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Abstract: Internet of Things (IoT) and mobile edge computing (MEC) architectures are common in
real-time application scenarios for improving the reliability of service responses. Energy conser-
vation (EC) and energy harvesting (EH) are significant concerns in such architectures due to the
self-sustainable devices and resource-constraint edge nodes. The density of the users and service
requirements are further reasons for energy conservation and the need for energy harvesting in these
scenarios. This article proposes decisive task scheduling for energy conservation (DTS-EC). The
proposed energy conservation method relies on conditional decision-making through classification
disseminations and energy slots for data handling. By classifying the energy requirements and the
states of the mobile edge nodes, the allocation and queuing of data are determined, preventing
overloaded nodes and dissemination. This process is recurrent for varying time slots, edge nodes,
and tasks. The proposed method is found to achieve a high data dissemination rate (8.16%), less
energy utilization (10.65%), and reduced latency (11.44%) at different time slots.

Keywords: decision-making; edge nodes; energy harvesting; IoT; task scheduling

1. Introduction

The Internet of Things (IoT) is an interconnection of devices, machines, objects, or peo-
ple with a unique identifier and can transfer several pieces of data through the network [1].
The transferred data does not require any human-to-human or human-to-computer interac-
tion. The data from the sensor are aggregated and communicated with the other device
based on the request and response manner [2]. In the modern world, the IoT Smart TV,
speaker, wearable sensors, smart application, etc., act as the IoT in which the data are
transferred for efficient communication [3]. It is also used to monitor the weather condition
and traffic on the road. Security is an important issue during information transmission
in the network. The problem is based on the safety and vulnerabilities of the device in-
formation, and, hence, different techniques are used [4]. Using IoT creates the purpose
of generating real-time data that can be evaluated. The data are observed and created for
business outcomes and other applications [5].

IoT enables the device to interact, collaborate, learn, and share data. It is controlled
using three different types of services, such as mechanical, electrical, and electronic sys-
tems [6]. The application is created using specific methods; initially, the data are aggregated
efficiently. Then the data performs high streaming created by the IoT platform; this enables
effective data management in the network [7]. The application of IoT includes the smart
city, industrial internet, smart farming, smart retail, etc. IoT edge is the service embedded
in IoT that uses edge computing [8]. In this edge computing, the raw data are forwarded
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by removing, collecting, and examining the device and the results to the cloud [6,8]. The
edge device is the gateway connected with the cloud environment, controller, sensor, and
intelligent device. Edge computing tracks the IoT edge device in a cloud-based interface.
It is also used for controlling data flow at the boundary of two network interfaces which
requires more computation power [9].

Energy harvesting (EH) improves the power expenses of the devices by conserving
and sharing the complex process, such as system collaborations, data transmission, and
device integration in a distributed manner. Doing this, the device makes communication
more effective and flexible in a reliable method. The device with sufficient energy factor
can transmit the energy from one device to another effectively [10]. The energy source has
a small amount of energy to release. At the time of significant data transfer, according to
the range of the data, the energy is released [11]. The data transmission process consumes
high and low energy according to the data usability. For the effective data transmission,
the energy is derived from the external sources, such as thermal energy, gradient devices,
etc., which is defined as the energy harvested [12]. The node sends the data and goes
into the sleep state, conserving energy and increasing the network lifetime [13]. Many
energy harvesting devices include solar, thermal, and piezoelectric sources. The data are
obtained from the edge device, and sensing and aggregation are distributed based on
energy availability among the devices. In addition to this, task scheduling is incorporated
with the energy harvesting process to improve resource allocation. During the task schedul-
ing resource allocation patterns are examined at a period to allocate the resource. The
task scheduling process covers the planning, requirement analysis, and resource conflicts.
However, the task scheduling process does not consider the edge node availability and
energy factor [14].

The objective of this paper is to conserve energy, performed by scheduling the data
based on energy and edge node availability and balancing the dissemination and queuing
processes. The main contributions of this study are:

• To improve the data dissemination rate using the decisive task scheduling process;
• To minimize the delay and high energy consumption using the conditional decision-

making and energy slots handling procedure;
• To apply the queuing process to balance the edge node availability among the device

while allocating the resources.

2. Literature Survey

Wei et al. [15] proposed an IoT using dynamic edge computation offloading to conserve
energy using learning methodologies. The Markov decision process is used for statistical
information. The optimal offloading is used to learn the complexity of extended time data
and decrease the number of iterations.

Distributed analytics is introduced for energy efficiency at the edge of the network.
Here, the IoT environment is considered by Valerio et al. [16]. They proposed the fog
computing hypothesis transfer learning which is used for mobile nodes processed by IoT
devices to fog gateways.

Sun et al. [17] developed an IoT service composition based on concurrent request
integration optimization (CRIO) for efficient energy usage. It finds the standard func-
tion components and participates in the active concurrent requests for IoT services. The
shared components enhance resource utilization in the network using particle swarm
optimization (PSO).

Yan et al. [18] modeled the IoT applications under unstable channel conditions. This
work performs dynamic energy-efficient data offloading for regular energy consumption.
Task scheduling reduces the task reliability for communication between the channels state.

Green IoT-based heterogeneous wireless nodes are used for a scalable energy efficiency
scheme (SEES) implemented by Abdul-Qawy and Srinivasulu [19]. SEES consists of three
types of networks: zone-based hybrid placement, multi-stage weighted election heuristic,
and the minimum cost cross-layer transmission model.



Energies 2023, 16, 2394 3 of 14

Fog planning for the real-time support of IoT applications is designed by Naranjo
et al. [20] for energy-efficient under resource management. A middleware layer exploits
the dynamic real-time scaling for a virtualized network. It also results in low complexity
by using a bin packing type heuristic.

Secure relay selection is made for energy harvesting for IoT and was introduced
by Huo et al. [21]. It also performs an outage if the secondary user device is trusted or
untrusted. Estimation-assisted jamming is used for communication, whereas the Vickrey
auction-based EH relay is used for the secondary system.

Min et al. [22] proposed a computation of offloading for IoT devices for energy har-
vesting. A deep reinforcement learning-based offloading (DRLO) is introduced with EH to
track the edge device, which is performed by the offloading rate by notifying the current
battery status level. It is performed by using a prediction-based methodology.

Pan et al. [23] developed an energy-efficient transient computing paradigm. The edge
devices have ultra-flow energy harvesting to supply power. Their model includes two
lightweight modules, routine handler, and frequency modulator (FM), for efficient runtime
clock frequency modulation.

IoT-edge-cloud computing systems for efficient energy and guaranteed delay work-
load allocation was designed by Guo et al. [24]. The delay-based issues are between the
local edge server, neighbor edge servers, and cloud. It decreases the energy consumption
of the delay-based workload allocation (DBWA) algorithm.

Tang et al. [25] introduced a nonorthogonal multi-access assisted based on mobile
edge computing for energy consumption. In this work offloading is used for consumption;
an online energy consumption minimization is implemented for latency constraints in IoT
devices. The offloading is used to forward the power and CPU cycle frequencies.

Xiang et al. [26] proposed a matrix-filling theory for dynamic traffic IoT to reduce
the delay and increase energy-efficient data aggregation. Delay and energy-efficient data
collection (DEEDC) is performed to gather the data obtained from wireless sensor networks
(WSN) and process the clustering technique. A mixed slot scheduling strategy is used for
collision-free scheduling.

3. Decisive Task Scheduling for Energy Conservation (DTS-EC)

Energy conservation conserves the energy from the edge device and utilizes it for
further devices and processing in IoT. The main goal of energy harvesting is to harvest
and provide energy to IoT nodes. In this work, storing and utilizing energy opts for
conservation. Other devices are utilized to transmit and process information in the network
environment. Therefore, other devices consume energy while processing these functions.
This paper aims to manage the energy in IoT to further device usage and maximize the
network’s lifetime. The device’s obtained energy is conserved by the following equation.

en = ∑
α

[
p0
(
α′ − α0

)]
+

1
2
[eo

n − ren] (1)

In Equation (1), the energy is calculated for conservation; en and p0 respectively denote
the energy and time of the process; a task in the network is represented as α, and the task
start and end times are, respectively, denoted as α′ and α0. The energy obtained from the
device is referred to as eo

n, and ren is the remaining energy.
In Figure 1, the IoT-Edge environment with the process of DTS-EC is illustrated. The

scope of this work is to find the energy usage in the network and control it until the timely
edge node data transfer has been performed. For these data, scheduling is conducted based
on the obtained and received energy from the edge device.
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Figure 1. DTS-EC in IoT-Edge Environment.

3.1. Energy-Based Task Scheduling

The scheduling is based on energy, where the incoming data from the device are
processed in the queue. The schedule considers the timely data acquired from the edge
device. The data that arrive first are initially processed in the queue, and the rest are
aligned based on the forthcoming time. The following equation is used to obtain the energy
scheduling for the data in the queuing list.

s =

ta + p0 if
ren
∏
eo

n

(α′ − α0) > α/(men − len)

0 otherwise
(2)

By evaluating Equation (1), the energy conserved is equated to the scheduling re-
quired to perform to the energy needed to transfer the data. The scheduling is performed
by queuing the tasks based on the energy required from minimum to maximum. The
queued tasks are sent according to the requirements in the network. In Equation (2), s,
ta, and p0 represent the scheduling, task, and process times, respectively. Here, “if the
condition” is used for the obtained and remained energies. The time taken is α′ − α0, and
the maximum and minimum energies required for the data transfer are denoted as men and
len, respectively. In Figure 2a, the process of node state determination for the queuing data
is illustrated.
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The energy is scheduled by maximum and minimum requirements, and after that, the
data transfer is performed by obtaining the edge nodes that are busy or ideal. Ideal nodes



Energies 2023, 16, 2394 5 of 14

are nodes that do not participate in data transmission. Initially, if the data are to be sent,
they check the edge node status. Doing this, the network lifetime increases, and energy is
conserved if the edge node senses the data and sends them to rely on the edge node and
goes to the sleep state. The following equation is used to evaluate the active and sleep state
of the edge nodes in the network.

d( f ) = e0
n + ∏α

p0

[
ta → d0 +

(
α′ − α0

)]
(3)

The energy conserved from Equation (1) is calculated using this. Equation (2) is used
to identify the scheduling method for data transfer in the network. In Equation (3), d is
represented as edge nodes if the data are sent to the other edge node d0, and a specific
process takes the required time limit. Moreover, f stands for the state of the node (active or
sleep). In the fixed time, the data are transferred to the network; the edge node senses the
data, transfers them, and goes to the sleep state.

The first level is when these data are transferred within the specified time limit, and

so d( f ) = e0
n. In another level,

α

∏
p0

[ta → d0 + (α′ − α0)] 6= 0, the data transfer is not equal to

zero, which denotes the transmission failed in this case. Using the scheduling method, the
data are transferred to the network. This is calculated by evaluating Equation (3). After
this, the following Equations (4) and (5) are used to state the active and sleep states of the
edge node. If these states are observed, then it is easy to transmit the data.

d(cv) = ∑ p0 ×


g0√

eo
n

ren

+ ta → in + f (ta) < cv

g0√
eo
n

ren

+ ta → in + f (ta) > cv
(4)

Equation (4) is used to find the active state of the edge node, and it is derived in
two states; the first state defines the sent data are sensed g0 and forwarded to the initial
edge node/near-edge node in. If the data transfer is not sensed, then there is a sleep state.
The first state satisfies and is denoted as the edge node being active (cv). It is derived if
the processing is less than the active state, whereas, the second state is not satisfying the
data processing.

d(q) =
en

d
+


g0(d)
∑

g0=0
ta → in(p0)→ d0 < q

g0(d)
∑

g0=0
ta → in(p0)→ d0 > q

(5)

In Equation (4), the active state of the edge node is determined; in another case, the
sleep state is calculated by deriving the equation above Equation (5). In Equation (5), it is
associated with two cases to identify the sleep edge node. In Figure 2b, the data allocation
process is shown.

The initial case is ∑
g0(d)
g0=0 ta → in(p0)→ d0 < q . Here, verifying data to be transferred

means the neighboring edge node transfers the data if the initial edge node is busy with
other processes. In this case, there is termed data forwarding if it is lesser than the sleeping
state. The second case is ∑

g0(d)
g0=0 ta → in(p0)→ d0 > q . In this case, the processing is not

satisfied with data forwarding. Here, sensing itself, the process is terminated and leaves the
network. By evaluating Equations (4) and (5), the following actions and sleep edge nodes
are identified, and based on the requirement, the data are forwarded from the edge device
to other devices in IoT. The following Equation (6) is calculated by applying scheduling for
this two-state.

s(ta) = ( f × d) +

√
p0(ta)

cv − q
− [men − lem ] (6)
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Considering Equations (4) and (5), Equation (6) is derived; here, the scheduling is
performed for data sent to the network by evaluating the processing data and whether the
edge node is active or sleeping. The energy is calculated by describing the maximum and
minimum energy in the edge device. It is useful to describe the energy for the process,
whether it needs more energy to complete the task or less energy. For transferring data,
less energy is required, and rest of the energy is stored for the other process in the network.
The decision-making method is used to conserve the remaining energy for the forthcoming
process; in this work, the decision is made to allocate energy to the process. This gives
better energy conservation and uses the remaining for the other device.

3.2. Decision Making

The decision-making is used to decide the energy required for starting and ending
the process in the network. In this proposal, the decision is made for a single process to
determine the amount of energy requirement. Based on the scheduling, the other process
is queued in the list. The process task is to check for the network’s active and sleep edge
nodes, which is necessary to allocate the energy for the data.

The allocation of energy is not to be diminished in many cases; for this, initial verifica-
tion is needed. The edge nodes forward the scheduled process and go to the sleep state. In
this network, lifetime increases; if this is observed, then the network’s energy is saved. The
following equation is used to derive the process in the queue and gives the required energy
for processing.

p0 = (ta + α)

[
∑α

α′(g0 + in)
s/(men − len)

]
∗ (cv − q) (7)

In Equation (6), the scheduling is carried out for the data, and from that, the processing
of the data is observed by evaluating Equation (7) which processes the data based on the
specific time interval. Two types of processing are involved.

The first process is
[

∑α
α′ (g0+in)

s/(men − len)

]
∗ (cv − q) = 0, where the starting and ending times of

the process are considered; if the process is sensed in the network, the edge nodes tend
to forward the data. Figure 3 presents the slot allocation process based on starting and
ending times. In this case, the edge node forwarding is calculated to have the maximum
and minimum energy spent on the data. The active and sleep modes are determined, and
the result (= 0) means the processing is conducted on a scheduled queue in the given time
interval.
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The second process is
[

∑α
α′ (g0+in)

s/(men − len)

]
∗ (cv − q) 6= 0, where the sensed edge node is

processed in the specified time interval, denoted as not equal to zero. By evaluating
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this process, allocation in the queue uses the energy in the derived form. The following
Equation (8) extracts the process and energy bases.

en(p0) =


f → (ta + d0 ∗ eo

n)−∏ren
s go + q = len

f → (ta + d0 ∗ eo
n)−∏ren

s go − q 6= len

}
f → (ta + d0 ∗ eo

n)−∏ren
s go + cv = men

f → (ta + d0 ∗ eo
n)−∏ren

s go − cv 6= men

} (8)

In Equation (7), the process time of the data is obtained by a scheduling approach,
and Equation (8) is used to achieve the energy for the processing in four different types
of transferring. The first stage is f → (ta + d0 ∗ eo

n)−∏ren
s go − q = len , which represents

the data transfer in the network obtaining the energy from the device and denotes the
sleeping state. This sleeping state uses only a minimum amount of energy to be transferred.
The second state is f → (ta + d0 ∗ eo

n)−∏ren
s go − q 6= len , which represents that no pro-

cess is carried out. The third state is f → (ta + d0 ∗ eo
n)−∏ren

s go − cv = men , where the
maximum energy is required to transfer because it denotes the active state of the edge node.
If the edge node is active, it uses more energy in the network which leads to energy loss.
The fourth state is f → (ta + d0 ∗ eo

n)−∏ren
s go − cv 6= men , where no transfer is performed

on the edge node because there are not equal to zero.
From the obtained equation, it is noted that the active state of the edge node consumes

more energy for processing. The objective is to reduce the energy to attain energy conserva-
tion for other processing devices. The edge devices use the energy to forward the particular
information to the other device; for this process, the energy is necessary for processing. The
preliminary step is to track the data and how much energy is necessary to transfer the data
to the destination. The following equation is used to evaluate the data verification state in
the network.

s(u) =

√
d(p0)

en
+ ∏ f

α0

[
max

ta
(en + d0)

]
(9)

Equation (8) estimates the maximum and minimum energy where the edge nodes
sleep and are active. Data verification is necessary to know the required energy used for
Equation (9). In Equation (9), the verification is denoted as u, and the processing of the data
to the edge node is termed as d0(p0). Here, the maximum energy is represented using the
functional value as max. Based on the time, the scheduled data from the queue are ready
to forward, where the data which require maximum energy are separated.

The division is performed for maximum and minimum energy requirements. The
advantage of this energy division is termed conserved energy usage. In Figure 4a,b the
decision-making based on len and men is illustrated.

The scheduling already queues the data based on a timely manner; from which the
data are again divided into maximum and minimum energy requirements. The following
equation is used to achieve the separation process.

β =

min
ta

[s + (α0 − α′)] < 1

max
ta

[s + (α0 − α′)] > 1
(10)

By evaluating Equation (9), the data verification is performed on the scheduling
process, and then by deriving Equation (10), the energy is divided by β. The first level of
energy tends to be min

ta
[s + (α0 − α′)] < 1, where the minimum energy is required for data

transfer by evaluations (u). It is performed by referring to the stable state of the data in the
network, which uses only less energy and has less than 1. This states that the first level is
satisfied by using minimum energy.



Energies 2023, 16, 2394 8 of 14Energies 2023, 16, x FOR PEER REVIEW 8 of 15 
 

 

 

(a) 

 

(b) 

Figure 4. Decision-making based on (a) 𝑙𝑒𝑛 and (b) 𝑚𝑒𝑛. 

The scheduling already queues the data based on a timely manner; from which the 

data are again divided into maximum and minimum energy requirements. The following 

equation is used to achieve the separation process. 

𝛽 = {
min
𝑡𝑎

 [𝑠 + (𝛼0 − 𝛼
′)] < 1

max
𝑡𝑎

 [𝑠 + (𝛼0 − 𝛼
′)] > 1

 (10) 

By evaluating Equation (9), the data verification is performed on the scheduling pro-

cess, and then by deriving Equation (10), the energy is divided by 𝛽. The first level of 

energy tends to be min 
𝑡𝑎
[𝑠 + (𝛼0 − 𝛼

′)] < 1, where the minimum energy is required for 

data transfer by evaluations (𝑢). It is performed by referring to the stable state of the data 

in the network, which uses only less energy and has less than 1. This states that the first 

level is satisfied by using minimum energy. 

The second is defined to have max
𝑡𝑎

 [𝑠 + (𝛼0 − 𝛼
′)] > 1, where it is necessary to ac-

quire more energy for data transfer. Only the assigned energies are given to the data, and 

their allocation is greater than one. The energy processing is observed by evaluating Equa-

tion (11) as follows. 

𝑘 =∏

{
 
 

 
 (𝑑 + 𝑒𝑛

𝑜) −
𝑢

∑ [𝑑(𝑞) + 𝑑(𝑐𝑣)]
𝛼′
𝛽

= 𝛿

(𝑑 − 𝑒𝑛
𝑜) −

𝑢

∑ [𝑑(𝑞) + 𝑑(𝑐𝑣)]
𝛼′
𝛽

≠ 𝛿

𝑡𝑠

𝑠=0
 (11) 

Following Equation (10), the energy is separated and used for storing. In Equation 

(11), the decision is made to process the energy allocation. Decision 𝑘 is carried out in 

two conditions: the first condition is (𝑑 + 𝑒𝑛
𝑜) −

𝑢

∑ [𝑑(𝑞)+𝑑(𝑐𝑣)]
𝛼′
𝛽

= 𝛿, where the obtained en-

ergy is used for dividing the energy. Symbol 𝛿 is termed energy conservation, where the 

first condition is satisfied. Based on the scheduling approach, the energy is conserved and 

stored for the forthcoming process. The second condition is (𝑑 + 𝑒𝑛
𝑜) −

𝑢

∑ [𝑑(𝑞)+𝑑(𝑐𝑣)]
𝛼′
𝛽

≠ 𝛿, 

Figure 4. Decision-making based on (a) len and (b) men.

The second is defined to have max
ta

[s + (α0 − α′)] > 1, where it is necessary to acquire

more energy for data transfer. Only the assigned energies are given to the data, and
their allocation is greater than one. The energy processing is observed by evaluating
Equation (11) as follows.

k =
ts

∏
s=0


(d + eo

n)− u
∑α′

β [d(q)+d(cv)]
= δ

(d− eo
n)− u

∑α′
β [d(q)+d(cv)]

6= δ
(11)

Following Equation (10), the energy is separated and used for storing. In Equation (11),
the decision is made to process the energy allocation. Decision k is carried out in two con-
ditions: the first condition is (d + eo

n)− u
∑α′

β [d(q)+d(cv)]
= δ, where the obtained energy is

used for dividing the energy. Symbol δ is termed energy conservation, where the first
condition is satisfied. Based on the scheduling approach, the energy is conserved and
stored for the forthcoming process. The second condition is (d + eo

n)− u
∑α′

β [d(q)+d(cv)]
6= δ,

where the energy conservation process failed. The objective of this work is satisfied by
using Equation (11), based on s(u). The conserved energy is stored and used for the other
process, which increases the network’s lifetime. Herein, both cv and q are considered for
scheduling the data in the network. Finally, the decision is made for the energy allocation
to the forthcoming process.

4. Results and Discussion

The performance metrics, such as energy utilization, data dissemination, active edge
nodes, and latency are used to validate the efficiency of the proposed method. The experi-
ments are performed using the Contiki Cooja simulator, in which 60 IoT-edge nodes are
deployed to serve 220 users/user equipment with heterogeneous data. In this experimental
setup, 50 time slots are allocated for data dissemination and queuing. The number of tasks
is varied between 50 and 500, for which 60 ms is the maximum time for allocation after
scheduling. The failing requests/tasks results in service halts, increasing the error rate. For
data dissemination, edge nodes utilize 0.2 W of transmit power from their initial energy of
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16 J. In this work, an air traffic control-related task scheduling process is performed using a
different number of nodes. Using this setup, the following metrics are compared with the
existing scalable energy efficiency scheme (SEES) [19], composition based on concurrent
request integration optimization—particle swarm optimization (CRIO-PSO) [17], and deep
reinforcement learning-based offloading (DRLO) [22] for verifying the consistency of the
proposed method. This work uses the models in [17,19,22] to compare the introduced
system because the existing system uses the energy consumption procedure to improve
overall data analysis and resource allocation process. The effective utilization of functions
maximizes overall performance. This is the main reason why references [17,19,22] are used
for comparison purposes.

4.1. Energy Utilization

Figure 5 presents the comparative analysis of energy utilization for the varying IoT-
Edge-Node, time slots, and tasks. Unlike the other existing methods, the proposed method
does not require energy for all the data in the dissemination process. Instead, it classifies
the scheduling slots based on energy levels as len and men.
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This classification permits different time slot acceptance and scheduling for queuing
the input requests. For the en observed in time slots for an active IoT edge node, further
scheduling is determined on the recommendation of the decision process as represented
in Figure 4a,b, respectively. The transmission and queuing slots’ availability provides
consistent data handling without energy drain and/or additional requirements. The initial
scheduling based on s is classified by the states of the nodes permitting data transfer or
halts in accessing the queues. Therefore, the excessive energy requirement is confined
in this decision-making process using s(ta) and po for all en and available edge nodes.
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The pre-determination of energy-based scheduling slots with appropriate decisions, as in
Equations (8) and (11), helps to confine the utilization in any level of dissemination. This
process is common for both the varying tasks and available slots. Here, the density and
availability of the edge nodes are significant for the data handling process. However, the
high data dimensionality creates computation complexity and deviations which leads to
changes in energy consumption.

4.2. Data Dissemination

The comparative analysis presented in panels (a), (b), and (c) of Figure 6 validates
the performance of the proposed method for varying edge nodes, time slots, and energy
utilization, respectively.
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In this comparative analysis, the energy consumption observed in the previous utiliza-
tion is considered as men (or) len, and prevents overloading/prolonged wait time of the
cloud data. In all four conditions, as in Figure 4a,b, the classification is based on s(ta) ∀ en
and available active state nodes. For a sleep state node, the queuing is performed de-
pending on the maximum wait time of the task allocated to the edge node. Therefore,
either concurrent or sequential dissemination of data as per d(cv) is affordable in han-
dling any amount of data in the dissemination slots. The processing of queued data
follows d(q) as in Equation (5) for satisfying d(q) < q and d(q) conditions. Similarly, for
each f → (ta + d0 ∗ eo

n), s(u) is verified to ensure ta is the maximum time slot required for
dissemination. The separation, as in Equation (10) and its associated δ verification using
Equation (11), leverages the data dissemination rate irrespective of the energy utilization,
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time slots, and edge nodes. However, in all these methods, the availability of the edge
nodes based on their energy state is prominent.

4.3. Active Edge Nodes

In Figure 7, the active edge nodes after multiple iterates are presented as a comparison.
If an edge node is said to possess remaining energy after handling all the data in its allocated
interval, it is said to be active. This data handling is monitored through the iterates to verify
the devices’ longevity. The remaining energy of the edge nodes is given by Equation (12) as

ren = Ien − en (12)
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In Equation (12), Ien denotes the initial energy of the IoT-edge node. The node exploits
energy for data dissemination and queuing processes.

The proposed method refines unnecessary overloading of nodes and, hence, allocates
slots for processing tasks and their requests. The scheduling for the slots is classified for
energy consumption rates, preventing the additional loss in dissemination. Therefore,
assigning additional slots/edge nodes with further energy expenses is prevented in this
method. The number of iterates increases the possibility of reducing excessive energy
utilization by mapping d(cv) for the appropriate d(q). Here, d(q) is filtered based on
the energy slot allocation using s(ta). The decision-making process determines po and
s(u) without overloading the active state nodes, preventing energy drain. Therefore, the
energy conservation rate is high, retaining a high level of nodes in the active state in the
proposed method.

4.4. Latency

For the different IoT-edge nodes, time slots, and data dissemination rate, the latency
is compared in Figure 8. The slot allocation in the proposed method relies on energy
variants men and len by identifying the active nodes. In the decision-making process, en(po)
classifies the different dissemination instances based on len and men. Following this process,
the dissemination ensures s(u) for all the allocated time slots. This prevents overloading of
the time slots and reduces the wait time for the queuing tasks.

The queuing process prevents unnecessary drop/re-transmission of data for a new task.
For the po, the active nodes are selected to ensure d(cv) is disseminated, whereas, the idle
node is selected for queuing. The other process ensures both queuing and dissemination
in a sequential/concurrent manner, preventing excessive wait time for the tasks. These
flexible features help improve the data rate through all the available active nodes, with
less waiting time and less latency. However, the high data dimensionality of data analysis
often leads to deviations and creates computation complexity, which leads to changes in
the latency.
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4.5. Summary of Findings

In Tables 1 and 2, the comparative analysis of the above is tabulated for varying IoT
edge nodes and time slots. Table 1 shows that the proposed method adapts to the varying
IoT edge nodes, achieving 10.78% less energy utilization, 8.44% better data dissemination,
and reducing latency by 12.61%. Table 2 shows that the proposed method achieves 10.65%
less energy utilization, 8.16% high data dissemination, and 11.44% less latency for the
varying time slots.

Table 1. Comparative analysis for varying IoT edge nodes.

Metrics SEES CRIO-PSO DRLO Our Work

Energy Utilization (J) 0.035 0.0293 0.012 0.009
Data Dissemination (Gb) 50.84 60.93 67.22 79.88

Latency (ms) 35.9 29.49 25.83 18.9

Table 2. Comparative analysis for varying time slots.

Metrics SEES CRIO-PSO DRLO Our Work

Energy Utilization (J) 0.0358 0.0267 0.0131 0.0091
Data Dissemination (Gb) 50.01 60.3 68.36 78.85

Latency (ms) 32.94 28.68 21.74 18.25
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5. Conclusions

This article introduces decision task scheduling for energy conservation in IoT-edge
assisted data dissemination scenarios. The proposed method identifies the states of the
edge nodes based on their energy levels and then assigns data dissemination slots. The
initial differentiation of slots for queuing and dissemination improves data availability
and non-overloading dissemination. Using conditional decision-making, the energy levels,
the states of the nodes, and data rates are balanced for optimal dissemination. In the
decision-making process, conditional analysis is performed for different data handling
and slot allocation instances. This helps to perform both concurrent and sequential data
dissemination. Moreover, this method permits a non-overloading node based on the
remaining energy and determines the maximum limit of data forecasting through the
available slot. This manifold process of decision-making improves the efficiency of the
proposed method by achieving fair energy utilization (10.78%), data dissemination (8.44%),
and active nodes count under controlled latency (12.61%) for different nodes.
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DTS-EC Decisive Task Scheduling for Energy Conservation
EH Energy Harvesting
DEEDC Delay and energy-efficient data collection
FM Frequency Modulator
SEES Scalable Energy Efficiency Scheme
CRIO Composition based on concurrent Request Integration Optimization
PSO Particle Swarm Optimization
DRLO Deep Reinforcement Learning-Based Offloading
IoT Internet of Things
MEC Mobile Edge Computing
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