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Experimental nonclassicality in a causal
network without assuming freedom of
choice

Emanuele Polino 1, Davide Poderini1,2, Giovanni Rodari1, Iris Agresti1,
Alessia Suprano1, Gonzalo Carvacho1, Elie Wolfe 3 , Askery Canabarro2,4,
George Moreno 2,5, Giorgio Milani1, Robert W. Spekkens3,
Rafael Chaves 2,6 & Fabio Sciarrino 1

In a Bell experiment, it is natural to seek a causal account of correlations
wherein only a common cause acts on the outcomes. For this causal structure,
Bell inequality violations can be explained only if causal dependencies are
modeled as intrinsically quantum. There also exists a vast landscape of causal
structures beyond Bell that can witness nonclassicality, in some cases without
even requiring free external inputs. Here, we undertake a photonic experiment
realizing one such example: the triangle causal network, consisting of three
measurement stations pairwise connected by common causes and no external
inputs. To demonstrate the nonclassicality of the data, we adapt and improve
three known techniques: (i) amachine-learning-based heuristic test, (ii) a data-
seeded inflation technique generating polynomial Bell-type inequalities and
(iii) entropic inequalities. The demonstrated experimental and data analysis
tools are broadly applicable paving the way for future networks of growing
complexity.

Bell’s theorem1, more than any other result, elucidates the manner in
which quantum theory necessitates a departure from a classical
worldview2,3. Recently, it has been realized that it can be understood as
a no-go result for providing a satisfactory account of quantum corre-
lations using a classical causalmodel4–7. Under this reframing, violating
a Bell inequality can be understood as attesting to the necessity of
using an intrinsically quantum notion of a causal model to achieve a
causal account of the correlations5,6,8–13, and thus as witnessing non-
classicality. Furthermore, it becomes clear that such an analysis can be
generalized to causal structures that are distinct from the Bell
scenario5,14–26.

Such generalizations are highly relevant to the problem of
developing quantum technologies. In the context of the Bell scenario

alone, the possibility of witnessing nonclassicality has applications
ranging from quantum cryptography27 to self-testing28 and commu-
nication complexity problems29, as well as device-independent infor-
mation processing30,31, where the processing can be accomplished
while relaxingwhat needs to be known about the innerworkings of the
devices. Given that tasks such as these are also of interest in arbitrary
quantum networks32–34, which can have complex topologies, it is evi-
dent that there is a need for new data-analysis tools appropriate for
witnessing nonclassicality in generic causal structures (see review in
ref. 25). Moreover, so far, all the demonstrations of quantum non-
locality, in theBell scenario (Fig. 1(a)) or in complex networks, relied on
the use of external inputs, variables whose values can be freely chosen
by the experimenter and which serve to switch between different
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measurement settings35–39. The free choice ofmeasurements lies at the
basis of Bell’s theorem40 and in experimental demonstrations, this
freedom has to be assumed, or at best made be as plausible as
possible41,42. By contrast, quantum networks with several independent
sources allow the demonstration of nonclassicality without the need
for external freely chosen inputs, replacing the freedom of choice
assumption with the assumption of independence of the
sources5,19,43–45.

In spite of its significance, this challenge remains largely unex-
plored, especially from the experimental perspective. This work is a
contribution to this effort. We undertake the experimental investiga-
tion of a causal structure that has attracted growing
attention5,15,16,18,19,22,23,43,46–55: the “triangle scenario”, depicted in Fig. 1(b).
Here, three distant parties each receives a share from two out of three
independent sources, and in stark contrast to the Bell scenario, each
party implements a single measurement on the systems in its lab,
rather than having the freedom to choose among a set of incompatible
measurements.

Using a versatile photonic setup with three independent sources
(one sharing entanglement and two sharing classical correlations) and
the feed-forward of classical information by means of fast optical
switches, we provide the first experimental demonstration of classi-
cally unrealizable correlations in the triangle structure without the use
of external inputs. Importantly, witnessing nonclassicality in this new
kind of causal structure goes beyond the standard Bell inequality
violation and requires a radically different approach. In the course of
doing so, we have enhanced some of the existing tools for testing
nonclassicality ingeneric causal structures both from the experimental
and the theoretical perspectives. These enhancements are in the ser-
vice of making the tools applicable to generic causal structures and
arbitrary data, thus paving the way for future experiments in causal
networks of growing size and complexity.

Results
Beyond Bell’s theorem
LeveragingBell’s theorem, Fritz5 showed the existenceof a distribution
in the triangle scenario that is realizable quantumly but not classically.
Fritz’s result is best understood as a quantum no-go theorem akin to
Bell’s 1964 no-go theorem1 or the tripartite Greenberger-Horn-
Zeilinger (GHZ) argument56. As with the distributions described in
those works, Fritz’s distribution has the feature that certain variables
are perfectly correlated, something that is predicted by quantum
theory to be possible in principle, but which can never be realized in a
real experiment given the unavoidable presence of noise.

It was Clauser, Horne, Shimony, and Holt (CHSH) who first
demonstrated how to turn Bell’s argument into an experimental test,

by deriving noise-robust inequalities57. Similarly, in the tripartite Bell
scenario (Fig. 1(c)), the step from the GHZ argument to the possibility
of a noise-robust test was achieved by Mermin’s inequality58. In the
case of the triangle scenario, classical causal compatibility inequalities
have also been derived48 but these unfortunately require a degree of
sensitivity higher than can reasonably be achieved in current experi-
mental tests. Note that the inequalities derived in ref. 51, by contrast,
are not noise-robust because they apply only to distributions exhibit-
ing perfect correlations between certain variables, analogously to
Bell’s 1964 inequality. New techniques are therefore required to wit-
ness nonclassicality in the triangle scenario for the sort of experi-
mental data achievable at present.

Developing new data-analysis techniques is also motivated by
considerations of utility. If all one seeks to do is to demonstrate the
existence of nonclassicality in a given causal structure, then it is clearly
sufficient to implement a dedicated experiment that targets a specific
distribution and to test an inequality that is known tobe able towitness
nonclassicality for the targeted distribution. If, on the other hand, one
seeks to use nonclassicality in a given causal structure as a resource for
various information-processing tasks, then it is clearly of greater utility
to have a test that is able to witness nonclassicality for any distribution
that is not classically realizable in the given causal structure.

In some cases, this higher bar can bemet by determining all of the
classical causal compatibility inequalities associated to a given causal
structure and testing for violations of any of these2. Unfortunately,
however, such a complete characterization soon becomes out of
reach, even for seemingly simple scenarios2,59. In order to be able to
witness nonclassicality on arbitrarydata, therefore, it is better to seek a
“satisfiability” algorithm,which takes as its input a concrete example of
data, and answers the question of classical realizability for that data
alone, and in the case of a negative answer, identifies an inequality that
is optimized for witnessing its nonclassicality.

We here propose a data-seeded algorithm of this sort that can be
used for a generic causal structure. This is achieved by leveraging the
fact that the inflation technique for causal inference18 can reduce the
satisfiability problem to a linear program. We also pursue a second
route to witnessing nonclassicality on generic data. In this approach,
one foregoes deriving inequalities altogether and one simply performs
a statistical hypothesis testwhere thehypothesis is the compatibility of
the data with a classical causal model for the given causal structure.
Specifically, one implements a variation of the parameters of the
model—some of which make explicit reference to the hidden (i.e.,
unobserved) variables—to try and find the best fit to the data, and one
considers the hypothesis falsified at some level of confidence when no
good fit can be found. We here show that such hypothesis testing on
experimental data can be made feasible for causal networks using the

Fig. 1 | Directed acyclic graph (DAG) representation of different classical causal
scenarios. aTheBell scenario is a causal structure inwhich a source λ correlates the
two parties having measurement outcomes a and b and choices x and y, respec-
tively. b The triangle scenario involves three independent sources λAB, λBC, and λAC,
which establish correlations between pairwise stations A,B, and C. Note that

measurements in the triangle scenario do not depend on external inputs. c The
tripartite Bell scenario is also known as the GHZ scenario, after the theorists who
identified a nonlocal game for this scenario, which quantum theory predicts can be
won with 100% probability.
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machine-learning technique developed in ref. 52 where the topology of
the causal network is mapped to the topology of a neural network.
Finally, suitably mapping the triangle network to a generalization of
Bell’s scenario that incorporates the possibility of measurement
dependence (i.e., that abandons the free choice assumption), we also
witness the nonclassicality of the data by using an entropic approach,
recently introduced in ref. 44.

Note that for the triangle scenario, our goal is to witness non-
classicality of the experimentally realized distribution assuming only
that the causal relations among the three measurement nodes and
sources are those described by the triangle scenario. If one were to
avail oneself of additional assumptions, in particular, assumptions
regarding the causal relations among variables within a given labora-
tory, then one could witness nonclassicality of our experimental data
using standard Bell inequalities. Since such additional assumptions do
not hold for all setups that can realize a distribution exhibiting a
quantum-classical gap, an analysis, which leveraged these additional
causal assumptions would not achieve the goal of being applicable to
arbitrary data.

The causal modeling perspective on Bell’s theorem
Bell’s theoremcan be seen as a particular instanceof a causal inference
problemwhere for a given hypothesis about the causal structure of the
experiment, one inquires whether a classical causal model is able to
reproduce the observations4,6. In a Bell experiment, a source dis-
tributes physical systems between two distant observers—Alice and
Bob—they choose the values of their setting variables, denoted by x
and y, respectively (these determine which of a set of incompatible
measurements is implemented at each lab), and then they register
the outcomes, denoted by a and b, respectively. For simplicity here,
we represent the variables and their values with the same letter. The
natural causal structure to hypothesize in such an experiment is
the one depicted in Fig. 1(a), termed the “Bell scenario”.

The assumption of a classical causal model implies that the
observed distribution can be decomposed as

pða,b∣x,yÞ=
X
λ

pðλÞpða∣x,λÞpðb∣y,λÞ: ð1Þ

This decomposition is familiar in discussions of Bell’s theorem as what
follows from assuming a hidden variable model satisfying local caus-
ality and certain other conditions60,61, but it can also be understoodas a
simple consequence of the causal Markov condition62 under the
assumption that the causal structure is that of the Bell scenario4,6.

In turn, for a quantum causal model, sources of correlations are
not copies of a variable λ that is probabilistically distributed but rather
pairs of systems that are in a joint quantum state ρ (potentially
entangled). Similarly, dependencies among nodes are not represented
by conditional probabilities such as p(a∣x, λ) but by the quantum ana-
logs thereof, completely positive and trace preserving (CPTP) maps,
which, in the particular case of a measurement, correspond to a
positive operator-valued measure (POVM). Operationally, the quan-
tum description is given by Born’s rule, implying that

pQða,b∣x,yÞ=Tr MA
a∣x �MB

b∣y

� �
ρAB

h i
, ð2Þ

where fMA
a∣xga and fMB

b∣ygb are POVMs on A and B, respectively.
Bell’s theorem1 asserts that the quantum description can lead to

an observable distribution that fails to have a classical explanation in
terms of the causal model (1).

The triangle scenario
Among the simplest quantum networks beyond the paradigmatic Bell
causal structure is the triangle scenario of Fig. 1(b). It is distinguished
from the tripartite Bell scenario (depicted in Fig. 1(c)) by the fact that

the distant parties are not connected by a 3-way source, but by three
2-way sources.

In the triangle scenario, the correlations that admit a classical
realization, i.e., those that are compatible with a classical causalmodel
with the structure of Fig. 1(b), can be written as:

pða,b,cÞ=
X

λAB ,λBC ,λAC

pðλABÞpðλBCÞpðλACÞ

pða∣λAB,λACÞpðb∣λAB,λBCÞpðc∣λAC ,λBCÞ:
ð3Þ

By contrast, the correlationswhich admit of a quantum realization
in the triangle network are given by

pQða,b,cÞ=Tr ρAB � ρAC � ρBC �MA
a �MB

b �MC
c

� �
, ð4Þ

where ρAB denotes the density operator of the state shared between
the nodes {A,B} (likewise for ρAC and ρBC), while fMA

aga denotes a POVM
on the subsystem in station A (similarly for fMB

bgb and fMC
c gc).

Recently, it has been theoretically and experimentally demon-
strated that a quantum triangle network with a setting variable at each
station cangive rise to nonclassical correlations63. This result, however,
employsmeasurement choices for each of the observers. Here, we go a
significant step beyond, showing that nonclassical correlations can
emerge even without any freedom of choice.

The Fritz distribution
In Fritz’s example64 of a distribution pQ(a, b, c) that is not classically
realizable, a, b and c are 4-valued variables, each of which is con-
ceptualized as a pair of binary variables, a = (a0, a1), b = (b0, b1) and
c = (c0, c1). Moreover, one can decompose the quantum system A as
A = (A0,A1), where A0 is the subsystem appearing in ρAC and A1 is the
subsystem appearing in ρAB; analogously for B = (B0,B1) and
C = (C0,C1). The example is realized by taking the three POVMs in Eq.
(4) to have the following form:

MC0C1
ðc0,c1Þ =M

C0
c0

�MC1
c1
,

MA0A1
ða0,a1Þ =M

A0
a0

�MA1
a1 ∣a0

,

MB0B1
ðb0,b1Þ =M

B0
b0

�MB1
b1 ∣b0

,

ð5Þ

where fMC0
c0
g
c0
,fMC1

c1
g
c1
,fMA0

a0
g
a0
,fMB0

b0
g
b0

are all measurements of the σz

Pauli observable, fMA1
a1 ∣a0

g
a1

corresponds to one of the two Pauli

observables among {σx, σz} depending on the value of a0, and fMB1
b1 ∣b0

g
b1

corresponds to one of the two observables among fðσx + σz Þ=
ffiffiffi
2

p
,ðσx �

σzÞ=
ffiffiffi
2

p
g depending on the value of b0. In Fritz’s description of a gen-

uinely quantum distribution in the triangle scenario, the state ρAB is

taken to be, for example, a singlet state ∣Ψ�i= ð∣01i � ∣10iÞ=
ffiffiffi
2

p
; while

ρAC and ρBC are maximally entangled states ð∣00i+ ∣11iÞ=
ffiffiffi
2

p
. However,

since all the measurements on ρAC and ρBC are of σz, it is sufficient to
take these to be a classically correlated state, namely:

ΛAC =ΛBC = ð∣00i 00h ∣+ ∣11i 11h ∣Þ=2: ð6Þ

As noted in ref. 5, to see that Fritz’s distribution is not classically
realizable, it suffices to make a connection to a Bell scenario between
Alice and Bob. Note that the variables a0 and b0 determine the mea-
surements that are implemented on A1 and B1. In this respect, they are
akin to measurement settings x and y in the usual scenario. However,
because a0 and b0 are outputs in the triangle scenario, they could in
principle dependon the common source betweenAlice andBob. In the
usual Bell scenario, of course, if the setting variable x (or y) is corre-
lated with λAB, one cannot derive the Bell inequalities. The assumption
that x and y are not correlated with λAB is termed measurement
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independence (or freedom of choice) and is a consequence of the
hypothesis that the causal structure for the usual Bell scenario is that
of Fig. 1(a).

For the Fritz distribution in the triangle scenario, one can still
infer that a0 and λAB are uncorrelated, but now this follows from the
fact that a0 is perfectly correlated with the outcome c0, which is
causally disconnected from λAB. Similarly, the lack of correlation
between b0 and λAB is inferred from the perfect correlation between
b0 and c1 and the fact that c1 is causally disconnected from λAB. If one
considers the conditional distribution p(a1, b1∣a0, b0) that is obtained
by making the appropriate Bayesian inversion on a distribution
p(a, b, c) that is classically realizable in the triangle scenario, then
given the independence of a0 (and b0) from λAB, this conditional
distribution should satisfy the standard Bell inequalities. The fact that
themeasurements in Fritz’s example have been chosen to ensure that
the conditional pQ(a1, b1∣a0, b0) violates a standard Bell inequality
implies that the distribution pQ(a, b, c) is not classically realizable in
the triangle scenario.

Any experiment that aims to realize the Fritz distribution in the
triangle scenario has the goal of realizing the ideal states and mea-
surements specified above, but due to the inevitability of noise, the
states and measurements that are actually implemented are necessa-
rily noisy versions of these. This implies that the correlations between
a0 and c0 and between b0 and c1 will not be perfect, which in turn
blocks the inference from the classical realizability of p(a, b, c) in the
triangle scenario to the classical realizability of p(a1, b1∣a0, b0) in the
standard Bell scenario. As such, to witness nonclassicality in such an
experiment, one must go beyond the techniques that witness non-
classicality in a standard Bell experiment.

It is worth reiterating here a point made in the beginning of sub-
section “Beyond Bell’s theorem", that our goal is to witness non-
classicality using a data-analysis technique that assumes only the
causal structure of the triangle scenario. If we associate a laboratory
with each of the nodes in the causal structure, then even though our
particular experiment involves specific causal relations between sys-
tems within the laboratories, the data analysis cannot make use of this
extra structure. In other words, we seek a data-analysis technique that
canwitness nonclassicality without assuming any such extra structure.
This is the sort of assumption that is appropriate for the device-
independent paradigm, wherein the experimental devices are pre-
sumed to be supplied by an adversary. All that is presumed to be
guaranteed is that the causal relations among the laboratories are the
ones specified by the triangle scenario. If one could avail oneself of the
extra structure that is present in the experiment but not part of the
description of the triangle scenario, then standard Bell inequalities
would be sufficient to witness nonclassicality. For instance, if one
could assume that Alice’s output a0 was a faithful copy of the classical
randomness she shares with Charlie and that Bob’s output b0 was a
faithful copy of the classical randomness he shares with Charlie, then
one could infer that neither a0 nor b0 could depend on ΛAB and con-
sequently having p(a1, b1∣a0, b0) violate a Bell inequality would be
sufficient to witness nonclassicality. As a second example, if one could
assume that the pair of variables c0 and c1 that are outputs of Charlie’s
laboratory are such that c0 depends only on the source shared with
Alice and c1 depends only on the source shared with Bob, then the
causal structure being assumed is equivalent to a 4-party line-like
structure rather than a triangle scenario. In this case, the full set of Bell
inequalities for the conditional distribution p(a, b∣c0, c1) (where
a = (a0, a1) and b = (b0, b1)) are the necessary and sufficient conditions
for classicality65.

In order to be able to witness the nonclassicality of our data
assuming only the triangle causal structure, therefore, we cannot rely
on standardBell inequalities. This iswhywemust have recourse to new
data-analysis techniques, such as those presented in subsections
“Bounding measurement dependence and violating an entropic

inequality for the triangle network”, “Violationof a causal compatibility
inequality” and “Boundingmeasurement dependence and violating an
entropic inequality for the triangle network”.

Experimental setup
In our experimental implementation, we used the polarization degrees
of freedom of a pair of photons as the two qubits distributed by the
source shared between A and B, with the σz eigenstates corresponding
to the f∣Hi,∣V ig basis of linear polarization. We investigated quantum
correlations arising in the triangle network where we aim to have the
source between A and B prepare the singlet state. Meanwhile, for the
source shared by A and C and the source shared by B and C, we aim to
have these prepare the classically correlated state of Eq. (6).

Recent years have seen the first experimental implementations of
causal structures with a number of independent sources63,66–68. In our
implementation, the pair of photons associated to the source between
A and B are at a wavelength of 810 nm, and are generated through
spontaneous parametric down-conversion in a ppKTP nonlinear crys-
tal pumped with a 405nm UV CW-laser, placed inside a Sagnac inter-
ferometric geometry69,70, depicted in the box labeled ρAB in Fig. 2. To
implement the classically correlated sources ΛAC and ΛBC, electrical
pulses randomly generated by the shot-noise of distant pairs of single-
photon detectors are locally split (boxes labeled ΛAC and ΛBC in Fig. 2);
then they are sent to the stations A,C and B,C, respectively, by means
of 20m-long electrical cables. Detection of such signals gives values for
the bits a0, b0, c0, c1.

Note that this electrical signal sets up classical correlations (i.e.,
shared randomness) between Charlie and Alice (Bob), and this is a
faithful implementation of the state in Eq.(6).

Owing to the probabilistic nature of photon generation and ran-
dom shot-noise events from detectors, justifying the independence of
different sources turns out to be very demanding. This is the reason
why the first experimental realization of quantum networks41,71,72

actually involved a single laser source, thereby requiring a device-
dependent justification for the supposed independence of the gener-
ated quantum states that relies on the knowledge of the inner process
of photon generation. Using spatially separated non-synchronized
sources, of different natures, enforces the independence of the sour-
ces, also having direct applications in quantum communication pro-
tocols. Note, however, that the independence of the sources still
remains an assumption, considering that this assumption can always
be violated by superdeterministic models73.

To experimentally achieve the implementation of the separable
measurement operators as in Eq. (5), the electrical signals arriving at A
and B determine the state of ultra-fast optical switches (Nano Speed
Ultra-Fast 1x2 by company Photonwares with a switching time equal
to ~8ns) that affect the measurements on the photons coming from
ρAB. More specifically, based on which one of the two signals arrives in
A (B) from ΛAC (ΛBC), the switch will send the photon from ρAB to two
fibers connected to the measurement setups implementing the dif-
ferent polarizationmeasurements. Themeasurement of the photons is
performed by polarization controllers defining themeasurement basis
followed by in-fiber polarizing beam splitters (PBS) and single-photon
detectors. Finally, the four detectors in A (B) are electronically con-
nected to a time-to-digital converter, located in the measurement
station. The signal from the photon counting, together with the signal
from source ΛAC (ΛBC) generate the 4-valued outcome a (b). Con-
versely, in stationC the 4-valuedoutcome c is given by the twoclassical
signals from ΛAC and ΛBC. Note that the electronic signals generated by
the detectors are sent to three separated time-to-digital converters,
one for eachmeasurement station A, B,C, and the recorded events are
sent for data processing to a computer located outside the laboratory.

We record experimental events by first choosing a small window
w1 ~ 4.1ns, to filter in the signals produced simultaneously from the
same source Λi. This allows us to account mostly for 2-fold events,
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which are due to the same entangled pair, or the same split signal, thus
filtering out most of the experimental noise due to the detectors’ dark
counts and residual environmental light. The 6-fold coincidence
events are finally computed by employing a time window equal to
w2 ~ 20μs inside which an event is defined by the arrival of three two-
fold coincidences (see Supplementary Note 1 for more details on data
analysis). Such a choice of value for the 6-fold coincidence window
represents a compromise between twodifferent requirements. On one
side, we want to make such a window as narrow as possible to
approximately achieve simultaneity, with respect to both the genera-
tion and the measurements, which in principle could lead to an
implementation directly addressing the locality loophole. On the
other, a broader window is necessary to detect a large enough number
of 6-fold coincidences, enhancing the events’ rate and thus leading to
sufficiently small errors on the measured probabilities in smaller
measurement times.

In this demonstration, we do not attempt to achieve space-like
separation between the registration of the outcomes a, b, and c.
Achieving such a separation would provide the strongest possible
justification for the lack of causal influences between theoutcomesa, b
and c. It is important to note, however, that it would still not justify the
lack of a 3-way common cause.

Furthermore, due to the low efficiencies of the single-photon
detectors (η ~ 0.5) and the fact that the threshold values required for
closing the detector loophole in the triangle scenario are not yet
known,we rely on the fair-sampling assumption. On this point, we note
that even for the much simpler case of the Bell scenario, closing the
detector loophole required decades of effort.

Experimental results
As stated above, in order to realize the Fritz distribution, it is sufficient
to share entanglement only between Alice and Bob’s measurement
stations, since Alice and Charlie as well as Bob and Charlie can merely
share classical correlations. Moreover, using such classical sources (in

our case, a doubled electronic signal) makes it possible to experi-
mentally achieve correlations between Alice and Charlie and between
Bob and Charlie that can be almost perfect for the duration of the
experiment. Recall that perfect correlation is required for the logic of
Fritz’s argument to go through, but demonstrating perfect correla-
tions can never be done in an experiment and, importantly, demon-
strating nonclassicality in the triangle network in the manner
described by Fritz would boil down to violating a standard Bell
inequality (sometimes referred to as disguised network nonlocality74).
So, we did not use this approach here, as it is the goal of our work to
introduce and validate data-analysis techniques that would be applic-
able for any example of a quantum-classical gap in the triangle sce-
nario, including gaps based on distributions that, unlike Fritz’s, could
be noisy. Figure 3 provides a comparison between the theoretical Fritz
distribution reported in panel 3a, obtainable with noiseless states and
measurement operators, and the experimentally achieved one repor-
ted in panel 3b. The latter one was reconstructed from ~1.4 ⋅ 106 events
collected in ~10 h of data taking, achieving a 6-fold coincidence rate
of ~38.7 Hz (see Supplementary Note 2 for the complete distribution).

Evenwith our approach, employing ultra-fast optical switches and
classical correlations sharedbetweenA andC andbetweenB andC, the
measurement outcomes on the state ΛAC are not perfectly correlated,
nor those on ΛBC, contrary to the ideal Fritz distribution: specifically,
the probability of anti-correlation in each case is found to be
panticorr = 3 ⋅ 10−5. As argued, it is the practical impossibility of achieving
perfect correlations, which necessitates implementing a hypothesis
test for compatibility or a test of causal compatibility inequalities. In
what follows, we will focus on three possible avenues: machine-
learning techniques52,75,76, the inflation method13,18,48,77 and finally,
recently derived entropic inequalities44.

Excluding the hypothesis of classicality with machine learning
We follow the approach in52, the central idea of which is to encode the
structure of the causal network under test in the topology of a neural

A B

C

ρAB

ΛAC ΛBC

1x2 optical switch

Fiber

Polarizing beamsplitter

Electrical signal
Switch driver

Half wave plate
Dichroic mirror

Single photon detector

ppKTP crystal

in
out

in
out

in
out

QRNG QRNG
Experimental DAG

a0a1 b0b1

c0c1

ΛBC

ρAB

ACΛ

Fig. 2 | Experimental implementation of the triangle network. The source ρAB
generates polarization-entangled photon pairs in the singlet state ∣Ψ�i, by pump-
ing with a continuous wave UV laser a periodically poled potassium titanyl phos-
phate (ppKTP) crystal. Conversely, ΛAC (ΛBC) produces classically correlated states
ð∣00i 00h ∣+ ∣11i 11h ∣Þ=2 obtained by splitting the output signal of two single-photon
avalanche photodiodes subjected to environmental light noise. In nodes A and B, to
implement the measurements needed to reconstruct the probability distribution
p(a, b, c), the photons from the source ρAB are collected by the input single-mode
fiber (SMF) of a 5ns rise-time optical switch. In Fritz-like distributions, the mea-
surement resulta0 (b0) onpartof the sourceΛAC (ΛBC) determines theobservable to

be measured on the photon coming from ρAB, leading to outcomes a1 (b1). In our
implementation, this is achieved by appropriately driving the optical switches
through a specially designed electronic driver, which receives signals coming from
ΛAC (ΛBC) and drives the output port of the optical switch based on the results a0
(b0). The bit a1 (b1) is obtained by performing a polarization measurement on the
photons produced by the ppKTP source through a half-waveplate (HWP) and a
polarizing beam splitter (PBS), implemented in fiber. In node C, c0 and c1 are
measured independently by directly feeding the electrical signals produced by ΛAC

and ΛBC into a time to digital converter (TDC).
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network. Consider the triangle network with quaternary outputs as
depicted in Fig. 1(b), where three sources λAB, λBC, and λAC send infor-
mation to three parties, Alice, Bob, and Charlie, each receiving,
respectively, the pairs (λAB, λAC), (λAB, λBC), and (λAC, λBC), as schemati-
cally shown in Fig. 4(a). After locally processing the inputs, they flag a
number a, b, c∈ {0, 1, 2, 3}, by sampling the probability distributions
p(a∣λAB, λAC),p(b∣λAB, λBC) and p(c∣λBC, λAC), respectively. In the
machine-learning algorithm, the input layers to the multilayer per-
ceptrons (MLPs) are composed of the independent uniformly dis-
tributed random numbers in the unit interval, i.e., λAB, λBC, λAC∈ [0, 1],
with the restriction in the flow of information mirroring the causal
structure of the triangle network: The A-block of the hidden layer
receives random numbers (λAB, λAC), the B-block receives (λAB, λBC) and
the C-block receives (λBC, λAC). Therefore, individual inputs belong to
R2 (i.e., they have length 2). For the training, we provide batches of
(Nbatch, 2) dimension for the corresponding MLP for each of the three
blocks.

If a certain probability distribution p(a, b, c) is compatible with a
classical causal model on the triangle causal structure, then a set of
three independent neural networks mimicking the topology of the
triangle should be able to reproduce the distribution. By numerically
sampling over different values of the random numbers λAB, λBC and λAC
one can construct the approximation ~pða,b,cÞ by averaging the

Cartesian product of the output conditional probabilities corre-
sponding to each party. See Methods for more details.

In turn, if the distribution under test is nonclassical, the neural
network will be unable to mimic the distribution perfectly, producing
considerable errors. To quantify how much the machine model can
approximate the target/experimental distribution, we employ the
element-wise mean-square error (MSE), also termed as L2-norm error,
between p(a, b, c) and ~pða,b,cÞ. This is given by MSE= 1

64 ∣pða,b,cÞ �
~pða,b,cÞ∣2 and can be understood as a measure of nonclassicality76. By
repeated iterations, the neural network can be optimized in order to
minimize this distance, since it should be close to zero if the target
distribution has a classical model that the machine manages to
approximate. Clearly, however, even if the distribution is compatible
with the trianglenetwork, due tonumericalprecision and thefinite size
of the neural network, the distance will never be exactly zero. To
address this issue, we mix our experimental probability p(a, b, c) with
the flat distribution pI(a, b, c) = 1/64, which is compatible with the tri-
angle structure, so that the machine is asked to retrieve the best
possiblemodel for themixed distribution ~p= v p+ ð1� vÞpI . If p has no
classical explanation, then we expect that, as one increases the weight
v of p in the mixed distribution ~p, there is a range of values wherein a
classical model of ~p remains possible and MSE is very small, but that
there exists a threshold value beyond which MSE begins to increase,

Fig. 4 | Neural network for the triangle network. a Neural network capable of
reproducing distributions compatible with the triangle configuration, where
number of layers varies from 3 to 6 and number of neurons is either 16 or 32,
yielding 8 distinct architectures. The three sources λAB, λBC, and λAC send informa-
tion to three parties, Alice, Bob, and Charlie, each receiving, respectively, the pairs
{λAB, λAC}, {λAB, λBC}, and {λAC, λBC}. b The minimum mean-square error (MSE)

distance achieved by the machine as function of the visibility for the experimental
data (solid line) and the comparison with the same distance for theoretical Fritz
distribution (dashed line). For distinct visibility values, a differentMLarchitecture is
the optimumone, strengthening the advantage of using anassemblyof oracles. See
Methods and Supplementary Note 3 for specific details.

Fig. 3 | The Fritz distribution, theoretical versus experimental. a Ideal Fritz
distribution computed by choosing ρAB = ð∣HV i � ∣VHiÞ=

ffiffiffi
2

p
(a noiseless singlet

state); ΛAC=ΛBC as classically, perfectly correlated mixed states; and the ideal
measurement operators described in Eq. (5).b Experimental distributionmeasured
in an experimental run. The error bars are calculated using Poissonian statistics and

are not visible in the plot. The three indexes a, b, and c indicate the measurement
results, ranging from 0 to 3, corresponding to the three nodes A, B, and C,
respectively. The chart bars representing the terms of the probability distribution
have different colors based on the value of the outcome c.
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and the machine cannot make an almost perfect approximation
anymore.

As shown in Fig. 4(b), only below a certain threshold value around
vcrit = 1=

ffiffiffi
2

p
52, can the machine learn ~p while it fails to do so for higher

values of v. This analysis gives a strong indication of the nonclassicality
of p, but given that there is no guarantee that the machine finds the
optimal parameters, it does not guarantee it. To overcome this lim-
itation, in the following we present two alternative techniques.

Violation of a causal compatibility inequality
In order to demonstrate the nonclassicality of the experimental data
relative to the triangle causal network, we seek to identify some causal
inequalities, which must be satisfied by all distributions compatible
with the classical triangle network but which are violated by our
experimental statistics. To this end, we turn to the inflation technique
for causal inference introduced in ref. 18.

As detailed in the Methods, the inflation technique relates com-
patibility with a given causal structure G to feasibility of a linear pro-
gram (LP). If the LP related to an inflation of G (see Fig. 5(a)) is found to
be infeasible, then evidently p is incompatible with G. In our case, G is
taken to be the classical triangle scenario causal structure depicted
in Fig. 1(b).

In the case of infeasibility, the algorithm returns an infeasibility
witness, in the form of an inequality. In this way, we can find a causal
compatibility inequality tailored to the specific experimental data we
obtained. Using the second order inflation of the triangle network
shown in Fig. 5(a), one can derive causal compatibility inequalities
(satisfied by all triangle-compatible p(a, b, c)) of the form

V �
X

a1b1c1
a2b2c2

2f0,1,2,3g×6

ya1b1c1a2b2c2
pða1,b1,c1Þpða2,b2,c2Þ≥0,

ð7Þ

where the y are real coefficients.
As further detailed in the Methods, the LP of the inflation tech-

nique may be specially adapted to yield elegant looking causal com-
patibility inequalities; namely, where sets of monomials are each
associated to a single (i.e., uniform) coefficient. Working with such an
adapted LP can be orders of magnitude less computationally

demanding as compared to the unadapted LP. However, it may be the
case that despite a given distribution leading to infeasibility in the
unadapted primal LP, theremay not exist any inequalitywith restricted
coefficients capable ofwitnessing that fact. As such, one ismotivated to
carefully select a coefficient restriction, whichmatches the specifically
targeteddistribution: one should only impose that a pair ofmonomials
should share a uniform coefficient in the inequality if the given dis-
tribution would lead to both monomials being evaluated to the same
numerical value (within a small tolerance). One cannot impose arbi-
trary coefficient uniformity restrictions. The Methods contains an
explanation for why certain special coefficient restrictions may be
justifiable. We employed the ideal theoretical Fritz distribution as our
guide when selecting our LP adaptation, rendering moot the selection
of a numerical tolerance.We stress, however, that a theoretical guide is
not a prerequisite for optimally adapting the inflation technique LP to
witness the nonclassicality of experimental data: it is perfectly possible
to isolate the near-symmetries in the experimental data without the
educated guess provided by a theoretical model.

The infeasibility witness obtained by the program for our data
yields an inequality of the form of Eq. (7), which is violated by the
experimental data by several standard deviations: in this way, we
unambiguously demonstrate the emergence of nonclassicality in
the triangle network, without relying on Bell’s theorem. We depict the
particular coefficients ya1b1c1a2b2c2

defining the inequality that we
obtained from the adapted LP in Fig. 5(b). Denoting the value that
the data gives for the left-hand-side of this inequality by V exp, we
obtain Vexp = −0.02436 ±0.00016 (using a 6-fold coincidence window
w2 ~ 20μs), corresponding to a violation of the inequality by 152 stan-
darddeviations. In Fig. 6, weplotVexp as a function of the choice of the
6-fold coincidence window w2. As expected, by increasing w2, we
increase the detection rate of 6-fold events, in turn decreasing the
statistical error on the computed value ofVexp, shown in thefigurewith
the red shadowed area.

Bounding measurement dependence and violating an entropic
inequality for the triangle network
Another approach that can be used to robustly demonstrate the
nonclassicality of the generated data is to map the triangle network
into a modification of the Bell scenario, in a similar way to Fritz’s

Fig. 5 | Inflation technique for the triangle network. a The second order inflation
graph of the triangle network. Such an inflation doubles the number of latent
variables relative to the triangle scenario, having six latent variables
fλð1ÞAB,λð2ÞAB,λ

ð1Þ
BC ,λ

ð2Þ
BC ,λ

ð1Þ
AC ,λ

ð2Þ
ACg. The inflation quadruples the number of observable ran-

dom variables of the triangle scenario, having twelve observable random variables
{a(1), b(1), c(1), a(2), b(2), c(2), a(3), b(3), c(3), a(4), b(4), c(4)}. Distributions compatible with this
inflated structure satisfy symmetry properties, and have marginals corresponding
to products of triangle-compatible distribution. This can be exploited to derive

suitable causal compatibility inequalities that are violatedby the experimental data.
b This plot depicts the 64 × 64 coefficients ya1b1c1a2b2c3

for a quadratic inequality of
the form of Eq. (7) such that the left-hand side is nonnegative on all distributions
compatible with the classical triangle scenario, but which evaluates to the negative
number Vexp = −0.02436 ±0.00016 on our experimental data. The x-axis ranges
over the valuesof (a1, b1, c1) while the y-axis ranges over the valuesof (a2, b2, c2), and
the color at a given point denotes the value of ya1b1c1a2b2c3

according to themapping
set out in the legend.
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original proof of nonclassicality in the triangle scenario. In this mod-
ification, any amount of measurement dependence is in principle
allowed between the hidden variable and the measurement settings.
Consequently, even though the scenario is related to Bell’s, the non-
classicality exhibited necessarily goes beyond that which one finds in
Bell’s scenario because in the latter measurement dependence allows
for a classical account of any correlations. Indeed, in a Bell scenario
where causal influences between the source and the measurement
settings are allowed, some amount ofmeasurement independence has
to be assumed in order to witness nonclassicality from the data60,78,79,
otherwise, any violation of a Bell inequality can be explained by clas-
sical local models80.

In the modified scenario, one can use entropic inequalities to put
an upper bound on the amount of measurement dependence, as
demonstrated in ref. 44. The modification can be understood as a two-
step departure from Bell’s scenario. In the first step, depicted in
Fig. 7(a), one allows there to be a common cause not only on the pair of
outcome variables, but on all four of the observed variables, meaning
that a given outcome variable shares a common cause with the setting
variable at the opposite wing; this is a relaxation of the assumption of
freedom of choice41,60,61,81. In the second step, one introduces addi-
tionalobserved variables c0c1 and a variable λAC that is a commoncause
to Alice’s setting and outcome (a0, a1) and c0c1, as well as a variable λBC
that is a common cause to Bob’s setting and outcome (b0, b1) and c0c1
(see Fig. 7(b)).

Referring to the directed acyclic graph (DAG) of the triangle
network shown in Fig. 2, we map the measurement settings of the two
stations A and B of the Bell scenario to the variables a0 and b0, and the
measurement outcomes are mapped to the variables a1 and b1. It is
clear, therefore, that if one lumps a0 and a1 together, and similarly for
b0 and b!, the modified Bell scenario can be seen to have the form of
the triangle network.

In this modified Bell scenario, shown in Fig. 7(b), one can lower
bound the measurement dependence, quantified via the mutual
information I(λAB: a0, b0) between the source λAB and themeasurement
settings a0 and b0, relating it with the violation of the CHSH
inequality61,82. Further, employing the entropic approach8,46,83,84, this
mutual information can also be upper bounded by an entropic func-
tion that involves only observable variables and so can be extracted
directly from the experimental data. Combining both the upper and
lower bounds on I(λAB: a0, b0), one arrives at a Bell inequality blending
probabilities and entropies, the violation of which witnesses the non-
classicality of the data, irrespectively of any potential measurement

dependence I(λAB : a0, b0) present in the experiment. This inequality is
given by (see ref. 44 for the further details)

E � 2� SCHSH +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16Θða0,b0,CÞ

log2e

s
≥ 0, ð8Þ

where SCHSH is the standard CHSH quantity evaluated on
Pða1b1∣a0b0ÞÞ57, and

Θða0,b0,CÞ : = min

Hða0,b0∣CÞ,
Hða0,b0Þ � Iða0 : b0 : CÞ � Iða0 : CÞ � Iðb0 : CÞ,
Hða0,b0Þ+HðCÞ � 2Iða0 : b0 : CÞ � 2Iða0 : CÞ � 2Iðb0 : CÞ,

8><
>: ð9Þ

with I(a0 : b0:C) : =H(a0, b0,C) −H(a0, b0) −H(a0,C) −H(b0,C) +H(a0)
+H(b0) +H(C) the tripartite mutual information and HðX Þ=
�P

xpðxÞ logpðxÞ the Shannon entropy relative to the variable X.
Using the experimental data in Fig. 3, we obtain a value

Eexp = � 0:340±0:001, violating the bound of Eq. (8) by 340 standard
deviations and thereby demonstrating nonclassicality.

Fig. 7 | Triangle scenario from extended Bell scenario. a Extended Bell scenario
with measurement dependence. Relative to the standard Bell scenario, the source
λAB is presumed to influence not only the outcomes a1 and b1, but the setting
variables a0 and b0 as well. This allows for measurement dependence and can
describe superdeterministic models73. b Extended Bell causal structure with mea-
surement dependence mapped into the triangle scenario. Relative to the standard
Bell scenario, one posits an additional laboratory, associated to Charlie, an addi-
tional source λAC between Alice and Charlie and an additional source λBC between
Bob and Charlie. Correlations between a0 and c0, c1 imply an upper bound on the
potential dependence of a0 on λAB, described by the entropic inequality in Eq. (8).
Similarly, correlations between b0 and c0, c1 imply an upper bound on the potential
dependence of b0 on λAB.

Fig. 6 | Inflation inequality violation versus 6-fold coincidence window. Values
of violation of the causal compatibility inequality, which has been optimized over
the experimental data corresponding to the blue point (a window w2 ~ 20μs), as a
function of the 6-fold coincidence window w2. The red shadowed area represents
the statistical error on the computed value of Vexp, estimated employing Monte
Carlo methods. The blue shadowed region L indicates the values obtainable by a
classical causal model.

Article https://doi.org/10.1038/s41467-023-36428-w

Nature Communications |          (2023) 14:909 8



Discussion
The triangle scenario has particular novelty as a means of witnessing
nonclassicality insofar as there is no known way to obtain classical
causal compatibility inequalities for it from standard Bell inequalities.
This is in contrast to the two other causal structures distinct from the
Bell scenario that have been experimentally investigated previously,
namely, the instrumental scenario24 and the bilocality
scenario66,68,71,72,85,86. In the case of the instrumental scenario, it suffices
toprocess theBell inequalities by forcing equality between the valueof
the setting variable at one wing and the value of the outcome variable
at the opposite wing87. In the case of the bilocality scenario, by post-
selecting on the outcome of the measurement that accesses both
sources, the other twomeasurements can be proven to satisfy the Bell
inequalities in a classical causal model (via an analog of entanglement-
swapping)16,17. Such short-cuts to deriving noise-robust causal com-
patibility inequalities, however, are not available in the triangle
scenario.

Another peculiar aspect of the triangle scenario is the possibility
to show new forms of nonclassicality that do not require the use of
external inputs freely chosen by the experimenter, but instead rely on
the assumption of independence of the sources, as shown by Fritz5. In
this work, we realized for the first time a triangle network without
external inputs, proving the emergence of nonclassicality in this new
regime, up to detection and locality loopholes. This has been possible
by employing fast feed-forward of measurement in an optical setup
comprising an entangled photon source and two sources of classical
correlations. In order to demonstrate the nonclassicality of the
experimental data, we had to extend pre-existing data-analysis tech-
niques, making them suitable to detect nonclassicality in noisy
distributions.

The data-analysis techniques we have presented here are also
distinguished insofar as they have the capacity to witness non-
classicality for any distribution that might arise in an experiment,
whereas previous experiments witnessing nonclassicality in causal
structures beyond Bell have used tools that can only witness the
nonclassicality of limited classes of target distributions. This approach
thus extends data-seeded techniques previously limited to the stan-
dard bipartite Bell scenario2,3,88,89 to the realm of more complex causal
networks.

The employed data-analysis techniques and aspects of our pho-
tonic setup provide a scalable platform in which nonclassicality can be
witnessed in networks of growing size and of arbitrary topology. In
particular, the implementedmeasurements are based on local wirings,
i.e., separable measurements with classical feedbacks, making the
approach scalable. Furthermore, it is widely speculated that the tri-
angle scenario may admit distributions, which imply a no-go result
whose logic is entirely independent of that of Bell’s theorem19,90. These
are likely to require entangled measurements as well as three sources
of entanglement, and consequently, integrating such measurements
and sources into our set-up may open the way to experimentally tar-
geting distributions, which are thought to exhibit these new types of
nonclassicality.

Finally, this work can also pave the way for future applications in
quantum communications involving several sources and measure-
ment stations.

Methods
Details on the machine-learning implementation
The number of samples we sum over, i.e., the batch size, is
Nbatch = 10,000. We decided to vary the architecture of the neural
network using different number of layers (nlayers = [3, 4, 5, 6]) and
number of neurons (nneurons = [16, 32]), accounting for an assemblyof 8
neural networks independently trained, in order to obtain better
approximations by taking the minimum or the average of the predic-
tions. The ensemble of networks also reduces the probability of being

trapped in optimization local minima and enhances the relative
expressive power of the method in comparison to a single archi-
tecture; see Fig. 4(a). As pointed out in ref. 52, ideal values for para-
meters and hyper-parameters vary for distinct triangle scenarios,
therefore the strength of the ensemble approach also varies. The
reader is referred to the Supplementary Note 3 for more specific
details.

Details on the inflation technique
At its core, the inflation technique at nth order shows that

• IF: A distribution p is compatible with a given classical causal
structure G

• THEN: For the nth order inflation graph G0 induced by G there
must exist some larger distribution p0 pertaining to the obser-
vable nodes in G0 such that

1. p0 possesses certain symmetry properties related to automorph-
isms of G0, and

2. the distribution p⊗n—defined as n identical but independently
distributed (I.I.D.) copies of p—arises as a marginal distribution of
p0.These conditions implicitly define a linear program (LP). In the
Supplementary Note 4, we elaborate on the required marginal
symmetry properties, which must be satisfied by distributions
compatible with the second order inflation graph depicted
in Fig. 5(a).

Farkas’ duality lemma tells us how to extract a certificate of
infeasibility whenever a LP is infeasible91. Note that Farkas’ lemma
applies to convex optimization in general92; linear programming is just
a special case. For the primal LP defined by second order inflation, the
certificate of infeasibility is a dual vector y such that y ⋅ p⊗2 ≥0holds for
all instances of p⊗2, which make the primal LP feasible. Given such a
dual vector y, one certifies the infeasibility of p�2

nonclassical—i.e., one cer-
tifies the incompatibility of pnonclassical with a classical causal model
with the structure G—whenever one finds that y � p�2

nonclassical < 0. Hence,
the certificate y yields a quadratic polynomial inequality satisfied by all
distributions p, which are compatible with G.

We employed the “hierarchy” version of inflation defined in ref. 77

due to its computationally efficient and data-agnostic implementation.
The second order inflation graph of the classical triangle network

is depicted in Fig. 5(a), and the p0, which is posited to exist would
pertain to the twelve observable randomvariables depicted in Fig. 5(a),
namely {a(1), b(1), c(1), a(2), b(2), c(2), a(3), b(3), c(3), a(4), b(4), c(4)}.

The LP implied by inflation is as follows. The condition for the
existence of p0 can be understood as a collection of very many
inequality constraints (every probability, which makes up p0 must be
nonnegative) along with one equality constraint (the sum of all prob-
abilities comprising p0 totals unity). The symmetry requirements of p0

can be understood as equality constraints relating the various prob-
abilities comprisingp0. Finally, the requirement thatp⊗2 is amarginal of
p0 can be understood as equating p⊗2 evaluated at a particular set of
values for its arguments to a sum over all those probabilities of p0,
which agree on these values. In other words, if p is compatible with G,
then some collection of equality and inequality constraints are simul-
taneously satisfiable; i.e., some LP should be feasible.

The Farkas infeasibility certificate of the LP defined by inflation
constitutes quadratic inequalities, which are satisfied by all triangle-
compatible distributions but violated by the nonclassical distribution
whose triangle-incompatibility is witnessed by inflation. See Supple-
mentary Note 4 for an explicit walk-through of the inflation technique
in full detail.

Adapting polytope membership LPs to yield symmetric
inequalities
It can be insightful to compare the LP defined by inflation to the more
familiar LP associatedwith Bell nonlocality. In Bell nonlocality, a family
of conditional probability distributions (a.k.a. a “correlation”) is said to
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admit a local hidden variable model (LHVM) if and only if corre-
sponding vector of all conditional probabilities lies within the local
polytope. When a correlation does not admit a LHVM explanation,
thenwe can alwaysfinda separatinghyperplane (typically a facet of the
local polytope) such that the vector of conditional probabilities asso-
ciated with the given correlation lies strictly to one side of the hyper-
plane whereas all LHVM-explainable correlations correspond to
vectors of conditional probabilities in or on the other side of the
hyperplane. Thus, hyperplanes that distinguish all LHVM-explainable
vectors from some other are equivalent to Bell inequalities; these
hyperplanes, which correspond to facets of the local polytope are
equivalent to facet-defining Bell inequalities.

The picture is quite similar when thinking about the LP associated
with inflation. Instead of vectors of conditional probabilities, however,
we are considering vectors whose elements are products of uncondi-
tional probabilities, i.e., vectors of probability monomials. The LP of
inflation similarly defines a polytope: a vector of monomials is in the
polytope iff the primal LP is feasible; the objective of the dual LP is to
return a separating hyperplane such that
1. the given vector of monomials is as far from the hyperplane as

possible, and
2. such that all vectors, which would make the primal LP feasible lie

on or on the other side of the hyperplane.

Without loss of generality, a polytope may be defined in terms of
its extremal points. Let Md,n be a d × n matrix whose n columns corre-
spond to the extremal points of the polytope, each of which is a vector
in dimension d, and where we have introduced a notation of marking
an object’s dimension in superscript for pedagogical clarity in what
follows. A vector vd lies withing the polytope (technically, the LP for-
mulations here apply to both bounded polytopes and unbounded
polycones) if and only if

there exists some xn

such that Md,n � xn = vd ,

where xn ≥0n:

ð10Þ

We can relax the satisfiability LP of Eq. (10) into an optimization pro-
blem, which measures the degree of primal infeasibility. One natural
measure of the infeasibility of Eq. (10) is defined by the following
optimization problem:

max
xn,sn

�1n � sn

such that Md,n � ðxn � snÞ= vd ,
where xn ≥0n and sn ≥0n:

ð11Þ

Note that if the LP of Eq. (10) can be satisfied, then the objective in Eq.
(11) can be reachup to0; conversely, if theobjective in Eq. (11) is strictly
negative over all variables, which satisfy that LP’s conditions, then the
LP in Eq. (10) is evidently infeasible. The formal dual to the above LP
can thenbe used to extract optimal separating hyperplanes. The astute
reader may notice that even the reformulated LP as given in Eq. (11)
may not always be feasible; it can only be satisfied if vd is wholly in the
linear span of the columns of Md,n. If vd has some component ortho-
gonal to that linear span, then the primal formulation in Eq. (11) is
infeasible and the dual formulation in Eq. (12) is unbounded. See
Appendix B of ref. 93 for alternative relaxations of an LP satisfiability
problem into an optimization problem, and the connection therein to
distance measures such as robustness and nonlocal fraction. Namely,

min
yd

yd � vd

such that 0n ≤ yd �Md,n ≤1n:

ð12Þ

Indeed, the weak duality theorem in linear programming ensures that
regardless of the feasibility of Eq. (10), it holds that for every yd satis-
fying the condition of Eq. (12) and every xn, sn satisfying the conditions
of Eq. (11), it is always the case that yd � vd ≥ � 1n � sn. So, ifany yd canbe
found satisfying the condition of Eq. (12) such that yd ⋅ vd ≤0, this serves
as a certificate of the infeasibility of Eq. (10).

Now, the matrix Md,n, which defines the polytope may exhibit
inherent symmetries. An inherent symmetry of a matrix is a pair of
permutation operations πd,d

row and πn,n
col , acting, respectively, on the row

space and column space of the matrix, such that if both the row per-
mutation and the column permutation are performed the matrix is
invariant. That is,

Md,n =πd,d
row �Md,n � πn,n

col : ð13Þ

Whenever such an inherent symmetry can be identified, it can be used
to transform feasible solutions of both the primal and dual formula-
tions into new solutions: Suppose we have a collection of vectors vd,
yd, xn, sn such that all of the conditions of both Eq. (11) and Eq. (12) are
satisfied. Then, acting on all the vectors with the inherent symmetry
leads to a new solution pair to both the primal and dual LP formula-
tions, with the same duality gap (if any). Accordingly, we have that the

symmetrized inequality y0d ≥0 where y0d : = yd +πd,d
row�yd
2 is also a valid

inequality.When yd is an optimal solution to the dual LP in Eq. (12), then

symmetrized inequality y0d is also optimal if vd is invariant under the
inherent symmetry operation πd,d

row.

This is what allows us to restrict the coefficients of the separating
hyperplanes. Suppose we find a bunch of different inherent symme-
tries of the matrix, which defines the polytope; these can be used to
construct a group with well-defined actions on both the row and col-
umn spaces. We can then twirl the matrix with respect to this group:
We collect columns that map to each other under the group action,
and replace each orbit of columns with a single new column given by
the mean of the orbit. We do the same to the rows. This twirling
operation thus yields a substantially smallermatrix, say,M 0d0 ,n0

. Given a
vector vd in the row space of thematrix, we can apply the same twirling
to obtain v0d

0
, essentially projecting the vector to the symmetric sub-

space of the group. We now can obtain a separating hyperplane y0d
0
by

applying the dual formulation of the LP in this symmetric subspace. To
convert this hyperplane in the symmetric subspace to a hyperplane in
the full row space we de-twirl: namely, each row in a given orbit is
uniformly associatedwith the coefficient of that orbit in the symmetric
subspace.

There is no loss of generality whatsoever in using this symmetry-
adapted version of the LP if the target vector vd is also invariant under
the group. So, in general, the most efficient way to exploit inherent
symmetries in linear programming is to identify the largest symmetry
group (acting on both row and column spaces), which leaves bothMd,n

and vd invariant.
For more information regarding exploiting symmetry in linear

programming see refs. 94–97.

Robustness to noise added by varying 2-fold coincidence
window
We study the behavior of the nonlocality tests over the addition of
noise due to the enlargement of the two-fold coincidence window w1.
Increasing such a window causes the increase of accidental counts,
affecting both the events from the entangled source and those relative
to classically correlated signals. From a practical point of view, such
noise acts substantially as a white noise on the correlations, that is
event pairs, which are uniformly and randomly distributed. Consider-
ing such effects, we do expect that at some point, increasing the noise,
our witnesses will not be able to detect a nonclassical behavior
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anymore. This is, in fact, the case.We show the curveof the violationof
the inequality, Eq. (7) and Fig. 5(b) inferred by means of the inflation
technique, as a function of the 2-fold window w1 in Fig. 8. The same
study is performed with the value of the violation of the entropic
inequality in Eq. (8) as shown in Fig. 9.

Data availability
The data that support the findings of this study are available in the
Supplementary Information and from the corresponding author upon
request.

Code availability
All the custom code developed for this study is available from the
corresponding author upon request.
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