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Witnessing nonclassical behavior is a crucial ingredient in quantum information processing. For that, one
has to optimize the quantum features a given physical setup can give rise to, which is a hard computational task
currently tackled with semidefinite programming, a method limited to linear objective functions and that becomes
prohibitive as the complexity of the system grows. Here, we propose an alternative strategy, which exploits a
feedforward artificial neural network to optimize the correlations compatible with arbitrary quantum networks. A
remarkable step forward with respect to existing methods is that it deals with nonlinear optimization constraints
and objective functions, being applicable to scenarios featuring independent sources and nonlinear entanglement
witnesses. Furthermore, it offers a significant speedup in comparison with other approaches, thus allowing to
explore previously inaccessible regimes. We also extend the use of the neural network to the experimental
realm, a situation in which the statistics are unavoidably affected by imperfections, retrieving device-independent
uncertainty estimates on Bell-like violations obtained with independent sources of entangled photon states. In
this way, this work paves the way for the certification of quantum resources in networks of growing size and
complexity.
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I. INTRODUCTION

The last decades have witnessed an outstanding develop-
ment of quantum technologies. The discovery of correlations
that are inexplicable by the classical laws of physics has
boosted remarkable advances in communication security [1]
and computing capabilities [2]. In this context, it is essen-
tial to be equipped with techniques to certify the presence
of nonclassical features within a given physical process.
In particular, this is relevant in quantum communication
and cryptography protocols [3–10], self-testing [11], and
randomness generation [12]. For this reason, a class of cer-
tification protocols, known as device-independent (DI), has
been introduced and experimentally tested in different pho-
tonic scenarios [13,13–30]. There, conclusions about the
operation of a given apparatus are drawn without making
assumptions about its inner functioning details [11,31–33].
Indeed, the working principle of DI protocols is only based
on the discrepancy between quantum and classical causal
predictions. For example, let us consider the Bell causal
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structure shown in Fig. 1(a), involving two parties. Here,
the cause-effect relationships among the variables (and the
laws of classical physics) imply some mathematical con-
straints on the input-output correlations p(a, b|x, y). In this
notation, p(a, b|x, y) is the probability that the two parties
respectively get the outcomes labeled as a and b, when per-
forming the measurements operators indicated by x and y.
One of such constraints is the Clauser-Horne-Shimony-Holt
(CHSH) inequality [34,35]. Based on the causal constraints
which restrict the set of correlations that are achievable in
a given causal scenario, it is possible to define three sets:
the probability distributions allowed by classical causality
(the local set); those allowed by quantum mechanics (the
quantum set) and those allowed by special relativity (the
no-signaling set). Let us note that the no-signaling set is a
superset of the quantum one, which, in turn, is a superset
of the local one, see Fig. 1(b). Hence, if a particular causal
model underlies an experiment and correlations that are out-
side the local set are registered, this unambiguously certifies
the presence of nonclassical phenomena. This is the principle
exploited by DI protocols, to prove the presence of quantum
phenomena in a given apparatus, with no extra assumptions.
A notorious example is the Bell’s theorem [35], where the ob-
servation of a Bell’s inequality violation, e.g., the aforemen-
tioned CHSH inequality, witnesses the presence of nonlocal
correlations.

However, besides detecting nonlocal correlations, it is also
important to perform optimizations over the set of quantum
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FIG. 1. Causal structures and admitted correlations set.
(a) Causal structure of the standard Bell’s scenario with a common
source ρ, whose generated bipartite state is shared between the nodes
A and B, performing measurements labeled by X and Y . (b) Sketch
of the correlation (convex) sets in a standard Bell bipartite scenario
[61]: local L, quantum Q, and no-signaling NS, where L ⊂ Q ⊂ NS.
(c) Instrumental causal structure, where node A is influenced by
a classical variable X (the instrument) and directly influences B.
Also in this case there is only one common cause ρ. (d) Sketch
of the nonconvex sets of correlations produced in the bilocality
scenario. (e) DAG of the bilocality scenario, where two independent
sources share correlations among three nodes: ρ1 between A (with
measurement choice X1) and B (with measurement choice z) and ρ2

between B and C (with measurement choice X2). (f) The triangle
scenario, where three independent sources interconnect three nodes
A, B, and C, each of which performs a single measurement. This
implies that, in contrast with previous scenarios, the distant parties
have no measurement input.

correlations, either to find the optimal violations of Bell-like
inequalities or for other applications, for example, to quan-
tify the security of a quantum random number genera-
tor [12,24,36–43], of a quantum-key distribution protocol
[32,44], or to bound the fidelity of a quantum state generated
among the nodes of a quantum network [11,13,16,25,45–
56]. Unfortunately, such optimization tasks are highly non-
trivial, given that the quantum set is computationally hard
to characterize and only approximation techniques, involv-
ing semidefinite programming (SDP), can be exploited [57].
Furthermore, such methods are limited by several restrictions.
First, the objective function must be a linear function of input-
output correlations. This implies that scenarios featuring more
than one source of states or nonlinear entanglement witnesses
[13,14,55,58,59] cannot be considered. Second, the time and
memory requirements of these techniques become prohibitive
as the dimension and complexity of the system grow.

In this work, we present a versatile numerical approach
that circumvents these limitations. Building on the results of
Ref. [60], we implement an artificial neural network–based

(ANN-based) algorithm to carry out numerical optimizations
over supersets of the quantum set, see Fig. 2. At first, we
benchmark our approach by considering cases well studied
in the literature, involving one quantum state source, i.e., the
standard Bell’s scenario [61] and the instrumental scenario
[17,62], see Figs. 1(a)–1(c). Then, we move a step forward
and apply our technique to investigate quantum networks with
independent sources, a scenario for which the standard SDP
approach simply cannot be applied. At first, we consider the
correlations generated in the bilocality scenario [63–65] [see
Fig. 1(d)], whose DAG is depicted in Fig. 1(e) and which, de-
spite the presence of the two independent sources, is relatively
well characterized. Moving beyond, we also consider the tri-
angle scenario with three independent sources [see Fig. 1(f)],
the paradigmatic example of a causal structure whose correla-
tions are extremely hard to characterize. Taking advantage of
our method, which allows us to impose nonlinear constraints,
we find additional and stronger numerical evidence supporting
known results regarding the causal compatibility of quantum
distributions in the triangle scenario. Furthermore, by resort-
ing to Hoeffding’s inequality [12,25,66], we show a practical
application of our technique to evaluate the confidence level
for the experimental violation of nonlinear causal constraints,
taking into account experimental noise. Our technique can be
extended to arbitrary scenarios and objective functions, thus
representing a promising tool for the various uses of quantum
information processing.

II. ARTIFICIAL NEURAL NETWORK OPTIMIZATION
OVER QUANTUM CORRELATIONS SUPERSETS

A problem of fundamental importance at the intersection
between causality and quantum information is that of distin-
guishing between the local, quantum and no-signaling sets
of correlations allowed by a given causal network, typically
represented as a directed acyclic graph (DAG) [67,68]. Even
for networks with a single source of correlations, such as
the Bell and the instrumental scenarios [see Figs. 1(b) and
1(c)], the characterization of such sets is a computationally
demanding task and, in fact, the boundaries of the quantum set
can only be approximated by a convergent hierarchy of SDPs,
the Navascues-Pironio-Acín (NPA) hierarchy [69], subsumed
by the positivity of a correlation matrix of increasing order.
This implies that a generic optimization problem in a causal
scenario involving N parties and a common state source will
have the following form:

minimize 〈C, �〉,
subject to 〈Fk, �〉 = bk, k = 1, . . . , d,

� � 0,

(1)

where � is a symmetric matrix (indicated as moment matrix),
whose terms correspond to the expected values of products
of measurement operators performed by the parties. Each
product is indicated by Si, with i = 1, . . . , n and it displays
a number of operators which corresponds to the level of the
SDP hierarchy. A higher level implies a better approximation
to the quantum set. Then, the entries �i, j amount to Tr(S†

i S jρ)
and they are observable, if the corresponding measurement
operators commute, or nonobservable when such condition is
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FIG. 2. ANN-based approach to the optimization of nonlinear functions over a superset of the quantum set. Our ANN optimizer works
in two different configurations. In one case, it takes as input a generic nonlinear function g(p) to be optimized over the superset of quantum
correlations compatible with the causal scenario under analysis at the chosen level of the NPA hierarchy (see Secs. III and IV). Let us recall that,
for a given causal structure, we indicate with p(a, b, c, . . . |x, y, z . . .) or, shortly, p, the corresponding input-output probability distribution. In
the second case, the ANN gets additional constraints because it is required to optimize g(p) also compatibly with experimental observations,
within an arbitrary confidence level 1ε (see Sec. V). In this instance, the ANN takes as an additional input the numerical value of the observable
terms of p, which can be simulated or directly amount to experimental frequencies f expt(a, b, c, . . . |x, y, z, . . .). In both cases, the objective
function g(p) is set as a part of the loss function, see Eq. (3). Furthermore, the loss function embodies other constraints on the correlations
terms, such as causal conditions (including no-signaling) and the confidence interval on the experimental frequencies. In the end, the ANN
outputs the set of probabilities that optimize the objective function and that are compatible with the set constraints.

not satisfied, for instance, when they involve noncommuting
measurements of the same party. In turn, the matrix C defines
the objective function, which amounts to a linear combination
of the elements of �. Finally, the matrices Fk and the d-
dimensional vector b encode linear optimization constraints.

The dual problem associated with the problem in Eq. (1)
can be cast as

maximize 〈b, y〉,

subject to
m∑

i=1

yiFi � C. (2)

Due to strong duality [70], the problems in Eqs. (1) and
(2) lead to the same solution. We reinforce that, since the
aforementioned optimizations are carried out over supersets
of the quantum set, the problem in Eq. (1) will only provide a
lower bound of the real solution. Another drawback of this
paradigmatic approach is the fact that, if we wish to con-
sider more general networks [involving an increasing number
of independent sources, such as the bilocality and triangle
networks, see Figs. 1(e) and 1(f)], the problem is further com-
plicated by the nonconvex nature of the set of correlations that
no longer admit such a simple approximation. To circumvent
this limitation, we combine the standard NPA approach with a
machine-learning oracle that allows us to include all nonlinear
constraints arising from a given causal network in the loss
function of the machine optimizer.

Building on the ANN-based algorithm presented in
Ref. [60], we propose an optimizer, to deal with arbitrary
quantum networks and objective functions, which is directly
applicable to experimental data. Our ANN architecture is that

of a multilayered perceptron (MLP), which we train to maxi-
mize nonlinear functions g(p) over supersets of the quantum
correlations set. The essence of our approach is summarized
by the conditional loss function L(ri, ro|θ ). The vectors ri and
ro represent, respectively, the state of the input and output
ANN nodes, while θ indicates the set of weights and biases
(which prevents the ANN to be stuck in local minima). The
loss function is given by

⎧⎨
⎩

�NS , �NS > δ,

− min E, − min E > 0, �NS < δ,

−α min E + βg(p), − min E � 0, �NS < δ,

(3)

where E is the set of eigenvalues of the � matrix at the
target level of the NPA hierarchy and with the real weights
α, β ∈ [0, 1]. Being numerically evaluated by the ANN at
each iteration, the entries of � will be themselves functions of
(ri, ro|θ ). Then, �NS is a parameter used to enforce the no-
signaling condition up to a precision δ > 0. In detail, using the
multipartite no-signaling condition, we have the following:

γ j =
∑

a j

pA1,...,An|X1,...Xn (a1, . . . , a j, . . . , an|x1, . . . , x j, . . . , xn)

−
∑

a j

pA1,...,An|X1,...Xn

× (a1, . . . , a j, . . . , an|x1, . . . , x′
j, . . . , xn) = 0

∀ j ∈ [n], {ai, . . . , an} \ a j, {x1, . . . , x j, x′
j, . . . , xn},

(4)
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where a j and x j indicate respectively the output registered
by the parties and their measurement choices. Therefore, we
define �NS as

�NS =
∑

j

|γ j |, (5)

and δ = 0.001.
The input of the ANN is then represented by the

nonobservable terms of matrix �, while the output is the
probability distribution (along with the nonobservable terms)
minimizing g(p) or maximizing it, if β < 0.

The working principle is that the first line of the loss
in Eq. (3) constrains the probability distributions found by
the ANN to be inside the no-signaling set, before solving
the optimization problem. Then, the second line makes � as
positive semidefinite as possible. When these two conditions
are satisfied, implying that the correlations under scrutiny are
within the demanded outer approximation of the quantum
set, the third line makes the network work as an optimizer,
minimizing or maximizing the desired function. Since the loss
function is discontinuous, we want to avoid that, at the various
steps of the training, the numerical solution that optimizes the
objective function no longer defines a semidefinite positive
moment matrix. We do this, on one hand, by acting on the
learning rate of our algorithm, i.e., the speed with which the
ANN parameters are updated and which limits the oscillations
in the found solution. On the other hand, we add the term
−α min E to maintain the condition of positive semidefinite-
ness while the ANN optimizes the objective function.

Let us note that the possibility of solving nonlinear op-
timization problems and imposing nonlinear constraints in
this method comes from the fact that our ANN initializes
all of the involved variables with numerical values, which
are progressively changed, throughout the training, to ap-
proximate the optimal solution. Hence, the algorithm actually
performs a series of feasibility problems, where all of the
nonlinear constraints become linear, being numerical and, as
such, they are directly enforced within the � matrix. Let
us consider, for instance, the bilocal scenario. In this case,
the causal independence nonlinear constraint p(a, c|x, z) =
p(a|x)p(c|z), coming from the independence between ρ1 and
ρ2 [see Fig. 1(e)], is imposed by assigning numerical values
to p(a|x) = vax and p(c|z) = vcz and by imposing that the
element of the � matrix corresponding to p(a, c|x, z) is equal
to vaxvcz. Analogous reasoning applies to nonlinear objective
functions.

Hence, our approach can be defined as an instance of self-
learning, because we feed the network with the unobservable
terms of the correlation matrix �, all initialized randomly with
a value close to zero, and it directly learns how to minimize the
loss function in Eq. (3) (see Appendix A for further details).

III. SINGLE QUANTUM SOURCE SCENARIOS

To benchmark our ANN approach, we start by analyzing
the following one-source scenarios: the standard bipartite Bell
scenario [35] and the instrumental one [17]. We then use
strong duality to certify the correct functioning of the network,
analogously to Ref. [60], showing that the two solutions given
by the dual and the primal problems coincide up to numerical

precision and that they provide, respectively, an approxima-
tion from above and from below of the expected result (see
Appendix C).

A. Bell’s scenario

In Bell-like scenarios, a common quantum source ρ gener-
ates an N-partite system, shared between N separated parties
which perform local measurements on their share. In this
context, we start considering the case N = 2, where the parties
choose the measurements x and y and obtain the outcomes a
and b [see Fig. 1(a)] [35]. Given this causal structure, in a
classical framework (where the quantum state ρ is replaced
by a classical random variable λ), the probability distribution
p(a, b|x, y) has testable constraints, e.g., the Clauser-Horne-
Shimony-Holt (CHSH) [34] inequality:

CHSH = 〈A0B0〉 + 〈A0B1〉 + 〈A1B0〉 − 〈A1B1〉 � 2, (6)

with 〈AxBy〉 ≡ ∑
a,b a b p(a, b|x, y) and which involves di-

chotomic measurement choices (x, y) ∈ {0, 1} and outputs
(a, b) ∈ {+1,−1}. In turn, in a quantum description, which
is a more general framework, the upper bound of the con-
straint in Eq. (6) does not hold anymore and the upper
limit is given by the Tsirelson’s bound, amounting to 2

√
2 ≈

2.828 427 [71].
We train our optimizer network by feeding it with a set of

2 × 105 nonobservable elements of the � matrix, at the second
level of the NPA hierarchy. At the end of the training phase,
we obtain the following lower and upper limits, defined by the
primal and dual problem solution:

CHSHprimal
ANN � 2.8280,

CHSHdual
ANN � 2.8285.

(7)

In Fig. 3(a), we report the analytical probabilities corre-
sponding to the analytical maximal quantum CHSH violation
[p(a, b|x, y)], compared with those found by the ANN
[ p̃(a, b|x, y)]. In particular, their total variational distance
amounts to

1

8

∑
{a,b,x,y}∈{0,1}

|p(a, b|x, y) − p̃(a, b|x, y)| = 0.000 992. (8)

In Fig. 3(b), instead, we report the maximal CHSH value
predicted by the ANN (both in the dual and primal cases) as
a function of the number of iterations. Let us note that, by
properly choosing the learning rate and the momentum (for
further details see Appendix A) it is possible to avoid being
stuck in local minima and make the difference between primal
and dual as small as possible.

Considering now a scenario with N = 3 (three parties), it is
known that for dichotomic inputs and outputs there are a total
of 45 nontrivial Bell’s inequalities [72]. In the following, we
focus on Mermin’s inequality [73]

M = 〈A1B0C0〉 + 〈A0B1C0〉 + 〈A0B0C1〉 − 〈A1B1C1〉 � 2,

(9)
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FIG. 3. ANN optimization of the CHSH inequality. In these plots, we show how the ANN-based optimizer finds the maximum violation of
the CHSH inequality. (a) The blue bars indicate the correlations maximizing the CHSH inequality violation and belonging to the superset of the
quantum set corresponding to the first level of the NPA hierarchy. The orange ones, instead, are the analytical values, saturating the Tsirelson’s
bound, i.e., 2

√
2. On the x axis the probabilities are ordered in blocks that correspond to different choices of measurement operators. Every

block contains four pairs of columns corresponding to different sets of outcomes: (a, b) = {(0, 0), (0, 1), (1, 0), (1, 1)}. (b) The red triangles
represent the CHSH inequality maximal values that the ANN finds over the quantum superset corresponding to the first level of the NPA
hierarchy, by solving the primal optimization problem. The green ones, instead, represent the values obtained by the ANN performing the dual
problem. On the x axis, we show the number of iterations of the training. The horizontal blue line represents the analytical value corresponding
to the maximum violation, i.e., the Tsirelson’s bound. The fact that primal and dual solutions coincide, benchmarks the good operation of the
ANN [60].

and Svetlichny’s inequality [74]

S = 〈A1B0C0〉 + 〈A0B1C0〉 + 〈A0B0C1〉 − 〈A1B1C1〉
− 〈A0B1C1〉 − 〈A1B0C1〉 − 〈A1B1C0〉 + 〈A0B0C0〉 � 4.

(10)

With our ANN approach, still at the second level of the
NPA hierarchy, through the primal optimization, we find the
maximum quantum violations to be lower bounded as

Mprimal
ANN � 3.9997,

Sprimal
ANN � 5.6426,

(11)

an upper bounded by dual values given by

Mprimal
ANN � 4.0006,

Sdual
ANN � 5.6639,

(12)

which are compatible with the known maximal quantum
violations of the Mermin and Svetlichny’s inequalities,
amounting, respectively, to 4 and 4

√
3 ≈ 5.65.

B. Instrumental scenario

Another single source scenario that we consider is the
instrumental one [17,25,62,75,76], whose causal structure is
shown in Fig. 1(c). As in a Bell-like causal structure, two
parties share a joint quantum state. However, in this case, there
is a direct causal influence from the measurement outcome a
to b, the former acting as the input choice for the latter. The
simplest instrumental scenario where quantum correlations
fail to have a classical description happens with dichotomic
measurement outcomes, but with the input X of Alice, known
as the instrument [17,77], assuming three possible values

x = 0, 1, 2. In this case, a classical model (where the corre-
lations are mediated by a hidden random variable λ) implies
an observable constraint given by

B = p(a = b|0) + p(b = 0|1) + p(a = 0, b = 1|2) � 2,

(13)
known as Bonet’s inequality [78] and that allows for quantum
violations up to B = 3+√

2
2 ≈ 2.2071 [17,23,62].

Training our ANN at the first level of the NPA hierarchy,
we optimize the maximum violation of Bonet’s inequality
Eq. (13) (BANN). Analogously to the CHSH case [reported in
Fig. 3(b)], also BANN increases as we increase the number of
iterations reaching the following maximal values:

Bprimal
ANN � 2.20710,

Bdual
ANN � 2.20720,

(14)

where the lower and upper limits were obtained by solving
respectively the primal and dual optimization problem, for a
training set size of 105. The total variational distance between
the probability distribution obtained by the ANN optimization
and the analytical distribution maximally violating Bonet’s
inequality amounts to ≈0.000 995.

IV. QUANTUM NETWORK SCENARIOS

Up to this point, the advantages of our machine-learning
approach might not have been properly highlighted, since
we have applied it to scenarios where one can use standard
SDPs to maximize the objective function. In the following,
we take a step further and use our ANN-based approach to
study networks with independent sources, which give rise to
nonconvex sets of correlations and thus require a different
set of tools to be analyzed. In the classical case, algebraic
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geometry methods [63–65] offer the most general approach
to characterize such nonlinear constraints, but, due to their
computational complexity, they become intractable already
for very simple cases. Given this difficulty, a plethora of
alternative approaches have been introduced to treat classical
networks and some of those have also been generalized to
the case of quantum ones [79–87]. However, even if able to
analyze particular cases of interest, computational issues are
still the main bottleneck.

A. Bilocality scenario

We start by analyzing the bilocal causal structure
[63–65,82,88,89], shown in Fig. 1(d), a scenario akin to the
entanglement swapping experiment where two independent
sources ρ1 and ρ2 share subsystems among three nodes.

A classical description of this network imposes that the
observed probability distribution should have a local hidden
variable (LHV) model given by

p(a, b, c|x, y, z) =
∑
λ1,λ2

p(λ1)p(λ2)p(a|x, λ1)

× p(b|y, λ1, λ2)p(c|z, λ2). (15)

Due to the independence of the sources, p(λ1, λ2) =
p(λ1)p(λ2), the most well-known causal constraint in this sce-
nario amounts to a nonlinear Bell’s inequality [63–65,82,88]
given by

S = √
I1 + √

I2 � 1, (16)

with

I1 = 1

4

∑
x,z=0,1

〈AxCzB0〉,

I2 = 1

4

∑
x,z=0,1

(−1)x+z〈AxCzB1〉, (17)

where 〈AxCzBy〉 is the expected value of the measurement
outcomes of the three nodes, defined as

〈AxCzBy〉 =
∑

a,c,b=0,1

(−1)a+c+b p(a, c, b|x, z, y). (18)

The maximal quantum violation of the inequality in Eq. (16)
amounts to

√
2 ≈ 1.4142.

As previously mentioned, the standard NPA method cannot
be applied for the bilocality scenario, due to the nonlinearity
of the objective function and of the optimization constraints
taking into account the independence of the sources. Re-
markably, within our approach, such nonlinear constraints can
be directly imposed within the loss function of the neural
network solving the optimization problem as a sequence of
feasibility SDP problems, as mentioned before. The value
predicted by the ANN with this technique amounts to SANN ≈
1.4134 for a training set size of 1 × 106 (see Fig. 4).

Motivated by the ability of the ANN to recover known
results we have also employed it to derive results in the bilo-
cality scenario. For instance, we can derive upper and lower
bounds for Mermin’s inequality and Svetlichny’s inequality

FIG. 4. ANN optimization of the bilocal inequality. Bilocal in-
equality maximal value predicted by the ANN as a function of the
number of iterations of the training. The horizontal blue line repre-
sents the theoretical upper bound equal to

√
2 ≈ 1.414 21.

within the bilocality scenario:

2.8267 � M � 2.8298 ≈ 2
√

2,

3.9956 � S � 4.0063 ≈ 4,
(19)

that is, the two independent sources in the bilocality scenario
cannot violate Svetlichny’s inequality and, despite leading to
a violation of Mermin’s inequality, they cannot achieve the
maximum violation M = 4 that would be possible if a single
tripartite state would be shared among the parties. As another
interesting application, we use the ANN toolbox to analyze
how nonlinear inequalities derived for the quantum triangle
network [see Figs. 1(f) and 5(a)] perform under the bilocality
constraints. For instance, the inequality

〈AC〉 + 〈BC〉 − 〈A〉〈B〉 � 1, (20)

is known to bound the quantum correlations in the triangle
network. The ANN predicts a maximum value of 0.9999,
indicating that the same inequality remains valid (with the
same bound) for the bilocal causal structure.

B. Triangle scenario

Now, we consider a more complex scenario, known as
triangle quantum network, which features three observers
connected pairwise by a bipartite source, that provides a
shared physical system [see Figs. 1(f) and 5(a)]. The three
sources are assumed to be independent of each other, hence
no tripartite information is shared between the parties. In the
most general case, each observer can choose between different
measurements (inputs {x, y, z}) and get an output {a, b, c}.
The characterization of the set of distributions p(a, b, c|x, y, z)
compatible with this scenario is more complex than in the
bilocality, since, due to the causal structure topology, no
independence constraints can be imposed on the observed
distribution. As shown in Ref. [81], this issue can be circum-
vented through the so-called quantum inflation, which allows
finding upper bounds on the compatibility of a given quan-
tum causal model with some observed correlations. In detail,
we will use the cut inflation, first introduced in Ref. [81],
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FIG. 5. Triangle scenario and cut inflation. The triangle structure is an instance of a causal structure whose compatible correlations are
extremely hard to characterize since no independence conditions can be enforced. To circumvent this issue, we adopt the cut inflation causal
structure, to get results that can be then translated to the triangle scenario: (a) triangle causal structure, (b) cut inflation causal structure, where
the source ρ2 is split (which then constitutes the bilocal scenario), (c) cut inflation with four observable nodes.

where we split one of the sources into two variables [see
Fig. 5(b)]. Through this technique, we are able to define causal
constraints, exploiting the causal independence between the
peripheral parties. We can then further improve our results,
by adding more copies of the original nodes in the inflated
scenario, as shown in Fig. 5(c). For our results, we arrived
at a maximum of nine observable nodes involved, that is
third-order cut inflation, and we analyze the simplest version
of the triangle scenario (with only one input and dichotomic
outputs). In this framework, we study the compatibility of the
so-called W distribution, defined as follows:

pW (a, b, c) =
{

1
3 , a + b + c = 1
0, a + b + c = 1.

(21)

with the quantum triangle scenario. Indeed, it was proven
that this distribution is not realizable both in the classical
[81] and quantum triangle scenarios [83]. In further detail,
when mixing the W distribution with white noise, the resulting
statistics

PW,ν (a, b, c) = νPW (a, b, c) + (1 − ν)/8 (22)

does not have a quantum realization for visibilities higher than
3(2 − √

3) � 0.8039. Note that this is a numerical bound,
which is not known to be tight. Hence, we use our ANN
approach to test it, using different levels of the NPA hierarchy
and orders of the cut inflation (see Appendix B) and enforcing
stricter constraints, with respect to those which can be im-
posed through standard SDP optimizations involving scalar
extension [90].

Adopting our method, for the second-order cut inflation
(i.e., with eight observable nodes) and at the fourth level of the
hierarchy we obtain ν � 0.8043, which is compatible with the
previous result. To improve this result, we solved the problem
associated with a third-order cut inflation at the fifth level
of the NPA hierarchy and with nine observable nodes (see
Fig. 5), finding again a very similar bound amounting to

ν � 0.8033. (23)

This indicates that the cut inflation cannot improve over
known results, since increasing the inflation and NPA levels
does not lead to any significant changes in the known bounds,
far off what could be argued to be beyond any numerical
approximations. We notice that, for this last result, only the
primal problem has been solved, due to memory issues, re-
lated to the high number of optimization constraints. However,

as previously mentioned, the precision of the primal solution
is highly dependent on the learning rate of the network and
can be made negligible. Moreover, we can give an estimate of
this precision, by looking at the difference between primal and
dual results of the same problem, but related to lower levels of
the NPA hierarchy and lower orders of inflation. In particular,
for six nodes and third level of the NPA hierarchy, we find that
the difference between the results is lower than 10−4.

Furthermore, note that for the scenario with no inputs,
the no-signaling condition [see Eq. (4)] does not need to be
enforced. Thus we use a reduced form of the conditional loss
in Eq. (3), given by{ − min E, − min E > 0,

−α min E + βg(p), − min E � 0.
(24)

V. APPLICATION TO EXPERIMENTAL DATA

After showing the applicability of our approach in a variety
of scenarios involving single or multiple quantum sources,
from a theoretical point of view, we prove next that our
method can also be used as a certification tool directly ap-
plicable to experimental data. In particular, given a causal
scenario whose experimental statistics violate given testable
constraints, our aim is to find the minimum violation which is,
at the same time, compatible with experimental data and with
quantum mechanics. As opposed to usual error propagation,
where one assumes that the experimental data is distributed
according to a specific distribution, e.g., the Poissonian one,
here, we only require our data to be independent and identi-
cally distributed (the iid assumption). Thus, we estimate the
experimental errors resorting to Hoeffding’s inequality [66],
which provides an upper bound on the probability that iid ran-
dom variables deviate from their expected value more than a
given threshold. Using this inequality and following the anal-
ysis provided in Ref. [26], for each experimental frequency
f expt

j , obtained from n j registered counts corresponding to a
given input and output configuration j, we can say, with a
confidence level 1 − ε, that

f expt
j − h j (ε) � p j � f expt

j + h j (ε), (25)

where p j is the expected value and h j (ε) amounts to

h j (ε) =
√

−lnε

2n j
, (26)
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Considering constraints like the one in Eq. (25) for every j,
we find the minimum quantum violation which complies with
them and that belongs to the superset of quantum correlations
corresponding to the considered NPA level. This allows us to
achieve a lower bound on the experimental quantum violation,
with the only iid assumption.

To do that, we modify the ANN structure, adding a number
of outputs corresponding to the probability terms. Those out-
puts are activated using a hyperbolic tangent loss function and
thus constrained in the interval [−1, 1] and used as weights
wi to modulate the value of the input behavior inside the
Hoeffding’s error. Hence, the loss function will be the same
as in Eq. (3) and, for example, in the ANN used for the
bilocality scenario, the 64 outputs will represent the weights
wi for the Hoeffding’s errors hi. We also modify the inputs
of the network, that here are constituted by the experimental
statistics. Let us note that, in this case, we need to train
the network to minimize a general probability distribution
compatible with the considered causal structure. Thus we
numerically generate input samples emulating the experiment
causal structure (see Appendix A for further details) and inject
them into our network. The Hoeffding’s errors [i.e., Eq. (26)]
are instead given as hyperparameters to the network. Then,
using the loss function with g(p) = S [see Eq. (16)] and the
� corresponding to the correlation matrix associated with
the second level of the NPA hierarchy, we train the ANN
on the following probabilities:

p′
i = |pi + wihi| (27)

where i = (a, b, c|x, y, z), which we normalize in the end.
Hence, the ANN learns to minimize the quantum bilocal

inequality violation over the quantum set, taking into account
Hoeffding’s error. Let us note that these lower bounds could
be made fully DI by using another statistical error given by
the Azuma’s inequality [91]. Unfortunately, this inequality is
more sensitive to noise, so we could only obtain trivial bounds
in our case. To collect the experimental statistics, we physi-
cally implemented Bell’s and the bilocality scenarios. To do
this, we resorted to the versatile photonic platform described
in Refs. [20,26] and shown in Fig. 6. The main advantage of
this platform resides in the fact that it can be easily adapted
to implement arbitrary networks, just by slightly changing
its topology (for more details, see Appendix D). Then, start-
ing from the statistics collected in Bell’s scenario, we also
recovered the instrumental correlations, through a particular
procedure of postselection. Indeed, the instrumental scenario
can be mapped to a standard Bell’s scenario [23], through the
following mapping for x = (0, 1):

pinstr (a, b|x) = pBell(a, b|x, y = a) (28)

and pinstr (a, b|x = 2) = δa,0 pBell(b|y).
For each of the two employed entangled sources, we ob-

tained the following experimental values for Bell’s and the
instrumental violations:

CHSH1 = 2.656 20 ± 0.009 72 > 2,

CHSH2 = 2.580 ± 0.010 > 2,

B1 = 2.1640 ± 0.0024 > 2,

B2 = 2.1451 ± 0.0025 > 2. (29)

Phase shifter
Dichroic mirror

Half-wave plate

β-barium borate crystal
Polarizing beam splitter

APD

Phase shifter
Dichroic mirror

Half-wave plate

β-barium borate crystal
Polarizing beam splitter

APD

Bob Alice
Lab. 1 Lab. 2 Lab. 3

Charlie
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Y Z

X

Y X
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FIG. 6. Experimental apparatus. We employ a platform already
introduced in Refs. [20,26] to implement the bilocality scenario. In
detail, we employ three different laboratories. Those held respec-
tively by Bob and Charlie (Laboratories 1 and 3) are equipped with
one quantum state source and one measurement station, while the
one held by Alice (Laboratory 2) only includes two measurement
stations. The source in Laboratory 1, 1, sends one photon to Bob’s
measurement station, while source 2, in Laboratory 3, sends one
to Charlie. Moreover, both sources send the other photon to Al-
ice, namely to Laboratory 2, through a ≈30 m long single-mode
fiber. The two employed sources are spontaneous parametric down-
conversion sources implemented through a beta barium borate type
II crystal (Laboratory 1) and through a periodically poled potassium
tytanil phosphate in a Sagnac loop (Laboratory 3). The measure-
ment stations are composed by a half-wave plate, followed by a
polarizing beam splitter, which allows performing any projective
measurement, in the polarization degree of freedom, of the form
cos(α)σx + sin(α)σz, where σx and σz are Pauli matrices. Then, to
implement two instances of the Bell’s scenario, we separately used
two of the three laboratories at a time, i.e., only one state source and
two measurement stations.

The uncertainties reported in Eq. (29) are evaluated in a
device-dependent way, assuming that the underlying statis-
tics is Poissonian. To drop this assumption and estimate the
confidence level of the nonclassicality within our experiment
device-independently, we feed the ANN with the experimen-
tal statistics collected in the three aforementioned scenarios.
Thus we obtain a neural network prediction of the minimum
possible violation of target Bell and Bell-like inequalities
compatible with the experimental causal structure.

For both cases, the nonclassicality holds up to a confidence
level of 1 − ε, with ε = 10−25. Then, for the bilocality sce-
nario, whose experimental value amounts to 1.3080 ± 0.0035,
we were able to certify the nonclassicality of the experimental
statistics up to a confidence level of 1 − 10−17. We report the
obtained results in Fig. 7, where we show the comparison be-
tween the probability distributions generated by the network
and the experimental one, as well as the predicted values, as a
function of the number of iterations.

VI. DISCUSSION

In this work, we devised a method based on artificial neu-
ral networks to optimize arbitrary nonlinear functions over
supersets of quantum correlations. Building on the oracle
introduced in Ref. [60], we propose a general framework
allowing the analysis of notably difficult causal structures.
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FIG. 7. Experimental results in the bilocality scenario. Comparison between experimental statistics f expt(a, b, c|x, y, z) (a) and values
predicted by the ANN using a confidence interval CI = 1 − 10−6. (b) The columns and rows represent, respectively, (a, b, c) and (x, y, z)
triples. (c) Lower bounds on the bilocal inequality violation predicted by the ANN tested on the experimental values as a function of
the complementary of the confidence interval ε = 1 − Cl . The green line represents the minimum value needed for the network to certify
nonlocality. The blue line indicates the experimental violation value. Due to the training with numerically simulated experimental data, the
ANN can then be employed to obtain lower bounds for any experimental violation obtained in the bilocal scenario, i.e. with no additional time
requirements. At the same time, this implies that �NS [see Eq. (3)] will be of the same order of magnitude of the Hoeffding’s uncertainties.

Nicely, it can be directly applied to data, finding confidence
levels on experimental quantum violations of causal con-
straints, taking into account real noisy cases, as we practically
demonstrated by realizing different experiments employing a
versatile photonic setup.

We benchmark our framework by first applying it to a
number of known relevant cases, including the standard Bell,
the instrumental, the bilocal and the triangle causal structures.
We then go beyond previously known results, and prove,
for instance, that two independent sources of quantum states
cannot violate Svetlichny’s inequality, paradigmatic in the
study of genuine multipartite nonlocality. We also enhanced
the confidence in previously known numerical results for the
triangle case, by considering higher levels on the quantum
inflations and on the NPA hierarchy. It is worth mention-
ing that even though here we have focused on the quantum
case, our technique can also be adapted to analyze classical
causal networks, basically by imposing commutativity on the
operators in the moment matrix. Our algorithm thus offers
a complementary machine-learning framework to those that
have been recently introduced to analyze the classical case
[60,84,92–95].

In summary, the remarkable features of our method are,
first of all, its versatility: it can indeed be applied to any
quantum network, featuring independent sources, i.e., with
nonlinear objective functions and optimization constraints.
Second, when applied to experimental statistics, this approach
does not require any data regularization, as the network can
be fed with raw experimental data. Third, in terms of time
requirements, our method proves to be more efficient than
standard SDP methods, since the ANN time demands (which,
for linear optimization problems are comparable to those
of SDP-based methods) are limited to the training process.
Hence, once trained, the network can be used multiple times
with no further time demands. Due to these advantages, this

algorithm paves the way for different certification protocols
for quantum-based technologies. In particular, it can prove
particularly apt for communication and cryptography tasks
and can be straightforwardly extended to larger and more
complex quantum networks.
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APPENDIX A: NEURAL NETWORK ARCHITECTURE

Here, we give a more detailed description of the artificial
neural network (ANN) architecture presented in this work,
consisting of a multilayer perceptron (MLP), as well as the pa-
rameters used for the implementation of the proposed method.

A MLP is a feedforward artificial neural network that con-
sists of a series of layers that are directly connected to each
other in a noncyclic manner and whose total number defines
the depth d of the ANN. The number of neurons present in
each layer l defines its width wl and all neurons in the same
layer are activated through a function σl . Hence, the output of
layer l is given by

r (l+1) = σl+1(W (l+1)r (l ) + bl ), (A1)
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TABLE I. ANN architecture and parameters (primal quantum
networks). The width refers to the number of neurons of the hidden
layers, the input and output layer dimension is defined by the NPA
hierarchy level for each scenario. α is the momentum and η0 the
initial learning rate.

Scenario NPA level Width Length α η0

Bell 2 300 8 0.8 10−4

Instrumental 2 500 8 0.8 10−4

Bilocality 2 560 8 0.8 10−4

Tripartite Bell 2 560 8 0.9 10−4

where r (l ) indicates the neurons of layer l and W l+1 represents
the matrix containing the weights between layer l and l + 1.
Finally, bl stands for the bias vector, which is an additional set
of weights that has the effect of shifting the activation function
of target neurons by a constant amount. The bias vector is
needed since the network layers perform linear operations on
the inputs. Hence, if the input is null, the network could only
produce a zero output. Furthermore, these additional learning
parameters increase the overall accuracy.

In the following, the trainable parameters of the model
will be collectively defined as weights and denoted by θ =
{W l , bl}. The action of finding the appropriate weights that
minimize a function of the training data R = {r (0)

i }, known as
loss function L(R|θ ), is called training and there are many
algorithms available to perform this task. The most commonly
used one is the stochastic gradient descent, in which a random
subset of the training data, called batch Rj , is used to update
the weights as

θ ′ = θ − η∇θL(Rj |θ ), (A2)

where η represents the learning rate. In this work, we use a
variant of such a method, the online gradient descent, where
each batch is made up of a single element. Let us note that,
if trained on larger batches, the model could overlook the
presence of the discontinuities leading to a negative gradient
in batches where the objective function f is not minimized
correctly. We also apply a momentum to the updates, which
is an additive term that considers the updates at the previous
step �θ with weight α, thus using a rule given by

θ ′ = θ − η∇θL(r j |θ ) + α�θ. (A3)

We choose the online gradient descent algorithm since the
loss L(r1, rd |θ ) that we use [reported also in Eq. (3)] is the
following step function:⎧⎨

⎩
�NS , �NS > ε,

− min E, − min E > 0, �NS < ε,

−α min E + β f (p), − min E � 0, �NS < ε,

(A4)

where E stands for the eigenvalues of �(ri, ro|θ ), which corre-
sponds to the � matrix at the target level of the NPA hierarchy
and with the real weights α, β ∈ [0, 1]. In turn, �NS is a
parameter used to enforce the no-signaling condition up to a
precision ε > 0.

To increase the precision of the method, we also add a
learning rate decay of 0.2 per 2 × 104 rounds in all the single
source networks. Detailed information on the ANN archi-
tecture is provided in Tables I, II, and III, concerning the

TABLE II. ANN architecture and parameters (dual quantum net-
works). The width refers to the number of neurons of the hidden
layers, the input and output layer dimension is defined by the NPA
hierarchy level for each scenario. α is the momentum and η0 the
initial learning rate.

Scenario NPA level Width Length α η0

Bell 2 300 8 0.8 10−4

Instrumental 2 1000 8 0.8 10−4

Tripartite Bell 2 1000 8 0.8 10−4

application of our method to theoretical bounds on quantum
networks, and Table IV, for the ANNs used on experimental
data. In all our architectures, the momentum is fixed. We use
exponential linear unit activation functions for all the ANNs
hidden layers.

In the ANNs used for the function optimizations, the out-
puts are composed of a series of neurons activated through a
normalized exponential function, or softmax, corresponding
to the predicted behavior, and a number of neurons equal to
the inputs. Those elements act like errors for the inputs, thus
the activation function used for them is the hyperbolic tangent.
The nonphysical elements of the moment matrix, γ NP

i , can
then be evaluated as

γ NP
i = r (0)

i + r (n)
m−1, (A5)

where m is the total number of neurons of the output layer.
The idea behind the introduction of that new output is that,
with this new degree of freedom, the network is able to learn
the full structure of the problem, without needing external
information to find the maximum of the Bell inequality under
scrutiny.

The most natural way to make the ANN learn by itself
with such a structure is to have all the input samples equal
to the zero vector. In all the scenarios that involve nonlinear
objective functions, however, this method tends to lead the
network into local minima in the early phases of the training.
We thus use zero vectors as inputs to obtain upper bounds for
Eqs. (6), (9), (10), and (13) and random inputs extracted in
the [−10−3, 10−3] interval to optimize Eq. (16). The training
set size used is 2 × 105 for all the single source networks and
1 × 106 for the networks involving more sources. In general, it

TABLE III. ANN architecture and parameters (primal quantum
networks, triangle). The width refers to the number of neurons of
the hidden layers, the input and output layer dimension is defined by
the NPA hierarchy level for each scenario. α is the momentum and
η0 the initial learning rate. In this scenario it was possible to build a
dual network only for the six node network due to memory reasons.
The six-node NPA level three dual network has width equal to 4000,
α = 0.8, and η0 = 1 × 10−4.

Nodes NPA level Width Length α η0

6 3 300 8 0.8 10−4

8 4 1000 8 0.8 10−4

9 5 1000 8 0.8 10−4

9 6 10000 8 0.8 10−4
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TABLE IV. ANN architecture, experimental data. The width
refers to the number of neurons of the hidden layers, the input and
output layer dimension is defined by the NPA hierarchy level for each
scenario. As usual α is the momentum and η the learning rate.

Scenario NPA level Width Length α η

Bell 1 80 8 0.8 10−4

Instrumental 1 120 8 0.8 10−4

Bilocality 2 560 8 0.8 10−4

is advisable to reduce the interval from which the samples are
extracted and increasing the number of training samples as the
number of nonphysical elements of the moment matrix grows.
This was the method used in the optimizations of causal con-
straints in the quantum network scenarios considered.

In turn, the ANNs applied to the experimental data are
slightly different. The first set of output neurons of those
ANNs represents the missing elements of the moment matrix,
activated through rectified linear units. The second part of
the outputs acts as error on the probability distribution and,
as in the other family of ANNs, it is activated through hy-
perbolic tangent units. The error is given as an unchanging
hyperparameter to the ANN. To generate the training samples
we simulated the bilocality scenario, implemented through the
experimental apparatus shown in Fig. 6, considering that, in
the ideal case, the peripheral parties implement the following
projective measurements:∣∣�0

x

〉 = cos(xπ/4)|0〉 + sin(xπ/4)|1〉,∣∣�1
x

〉 = cos(xπ/4)|1〉 − sin(xπ/4)|0〉,
(A6)

for each setting xi = x, and the one performed in the central
node:∣∣�0

y

〉 = cos
(2y + 1)π

8
|0〉 + sin

(2y + 1)π

8
|1〉,

∣∣�0
y

〉 = cos
(2y + 1)π

8
|1〉 − sin

(2y + 1)π

8
|0〉,

(A7)

for each setting yi = y. Then, we consider that the state gen-
erated in Laboratory 1 and Laboratory 3 is given by

|ψ〉 = |ψ−〉1 ⊗ |ψ−〉2, (A8)

where |ψ−〉 = |01〉−|01〉√
2

. To simulate the presence of imperfec-
tions in the experimental apparatus, white noise was added to
each generated state, through the following model:

ρ = ρ1 ⊗ ρ2, (A9)

with

ρ1 = v|ψ−〉〈ψ−| + (1 − v)
I

2
. (A10)

On top of that, to emulate the statistic of the experiment the
behavior were extracted inside the Hoeffding’s uncertainties
[see Eq. (25)].

In Figs. 8 and 9, we report the quantum violation lower
bound, respectively, in the Bell and instrumental scenario,
compatible with the experimental statistics and with quantum
mechanics, versus the confidence level Cl given by Hoeffd-
ing’s inequality [66], more precisely versus 1 − Cl . These

FIG. 8. CHSH experimental violation confidence (Hoeffding in-
equality). In this plot, we report the lower bound on the experimental
violation of the CHSH inequality, obtained considering different
confidence levels in the result, through Hoeffding’s inequality. This
inequality requires the iid assumption, i.e., that the runs are indepen-
dent and identically distributed. The green dashed line stands for the
theoretical upper limit, admitted by quantum mechanics. The orange
and purple solid lines represent the experimental violations obtained
through the apparatus depicted in Fig. 6, considering the two sources
separately (i.e., two instances of the Bell scenario).

results are valid under the so-called iid assumption, i.e., the
experimental runs have to be independent and identically dis-
tributed, so, strictly speaking, nonfully device-independent.

To have full device-independence, a different inequality
must be adopted, i.e., Azuma’s inequality [91]. Unfortunately,
due to the lower robustness to noise of this inequality, only
trivial lower bounds could be extracted from our experimental
statistics. Hence, in Figs. 10 and 11, we report nontrivial lower

FIG. 9. Bonet experimental violation confidence (Hoeffding in-
equality). In this plot, we report the lower bound on the experimental
violation of the Bonet inequality, obtained considering different
confidence levels in the result, through Hoeffding’s inequality. This
inequality requires the iid assumption, i.e., that the runs are inde-
pendent and identically distributed. The green dashed line stands
for the theoretical upper limit, admitted by quantum mechanics. The
orange and purple solid lines represent the experimental violations
obtained through the apparatus depicted in Fig. 6, considering the
two sources separately (i.e., two instances of Bell scenario, lifted to
obtain instrumental correlations [62]).
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FIG. 10. CHSH experimental violation confidence (Azuma in-
equality). In this plot, we report the lower bound on the experimental
violation of the CHSH inequality, obtained considering different
confidence levels in the result, through Azuma’s inequality, and
different levels of white noise [see Eq. (A10)]. This inequality drops
the iid assumption, i.e., that the runs are independent and identically
distributed, and hence these results are fully device-independent. The
green dashed line stands for the theoretical upper limit, admitted by
quantum mechanics. The black one, instead, stands for the theoretical
upper limit, admitted by classical physics. The data used in this case
are numerically simulated.

bounds evaluated through Azuma’s inequality on numerically
simulated noisy data.

FIG. 11. Bonet experimental violation confidence (Azuma in-
equality.) In this plot, we report the lower bound on the experimental
violation of the Bonet inequality, obtained considering different con-
fidence levels in the result, through Azuma’s inequality, and different
levels of white noise [see Eq. (A10)]. This inequality drops the
iid assumption, i.e., that the runs are independent and identically
distributed, and hence these results are fully device-independent. The
green dashed line stands for the theoretical upper limit, admitted by
quantum mechanics. The black one, instead, stands for the theoretical
upper limit, admitted by classical physics. The data used in this case
are numerically simulated.

APPENDIX B: AUTOMATED CREATION
OF THE MOMENT MATRIX �

In this section, we present the algorithm used to generate
the moment matrix and the matrices used to encode the op-
timization constraints used in the considered dual problems.
This algorithm builds a dictionary that associates the expected
values of the operators present in the density matrix with the
elements of the density matrix where they appear.

We define the unitary operators with which we build the
moment matrix as alphanumerical strings of the form “Xn”,
where the letter defines the party involved and the number
subscript refers to the measurement setting. Given the number
of parties, inputs and the level of the NPA hierarchy, the
monomial set can be evaluated as the combination of a number
of operators equal to the NPA level. By doing this, we obtain a
monomial set, which is larger than the true one, since elements
like “A0B0A1” and “A0A1B0” are both considered, so we need
to remove one of them, as well as elements like “A0A0”,
which would correspond to 1. Those tasks can be done by
imposing the commutativity of different operators and the fact
that the operators are unitary. We thus remove all elements
with subsequent repetition.

Let us recall that the elements of the density matrix can be
obtained as

�i, j = Tr(S†
i S jρ), i, j = 1, . . . , n, (B1)

where Si represents the ith operator in the monomial set and n
is the dimension of the density matrix �. Since our operators
are Hermitian, i.e., S = S†, in order to define the complex
conjugate of the operator products, we revert the monomial set
elements, so that, for instance, “A0A1” becomes “A1A0.” Then,
after removing the term repetitions, we enforce the commuta-
tivity and unitarity constraints, by putting some terms equal
to others, e.g., A0B0 = B0A0. In the end, we generate a dic-
tionary, whose keys represent the operators, and the values
indicate the positions, where those operators appear within the
� matrix.

As previously stated, the strength of our approach stands in
the possibility of enforcing the causal independence nonlinear
constraints. The aforementioned dictionary is hence divided
into three parts. First, given the independent parties as inputs,
the algorithm inserts a “*” character between all the indepen-
dent operators inside the dictionary keys. Then all remaining
keys are checked to find possible nonmeasurable elements.
That is all elements that contain any alphabetical subsequent
repetition, with different subscripts, for example “A0A1B0.”

Thus, in the end, we get three dictionaries: (i) the one asso-
ciated with the measurable elements (ii) the nonmeasurable,
and (iii) the elements with causal independence constraints.
Then, the dictionaries are imported and used as a tool to
initialize variables inside the density matrix. Here we define
a function “expected_value” to evaluate the expected value
of the physical elements, while the nonphysical elements are
always associated with variables of the ANN. For what con-
cerns the causally independent terms we use the additional
character “*” to split the string, then we obtain the value of
the element under exam as a product of the values associated
with each string. We do that using another custom function
“causal_indep_prod.” To give some examples:
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(1) Given the physical element 〈A0〉 the expected value
is evaluated, then this value is multiplied for the measurable
dictionary element “A0.”

(2) Given the nonphysical element 〈A0A1〉 one of the
optimization variables of the network is multiplied for the
nonmeasurable dictionary element “A0A1.”

(3) Given two causally independent peripheral parties A
and C, the element 〈A0C0〉 is correctly viewed as 〈A0〉〈C0〉,
so the expected values 〈A0〉 and 〈C0〉 are evaluated and then
multiplied by each other. The result is multiplied by the causal
independence dictionary element “A0C0.”

The final step is to consider the possibility of an inflated
scenario. The user chooses the number of nodes, by cre-
ating a list of ordered alphabetical characters, both for the
inflated and noninflated nodes. All the monomials that have
to be accounted for as variables, being associated with non-
injectable terms, are those that include multiple copies of
the same source. That is, defining n the number of origi-
nals nodes, the monomials that contain subsequent therms
equal to n or sequential characters distant to each other n
or n − 1. All the noninjectable monomials are then added
to the nonphysical element dictionary and removed from the
physical element one. Finally, we substitute the copies with
the original alphabet in all the dictionaries except for the
monomials associated with noninjectable terms. To give some
examples, in the triangle cut inflation scenario with six nodes
“A,”“B,”“C,”“D,”“E,”“F”:

(1) Given the physical injectable element 〈D0〉 this value
appears in the physical element dictionary as “A0.”

(2) Given the noninjectables 〈A0B0C0〉 and 〈D0E0F0〉 both
elements are added to the nonphysical element dictionary.
Notice that there are two distinct variables associated with the
dictionary keys “A0B0C0” and “D0E0F0.”

Note that the causal independence was already enforced
previously and that some noninjectable elements in the linear
constraint scenario become injectable measurable elements.
For example 〈A0C0〉 = 〈A0〉〈C0〉 is now injectable being a
product of injectable terms.

The code is available at Ref. [96].

APPENDIX C: IMPLEMENTATION OF THE DUAL
PROBLEM OPTIMIZATION

Given the primal formulation of a standard SDP problem,
given by

minimise〈C, �〉,
subject to〈Fk, �〉 = bk, k = 1, . . . , N,

� � 0,

(C1)

the dual formulation reads as follows:

maximise〈b, y〉,

subject to
m∑

i=1

yiFi � C.
(C2)

To implement the dual problem with our artificial neural net-
work, we use the same dictionaries defined for the primal, to
define the matrix C − ∑m

i=1 yiFi, which is then constrained to
be semidefinite positive.

Let us note that, for the primal formulation, the Fk matrices
did not need to be defined, since all the constraints were
directly enforced on the elements of matrix �, i.e., on the
corresponding dictionary elements. This is not the case for
the dual problem, where, for each Fi matrix, a unique variable
yi has to be initialized for each primal problem constraints.
So, for example, let us consider the dictionary element corre-
sponding to the key “A0”:

A0 =
⎛
⎝0 1 1

1 0 1
1 1 0

⎞
⎠, (C3)

where the 1 values indicate all the positions where the element
〈A0〉 can be found in the � matrix. In the dual formulation of
the problem, we need to impose that all the nonzero matrix
elements of “A0” are equal to each other. We do that by means
of equalities of the form 〈Fi, �〉 = 0. Hence, for example, the
constraints matrices Fi that enforce the equality constraints in
Eq. (C3) will be

F1 =
⎛
⎝ 0 1 −1

1 0 0
−1 0 0

⎞
⎠, F2 =

⎛
⎝0 1 0

1 0 −1
0 −1 0

⎞
⎠, (C4)

such that

〈F1, �〉 = �1,2 − �1,3 = 0 → v1,2 = v1,3,

〈F2, �〉 = �1,2 − �2,3 = 0 → v1,2 = v2,3. (C5)

Notably, as in the primal case, we are able to impose non-
linear constraints since, at each step of the training, the neural
network algorithm acts as a numerical feasibility problem. As
such, any nonlinear constraint in the optimization problem
is reduced to a fixed numerical value. To give an example
the causal independence constraint 〈A0C0〉 = 〈A0〉〈C0〉 can be
directly enforced since, at the start of the training, the network
uses a prediction of the probability distribution to evaluate the
loss function.

APPENDIX D: DETAILS OF EXPERIMENTAL APPARATUS

Our experimental apparatus, depicted in Fig. 6, employs
three separated laboratories linked through two ≈30-m-long
single-mode fibers. Two of them are equipped with one source
of polarization-entangled photon pairs and one measurement
station. The third laboratory, instead, is equipped with two
measurement stations.

The source in Laboratory 1 employs type-II spontaneous
parametric down-conversion (SPDC) to generate pairs of
polarization-entangled photons with a wavelength equal to
λ = 785 nm, through a β barium borate crystal which is
pumped, in a pulsed regime, by a λ = 392.5 nm laser beam.
Instead, in Laboratory 2, we have a periodically poled potas-
sium titanyl phosphate crystal, pumped in a continuous-wave
regime by a λ = 404 nm laser, which generates polarization-
entangled photon pairs at λ = 808 nm. Both sources are

023016-13



NICOLA D’ALESSANDRO et al. PHYSICAL REVIEW RESEARCH 5, 023016 (2023)

optimized to generate a two-qubit maximally entangled state,
e.g., the singlet state |ψ−〉, where the computational basis
(|0〉 and |1〉) is encoded in the horizontal and vertical photon
polarization states (|H〉 and |V 〉), hence |ψ−〉 = |HV 〉−|V H〉√

2
.

The events recorded at each measurement station are
analyzed through a central time-tagger and software that co-
ordinates the counters located in the different laboratories and
recognizes the counts occurring within a given time window
as coincidence events of distant detectors. In detail, the op-
timal window for two-fold coincidences is 1.05 ns, while
the one for four-fold coincidences, namely, events where
two two-fold coincidences are recorded within the chosen
time window, is 1.033 µs. We now go into further details
of the implementation of the bilocality scenario, since the
Bell scenario is just a simpler instance of this configuration.
Laboratories 1 and 3, equipped with one quantum state source
(respectively, ρ1 and ρ2) and one measurement station each,
are held respectively by Bob and Charlie. Laboratory 2, which
is equipped with two measurement stations, is held by Al-
ice. Each measurement station is made up by a half-wave
plate (HWP) and a polarizing beam splitter (PBS), allowing
one to perform polarization projective measurements of the

form cos(4θ )σz + sin(4θ )σx, where σx and σz are the standard
Pauli operators, by simply rotating the HWP of an angle θ

with respect to its optical axis. Single photons are revealed
through avalanche photodiode detectors. The three labora-
tories are connected through two ≈30-m-long single-mode
fibers, as shown in Fig. 6. Both laboratories deliver a photon
to the other one and perform projective measurements on
the photon they kept and on the one they received. In de-
tail, the observers’ measurement operators are the following:
A0 = A1

0 ⊗ A2
0 = σz ⊗ σz and A1 = A1

1 ⊗ A2
1 = σx ⊗ σx; B0 =

− (σx+σz )√
2

and B1 = (σx−σz )√
2

; C0 = − (σx+σz )√
2

and C1 = (σx−σz )√
2

,
where the superscripts indicate the source-generating the sub-
system. Such operators are, up to unitary transformations,
those maximizing the CHSH inequality violation. On the
other hand, we use source ρ1 and source ρ2 separately to im-
plement two different instances of a Bell scenario [Fig. 1(a)].
From the same statistics, we can also retrieve instrumental
correlations [see the corresponding DAG in Fig. 1(c)], by
lifting the Bell scenario, as in Refs. [23,62] [see Eq. (28)].

Then, by considering the three laboratories together, we
implement the bilocality scenario [see the corresponding DAG
in Fig. 1(e)].
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