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Abstract

This thesis deals with regularity and rectifiability properties on the branching set of
stationary varifolds that can be represented as the graph of a two-valued function. In
the first chapter I briefly show the Simon and Wickramasekera’s work in which they
introduce a frequency function monotonicity formula for two-valued C1,α functions
with stationary graph that leads to an estimate of the Hausdorff dimension of the
branching set. In the second chapter I build upon Simon and Wickramasekera’s
work and introduce several relaxed frequency functions in order to get an estimate
of the Minkowski’s content of the branching set. I then use their result to prove the
local (n− 2)-rectifiablility of the branching set.
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Chapter 1

Introduction

In [1] Almgren introduced for the first time the frequency function and used it to
prove that the singular set of Q-valued Dir-minimizing functions on Rn has Haus-
dorff dimension at most n−2. In particular, Dir-minimizing functions are functions
that minimize an alternative version of Dirichlet energy adapted for multivalued
functions.

His approach has been later readapted and simplified in [8] in which an intrinsic
version of Almgren’s theory of Q-valued Dir-minimizing functions is developed using
many results on metric space-valued Sobolev functions (developed in more detail in
[2, 20, 21]).

For a single-valued harmonic function v the frequency centered in x with radius
r > 0 is defined in the following way:

N (v, x, r) =
r2−n

∫
Br(x)

|∇v|2 dy

r1−n
∫
∂Br(x)

|v|2 dHn−1
.

When v is Q-valued its frequency is pretty similiar to the formula mentioned above
and differs only in the definition of the gradient.

The key property of N (v, x, r) is the monotonicity with respect to the radius r
which guarantees the existence of the limit N (v, x) = limr→0+ N (v, x, r). Moreover,
if N (v, x, r) is constant in a neighborhood of some r, then v is homogeneous in x
and N (v, x, r) is equal to its homogeneity order for every r.

The frequency function played a fundamental role for the estimate on the dimen-
sion of the singular set of mass-minimizing currents given by Almgren (indeed the
frequency was conceived for this purpose). However, its use in the case of currents
is quite involved and indirect, and passes through the approximation of currents by
multi-valued functions ([1, 4, 5, 6, 7, 8]).

At present there is no known way to define a frequency intrinsically for a mass-
minimizing current, in other words indipendently from an approximation procedure
around selected points. However, a frequency function can be sometimes found
when additional regularity conditions are verified that allow to represent the mass-
minimizing current as the graph of some well-suited function. For example, Wick-
ramasekera in [24] stated that, under certain a priori regularity conditions, near
singular points of a codimension 1 stable mass-minimizing current with flat tangent
and multiplicity at most 2 the current is itself the graph of some two-valued C1,α
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function. This last concept is highly nontrivial, there are indeed very few results
about the possibility to represent a minimal current as a graph of a multi-valued
function.

Under such hypothesis Simon and Wickramasekera have been able to define
in [23] a suitable frequency function directly defined for stationary n-dimensional
varifolds depictable as the graph of some two-valued C1,α function. In this way
they are able to adapt Almgren’s results for Q-valued Dir-minimizing functions and
prove that Hausdorff dimension of the branching set is at most n−2 as for Q-valued
Dir-minimizing functions. This result extends Almgren’s one because it deals with
stationary varifolds instead of mass-minimizing currents.

In particular, they proved that the symmetric part v = ±1
2(u1 − u2) of a sta-

tionary two-valued function u is locally C1,1/2 near singular points, therefore v is
the solution of an elliptic partial differential equation of second order with the coef-
ficients of the principal part Lipschitz regular. This allows to use the results proved
by Garofalo and Lin in [13] for elliptic operators in order to get a quasimonotonicity
formula for such frequency (their approach will be expanded on in chapter 1 of this
thesis).

The frequency function is useful to get even stronger results: Krummel and
Wickramasekera in [17] proved that the singular set of two-valued harmonic func-
tions is locally (n− 2)-rectifiable while in [15] and in [16] they proved that the sin-
gular set of Q-valued harmonic and stationary two-valued function respectively is
countably (n− 2)-rectifiable. For Q-valued harmonic functions on a n-dimensional
domain a stronger result was obtained by Camillo De Lellis, Andrea Marchese,
Emanuele Spadaro and Daniele Valtorta in [9] in which they prove the set of mul-
tiplicity Q points has a (locally) finite (n − 2)-dimensional Minkowski’s content,
from which follows the local (n− 2) rectifiability of the whole singular set. They’ve
applied the tecniques developed by Aaron Naber and Daniele Valtorta in [18, 19].
This approach has been later adapted also to other settings, e.g. the thin obstacle
problems in [10, 11, 12].

In this thesis I’ve followed the same approach to prove local (n−2)-rectifiability
of the singular set of two-valued C1,α functions with stationary graph, proceding
further the analysis started by Simon & Wickramasekera ([23]) and Krummel &
Wickramasekera ([16]). In particular, the starting point is the work [23] on an
intrinsic frequency for two-valued stationary graphs, with the aim of exploiting it
for the analysis of the structure of the singular set à la Naber & Valtorta.

However, their frequency has an important drawback: it heavily depends on the
geometry near the point in which it’s centered, making more difficult to estimate
its spatial oscillation which is fundamental for Naber and Valtorta’s approach.

Indeed, in order to get an intrinsic frequency for a stationary two-valued graph,
it’s necessary to adapt them to the local geometry of the surface, which changes
from point to point. Specifically, it is necessary to take into account the change of
coordinates in the analysis. This is done by exploiting an intermediate notion of fre-
quency function, namely the fixed coefficients frequency, and estimate its oscillation
in two steps:



3

1. in terms of the fixed coefficients frequency first, thus adapting the works in
[9, 11, 12];

2. comparing the fixed coefficients frequency with the intrinsic one, controlling
the various errors in the estimates in terms of the frequency itself.

The outcome of this analysis is the following theorem:

Theorem 1.0.1. Let u : Ω ⊆ Rn → A2
(
Rk
)

be a two-valued C1,α function with
stationary graph, then the branching set Bu is locally (n − 2)-rectifiable in Rn. In
particular, Bu has locally finite Hn−2 measure.

This result extends and completes the analysis started in [23]: it provides the
structure of the singular set of stationary varifolds under the very restrictive hy-
pothesis of being a two-valued graph.

A natural extension of such analysis is to try to relax some of these assumptions,
for example by considering Q-valued functions’ graphs that induce stationary var-
ifolds. However, several parts of the present work are restricted to the two-valued
case (e.g. the local C1,1/2 regularity for the symmetric part, heavily depends on the
assumption Q = 2 and may be no more valid when Q ≥ 3) and for such problems
only partial results are available at moment.
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Chapter 2

Hausdorff dimension of the
branching set

In the first section of this chapter I first present some simple results about two-
valued functions and stationary varifolds. The following sections are instead devoted
to explain Simon and Wickramasekera’s results published in [23].

2.1 Preliminaries
Two-valued functions
Let |·| be the standard (Euclideian) norm on RN with N ∈ N. and Mn×k be the
space of all matricies with k rows and n columns, thus if f : Rn → Rk is differentiable
in some point x0 then ∇f(x0) ∈ Mn×k. On Mn×k I define the following norm

|M | = sup
{
Mν · η

∣∣∣ ν ∈ Sn−1, η ∈ Sk−1
}

notice that n−1/2
√∑

ij M
2
ij ≤ |M | ≤

√∑
i,j M

2
ij . Also for every a, b ∈ Rn let

[a, b] = {λa+ (1− λ)b ∈ Rn |λ ∈ [0, 1]}
(a, b) = {λa+ (1− λ)b ∈ Rn |λ ∈ (0, 1)}

and in a similar way the sets [a, b) and (a, b] are defined.
Let JP K be the Dirac measure concentrated at the point P ∈ RN , then I indicate

with A2
(
RN
)

the space of measures on RN that are the sum of two Dirac measures.
On such space I define the following metric

G2 (P,Q) = min
σ∈S2

√√√√ 2∑
i=1

∣∣Pi −Qσ(i)

∣∣2
= min

{√
|P1 −Q1|2 + |P2 −Q2|2,

√
|P1 −Q2|2 + |P2 −Q1|2

}
where P = JP1K + JP2K, Q = JQ1K + JQ2K and S2 is the set of all permutations on
{1, 2}. Let also δ(P) = |P1 − P2| and #(P) be equal to the cardinality of {P1, P2}.
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Proposition 2.1.1. The space A2
(
RN
)

is a complete metric space.

Proof. Let Pi =
q
P 1
i

y
+

q
P 2
i

y
be a Cauchy sequence in A2

(
RN
)

and set li = δ (Pi) =∣∣P 1
i − P 2

i

∣∣.
If li → 0+ then all the sequences {Li}i∈N in RN such that Li ∈

{
P 1
i , P

2
i

}
for

every i are Cauchy sequences, therefore they should converge. But their limits
should be both equal to some L and so Pi → 2 JLK.

If instead li ≥ ε > 0 for every i then I can suppose G2 (Pi,Pj) < ε/3 for every
i, j and assume

∣∣P 1
i − P 1

1

∣∣ , ∣∣P 2
i − P 2

1

∣∣ ≤ ε/3. Thus

G2 (Pi,Pj) =

√∣∣∣P 1
i − P 1

j

∣∣∣2 + ∣∣∣P 2
i − P 2

j

∣∣∣2
and P 1

i , P
2
i are Cauchy sequences converging to some P 1, P 2 ∈ M . For this reason

I finally get Pi →
q
P 1

y
+

q
P 2

y
.

The metric structure on A2
(
RN
)

allows me to introduce continuous two-valued
functions just as continuous function from some topological space Ω to the metric
space A2

(
RN
)
.

Let P be a generic class of function with domain Ω and codomain RN , I define a
P-decomposition of a two-valued function f : Ω → A2

(
RN
)
, as a choice of two single

valued functions g, h ∈ P, so that f(y) = Jg(y)K + Jh(y)K for every y ∈ Ω. Thanks
to this I’m able to talk about continuous, C1, Lipschitz and Hölder decompositions
of two-valued functions.

Proposition 2.1.2. A two-valued measurable function always admit a measurable
decomposition.

Proof. Let f :M → A2
(
RN
)

measurable, define

A = {x ∈M |#[f(x)] = 1}
B = {x ∈M |#[f(x)] = 2} .

On A I’ve f ≡ 2 JgK with g measurable and so f restricted on A is measurable too.
Let now b1, b2, . . . , bN be an orthonormal basis of RN and for every 1 ≤ i ≤ N

define

Ci =
{JP K + JQK ∈ A2

(
RN
) ∣∣ |(P −Q) · bi| > 0

}
Gi : JP K + JQK ∈ Ci → P if (P −Q) · bi > 0

Hi : JP K + JQK ∈ Ci → Q if (P −Q) · bi > 0

notice that Ci is open, both Gi, Hi are continuous and B =
⋃N

i=1 f
−1 (Ci). Ac-

cordingly, I define a measurable selection g, h of f on B so that g(x) = Gi[f(x)],
h(x) = Hi[f(x)] if x ∈ f−1(Ci) \

⋃i−1
j=0 f

−1(Cj).
Now I’ve obtained a measurable decomposition of f on A and on B, since both A

and B are measurable subsets of M I immediately get a measurable decomposition
on A ∪B =M .
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Thanks to this result it’s possible to define the space Lp
[
Ω,A2

(
Rk
)]

as the
space of all two-valued measurable functions on Ω which have an Lp decomposition.

That kind of approach clearly doesn’t work on continuous decompositions, be-
cause they must require additional assumptions on the continuous two-valued func-
tion. Let f : x ∈ Ω → Jf1(x)K + Jf2(x)KA2

(
RN
)

be a generic two-valued function
defined on some set Ω, I define the following set

Zf = {x ∈ Ω |#[f(x)] = 1}
= {x ∈ Ω | f1(x) = f2(x)}

If f is continuous then Zf is (relatively) closed in Ω. A simple result on continuous
decomposition is contained in the following proposition:

Proposition 2.1.3. For every f : Ω → A2
(
Rk
)

continuous two-valued and for
every x ∈ Ω \ Zf there exist Ux ⊆ Ω open neighborhood of x such that f has a
continuous decomposition on Ux.

Proof. By using the same notation in proof of proposition 2.1.2 I can assume x ∈
f−1(Ci) for some index i. Then setting Ux = f−1(Ci) open functions g = Gi ◦ f ,
h = Hi ◦ f lead to a continuous decomposition of f on Ux.

Lemma 2.1.4. If f is a continuous two-valued function defined on a simply con-
nected open subset Ω of Rn and Ω ∩ Zf = ∅ then f has an unique continuous
decomposition on all Ω.

The idea behind the proof is rather simple: on each point of Ω f has a local
continuous decomposition in a neighborhood of such point. Fix any point x0 with
f(x0) = JAK + JBK and take any continuous curve γ : [0, 1] → Ω with γ(0) = x0,
there exists a finite partition 0 = t0 < t1 < t2 < · · · < tl−1 < tl = 1 of [0, 1] such
that f has a continuous decomposition on γ ([ti−1, ti]).

Let g1, h1 be the local continuous decomposition of f on γ ([t0, t1]), such that
g1(x0) = A, h1(x0) = B. I set A1 = g1[γ(t1)], B1 = h1[γ(t1)] and I can define by
induction Ai, Bi in the following way: let gi, hi be the continuous decomposition
of f on γ ([ti−1, ti]) such that gi[γ(ti−1)] = Ai−1, hi[γ(ti−1)] = Bi−1, then I set
Ai = gi[γ(ti)], Bi = hi[γ(ti)]. Finally I set Aγ = Al, Bγ = Bl.

Now remember I’ve assumed #[f(x)] = 2 on Ω, this implies the two branches of
f never intersect each other, thus the points Aγ , Bγ are well defined and uniquely
determined. Also they don’t depend on the chosen partition but only on γ.

Let τ : [0, 1]× [0, 1] → Ω be a continuous homotopy such that τ(0, l) = τ(1, l) =
x0 for every 0 ≤ l ≤ 1 and set γl(t) = τ(t, l). Let l̃ and Aγl̃

, Bγl̃
be the two points

determined as before with respect to the curve γl̃, I can find a finite open cover of
γl̃ ([0, 1]) such that f has a continuous decomposition on each of these open subsets
of the cover. This implies the existence of δ > 0 such that if

∣∣∣l − l̃
∣∣∣ < δ then

Aγl = Aγl̃
, Bγl = Bγl̃

, thus Aγl and Bγl remain unchanged for little perturbations
of l.

However, because Ω is simply connected, I’ve Aγ = A,Bγ = B for each continue
curve γ such that γ(0) = γ(1) = x0. Therefore, I can define a global continuous
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decomposition g, h of f , so that

g(x) = Aγx

h(x) = Bγx

for every x ∈ Ω where γx is any continuous curve with γx(0) = x0 and γx(1) = x.
This concludes the proof.

Consider now the following function defined for every P,Q ∈ A2
(
RN
)

F (P,Q) = max
{√

|P1 −Q1|2 + |P2 −Q2|2,
√
|P1 −Q2|2 + |P2 −Q1|2

}
.

This function is very similar to G2 (P,Q) with the sole difference that it uses maxi-
mum instead of minimum. Clearly it’s not a metric but it’s still continuous as the
following proposition says:

Proposition 2.1.5. For every P,Q,R, S ∈ A2
(
Rk
)

|F(P,Q)− F(R, S)| ≤ G2 (P,R) + G2 (Q, S)

Proof. For every σ, η ∈ S2 I get√∑
i

∣∣Pi −Qσ(i)

∣∣ ≤√∑
i

∣∣Pi −Rη(i)

∣∣+√∑
i

∣∣Rη(i) −Qσ(i)

∣∣
≤
√∑

i

∣∣Pi −Rη(i)

∣∣+ F(R,Q).

By taking the infimum on η and the supremum on σ I get F(P,Q) ≤ G2 (P,R) +
F(R,Q) ≤ G2 (P,R) + G2 (Q, S) + F(R, S).

Since 2δ(P)2 = F(P,P)2 the preceding result implies also

|δ(P)− δ(Q)| ≤
√
2G2 (P,Q)

Consider now any two-valued function v : Ω ⊆ Rn → A2
(
Rk
)
, I say that v is

approximately affine at x0 ∈ Ω if and only if there exist M1,M2 ∈ Mn×k, so that
defined

Tx0v(x) =

2∑
i=1

Jvi(x0) +Mi (x− x0)K
I get

lim
x→x0

G2 (v(x), Tx0v(x))

|x− x0|
= 0

and in that case I write

J1v (x0) = Jv1(x0),M1K + Jv2(x0),M2K ∈ A2
(
Rk ×Mn×k

)
∇v (x0) = JM1K + JM2K ∈ A2

(
Mn×k

)
.



2.1 Preliminaries 9

Clearly Tx0v is uniquely determined by J1v (x0), and vice versa, whereas it’s not
always possible to determine Tx0v from ∇v (x0). Furthermore, any two-valued func-
tion that admits a differentiable decomposition in x is approximately affine in the
same point too.

More generally let F : A2
(
Rh
)
→ A2

(
Rl
)

Lipschitz, I say that F is approx-
imately affine at P ∈ A2

(
Rh
)

if and only if for every v : Rm → A2
(
Rh
)

with
v(0) = P and approximately affine at 0 their composition F ◦ v is approximately
affine too.

Notice that for every function F defined on Rm × Rm so that F (P1, P2) =
F (P2, P1) I can always set F (JP1K + JP2K) = F (P1, P2) because this definition is not
ambiguous. Also, if F is differentiable on Rm×Rm then ∂1F (P1, P2) = ∂2F (P2, P1).

Proposition 2.1.6. A function F : A2
(
Rh
)
→ A2

(
Rl
)

is approximately affine at
Q = JQ1K + JQ2K ∈ A2

(
Rh
)

if and only function

F̃ (P1, P2) = F (JP1K + JP2K)
is approximately affine at (Q1, Q2). In that case I get for every v : Rm → A2

(
Rh
)

approximately affine at 0 with v(0) = Q

J1 (F ◦ v) (0) =
∑
i=1,2

uvFi(Q),
∑
j=1,2

∂jF̃i(Q)∇vj(0)

}~
Proof. If F is approximately affine then, since the function (Pi) ∈

(
Rh
)2 →∑

i JPiK
is approximately affine, F̃ is approximately affine too.

Conversely for every v : Rm → A2
(
Rh
)

as in our statement and y ∈ Rm suffi-
ciently small I get

G2
(
F [v(y)] ,

∑
i

r
F̃i [v(0)] +

∑
j ∂jF̃i [v(0)]∇vj(0)y

z)
|y|

≤ C
G2
(
v(y),

∑
j Jvj(0) +∇vj(0)yK)

|y|

+
G2
(
F̃ [vj(0) +∇vj(0)y] , TQF̃ [v(0) +∇v(0)y]

)
G2 (∇v(0)y, 2 J0K) G2 (∇v(0), 2 J0K)

→ 0

notice that TQF̃ [v(0) +∇v(0)y] = TQF̃ [v1(0) +∇v1(0)y, v2(0) +∇v2(0)y] is well
defined even when Q1 = Q2.

Like the single valued case I have an almost-everywhere differentiability result
for Lipschitz two-valued functions:

Theorem 2.1.7 (Rademacher). Let f : Ω ⊆ Rn → A2
(
Rk
)

Lipschitz, then f is
approximately affine for almost every x ∈ Ω.
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Proof. On Ω \ Zf the function f is clearly approximately affine a.e. so I need to
prove the result only on Zf . I have f = 2 JgK on Zf with g Lipschitz and well-defined
on all Rn due to Lipschitz extension theorem. I’ll prove that f is approximately
affine on each point x ∈ Zf such that

1. Zf has density 1;

2. g is differentiable.
Fixed such x and chose any y ∈ Ω, set r = |y − x| and for r sufficiently small

there exists y∗ ∈ Zf ∩B2r(x) such that

|y − y∗| = dist
(
y,Zf ∩B2r(x)

)
and because x ∈ Zf I’ve |y − y∗| ≤ r. Let L > 0 be such that

G2 (f(a), f(b)) ≤ L |a− b| ∀a, b ∈ Ω

|g(a)− g(b)| ≤ L |a− b| ∀a, b ∈ Rn

then

G2 (f(y), 2 Jg(x) +∇g(x)(y − x)K)
≤ G2 (f(y), f(y∗)) +

√
2 |g(y∗)− g(x)−∇g(x)(y∗ − x)|2 +

√
2L |y − y∗|

≤ (1 +
√
2)L |y − y∗|+ o (|y∗ − x|)

= (1 +
√
2)L |y − y∗|+ o (r)

Set ρ = |y∗ − y| and notice that the ball Bρ(y) doesn’t intersect Zf ∩ B2r(x).
Moreover, Bρ(y) ⊆ B2r(x) \ Zf and

|y − y∗| = n

√
|Bρ(y)|
ωn

≤ n

√
|B2r(x) \ Zf |

ωn
=

n
√
2r n

√
1−

|B2r(x) ∩ Zf |
|B2r(x)|

= o(r)

since Zf has density 1 in x. I finally get

G2 (f(y), 2 Jg(x) +∇g(x)(y − x)K) = o (r)

so f is approximately affine in x.

A point P ∈ A2
(
RN
)

is said to be symmetric if and only if P = JP K+ J−P K for
some P ∈ RN , and a symmetric function is just a function f : Ω → A2

(
Rk
)

with
f(x) symmetric for every x. If v is symmetric and approximately differentiable
then both ∇v and J1v (x) are symmetric, and for every F : Rk × Mn×k → Rl

even function (F (−p,−M) = F (p,M)) I can uniquely define the new function
F (v,∇v)(x) = F [vi(x),∇vi(x)] which is well defined and doesn’t depend on the
choose of vi(x). In particular, the following expressions |v(x)|, vi(x)∇vj(x), ... are
well-placed when the two-valued function v is symmetric.

If v is approximately affine on each point of Ω then I define the following set:

Kv = ZJ1v

= {x ∈ Ω | v1(x) = v2(x) and ∇v1(x) = ∇v2(x)} ,

and I say that v ∈ C1
(
Ω,A2

(
RN
))

if and only if
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1. v is approximately affine on every point of Ω and J1v (x) is continuous on Ω;

2. for every x /∈ Kv there exist an open neighborhood Ω′ ⊆ Ω of x and a C1

decomposition of f on Ω′.

I say also that v ∈ C1
(
K,A2

(
Rk
))

for a generic not empty set K ⊆ Rn if and only
if there exist Ω ⊇ K open and exists w ∈ C1

(
Ω,A2

(
Rk
))

with w = v on K.
Like in the continuous case not all C1 two-valued functions admit a global C1

decomposition: the following function

v : z ∈ C ≈ R2 →
r
z3/2

z
+

r
−z3/2

z
∈ A2 (C)

is a C1 two-valued symmetric function but doesn’t have a C1 decomposition in any
neighborhood of the origin.

The definition I’ve introduced for C1 two-valued functions may seem very restric-
tive because I require the continuity of the jet function. However, this is equivalent
to require only the continuity of the gradient function.

Lemma 2.1.8. A two-valued function v : Ω → A2
(
Rk
)

is of class C1 on Ω if and
only if it’s approximately affine on each point of Ω and ∇v is continuous.

Lemma 2.1.8 is just a consequence of the following two results:

Proposition 2.1.9. Let v be a two-valued function on Ω ⊆ Rn which is approxi-
mately affine in each point with ∇v continuous, then J1v is continuous.

Proof. Take any point x0 ∈ Ω, I can assume without loss of generality that v1(x0) ̸=
v2(x0), ∇v1(x0) ̸= ∇v2(x0).

Then there exists U ⊆ Ω open convex neighborhood of x0 and f, g a decompo-
sition of v on U with functions differentiable in every point. Notice also that exist
a ∈ Sk−1, η > 0 and a basis b1, b2, . . . , bn ∈ Sn−1 of Rn so that

|a · ∇f(x)bi − a · ∇g(x)bi| > η ∀i = 1, . . . , n

for every x ∈ U . Since ∇v is continuous for every η/3 > ε > 0 exist Aε, Bε ⊆ U so
that

Aε ∪Bε ⊇ Bδε(x0) with δε → 0+

x ∈ Aε ⇒ |∇f(x)−∇f(x0)| < ε

x ∈ Bε ⇒ |∇f(x)−∇g(x0)| < ε

observe that x0 ∈ Aε and Aε ∩Bε = ∅.
I want to prove that for every t ∈ R and every x ∈ Aε ∩ Bδε(x0) so that

x+ tbi ∈ Bδε(x0) then x+ bit ∈ Aε, indeed since bi are a basis of Rn this will imply
Aε ⊇ Bδ̂ε

(x0) for some δ̂ε < δε and so ∇f(x) → ∇f(x0).
Let

Fx,i(s) =

{
af(x+sbi)−af(x)

s if s ̸= 0

a∇f(x)bi if s = 0
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clearly Fx,i is a continuous function, also by the mean value theorem Fx,i(s) =
a∇f (x̃s) bi ∈ Bε[a∇f(x0)bi] ∪ Bε[a∇g(x0)bi] and since these balls are disjoint Fx,i

is entirely contained only in one of them.
But Fx,i(0) ∈ Bε[a∇f(x0)bi] by assumption and so

Fx+tbi,i(−t) = Fx,i(t) ∈ Bε[a∇f(x0)bi]

and for the same reason a∇f(x+ tbi)bi = Fx+tbi,i(0) ∈ Bε[a∇f(x0)bi] which imply
|∇f(x+ tbi)−∇f(x0)| < ε.

Proposition 2.1.10. Let v two-valued so that J1v is continuous on Ω then for every
x /∈ Kv there exists an open neighborhood U of x so that J1v (y) = Jf(y),∇f(y)K +Jg(y),∇g(y)K with f, g ∈ C1

(
U,Rk

)
.

Proof. First to all on a neighborhood U of x I’ve J1v (y) = Jf(y), F (y)K+Jg(y), G(y)K
with f, F, g,G continuous.

If f(x) ̸= g(x) then, up to reduce U , I immediately get F (y) = ∇f(y) and
G(y) = ∇g(y) for every y ∈ U so I need to consider only the case f(x) = g(x),
F (x) ̸= G(x).

Let η > 0 and b1, b2, . . . , bn ∈ Sn−1 be a basis of Rn such that

|F (y)bi −G(y)bi| ≥ η

for every i and every y ∈ U . If f(y) ̸= g(y) then F (y) = ∇f(y) and G(y) = ∇g(y),
when f(y) = g(y) notice that exists ty > 0 so that for every 0 < t < ty

|f(y + tbi)− g(y + tbi)| = δ [v(y + tbi)]

≥ δ [Tyv(y + tbi)]−
√
2G2 (v(y + tbi), Tyv(y + tbi))

≥ |F (y)bi −G(y)bi| t−
η

2
t > 0

so f(y + tbi) is differentiable for every 0 < t < ty and by the mean value theorem
for every a ∈ Sk−1

a · f(y + tbi)− a · f(y)− ta · F (y)bi
t

= a · F (y + t̃bi)bi − a · F (y)bi → 0

which implies ∂bif(y) = F (y)bi for every y ∈ U .
So f has continuous partial derivatives in a open set U , and it’s well known that

this implies f is C1 on U with ∇f = F . The same holds for g.

Like the continuous case I’ve a global decomposition result for C1 functions too:

Proposition 2.1.11. If v : Ω → A2
(
Rk
)

is a C1 two-valued function with Ω simply
connected and Kv = ∅ then v has a unique C1 decomposition on all Ω.

Proof. By lemma 2.1.4 J1v has a continuous decomposition on Ω, and by proposition
2.1.10 this decomposition leads to a C1 decomposition of v on Ω.

Let u : Ω → A2
(
Rk
)

be a two-valued C1 function. I say that x ∈ Ω is a regular
point for u if and only if exists an open neighborhood U of x and two f, g : U → Rk

single valued C1 functions such that u(y) = Jf(y)K+ Jg(y)K for every y ∈ U and one
of the following is satisfied:
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• f(y) ̸= g(y) for every y ∈ U ;

• f(y) = g(y) for every y ∈ U .

A point that is not regular is called singular, if x ∈ Ω is a singular point then x is
an intersection point if and only if x /∈ Z∇u and it’s a branching point if and only if
x ∈ Z∇u.

Let Bu be the set of all branching points of u, it’s simple to show that

Bu ⊆ Ku ⊆ Zu.

Clearly Bu is a Borel set so it’s Hn−2-measurable too. Therefore, the Hausdorff
dimension and the rectifiability of Bu are inherithed from those of Ku. This is the
reason why I focus on the regularity of Ku.

I define on C1
(
Ω,A2

(
Rk
))

the following metric

GC1 (v, w) = max
x∈Ω

G2
(
J1v (x) , J1w (x)

)
and vn → v in C1 if and only if limn→+∞ GC1 (vn, v) = 0.

The next theorem is an extension of a well-know result for C1 single valued
functions to tw -valued ones, which proof is a bit tricker that the single valued case:

Theorem 2.1.12. Let vn be a two-valued function in C1
[
Ω,A2

(
Rk
)]

so that vn
and ∇vn converge uniformly on Ω, then exists v ∈ C1

(
Ω,A2

(
Rk
))

such that vn → v
in C1.

Moreover, for every x ∈ Ω \ Kv there exist Ω′ open neighborhood of x and
an, bn, a, b ∈ C1(Ω′,Rk) so that

J1vn (y) = Jan(y),∇an(y)K + Jbn(y),∇bn(y)K
J1v (y) = Ja(y),∇a(y)K + Jb(y),∇b(y)K

an
C1

→ a, bn
C1

→ b

In particular C1
[
Ω,A2

(
Rk
)]

is a complete metric space with respect to the
metric GC1.

The proof of theorem 2.1.12 requires additional work because some of well-known
results for single-valued functions aren’t true for two-valued functions anymore.
For example, a sequence of vectors in Rk converges if and only if each component
converges as a sequence of scalars. This is no longer true when the sequence belongs
to A2

(
Rk
)

since it’s possible to take sequences in the form Pn = J(−1)n, 1K +q
(−1)n+1,−1

y
∈ A2

(
R2
)
.

Nevertheless, it’s possible to infer a uniform convergence criterion for pointwise
convergent sequences which components converges uniformly.

Proposition 2.1.13. Let fn(x) = JA1,n, A2,nK + JB1,n, B2,nK ∈ A2
(
Rk × Rh

)
be a

sequence of continuous functions defined on a compact subset K of Rn such that
fn → f pointwise.

Set gn(x) = JA1,nK + JB1,nK and hn(x) = JA2,nK + JB2,nK if both gn and hn
converge uniformly to g and h respectively then fn → f uniformly too.
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Proof. I first prove that fn(xn) → f(x) for every xn → x by assuming #[g(x)] =
#[h(x)] = 2, otherwise the statement is trivial. Set f(x) = JAg, AhK + JBg, BhK,
εg = |Ag −Bg| /3 and Bg the open ball in A2

(
Rk
)

with center g(x) = JAgK+ JBgK
and radius εg (in the same way I set εh and Bh).

By uniform convergence of g and h there exists Ω′ open connected neighborhood
of x and N ∈ N so that gn(y), g(y) ∈ Bg and hn(y), h(y) ∈ Bh for every n > N and
y ∈ Ω′. In particular there exist gn,A, gn,B single-valued continuous on Ω′ such that
gn(y) = Jgn,A(y)K + Jgn,B(y)K, gn,A(y) ∈ Bεg(A) and gn,A converges uniformly. In
the same way I define hn,A, hn,B.

For every n > N and y ∈ Ω′ let
f̃n(y) = Jgn,A(y), hn,A(y)K + Jgn,B(y), hn,B(y)K
f̂n(y) = Jgn,A(y), hn,B(y)K + Jgn,B(y), hn,A(y)K

clearly fn(y) is equal to f̃n(y) or to f̂n(x). Therefore, the set

Ω′′ =
{
y ∈ Ω′

∣∣∣ fn(y) = f̃n(y)
}

is both closed and open in Ω′. Now since fn(x) → f(x) for n large the set Ω′′ is not
empty. But Ω′ is connected; thus, fn = f̃n and fn(xn) → f(x).

Next I prove that f is continuous. Take any xn → x and set Nn so that
|fm(xn)− f(xn)| < ε for every n ∈ N and m ≥ Nn ≥ n. But for n large I get

|fNn(xn)− f(x)| < ε

and so |f(xn)− f(x)| < 2ε and f is continuous.
Finally I prove that fn → f uniformly. Take any sequence xn → x, then

|fn(xn)− f(xn)| ≤ |fn(xn)− f(x)|+ |f(x)− f(xn)| → 0

that implies our convergence is uniform.

Corollary 2.1.14. Let fn, gn be continuous functions from Ω ⊆ Rn to Rk that
converge pointwise. If vn = JfnK + JgnK and vn converges uniformly on Ω then fn
and gn converge uniformly too.
Proof. Let A,B ∈ R be distinct values and set

Fn(x) = Jfn(x), AK + Jgn(x), BK ∈ A2
(
Rk+1

)
clearly Fn converges pointwise and by lemma 2.1.13 converges uniformly too. Since
A ̸= B both fn and gn converge uniformly.

Remark 2.1.15. Corollary 2.1.14 is optimal and its conditions can’t be further re-
laxed, in fact you can choose fn(x) and gn(x) = −fn(x) on Ω = [0, 1] where fn is
one of the following:

fn(x) =

{
(2x− 1)2 if n is even
(2x− 1) |2x− 1| if n is odd

(A)

fn(x) =

{
−1 if 0 ≤ x < 1− 1

n

1 if 1− 1
n ≤ x ≤ 1

(B)

fn(x) = xn (C)
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none of them converges uniformly. Sequence (A) doesn’t converge pointwise, func-
tions (B) aren’t continuous and for (C) notice that vn = JfnK + J−fnK doesn’t
converge uniformly.

Proof of theorem 2.1.12. Suppose vn → v and ∇vn → ψ and set, with a slight abuse
of notation, Kv = {v1(z) = v2(x), ψ1(z) = ψ2(z)}. Take any x ∈ Ω, if x /∈ Kv then
there exists Ω′ open neighborhood of x such that vn(y) = Jan(y)K + Jbn(y)K on Ω′

with an, bn C
1 functions.

If ψ1(x) ̸= ψ2(x) I can choose Ω′ so that ∇an → ã uniformly and an(x) converges.
This implies an → a in C1 to some function a on Ω′. If instead ψ1(x) = ψ2(x) and
v1(x) ̸= v2(x) I can choose Ω′ so that an → a uniformly. Suppose now that exists
y ∈ Ω′ so that ∇an(y) doesn’t converge, then the sequence ∇an(y) has two different
accumulation points A and B.

Thanks to continuity of ∇an and uniform convergence of ∇vn there exists an
open neighborhood U of y and two subsequences in, jn so that |∇ain(z)−A| +
|∇ajn(z)−B| < ε for every z ∈ U and ε sufficiently small. However, this is impos-
sible due to uniform convergence of an.

Therefore, ∇an and ∇bn converge pointwise, but by corollary 2.1.14 they con-
verge uniformly too. In both cases an → a and ∇an → ∇a and the same holds for
bn, in particular J1vn (x) → J1v (x) and v can be decomposed in two single valued
C1 functions near x.

Suppose now that x ∈ Kv, since Jv1(y), ψ1(y)K+Jv2(y), ψ2(y)K → 2 Jv1(x), ψ1(x)K
when y → x I need to prove only that J1v (x) = 2 Jv1(x), ψ1(x)K. Notice that the
function Fu : Ω → R, defined as Fu(y) = G2 (u(y), Txu(y)), is Lipschitz continuous
and by Rademacher theorem a.e. differentiable with

|∇Fu(y)| =

∣∣∣∣∣∑
i

[
uσ(i)(y)− ui(x)−∇ui(x)(y − x)

]
·
[
∇uσ(i)(y)−∇ui(x)

]
G2 (u(y), Txu(y))

∣∣∣∣∣
≤ max

η

√∑
j

∣∣∇uη(j)(y)−∇uj(x)
∣∣2 = F [∇u(y),∇u(x)]

where σ ∈ S2 is defined as G2 (u(y), Txu(y)) =
√∑

i

∣∣uσ(i)(y)− ui(x)−∇ui(x)(y − x)
∣∣2.

Next,
G2 (vn(y), Txvn(y))

|y − x|
≤ ∥F [∇vn(z),∇vn(x)]∥L∞([y,x])

and by uniform convergence of vn and ∇vn I get

G2 (v(y), Txv(y))
|y − x|

≤ ∥G2 (ψ(z), ψ(x))∥L∞([y,x])

where Txv(y) = 2 Jv1(x) + ψ1(x)(y − x)K since F is continuous and coincides with
G2 because ψ1(x) = ψ2(x). Letting y → x I prove that v is approximately affine in
x.

These statements prove also that J1vn (x) → J1v (x) pointwise on Ω, then ap-
plying proposition 2.1.13 this convergence is uniform too.
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I say u ∈ C1,α
[
Ω,A2

(
Rk
)]

if and only if u ∈ C1
[
Ω,A2

(
Rk
)]

and

sup
x∈Ω

G2 (u(x), 2 J0K) + sup
x∈Ω

G2 (∇u(x), 2 J0K) + [∇u]α,Ω < +∞

where
[f ]α,Ω = sup

x,y∈Ω
x ̸=y

G2 (f(x), f(y))
|x− y|α

Geometric measure theory
A set M ⊆ Rn+k is said to be countably n-rectifiable if and only if M is Hn-
measurable, where Hn is the n-dimensional Hausdorff outer measure on Rn+k, there
exists a sequence of Lipschitz mappings fi : Rn → Rn+k such that

Hn

(
M \

∞⋃
i=1

fi (Rn)

)
= 0.

A set M is instead locally n-rectifiable if and only if it’s countably n-rectifiable and
the Borel measure Hn M is finite on compact subsets of Rn+k. Moreover, M is
just n-rectifiable if and only if it’s countably n-rectifiable and Hn(M) < +∞.

If M is a countably n-rectifiable set and θ : M → Z is an Hn-measurable
function then couple V = (M, θ) is a (rectifiable) n-varifold on Rn+k with integral
multiplicity. The function θ is sometimes called the multiplicity function of V and
θ(x) is the multiplicity of V at x.

Let

µV (A) =

∫
M∩A

θ dHn ∀AHn-measurable

M (V ) = µV

(
Rn+k

)
=

∫
M
θ dHn

Every two-valued C1 function u : Ω ⊆ Rn → A2
(
Rk
)

induces an n-dimensional
varifold: let Gu be the graph of u defined as follows

M = Gu =
{
(x, y) ∈ Rn × Rk

∣∣∣ y = u1(x) or y = u2(x)
}

.

Further, for every (x, y) ∈ Gu,

θu(x, y) = 3− #[u(x)] =

{
2 if u1(x) = u2(x)

1 if u1(x) ̸= u2(x)
.

The couple (Gu, θu) is a n-dimensional varifold since

Proposition 2.1.16. The set Gu is locally n-rectifiable.

Proof. On Ω \ Ku function u admits a local C1 decomposition near each point so
Gu ∩

[
(Ω \ Ku)× Rk

]
is locally n-rectifiable. On Ku I’ve u = 2 JfK with f locally

Lipschitz and Gu ∩
(
Ku × Rk

)
= Ku × f(Ku) which is locally n-rectifiable too.
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In particular, it’s possible to use area formula and get for every positive Borel
measurable function g : Gu → R∫

Gu

g(x, y)θu(x, y) dHn (x, y) =

∫
Ω

∑
i=1,2

g [x, ui(x)]J [∇ui(x)] dx

where for every L ∈ Mn×k

J (L) =

√√√√√det

I + k∑
j=1

Lj ⊗ Lj

.

Let now U ⊆ Rn+k be an open set, I say {Φt : U → U}t∈(−ε,ε) is a 1-parameter
family of diffeomorphisms if and only if

• Φ0(x) = x for every x;

• Φt is a diffeomorphism for every t and exists K ⊆ U compact such that
Φt(x) = x for every t and every x ∈ U \K;

• (x, t) → Φt(x) is of class C1.

a varifold V is said to be stationary if and only if

d

dt
M (ΦtV )

∣∣∣∣
t=0

= 0

where ΦtV =
[
Φt(M), θ ◦ Φ−1

t

]
, in particular a varifold V is stationary if and only

if for every X ∈ C1
c

(
U,Rn+k

)
I’ve∫

M
divXθ dHn = 0

A two-valued C1 function is said to be stationary if and only if its associated
varifold (Gu, θu) is stationary. In particular, given a 1-parameter family of diffeo-
morphisms on Rn × Rk which on Gu is equal to

ϕt(x, y) = [x, y + tνϕ(x)]

with ν ∈ Rk and ϕ a real-valued C1 function with compact support in some Br(x) ⊆
Ω \ Ku, a stationary two-valued function u must satisfy∫

Ω
G[∇ui(y)]∇uji (y) · ∇ϕ(y) dy = 0

for every i = 1, 2, j = 1, . . . , k where

G(L) =
√

detP (L)P (L)−1

P (L) = I +
k∑

l=1

Ll ⊗ Ll.

The goal of all the following sections of this chapter is to provide regularity
properties on coefficients of G(x) = G[∇ui(x)].
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2.2 Harmonic functions

Any two-valued function u : Ω ⊆ Rn → A2
(
Rk
)

can be decomposed in an average
part and in a symmetric part:

ua(x) =
u1(x) + u2(x)

2
v(x) =

s
±u1(x)− u2(x)

2

{

the average part ua of u is a single-valued function that preserves some of the good
properties the original function may have. Moreover, may happen that ua is more
regular than u because the symmetric (two-valued) part v of u takes some of u
irregolarities. For this reasons much of the analysis on u regularity descends from
regularity of its symmetric part v.

In this section I introduce harmonic two-valued symmetric functions and ex-
hibit some results that Simon and Wickramasekera have proved in their work [23].
Consider now a partial differential equation in the following form

∑
i,j=1,...,n

∑
l=1,...,k

alij∂i∂ju
l +

∑
i=1,...,n

∑
l=1,...,k

bli∂iu
l +

∑
l=1,...,k

clul = 0 (2.2.1)

with alij , b
l
i, c

l generic functions defined on Ω ⊆ Rn. A two-valued symmetric func-
tion v satisfies (2.2.1) on Ω if and only if v is C1 in Ω and near each point of Ω \Kv

has a local C2 decomposition that satisfies (2.2.1).
In this chapter I’ll assume without loss of generality that Ω = B1 and v belongs

to C1 on B1 in order to simplify our proofs.

Definition 2.2.1. A continuous two-valued symmetric function v is weakly C1 on
Ω if and only if it’s continuous on Ω and has a C1 decomposition in a neighborhood
of each point of Ω \ Zv.

If v is weakly C1 then I define its weak gradient Dv on Ω in the following way:
if x /∈ Zv then Dv(x) = ∇v(x), if x ∈ Zv then Dv(x) = 2 J0K.

Analogously v is weakly C2 if and only if v ∈ C1 on Ω and ∇v is weakly C1, in
that case let D2v = D (∇v).

When k = 1 weakly C1 functions have a global Lipschitz nonnegative decomposi-
tion f,−f and ∇f,−∇f is for a.e. point a decomposition of the weak gradient. The
next result is a simple approximation result for nonnegative single valued functions
that is useful when I need to approximate weak C1 two-valued functions.

Proposition 2.2.2. Let f be a nonnegative continuous function on Ω where Ω is an
open bounded subset of Rn with Lipschitz boundary, then there exists a sequence of
C∞
c (Rn) functions φm such that φm → f uniformly on Ω and {f = 0}∩suppφm = ∅

for every m ∈ N.
If f is of class C1 on Ω′ = {f > 0} and ∇f ∈ L2 (Ω′) then φm → f in W 1,2(Ω).
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Proof. Let

τ : t ≥ 0 →


0 if t ≤ 1

2

2
(
t− 1

2

)
if 1

2 < t ≤ 1

t if t > 1

τm(t) =
τ (mt)

m
∀m ∈ N

ϕm = τm ◦ f ∀m ∈ N

notice that suppϕm ∩ {f = 0} = ∅ and

∥ϕm − f∥∞ ≤ ∥f∥L∞{f≤1/m} ≤
1

m
→ 0

so the convergence is uniform. Now since f is uniformly continuous it’s possible to
use a continuous extension result on ϕm to extend it to Rn and by applying the
standard mollifier I get the desired C∞

c sequence.
If f is C1 on {f > 0} then ϕm is Lipschitz and converges to f uniformly. Fur-

thermore, F = ∇fX{f>0} is a L2 function with

∥∇ϕm − F∥L2 ≤ ∥∇f∥L2{0<f<1/m} → 0

since ∇f ∈ L2. Thanks to Sobolev’s extension theorem and standard mollifiers I
get the desired convergence also for the sequence φm ∈ C∞

c (Rm).

In particular, Simon and Wickramasekera define two-valued symmetric harmonic
functions as functions that own an harmonic decomposition on a neighborhood of
each point of Ω \ Kv, or equivalentely v is weakly C2 and tr

(
D2v

)
= 0 on Ω. They

first prove some “W 2,2” estimates for two-valued harmonic functions:

Proposition 2.2.3. Let v be a two-valued harmonic function on B1, then
∣∣D2v

∣∣ ∈
L2[Br(x)] for every ball Br(x) ⊆ B1 and for every θ ∈ (0, 1) exists Cθ > 0 so that

r2−n

∫
Bθr(x)

∣∣D2v
∣∣2 dy + sup

Bθr(x)
|∇v|2 ≤ Cθr

−n

∫
Br(x)

|∇v|2 dy

Proof. Set j = 1, . . . , k, a = 1, . . . , n, ψ ∈ C∞
c (Rn) with

suppψ ∩
{
∂av

j = 2 J0K} = ∅

and let Ψ :
{
∂av

j ̸= 2 J0K} → Mn×k be a single valued C1 function with Ψj
a > 0

such that ∇v = JΨK + J−ΨK, notice that

∂iΨ
j
a = ∂aΨ

j
i

for every i and divΨj = 0 by harmonicity.
For every ϕ ∈ C∞

c [Br(x)] with ∥ϕ∥∞ ≤ 1 they have ψϕ2 ∈ C1
c

(
Ω \

{
∂av

j = 0
})

and so ∫
Rn

∂aΨ
j · ∇

(
ψϕ2

)
dy =

∫
B1

divΨj∂a(ψϕ
2) dy = 0
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then∫
Ω
∇Ψj

a · ∇ψϕ2 dy =

∫
Ω
∇Ψj

a ·
[
∇
(
ψϕ2

)
− 2ψϕ∇ϕ

]
dy

=

∫
Ω
∂aΨ

j · ∇
(
ψϕ2

)
dy − 2

∫
Ω

(
∇Ψj

aϕ
)
· ψ∇ϕ dy = −2

∫
Ω

(
∇Ψj

aϕ
)
· ψ∇ϕ dy

Fix now any ε > 0, according to proposition 2.2.2 thery choose a sequence
ψn that converges uniformly and in W 1,2 [Br(x)] to max

{
Ψj

a − ε, 0
}

. Set Ωε ={
Ψj

a > ε
}

then

∥∥∇Ψj
aϕ
∥∥2
L2(Ωε)

= 2

∫
Br(x)∩Ωε

∇Ψj
a · ∇ϕ

(
Ψj

a − ε
)
ϕ dy

≤ ∥∇ϕ∥∞
∥∥Ψj

a

∥∥
L2[Br(x)]

∥∥∇Ψj
aϕ
∥∥
L2(Ωε)

At this point it’s possible to assume ϕ Lipschitz on Br(x) and

ξ(t) =


1 se 0 < t < θ
1−t
1−θ se θ < t < 1

0 se t > 1

ϕ(y) = ξ

(
|y − x|
r

)
then |∇ψ(x)| ≤ Cr−1(1− θ)−1 and so they finally get∥∥∇Ψj

a

∥∥2
L2[Bθr(x)∩Ωε]

≤ Cθr
−2
∥∥Ψj

a

∥∥2
L2[Br(x)]

Remember that ∇Ψj
a = D

(
∂av

j
)

which is equal to 0 a.e. on
{
∂av

j = 2 J0K},
thus ∥∥D2v

∥∥2
L2[Bθr(x)]

≤ Cθr
−2 ∥∇v∥2L2[Br(x)]

For the L∞ estimate let ε > 0 and ϕ ∈ C1
c (Ω) be a nonnegative function. Then∫

{Ψj
a>ε}

(
Ψj

a − ε
)
∇Ψj

a · ∇ϕ dy = −
∫
{Ψj

a>ε}
ϕ
∣∣∇Ψj

a

∣∣2 dy ≤ 0

so max
{
Ψj

a − ε, 0
}2

is (weakly) subharmonic. By mean value property they get∣∣∣Ψj
a(z)

∣∣∣2 ≤ Cθr
−n
∫
Br(x)

∣∣∣Ψj
a

∣∣∣2 dy for every z ∈ Bθr(x).

Definition 2.2.4. Let v be a two-valued symmetric C1 harmonic function on B1,
let Br(x) ⊆ B1 so that v is not identically zero on it. Simon and Wickramasekera
define the frequency function of v centered in x with radius r the following quantity

N (v, x, r) =
r2−n

∫
Br(x)

|∇v(y)|2 dy

r1−n
∫
∂Br(x)

|v(y)|2 dHn−1 (y)
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This function is the main ingredient to estimate the Hausdorff dimension of Kv,
especially thanks to its monotonicity property:

Lemma 2.2.5. If v is not identically zero on B1 then Zv has empty interior and
frequency function N (v, x, r) is nondecreasing in r > 0.

Let H (v, x, r) = r1−n
∫
∂Br(x)

|v(y)|2 dHn−1 (y), it’s not hard to prove that

N (v, x, r) =
rH (v, x, r)′

H (v, x, r)
.

Consequently, lemma 2.2.5 implies that

(s
r

)N(v,x,r)
≤

√
H (v, x, s)

H (v, x, r)
≤
(s
r

)N(v,x,s)
≤
(s
r

)N(v,x)
(2.2.2)

where N (v, x) = limr→0+ N (v, x, r) = infr>0N (v, x, r). From (2.2.2) derives im-
mediately the following doubling property for v:( r
R

)N(v,x,R)
R−n/2 ∥v∥L2[BR(x)] ≤ r−n/2 ∥v∥L2[Br(x)]

≤
( r
R

)N(v,x)
R−n/2 ∥v∥L2[BR(x)]

(2.2.3)

for 0 < r < R.

Proof of lemma 2.2.5. Let ψ be a C∞(Br(x)) function with suppψ ∩ Zvj = ∅ then∫
Br(x)

∇vj · ∇ψ dy =

∫
∂Br(x)

∇vj · y − x

r
ψ dHn−1 (y)

by proposition 2.2.2∫
Br(x)

∣∣∇vj∣∣2 dy =

∫
∂Br(x)

∇vj · y − x

r
vj(y) dHn−1 (y)

=
1

2

∫
∂Br(x)

∇
(∣∣vj∣∣2) · y − x

r
dHn−1

which implies
r2−n

∫
Br(x)

∣∣∇vj∣∣2 dy =
1

2

d

dr
H (v, x, r)

also if v is identically zero on ∂Br(x) then ∇v = 2 J0K on Br(x) and so v is identically
zero so N (v, x, r) is well defined.

In the same way, with the help of proposition 2.2.3, they prove that∫
Br(x)

(
|∇v|2 δij − 2∂iv · ∂jv

)
∂iξ

j dy

=

∫
∂Br(x)

(
|∇v|2 (y − x) · ξ

r
− 2∂rv · ∂jvξj

)
dHn−1

for every Lipschitz function ξ : B1 → Rn where ∂rv = ∇v · (y − x)/r.
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In particular, let ξ(y) = (y − x), then

d

dr

(
r2−n

∫
Br(x)

|∇v|2 dy

)
= r2−n

∫
∂Br(x)

|∂rv|2 dHn−1.

Putting everything together they have

d

dr
N (v, x, r) = 2rH (v, x, r)−2∫

∂Br(x)
|v|2 dHn−1

∫
∂Br(x)

|∂rv|2 dHn−1 −

(∫
∂Br(x)

v∂rv dHn−1

)2
 ≥ 0

by Cauchy-Schwartz’s inequality for every r if v is not identically zero on ∂Br(x).
Next they’ll prove that Zv has empty interior. By contraddiction exist x ∈ B1,

r̃ > 0 so that v is identically zero on Br̃(x). However,

sup
y∈Br̃+δ(x)

|v(y)| > 0

for every δ > 0. Chosen δ, δ0 with 0 < δ < δ0 they have

H (v, x, r̃ + δ) ≥
(
r̃ + δ

r̃ + δ0

)2N(v,x,r̃+δ)

H (v, x, r̃ + δ0) > 0

which leads to a contraddiction when δ → 0+ since limδ→0+ N (v, x, r̃ + δ) exists
finite.

Remark 2.2.6. If N (v, x, r) is constant for r1 < r < r2 then by Cauchy-Schwartz’s
inequality ṽ(y) = v(y+ x) is β-homogeneous for some β > 0 and N (v, x, r) = β for
every r > 0.

2.3 Schauder estimates
Let v : B1 ⊆ Rn → A2

(
Rk
)

a two-valued C1,α harmonic function with 0 < α < 1/2,
in order to get an estimate on the Harsdorff’s dimension of Kv they need first to
get some Schauder estimates on v. More generally, let v be a two-valued symmetric
function of class C1,α that satisfies the following linear homogeneous equation

∆vl +
n∑

i,j=1

k∑
h=1

∂i

(
aijlh∂jv

h
)
+

n∑
i=1

k∑
h=1

bilh∂iv
h +

k∑
h=1

clhv
h = 0 (2.3.1)

in the weak sense, that is for every Br(x) ⊆ Ω \ Kv v has a C1 decomposition that
satisfies (2.3.1) in the weak sense.

Theorem 2.3.1. Exists δ > 0 depending only on n such that for every 0 < α < δ
exists ϵα ∈ (0, 1/2) that satisfies the following statement: for every β > 0 if∥∥∥aijlh∥∥∥

L∞[Br(x)]
≤ ϵα rα

[
aijlh

]
α,Br(x)

+ r
∥∥bilh∥∥L∞[Br(x)]

+ r2 ∥clh∥L∞[Br(x)]
≤ β
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then exists C depending only on n, k, β such that

∥v∥L∞[Br/2(x)]
+ r ∥∇v∥L∞[Br/2(x)]

+ r1+α [∇v]α,Br/2(x)
≤ Cr−n/2 ∥v∥L2[Br(x)]

In particular if

Rx
r,Kv(y) =

v(x+ ry)

r−
n
2 ∥v∥L2[BKr(x)]

then
[
∇Rx

r,1v
]
α,B1/2

≤ 1.

I show an outline of the proof of theorem 2.3.1 given by Simon and Wickramasek-
era. First to all they prove that inequality [∇v]α,B1/2

≤ ∥v∥L2(B1)
is a consequence

of the following statement: for every η > 0 exists Cη > 0 such that

[∇v]α,B1/2
≤ η [∇v]α,B1

+ Cη

(
∥v∥L∞[B1]

+ ∥∇v∥L∞[B1]

)
.

Then they proceed to prove this statement.
By contraddiction exists η, β > 0 and a sequence of solutions vn of (2.3.1) with∣∣∣aijlh,n∣∣∣ ≤ 1/n and exists xn ̸= yn in B1/2 such that

2
G2 (∇vn(xn),∇vn(yn))

|xn − yn|α
> [∇vn]α,B1/2

> η [∇vn]α,B1
+ n

(
∥vn∥L∞[B1]

+ ∥∇vn∥L∞[B1]

)
if rn = |xn − yn| > ε then [∇vn]α,B1/2

< Cε ∥∇vn∥L∞(B1)
which leads to a contrad-

diction for n large, so they can assume rn → 0. Let

wn(y) =
vn(yn + rny)

r1+α
n [∇vn]α,B1/2

for every y with |y| < r−1
n /2. If ξn = (xn − yn)/rn then [∇wn]α,B1/(2rn)

≤ 1/η and
G2 (∇wn(ξn),∇wn(0)) ≥ 1/2.

Consider the following cases:

1. exists C > 0 such that dist ([xn, yn] ,Kvn) r
−1
n ≤ C;

2. dist ([xn, yn] ,Kvn) r
−1
n → +∞

If case 1 holds then exists zn ∈ Kwn with |zn| bounded so that |wn(x)|+|x− zn| |∇wn(x)| ≤
Cη−1 |x− zn|1+α. Next they use Ascoli-Arzelà to prove that wn → φ in C1

loc with
φ ∈ C1,α two-valued symmetric harmonic.

However, when α is sufficiently small thet prove that φ is an affine function and
contraddicts the inequality G2 (∇φ(ξ),∇φ(0)) ≥ 1/2 for ξn → ξ.

If case 2 holds then wn has a C1,α decomposition w̃n,−w̃n on BRn with Rn →
+∞, in particular ŵn(x) = w̃n(x)− w̃n(0)−∇w̃n(0)x converges to a single valued
C1,α harmonic function, again for α sufficiently small this leads to a contraddiction.



24 2. Hausdorff dimension of the branching set

Thanks to theorem 2.3.1 sequences in the form

Rxi
ri,K

vi(y) =
vi(xi + riy)

r−n/2 ∥vi∥L2[BKri
(xi)]

with xi → x, ri → 0+ have a subsequence that converge in C1
loc(BK) to some

harmonic function when v satisfies (2.3.1) if aijlh(x) = 0.
In particular if v is C1,α two-valued symmetric harmonic then for every x ∈ Kv,

0 < r < R ( r
R

)N(v,x,R)
R−n/2 ∥v∥L2[BR(x)] ≤ r−n/2 ∥v∥L2[Br(x)]

≤ Cr1+α

which implies N (v, x,R) ≥ 1 + α for every R > 0 and so N (v, x) ≥ 1 + α.
Let now v be a two-valued symmetric harmonic homogeneous function on Rn

with v(0) = 0, I define its spine as its maximal subspace of invariance:

S(v) = {x ∈ Rn | v(x+ y) = v(y) ∀y ∈ Rn}

clearly S(v) is a vector subspace of Rn because for every y ∈ S(v), x ∈ Rn, γ > 0

v(x− y) = v[(x− y) + y] = v(x)

v(x+ γy) = γlv(x/γ + y) = γlv(x/γ) = v(x)

Also dimS(v) ≥ n − h if and only if, up to a linear transformation in Rn, v
depends only on h variables:

v(x1, x2, . . . , xn) = w(x1, x2, . . . , xh)

with w again harmonic and homogeneous on Rh, in this way estimating the di-
mension of spines is equivalent to study harmonic homogeneous functions in lower
dimension.

Theorem 2.3.2. If φ is a C1,α two-valued harmonic symmetric function on B1

then the Hausdorff dimension of Kφ is at most n− 2.

Proof. In this proof Simon and Wickramasekera use the dimension reduction argu-
ment from the monotonicity of N (v, x, r). By contraddiction exists ε > 0 such that
Hn−2+ε (Kφ) > 0, let

Hn−2+ε
∞ (K) = inf

{ ∞∑
i=1

ωn−2+εr
n−2+ε
i

∣∣∣∣∣K ⊆
∞⋃
i=1

Bri(xi)

}

notice that Hn−2+ε
∞ (Kφ) > 0 and exist x ∈ Kφ, σl → 0+ such that

lim
l→+∞

Hn−2+ε
∞ (Kφ ∩Bσl

(x))

σn−2+ε
l

> 0
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Thanks to Schauder estimates and the doubling property exists rj → 0+ such
that Rx

rj ,1
φ→ ϕ locally in C1

loc(Rn) and

∥ϕ∥L2(B1/2)
= lim

j→+∞

∥∥∥Rx
rj ,1φ

∥∥∥
L2(B1/2)

= lim
j→+∞

(r/2)−n/2 ∥φ∥L2[Br/2(x)]

r−n/2 ∥φ∥L2[Br(x)]

≥
(
1

2

)N(φ,x)

> 0

so ϕ is not trivial and

N (ϕ, 0, ρ) = lim
rn→+∞

N
(
Rx

rn,1φ, 0, ρ
)
= lim

rn→+∞
N (φ, x, ρrn) = N (φ, x) ≥ 1 + α

for every ρ > 0 so ϕ is homogeneous. Also for every δ > 0 exist a finite number
of yj ∈ B1, ρj > 0 such that Kϕ ∩ B1 ⊆

⋃
j Bρj (yj) and

∑
j ωn−2+ερ

n−2+ε
j ≤

Hn−2+ε
∞

(
Kϕ ∩B1

)
+δ, the C1 convergence implies also that KRx

rj,1
φ∩B1 ⊆

⋃
lBρl(yl)

for j sufficiently large so

0 < lim sup
j→+∞

Hn−2+ε
∞

(
Kφ ∩Brj (x)

)
ωn−2+εr

n−2+ε
j

≤ lim sup
j→+∞

Hn−2+ε
∞

(
KRx

rj,1
φ ∩B1

)
≤ Hn−2+ε

∞
(
Kϕ ∩B1

)
Since Hn−2+ε

∞ (Kϕ ∩ B1) > 0 they can chose a new point x1 ∈ Kϕ \ {0}. Exists
another rn → 0+ such that Rx1

rn,1
ϕ→ ϕ1 uniformly on compact subsets of B1 and ϕ1

is again two-valued homogeneous harmonic nontrivial and Hn−2+ε
∞ (Kϕ1 ∩ B1) > 0.

For every y ∈ Rn and every s > 0 by uniform convergence

ϕ1(y + sx1) = lim
j→+∞

Cjϕ [x1 + rj (y + sx1)]

= lim
j→+∞

Cjϕ [x1 (1 + rjs) + rjy] = lim
j→+∞

Cj (1 + rjs)
β ϕ

(
x1 + rj

y

1 + rjs

)
= lim

j→+∞
(1 + rjs)

β ϕ1

(
y

1 + rjs

)
= ϕ1(y)

for some β > 0, so S(ϕ1) has dimension at least 1.
Repeating this argument n− 2 more times they finally get an harmonic homo-

geneous function ϕ̃ and dimS(ϕ̃) ≥ n−1. But then ϕ̃ is an affine function and since
0 ∈ Kϕ̃ this implies ϕ̃ is identically zero, which is impossible. So Kφ has Hausdorff
dimension at most n− 2.

2.4 C1,1/2 regularity
It’s possible to show that C1,α two-valued symmetric harmonic functions are also of
class C1,1/2. Since Kφ has dimension at most n−2 when φ is a nontrivial C1,α two-
valued symmetric harmonic map they can use the dimension resuction argument to
φ for each point x ∈ Kφ to get a C1,α two-valued homogeneous harmonic function
that depends only on 2 variables.

The next result characterize two-valued homogeneous harmonic maps in Rn
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Proposition 2.4.1. Let w be a two-valued C1 symmetric harmonic λ-homogeneous
function on R2. Then Kw is equal to ∅, {0} or R2. If Kw = {0} then λ = m/2 for
some m ∈ N, m ≥ 3 and, in polar coordinates,

wi(r, θ) = rm/2
r
±Ci sin

(m
2
θ + ηi

)z
for every i = 1, . . . , k.

Proof. Suppose Kw is not equal to ∅, {0} or R2. Since Kw is a closed cone they
could assume (r, 0) /∈ Kw for every r > 0 and set

θ1 = max {θ ∈ (−2π, 0) | (r, θ) ∈ Kw ∀r > 0}
θ2 = min {θ ∈ (0, 2π) | (r, θ) ∈ Kw ∀r > 0}

and notice that θ1 < 0 < θ2 (may happen that θ2 − θ1 = 2π but this is not a
problem).

Then (r, θ) /∈ Kw for every r > 0, θ1 < θ < θ2 and proposition 2.1.11 implies

w(r, θ) =
r
±rλg(θ)

z
∀r > 0, θ1 < θ < θ2

for some g ∈ C2
(
(θ1, θ2) ,Rk

)
.

Now remember that ∆ = ∂2

∂r2
+ r−1 ∂

∂r + r−2 ∂2

∂θ2
then for every θ1 < θ < θ2 they

have
g′′ + λ2g = 0

which implies
gi(θ) = Ci sin (λθ + ηi) ∀θ1 < θ < θ2

with Ci, ηi ∈ R and Ci ̸= 0 for at least one i.
Because w ∈ C1 and (r, θ1) ∈ Kw these would imply limθ→θ+1

g(θ), g′(θ) = 0

which is impossible unless Ci = 0 for every i, but that possibility has already been
ruled out.

If Kw = {0} then wi(r, θ) =
q
±rλgi(θ)

y
for 0 < θ < 2π where gi(θ) =

Ci sin (λθ + ηi). Notice that

∣∣wi(r, θ)
∣∣2 = r2λ

C2
i

2
[1− cos (2λθ + 2ηi)]

is a single valued C1 function on Rn and ∇w(0) = 2 J0K, and this is possible if and
only if 2λ = m for some m ∈ N with m ≥ 3.

In particular N (φ, x) ≥ 3/2 for every x ∈ Kφ even if φ is not homogeneous and
also

|φ(x)| ≤ C ∥φ∥L2 d(x)
3/2 |∇φ(x)| ≤ C ∥φ∥L2 d(x)

1/2

where d(x) = dist (x,Kφ). For every x, ̸= y in B1 r = |x− y| they have from
Schauder estimates and from (2.2.3)

rG2 (∇φ(x),∇φ(y)) ≤ C(2r)−n/2 ∥φ∥L2[B2r(z)
≤ Cr3/2 ∥φ∥L2(B5)
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so φ ∈ C1,1/2 near each point in Kφ. The C1,1/2 estimates are optimal for two-valued
harmonic functions, take for example φ(z) =

q
±z3/2

y
for every z ∈ C ≡ R2.

The next step is to provide a C1,1/2 estimate for two-valued C1,α functions
u : Ω → A2

(
Rk
)

with stationary graph where Ω is a open bounded convex set and
[∇u]α,Ω ≤ ϵ0 for some dimensional constant ϵ0 depending only on n, for that reason
they should write u as the solution of a partial differential equation. Remember
that u can be decomposed in an average ua and in a two-valued symmetric part v
and the two-valued function u satisfies the following equation

div
[
G[∇u(y)]∇uj(y)

]
= 0 ∀j

on each point y ∈ Ω \ Ku.
So they define for every M,N ∈ Mn×k

A(M,N) = G(M +N) +G(M −N)

E(M,N)[B] =

∫ 1

−1
dG(M + tN)[B] dt

where dG(M)[B] = limr→0
G(M+rB)−G(M)

r and E(M,N) is a linear application from
Mn×k to Mn×n

sym for every M,N ∈ Mn×k.
Clearly A(M,N) = A(M,−N), E(M,N) = E(M,−N) and

E(M,N)[N ] = G(M +N)−G(M −N)

so the functions defined as A(x) = A (∇ua(x),∇v(x)), E(x) = E (∇ua(x),∇v(x))
are well defined on all Ω. Functions ua and v satisfy the following equations:

div
[
A(x)∇vj(x) + E(x)[∇v(x)]∇uja(x)

]
= 0 (2.4.1)

div
[
A(x)∇uja(x) + E(x)[∇v(x)]∇vj(x)

]
= 0 (2.4.2)

for every x ∈ Ω \ Kv. The second equation holds weakly on all Ω too since
E(x)[∇v(x)]∇vj(x) is well defined everywhere.

Next since the mean curvature of u graph is zero they have

div
[
Gj [∇u(x)]

]
= 0 ∀j = 1, . . . , n

on Ω \ Ku, so (2.4.1) and (2.4.2) become

n∑
i,j=1

[
Aij(x)∂i∂jv

h(x) + Eij(x)[∇v(x)]∂i∂juha(x)
]
= 0

n∑
i,j=1

[
Aij(x)∂i∂ju

h
a(x) + Eij(x)[∇v(x)]∂i∂jvh(x)

]
= 0

for every h = 1, . . . , k.
The proof that ua is C1,1 and v is C1,1/2 when u is stationary is more difficult

than the harmonic case and proceeds by degree. By harmonic approximations it’s
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possible to prove some weaker estimates: for every B2r(x) ⊆ Ω and every ε > 0
exists Cε > 0 such that for every y ∈ Br(x)

|∇v(y)| ≤ Cεd(y)
1/2−ε

[∇ua]1−ε,Br(x)
≤ Cε∣∣D2ua(y)

∣∣ ≤ Cd(y)−ε if y /∈ Kv

By standard regularity theory for partial differential equations it’s possible to prove
also ”W 2,2” estimates: functions D2uja, D2vj belongs to L2

loc for every j = 1, . . . , k
and also ∥∥D2ua

∥∥
L2[Br(x)]

≤ Cr−2 ∥ua∥L2[B2r(x)]∥∥D2v
∥∥
L2[Br(x)]

≤ Cr−2 ∥v∥L2[B2r(x)]

In order to get C1,1/2 estimates from the C1,1/2−ε ones for v they need to reuse
the frequency function N (v, x, r) but this time assuming the doubling condition

∥v∥B2r(x)
≤ C ∥v∥Br(x)

(2.4.3)

is satisfied in x by v for r sufficiently small in order to prove that r → eCrN (v, x, r)
is nondecreasing and limr→0+ N (v, x, r) ≥ 3

2 . If v was harmonic then they wouldn’t
need (2.4.3) to prove frequency monotonicity, and in the final part of this chap-
ter they’ll provide a new frequency for v such that doesn’t requires the doubling
precondition. However, that frequency strictly requires C1,1/2 regularity for v.

Nevertheless, if v doesn’t satisfy (2.4.3) for some r, more precisely if ∥v∥L2[Br/2(x)]
≥

2γ+n/2 ∥v∥L2[Br/4(x)]
for some well-suited γ > 3/2, then ∥v∥L2[Br(x)]

≥ 2γ+n/2 ∥v∥L2[Br/2(x)]

which in turn implies

r−n/2 ∥v∥L2[Br(x)]
≤ Crγ ∥v∥L2(Ω) ≤ Cr3/2 ∥v∥L2(Ω)

that applied to Schauder estimates proves that v ∈ C1,1/2. In the same way it’s
possible to prove that ua ∈ C1,1.

2.5 A frequency function for stationary functions
From the C1,1 estimates for ua and the C1,1/2 estimates for v Simon and Wickra-
masekera use them to estimate better the terms A and E defined in (2.4.1). First
to all notice that

Eij(x)[∇v]∂i∂juha =
k∑
l=i

n∑
s=1

Ẽijs
l (x)∂sv

l∂i∂ju
h
a

and notice that Ẽijs
l (x)∂i∂ju

h
a ∈ L∞, then for the second order coefficients A they

have the following result:

Proposition 2.5.1. Application A : Ω → Mn×n
sym is Lipschitz.
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Proof. Take any x, y ∈ Ω if both belong to Kv then A(x) = G(∇ua(x)) so A is
Lipschitz on Kv. If instead [x, y] ∩Kv = ∅ then for every z = tx+ (1− t)y they get

∇A(z) · (x− y) = dA(z)[(x− y)] = d1A (∇ua(z),∇v(z))
[
∇2ua(z) · (x− y)

]
+ d2A (∇ua(z),∇v(z))

[
∇2v(z) · (x− y)

]
by C1,1 estimates for ua thet have∣∣d1A (∇ua(z),∇v(z))

[
∇2ua(z) · (x− y)

]∣∣ ≤ C |x− y|

so they need only to estimate the second term.
Now A(M,N) = f

[
(M +N)T (M +N)

]
+f

[
(M −N)T (M −N)

]
with f ∈ C∞

and set

A = (M +N)T (M +N)

B = (M −N)T (M −N)

then A− B = 2
(
MTN +NTM

)
. Suppose exists R > 0 so that |M | , |N | < R then

|d2A(M,N)[B]|
=
∣∣∇f(A)

[
BT (M +N) + (M +N)TB

]
−∇f(B)

[
BT (M −N) + (M −N)TB

]∣∣
≤ C |∇f(A)−∇f(B)| |M | |B|+ C |∇f(A) +∇f(B)| |N | |B|

≤ CR |N | |B|

for some constant CR > 0 depending on n, k and R. Finally∣∣d2A (∇ua(z),∇v(z))
[
∇2v(z) · (x− y)

]∣∣ ≤ C |∇v(z)|
∣∣∇2v(z)(x− y)

∣∣
≤ Cd(z)1/2d(z)−1/2 |x− y| = C |x− y|

where d(x) = inf {|x− y| | v(y) = 0}, so |∇A(z)| ≤ C for every z ∈ [x, y].
Now suppose that exists z ∈ [x, y] ∩ Kv and [x, z) ∩ K=∅, let zn ∈ [x, z) be any

sequence converging to z. Since the Lipschitz constant C doesn’t depend on x or z
they get

|A(x)−A(zn)| ≤ C |x− zn| ≤ C |x− z|

so A is Lipschitz on Ω.

So the symmetric part v of u satisfies the following equation

div
(
A∇vj

)
+

k∑
l=1

Elj · ∇vl = 0

for every j = 1, . . . , k with A : Ω → Mn×n
sym Lipschitz symmetric definite positive

and Elj : Ω → Rn in L∞. The next step is to introduce a new system of local
coordinates Γ in an open neighborhood U of x0 ∈ Kv such that v̂ = v ◦ γ−1 satisfies

div
(
Â∇v̂j

)
+

k∑
l=1

Êlj · ∇v̂l = 0
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with Ã Lipschitz symmetric definite positive with Ã(x0) = I and Ã(y)(y − x0) =
µ(y)(y − x0) where µ : U → R+ satisfies

1

C
≤ µ(y) ≤ C |∂rµ| ≤ C

where C depends only on n and α.
Thanks to L2 estimates on D2v̂ they can define

C∗ (v̂, x, r) r2−n

∫
∂Br(x)

µ∂rv̂v̂ dHn−1 = r2−n

∫
Br(x)

Â∇v̂ · ∇v̂ + k∑
j=1

Ej · ∇v̂j v̂

 dy

N (v, x, r) =
r2−n

∫
∂Br(x)

µ∂rv̂v̂ dHn−1

r1−n
∫
∂Br(x)

µ |v̂|2 dHn−1

and it’s possible to prove that N (v, x, r) is nonnegative for r small and

r → eCrN (v, x, r)

is an increasing function for r small and for some C > 0, in particular the limit
N (v, x) = limr→0+ N (v, x, r) exists finite. This monotonicity result will be proved
in the first part of next chapter for a ”relaxed” version of N (v, x, r) but the idea
behind it is the same.

Thanks to C1,1/2 and ”W 2,2” estimates if they let

v̂r(y) =
v(x+ ry)

r−n/2 ∥v∥L2[Br(x)]

then they have a subsequence converging to some C1,1/2 harmonic two-valued func-
tion φ. Also N (φ, 0, r) = N (v, x) for every r so φ is also homogeneous. We’re able
so to use the dimension reduction argument to prove that

Theorem 2.5.2. If u is a nontrivial two-valued C1,α stationary function on B1

with [∇u]α,B1
≤ ϵ0 for some dimensional constant ϵ0 then ua ∈ C1,1, v ∈ C1,1/2 and

Ku = Kv has Hausdorff dimension at most n− 2.
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Chapter 3

Structure of the branching set

This chapter is devoted to show a proof of theorem 1.0.1. In order to prove it I’ll
first prove a stronger result in the last section

Theorem 3.0.1. Let u be a two-valued C1,α function with stationary graph on Rn,
then for every compact set K ⊆ Rn exists a constant CK > 0 depending on v and
K such that for every x ∈ Ku and every 0 < r < 1

|(Kv ∩K) +Br| ≤ CKr
2

3.1 Natural frequency function
Let v be a two-valued symmetric function in C1,1/2

(
Ω,A2

(
Rk
))

where the set Ω is
open bounded and convex with diam(Ω) ≤ 1. I say that v belongs to WQ (n, k,Λ)
for some Λ > 0 if and only if exist A : Ω → Mn×n

sym , Lij : Ω → Rm for every
1 ≤ i, j ≤ k that satisfy the following statements:

• for every x /∈ Kv exist an open neighborhood U ⊆ Ω \ Kv and a C2 function
u : U → Rk with v(y) = Ju(y)K + J−u(y)K and∫

U
A(y)∇ui(y) · ∇ϕ(y) dy +

k∑
j=1

∫
U
Lij(y) · ∇uj(y)ϕ(y) dy = 0 (3.1.1)

for every ϕ ∈ C1
c (U) and for every 1 ≤ i ≤ k;

• for every x ∈ Ω and every ν ∈ Rn

(Λ + 1)−1 |ν|2 ≤ A(x)ν · ν ≤ (1 + Λ) |ν|2 (3.1.2)∣∣Lij(x)
∣∣ ≤ Λ

• A is Lipschitz on Ω with

|A(x)−A(y)| ≤ Λ |x− y| ∀x, y ∈ Ω (3.1.3)

Let Q (n, k,Λ) be its subset in which each function v satisfies, in addition to
preceding conditions, 0 ∈ Kv and A(0) = I
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Lemma 3.1.1. Let v ∈ WQ (n, k,Λ) and ϕ ∈ C1
c (Ω) then

∫
Ω
A(y)∇vi(y) · ∇

[
vl(y)ϕ(y)

]
dy +

k∑
j=1

∫
Ω
Lij(y) · ∇vj(y)vl(y)ϕ(y) dy = 0 (3.1.4)

Proof. For every φ ∈ C∞
c (Rn) with suppφ ∩

{
vj = 2 J0K} = ∅ I have

φϕ ∈ C1
c (Ω \ Kv)

then∫
Ω
A(y)∇vi(y) · ∇ [φ(y)ϕ(y)] dy +

k∑
j=1

∫
Ω
Lij(y) · ∇vj(y)φ(y)ϕ(y) dy = 0.

The proof then follows immediately from proposition 2.2.2.

From this point, in order to make clearer our notation, any constant I’ll introduce
will depend only by n, k and Λ unless additional parameters are specified.

Theorem 3.1.2. Let vn be a function in WQ (n, k,Λ) with
(
An, L

ij
n

)
as in the

very definition of WQ (n, k,Λ). Let also xn ∈ Ω, bn ∈ R, rn > 0 with rn → 0,
xn → x ∈ Ω and suppose that

wn(y) = bnvn (xn + rny) ∀y ∈ B1

converges in C1
loc (B1) to some two-valued function w.

Then exists Ã ∈ Mn×n
sym so that, up to a subsequence, An(xn) → Ã and either

w ≡ 2 J0K or
div
(
Ã∇w̃j

)
= 0

for every j = 1, . . . , k.
Also if wj is equal to 2 J0K on an open not empty subset of B1 then it’s identically

zero on all B1.

Proof. Suppose w is not identically equal to 2 J0K, thanks to theorem 2.1.12 I can
assume, with a slight abuse of notation, that vn = J±vnK, w = J±wK and the
preceding convergence is a convergence of C1 single-valued functions on an open
subset U ⊆ B1 \ Kw.

For every ϕ ∈ C1
c (U) I define the function

ϕn(x) = ϕ

(
x− xn
rn

)
and∫
Ũ
An (xn + rny)∇wi

n(y)∇ϕ(y) dy +
n∑

j=1

rn

∫
Ũ
Lij
n (xn + rny) · ∇wj

n(y)ϕ(y) dy = 0.
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Notice that Ãn(y) = An(xn+rny) are equibounded and equilipschitz with Lip Ãn ≤
rnΛ. Therefore, exists Ã ∈ Mn×n

sym so that Ãn → Ã uniformly on compact subsets of
B1 (up to a subsequence). Since

∥∥∥Lij
n

∥∥∥
L∞

≤ Λ when n→ +∞ I finally get∫
Ũ
Ã (y)∇wi(y)∇ϕ(y) dy = 0.

The last statement is a direct consequence of lemma 2.2.5.

Notice now that if wn ∈ Q (n, k,Λ) and xn = 0 for every n then w ∈ Q (n, k,Λ)
is also harmonic. Thanks to Shauder estimates proved in chapter 1 I have the
following convergence result:

Theorem 3.1.3. For every θ ∈ (0, 1) exist r̃θ > 0 and Cθ > 0 such that for every
v ∈ Q (n, k,Λ), x ∈ Ω with |x| < r̃θ and 0 < r < r̃θ so that Br(x) ⊆ Ω I get[

∇Rx
r,1v
]
1/2,Bθr

≤ Cθ

In particular I get

∥v∥L∞[Bθr(x)]
+ r ∥∇v∥L∞[Bθr(x)]

+ r3/2[∇v]1/2,Bθr(x) ≤ Cθr
−n

2 ∥v∥L2[Br(x)]

In order to introduce the first frequency I need to define some auxiliary functions.
First to all I define ϕ : [0,+∞) → [0, 1] in this way:

ϕ(t) =


1 if 0 ≤ t < 1

2

2(1− t) if 1
2 ≤ t < 1

0 if t ≥ 1

.

Let also

Φx,r(M) =

∫
M
ϕ

(
|y − x|
r

)
dy

ρx,r(M) = −
∫
M
ϕ′
(
|y − x|
r

)
1

|y − x|
dy

it’s very simple to prove that for every φ ∈ C1
c (Ω), Φ ∈ C1

c (Ω,Rn)∫
Ω

divΦ(y) dΦx,r (y) =
1

r

∫
Ω
Φ(y) · (y − x) dρx,r (y)

d

dr

∫
Ω
φ(y) dΦx,r (y) =

1

r2

∫
Ω
φ(y) |y − x|2 dρx,r (y)

∇x

∫
Ω
φ(y) dΦx,r (y) =

1

r

∫
Ω
φ(y)(y − x) dρx,r (y)

Also for every A : Ω → Mn×n
sym , x ∈ Ω I define the function µA,x as in [10]:

µA,x : y ∈ Ω →

{
A(y) y−x

|y−x| ·
y−x
|y−x| if y ̸= x

1 if y = x
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Proposition 3.1.4. If A satisfies (3.1.2), (3.1.3) and A(x) = I then also µA,x is
well defined, Lipschitz with Lipschitz constant depending only on n and Λ and

1

C
≤ µA,x(y) ≤ C

for every y with C > 0 depending only on n and Λ.
Proof. Take any a, b ∈ Ω with a ̸= b and both different from x, suppose |a− x| ≤
|b− x| and set

b′ = x+
|a− x|
|b− x|

(b− x)

clearly I get∣∣µA,x(b)− µA,x(b
′)
∣∣ ≤ ∣∣A(b)−A(b′)

∣∣ ≤ Λ ||a− x| − |b− x|| ≤ Λ |a− b| .

Next since A(x) = I, |a− x| = |b′ − x| and A is symmetric∣∣µA,x(a)− µA,x(b
′)
∣∣ = |A(a)(a− x) · (a− x)−A(b′)(b′ − x) · (b′ − x)|

|a− x|2

≤
∣∣A(a)−A(b′)

∣∣+ |(A(a) : (a− x)⊗ (a− x)− (b′ − x)⊗ (b′ − x))|
|a− x|2

=
∣∣A(a)−A(b′)

∣∣+ |(A(a)−A(x) : (a− b′)⊗ (a+ b′ − 2x))|
|a− x|2

≤ Λ
∣∣a− b′

∣∣+ nΛ
|a− b′| |a+ b′ − 2x|

|a− x|
≤ Λ

∣∣a− b′
∣∣+ 2nΛ

∣∣a− b′
∣∣ ≤ (1 + 2n) Λ

∣∣a− b′
∣∣

where (M : N) =
∑

ij MijNij . Since

∣∣a− b′
∣∣2 = 2 |a− x|2 − 2(a− x) · (b− x)

|a− x|
|b− x|

= [2 |a− x| |b− x| − 2(a− x) · (b− x)]
|a− x|
|b− x|

≤
[
|a− x|2 + |b− x|2 − 2(a− x) · (b− x)

] |a− x|
|b− x|

≤ |a− b|2

I finally have |µA,x(a)− µA,x(b)| ≤ 2(1 + n)Λ |a− b|.
If a = x ̸= b then I easily get

|µA,x(b)− 1| = |[A(b)−A(x)] (b− x) · (b− x)|
|b− x|2

≤ Λ |b− x|

so µA,x is Lipschitz.

For every v two-valued symmetric, x ∈ Ω, r > 0 so that Br(x) ⊆ Ω I define the
following quantity:

H (v, x, r) = r1−n

∫
Ω
|v(y)|2 µA,x(y) dρx,r (y)

= −r1−n

∫
Br(x)\Br/2(x)

ϕ′
(
|y − x|
r

)
|v(y)|2

|y − x|
µA,x(y) dy
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I want to use the preceding compactness result in order to prove that such quantity
scales as well as r−n ∥v∥2L2[Br(x)]

for r small. However, I first need this simple
inequality:

Proposition 3.1.5. There exist r̃ > 0, C ∈ (0, 1) so that for every v ∈ WQ (n, k,Λ),
x ∈ Ω, 0 < r < r̃ with Br(x) ⊆ Ω I get∫

Br/2(x)
|v(y)|2 dy ≤ C

∫
Br(x)

|v(y)|2 dy

Proof. By contradiction for every n exist rn > 0 converging to 0, xn ∈ Ωn ⊆ B2,
vn ∈ WQ (n, k,Λ) so that∫

Brn/2(xn)
|vn(y)|2 dy ≥

(
1− 1

n

)∫
Brn (xn)

|vn(y)|2 dy

Let wn = Rxn
rn,1

vn, since wn → w in C1 on B2/3 I have∫
B1/2

|w(y)|2 dy = 1∫
B2/3\B1/2

|w(y)|2 dy = 0

that’s impossible since div
(
Ã∇w

)
= 0 on B2/3.

This result implies that exist r̃, C > 0 depending only by n, k,Λ (since the
diameter of Ω is less than or equal to 1) so that for every 0 < r < r̃

1

C
r−n ∥v∥2L2[Br(x)]

≤ H (v, x, r) ≤ Cr−n ∥v∥2L2[Br(x)]

also I have the following estimate: there exist r̃, C > 0 so that for every v ∈
WQ (n, k,Λ), every |x| < r̃, every θ ∈ (0, 1) and every 0 < r < r̃

H (v, x, θr) ≤ CH (v, x, r)

For every v ∈ WQ (n, k, λ) I define the following quantities:

D (v,A, x, r) =
∑
j

r2−n

∫
Rn

A(y)∇vj(y) · ∇vj(y) dΦx,r (y)

∂Fr f(y) = ∇f(y) · A(y)(y − x)

µA,x(y) |y − x|

C∗ (v, x, r) =
∑
j

r1−n

∫
Rn

|y − x| vj(y)∂Fr vj(y)µA,x(y) dρx,r (y)

E (v,A, x, r) =
∑
j

r1−n

∫
Rn

|y − x|2
∣∣∂Fr vj(y)∣∣2 µA,x(y) dρx,r (y)
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notice that by the Cauchy-Schwartz inequality

C∗ (v, x, r)2 ≤ H (v, x, r)E (v, x, r) .

Let f ∈ C1 (Br,R), for every 0 < η < r I set

fη =
1

ωnηn

∫
Bη

f(y) dy

it’s well known (see for example [14, Lemma 7.16]) that for every 0 < θ < t, y ∈ Brt

|f(y)− frθ| ≤
2ntn

nωnθn

∫
Brt

|∇f(z)| |z − y|1−n dz

and so ∫
Brt

|f(y)− frθ| dy ≤ Cθt
n+1r

∫
Brt

|∇f(y)| dy

Now I introduce a generalized version of ϕ:

ϕa,b(t) =


1 if 0 < t ≤ a
b−t
b−a if a < t ≤ b

0 if t > b

where 1/4 < a < b < 2, in particular ϕ = ϕ1/2,1. Notice that for every F measurable
nonnegative function∫

Rn

ϕa,b

(
|y|
r

)
F (y) dy =

1

b− a

∫ b

a

∫
Brt

F (y) dy dt

which implies:∫
Rn

ϕa,b

(
|y|
r

)
|f(y)− frθ| dy ≤ Cθr

∫
Rn

ϕa,b

(
|y|
r

)
|∇f(y)| dy (3.1.5)

Now let v be a two-valued as before, I want to apply (3.1.5) to function f(y) =
|v(x+ y)|2. By theorem 3.1.3 there exists r̃ > 0 so that for every 0 < θ < 1/4,
0 < 2r < r̃ and every |x| < r̃ exists ŷ ∈ Brθ such that

frθ = |v (x+ ŷ)| ≤ 2rθ sup
y∈Brθ

|v(x+ y)| |∇v(x+ y)|+ |v(x)|2

≤ r2θ sup
y∈Brθ

|∇v(x+ y)|2 + θ sup
y∈Brθ

|v(x+ y)|2 + |v(x)|2

≤ θC1/3r
−n

∫
Bar(x)

|v(z)|2 dz + |v(x)|2

≤ θC1/3r
−n

∫
Rn

ϕa,b

(
|z − x|
r

)
|v(z)|2 dz + |v(x)|2

exists also Cθ > 0 such that∫
Rn

ϕa,b

(
|y − x|
r

)
|v(y)|2 dy ≤ ωnθK

∫
Rn

ϕa,b

(
|z − x|
r

)
|v(z)|2 dz

+ ωnr
n |v(x)|2 + 2Cθr

∫
Rn

ϕa,b

(
|y − x|
r

)
|v(y)| |∇v(y)| dy
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where K is a constant not depending on θ.
Let ε > 0 and set

θε = min
{
1

4
,

ε

(1 + ε)ωnK

}
and Cε = Cθε , I obtain∫

Rn

ϕa,b

(
|y − x|
r

)
|v(y)|2 dy ≤ 2(1 + ε)Cεr

∫
Rn

ϕa,b

(
|y − x|
r

)
|v(y)| |∇v(y)| dy

+ (1 + ε)ωnr
n |v(x)|2

≤ C2
ε (1 + ε)2r2

ε+ 1

ε

∫
Rn

ϕa,b

(
|y − x|
r

)
|∇v(y)|2 dy

+
ε

ε+ 1

∫
Rn

ϕa,b

(
|y − x|
r

)
|v(y)|2 dy + (1 + ε)ωnr

n |v(x)|2

Rescaling in ε I finally get the following two-valued version of the Poincaré’s
inequality

Lemma 3.1.6 (Poincaré’s inequality). There exists r̃ > 0 so that for every ε > 0
esists Cε > 0 such that for every v ∈ WQ (n, k,Λ), |x| < r̃, 1/3 < a < b < 2 and
every 0 < r < r̃ I get∫

Rn

ϕa,b

(
|y − x|
r

)
|v(y)|2 dy ≤Cεr

2

∫
Rn

ϕa,b

(
|y − x|
r

)
|∇v(y)|2 dy

+ (1 + ε)ωnr
n |v(x)|2

(3.1.6)

From (3.1.6) I’m able to prove nonnegativity of C∗ (v, x, r):

Theorem 3.1.7. There exist r̃ > 0, C > 0 such that for every v ∈ WQ (n, k,Λ),
x ∈ Kv ∩Br̃ and every 0 < r < r̃

|D (v, x, r)− C∗ (v, x, r)| ≤ CrD (v, x, r)

In particular I can choose r̃ so that CD (v, x, r) ≥ C∗ (v, x, r) ≥ C−1D (v, x, r).

Proof. Let r̃ be as in preceding statement and ε = 1, then

|D (v, x, r)− C∗ (v, x, r)| =

∣∣∣∣∣∣
∑
j

r2−n

∫
Rn

div
[
A(y)∇vj(y)

]
vj(y) dΦx,r (y)

∣∣∣∣∣∣
≤ Cr2−n

∫
Rn

|∇v(y)| |v(y)| dΦx,r (y)

≤ C
√
D (v, x, r)

√
r2−n

∫
Rn

|v(y)|2 dΦx,r (y)

≤ CrD (v, x, r)
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Theorem 3.1.8. Exist r̃, C > 0 such that for every v ∈ WQ (n, k,Λ), x ∈ Br̃ ∩Kv

and 0 < r < r̃ I get

1

|b− a|
r1−n

∫
Bbr(x)\Bar(x)

|v(y)|2

|y − x|
dy ≤ Cr2−n

∫
Rn

ϕa,b

(
|y − x|
r

)
|∇v(y)|2 dy

(3.1.7)
for every 1/3 < a < b < 2, in particular I’ve

D (v, x, r) ≥ CH (v, x, r) (3.1.8)

Proof. By divergence theorem I get

1

r |b− a|

∫
Bbr(x)\Bar(x)

|v(y)|2 |y − x| dy

=

∫
Rn

ϕa,b

(
|y − x|
r

)
div
[
|v(y)|2 (y − x)

]
dy

= 2

∫
Rn

ϕa,b

(
|y − x|
r

)
v(y)∂rv(y) |y − x| dy + n

∫
Rn

ϕa,b

(
|y − x|
r

)
|v(y)|2 dy

≤ C

∫
Rn

ϕa,b

(
|y − x|
r

)
|v(y)|2 dy + Cr2

∫
Rn

ϕa,b

(
|y − x|
r

)
|∇v(y)|2 dy

≤ Cr2
∫
Rn

ϕa,b

(
|y − x|
r

)
|∇v(y)|2 dy

our thesis follows by multiplying each term by r−n.

Remark 3.1.9. If b = a+ ε then letting ε→ 0+ I get

r1−n

∫
∂Bar(x)

|v(y)|2 dHn−1 (y) ≤ Cr2−n

∫
Bar(x)

|∇v(y)|2 dy

Definition 3.1.10. Let v ∈ WQ (n, k,Λ), x ∈ Kv, r > 0 so that Br(x) ⊆ Ω, I define
the natural frequency function of v centered at x and with radius r the following
quantity:

I (v, x, r) =
C∗ (v, x, r)

H (v, x, r)

The main goal this section is to prove a monotonicity result for the natural
frequency function when v ∈ Q (n, k,Λ) and x = 0. In particular,

• 0 ∈ Kv and A(0) = I;

• A is Lipschitz,

so µA,0 isa Lipschitz function and can be differentiated almost everywhere.
The first step is to estimate the derivative of H (v, r).

Lemma 3.1.11. Exist r̃, C > 0 so that for every v ∈ Q (n, k,Λ) and 0 < r < r̃ I
get ∣∣∣∣H (v, r)′ − 2C∗ (v, r)

r

∣∣∣∣ ≤ CH (v, r)
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Proof. Deriving H (v, r) in r I get

H (v, r)′ =
1− n

r
H (v, r)

+ 2r1−n

∫
∂Br

|v(y)|2

|y|
µA,0(y) dHn−1 (y)

− r1−n

∫
∂Br/2

|v(y)|2

|y|
µA,0(y) dHn−1 (y)

=
1− n

r
H (v, r)

+ 2r−n

∫
∂Br

|v(y)|2A(y) y
|y|

· ν dHn−1 (y)

+ 2r−n

∫
∂Br/2

|v(y)|2A(y) y
|y|

· ν dHn−1 (y)

=
1− n

r
H (v, r) + 2r−n

∫
Br\Br/2

|v(y)|2 div
[
A(y)

y

|y|

]
dy

+ 2r−n

∫
Br\Br/2

2v(y)∇v(y) ·A(y) y
|y|

dy

=
1− n

r
H (v, r) + 2r−n

∫
Br\Br/2

|v(y)|2 div
[
A(y)

y

|y|

]
dy

+
2

r
C∗ (v, r)

since v ∈W 1,2 (B1).
Next notice that

div
[
A(y)

y

|y|

]
= divA(y) · y

|y|
+
∑
ij

aij
δij |y| − (yj) (yi) |y|−1

|y|2

= divA(y) · y
|y|

+
trA(y)− µA,0(y)

|y|
where vector divA(y) is the column-wise divergence of A(y), then∣∣∣∣∣1− n

r
H (v, r)− 2r−n

∫
Br\Br/2

|v(y)|2 div
[
A(y)

y

|y|

]
dy

∣∣∣∣∣
≤ 2r−n

∫
Br\Br/2

|v(y)|2 |divA(y)| dy

+ 2r−n

∫
Br\Br/2

|v(y)|2

|y|
|trA(y)− nµA,0(y)| dy

≤ CH (v, r) + 2r−n

∫
Br\Br/2

|v(y)|2

|y|
|trA(y)− nµA,0(y)| dy.

Let y be any point in Br\Br/2, there exists η ∈ Sn−1 so that trA(y) = nA(y)η ·η.
Let

z =
2

3
rη + x
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then z ∈ Br \Br/2 and so |z − y| ≤ 2r. Also

|trA(y)− nµA,0(y)| ≤ n ∥A(z)−A(y)∥+ ∥A(y)∥ |µA,0(z)− µA,0(y)| ≤ Cr

and our result is so proved.

To estimate the derivative of C∗ (v, r) is far more difficult than of H (v, r). There-
fore, I proceed in multiple steps.

Lemma 3.1.12. Exist r̃, C > 0 such that for every v ∈ Q (n, k,Λ) and 0 < r < r̃ I
have ∣∣∣∣D (v, x, r)′ − 2

r
E (v, x, r)

∣∣∣∣ ≤ CD (v, x, r)

Proof. Let ψ ∈ C1 (Ω,Rn) I get∫
Rn

A(y)∇vj · ∇vjdivψ dy =
∑
khl

∫
Rn

akh∂kv
j∂hv

j∂lψ
l dy

= −
∑
khl

∫
Rn

∂lakh∂kv
j∂hv

jψl dy

− 2
∑
khl

∫
Rn

akh∂k∂lv
j∂hv

jψl dy

= −
∑
khl

∫
Rn

∂lakh∂kv
j∂hv

jψl dy

+ 2
∑
khl

∫
Rn

∂k
(
akh∂hv

j
)
∂lv

jψl dy

+ 2
∑
khl

∫
Rn

akh∂lv
j∂hv

j∂kψ
l dy

so ∫
Rn

A(y)∇vj · ∇vjdivψ dy = −
∫
Rn

[
∇A : ∇vj ⊗∇vj ⊗ ψj

]
dy

− 2
∑
i

∫
Rn

Lji · ∇viψ · ∇vj dy + 2

∫
Rn

(
A∇vj

)
·
(
∇ψ∇vj

)
dy (3.1.9)

Set then

F (y) =
A(y)y

µA,0(y)

ψ(y) = ϕ

(
|y|
r

)
F (y)

clearly I get

∂iψ
j(y) = ϕ′

(
|y|
r

)
yi
r |y|

F j(y) + ϕ

(
|y|
r

)
∂iF

j(y)

divψ(y) = ϕ′
(
|y|
r

)
y · F (y)
r |y|

+ ϕ

(
|y|
r

)
divF (y)
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applied to (3.1.9) I get

− r−1

∫
Rn

A(y)∇vj · ∇vjF (y) · y dρ0,r (y) +
∫
Rn

A(y)∇vj · ∇vjdivF dΦ0,r (y)

= −
∫
Rn

[
∇A : ∇vj ⊗∇vj ⊗ F

]
dΦ0,r (y)

− 2
∑
i

∫
Rn

Lji · ∇viF (y) · ∇vj dΦ0,r (y) + 2
∑
i

∫
Rn

(
A∇vj

)
·
(
∇F i∂iv

j
)
dΦ0,r (y)

− 2r−1
∑
i

∫
Rn

F i(y)∂iv
j
(
A∇vj

)
· y dρ0,r (y) (3.1.10)

Notice now that F (y) · y = |y|2 and since µA,0 is Lipschitz with |F (y)| ≤ C |y|,
|∇F (y)− I| ≤ C |y| then I have

− 1

r

∫
Rn

A(y)∇vj · ∇vj |y|2 dρ0,r (y) +

∫
Rn

A(y)∇vj · ∇vjdivF dΦ0,r (y)

= −
∫
Rn

[
∇A : ∇vj ⊗∇vj ⊗ F

]
dΦ0,r (y)

− 2
∑
i

∫
Rn

Lji · ∇vi∂Fr vj |y| dΦ0,r (y) + 2
∑
i

∫
Rn

(
A∇vj

)
·
(
∇F i∂iv

j
)
dΦ0,r (y)

− 2

r

∑
i

∫
Rn

∣∣∂Fr vj∣∣2 |y|2 µA,0(y) dρ0,r (y) .

Since

D (v, r)′ =
2− n

r
D (v, r) + r−n

∑
j

∫
Rn

A(y)∇vj · ∇vj |y|2 dρ0,r (y)

I finally get∣∣∣∣D (v, r)′ − 2

r
E (v, r)

∣∣∣∣ ≤ Cr1−n

∫
Rn

|[∇A : ∇v ⊗∇v ⊗ F ]| dΦ0,r (y)

+ r1−n

∫
Rn

A(y)∇v · ∇v |divF − n| dΦ0,r (y)

+ 2r1−n

∫
Rn

|A(y)∇v| |∇v| |I −∇F | dΦ0,r (y)

+ Cr2−n

∫
Rn

|∇v|2 dΦ0,r (y)

≤ CD (v, r)

Corollary 3.1.13. With the same assumptions of the preceding lemma∣∣∣∣∣∣r1−n
∑
j

∫
Rn

A(y)∇vj · ∇vj |y|2 dρ0,r (y)− 2E (v, r)

∣∣∣∣∣∣ ≤ CD (v, r)

for every r < r̃.
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Next I want to prove that the limit limr→0+ I (v, r) exists finite. By (3.1.8) I get
C∗ (v, r) ≥ CH (v, r) for some C > 0 and so

C∗ (v, r) ≤ C

2
H (v, r) +

1

2C
E (v, r) ≤ 1

2
C∗ (v, r) +

1

2C
E (v, r)

and so
C∗ (v, r) ≤ 1

C
E (v, r)

thai implies

D (v, r) ≤ CE (v, r)

H (v, r) ≤ CE (v, r)

for every r < r̃.
Set J(v, r) = C∗ (v, r) − D (v, r) = r2−n

∑
i

∫
Rn div

[
A(y)∇vi(y)

]
vi(y) dΦ0,r (y)

I immediately get

∣∣J(v, r)′∣∣ =
∣∣∣∣∣∣2− n

r
J(v, r) +

∑
ij

2r−n

∫
Rn

Lij(y) · ∇vj(y)vi(y) |y|2 dρ0,r (y)

∣∣∣∣∣∣
≤ CD (v, r) + Cr1−n

∫
Rn

|∇v(y)| |v(y)| |y| dρ0,r (y)

≤ CD (v, r) + C
√

H (v, r)

√
r1−n

∑
j

∫
Rn

A(y)∇vj · ∇vj |y|2 dρ0,r (y)

≤ CC∗ (v, r) + C
√

H (v, r)
√
E (v, r)

where I’ve applied the preceding inequalities.
Finally I get

C∗ (v, r)′ ≥ 2

r
E (v, r)− CC∗ (v, r)− C

√
H (v, r)E (v, r)

Now I’m able to estimate I (v, r)′. First to all I get

I (v, r)′ =
C∗ (v, r)′H (v, r)− C∗ (v, r)H (v, r)′

H (v, r)2

≥ H (v, r)−2

[
2
H (v, r)E (v, r)− C∗ (v, r)2

r
− CH (v, r)

3
2 E (v, r)

1
2

]
− CI (v, r)

Fix r > 0 then one of the following inequalities is true:

1. H (v, r)E (v, r) ≤ 2C∗ (v, r)2;

2. H (v, r)E (v, r) > 2C∗ (v, r)2.
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In the first case I get

H (v, r)
3
2 E (v, r)

1
2 ≤ CH (v, r)C∗ (v, r)

and so I (v, r)′ ≥ −CI (v, r). In the second case I get instead

H (v, r)
3
2 E (v, r)

1
2 ≤ CH (v, r)E (v, r)

and so

2
H (v, r)E (v, r)− C∗ (v, r)2

r
− CH (v, r)E (v, r)

≥ 1

r

[
(2− Cr)H (v, r)E (v, r)− 2C∗ (v, r)2

]
> 0

because C doesn’t depend on r and so I can set r̃ < 1/C.
I’ve just proved the following theorem:

Theorem 3.1.14. Exists r̃ > 0 so that for every v ∈ Q (n, k,Λ) and every 0 < r < r̃
I get

I (v, r)′ ≥ −CI (v, r)
in particular for every 0 < s < r < r̃

I (v, s) ≤ eC(r−s)I (v, r)

and lim supr→0+ I (v, r) < +∞.

From this theorem I can easily prove existence of limr→0+ I (v, r). If by contra-
diction that limit doesn’t exists then I can take two sequences rk, sk > 0 converging
to 0 with sk < tk < sk−1 and I (v, sk)− I (v, tk) > ε for some ε > 0.

But since I (v, r) is bounded above I get for some M > 0 and some lk ∈ (sk, tk)

−M < I (v, lk)′ =
I (v, tk)− I (v, sk)

tk − sk
≤ − ε

tk − sk
→ −∞

that’s impossible.
Next I need to obtain some additional estimates estimates on function H (v, r)

I’ll need later. Thanks to lemma 3.1.11 I immediately get∣∣∣∣H (v, r)′

H (v, r)
− 2

r
I (v, r)

∣∣∣∣ < C

for every 0 < r < r̃. So if 0 < r ≤ s < r̃ then

e−C(s−r)e
∫ s
r

2
t
I(v,t) dtH (v, r) ≤ H (v, s) ≤ eC(s−r)e

∫ s
r

2
t
I(v,t) dtH (v, r)

and I obtain the following monotonicity result:

Proposition 3.1.15. Let M,N ≥ 0 be such that N ≤ I (v, t) ≤ M for every
0 < r < t < s < r̃ I get

e−C(s−r)
(s
r

)2N
H (v, r) ≤ H (v, s) ≤ eC(s−r)

(s
r

)2M
H (v, r) (3.1.11)

Also
D (v, r) ≤ C

M

N
eC(s−r)

(r
s

)2N
D (v, s)
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Proof. The estimates on H (v, r) follows immediately from lemma 3.1.11. The esti-
mate on D (v, r) instead follows by this inequality:

C∗ (v, r) = I (v, r)H (v, r) ≤ M

N
I (v, s)H (v, r)

3.2 Fixed coefficients frequency function: monotonicity
The next step is to introduce a coefficient-free frequency function that doesn’t in-
volve matrix A. Let

H (v, x, r) = r1−n

∫
Rn

|v(y)|2 dρx,r (y)

D (v, x, r) = r2−n

∫
Rn

|∇v(y)|2 dΦx,r (y)

E (v, x, r) = r1−n

∫
Rn

|y − x|2 |∂rv(y)|2 dρx,r (y)

I (v, x, r) =
D (v, x, r)

H (v, x, r)

for every v ∈ Q (n, k,Λ), in particular 0 ∈ Kv and A(0) = I, and every x ∈ Ω, r > 0
with Br(x) ⊆ Ω.

The estimates (3.1.2) on A allows me to control H (v, r), D (v, x) , I (v, r) with
H (v, r), D (v, r), I (v, r) respectively and use the results proved in the preceding
section. In particular, exist r̃ > 0, C > 0 such that

1. I (v, r) ≤ CI (v,R) for every 0 < r < R < r̃;

2. for every 0 < s < r < r̃ I get

C−1
(r
s

)CN
H (v, s) ≤ H (v, r) ≤ C

(r
s

)CM
H (v, s) (3.2.1)

where N ≤ I (v, t) ≤M for every s < t < r.

In order to simplify the notation I set also

Rx
r,Kv(y) =

v(x+ ry)√
H (v, x,Kr)

.

Proposition 3.2.1. For every M > 0 exist rM , CM > 0 such that for every v ∈
Q (n, k,Λ), every 0 < r < rM and every |x| < r if I (v, 3r) ≤M then

1

CM
≤ H (v, x, r)

H (v, r)
≤ CM

and the same holds for D (v, x, r).
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Proof. By contradiction exists M > 0 such that for every m ∈ N exist vm ∈
Q (n, k,Λ), rm < 1/m, |xm| < rm so that I (vm, 3rm) ≤M but

lim
m→+∞

H (vm, xm, rm)

H (vm, rm)
∈ {0,+∞}

Let

ym =
xm
rm

um(y) = R0
rm,1vm(y) =

vm(rmy)√
H (vm, rm)

clearly H (um, 1) = 1 and

H (um, ym, 1) =
H (vm, xm, rm)

H (vm, rm)

By (3.2.1) I get H (um, 3) ≤ CM so um converges uniformly on B2 to some
function u and ym → y ∈ B1. Since B1 (ym) ⊆ B2 I get

H (u, 1) = 1

H (u, y, 1) = 0

that’s impossible.
Now suppose instead that

lim
m→+∞

D (vm, xm, rm)

D (vm, rm)
∈ {0,+∞} .

Since um converges in C1 to u (up to a subsequence) with u(0) = 2 J0K, ∇u(0) = 2 J0K
and u ̸≡ 0 I get

D (u, y, 1)

D (u, 1)
= 0

which is impossible too.

Observe that the only limitation I’ve imposed on x is that it must be sufficiently
near to the origin, in which I have v(0) = 2 J0K, ∇v(0) = 2 J0K and A(0) = I. But
x may not belong to Kv.

Remember now that ∇v is weakly C1 on Ω and its weak hessian D2v is equal to
its true hessian ∇2v on Ω \ Z∇v and it’s equal to 2 J0K on Z∇v. I now provide some
L2 estimates for D2v in the same way I’ve done in chapter 1 for harmonic functions.

Proposition 3.2.2. If v ∈ WQ (n, k,Λ) then D2v ∈ L2, also for every θ ∈ (0, 1)
exists Cθ > 0 such that if (Br(x)) ⊆ Ω then∥∥D2v

∥∥
L2[Bθr(x)

≤ Cθr
−1 ∥∇v∥L2[Br(x)]

Proof. Let j = 1, . . . , k, a = 1, . . . , n and ψ ∈ C∞
c (Rn) with

suppψ ∩
{
∂av

j = 2 J0K} = ∅
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and let Ψ : Ω′ =
{
∂av

j ̸= 2 J0K}→ Mn×k be a single-valued C1 function with Ψj
a > 0

and ∇v(y) = JΨ(y)K + J−Ψ(y)K. Notice that

∂iΨ
j
a = ∂aΨ

j
i

for every i = 1, . . . , n. Let Br(x) ⊆ Ω and ϕ ∈ C∞
c [Br(x)] with ∥ϕ∥∞ ≤ 1, clearly

ψϕ2 ∈ C∞
c

(
Br(x) \

{
∂av

j = 0
})

and so∫
Rn

∂a
(
AΨj

)
· ∇
(
ψϕ2

)
dy =

∫
B1

div
(
AΨj

)
∂a
(
ψϕ2

)
dy

=
∑
i

∫
B1

Lij ·Ψi∂a
(
ψϕ2

)
dy (3.2.2)

Let g = ϕ∇ψ, then∫
Ω
A∇Ψj

a · gϕ dy =

∫
Ω
A∇Ψj

a ·
[
∇
(
ψϕ2

)
− 2ψϕ∇ϕ

]
dy

=

∫
Ω
A∂aΨ

j · ∇
(
ψϕ2

)
dy − 2

∫
Ω
A
(
∇Ψj

aϕ
)
· ψ∇ϕ dy

=

∫
Ω

[∑
i

Lij ·Ψiea − ∂aAΨ
j

]
· ∇
(
ψϕ2

)
dy − 2

∫
Ω
A
(
∇Ψj

aϕ
)
· ψ∇ϕ dy

=

∫
Ω

[∑
i

Lij ·Ψiea − ∂aAΨ
j

]
· gϕ dy + 2

∫
Ω

[∑
i

Lij ·Ψiea − ∂aAΨ
j

]
· ψϕ∇ϕ dy

− 2

∫
Ω
A
(
∇Ψj

aϕ
)
· ψ∇ϕ dy

with ea ∈ Rn the a-th element of the standard basis of Rn (so that ∇f · ea = ∂af).
Fix now any ε > 0, according to proposition 2.2.2 I can choose a sequence ψn

that converges uniformly and in W 1,2 [Br(x)] to max
{
Ψj

a − ε, 0
}

and put it in place

of ψ in preceding equations, let Ωε =
{
Ψj

a > ε
}

and notice that

g =

{
ϕ∇Ψj

a on Br(x) ∩ Ωε

0 otherwise
a.e.

so A∇Ψj
a · gϕ = Ag · g almost everywhere on Ωε.

Then

C−1 ∥g∥2L2(Ωε)
≤
∣∣∣∣∫

Ωε

Ag · g dy
∣∣∣∣ ≤

∥∥∥∥∥∑
i

Lij ·Ψiea − ∂aAΨ
j

∥∥∥∥∥
L2[Br(x)]

∥g∥L2(Ωε)

+ 2

∥∥∥∥∥∑
i

Lij ·Ψiea − ∂aAΨ
j

∥∥∥∥∥
L2[Br(x)]

∥∥(Ψj
a − ε

)
∇ϕ
∥∥
L2(Ωε∩Br(x))

+ C ∥g∥L2(Ωε)

∥∥Ψj
a − ε

∥∥
L2 ∥∇ϕ∥∞

≤ C
(
1 + ∥∇ϕ∥∞ + ∥∇ϕ∥2∞

)
∥Ψ∥2L2 +

1

2C
∥g∥2L2(Ωε)



3.2 Fixed coefficients frequency function: monotonicity 47

At this point I can assume ϕ Lipschitz on Br(x) so I can set

ξ(t) =


1 se 0 < t < θ
1−t
1−θ se θ < t < 1

0 se t > 1

ϕ(y) = ξ

(
|y − x|
r

)
then |∇ϕ(x)| ≤ Cr−1(1− θ)−1 and so I finally get∥∥∇Ψj

a

∥∥2
L2[Bθr(x)∩Ωε]

≤ Cθr
−2 ∥Ψ∥2L2[Br(x)]

letting ε→ 0+ and adding on a and j I get∥∥D2v
∥∥2
L2[Bθr(x)]

≤ Cθr
−2 ∥∇v∥2L2[Br(x)]

Now with the same assumptions for every x ∈ Br and a.e. y ∈ Br(x)\Kv I have∣∣∆vj(y)∣∣ ≤ |divA(y)|
∣∣∇vj(y)∣∣+ |I −A(y)|

∣∣D2vj(y)
∣∣+ C |∇v(y)|

and so for every M > 0 exists CM > 0 such that∥∥∆vj∥∥2
L2[Br(x)]

≤ CM ∥∇v∥2L2[Br(x)]

if I (v, 3r) ≤M .

Proposition 3.2.3. For every M > 0 exist r̃M , CM > 0 so that for every v ∈
Q (n, k,Λ), 0 < r < r̃M , |x| < r if I (v, 6r) ≤M then

|D (v, x, r)− C∗ (v, x, r)| ≤ CMrH (v, x, r) (3.2.3)

where
C∗ (v, x, r) = r1−n

∫
Rn

|y − x| v(y)∂rv(y) dρx,r (y)

In particular I get∣∣∣∣H (v, x, r)′ − 2

r
D (v, x, r)

∣∣∣∣ ≤ CMH (v, x, r)

Proof. By divergence theorem I get∣∣∣∣r2−n

∫
Rn

v(y)∆v(y) dΦx,r (y)

∣∣∣∣ ≤ r2−n ∥∆v∥L2 ∥v∥L2

≤ CM

√
D (v, x, 2r)

√
r2H (v, x, r) ≤ CMrH (v, x, r)

The last statement is trivial since H (v, x, r)′ = 2r−1C∗ (v, x, r).
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In the same way it’s possible to prove that∣∣∣∣D (v, x, r)′ − 2

r
E (v, x, r)

∣∣∣∣ ≤ CMD (v, x, r)

and get

I (v, x, r)′ = H (v, x, r)−2 [D (v, x, r)′H (v, x, r)−D (v, x, r)H (v, x, r)′
]

= H (v, x, r)−2

[
D (v, x, r)′H (v, x, r)− 2

r
D (v, x, r)C∗ (v, x, r)

]
≥ H (v, x, r)−2 2

r
[E (v, x, r)H (v, x, r)−D (v, x, r)C∗ (v, x, r)]− CMI (v, x, r)

≥ H (v, x, r)−2 2

r

[
E (v, x, r)H (v, x, r)− C∗ (v, x, r)2

]
− CMI (v, x, r)

− CMH (v, x, r)−1C∗ (v, x, r)

≥ H (v, x, r)−2 2

r

[
E (v, x, r)H (v, x, r)− C∗ (v, x, r)2

]
− CMI (v, x, r)− CMr

and finally get

I (v, x, r)′ + CMI (v, x, r) + CMr

≥ 2

r
H (v, x, r)−2

[
H (v, x, r)E (v, x, r)− C∗ (v, x, r)2

]
≥ 0

for every 0 < r < r̃M , |x| < r̃M , v ∈ Q (n, k,Λ) with I (v, 6r) ≤M .
Let

JM (v, x, r) = eCM rI (v, x, r) + reCM r + C−1
M

[
1− eCM r

]
= eCM rI (v, x, r) + VM (r)

(3.2.4)

then JM is an increasing function in r with limr→0+ JM (v, r) = limr→0+ I (v, r) <
+∞.

Summarizing all the preceding results I get a monotonicity result for the fixed
coefficients frequency function:

Theorem 3.2.4. For every M > 0 exist r̃M , CM > 0 so that for every v ∈
Q (n, k,Λ), 0 < r < r̃M , |x| < r if I (v, 6r) ≤M then let JM (v, x, r) be as in (3.2.4)
I have

JM (v, x, r)′ ≥ 2

r
eCM rH (v, x, r)−2

[
H (v, x, r)E (v, x, r)− C∗ (v, x, r)2

]
(3.2.5)

Notice now that VM is an increasing convex function with VM (0) = 0 also I have

JM (v, x, r)− JM (v, x, s) = eCMs [I (v, x, r)− I (v, x, s)]

+
[
eCM r − eCMs

]
I (v, x, r) + [VM (r)− VM (s)]
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I set r̃M sufficiently small so that

sup
r<r̃M ,|x|<r

CMe
CM rI (v, x, r) + CM r̃Me

CM r̃M ≤ 1 (3.2.6)

then for 0 < S < s < r < R < r̃M , |x| < S and for I (v, 6R) ≤M

JM (v, x, r)− JM (v, x, s) ≤ eCMS [I (v, x,R)− I (v, x, S)] + (R− S)

and

eCMs [I (v, x, r)− I (v, x, s)] ≤ [JM (v, x,R)− JM (v, x, S)]

eCMs |I (v, x, r)− I (v, x, s)| ≤ [JM (v, x,R)− JM (v, x, S)] + (R− S)

I can then define

∆r
s (v, x) = JM (v, x, r)− JM (v, x, s) + (r − s) > 0

so that for every (s, r) ⊂⊂ (s′, r′) ⊂⊂ (s′′, r′′) with 0 < s′′, r′′ < r̃M , |x| < s′′,
I (v, 6r′′) ≤M

eCMs |I (v, x, r)− I (v, x, s)| ≤ ∆r′
s′ (v, x)

≤ eCMs′′
[
I
(
v, x, r′′

)
− I

(
v, x, s′′

)]
+
(
r′′ − s′′

)
(3.2.7)

3.3 Fixed coefficients frequency function: oscillations
Now I differentiate D and H with respect to the spatial coordinate x to get

∂iH (v, x, r) = 2r1−n

∫
Rn

v(y)∂iv(y) dρx,r (y)

∂iD (v, x, r) = r1−n

∫
Rn

|∇v|2 (yi − xi) dρx,r (y)

for every i = 1, . . . , n, I want to approximate ∂iD (v, x, r) with an integral term
that allows us to collect ∂iv like for ∂iH (v, x, r). Take so any ν ∈ Sn−1 I can use
proposition 2.2.2 on |∇v| to get

r1−n

∫
Rn

|∇v|2 ν · (y − x) dρx,r (y) = r2−n

∫
Rn

div
[
|∇v|2 ν

]
dΦx,r (y)

= −2r2−n

∫
Rn

∆v∇v · ν dΦx,r (y) + 2r1−n

∫
Rn

∇v · (y − x)∇v · ν dρx,r (y)

so if I set
G(v, x, r) = 2r1−n

∫
Rn

∇v · (y − x)∇v dρx,r (y) ∈ Rn

then
∂iD (v, x, r) = −2r2−n

∫
Rn

∆v∂iv dΦx,r +G(v, x, r) · ei

and when 0 < r < r̃M , |x| < r and I (v, 6r̃M ) ≤M

|∇D (v, x, r)−G(v, x, r)| ≤ CMD (v, x, r) (3.3.1)
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Lemma 3.3.1. For every M > 0 exist CM , r̃M > 0 so that for every 0 < s < r <
r̃M , |x| < s, v ∈ Q (n, k,Λ) with I (v, 12r) ≤M I have

r1−n

∫
Br(x)\Bs(x)

[∇v(y) · (y − x)− I (v, x, s) v(y)]2

|y − x|
dy

≤ CMH (v, x, 2r)∆2r
s (v, x)

Before to prove lemma 3.3.1 I give a proof of an elementary inequality:

Proposition 3.3.2. for every 0 < s < r and every g ≥ 0 measurable function I
have ∫ r

s
g(t) dt ≤ 1

s

∫ 2r

s
dt

∫ t

t/2
g(q) dq (3.3.2)

Proof. The integration by parts formula leads to the following relations

∫ 2r

s
dt

∫ t

t/2
g(q) dq = 2r

∫ 2r

r
g(t) dt− s

∫ s

s/2
g(t) dt−

∫ 2r

s
t

[
g(t)− 1

2
g

(
t

2

)]
dt

=

∫ 2r

r
(2r − t)g(t) dt+

∫ s

s/2
(2t− s)g(t) dt+

∫ r

s
tg(t) dt ≥ s

∫ r

s
g(t) dt

since g(t) ≥ 0.

Proof of lemma 3.3.1. Let

K (v, x, r) = r1−n

∫
Rn

[∇v(y) · (y − x)− I (v, x, r) v(y)]2 dρx,r (y) ,

I immediately get

K (v, x, r) = E (v, x, r)− 2I (v, x, r)C∗ (v, x, r) + I (v, x, r)2H (v, x, r)

= H (v, x, r)−1
[
E (v, x, r)H (v, x, r)− 2D (v, x, r)C∗ (v, x, r) +D (v, x, r)2

]
= H (v, x, r)−1

[
E (v, x, r)H (v, x, r)− C∗ (v, x, r)2

]
+H (v, x, r)−1 [C∗ (v, x, r)−D (v, x, r)]2 .

I can then use (3.2.5) to get

K (v, x, r) ≤ r

2
H (v, x, r) e−CM rJM (v, x, r)′ + CMr

2H (v, x, r)

and (3.3.2) to get∫
Br(x)\Bs(x)

f(y) dy ≤ 1

2s

∫ 2r

s
dt

∫
Rn

|y − x| f(y) dρx,t (y)
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if f ≥ 0 on B2r(x) and 0 < s < r. Since 1 − n < 0 I get r1−n ≤ Ct1−n for every
t ≤ 2r and so if |x| < s

r1−n

∫
Br(x)\Bs(x)

[∇v(y) · (y − x)− I (v, x, s) v(y)]2

|y − x|
dy

≤ s−1

∫ 2r

s
K (v, x, t) dt

+ r1−ns−1

∫ 2r

s
dt

∫
Rn

[I (v, x, t)− I (v, x, s)]2 |v(y)|2 dρx,t (y)

≤ CMs
−1

∫ 2r

s

t

2
H (v, x, t) JM (v, x, t)′ dt+ CMs

−1

∫ 2r

s
t2H (v, x, t) dt

+ s−1∆2r
s (v, x)2

∫ 2r

s
H (v, x, t) dt

Now set r/8 ≤ s ≤ r and |x| < r/8 I immediately get s−1 ≤ Cr−1 the preceding
term is controller by CMH (v, x, 2r)∆2r

s (v, x) and the statement is so proved.

I now use lemma 3.3.1 to prove the following theorem:

Theorem 3.3.3 (Oscillation of frequency). For every M > 0 and for every K > 6
exist CM,K , r̃M,K > 0 so that for every v ∈ Q (n, k,Λ), 0 < r < r̃M,K , x, y ∈ Kv∩Br

if I (v, 12Kr) ≤M then

|I (v, y,Kr)− I (v, x,Kr)|

≤ CM |y − x|+ CM,K

[√
∆

2(2K+2)r
(K/2−2)r(x) +

√
∆

2(2K+2)r
(K/2−2)r(y)

]

Consider now x, y ∈ Kv ∩ Br with x ̸= y, let η = y − x and a any point in the
closed segment [x, y]. For every z ∈ Ω and every t > 0 let

Ea,t (z) = ∇v(z) · (z − a)− I (v, a, t) v(z) ∆It = I (v, y, t)− I (v, x, t)

∆Et (z) = Ey,t (z)− Ex,t (z) ∂a,rf(z) = ∇f(z) · z − a

|z − a|

lemma 3.3.1 implies in particular that

r1−n

∫
Br(a)\Bs(a)

|Ea,s (z)|2

|z − a|
dz ≤ CMH (v, a, 2r)∆2r

s (v, a)

when |x| , |y| < s.
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It’s simple to show that

∇v(z) · η =−∇v(z) · (z − y) +∇v(z) · (z − x)

=−∇v(z) · (z − y) + I (v, y, t) v(z)

+∇v(z) · (z − x)− I (v, x, t) v(z)

+ [I (v, x, t)− I (v, y, t)] v(z)

=−∆Et (z)−∆Itv(z)

∂ηH (v, a, t) = 2t1−n

∫
Rn

v(z)∇v(z) · η dρa,t (z)

=− 2∆ItH (a, t)− 2t1−n

∫
Rn

v(z)∆Et (z) dΦa,t (z)

G (v, a, t) · η = 2t1−n

∫
Rn

∇v(z) · (z − a)∇v(z) · η dρa,t (z)

=− 2∆ItC
∗ (a, t)− 2t1−n

∫
Rn

∇v(z) · (z − a)∆Et (z) dρa,t (z)

and so

∂ηI (v, a, t) = H (v, a, t)−2 [∂ηD (v, a, t)H (v, a, t)− ∂ηH (v, a, t)D (v, a, t)]

= H (v, a, t)−1 [∂ηD (v, a, t)− ∂ηH (v, a, t) I (v, a, t)]

= H (v, a, t)−1 [∇D (v, a, t)−G (v, a, t)] · η
− 2H (v, a, t)−1∆It [C

∗ (v, a, t)−H (v, a, t) I (v, a, t)]

− 2H (v, a, t)−1 t1−n

∫
Rn

[∇v(z) · (z − a)− I (v, a, t) v(z)]∆Et (z) dρa,t (z)

If t < r̃M , |a| < t then by (3.2.3), (3.3.1) I get∣∣∣H (v, a, t)−1 [∇D (v, a, t)−G (v, a, t)] · η
∣∣∣ ≤ CMI (v, a, t) |x− y|∣∣∣H (v, a, t)−1∆It [C

∗ (v, a, t)−D (v, a, t)]
∣∣∣ ≤ CM t |∆It|

I set now K > 6, t = Kr, r̃M,K ≤ r̃M/K and |x| , |y| < r < r̃M,K . For every
z ∈ Ω such that |z − a| < Kr I have |z| < (K + 1)r, so for r̃M sufficiently small

|∇v(z) · (z − a)− I (v, a,Kr) v(z)|

≤ Kr |∇v(z)|+ CM |v(z)| ≤ CM

√
H (v, 2(K + 1)r).

Moreover,∣∣∣∣2H (v, a, t)−1 t1−n

∫
Rn

[∇v(z) · (z − a)− I (v, a, t) v(z)]∆Et (z) dρa,t (z)
∣∣∣∣

≤ 2

√
H (v, 2(K + 1)r)

H (v, a,Kr)
(Kr)1−n

∫
BKr(a)\BKr/2(a)

|Ey,Kr (z)|+ |Ex,Kr (z)|
|z − a|

dz

≤ 2

√
H (v, 2(K + 1)r)

H (v, a,Kr)
2(Kr)−n

∫
BKr(a)\BKr/2(a)

[|Ey,Kr (z)|+ |Ex,Kr (z)|] dz
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Notice now that since |u− a| − 2r ≤ |u− x| ≤ |u− a|+ 2r I immediately get

BKr(a) \BKr/2(a) ⊆ B(K+2)r(x) \B(K/2−2)r(x)

and the same holds for y. Then∫
BKr(a)\BKr/2(a)

|Ex,Kr (z)| dz ≤ (K + 2)r

∫
B(K+2)r(x)\B(K/2−2)r(x)

|Ex,Kr (z)|
|z − x|

dz

≤ (K + 2)rR

√√√√∫
B(K+2)r(x)\B(K/2−2)r(x)

|Ex,Kr (z)|2

|z − x|
dz

≤ CM,Kr
(n+1)/2r(n−1)/2

√
H (x, 2(2K + 2)r)

√
∆

2(2K+2)r
(K/2−2)r(x)

where

R =

√∫
B(K+2)r(x)\B(K/2−2)r(x)

1

|z − x|
dz ≤ CKr

(n−1)/2

notice also that by proposition 3.2.1√
H (v, 2(K + 1)r)H (v, x, 2(2K + 2)r)

H (v, a,Kr)
≤ CM,K

I finally get our oscillation estimate

|∇I (v, a,Kr) · η| ≤ CMI (v, a,Kr) |y − x|

+ CMr |I (v, y,Kr)− I (v, x,Kr)|+ CM,K

[√
∆

2(2K+2)r
(K/2−2)r(x) +

√
∆

2(2K+2)r
(K/2−2)r(y)

]
by setting CM r̃M,K ≤ 1/2.

3.4 Intrinsic frequency function
So far I’ve assumed that v ∈ Q (n, k,Λ) but in general for any two-valued symmetric
C1,1/2 function v with stationary graph and any x ∈ Kv I don’t have A(x) = I and
so I can’t immediately apply the results of preceding sections. In this section I
introduce a third frequency function that is similar to the second one but works for
any v ∈ WQ (n, k,Λ).

Let v be any function in WQ (n, k,Λ) and A, Lij define as in the very definition
of WQ (n, k,Λ). Take any point x0 ∈ Kv I want to transform v into another function
vx0 ∈ Q (n, k, CΛ) where C is a positive constant depending only by n, k, Λ̃ with
Λ < Λ̃.

Let
Ψx0(y) = A−1/2 (x0) (y − x0)

Ωx0 = Ψx0 (Ω)

vx0 : y ∈ Ωx0 → v
[
Ψ−1

x0
(y)
]

Ax0(y) = A−1/2(x0)A
[
Ψ−1

x0
(y)
]
A−1/2(x0)

Lij
x0
(y) = A−1/2(x0)L

ij
[
Ψ−1

x0
(y)
]

(3.4.1)
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It’s simple to prove that div
(
Ax0∇vix0

)
+
∑n

j=1 L
ij
x0 ·∇v

j
x0 = 0 weakly on Ωx0 \Kvx0

,
vx0 ∈ C2 on Ωx0 \ Kvx0

, 0 ∈ Kvx0
and Ax0(0) = I. Notice also that

(1 + Λ)−1 |ν|2 ≤ |Ax0(y)ν · ν| ≤ (1 + Λ) |ν|2

and consequently ∣∣Lij
x0
(y)
∣∣ ≤ (1 + Λ)1/2 Λ

|Ax0(y)−Ax0(x)| =
∣∣∣A−1/2 (x0)

[
A
[
Ψ−1

x0
(y)
]
−A

[
Ψ−1

x0
(x)
]]
A−1/2 (x0)

∣∣∣
≤ (1 + Λ)Λ

∣∣Ψ−1
x0

(y)−Ψ−1
x0

(x)
∣∣ ≤ (1 + Λ)3/2Λ |y − x|

and so vx0 ∈ Q (n, k, CΛ) for some constant C depending only on n, k and Λ̃ where
Λ̃ > Λ > 0.

I can then define the following functions for every v ∈ WQ (n, k,Λ), x ∈ Kv

H (v, x, r) = H (vx, 0, r)

D (v, x, r) = D (vx, 0, r)

I (v, x, r) = I (vx, 0, r)

in particular I (v, x, r) is the intrinsic frequency function of v centered at x. I now
want to extend our oscillation result to this new frequency function.

For every x, y ∈ Kv notice that v(y) = vy(0) = vx [Ψx(y)] and so

I (v, x, r)− I (v, y, r) = [I (vx, r)− I (vx,Ψx(y), r)] + [I (vx,Ψx(y), r)− I (vy, r)]

since |Ψx(y)| ≤ (1 + Λ)−1/2 |y − x| when |y − x| < r I can use the preceding os-
cillation bound to estimate I (vx, r) − I (vx,Ψx(y), r), the aim of this section is to
estimate I (vx,Ψx(y), r)− I (vy, r).

Let

|ν|2x = A−1(x)ν · ν
Elxr (y) = Ψ−1

x [Br (Ψx(y))]

and notice that z ∈ Elxr (y) if and only if |z − y|x < r. Also for every x, y ∈ Ω,
ν ∈ Rn \ {0} I have |ν|2y ≥ (1 + Λ)−1 |ν|2 and so∣∣∣|ν|x − |ν|y

∣∣∣ ≤ 1

2(1 + Λ)−1/2 |ν|
∣∣[A(x)−1 −A(y)−1

]
ν · ν

∣∣
≤
∣∣A−1(x)

∣∣ ∣∣A−1(y)
∣∣ |A(x)−A(y)|

2(1 + Λ)−1/2
|ν|

≤ Λ

2
(1 + Λ)3/2 |x− y| |ν|

= J |x− y| |ν|

in particular for every t > |x− y| there exists constants

at = (1 + Λ)Jt ∈ (0,+∞)

bt =
(1 + Λ)Jt

1 + (1 + Λ)Jt
∈ (0, 1)
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such that
Ely(1−bt)r

(z) ⊆ Elxr (z) ⊆ Ely(1+at)r
(z)

Remember I’ve assumed diam(Ω) ≤ 1, then I can set t = 1 and at ≤ a1, bt ≤ b1.
Next I obtain

D (vx,Ψx(y), r) = r2−n

∫
Rn

∣∣∇Ψx(z)
−1∇v

[
Ψ−1

x (z)
]∣∣2 dΦΨx(y),r (z)

= r2−n

∫
Rn

ϕ

(
|z −Ψx(y)|

r

) ∣∣∇Ψx(z)
−1∇v

[
Ψ−1

x (z)
]∣∣2 dz

= r2−n

∫
Rn

ϕ

(
|u− y|x

r

) ∣∣∣A1/2(x)∇v(u)
∣∣∣2 |det∇Ψx(u)| du

= r2−n

∫
Rn

A(x)∇v (u) · ∇v(u) dΦx
y,r (u)

where

Φx
y,r(U) =

(
Ψ−1

x

)#
ΦΨx(y),r(U) =

∫
U
ϕ

(
|u− y|x

r

)
1√

detA(x)
du

has support in Elxr (y). In the same way I get also

H (vx,Ψx(y), r) = r1−n

∫
Rn

|v(u)|2

|u− y|x
dρxy,r (u)

where ρxy,r(U) =
(
Ψ−1

x

)#
ρΨx(y),r(U) has instead support in Elxr (y) \ Elxr/2 (y).

Since ϕ is a Lipschitz function I get for every F ≥ 0 measurable and every
1 > t > 0 with |y − x| < t∣∣∣∣∫

Rn

ϕ

(
|z − y|x

r

)
f(z) dz −

∫
Rn

ϕ

( |z − y|y
r

)
f(z) dz

∣∣∣∣
≤ J

2
(1 + Λ) |x− y|

∫
Ely

(1+at)r
(y)

|z − y|y
r

f(z) dz

≤ C |x− y| (1 + at)

∫
Rn

ϕ

( |z − y|y
2(1 + at)r

)
f(z) dz

= C |x− y| (1 + at)

∫
Rn

f(z)
√

detA(y) dΦy
y,2(1+at)r

(z)

For t sufficiently small I then immediately get

|D (vx,Ψx(y), r)−D (vy, 0, r)| ≤ C |y − x|D (vy, 4r)

if I (v, y, 4r) ≤ M then I get D (vy, 4r) ≤ CMD (vy, r) when |y − x| < 1/C and
r < r̃.

In order to estimate H (vx,Ψx(y), r)−H (vy, 0, r) I need some extra step. First
to all for every 0 < S < R

[ElxRr (y) \ ElxSr (y)] ∆
[
ElyRr (y) \ El

y
Sr (y)

]
⊆
(
Ely(1+at)Rr (y) \ El

y
(1−bt)Rr (y)

)
∪
(
Ely(1+at)Sr

(y) \ Ely(1−bt)Sr
(y)
)
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with again t = |y − x|. Notice now that at + bt ≤ Ct so the measure of symmetric
difference of these annuli goes to 0 as trn for fixed R,S.

Using the coarea formula I get∫
ElxRr(y)\ElxSr(y)

f(z) dz =

∫ Rr

Sr
dt

∫
|z−y|x=t

f(z)
t∣∣A−1/2(x)(z − y)

∣∣
x

dHn−1 (z)

and so

2r1−n

∣∣∣∣ ∫
Elxr (y)\Elxr/2(y)

|v(z)|2

|z − y|x
1√

detA(x)
dz

−
∫
Elyr (y)\Ely

r/2
(y)

|v(z)|2

|z − y|x
1√

detA(x)
dz

∣∣∣∣
≤ Cr1−n

∣∣∣∣∣
∫
Ely

(1+at)r
(y)\Ely

(1−bt)r
(y)

|v(z)|2

|z − y|y
1√

detA(y)
dz

∣∣∣∣∣
+ Cr1−n

∣∣∣∣∣
∫
Ely

(1+at)r/2
(y)\Ely

(1−bt)r/2
(y)

|v(z)|2

|z − y|y
1√

detA(y)
dz

∣∣∣∣∣
Assuming y ∈ Kv, t < 1 and I (v, y, 4r) ≤M I get

r1−n

∫
Elx(1+at)r

(y)\Elx(1−bt)r
(y)

|v(z)|2

|z − y|y
1√

detA(y)
dz

(3.1.7)
≤ Ctr2−n

∫
Rn

ϕ1−bt,1+at

( |z − y|y
r

)
A(y)∇v(z) · ∇v(z)√

detA(y)
dz

≤ Ctr2−n

∫
Rn

A(y)∇v(z) · ∇v(z) dΦy
y,2(1+a)r (z)

≤ CtD (v, y, 2(1 + a)r) ≤ CM tH (v, y, r)

which implies |H (vx,Ψx(y), r)−H (vy, 0, r)| ≤ CM |y − x|H (vy, 0, r). In particu-
lar, if |y − x| ≤ 1/ (2CM ), then I get

1

2
H (vy, 0, r) ≤ H (vx,Ψx(y), r) ≤

3

2
H (vy, 0, r) (3.4.2)

Finally I can apply (3.4.2) to get

|I (vx,Ψx(y), r)− I (vy, 0, r)|

=

∣∣∣∣(D (vx,Ψx(y), r)

D (vy, 0, r)
− H (vx,Ψx(y), r)

H (vy, 0, r)

)
D (vy, 0, r)

H (vx,Ψx(y), r)

∣∣∣∣
≤ CM |y − x| I (v, y, r)

which proves the following result:

Lemma 3.4.1. For every M > 0 exist r̃M , CM > 0 so that for every v ∈ WQ (n, k,Λ),
every 0 < r < r̃M , every x, y ∈ Kv with |x− y| < 1/ (2CM ) and I (v, y, 4r) ≤ M I
get

|I (vx,Φx(y), r)− I (vy, 0, r)| ≤ CM |x− y| I (v, y, r) (3.4.3)
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Let JM (v, x, r) = JM (vx, 0, r), by using (3.4.3) I immediately get

JM (vx,Ψx(y), r)− JM (vx,Ψx(y), s) = JM (v, y, r)− JM (v, y, s)

+ eCM r [I (vx,Ψx(y), r)− I (vy, 0, r)]− eCMs [I (vx,Ψx(y), s)− I (vy, 0, s)]

≤ JM (v, y, r)− JM (v, y, s) + CM |x− y| I (v, y, r)

and get
∆r

s [vx,Ψx(y)] ≤ ∆r
s (vy, 0) + CM |x− y| (3.4.4)

so I can set ∆r
s(v, y) = ∆r

s(vy, 0) for every v ∈ WQ (n, k,Λ), y ∈ Kv. I can then
rewrite (3.2.7) in this intrinsic form:

eCMs |I (v, x, r)− I (v, x, s)| ≤ ∆r
s (v, x)

≤ eCMs [I (v, x, r)− I (v, x, s)] + (r − s)

Theorem 3.4.2 (Oscillation of frequency-intrinsic version). For every M > 0 and
for every K > 6 exist CM,K , r̃M,K > 0 such that for every v ∈ WQ (n, k,Λ), 0 <
r < r̃M,K , x, y ∈ Kv with |x− y|x , |x− y|x < r if I (v, x, 12Kr) , I (v, y, 12Kr) ≤M
then

|I (v, y,Kr)− I (v, x,Kr)|

≤ CM,K

[
|y − x|x + |y − x|1/2 +

√
∆

2(2K+2)r
(K/2−2)r(v, x) +

√
∆

2(2K+2)r
(K/2−2)r(v, y)

]

Proof. Since |Ψx(y)| = |y − x|x I can apply theorem 3.3.3 to vx to get

|I (vx, 0,Kr)− I (vx,Ψx(y),Kr)|

≤ CM,K

[
|y − x|x +

√
∆

2(2K+2)r
(K/2−2)r (vx, 0) +

√
∆

2(2K+2)r
(K/2−2)r (vx,Ψx(y))

]

then the preceding inequalities complete the proof.

3.5 Proofs of main theorems
In this section I explain the proof of theorem 1.0.1. Before to prove it I need to
define first the mean flatnees of a Radon measure in order to estimate “how much
its support differs from an affine subspace”.

Definition 3.5.1. Let µ be any Radon measure on Rn, I define the mean flatness
of µ in the the following way

βx,r (µ) = inf
W

√
r−n

∫
Br(x)

dist(y,W )2 dµ (y)

where the infimum is evaluated among every affine subspace W of Rn.
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Notice that if 0 < r < t then

βx,r (µ) ≤
(
t

r

)n/2

βx,t (µ)

and∫
Br

dist (y,W )2 dΨ#
x µ (y) =

∫
Elxr (x)

dist [Ψx(y),W ]2 dµ (y)

≥ 1

1 + Λ

∫
B

(1+Λ)−1/2r
(x)

dist
[
y, x+A1/2(x)W

]2
dµ (y)

which implies
βx,r (µ) ≤ (1 + Λ)(n+2)/4β0,

√
1+Λr

(
Ψ#

x µ
)

The mean flatness βx,r (µ) can be expressed also in a form that takes into account
eigenvalues of some symmetric bilinear operator. Let

m =
1

µ̃ (Br)

∫
Br

y dµ̃ (y)

B(ν, η) =

∫
Br

[(y −m) · ν] [(y −m) · η] dµ̃ (y)

and let λi be the eigenvalues of Bµ,x,r in nondecreasing order, it’s simple to show
that

β0,r (µ̃) = r−
n
2

√
λ1 + λ2 .

This new formulation of the mean flatness allows me to prove the fundamental
estimate contained in the following theorem

Theorem 3.5.2. For every M > 0, R > L, where L is a positive constant depending
only on n, k and Λ, exist CM,R, r̃M,R > 0, 6 < BR < AR so that for every v ∈
WQ (n, k,Λ), x ∈ Kv, 0 < r < r̃M,R that satisfy I (v, x, 6ARr) ≤ M and for every
µ Radon measure with suppµ ⊆ Kv I have

β0,r

(
Ψ#

x µ
)2

≤
CM,R

rn−2

∫
Elxr (x)

[
∆ARr

BRr (v, z) + r
]
dµ (z)

where ∆b
a (v, z) = ∆b

a (vz, 0).

To prove this result let νi be the eigenvector related to eigenvalue λi and let
µ̃ = Ψ#

x µ. I immediately get

−λiνi · ∇vx(z) =
∫
Br

[(y −m) · νi] [(z − y) · ∇vx(z)− pvx(z)] dµ̃ (y)

=

∫
Elxr (x)

[(Ψx(y)−m) · νi] [(z −Ψx(y)) · ∇vx(z)− pvx(z)] dµ (y)
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for every z in the domain of vx and p ∈ R. Hence,

λ2i |νi · ∇vx(z)|
2

≤

[∫
Elxr (x)

[(Ψx(y)−m) · νi] [(z −Ψx(y)) · ∇vx(z)− pvx(z)] dµ (y)

]2
≤ λi

∫
Elxr (x)

[(z −Ψx(y)) · ∇vx(z)− pvx(z)]
2 dµ (y)

(3.5.1)

I define the tangential differential of vx in the following way

∇T vx(z) =
∑
l=1,2

J∇ (vx)l − ∂ν1 (vx)l ⊗ ν1K = n∑
j=2

∑
l=1,2

q
∂νj (vx)l ⊗ νj

y
. (3.5.2)

Next I apply it to (3.5.1) in order to get

rnβ0,r (µ̃)
2
∫
B(R+1)r\BRr

∣∣∇T vx(z)
∣∣2 dz

= λ1

∫
B(R+1)r\BRr

∣∣∇T vx(z)
∣∣2 dz + λ2

∫
B(R+1)r\BRr

∣∣∇T vx(z)
∣∣2 dz

≤ 2

n∑
i=2

λi

∫
B(R+1)r\BRr

|∇vx(z) · vi|2 dz

= 2n

∫
B(R+1)r\BRr

∫
Elxr (x)

[(z −Ψx(y)) · ∇vx(z)− pvx(z)]
2 dµ (y) dz

Observe now that for every y ∈ Br(x) I’ve |y − x|x , |y − x|y < Lr for some constant
L depending only on n, k,Λ, thus

Elx(R+1)r (x) ⊆ Elx(R+1+L)r (y) ⊆ Ely(1+at)(R+1+L)r (y)

ElxRr (x) ⊇ Elx(R−L)r (y) ⊇ Ely(1−bt)(R−L)r (y)

if |y − x| ≤ t.
For the sake of clarity I set Ât,R = (1 + at)(R + 1 + L), B̂t,R = (1− bt)(R − L)

when R > L. Consequently, for every y ∈ Elxr (x) ∩ Kv∫
B(R+1)r\BRr

[(z −Ψx(y)) · ∇vx(z)− pvx(z)]
2 dz

≤
∫
Ely

Ât,Rr
(y)\Ely

B̂t,Rr
(y)

[[w − x− (y − x)] · ∇v(w)− pv(w)]2 detA(x)−1/2 dw

=

∫
BÂt,Rr\BB̂t,Rr

[z · ∇vy(z)− pvy(z)]
2 det

[
A(x)−1/2A(y)1/2

]
dz

≤ 2

∫
BÂt,Rr\BB̂t,Rr

[
z · ∇vy(z)− I

(
vy, B̂t,Rr

)
vy(z)

]2
det
[
A(x)−1/2A(y)1/2

]
dz

+ 2

∫
BÂt,Rr\BB̂t,Rr

[
I
(
vy, B̂t,Rr

)
− p
]2

|vy(z)|2 det
[
A(x)−1/2A(y)1/2

]
dz.
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Suppose now B̂t,R > 6 and consider the first addendum:∫
BÂt,Rr\BB̂t,Rr

[
z · ∇vy(z)− I

(
vy, B̂t,Rr

)
vy(z)

]2
dz

≤ Ât,Rr

∫
BÂt,Rr\BB̂t,Rr

[
z · ∇vy(z)− I

(
vy, B̂t,Rr

)
vy(z)

]2
|z|

dz

Lemma 3.3.1
≤ rnH

(
vy, 2Ât,Rr

)
∆

2Ât,R

B̂t,R
(v, y)

by assuming I
(
v, y, 12Ât,r

)
≤M .

Set now
p =

1

µ [Elxr (x)]

∫
Elxr (x)

I
(
vz, B̂t,Rr

)
dµ (z)

by Jensen’s inequality∫
Elxr (x)

[
I
(
vy, B̂t,Rr

)
− p
]2

dµ (y)

≤ 1

µ [Elxr (x)]

∫
Elxr (x)

∫
Elxr (x)

[
I
(
vy, B̂t,Rr

)
− I

(
vz, B̂t,Rr

)]2
dµ (z) dµ (y)

≤
CM,t,R

µ [Elxr (x)]

∫
Elxr (x)

∫
Elxr (x)

[
|y − z|+∆

2(2B̂t,R+2)r
(B̂t,R/2−2)r

(vy)

+ ∆
2(2B̂t,R+2)r
(B̂t,R/2−2)r

(vz)

]
dµ(z)dµ(y)

≤ CM,R

∫
Elxr (x)

[
∆

2(2B̂t,R+2)r
(B̂t,R/2−2)r

(vz) + r

]
dµ (z)

and ∫
BÂt,Rr\BB̂t,Rr

|vy(z)|2 dz ≤
∫
B2Ât,Rr

|vy(z)|2 dz ≤ CrnH
(
vy, 2Ât,R

)
Finally I use (3.4.2) and proposition 3.2.1 to get

H
(
v, y, 2Ât,Rr

)
≤ CMH

(
v, x, 2Ât,Rr

)
when |y − x| ≤ r ≤ r̃M . Consequently,

β0,r (µ̃)
2
∫
B(R+1)r\BRr

∣∣∇T vx(z)
∣∣2 dz

≤ CM,t,RH
(
vx, 2Ât,R

)∫
Elxr (x)

∆
2Ât,Rr

(B̂t,R/2−2)r
(vz) dµ (z) + CMrµ [El

x
r (x)] (3.5.3)

provided 0 < r < t < r̃M,R, |y − x| < r and 6 < B̂t,R < Ât,R. Since I’ve assumed
diam (Ω) ≤ 1 I can assume without loss of generality that t = 1, hence, I’m able to
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define the following constants depending only on n, k,Λ and R

AR = max
{
2Â1,R, 2

(
2B̂1,R + 2

)
, R+ 2

}
BR =

(
B̂1,R

2
− 2

)
.

To conclude the proof of theorerm 3.5.2 I need only to prove the following
proposition

Proposition 3.5.3. For every R > 2,M > 0 exist CM,R, r̃M,R > 0 so that if
0 < r < r̃M,R and v ∈ Q (n, k,Λ) with I (v,ARr) ≤ M then for every orthonormal
basis ν1, ν2, ..., νn of Rn

D (v,ARr) ≤ CM,Rr
2−n

∫
B(R+1)r\BRr

∣∣∇T v(z)
∣∣2 dz

where ∇T v is defines as in (3.5.2).

Consequently, since I already know that I (v, x, r) ≥ C for every x ∈ Kv, the
inequality (3.5.3) directly proves the initial statement.

Proof. Assume the statement is not true for some R,M , so for every k ∈ N exist
vk ∈ Q (n, k,Λ), 0 < rk < k−1 with

r2−n
k

∫
B(R+1)rk

\BRrk

∣∣∇T vk(z)
∣∣2 dz ≤ D (vk, ARrk)

k

where ∇T vk is evaluated with respect to orthonormal basis νk1 , νk2 , ..., νkn depending
on k too. Up taking a subsequence I may assume νki → νi where νi is again an
orthonormal basis of Rn.

Let
uk(y) = R0

rk,AR
vk(y) =

vk (rky)√
H (vk, ARrk)

clearly H (uk, AR) = 1 and D (uk, AR) = I (uk, AR) ≤M so∫
BR+1\BR

∣∣∇Tuk(z)
∣∣2 dz ≤ M

k
→ 0

Now, up to a subsequence, uk converges in C1 on BR+1 to some harmonic
function u since AR ≥ R+ 2. Notice that ∇Tu ≡ 0 on BR+1 \BR, thus,

u(y) = Jay · ν1 + bK + J−ay · ν1 − bK
on all BR+1 for some a, b ∈ R. However, the C1 convergence implies u(0) = 0 and
∇u(0) = 0 so u ≡ 0, that is impossible because H (uk, R+ 1) ≥ CM,R for some
positive constant CM,R not depending on k.

Remark 3.5.4. I have limR→+∞BR = +∞ so I can assume BR arbitarily large.
The next tool to prove theorem 1.0.1 is related on almost homogeneous solutions

defined in the following way:
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Definition 3.5.5. Let v ∈ WQ (n, k,Λ), x ∈ Kv and η, r > 0, I say that v is
(η, r)-almost homogeneous in x if and only if

I (v, x, r)− I (v, x, r/2) ≤ η

Notice that when v is harmonic and homogeneous in x then it’s automatically
(η, r)-almost homogeneous for every η, r.

Remember now the definition of spine of a two-valued harmonic function I’ve
given in chapter 1. The next result allows us to characterize the spine of a two-
valued harmonic homogeneous function v in Rn.

Proposition 3.5.6. Let v be a two-valued harmonic homogeneous symmetric func-
tion. For every x ∈ Rn the following are equivalent:

1. x ∈ S(v);

2. I (v, x, r) is constant in r;

3. I (v, x) = I (v, 0).

where I (v, z) = limr→0+ I (v, z, r) and S(v) is the spine of v.

Proof. First to all notice that when v is harmonic the relaxed frequency I (v, x, r)
satisfies the same monotonicity properties of the original frequency N (v, x, r), also
v is homogeneous if and only if I (v, 0, r) is constant in r.

If x ∈ S(v) then I (v, x, r) = I (v, 0, r) so 1 implies 2 and 3. If 2 holds then exists
rn → +∞ such that R0

rn,1v → v0 in C1
loc so

|I (v, x)− I (v, 0)| = lim
n→+∞

|I (v, x, rn)− I (v, 0, rn)|

= lim
r→+∞

∣∣∣∣I (R0
rn,1v,

x

rn
, 1

)
− I

(
R0

rn,1v, 0, 1
)∣∣∣∣ = |I (v0, 0, 1)− I (v0, 0, 1)| = 0

and 3 is satisfied. If 3 holds then

lim
n→+∞

|I (v, x, rn)− I (v, x)| ≤ lim
n→+∞

|I (v, x, rn)− I (v, 0, rn)| = 0,

so I need to prove only that the statements 2 and 3 imply statement 1. In particular,
by 2 and 3 both y → v(y) and y → v(x+ y) are λ-homogeneous with λ = I (v, x) =
I (v, 0) and for every y ∈ Rn

v(x+ y) = 2λv

(
x+ y

2

)
= 2λv

(
x+

y − x

2

)
= v(x+ y − x) = v(y),

therefore, x ∈ S(v).

Lemma 3.5.7. For every δ,M > 0, R > 1 exist ηδ,M,R, r̃δ,M,R so that for every r <
r̃δ,M,R, v ∈ WQ (n, k,Λ) not identically zero, x ∈ Kv (ηδ,M,R, r)-almost homogeneous
in x and I (v, x, rR) ≤M exists w two-valued harmonic homogeneous function not
identically zero such that

GC1

(
R0

r,Rvx, w
)
≤ δ
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Proof. Fix δ,R,M suppose for every i ∈ N exist 0 < ri < 1/i, vi ∈ Q (n, k,Λ) so
that I (vi, ri) − I (vi, ri/2) ≤ 1/i and GC1

(
R0

ri,R
vi, w

)
≥ δ for every w two-valued

harmonic homogeneous nontrivial function.
But R0

ri,R
vi → w in C1

loc (BR) with w two-valued harmonic and I (w, 0, 1) =

N (w, 0, 1) ≤ N (w, 0, 1/2) so w is also homogeneous. Since I
(
R0

ri,R
vi, R

)
≤M for

every i function w can’t be identically zero on B1, contraddiction.

This lemma is what I need to prove another fundamental result

Theorem 3.5.8. For every M, ε > 0 there exist ηM,ε, r̃M,ε > 0 so that for every
0 < r < r̃M,ε, v ∈ Q (n, k,Λ) (ηM,ε, r)-almost homogeneous with I (v, 4r) ≤M then
at least one of the following sentences is true:

1. for every x ∈ Kv ∩B2r I get

|I (v, x, r)− I (v, r)| ≤ ε;

2. n ≥ 3 and exists V ≤ Rn (n−3)-dimensional vector subspace so that for every
y ∈ Kv ∩B2r if I (v, y, r)− I (v, y, r/2) ≤ ηM,ε then dist(y, V ) ≤ εr.

Proof. By contradiction exist ri < 1/i, vi ∈ Q (n, k,Λ) (1/i, ri)-almost homogeneous
with I (vi, 4ri) ≤ M , xi ∈ Kvi with |xi| < 2ri and for every V linear (n − 3)-
dimensional subspace exist yi,V ∈ Kvi with |yi,V | < 2ri so that

|I (vi, xi, ri)− I (vi, ri)| > ε

I (vi, yi,V , ri)− I (vi, yi,V , ri/2) <
1

i
|yi,V − ν| > εri ∀ν ∈ V

Set

ai =
xi
ri

bi,V =
yi,V
ri

wi = R0
ri,4vi

clearly wi → w uniformly in C1 on compact subsets of B4 (up to a subsequence) and
analogously ai → a, notice also that w is not identically zero. Lemma 3.5.7 ensures
existence of harmonic homogeneous not identically zero functions hi converging to
w too.

If dimS(hi) ≥ n − 2 for every i then dimS(w) ≥ n − 2 and since xi ∈ Kvi I
have a ∈ Kw, because w ̸≡ 2 J0K proposition 2.4.1 implies a ∈ S(w). Consequently
I (w, a, 1) = I (w, 0, 1), that’s impossible because |I (w, a, 1)− I (w, 1)| ≥ ε. In
particular n ≥ 3.

I can then suppose that GC1 (wi, h) ≥ δ for every h harmonic homogeneous with
dimS(h) ≥ n−2, then dimS(w) ≤ n−3. Let V ≥ S(w) with dimension exactly n−3
and take a subsequence so that bi,V → b, then |b− ν| ≥ ε for every ν ∈ V . However,
this is impossible because I (w, b, 1) = I (v, b, 1/2) and so b ∈ S(w) ≤ V .

Corollary 3.5.9. For every M, ε > 0 exist ηM,ε, r̃M,ε > 0 so that for every v ∈
WQ (n, k,Λ), x0 ∈ Kv, 0 < r < r̃M,ε so that v is (ηM,ε, r)-almost homogeneous in
x0 and I (v, x0, 4r) ≤M then at least one of the following is true:
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1. for every x ∈ Kv with |x− x0|x0
< 2r I’ve

|I (v, x, r)− I (v, x0, r)| ≤ ε,

2. n ≥ 3 and exists V ≤ Rn an (n − 3)-dimensional vector subspace so that for
every y ∈ Kv with |y − x0|x0

< 2r if v is (ηM,ε, r)-almost homogeneous in y
then dist (y − x0, V ) ≤ εr.

Proof of theorem 3.0.1

Now I’ve all the needed tools to prove theorem 3.0.1. First to all for every x ∈ Rn,
r > 0 set

Ξ(v, x, r) = sup
z∈Kv∩Br(x)

I (v, z, r) .

For every 0 < δ < 1 let N (n, δ) be the maximum number of n-dimensional disjoint
open balls of radius δ that can be contained by a ball of radius 1 in Rn. It’s trivial
to show that ⌊

n−1/2σ−1
⌋n

≤ N (n, σ) ≤
⌊
n1/2σ−1

⌋n
(3.5.4)

Proposition 3.5.10. For every M > 0 exist constants CM , r̃M > 0 so that for
every v ∈ WQ (n, k,Λ) not identically zero and for every x ∈ Ω, 0 < ρ < r̃M ,
0 < r < ρ/2 with B2ρ(x) ⊆ Ω if Ξ(x, ρ) ≤M then

|[Kv ∩Bρ(x)] +Br| ≤ CMr
2ρn−2 (3.5.5)

I first prove that proposition 3.5.10 implies theorem 3.0.1. Let

δK = dist(K, ∂Ω)/2

and set M̃v = maxx∈K∩Kv Ξ(v, x, δ). Then Ξ(x, ρ) ≤ CM̃ for every x ∈ K, ρ ≤ δK .
Set then M = CM̃ and ρ = min {δK , r̃M} by Vitali covering theorem you can

choose Bρ/3(xi) disjoint contained in Ω so that Bρ(xi) cover K. Then

|[Kv ∩K] +Br| ≤
N (n,ρ/3)∑

i

|[Kv ∩Bρ(xi)] +Br| ≤ CMN (n, ρ/3)r2ρn−2 ≤ CKr
2

where CK depends only on K,n, k,Λ.
By theorem 3.1.8 that proposition is automatically satisfied for M < C and

r̃M = r̃ because for every nontrivial two-valued function v with I (v, x, ρ) < M I
must have x /∈ Kv.

To prove proposition 3.5.10 I use this simple observation: if M̃ is the supremum
of every M that satisfies (3.5.5), and exists ξ positive depending only on M̃ and
not on M such that M + ξ satisfies (3.5.5) when also M satisfies it, then M̃ should
be equal to +∞ and the proposition is satisfied.

In the next steps I prove that for every M̃ > 0 extst r̃M̃ > 0 and ξM̃ > 0 so that
if M satisfies proposition 3.5.10 then M + ξM̃ satisfies it too for some r̃M+ξM̃

.
First I assume ξ = ξM̃ ≤ M̃ thus M + ξ ≤ 2M̃ . Let v ∈ WQ (n, k,Λ) with

Ξ(v, 0, ρ) ≤M + ξ where 0 < r < ρ/2, ρ < r̃M+ξ ≤ r̃M .
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For every x ∈ Kv ∩Bρ/2 set

rx =

{
inf {0 < t ≤ ρ |Ξ(v, x, t′) > M ∀t ≤ t′ ≤ ρ} if Ξ(v, x, ρ) > M

ρ if Ξ(v, x, ρ) ≤M

sx = max {rx, 2r}

and for every x with Ξ(v, x, ρ) > M (in particular, rx < ρ) set also yx ∈ Kv so that
|yx − x| ≤ sx and

I (v, yx, sx) ≥M

Notice also that sx ̸= 0 and if sx > 2r then sx = rx and so Ξ(v, x, sx) ≤M . By
Vitali’s covering lemma there exists {xi}i∈I finite collection of points in Kv ∩ Bρ/2

such that

• Bsxi/10
(xi) are disjoint;

• Bsxi/2
(xi) cover Kv.

Then since sx ≤ r̃M∣∣[Kv ∩Bρ/2

]
+Br

∣∣ ≤∑
i∈I

∣∣∣[Kv ∩Bsxi/2
(xi)

]
+Br

∣∣∣
≤
∑

sxi>2r

CMr
2sn−2

xi
+
∑

sxi=2r

ωn2
nrn

≤ [CM + 4ωn] r
2
∑
i

sxi
n−2

where I’ve used the assumption that proposition 3.5.10 is satisfied for M . If I prove
the existence of some CM̃ so that∑

i

sn−2
xi

≤ CM̃ρ
n−2 (3.5.6)

then proposition 3.5.10 is proved.
Let σ = σM̃ ∈ (0, 1) be a constant I’ll determine later, for the moment I only

assume that σ depends only on n, k,Λ and M̃ .

Definition 3.5.11. For every 1 > σ > 0 let A0
σ, A

1
σ, A

2
σ, . . . be a partition of {xi}i∈I

so that

A0
σ =

{
xi
∣∣ i ∈ I, sxi ≥ σ2ρ

}
x, y ∈ Aj+1

σ , |x− y| < sy
σ
, x ̸= y implies sx ≤ σ2sy

Proposition 3.5.12. When σ < 10−1 such partition exists and is made by at most
M(n, σ) sets.

Proof. Assume A0
σ = and i < j ⇒ sxi ≥ sxj , set x1 ∈ A1

σ and assume x1, x2, . . . , xi−1

have been assigned, I set xi ∈ Al
σ if and only if l is the minimum so that for every

j < i such that
|xi − xj | <

sxj

σ
, σ2sxj ≤ sxi (3.5.7)
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I have xj /∈ Al
σ.

In this way I’m able to build each Al
σ, also for every xi ∈ Al

σ and every j < i
satisfying (3.5.7) I’ve |xi − xj | ≤ sxi/σ

3. Since Bsxj /10
(xj) are disjoint with centers

contained in Bsxi/σ
3(xi) there are up to Nσ = N

[
n, 10−1

(
σ−3 + 10−1

)−1
]

of such
j, notice that this number doesn’t depend on i. Suppose now that xi ∈ Al

σ, this
means for every l′ < l exists j < i satisfying (3.5.7) with xj ∈ Al′

σ , and since only a
finite number of such xj could exists I must have l − 1 ≤ Nσ.

Take now xi, xj ∈ Al
σ with j < i then I have |xi − xj | ≥ sxj/σ or sxi < σ2sxj .

Then
• if |xi − xj | < sxj/σ then sxi ≤ σ2sxj automatically;

• if |xj − xi| < sxi/σ then |xj − xi| < sxj/σ because sxi ≤ sxj and so sxi <
σ2sxj again. But this is impossible because balls of radius sxj/10 are disjoint:

sxj

10
< |xi − xj | <

sxi

σ
< σsxj

Then |xi − xj | ≥ sxi/σ and Al
σ is a good partition.

The statement is so proved.

For every such 0 ≤ l ≤ Nσ + 1 I define the following measures

µl =
∑
x∈Al

σ

sn−2
x JxK

(remember that JxK is the Dirac measure at x ∈ Rn). Notice that proving (3.5.6) is
equivalent to prove:
Theorem 3.5.13. There exists CM̃ > 0, σ = σM̃ so that for every such l I’ve

µl
(
Bρ/2

)
≤ CM̃ρ

n−2

I first prove it for l = 0. This is trivial because H0
(
A0

σ

)
≤ N (n, 10−1σ2ρ/

(
2−1ρ

)
) =

Cσ = CM̃ . Remember that sx ≤ 2ρ so∑
x∈A0

σ

sn−2
x ≤ CM̃ρ

n−2

When l ≥ 1 theorem 3.5.13 is a direct consequence of
Theorem 3.5.14. There exists σ = σM̃ so that for every l ≥ 1, x ∈ suppµl,
sx < t ≤ σ2ρ I have

µl [Bt(x)] ≤ CM̃ t
n−2

Indeed take any A′ ⊆ Al
σ maximal subset so that |x− y| ≥ σ2ρ when x ̸= y in

A′. Notice that for every x ∈ A′ Bσ2ρ/2(x) ⊆ Bρ are disjoint (x ∈ Bρ/2) so

H0
(
A′) ≤ N

(
n, σ2/2

)
But A′ is maximal too, so for every x ∈ Al

σ exists x′ ∈ A′ so that x ∈ Bσ2ρ(x
′).

This means

µl
(
Bρ/2

)
≤
∑
x∈A′

µl
[
Bσ2ρ(x)

]
≤ H0

(
A′)CM̃σ

2(n−2)ρn−2 = CM̃ρ
n−2
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Proof of theorem 3.5.14

At this point I have l ≥ 1, σ a constant less than 1/10 that I should determine in
function of M̃ , Al

σ ⊆ Kv and radiuses sx > 0.
Define

slmin = min
x∈suppµl

sx

T l
max =

⌊
ln slmin − ln ρ

lnσ

⌋
where ⌊x⌋ is the greatest integer ≤ x. Since σ < 1 and sx ≤ σ2ρ I’ve T l

max ≥ 2 and
σT

l
max+1ρ < slmin ≤ σT

l
maxρ.

Let
t ∈

(
max

{
σk+1ρ, slmin

}
, σkρ

]
I want to prove theorem 3.5.14 for every such t by using induction on k ∈

{
2, 3, . . . , T l

max

}
.

I start with k = T l
max and slmin < t ≤ σkρ, choose any x ∈ suppµl with sx ≤ σkρ.

Consider any y ∈ Bσkρ(x) ∩ Al
σ if y ̸= x then |y − x| < σkρ = σk+1ρ/σ ≤ sx/σ,

from the very definition of Al
σ sy ≤ σ2sx that is impossible because

σk+1ρ < slmin ≤ sy ≤ σ2sx ≤ σk+2

so Bσkρ(x) ∩Al
σ = {x} which implies

µl [Bt(x)] ≤ µl
[
Bσkρ(x)

]
= sn−2

x ≤ σ(n−2)T l
maxρn−2 ≤ σ2(n−2)ρn−2

Suppose now I’ve proved it for some k < T l
max and every t ∈

(
slmin, σ

k+1ρ
]
, I

need to prove it for t ∈
(
σk+1ρ, σkρ

]
.

Take any x0 ∈ Al
σ so that t > sx0 (always exists such x0 because t > slmin), let

also τ = τM̃ > ξ be a constant that I’ll determine later. I set

W = suppµl ∩Bt(x0)

W 1 = {x ∈W | I (v, x, sx) < M − τ}
W 2 =W \W 1

and I reorder the elements of W 1 in such a way that W 1 = {pi}i∈N with spi ≥ spj
when i < j. Remember now that for every x ∈ Al

σ I’ve rx ≤ sx ≤ σ2ρ < ρ and
so exists yx so that I (v, yx, sx) ≥ M . Define z1 = yp1 and for every i ≥ 2 set by
induction

mi = min
{
j ∈ N

∣∣∣∣∣ ypj /∈
i−1⋃
h=1

Bsh (zh)

}
zi = ypmi

si = spmi

and notice that mi is strictly increasing: mi+1 > mi.
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In order to simplify our notation set also

Z = {zi}i
E =

⋃
zi∈Z

Bsi(zi)

remember now that µl Bt(x0) =
∑

x∈W 1∪W 2 sn−2
x JxK I introduce a modified version

of µl:
µl1 =

∑
zi∈Z

sn−2
i JziK + ∑

x∈W 2\E

sn−2
x JxK

I then prove the following properties of µl1:

Proposition 3.5.15. For every w ∈ suppµl1 I’ve I (v, w, ρ)−I (v, w, sw) ≤ τ+ξ ≤
2τ .

Proof. If w ∈ Z then w = ypi for some i and so

I (v, ypi , ρ)− I (v, ypi , spi) ≤M + ξ −M ≤ ξ

Instead if w ∈W 2 then I (v, w, sw) ≥M − τ and so

I (v, w, ρ)− I (v, w, sw) ≤M + ξ −M + τ ≤ ξ + τ

and the statement is so proved

Proposition 3.5.16. If w, p ∈ suppµl1 with w ̸= p then

max {sp, sw} ≤ 20 |p− w|

Proof. If w, p ∈ Z assume w = zi, p = zj with mi < mj , then i < j and by definition
of Z zj /∈ Bsi(zi) which implies |p− w| ≥ si ≥ sj .

If p, w ∈W 2, since balls Bsx/10(x) are disjoint I immediately get max {sp, sw} ≤
10 |p− w|.

So I need to prove only when p ∈ Z, w ∈ W 2 \ E. Then w /∈ Bsj (zj) where
zj = p = ypmj

by definition of E so |p− w| ≥ sj . Again because pmj ̸= w I get∣∣pmj − w
∣∣ ≥ sw/10 and so

sw ≤ 10
∣∣pmj − w

∣∣ ≤ 10
(∣∣∣pmj − ypmj

∣∣∣+ |w − zj |
)
≤ 10 (sj + |w − zj |) ≤ 20 |p− w|

Proposition 3.5.17. I’ve suppµl1 ⊆ B11t(x0)

Proof. First to all for every x ∈W with x ̸= x0 I’ve sx ≤ 10 |x− x0| ≤ 10t because
balls Bsx/10(x) are disjoint, notice that this is true even if x = x0 because I’ve
assumed sx0 < t. Then

|yx − x0| ≤ |yx − x|+ |x− x0| ≤ sx + |x− x0| ≤ 11t
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Lemma 3.5.18. I’ve µl[Bt(x0)] ≤ 2µl1[B11t(x0)].

Proof. Set for every zi ∈ Z

W zi =

[
W 2 ∩

(
Bsi(zi) \

i−1⋃
h

Bsh(zh)

)]
∪

{
w ∈W 1

∣∣∣∣∣ yw ∈ Bsi(zi) \
i−1⋃
h

Bsh(zh)

}

since E =
⋃

i

[
Bsi(zi) \

⋃i−1
h Bsh(zh)

]
and yw ∈ E =

⋃
i

[
Bsi(zi) \

⋃i−1
h Bsh(zh)

]
for every w ∈W 1 I’ve

W =W 1 ∪W 2 =
⋃
i

W zi ∪
(
W 2 \ E

)
µl[Bt(x0)] =

∑
i

µl (W zi) + µl
(
W 2 \ E

)
=
∑
i

µl (W zi) + µl1
(
W 2 \ E

)
so I need to prove our inequality only on each W zi .

Let ı̃ = mi be so that zi = ypı̃ with pı̃ ∈W 1 so

I (v, zi, si)− I (v, pı̃, si) ≥M −M + τ = τ

I’ve I (v, pı̃, 16si) ≤ M + ξ ≤ 2M̃ by assuming ξ ≤ M̃ (which doesn’t depend on
M). By corollary 3.5.9 with ε = 2τ I can assume 2ξ ≤ η2M̃,2τ

Corollary 3.5.9 then implies for every x ∈ Kv with |x− zi| < 4si and I have
I (v, x, 2si)− I (v, x, si) ≤ ξ then dist (x, V + zi) ≤ 2τsi for some (n−3)-dimensional
vector space V .

I want to prove that

W zi \ {pı̃} ⊆ V +B4σ2si(zi) (3.5.8)

so take any w ∈W zi \ {pı̃}, if w ∈W 2 ∩Bsi(zi) then

|w − pı̃| ≤ |w − zi|+ |ypı̃ − pı̃| ≤ 2si = 2spı̃

Remember now that W ⊆ Al
σ, w ̸= pı̃ and since σ < 1 this implies sw ≤ σ2si

then
|yw − zi| ≤ |yw − w|+ |w − zi| ≤

(
σ2 + 1

)
si ≤ 2si

for σ small and so by (3.2.7)

|I (v, yw, 2sw)− I (v, yw, sw)| ≤ I (v, yw, ρ)− I (v, yw, sw) + CM̃ (ρ− sw)

≤M + ξ −M + CM̃ r̃M̃ ≤ 2ξ

for r̃M̃ sufficiently small, so by corollary 3.5.9 yw ∈ V +B2τsi(zi). Assuming τ ≤ σ2

I get
w ∈ V +B2τsi+sw(zi) ⊆ V +B4σ2si(zi)

Assume now that w = pj ∈ W 1 because ypj /∈ Bsh(zh) for every h < i I get
ı̃ = mi ≤ j and so si = spı̃ ≥ spj = sw, in particular

|w − pı̃| ≤ |w − yw|+ |yw − zi|+ |ypı̃ − pı̃| ≤ sw + 2si ≤ 3si (3.5.9)
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and again sw ≤ σ2si and in the same way I get w ∈ V + B4σ2si(zi) so (3.5.8) is
proved.

Take now Q′ ⊆W zi \ {pı̃} any maximal subset so that{
Bσsi/20(p)

}
p∈Q′

are disjoint and set
π : z ∈ Rn → πV (z − zi) + zi

where πV is the orthogonal projection on V , then (3.5.8) implies |p− π(p)| ≤ 4σ2si
for every p ∈ Q′. Assuming σ ≤ 160−1 I get for every p ∈ Q′

Bσsi/40[π(p)] ⊆ Bσsi/20(p)
(3.5.9)
⊆ B3si(zi)

so Bσsi/40[π(p)] ∩ V + zi are disjoint too and so

H0(Q′) ≤ N (n− 3, σ/120)

Since Q′ is maximal I get

µl (W zi) ≤ sn−2
i +

∑
q∈Q′

µl
[
Bσsi/10(p)

]
I want to use induction hypothesis for t = σsi/10. First to all since p ∈ B3si(zi) I
have sp ≤ σ2si ≤ σsi/10 = t. In order to prove that t ≤ σk+1 remember that balls
Bsx/10(x) are disjoint so

si = spı̃ ≤ 10 |pı̃ − x0| ≤ 10t ≤ 10σk

so t ≤ σk+1 and by induction hypothesis

µl (W zi) ≤ sn−2
i +N (n− 3, σ/120)CM̃102−nσn−2sn−2

i ≤ 2sn−2
i

where in the last inequality I’ve used (3.5.4) by assuming

σ ≤ (n− 3)(3−n)/210n−2C−1
M̃

From that inequality follows immediately our statement because zi ∈ suppµli ⊆
B11t(x0).

Lemma 3.5.19. I’ve

µl1[Bs(p)] ≤ CM̃n
n/21010n−10σ2−2n41n−2sn−2

for every p ∈ suppµl1, sp/20 ≤ s ≤ 102σk.

Proof. Take any other q ∈ suppµl1 with |p− q| < s, let xq ∈ suppµl be so that{
q = yxq if q /∈ suppµl

q = xq if q ∈ suppµl
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Then if p ̸= q by proposition 3.5.16

|xp − xq| ≤ |xp − p|+ |p− q|+ |xq − q| ≤ sp + s+ sq ≤ s+ 40 |p− q| < 41s

I can then build an injective application q ∈ suppµl1 ∩ Bs(p) → xq ∈ suppµl ∩
B41s(xp), since sq = syxq = sxq I get

µl1[Bs(p)] ≤ µl[B41s(xp)]

Now:

1. if 41s ≤ σk+1 then assuming σ < 1/100 I get sp ≤ 20s ≤ 41s and by inductive
hypothesis

µl[Bs(p)] ≤ µl[B41s(p)] ≤ CM̃41n−2sn−2

2. if instead 41s > σk+1 then let
{
Bσk+1/10(w)

}
w∈suppµl

be an open cover of

suppµl ∩B41s(p) with Bσk+1/80(w) disjoint. If w ̸= xp then |w − xp| ≥ (sw +

sp)/10 so sw ≤ 20 · 41s ≤ 105σk, also by assumption sp ≤ 20s so that holds
for w = xp too.
If sw < σk+1 then by inductive hyphothesis for t = σk+1 and get

µl
[
Bσk+1/10(w)

]
≤ µl[Bσk+1(w)] ≤ CM̃σ

(k+1)(n−2)

otherwise sw ≥ σk+1 but since balls Bsw/10(w) are disjoint this would imply
suppµl ∩Bσk+1/10(w) = {w} and so

µl
[
Bσk+1/10(w)

]
= sn−2

w ≤ 105(n−2)σk(n−2)

Finally I get

µl1 [Bs(p)] ≤ µl [B41s(xp)] ≤ N
(
n, σk+1/(41 · 20s)

)
105(n−2)CM̃σ

k(n−2)

≤ µl [B41s(xp)] ≤ N
(
n, σk+1/(41 · 20 · 102σk)

)
105(n−2)CM̃σ

k(n−2)

≤ nn/2105nσ−n105(n−2)CM̃σ
k(n−2) = CM̃n

n/21010n−10σ2−2n41n−2sn−2

because σk+1 ≤ 41s.

The statement is so proved.

Now I’m able to to prove theorem 3.5.14. Choose any R > 0 so that constant BR

defined in theorem 3.5.2 satisfies B = BR ≥ 20C with C > 0 is a constant depending
only on n and Λ such that Elws (w) ⊆ BC1/2sµ and βx,r (µ) ≤ C̃β0,C1/2r

(
Ψ#

x µ
)

.
Recall that t ∈

(
σk+1, σk

]
and take any s ∈ (0, tρ/B], w ∈ suppµl1, then by theorem

3.5.2 I’ve
β0,s

(
Ψ#

wµ
l
1

)2
≤

CM̃

sn−2

∫
Elws (w)

[
∆As

Bs(v, z) + s
]
dµl1 (z)
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In particular I have

βw,s

(
µl1

)2
≤

CM̃

sn−2

∫
BCs(w)

[
∆As

Bs(v, z) + s
]
X[0,20Cs](sz) dµ

l
1 (z)

because by proposition 3.5.16

sz ≤ 20 |z − w| ≤ 20Cs ≤ Bs

for every z
Let w̄ ∈ suppµl1, T < σk/B and s < Tρ, then∫
BTρ(w̄)

βw,s

(
µl1

)2
dµl1 (w)

≤
CM̃

sn−2

∫
BTρ(w̄)

∫
BCs(w)

[
∆As

Bs(v, z) + s
]
X[0,20Cs](sz) dµ

l
1 (z) dµ

l
1 (w)

≤
CM̃

sn−2

∫
BTρ+Cs(w̄)

∫
BCs(z)

[
∆As

Bs(v, z) + s
]
X[0,20Cs](sz) dµ

l
1 (w) dµ

l
1 (z)

=
CM̃

sn−2

∫
BTρ+Cs(w̄)

µl1 [BCs(z)]
[
∆As

Bs(v, z) + s
]
X[0,20Cs](sz) dµ

l
1 (z)

≤ CM̃Cσ

∫
B(1+C)Tρ(w̄)

[
∆As

Bs(v, z) + s
]
X[0,20Cs](sz) dµ

l
1 (z)

where I’ve used 3.5.19 and the simple relation

w ∈ BTρ(w̄), z ∈ BCs(w) ⇒ z ∈ BTρ+Cs(w̄), w ∈ BCs(z)

Next I consider the oscillation of µ defined in the following way:

Oscσµ (w̄, t) =
∫
Bt(w̄)

+∞∑
j=0

βy,σjt (µ)
2 dµ (y)

and set
σ ≤ B

A

in this way I get
∆AσjTρ

BσjTρ
≤ ∆Bσj−1Tρ

BσjTρ

and notice that

N∑
j=0

∆Bσj−1Tρ
BσjTρ

=

N∑
j=0

[
JM (v,Bσj−1Tρ)− JM (v,BσjTρ) +Bσj−1Tρ (1− σ)

]
= JM (v,Bσ−1Tρ)− JM (v,BσNTρ) +Bσ−1Tρ

(
1− σN+1

)
≤ ∆ρ

BTσNρ
+ ρ
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because Bσ−1T ≤ σk−1 ≤ σ ≤ 1, in particular

∫
B(1+C)Tρ(w̄)

Nz∑
j=0

[
∆Bσj−1Tρ

BσjTρ
(v, z) + σjTρ

]
X[0,20CσjTρ](sz) dµ

l
1 (z)

≤
∫
B(1+C)Tρ(w̄)

[I (v, z, ρ)− I (v, z, sz) + 2ρ] dµl1 (z)

≤ CM̃τµ
l
1

[
B(1+C)Tρ(w̄)

]
for r̃M̃ sufficiently small, and by proposition 3.5.15 by assuming sw̄/20 ≤ (1+C)Tρ
I finally have

Oscσµ (w̄, Tρ) ≤ CM̃,στµ
l
1

[
B(1+C)Tρ(w̄)

]
≤ CM̃,στT

n−2ρn−2 (3.5.10)

Also if Tρ ≤ (1+C)Tρ ≤ sw̄/20 then suppµl1∩BTρ(w̄) = {w̄} so Oscσµ (w̄, Tρ) =
0 and (3.5.10) holds for every T < σk/B. Notice also that if T < σk/(2B) then
(3.5.10) holds for every w̄ because if suppµl1 ∩ BTρ(w̄) = ∅ then Oscσµ (w̄, Tρ) = 0,
otherwise let w′ ∈ suppµl1 ∩BTρ(w̄), then BTρ(w̄) ⊆ B2Tρ(w

′) and

Oscσ
µl
1
(w̄, Tρ) ≤ C Oscσ

µl
1

(
w′, 2Tρ

)
≤ CCM̃,στT

n−2ρn−2

with C depending only on n and Λ.
Assuming τ sufficiently small, in other words τ ≤ δσC

−1
σ,M̃

where δσ is the con-
stant in the following theorem:

Theorem 3.5.20 (Naber and Valtorta, [18, Remark 3.9]). There exists a constant
C > 0 depending only on n such that, for every σ > 0, exists a constant δσ > 0 that
satisfies the following property: for every finite collection of pairwise disjoint balls
{Bri(xi)}i on B2 ⊆ Rn and µ =

∑
i r

n−2
i JxiK if the following inequality holds

Oscσµ (x, η) < δση
n−2

for every Bη(x) ⊆ B2 then µ(B2) ≤ C.

I can apply that result to a rescaled version of µl1 to get µl1[Bt(w)] ≤ CM̃ t
n−2

µl[Bt(w0)] ≤ 2µl1[B11t(w0)] ≤ CM̃ t
n−2

and theorem 3.5.14 is proved.

Proof of theorem 1.0.1
From theorem 3.0.1 I’m able to prove the rectifiability of Kv by using the following
result:

Theorem 3.5.21 (Azzam and Tolsa, [3]). Let K ⊆ Rn be a Borel set with Hl(K) <
+∞ for some 0 < l ≤ n.

Then K is l-rectifiable if and only if∫ 1

0

βx,r
(
Hl K

)2
r

dr < +∞
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Consider any 0 < σ < 1, I get for every Borel finite measure µ

∫ 1

0

βx,r (µ)
2

r
dr =

∑
j

∫ σj

σj+1

βx,r (µ)
2

r
dr ≤

∑
j

βx,σj (µ)2
∫ σj

σj+1

(
σj

r

)n
1

r

=
1− σn

nσn

∑
j

βx,σj (µ)2

so if the right hand is finite for µ = Hn−2 Kv then Kv ∩ B1 is (n− 2)-rectifiable.
Remember also that for Hl-a.e. x ∈ K

2−l ≤ lim sup
r→0+

Hl[K ∩Br(x)]

ωlrl
≤ 1

I consider now the following sets

El =

{
x ∈ Kv ∩B1

∣∣∣∣Hn−2 [Kv ∩Br(x)] ≤ 2ωn−2r
n−2 ∀0 < r <

1

l

}
clearly El is an increasing sequence of sets with

⋃
lEl = (Kv ∩B1) ∪ N0 with

Hn−2(N0) = 0. I want to use theorem 3.5.21 to K = El in order to prove rec-
tifiability of Kv ∩B1.

Let µl = Hn−2 El, σ ∈ (0, 1) and q ∈ N so that σq−1 ≤ 1. Up to rescale v I’ve

+∞∑
j=q

∫
B1

βx,σj (µl)
2 dµl (x)

≤
∑
j

CM̃

σ(n−2)j

∫
B1

∫
B

Cσj (y)

[
∆Bσj

Aσj (v, z) + σj
]
dµl (z) dµl (y)

≤
∑
j

∫
B3/2

µl [BCσj (z)]
[
∆Bσj

Aσj (v, z) + σj
]
dµl (z)

≤ CM̃µl
[
B3/2

] (theorem 3.0.1)
< +∞

for σ sufficiently small.
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