.

Škulj, D. (2009). Discrete time Markov chains with interval probabilities. Interna-
tional Journal of Approximate Reasoning, 50: 1314–1329.

Škulj, D. (2016). Random walks on graphs with interval weights and precise marginals.
International Journal of Approximate Reasoning, 73: 76–86.

Sternberg, J. (1984). A Re-examination of Put-Call Parity of Index futures. The
Journal of Futures Markets, 14(1): 79–101.

Suppes, P. and Zanotti, M. (1977). On Using Random Relations to Generate Upper
and Lower Probabilities. Synthese, 36(4): 427–440.

T’Joens, N., De Bock, J. and de Cooman, G. (2021). A particular upper expec-
tation as a global belief model for discrete-time finite-state uncertain processes.
International Journal of Approximate Reasoning, 131: 30–55.

Tanner, E.J. and Levis, A.K. (1971). The Determinants of the Difference Between Bid
and Ask Prices on Government Bonds. The Journal of Business, 44(4): 375–379.



Bibliography 143

Taylor, J.C. (1997). An Introduction to Measure and Probability. Springer.

Troffaes, M.C.M. and de Cooman, G. (2014). Lower previsions. Wiley.

Vasilev, I and Melnikov, A. (2021). On Market Completions Approach to Option
Pricing. Review of Business and Economics Studies, 9: 77–93.

Walley, P. (1982). Coherent lower (and upper) probabilities. Tech. Rep. 22, Depart-
ment of Statistics, University of Warwick, UK.

Walley, P. (1991). Statistical Reasoning with Imprecise Probabilities. Chapman and
Hall, London.

Weichselberger, K. (2000). The theory of interval-probability as a unifying concept for
uncertainty. International Journal of Approximate Reasoning, 24(2–3): 149–170.

Williams, P.M. (2007). Notes on conditional previsions. International Journal of
Approximate Reasoning, 44(3): 366–383.

Yager, R.R. (1983). Entropy and specificity in a mathematical theory of evidence.
International Journal of General Systems, 9(4): 249–260.

Yu, C. and Arasta, F. (1994). On Conditional Belief Functions. International Journal
of Approximate Reasoning, 10: 155–172.


	Introduction
	Uncertainty and ambiguity
	Mathematical preliminaries
	Theorems of the alternative

	Ambiguity and Dempster-Shafer theory
	Non-additive measures
	Choquet integral
	Conditioning


	Arbitrage theory in discrete time models
	One-period setting
	Dutch-book and arbitrage opportunities
	Fundamental theorems

	Multi-period setting
	Binomial model
	Trinomial model


	State of art
	Incomplete and frictional markets
	Replicating strategies for incomplete markets
	Frictional market models
	Empirical studies
	Replicating strategies with transaction costs
	Pricing rules with bid-ask spreads
	Choquet pricing rules


	Imprecise stochastic processes

	A one-period n-nomial pricing model under DS uncertainty
	A n-nomial market model and its envelopes
	A lower pricing rule
	A one-step generalized no-arbitrage principle
	Equivalent inner approximating Choquet martingale belief functions

	A multi-period binomial pricing model under DS uncertainty
	Dempster-Shafer multiplicative binomial processes
	Equivalent Choquet martingale belief functions
	A dynamic pricing rule with bid-ask spreads
	A dynamic generalized no-arbitrage principle

	Main results
	Conclusion
	Bibliography

