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Memory and rejuvenation effects in spin 
glasses are governed by more than one  
length scale
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S. Perez-Gaviro    3,4, F. Ricci-Tersenghi10,11,12, J. J. Ruiz-Lorenzo    7,13, 
S. F. Schifano16, B. Seoane    5,17, A. Tarancon3,4 & D. Yllanes    4,18

Memory and rejuvenation effects in the magnetic response of 
off-equilibrium spin glasses have been widely regarded as the doorway 
into the experimental exploration of ultrametricity and temperature 
chaos. Unfortunately, despite more than twenty years of theoretical efforts 
following the experimental discovery of memory and rejuvenation, these 
effects have, thus far, been impossible to reliably simulate. Yet, three recent 
developments convinced us to accept this challenge: first, the custom-built 
Janus II supercomputer makes it possible to carry out simulations in which 
the very same quantities that can be measured in single crystals of CuMn 
are computed from the simulation, allowing for a parallel analysis of the 
simulation and experimental data. Second, Janus II simulations have taught 
us how numerical and experimental length scales should be compared. 
Third, we have recently understood how temperature chaos materializes 
in aging dynamics. All these three aspects have proved crucial for reliably 
reproducing rejuvenation and memory effects on the computer. Our 
analysis shows that at least three different length scales play a key role 
in aging dynamics, whereas essentially all the theoretical analyses of the 
aging dynamics emphasize the presence and crucial role of a single glassy 
correlation length.

The remarkable off-equilibrium behaviour of glass formers at low tem-
peratures has been described with terms such as aging1 or memory and 
rejuvenation2–5, which seem more suitable for living beings than for 
inert chunks of matter. In this context, spin glasses (which are disor-
dered magnetic alloys6) enjoy a privileged status. On the experimental 
side, their magnetic response can be studied with great accuracy using 
a superconducting quantum interference device. Rejuvenation and 
memory (as described below) are, furthermore, remarkably strong in 

spin glasses, probably because of the large correlation length ξ of coher-
ent spin domains. The values of ξ achieved in single-crystal samples7–10 
is much larger than in other glass-forming materials (for instance, the 
ξ value measured in supercooled glycerol or propylene carbonate11 
is smaller by a factor of ~100). On the other hand, spin-glass theory12 
has proven to be applicable to distant fields that also feature rugged 
free-energy landscapes, such as combinatorial optimization, machine 
learning, biology, financial markets or social dynamics.
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experimental protocol for extracting the spin-glass coherence length 
from the Zeeman effect25, thus showing consistency between the Zee-
man method and the microscopic approach. Janus II allowed us to per-
form computer experiments with a native (that is, fixed-temperature or 
aging) protocol and make a direct comparison of the SZFC (equation (1))  
obtained in the simulation with that from real experiments on a single 
crystal of CuMn (refs. 9,10,29). The Edwards–Anderson model and 
CuMn turned out to be governed by the same scaling laws, where ξ is 
the all-important scaling variable. This agreement between simulations 
and experiment, however, was established only for native protocols. 
We need to understand what happens when the temperature is varied.

Experimentalists are prone to attribute the rejuvenation effect to 
temperature chaos14 (explanations not invoking temperature chaos 
have been also proposed30,31). Temperature chaos32–34 is an equilibrium 
notion stating that spin configurations typical from the Boltzmann 
distribution at temperature T1 would be very atypical for tempera-
ture T2, no matter how close T1 and T2 are (provided that T1, T2 < Tg). 
Temperature chaos could explain why the relaxation at temperature 
T1 seems useless at T2 (that is, rejuvenation). Yet, even in the mean-field 
approximation, showing that temperature chaos is really present in 
equilibrium has been a hard task since it is a weak effect35,36. Further-
more, extending the equilibrium concept of temperature chaos to the 
experimentally relevant context of off-equilibrium dynamics is a very 
recent achievement37.

Dynamic temperature chaos is spatially extremely heterogeneous 
(Fig. 2). To measure it, we choose many spheres of linear size R in ran-
dom positions within the sample. Within each sphere, we compare spin 
configurations obtained at temperature T1 and time twT1 with configura-
tions from temperature T2 and time twT2 (the simplifying choice  
ξ(twT1, T1) = ξ(twT2, T2) = ξ(tw) was made elsewhere37). The comparison 
is quantitative, through the computation of a correlation coefficient 
XT1 ,T2  (Methods). Many of these spheres turn out to have very weak 
temperature chaos (XT1 ,T2 ≈ 1). Yet, with low probability, one picks a 
chaotic sphere with a significantly smaller XT1 ,T2. In fact, the analysis in 
another work37 identifies a crossover length scale ξ*(T1, T2): for 
ξ(tw) ≪ ξ*(T1, T2), chaotic spheres are very rare, but for ξ(tw) ≫ ξ*(T1, T2), 
chaotic spheres become fairly typical. A scaling law was also found: 
ξ*(T1, T2) ∝ (T1 – T2)–1/ζNE, where ζNE = 1.19(2).

Our last building block comes from the experiment done in 
another work8, which identifies a minimal temperature jump ΔTmin in 
a CuMn sample. Temperature chaos in that sample turned out to be 
exceedingly weak whenever T1 – T2 < ΔTmin. It follows that in a simula-
tion, chaotic spheres will be just too rare to substantially affect the 
overall sample relaxation unless (we are indebted to R. Orbach for 
this observation)

T1 − T2
Tg

|||sim
≈ ΔTmin

Tg
|||CuMn

[ ξCuMn(tw)
ξmicro(tw)

]
ζNE
, (2)

where the subscript micro stands for the ξ value computed in the 
numerical simulation (Methods), whereas Tg is the glass temperature, 
which is different for the CuMn sample and for simulations. Plugging 
in typical numbers (ΔTmin = 450 mK, Tg = 31.5 K, ξCuMn(tw) ≈ 220a0 and 
ξmicro(tw) ≈ 16.6a0), we conclude from equation (2) that given the cor-
relation length reached in our simulations, a successful simulation of 
the rejuvenation effect should have T1 − T2 > 0.32Tg.

In this work, we have considered two temperature jumps  
(Table 1). The first jump, namely, T1 = 0.9 → T2 = 0.5, meets the require-
ment for temperature chaos expressed in equation (2), whereas the 
second jump, namely, T1 = 0.9 → T2 = 0.7, is too small. Hence, we expect 
to find qualitative differences between the two.

Becoming quantitative: how many controlling length scales?
Our discussion shall emphasize three different length scales, focus-
ing on their physical interpretation and their utility to rationalize 

It is worth stressing that the main part of spin-glass experimental 
studies is carried out under off-equilibrium conditions13. In the simplest 
setting, the so-called zero-field-cooling (ZFC) protocol, the system is 
initially at equilibrium at some very high temperatures. Eventually, 
the spin glass is abruptly cooled to the working temperature T < Tg and 
relaxes for a waiting time tw (Tg is the glass temperature and tw ranges from 
minutes to several hours). At time tw, a magnetic field H is switched on and 
the growing magnetization MZFC(t, tw) is recorded at later times of t + tw. 
MZFC(t, tw) has turned out to have a notable dependence on tw for as long as 
researchers have had the patience to wait. The relaxation rate is given by

SZFC(t, tw;H ) =
1
H

dMZFC(t, tw;H )
d log t

(1)

peaks at a time teff
H roughly equal to tw (experimental results shown 

elsewhere9,10). The only relevant timescale that can be identified is the 
age of the glass, namely, tw (and hence the term aging). Figure 1 (left) 
shows our results for this comparatively simple fixed-temperature 
protocol, which will be named native hereafter. The native setup is 
used as a standard for comparison.

Quest for rejuvenation and memory
An even more interesting behaviour appears when the temperature is 
made to vary with time. In fact, we shall consider here only the simplest 
protocol for which rejuvenation and memory have been experimentally 
found14 (Fig. 1 (centre) shows our temperature–time scheme). After a 
relaxation of duration tw

↓, the temperature is abruptly lowered from 
the initial temperature T1 < Tg to a lower temperature T2 (the choice of T2 
turns out to be critical, as shown below). The system is again allowed to 
relax at temperature T2 for an additional time tw, after which a magnetic 
field is switched on and the relaxation function SZFC is measured at times 
tw

↓ + tw + t. Surprisingly enough, one finds that the initial relaxation at 
T1 has been essentially forgotten: the long-time peak of SZFC is found 
at times teff

H ≈ tw, which can be substantially shorter than tw
↓. This is 

the rejuvenation effect, which was experimentally found more than 
20 years ago and which is being reported via a simulation for the first 
time (Fig. 1, bottom centre), to the best of our knowledge.

Yet, rejuvenation is not the end of the story. After a total time of 
tw

↑ = 2tw↓, half of it is spent at T1 and the other half at T2, and the system 
is suddenly heated back to the original temperature T1, where it is left 
to relax for a time tw ≪ tw

↓, after which the magnetic field is switched 
on and the relaxation function is measured. The SZFC value is found to 
peak again at ~tw

↓, as if the excursion to temperature T2 never happened 
(Fig. 1, top right). This is the memory effect, which, at first sight, seems 
fairly contradictory with the rejuvenation effect.

The physical origin of memory and rejuvenation in spin glasses 
has not been identified yet. Then, it is perhaps unsurprising that all 
the past attempts to reproduce these effects in computer simulations 
have failed15–20, which has even raised questions about the validity of 
the standard model of finite-dimensional spin glasses, namely, the 
Edwards–Anderson model21,22. Fortunately, the Janus II dedicated super-
computer23 has changed this situation, attaining realistic timescales 
and length scales, as well as allowing—for the first time—a thorough 
examination of spin-glass dynamics both in the vicinity of critical 
temperature Tg and in the low-temperature regime.

The spin-glass dynamics at T < Tg comprises the growth of (glassy) 
magnetic domains of linear size ξ(tw) (refs. 24–26) (later referred to 
as ξmicro). The non-equilibrium nature of the process is evident in the 
growth of ξ(tw) as tw varies, which is never ending and extremely slow. 
In fact, the lower the temperature, the more sluggish is the growth of 
ξ(tw) (refs. 7,27). Janus II has reached unprecedentedly large values of 
ξmicro(tw), enabling safe extrapolations from the numerical timescale 
of tenths of a second (when ξ ≈ 20a0, where a0 is the typical spin–spin 
distance) to the experimental scale of hours7,27 (when ξ ≈ 200a0). This 
special-purpose computer has also made it possible to simulate28 the 
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the rejuvenation and memory effects (extra details are provided in  
Methods). Only one of these scales, namely, ξZeeman, can be experimen-
tally accessed nowadays (the other two lengths, however, provide 
invaluable microscopic information):

•	 ξmicro is the size of the (glassy) domains within the sample (it is the 
largest length scale at which we can regard the system as ordered 
at time tw).

•	 ξZeeman is obtained by counting the number of spins that coher-
ently react to an externally applied field25. It provides a very direct 
quantification of memory and rejuvenation.

•	 ζ(t1, t2) (refs. 38–40) is obtained from a comparison of the same sys-
tem at two times t1 and t2 (t1 < t2): ζ characterizes the long-distance 
decay of the pair-correlation function corresponding to the set of 
spins taking opposite signs at times t1 and t2 (Methods) (physically, 
ζ(t1, t2) is the typical size of regions where coherent rearrange-
ments have occurred between times t1 and t2, probably because 
of the ongoing formation of a new spin order at time t2). For fixed 
t1, ζ(t1, t2) grows with t2 starting from ζ(t1, t2 = t1) = 0.

Previous analysis for native (that is, fixed-temperature) protocols 
tell us that ξZeeman fairly closely follows the behaviour of microscopic 
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Fig. 1 | ZFC numerical experiment measuring rejuvenation and memory.  
The starting random spin configuration is instantaneously placed at the working 
temperature and it relaxes for time tw without a field. At time tw, magnetic field 
H = 0.01 is applied and the magnetic density MZFC(t, tw; H) is recorded. The left 
panels show aging. We display the relaxation function SZFC(t, tw; H) (equation (1)) 
for the native runs at the warmer (T1 = 0.9) and colder (T2 = 0.5) temperatures 
(both below the glass temperature Tg = 1.102(3) (ref. 42)). The physically 
interesting peak of SZFC(t, tw; H) defines teff

H ≃ tw (the peak at shorter times, t ≈ 210, 
does not change with the waiting time, which makes this peak uninteresting for 
us; Methods). In our protocol (indicated by the green arrows), after a waiting 
time of tw

↓ = 231.25, the temperature abruptly drops from the initial temperature 
(T1 = 0.9) to the colder temperature (T2 = 0.5). Then, the system relaxes at T2 
for an additional time, after which the magnetic field is switched on and the 
function SZFC(t, tw; H) (bottom centre) is measured. Waiting times for these jump 

runs are reported in the legend; the rejuvenation effect is clearly visible, since 
teff

H ≪ tw
↓ and similar to time tw spent at T2 (we use tw for the time spent at the 

last temperature in a given protocol). Finally, after waiting time tw
↑ = 2tw

↓ = 232.25 
(that is, the system has spent half of its life at the initial temperature T1 and the 
other half at the colder temperature T2 without a field), the spin glass is suddenly 
heated back to T1. We let the system relax for a short time, tw = 210 ≪ tw

↓, after 
which the magnetic field is switched on. The SZFC(t, tw; H) measured after the jump 
back (top right) has a peak very similar to the one before the first jump (top left), 
evincing the memory of aging at initial temperature T1, notwithstanding the 
rejuvenation observed when staying at lower temperature T2. In Table 1, we report 
the effective times teff

H=0.01 (that is, the time at which the aging peak is found). In 
all the cases, the error bars are computed with a jack-knife method applied to 
the 512 replicas that we simulate for every sample. Data are presented as mean 
values ± standard error of the mean.

http://www.nature.com/naturephysics


Nature Physics

Article https://doi.org/10.1038/s41567-023-02014-6

Table 1 | Basic features of our simulations

Type T (History) + tw ξmicro(tw) ξZeeman(tw) ζ(tw, 2tw) log2teff
H=0.01 tmax

Native (aging) 0.9 231.25 16.63(5) 16.64(5) 29.66(2) 232

Native (aging) 0.5 210 2.23926(2) 1.916(1) 9.813(1) 228

Native (aging) 0.5 215.625 2.9090(4) 2.571(4) 15.377(2) 228

Native (aging) 0.5 223.5 4.0865(15) 3.5175(2) 3.77(1) 22.942(4) 230

Native (aging) 0.5 231.25 5.6167(4) 5.617(4) 5.30(4) 29.500(8) 232

Native (rejuv) 0.5 (231.25 at T = 0.9) + 210 16.62(12) 2.43(2) 1.488(3) 19.016(7) 228

Native (rejuv) 0.5 (231.25 at T = 0.9) + 215.625 16.68(12) 3.67(1) 1.869(2) 22.156(8) 228

Native (rejuv) 0.5 (231.25 at T = 0.9) + 223.5 16.75(13) 4.83(8) 2.69(1) 26.699(9) 231

Native (rejuv) 0.5 (231.25 at T = 0.9) + 231.25 16.81(13) 6.43(8) 3.958(9) 31.56(1) 233.5

Native (aging) 0.7 210 2.6629(4) 2.054(1) 9.948(1) 228

Native (aging) 0.7 215.625 3.8230(10) 2.931(4) 15.502(3) 228

Native (aging) 0.7 223.5 6.1742(4) 5.50(1) 4.72(4) 23.042(6) 228

Native (aging) 0.7 231.25 9.578(11) 9.578(1) 7.50(1) 30.39(1) 233

Native (rejuv) 0.7 (231.25 at T = 0.9) + 210 16.62(12) 6.59(7) 1.652(3) 23.08(1) 228

Native (rejuv) 0.7 (231.25 at T = 0.9) + 215.625 16.67(12) 7.61(8) 2.194(5) 24.48(1) 228

Native (rejuv) 0.7 (231.25 at T = 0.9) + 223.5 16.76(12) 9.26(10) 3.43(4) 26.82(2) 228

Native (rejuv) 0.7 (231.25 at T = 0.9) + 231.25 16.81(13) 12.12(1) 5.59(9) 29.40(2) 232

Jump back (memory) 0.9
( 2

31.25 at T = 0.9
231.25 at T = 0.5 ) + 210

16.81(13) 16.05(2) 1.812(3) 29.98(2) 232

The runs labelled as native are intended for the study of aging, those labelled as jump are devoted to rejuvenation, and those labelled jump-back are for memory (see the definitions given 
later). On the Janus II supercomputer, we have simulated the Edwards–Anderson model with nearest-neighbour couplings (J = ±1 with 50% probability), comprising simple-cubic lattices 
containing 1,603 Ising spins s = ±1 (lattice size, L = 160a0) and endowed with periodic boundary conditions. A particular set of couplings is termed a sample. For every sample and every set of 
parameters, we have simulated 512 independent trajectories (that is, 512 replicas; Methods). This table lists the main parameters for each of our numerical simulations. Temperature-varying 
protocols (Fig. 1, centre and top right) are termed the jump and jump-back protocols, respectively. In all these cases, temperature T refers to the temperature at which the relaxation function 
in equation (1) is computed. All the temperatures considered here are in the spin-glass phase: T < Tg = 1.102(3) (ref. 42). The waiting time is the time elapsed at the working temperature before 
magnetic field H is switched on (for native protocols, this consists of time tw at working temperature T; for jump protocols, the system stays for time tw

↓ at starting temperature T1 = 0.9 plus time 
tw at T2; for the jump-back protocols, the system stays for time tw

↓ at starting temperature T1 = 0.9, plus time tw
↑ at cold temperature T2 = 0.5, plus short time t = 210 back at temperature T1). The 

three length scales characterizing the dynamics, namely, ξmicro, ξZeeman and ζ(t1 = tw, t2 = 2tw) are given in a0 = 1 unit (Methods; ζ(t1, t2) is calculated in the absence of an external magnetic field, ξmicro 
is computed just before the magnetic field is switched on and ξZeeman reflects the dependence of relaxation rate SZFC on the magnetic field; equation (1)). We incur a slight language abuse when 
writing ζ(t1 = tw, t2 = 2tw), which is only accurate for native runs. For the jump runs, it is t1 = tw

↓ + tw (t1 = tw
↓ + tw

↑ + tw for jump-back protocols). In all the cases, we have t2 = t1 + tw. Finally, we report tmax, our 
longest simulation time in the presence of a field, and the effective time teff

H, the time of the aging peak of the relaxation function (as computed for field H = 0.01; Fig. 1 and Methods). In all the 
cases, the error bars denote one standard deviation
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Fig. 2 | Temperature chaos is spatially heterogeneous when it is clearly 
present. Rejuvenation protocol (left) and memory protocol (right). The 
8,000 randomly chosen spheres in a sample of size L = 160 are depicted with 
a colour code depending on 1−X (X is the chaotic correlation parameter as 
computed for spheres with radius R = 5a0; Methods). For visualization purposes, 
spheres are represented with a radius of 12(1−X), so that only fully chaotic 
spheres (that is, X = 0) would have the largest size. To avoid cluttering, we draw 
only spheres with X < 0.97. We calculate the chaotic correlation parameter X 
(left) between the native system at T = 0.5 (that is, a fixed-temperature protocol: 
a completely disordered system is put at temperature T = 0.5 and let to evolve 
at this temperature for a time tw = 231.25) and the jump system at the same 

temperature T = 0.5 (Fig. 1 (centre): the jump system has spent the first half of 
its life, tw

↓ = 231.25, at the hot temperature T1 = 0.9 and the second half, tw = 231.25, at 
the cold temperature T = 0.5). Very strong chaotic heterogeneity is found. We 
calculate the chaotic correlation parameter X (right) between the native system 
at the hot temperature T = 0.9 and the jump-back system at the same temperature 
T = 0.9 (the jump-back system has spent a time tw

↓ = 231.25 at the hot temperature 
T1 = 0.9, a time tw

↑ – tw
↓ = 231.25 at the cold temperature T2 = 0.5, and then tw = 210 

again at T1 = 0.9; Fig. 1 shows the temperature protocol). After the cycle, the 
system does not display chaotic heterogeneity since almost every sphere has a 
large correlation parameter X, that is, a strong memory (Supplementary Note V 
provides more examples).
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length ξmicro (refs. 9,10,25,28). This is described in Fig. 3 (top). There 
are two salient features in the time growth of either ξZeeman or ξmicro(tw) 
at a fixed temperature7,27: the growth slows down as ξmicro increases  
(dlogtw/dlogξmicro is approximately constant when tw varies in the loga-
rithmic scale) and the dynamics at lower temperatures is enormously 
slower (Tdlogtw/dlogξmicro is roughly constant when different tempera-
tures are compared). In fact, at the largest temperature T = 0.9 (Table 1  
and ref. 27), it is comparatively easy to reach a large ξmicro ≈ 16.6a0 in 
the native protocol. Instead, for a similar simulation time, the native 
protocol at T = 0.5 is limited to ξmicro ≈ 5.6a0. It is then unsurprising that 
when the temperature jumps from T1 = 0.9 to T2 = 0.5 or 0.7 (Fig. 3,  
top), the size of the glassy domains is locked to their value at jump 
time, namely, ξmicro ≈ 16.6a0: the time needed for such a large domain to 
grow at a lower temperature T2 far exceeds the scale of our simulations.  
The importance of this locking was also emphasized elsewhere17.

Although ξmicro is locked at the value that it has at jump time, the 
behaviour of ξZeeman is different in the jump protocols. In the jump com-
plying with equation (2), T1 = 0.9 → T2 = 0.5, ξZeeman(tw) is fairly similar to 
the corresponding curve for the native run at T = 0.5. From the point 
of view of the response to a magnetic field, rejuvenation is almost 
complete for this temperature jump, because the initial relaxation at 
T1 = 0.9 (almost) does not leave a measurable trace. Instead, for the 
more modest jump T1 = 0.9 → T2 = 0.7, rejuvenation is weaker and ξZeeman 
is sensibly larger than in the native runs (Supplementary Note II).

Furthermore, it is also shown in Fig. 3 (top) that when the sys-
tem jumps back to T1 = 0.9 (that is, T1 = 0.9 → T2 = 0.5 → T1 = 0.9; Fig. 1  
(top right)), the response to the magnetic field goes back to normal: 
ξZeeman catches up with ξmicro after an extremely short transient. This is 
another manifestation of the memory effect.

With regard to the third length scale (Fig. 3 (bottom) and Supple-
mentary Note III), for all our jump protocols, we find ζ ≪ ξmicro, which 

means that the configuration right before the jump is only locally 
distorted by the excursion to low temperature T2 (in our opinion, this 
fact provides a natural explanation for the memory effect). Figure 3 
(inset) shows that ζ is not just a simple function of ξmicro and ξZeeman. The 
consequences of this sophisticated behaviour are discussed below.

Dynamic temperature chaos and rejuvenation
At this point, the elephant in the room is clear: what is the physical 
origin for rejuvenation and memory?

To answer the question, we need to compare pairs of spin configu-
rations. One of the configurations will be taken from the jump proto-
cols. The other configuration will come from the native runs at 
temperatures T2 = 0.5 or T2 = 0.7. In an attempt to make a fair compari-
son, we shall choose the native configurations at T2 at their largest 
possible waiting time. In fact, the magnetic domains will be substan-
tially smaller in the native protocol than those in the jump protocol  
(at T2 = 0.5, for instance, one has to compare ξnativemicro  ≈ 5.8a0 with 
ξ jump
micro ≈ 16.6a0).

The main steps in the comparison were outlined above (Methods 
and ref. 37). At random in the sample, we pick spheres of radius R. The 
results presented in this paper were obtained with R = 5a0 to make sure 
that the spheres will have a chance to fit within the glassy domains of 
the native runs (we have tried other values of R, finding qualitatively 
similar results; Supplementary Note VI). The configurations from the 
two protocols are compared by computing a correlation coefficient X 
that only takes into account spins contained in the sphere. If X is sig-
nificantly smaller than unity, we regard that particular sphere as cha-
otic, because typical configurations from the two protocols differ 
within the sphere. To be precise, we compute the probability distribu-
tion function F( ̃X), namely, the fraction of the spheres with a correlation 
coefficient X < ̃X .

2

3

4

5

6

8

10

12
14
16
18

2

3

4

5

6

8

10

12
14
16
18

10 15 20 25 30 10 15 20 25 30

10 15 20 25 30

2

4

6
8
10
14
18

T = 0.5, jump
T = 0.5, native
T = 0.9, jump back

T = 0.7, jump
T = 0.7, native

log2(tw)

log2(tw)

ξ ζ

ξZeeman : solid lines
ξmicro :    dashed lines
ζ :           dotted lines

Fig. 3 | Aging dynamics is controlled by at least three length scales. The main 
text and Methods provide an extended discussion on the three length scales. The 
solid lines and filled circles denote ξZeeman(tw, T), the dashed lines and empty 
circles denote ξmicro(tw, T), and the dotted lines and empty squares denote ζ(t1, t2). 
For the native protocols (left), ξZeeman(tw) fairly closely follows the behaviour of 
ξmicro(tw). For the jump protocol with T2 = 0.5, ξZeeman(tw) is extremely similar to the 
corresponding curve for the native run (this T2 value meets the chaos 
requirement in equation (2)), which means that the system responds to an 
external magnetic field as if it is rejuvenated, that is, ξ jump

Zeeman(tw) ≪ ξ jump
micro(tw). 

When the system jumps back to T1 = 0.9 (that is, T1 = 0.9 → T2 = 0.5 → T1 = 0.9), 
ξ jump−back
Zeeman (tw) goes back to its original value of ξnativemicro (tw) after an extremely  

short time (memory). Instead, ξZeeman(tw) never becomes small for the jump 
protocols with T2 = 0.7. The ξmicro(tw) value for the jump runs are superimposed 
(the spins are frozen for this length scale). The size of regions undergoing 
coherent rearrangements when evolving from the initial to final time, ζ(t1, t2), is 
much smaller than ξmicro(tw) for all our jump protocols (right). The two times at 

which we evaluate the coherence length, that is, ζ(t1, t2), are t1 = tw and t2 = 2tw 
(Table 1 provides a detailed explanation). In all the cases, ζ is represented as a 
function of log2(t2 – t1). Supplementary Note III provides extra results on ζ(t1, t2). 
We compare the behaviour of ζ(t1 = tw, t2 = 2tw) and ξZeeman(tw) (inset). For native 
runs, the two lengths are approximately equal. Instead, for the jump protocols, 
we show 1.8ζ(t1 = tw, t2 = 2tw). Indeed, only for T2 = 0.5 and using an appropriate 
scaling factor of approximately 2, it is clear that ζjump(t1 = tw, t2 = 2tw) can be made 
to coincide with ξ jump

Zeeman(tw) (because these curves are approximately parallel in 
our logarithmic representation). For T2 = 0.7 instead, see the dotted red line in the 
inset; ζjump(t1 = tw, t2 = tw + tw) can be rescaled to coincide with ξZeeman(tw) from the 
native protocol (solid violet line), which differs from ξ jump

Zeeman(tw) (solid red line). 
The largest length in this set, ξZeeman(tw) ≈ 16, corresponds to the jump-back 
protocol. Note that for the jump-back protocol, we only have a single point 
(orange). In all the cases, the error bars are computed with a jack-knife method 
applied to the four independent samples. Data are presented as mean 
values ± standard error of the mean.
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Our results (Fig. 4 (bottom)) for the jump protocol T1 = 0.9 → T2 = 0.7 
remind us of previous studies37. The vast majority of spheres have a very 
large correlation coefficient, and truly chaotic spheres are only found 
in the tail of the distribution (probability of 0.1% or smaller).

Interestingly enough (Fig. 2 (left) and Fig. 4 (top)), the situation 
is radically different for the jump protocol T1 = 0.9 → T2 = 0.5, where 
the spheres in the tenth percentile of the distribution are as chaotic as 
the most chaotic spheres we could find for the jump T1 = 0.9 → T2 = 0.7. 
In fact, to the best of our knowledge, Fig. 4 (top) reports the strong-
est temperature-chaos signal ever observed in a simulation of glassy 
dynamics.

To convince ourselves that the extreme chaos is not an artefact 
of the disparity in domain sizes, we have tried a null experiment by 
simulating a model where no temperature chaos is expected, namely, 
the link-diluted ferromagnetic Ising model (we used the results from 
another work41 to as closely match as possible the conditions in our 
spin-glass simulations with the diluted ferromagnet, taking special care 
in matching the size of the domains; Methods). As expected (Fig. 4), the 
sphere distribution for the ferromagnet is concentrated at correlation 
coefficient X ≈ 1. We conclude that the spin-glass results (Fig. 4 (top)) 
are genuine evidence for dynamic temperature chaos.

It is also interesting that the distribution function (Fig. 4 (top)) 
barely depends on tw. This is another manifestation of the dynamic 
lockdown when the temperature jumps to the lower value.

The overall conclusions of this analysis are twofold. First, the 
requirement expressed by equation (2), which is based on CuMn experi-
mental results8, is sensible: strong temperature chaos is found only 
when T1 − T2 is as large as equation (2) demands. Second, only when the 
temperature chaos is strong, our simulations find strong rejuvenation 
(Fig. 3 (top)).

Where do we stand?
Our simulations depict a clear picture of rejuvenation and mem-
ory effects. Provided that the temperature jump is large enough  
(equation (2)), the spin-glass state that was forming at temperature 
T1 is completely alien at temperature T2 (at least, it looks alien com-
pared with the native state that grows directly at T2; Fig. 2). In fact, the 
response to the magnetic field (which is the quantity measured in the 
experiments2–5,7–10,14) is not qualitatively different in the alien state and 
in the native state that grows from a fully disordered high-temperature 
state. The system just dismisses the relaxation it achieved at the higher 
temperature T1.

Paradoxically enough, the alien state is locked at temperature T2: 
the microscopic rearrangement at T2 (Fig. 3 (bottom)), takes place on 
extremely small length scales to dissolve such foreign glassy domains. 
As a consequence, when the temperature is taken back to T1, the glassy 
domains characteristic of T1 are still there. This seems to be the physi-
cal origin of the memory effect. This reasoning is also consistent with 
recent experiments that find that the memory effect strongly depends 
on tw

↓ (that is, the time spent in the first stay at T1) ( J. Freedberg, per-
sonal communication). Indeed, if tw

↓ is too small, the memory effect 
almost disappears. Our interpretation of this experimental finding is 
that the glassy domains at T1 need to grow large enough as to remain 
mostly unaltered at the lower temperature T2.

Looking back, we effectively understand why rejuvenation 
has been so difficult to find in simulations: the correlation lengths 
that could be reached before the Janus family of supercomputers 
were rather limited (we are referring here to the ξmicro length scale). 
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Fig. 4 | Strong temperature chaos correlates with full rejuvenation. Here we 
show the fraction of spheres with radius R = 5a0 that have correlation parameter X 
smaller than ̃X, F( ̃X) (Methods; the pairs of systems for which correlation 
parameter X is computed are listed in Table 2). One of the systems in the pair used 
to compute X is always taken from the native protocol at T = 0.5 (top) (T = 0.7 
(bottom)). In the cases reported in the top panel, the partner in the pair that 
undergoes the temperature-jump protocol experiences strong rejuvenation. 
Instead, as shown in Fig. 3 (top), rejuvenation is only partial for the cases reported 
in the bottom panel. Interestingly enough, small correlation parameters appear 
with high probability in the top panel, whereas they are very rare events in the 
bottom panel. We also show a comparison with the DIM (Methods describes our 
null experiment), where temperature chaos is not expected. Indeed, in the 
absence of temperature chaos, the probability concentrates at X ≈ 1. In all the 
cases, the error bars are computed with a jack-knife method applied to the 
512 replicas that we simulate for every sample. Data are presented as mean 
values ± standard error of the mean.

Table 2 | Identifying parameters for each numerical 
simulation in Fig. 4

System T Type Waiting time

A9 SG 0.9 Native tw
↓ = 231.25

B9 SG 0.9 Jump back tw
↓ + tw

↑ + 210

A5 SG 0.5 Native tw
↓ = 231.25

B5 SG 0.5 Native tw
↓ = 210

C5 SG 0.5 Native tw
↓ = 215.625

D5 SG 0.5 Native tw
↓ = 223.5

E5 SG 0.5 Native tw
↓ = 231.25

A7 SG 0.7 Native tw
↓ = 231.25

B7 SG 0.7 Native tw
↓ = 210

C7 SG 0.7 Native tw
↓ = 215.625

D7 SG 0.7 Native tw
↓ = 223.5

E7 SG 0.7 Native tw
↓ = 231.25

A′5 DIM 0.5 Native 76

B′5 DIM 0.5 Native 430 + 69

A′7 DIM 0.7 Native 197

B′7 DIM 0.7 Native 430 + 165

A′9 DIM 0.9 Native 430

Spin-glass (SG) protocols follow the notation shown in Fig. 1. T is the final temperature in the 
protocol. For DIM (Method s shows the DIM temperature-naming convention), we explicitly 
write tw

(1) + tw
(2) for the jump protocols to stress that the time before the jump (T = 0.9), that is, 

tw
(1), differs from time tw

(2) at the final temperature. We choose tw
(1) such that ξmicro coincides for 

both protocols in the pairs (A5, A′5), (A7, A′7) and (A9, A′9).
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Therefore, equation (2) would demand an exceedingly large tempera-
ture jump T1 − T2 if one wants to have a large fraction of chaotic spheres 
of the relevant size.

An open question is whether or not the only experimentally acces-
sible coherence length, namely, ξZeeman(tw), relates to some correlation 
function under all the circumstances. Indeed, in the case of native 
protocols, ξZeeman(tw) behaves analogous to ξmicro(tw), which we know how 
to obtain from a microscopic correlation function. However, ξmicro(tw) 
is not a valid proxy for ξZeeman(tw) in temperature-jump protocols. For-
tunately (Fig. 3 (inset)), we achieve a step forward in this respect (but 
only if temperature chaos is strong enough). Indeed, if the condition in 
equation (2) is met, we have found that it is possible to rescale ζ(t1 = tw, 
t2 = tw + tw) in such a way that it coincides with ξZeeman(tw), with a scaling 
factor in the range between 1 and 2. In other words, we are extending 
the main result of another work28 to jump protocols (because ζ(t1 = tw, 
t2 = tw + tw) basically coincides with ξmicro(tw) for native protocols). Hence, 
our data suggest that ζ may help us bridge the microscopic world in a 
more complete way, namely, the correlation functions that we compute 
in a simulation (Methods provides the definition of ζ), with the macro-
scopic world of the response to an external field (quantified by ξZeeman).

Finally, we should also stress that the analysis of the rejuvenation 
and memory effects requires the consideration of at least three differ-
ent length scales, namely, ξmicro(tw), ξZeeman(tw) and ζ(t1, t2), which can be 
fairly different from each other. Of course, one of these three, namely, 
the domain size ξmicro(tw), acts as a cut-off for the other lengths. Yet, 
we have seen that ξmicro(tw) is not nearly enough to describe the variety 
of behaviours that an aging system may present. In fact, ξmicro(tw) has 
stayed essentially constant for all the jump simulations that we have 
considered here. Therefore, a useful theory of aging dynamics can-
not feature only a single length scale. In this sense, we think that our 
work poses a new and noteworthy question for the different theories 
of aging dynamics.
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Methods
The layout of this note is as follows. First, we describe our simulations. 
Then, we define some quantities characteristic of the ZFC protocol. In 
fact, the magnetic field plays a crucial role in the determination of the 
Zeeman length scale, as explained thereafter. The other two spin-glass 
coherence lengths, ξmicro and ζ, are computed later. Finally, we explain 
our computation of the chaotic correlation parameter.

Simulated models
We performed massive simulations on the Janus II supercomputer23 
to study the three-dimensional Edwards–Anderson model on a cubic 
lattice with periodic boundary conditions and size L = 160 (in units of 
lattice constant a0). The main parameters describing our simulations 
are provided in Table 1.

The N = L3 Ising spins, sx = ±1, interact with their lattice near-
est neighbours in the presence of a magnetic field (H) through the 
Hamiltonian:

ℋ = − ∑
⟨x,y⟩

Jxysxsy − H∑
x

sx, (3)

where the couplings are independent, identically distributed random 
variables: Jxy = ±1, with 50% probability. The couplings are chosen at 
the start of the simulation and remain fixed (quenched disorder). A 
particular choice of couplings is termed a sample. In the absence of 
an external magnetic field (H = 0), this model undergoes a spin-glass 
transition at critical temperature Tg = 1.102(3) (ref. 42).

The off-equilibrium dynamics was simulated with the Metropolis 
algorithm. The numerical time unit is the lattice sweep, which roughly 
corresponds to 1 ps of physical time.

In this work, we have simulated NS = 4 samples using a lattice size 
of L = 160a0. For each of these samples and for each protocol (Table 1), 
we have simulated NR = 512 replicas (that is, independent simulations 
carried out for a given sample, following an identical protocol). We use 
replicas to account for thermal noise controlling the simulation (each 
replica is controlled by an independent realization of the thermal 
noise). The average over the thermal noise will be represented as 〈⋯〉. 
Thereafter, we shall perform the average over samples, which will be 
indicated as ⟨⋯ ⟩ .

However, on a few occasions (particularly for the analysis shown 
in the ‘Measurement of Zeeman length through the scaling law of 
effective times’ section), the final quantities are computed for a single 
sample (this is, of course, the approach followed in the laboratory). In 
these cases, the different samples allow us to assess to which extent 
our results depend on disorder realization (Supplementary Note I).

Besides, as a null experiment for temperature chaos, we have 
studied the link-diluted Ising model (DIM), also on cubic lattices of 
size L = 160a0 with periodic boundary conditions and using Metropolis 
dynamics. Specifically, we used the Hamiltonian in equation (3) but 
with couplings Jxy = 1 (with 70% probability) or Jxy = 0 (with 30% prob-
ability) and magnetic field H = 0. Since all the couplings are positive or 
zero, this is a ferromagnetic system without frustration, for which no 
temperature chaos is expected. The critical temperature for the DIM 
is Tc = 3.0609(5) (ref. 41) (actually, this is twice the value reported in 
another work41 due to our use of an Ising formulation rather than a Potts 
formulation). In fact, with some abuse of language, in the main text, we 
refer to DIM temperatures as T = 0.9, T = 0.7 or 0.5 rather than to their 
actual values of T = 0.9Tc/Tg, T = 0.7Tc/Tg or 0.5Tc/Tg, respectively, where 
Tg is the critical temperature for the Edwards–Anderson model. We fol-
low the very same procedure, which is explained in the ‘Computation of 
ξmicro’ section, to compute the coherence length ξmicro for both spin glass 
and DIM. We have chosen times for the DIM such that ξmicro coincides 
with the corresponding spin-glass value, namely, ξmicro = 5.84 (protocol 
A′5 in Table 2), ξmicro = 10.11 (protocol A′7) and ξmicro = 16.63 (protocol A′9). 
Of course, the necessary times are extremely short for DIM than spin 

glass. Given that the DIM simulations were comparatively inexpensive, 
we simulated 16 samples (each with 512 replicas) for this model.

Some ZFC observables
As explained in the main text, our simulations are designed to mimic 
the experimental protocol called ZFC. In ZFC protocols, a sample 
initially in equilibrium at some very high temperature is cooled below 
Tg, always maintained at zero magnetic field. In the native protocols, 
the system is abruptly taken to the measuring temperature, where it 
is let to relax for time tw. The cooling process (always without a field) 
is more complex for our jump protocols (Fig. 1).

For both protocols, native or jump, we let the system relax for time 
tw at the final, measuring temperature. Then, the external magnetic 
field H is switched on and we record the magnetic density as

MZFC(t, tw;H ) =
1
N ∑

x

⟨sx(t + tw;H )⟩, (4)

which grows with t from its initial value M = 0 at t = 0. We also record 
the two-time autocorrelation function as

CZFC(t, tw;H) =
1
N∑

x

⟨sx(tw;0)sx(t + tw;H)⟩. (5)

Note that CZFC is a monotonically decreasing function of time and 
CZFC = 1 at t = 0.

Measurement of Zeeman length through the scaling law of 
effective times
The method introduced in another work25 to experimentally measure 
the spin-glass coherence length has recently been refined. Indeed, 
the scaling law introduced in other work9,10 is a milestone for describ-
ing the magnetic response of a spin glass in both ‘lab experiments’ 
and ‘numerical experiments’. We shall name ξZeeman as the length scale 
extracted using these methods.

In experiments on a single-crystal CuMn sample, the main quantity 
evaluated is the relaxation function SZFC(t, tw; H), which exhibits a local 
maximum at time teff

H ≈ tw. Hence, one focuses on the H dependence 
of teff

H. On the numerical side, we carry out massive numerical experi-
ments spanning from picoseconds to tenths of a second on the Janus 
II supercomputer, from which we can also extract teff

H. The numerical 
method proceeds as follows (other studies9,10 provide a full discus-
sion). One first changes the variable by considering SZFC as a function of 
C(t, tw; H) (equation (5)) rather than time. The peak is found at Cpeak(tw). 
Finally, teff

H is found by solving the equation C(teff
H, tw; H) = Cpeak(tw).  

A crucial advantage is that this equation can also be directly solved 
at H = 0.

The numerical SZFC(t, tw; H), however, shows two peaks: a 
tw-independent peak at very short times and a second, physically inter-
esting peak at t ≈ tw. Unfortunately, in fixed-temperature simulations 
(that is, native protocols) with very short tw, the two peaks cannot be 
resolved (Fig. 1, bottom left). We have not attempted to extract ξZeeman 
in native runs where the two peaks cannot be resolved. However, for 
the shortest jump protocol with T2 = 0.5, namely, tw = 210 and 215.625, we 
could borrow Cpeak from the jump with the largest tw (unfortunately, the 
same trick did not work for native runs, because important consistency 
checks29 were not passed in this case).

From a phenomenological point of view, the effective time teff
H 

can be associated with the height of the largest free-energy barrier Δmax 
through the usual Arrhenius law25

∆max = kBT (log teffH − log τ0) , (6)

where kB is the Boltzmann constant, τ0 is the characteristic exchange 
time, τ0 ≈ ℏ/kBTg, and h is the Planck constant. In an external magnetic 
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field, the free-energy barriers are lowered by the Zeeman energy EZ  
(ref. 25). For a small magnetic field, EZ behaves as

EZ = ξD−θ/2ZeemanχFCH
2, (7)

which defines ξZeeman. Here χFC is the field-cooled magnetic susceptibility 
per spin, ξD−θ/2Zeeman is the number of correlated spins, D = 3 is the spatial 
dimension and θ is the replicon exponent28.

We slightly depart from the previous approach by exploiting a scal-
ing theory. We use the effective time teff

H to reflect the total free-energy 
change at magnetic fields H and H = 0+ (refs. 9,10):

log [ teffH
teffH→0+

] =
̂S

2T
ξD−θ/2micro H

2

+ξ−θ/2micro𝒢𝒢 (T, ξ
D−θ/2
micro H

2) ,
(8)

where ̂S  is a constant coming from the fluctuation–dissipation  
relations and 𝒢𝒢(x) is a scaling function behaving as 𝒢𝒢(x) ≈ x2 for small  
x = ξD−θ/2micro H

2 . For small-enough magnetic fields (H ≤ 0.017), we can 
neglect the 𝒪𝒪(H4) terms in equation (8):

log [
teffH
teffH→0+

] = c2(tw;T)H2, (9)

where we have included all the constants in the c2(tw; T) coefficient.
Thus, fitting our data according to equation (9), we can define the 

Zeeman coherence length ξZeeman as

ξ jump
Zeeman(tw,T1 → Tm) = [ c2(tw,T1 → Tm)

c2(tw∗,Tm)
]
1/(D−θ/2)

ξmicro(tw∗;Tm), (10)

ξnativeZeeman(tw,Tm) = [ c2(tw,Tm)
c2(tw∗,Tm)

]
1/(D−θ/2)

ξmicro(tw∗;Tm), (11)

where ξmicro(tw*; Tm) plays the role of a reference length (the reference 
length allows us to avoid the precise determination of constants in 
equation (9)). The reference time tw* is the longest available waiting 
time for our native runs at measuring temperature Tm. For the sake of 
clarity, in equations (10) and (11), we omit the explicit dependence of 
θ on ξmicro (ref. 7).

Numerical coherence lengths ξmicro and ζ
In this paragraph, we shall consider two more length scales. One 
of them, ξmicro, is computed from the correlation function for the 
spin-glass order parameter (hence, ξmicro tells us about the size of the 
glassy domains). The second length scale, ζ(t1, t2), tells us about how 
the system reorganizes itself when going from earlier time t1 to later 
time t2.

Computation of ξmicro. For the reader’s convenience, let us recall the 
definition of the spatial autocorrelation function that we use for com-
puting ξmicro(tw) (ref. 38):

C4(r, t′;T) = ⟨q(a,b)(x, t′)q(a,b)(x + r, t′)⟩T, (12)

q(a,b)(x, t′) ≡ σ(a)(x, t′)σ(b)(x, t′), (13)

where t′ = tw + t, the indices (a, b) label different real replicas, and 〈⋯〉T 
stands for the average over thermal noise at temperature T.

The calculation of the correlation function is computationally 
costly since we have NR(NR − 1)/2 possible choices of the pair of replicas. 
Fortunately, it can be accelerated using the specific multispin coding 
methods explained elsewhere43.

Once we have C4(r, t′; T), we compute the integrals as26,27,38

Ik(t′;T) = ∫
∞

0
d3r rkC4 (r = (r,0,0), t′;T) . (14)

A coherence length can be computed as

ξk,k+1(t′,T) =
Ik+1(t′,T)
Ik(t′,T)

. (15)

We define ξmicro(t, tw; H) = ξ12(t, tw; H).

The ζ length scale. This length scale was studied in detail in another 
work38 by refining earlier suggestions39,40.

Let us consider the thermal trajectory followed by a given replica at 
two times t1 and t2 (t1 < t2). Our basic quantity will be the local correlation

cx(t1, t2) = sx(t2)sx(t1). (16)

Note that cx(t1, t2) = −1 if the spin at site x has been flipped when going 
from time t1 to time t2 (otherwise, cx(t1, t2) = 1). Then, the two-time, 
two-site correlation function is

C2+2(r, t1, t2) =
1
N∑

x

[⟨cx(t1, t2)cx+r(t1, t2)⟩ − C2(t1, t2)], (17)

where

C(t1, t2) =
1
N∑

x

⟨cx(t1, t2)⟩. (18)

The ideal ζ(t1, t2) is defined from the long-distance decay of 
C2+2(r, t, tw):

C2+2(r, t1, t2) ≈
1
rb
g(r/ζ(t1, t2)), (19)

where g is an unknown scaling function. We bypass our lack of knowl-
edge of g exactly as we solved this problem for ξmicro: by using integral 
estimators (equation (15)). Note that by construction, ζ(t1, t2) tends to 
zero when t2 approaches t1. Conversely, we expect ζ(t1, t2) to grow with 
later time t2.

As for the interpretation of length scale ζ, an analogy with the 
theory of liquids can help. We name a defect a site where cx(t1, t2) = −1. 
Let n(t1, t2) be the density of defects (C(t1, t2) = 1 − 2n(t1, t2)) and let g(r) 
be the pair-correlation function for defects: the conditional probability 
for having a defect at site x + r, given that a defect is present at site x, is 
n(t1, t2)g(r) (such that at long distances, g(r) tends to one). Given these 
definitions, one easily finds that

C2+2(r, t1, t2) = 4n2(t1, t2) [g(r) − 1]. (20)

In other words, ζ is the length scale on which the defects are correlated. 
Only when ζ(t2, t1) ≈ ξmicro(t1), the configuration at time t2 starts to struc-
turally differ from the configuration at earlier time t1.

Finally, let us mention that a length analogous to ζ(t1, t2) can be 
obtained with the analysis tools of temperature chaos (Supplementary 
Note IV).

Computation of the chaotic parameter
As explained in the main text, our goal here is to introduce a correlation 
parameter that will allow us to compare two different thermal proto-
cols. This comparison should necessarily be local in space. To this end, 
we adapt the procedure introduced elsewhere37.

Specifically, we select Nsph = 8,000 spheres of radius R randomly 
chosen inside the system and centred at the central points of the ele-
mentary cells of the cubic lattice. Now, let us consider two identical 
systems that are subjected to two different thermal protocols, named 
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protocols A1 and A2. Next, we perform a set of independent simulations 
(that is, replicas) for protocol A1, and another set of independent simu-
lations for protocol A2. Then, the correlation coefficient for protocols 
A1 and A2 as computed on the kth sphere of radius R is defined as

Xk,RA1 ,A2
=

⟨[qk,RA1 ,A2
]
2
⟩
T

√
⟨[qk,RA1 ,A1

]
2
⟩
T
⟨[qk,RA2 ,A2

]
2
⟩
T

. (21)

In the above expression, qk,RA1 ,A2
 is the overlap between two replicas σ and 

τ that have undergone thermal protocols A1 and A2, respectively,

qk,RA1 ,A2
= 1
Nr

∑
x∈BkR

sσ,A1
x sτ,A2

x , (22)

where NR is the number of spins within the kth sphere BkR of radius R.
The interpretation of the chaotic parameter is very similar to a 

correlation coefficient: if Xk,RA1 ,A2
= 1, spin configurations from thermal 

protocols A1 and A2 are completely indistinguishable inside the sphere 
BkR  (absence of chaos). Instead, Xk,RA1 ,A2

= 0 corresponds to completely 
different configurations, which is an extremely chaotic situation.

The reader may notice from equation (21) that the computation 
of Xk,RA1 ,A2

 involves an exact thermal expectation value (which could be 
obtained in simulations only if one had simulated an infinite number 
of replicas). Unfortunately, we only have Nmax

R  = 512 replicas at our 
disposal. Our choice has been to produce different estimates of Xk,RA1 ,A2 ,NR

 
by varying NR. Specifically, our procedure has been the following:

 1. For each NR < Nmax
R , we randomly order the Nmax

R  replicas and 
divide them in Nmax

R /NR groups of NR replicas.
 2. In this way, we get Nmax

R /NR independent estimates of Xk,RA1 ,A2 ,NR.
 3. To erase the effect of the initial permutation of the Nmax

R  replicas, 
we repeat this procedure ten times for all NR< Nmax

R .

In a nutshell, for every sphere of radius R, we obtain Nthermal (NR) 
estimates of Xk,rA1 ,A2 ,NR

, where

Nthermal (NR < Nmax
R ) = 10 ×

Nmax
R
NR

, (23)

or

Nthermal (NR = Nmax
R ) = 1. (24)

We average the Nthermal estimates of Xk,RA1 ,A2 ,NR
 for every NR and finally, 

in a complete analogy with ref. 37, we compute the extrapolation of the 
chaotic parameter to an infinite number of replicas by means of a simple 
linear extrapolation:

Xk,RA1 ,A2 ,NR
= Xk,RA1 ,A2 ,∞

+
Ak,RA1 ,A2

NR
, (25)

where Xk,RA1 ,A2 ,∞
 is our best estimation of Xk,RA1 ,A2

. More complicated extrap-
olations do not seem to present advantages37.

Finally, to explore the statistical information carried by the 
Nsph = 8,000 spheres, we define the distribution function as

F( ̃X,A1,A2,R) = Probability [Xk,RA1 ,A2
< ̃X]. (26)

Some examples of this distribution function are displayed in Fig. 4.

Data availability
The data contained in the figures of this paper, accompanied by the 
gnuplot script files that generate these figures, are publicly available 
via GitHub at https://github.com/janusII/Rejuvenation_memory.git. 
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corresponding author upon reasonable request.
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