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This paper applies recent research on structural damage description to earthquake-resistant design concepts. Based on the primary
design aim of life safety, this work adopts the necessity of additional protection aims for property, installation, and equipment.
This requires the definition of damage indicators, which are able to quantify the arising structural damage. As in present design,
it applies nonlinear quasistatic (pushover) concepts due to code provisions as simplified dynamic design tools. Substituting so
nonlinear time-history analyses, seismic low-cycle fatigue of RC structures is approximated in similar manner. The treatment will
be embedded into a finite element environment, and the tangential stiffness matrix K

𝑇
in tangential subspaces then is identified as

the most general entry for structural damage information. Its spectra of eigenvalues 𝜆
𝑖
or natural frequencies 𝜔

𝑖
of the structure

serve to derive damage indicators𝐷
𝑖
, applicable to quasistatic evaluation of seismic damage. Because detK

𝑇
= 0 denotes structural

failure, such damage indicators range from virgin situation 𝐷
𝑖
= 0 to failure 𝐷

𝑖
= 1 and thus correspond with Fema proposals on

performance-based seismic design. Finally, the developed concept is checked by reanalyses of two experimentally investigated RC
frames.

1. Introduction

The remarkable reduction of life losses in seismic events over
the last 75 years is clearly a merit of the enormous increase
in research on structural seismic safety. Consequently, due
to improvements of earthquake-resistant design concepts and
of modern seismic codes, for example, EC 8 [1], earthquakes
with thousands of fatalities until far into the 20th century
demand nowadays only few ones. But while in several
strong earthquakes (San Fernando 1971, Imperial Valley 1979,
Loma Prieta 1989, Northridge 1994, Tohoku 2011) life losses
remained limited, material losses raised dramatically with
each event. This trend cries for new seismic design concepts
beyond life protection, namely, a better control of earthquake
damage along the structures’ paths to seismic failure. This
requires a more intensive emphasis on structural seismic
damage, which by experience correlates with material losses
from installations and equipment.

Structural safety concepts compare actions 𝑆 on a par-
ticular structure with its resistance 𝑅, generally for code-
prescribed limit states. Structural failure is then defined as

failure = {𝑓} := {𝑅 ≤ 𝑆} . (1)

Code standards transform (1) into limit state conditions 𝑔(X)
for state vectors X, the latter as functions of the design
variables X

𝑑
:

𝑔 (X) = (𝛾
𝑅
)
−1
𝑅 (X) − 𝛾

𝑆
× 𝑆 (X) ≤ 0 for failure,

> 0 for survival,
(2)

in which the partial safety factors 𝛾
𝑆
of the actions 𝑆 and

𝛾
𝑅
of the resistance 𝑅 are due to national code regulations.

Obviously, (2) formulates structural safety by virtue of force
variables at failure point, a customary manner in structural
engineering.
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Such design concepts are also code prescribed in case of
seismic failure. But the explained extension of seismic design
aims requires a turn towards structural damage, wherein
the seismic damage formation—not force resistance 𝑅—has
to be prosecuted, until limited by final damage bounds.
Consequently, such more advanced protection aims like
reduction of material losses must be combined with the basic
safety objective of human life protection, which can be done
within techniques of performance-based seismic design [2].

Codified seismic design concepts [1] are generally based
on (linear elastic) response spectra. Codes favor the use
of quasistatic analyses instead of full time histories, corre-
sponding well with quasistatic constitutive laws [3] from
monotonic material tests. If linear elastic structural models
are applied, the evaluation of damage is impossible, since
design formats (2) are tailored towards force-limitations [4].
It is a usual design practice. Inclusion of damage always
requires consideration of material nonlinearity. The simplest
quasistatic seismic simulation technique then uses nonlinear
pushover analyses.

On the other hand, seismic loading creates low-cycle
fatigue processes in the materials involved, which after 20
to 1000 sufficiently intensive load cycles will lead to seismic
failure. Those damage paths to failure can be marked by
damage indicators [5], generally in dynamic settings. But
in structural earthquake-resistant design practice, time-his-
tory computations—especially with time-dependentmaterial
laws—are very rare. So this paper addresses the question
whether realistic estimates for such time-dependent struc-
tural damage evolutions can be approximated by nonlinear
quasistatic damage evaluation.

To approach these aims, the paper will be based on
damage-controlled limit states as proposed in performance-
based seismic engineering concepts [2]. It then depicts
pushover analyses, followed by description and time-inva-
riant approximation of low-cycle (RC) fatigue processes,
justifying a quasistatic treatment. The work will close with
necessary steps for quasistatic seismic damage evaluation,
followed by two applications.

2. Extended Seismic Protection Based on
Damage Indicators

Losses in strong seismic events, human as well as material
ones, depend on the seismically dismissed energy, the area’s
population density, the degree of economic development, and
the level of earthquake-resistant safety provisions. Buildings
have been primarily designed for protection of human lives,
but we will also be aware of material losses. As a consequence
of this, not only one seismic event (of 475 years of return
period) should be considered, but also the building’s func-
tionality has to be differentiated.

Figure 1 elucidates this idea in the well-known concept
of the Federal Emergency Management Agency (Fema) [2]
and of the Structural Engineers Association of California
(Seaoc) [6]. Such performance-based seismic design concept
centers the attention towards the quantification of seismic
damage in the design, assuming the latter to be correlated

Occurrence of
design earthquake
Frequently:

Occasionally:

Seldom:

Rare:

Performance levels of building/construction/plant:

Fully
operational Life safeOperational

Buildings of highest safety level
Protection aim of DIN 4149 and EC8

I II III IV

High occupancy
Emergency responseEa

rt
hq

ua
ke

 d
es

ig
n 

le
ve

l

Unacceptable performance

Near
collapse

Tw = 43a

Tw = 72a

Tw = 475a

Tw = 970a

Ordinary buildings

Figure 1: Recommended performance objectives for buildings [2].

Table 1: Limit states and damage levels according to Fema 273.

Structural limit states Damage levels Damage indices
ND No damage, virgin structure 0 0.00
IO Immediate occupancy I 0.05
ID Incipient damage 0.10
LS Life safety threatens II 0.20/0.25
CP Collapse prevention III 0.40/0.50
IC Incipient collapse IV >0.90

with material losses of installation and equipment.This basic
assumption of seismic damage correlation avoids modeling
of each installation/equipment element as attached structural
component in the computational model, but it remains an
empirical working hypothesis requiring the determination of
the generated seismic structural damage.

Figure 1 proposes in this sense different protection aims
of buildings in the columns, and seismic events of increasing
intensities in the rows, measured in return periods 𝑇

𝑤
[1].

In the diagonal, classes of structures are distinguished with
different design damages/vulnerabilities for various seismic
events. Table 1 explains the damage states in more detail,
introducing damage levels as follows [2].

(i) Level 0: no damage, virgin structure.
(ii) Level I: very limited structural damage, no risk of life-

threatening injury.
(iii) Level II: significant damage, low risk of life-

threatening injury.
(iv) Level III: substantial damage, significant risk of injury

from falling hazards.
(v) Level IV: collapse is imminent, highest risk of life to

occupants.

Fema documents, for example, [2, 6], order numerical values
to these damage levels; they also propose a normalization
from 0.00 (virgin) to 1.00 (seismic failure). But the interesting
fact is that no advice is given by Fema, which of the existing
damage indicators is preferred.

In the literature there exist a great variety of damage
indices, as can be seen from the survey in [5]. Most indi-
cators describe damage in local cross-sections; thus they
are unsuited for damage description of complete structures.
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But most important: All indices are rather empirical, and
none of them has a sound foundation from mathematics or
structural mechanics, as we see on the hybrid Park-Ang
index [7], which combines dissipated energies with inelastic
story drifts:

𝐷 =
𝛿
𝑚

𝛿
𝑓

+ 𝛽
𝐸
𝑟

𝐹
𝑦
𝛿
𝑓

. (3)

Herein 𝛿
𝑚
(𝛿
𝑓
) denotes the maximum occurring (bearable)

structural displacement. 𝐸
𝑟
is the total dissipated energy,

𝐹
𝑦
the structural yield resistance, and 𝛽 a parameter to

be determined by tests [7]. The combination of dissipated
energies and story drifts in (3) is really too empirical to be
applied in a theoretical sound earthquake-resistant design
concepts.

In Section 6 we will derive a set of damage indices𝐷
𝑖
, 𝑖 =

1, . . . , 𝑛, from inherent mechanical properties of a particular
structure’s path to seismic failure.These parameters will have
the following main properties serving as an optimal basis for
earthquake-resistant designs.

(i) They will be related to the entire structure.
(ii) They will describe the seismic low-cycle process with

a sufficient accuracy from the mechanical viewpoint.
(iii) They will be based on mechanics, for example, the

structural state variables of the seismic process.
(iv) They will range from 0.00 (undamaged virgin state)

to 1.00 (failure).

The authors have certain experienceswith indices𝐷
𝑖
for dam-

age problems other than seismic ones. The have found that
values around 0.6 separate economically structural repairs
from reconstruction. This holds especially for RC structures,
on which we will now concentrate.

3. Quasistatic Nonlinear Simulation

For application in present anti-seismic design concepts, the
further treatment will be quasistatic. Then for monotonic
deformation processes of materially nonlinear responding
structures, tangential subspace simulations up to failure are
well-established tools in present engineering. Because of
material degradation of the structural resistance 𝑅 during
earthquakes, seismic damage simulations are nonlinear pro-
cesses. To derive their governing response equations we
imbed the treatment for arbitrary structures into a FE-
environment, in which the nodal degrees of freedom are
arranged in the𝑚-dimensional vector field

V = {𝑉
1
𝑉
2

⋅ ⋅ ⋅ 𝑉
𝑖

⋅ ⋅ ⋅ 𝑉
𝑚
} , (4)

and the nodal forces, in dual order to V, in

P = {𝑃
1
𝑃
2

⋅ ⋅ ⋅ 𝑃
𝑖

⋅ ⋅ ⋅ 𝑃
𝑚
} . (5)

In this frame the structural response is governed by the
following nonlinear stiffness equation, with G as the vector
functional of the structural resistance 𝑅:

G (V, d) = P. (6)

This 𝑚-dimensional set of nonlinear algebraic equations
describes equilibrium/compatibility in terms of the internal
resistance G—with inelastic deformation (V) and damaging
(d) material model properties—due to an external force
process P. All nonlinear structural properties, anchored
generally in the constitutive laws on Gauss point level (see
Figure 2), are assumed to be fixed in required quality in G.

To derive the basis for incremental-iterative solution
strategies from (6), we decompose the external nodal kine-
matics V and loads P of a certain structural state into
variables V, P of a known fundamental state and their
unknown increments 𝛿V, 𝛿P, reaching from fundamental to
neighboring position:

V = V + 𝛿V, P = P + 𝛿P. (7)

Assuming now all increments as infinitesimally small varia-
tions, we gain from the first variation of (6) with respect to
the fundamental stateV,P the𝑚-dimensional set of algebraic
equation for the increments 𝛿V, 𝛿P; namely,

𝜕G
𝜕V

V
⋅ 𝛿V = 𝛿P. (8)

Substituting herein for the load variation 𝛿P = P − P, then
for P the left-hand side of the original stiffness relation (6),
we receive the tangential stiffness equation, which forms the
basis of finally applied iterative solution techniques:

K
𝑇
(V, d) ⋅ 𝛿V = 𝛿P = P − F

𝐼
(V, d) , (9)

with the vector 𝛿V of the increments of the global degrees of
freedom, and

K
𝑇
=

𝜕G
𝜕V

V
the tangential stiffness matrix, (10)

F
𝐼
= G (V, d) the internal equilibrium force vector.

(11)

Since K
𝑇
and F

𝐼
depend on the reached deformation V,

the tangential stiffness equation requires iterative solution
techniques for the increments 𝛿V. In (9), P represents the
total applied load at a certain solution point, and d stands for
the structural damage, later on detected as function of K

𝑇
.

Materially nonlinear structural analyses, here applied as
pushover analyses, can be carried out on rather different
levels of mechanical exactness and complexity: beams with
plastic hinges, with or without stiffness iterations, are the
least complex alternative; nonlinear multilevel (multiscale)
simulations form the other extreme [8].Thus different model
complexity may influence the simulation accuracy of (9) and
so the later seismic damage detection.

In order to detail (macroscopic) materially nonlinear
structural FE simulations [8], we return to a multilevel
(multi-scale) simulation concept as the most complex anal-
ysis scheme and distinguish the following four simulation
levels due to Figure 2.

(i) The first one is the structural level, on which all
variables of the tangential stiffness relation (9) are
defined.



4 Mathematical Problems in Engineering

V: = V +
+
V

+
V = K−1

T

+
P = K−1

T (P − FI) P

{
+
𝜀
+
𝜅

+
𝛾}

𝛾ij, +𝛾ij

V,
+
V

Structural
level

Finite element
level

hGauss point
level

Material point
level

KT(V), FI(V)

𝜀 = {𝛼(𝛼𝛽)𝛽(𝛼𝛽)𝛾𝛼}

+
𝜀 = {

+
𝛼(𝛼𝛽)

+
𝛽(𝛼𝛽)

+
𝛾𝛼}

𝜎 = {n𝛼𝛽m𝛼𝛽q𝛼}

{
+
n

+
m

+
q

+
𝜎 = 𝛼𝛽 𝛼𝛽 𝛼}

or e.g., {NMQ}

{
+
N

+
M

+
Q}

ij𝜎ij, +𝜎

{𝜀 𝜅 𝛾}or e.g.,

g1

g2
g3

a1
a1

a2
a2 a3a3

b

d

R
ij
mnC

mnkl+𝛾kl = C∗ijkl+𝛾kl =
+
𝜎kl

a1

a2
a3

x3

x2

x1

vp, vp+

∫𝛾𝑘𝑙
0

C∗mnkl(𝛾op )d𝛾kl = 𝜎ij

kpT(v
p), fp(vp)

Figure 2: Variables and analysis scheme of multilevel simulation technique.

(ii) The second one is the level of classical FEs (beams,
plates, and shells), connected with the previous one
by kinematic relations in the nodal points.

(iii) In the third level, with regard to materially nonlinear
actions and damage phenomena, the applied FEs—
see Figure 2—are equipped in theirGauss pointswith
a layered structure, such that each FE-Gauss point
consists of a chain of integration subpoints, one in
each layer.

(iv) Finally, at these subpoints on material level, the con-
stitutive relations including their nonlinear properties
and failure bounds are defined.

The material point level is generally the lowest macro-
scopic simulation level in design practice. It collects all
material information usually in a 3D (𝑥𝑖 : 𝑥1, 𝑥2, 𝑥3) or 2D
(𝑥𝛼 : 𝑥

1
, 𝑥
2) simulation space. Here suitable constitutive

laws of the material components have to be activated [9],
for incorporation in K

𝑇
and F

𝐼
. Applying beam, plate, or

shell elements, engineering simplifications for constitutive
laws and failure conditions are often in favor, particularly for
design purposes (see Section 8).

4. Nonlinear Pushover Analyses

We now return to seismic problems, that means to problems
of nonlinear dynamics, if the structure’s path until seismic

failure will be investigated. Instead of attempting to solve the
original nonlinear equation of motion

M ⋅ V̈ + G (V̇,V, d) = P (𝑡) , (12)

we concentrate for a shortmoment on the tangential subspace
to {V̈, V̇,V,P} and thus on the incremental tangential equa-
tion of motion:

M ⋅ 𝛿V̈ + C
𝑇
⋅ 𝛿V̇ + K

𝑇
⋅ 𝛿V = P (𝑡) − F

𝐼 (𝑡) . (13)

The derivation of (13) from the original nonlinear equation of
motion (12) can be found in detail in [10]. In (13), the vectors
{𝛿V̈, 𝛿V̇, 𝛿V} represent increments of the nodal equivalents,
namely, accelerations, velocities, and deformation degrees
of freedom. As a nonlinear differential equation in time 𝑡,
(13) would require time-history solution for an (spectrum-
compatible) acceleration functions 𝑎(𝑡), with stiffness itera-
tions in each time step.

In the present structural design practice, such complex
nonlinear time-history verifications are completely unusual.
National seismic codes generally require linear dynamic
analyses, if time-history simulations are selected; mostly
linear quasistatic formats are applied. Pushover analyses
serve since 30 years as approximate quasistatic but nonlinear
substitution.

Pushover analyses [4, 11] are based on standardized
design spectra of the respective site [12], generally prescribed
in the respective code, and on dynamic structural proper-
ties, namely, mode shapes as well as natural frequencies of
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the undamaged structure. A pushover analysis consists of the
following essential steps [13].

(i) We select a (code-given) design spectrum of seismic
accelerations for the building site.

(ii) The considered structure is represented by a suit-
able FE discretization, and all (nonlinear) material
properties on suitable structural levels (Figure 2) are
specified.

(iii) Execution of an eigenvalue analysis of the undamaged
linear-elastic structural model to receive critical natu-
ral frequencies (or periods) and corresponding mode
shapes. From them follow the modal participation
factors, which form the seismic load bases for each
mode shape in each structural point.

(iv) With all these information the design spectrum deliv-
ers maximum seismic modal excitation loads and
maximummodal pseudodeformations.

(v) Both groups of variables are then united by modal
superposition, if different mode shapes participate in
the seismic response.

(vi) These superposed seismic nodal loads are applied in
incremental manner on the structure for a quasistatic
nonlinear simulation process, the pushover analysis.
It stops after all seismic loads are applied, the struc-
tural model fails, or the deformation limit has been
reached.The gained stress resultants then are the basis
of the seismic design, as detailed in [12, 14].

In summary, pushover verifications are nonlinear qua-
sistatic approximations of a highly nonlinear dynamic load-
ing process. So one can never expect exact correspondence
of their solutions compared to those ones of nonlinear time-
history analyses. But from comparable simulations in the
literature it seems to hold true that pushover analyses deliver
mostly some upper bounds of the internal forces, not far
away from physical reality. In engineering design practice
these strong deficiencies of pushover concepts, mainly the
incognizance of the true alternating seismic actions towards
failure [11], and the ignorance of the structural stiffness
weakening are allowed, if nonlinearity will be taken into
account in a simple manner.

All values of dynamic structural stiffness used in this
approximate analysis stem from the undamaged (virgin)
structure. The fact that they will decrease during the seismic
damage process and may finally end up with those ones of
the deadly injured structure may confirm the suspicion that
the pushover concept delivers upper bounds of the design
variables, since generally inelastic mechanisms reduce the
design forces [4, 15].

In spite of all these deficiencies, pushover analyses will
be considered as the background of this present work for
time-independent seismic damage evaluation and to estimate
seismic vulnerabilities of structures under design. Before
detailing this we will now have a look into low-cycle fatigue
processes to also find for them a quasistatic approximation.

5. Quasistatic Damage Approximation of
Low-Cycle Fatigue

Seismic failure of RC structures or their components follows
a low-cycle fatigue process, in which after 20–100 stress-
strain alternations of sufficient intensity cross-sections will
fail. In modern research, such fatigue processes are treated as
complex phenomena on mesoscale with detailed description
of crack-formation, crack-closing, bond-slip, and internal
stress redistribution. In the design of structures, empirical
macroscopic models for low-cycle fatigue failure are applied;
the most modern ones are based on dissipated energies,
whereby close correspondence to monotonic failure of RC
specimen is aspired [16, 17].

Some energetic contribution has been modeled also in
the second contribution of the Park-Ang indicator (3), in
an extremely simplified and unsatisfying manner. Accepting
the properties of damage indices from Section 2, a much
better damage description is the 𝐷

𝑄
-index introduced in

[17]. This indicator consists solely of dissipated energies of
cyclic deformations, up to failure.𝐷

𝑄
has a sound theoretical

(macroscopic) basis and has been tested extensively in large-
scale experiments [17] on beams, columns, and beam-column
connections. Bending as well as normal and shear force
failure has been considered. For cyclic failure on one side of a
particular cross-section, the𝐷

𝑄
-index distinguishes primary

half cycles (energies of new deformation amplitudes) and
secondary half cycles (energies of redeformation amplitudes)
of the cyclic damage process, a distinction discovered by [18].
For all further𝐷

𝑄
-details the reader is referred to [5, 17].

In the following, we present a brief explanation for a
cross-section with double reinforcement under cyclic bend-
ing. In the moment-curvature (𝑀-𝜅) plane, as explained in
Figure 3, two damage contributions𝐷+

𝑄
for positive deforma-

tion and𝐷
−

𝑄
for negative deformation are defined as

𝐷
+

𝑄
=

𝐸
+

𝑃
+ 𝐸
+

𝑆

𝐸
+

𝑀
+ 𝐸
+

𝑆

, 𝐷
−

𝑄
=

𝐸
−

𝑃
+ 𝐸
−

𝑆

𝐸
−

𝑀
+ 𝐸
−

𝑆

, (14)

with 𝐸
+

𝑃
as complete dissipated energies of all primary half

cycles, 𝐸+
𝑆
as complete dissipated energies of all secondary

half cycles, and𝐸+
𝑀
as dissipated failure energy formonotonic

deformation, all for positive deformation. The minus sign
in (14) holds for negative deformation (reverse deformation
cycles). From these constituents, the final 𝐷

𝑄
-indicator is

defined as follows:

𝐷
𝑄
= 𝐷
+

𝑄
+ 𝐷
−

𝑄
+ 𝐷
+

𝑄
∗ 𝐷
−

𝑄
. (15)

This indicator can be formed successively during numerical
time-step integration or from recorded dynamic test data. As
observed from (14) and (15),𝐷

𝑄
is scaled such that the virgin

situation starts with 𝐷
𝑄

= 0, and failure is designated for
𝐷
𝑄

= 1. Figures 4 and 5 demonstrate these properties by a
recalculation of an elderly beam experiment from Berkeley
[5].

In quasistatic approximations, for example, pushover
analyses, all time-history integrations have to be avoided. So
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still for one single cross-section we set up the question if 𝐷
𝑄

can be approximated by a monotonic deformation process,
only using the backbone curve and its monotonic failure

energy? For proof, we transform one of the parameters from
(14) into an infinite Taylor-series:

𝐷
+

𝑄
=

𝐸
+

𝑃

𝐸
+

𝑀

+
𝐸
+

𝑆

𝐸
+

𝑀

(1 −
𝐸
+

𝑃

𝐸
+

𝑀

) − (
𝐸
+

𝑆

𝐸
+

𝑀

)

2

(1 −
𝐸
+

𝑃

𝐸
+

𝑀

)

2

+ ⋅ ⋅ ⋅ .

(16)

We observe thereby that the normalized monotonic energies
𝐸
+

𝑃
/𝐸
+

𝑀
, determinable just from quasistatic analyses, form the

first and dominant terms in𝐷
𝑄
, respectively. All the following

energy contributions in (16) obviously can be considered as
correction terms of higher order.

We now transform this recognition to complete struc-
tures. For design purposes, we are primarily interested in the
maximum seismic damage. The upper limit𝐷+

𝑄
= 1 of (16) is

formed for 𝐸+
𝑃
⇒ 𝐸
+

𝑀
, so a quasistatic failure analysis seems

well applicable to determine the upper limits of contributing
sectional damage. Consequently, estimation of structural
damage from pushover concepts can be transferred as an
upper limit estimate to the entire structures.

6. Time-Invariant Approximation of
Seismic Damage

During a seismic event of sufficient intensity, RC structures
will be weakened by inelastic actions and eventually fail. This
degradation process can bemonitored as a successive stiffness
reduction of the structural resistance𝑅, reflected in the vector
functional G (6). Since structural damage d depends also
on the forming inelastic deformation, the tangential stiffness
matrix K

𝑇
(10) is considered as the most suitable entry for

damage description [19, 20].
The damage measures, later defined in (18), had been

derived mainly for deterioration and life-duration problems
of structures, in which the time scale is enlarged compared
to physical time 𝑡, such that quasistatic treatment is justified.
Using time-independent pushover analyses as approximation
of nonlinear structural seismic processes, time is completely
deleted, such that quasistatic damage description is the only
alternative.

How is K
𝑇
connected with structural softening and fail-

ure? Figure 6 repeats the basic fact that for integer structures



Mathematical Problems in Engineering 7

Definition: structural integrity is defined by stable equilibrium
paths (for simplicity, structural instabilities are excluded)

Prerequisites for structural integrity:

KT: nonsingular det KT ≠ 0

all eigenvalues 𝜆i > 0, 1 ≤ i ≤ m

positive definite
+
VT · KT · > 0

+
V

[
+
V] = [K−1

T ] · ([P] − [Fi])[KT] · [
+
V] = [P] − [Fi]

Figure 6: Conditions for structural integrity.

Damage indicators:
Damage parameters

Measure of structural integrity

𝜆∗i : eigenvalues 𝜆i, 1 ≤ i ≤ m, of KT(V, d):

(KT(V, d) − 𝜆iI) · i = 0

The corresponding eigenvectors i, 1 ≤ i ≤ m, map the damage

formation on the external deformations

Di(V, d) =
𝜆∗i ( d = 0) − 𝜆∗i (V, d)

𝜆∗i ( d = 0)
= 1 −

𝜆∗i (V, d)
𝜆∗i ( d = 0)

Φ

Φ

Vo ,
Vo , Vo ,

𝜆1(V,d), 𝜆2(V,d), . . ., 𝜆i(V, d), . . ., 𝜆m(V, d)

Φ1(V,d), Φ2(V, d), . . ., Φi(V, d), . . ., Φm(V, d)

Figure 7: Definition of damage indicators.

K
𝑇
is regular and positive definite; thus all its (hypothetically)

transformed main diagonal elements are positive. In case of
structural failure, K

𝑇
gets singular, det K

𝑇
= 0 and thus at

least one main diagonal stiffness element vanishes. So K
𝑇

accompanies all quasistatic structural responses, also time-
independently approximated seismic ones, from structural
birth until final failure [9, 19–21].

Since K
𝑇
(generally) is quadratic and symmetric, it can

be transformed into a diagonal form, with the eigenvalues 𝜆
𝑖
,

𝑖 = 1, 2, . . . , 𝑚, as principal stiffness elements

K
𝑇
= diag {𝜆

1
𝜆
2

⋅ ⋅ ⋅ 𝜆
𝑖

⋅ ⋅ ⋅ 𝜆
𝑚
} . (17)

The diagonal matrix (17) can be used to form sets of damage
indicators𝐷

𝑖
, 𝑖 = 1, 2, . . . , 𝑚, as repeated in detail in Figure 7:

𝐷
𝑖
=
𝜆
𝑖
(V
0
, d = 0) − 𝜆

𝑖 (V, d)
𝜆
𝑖
(V
0
, d = 0)

= 1 −
𝜆
𝑖 (V, d)

𝜆
𝑖
(V
0
, d = 0)

.

(18)

From this definition we observe that the elements of 𝐷
𝑖
take

values between 𝐷
𝑖
= 0 for the undamaged state and 𝐷

𝑖
=

1 for the failure state. Obviously, these damage indicators
are able to denote properly all additional limit states from
Table 1. Further, they have been gained as inherent structural
mechanics properties of a considered structure, controlled by
its nonlinear quasistatic seismic response path.Obviously, the
𝐷
𝑖
have amuchmore sound foundation than all other damage

indicators, also that Park-Ang index (3).

As explained in Figure 7, damage indicators (18) are
defined by using the eigenvalues of K

𝑇
as state variables of a

certain deformed structural situation. For evaluation, in each
damage state these eigenvalues have to be solved from the
eigenvalue problem

[K
𝑇 (V, d) − Λ] ⋅Φ𝜆 = 0. (19)

Herein, Λ forms a (𝑚∗𝑚) diagonal matrix of all eigenvalues
𝜆
𝑖
, the actual principal stiffness elements of the structure.Φ

𝜆

assembles the rows of eigenvectors (eigenmode shapes) ofK
𝑇
.

If we remember orthogonality ofΦ
𝜆
, we find from (19) by left

multiplication withΦ𝑇
𝜆

Φ
𝑇

𝜆
Φ
𝜆
= I ⇒ Λ = K

𝑇
= Φ
𝑇

𝜆
K
𝑇 (V, d)Φ𝜆, (20)

that the matrix Λ describes physically an energy. Because
K
𝑇
is defined in the tangential subspace of the increments

{𝛿V, 𝛿P}, Λ can be interpreted as virtually dissipated energy
at the point of K

𝑇
.

Classical nonlinear structural dynamics offers a highly
efficient extension of (17), (19) for practical damage detection,
in numerical simulation as well as in physical testing. There-
fore we superpose upon an actual nonlinearly deformed, qua-
sistatic state of response (P,V, d) of the considered structure
an infinite set of infinitesimally small harmonic vibrations

𝛿P = 0: (K
𝑇
− 𝜔
2

𝑖
M) ⋅ 𝛿V = 0, 𝑖 = 1, . . . 𝑚. (21)
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Figure 8: Dimensions and material specifications of RC test frame.

Studying the (squared) frequency spectrum 𝜔
2

𝑖
as a solution

of the eigenvalue problem (21), the latter delivers for zeros of
K
𝑇
the statement 𝜔2

𝑖
= 0, identical with the quasistatic failure

condition det K
𝑇
= 0. So for M distributed evenly over the

structure, eigenfrequencies 𝜔
𝑖
are likewise well suited as the

eigenvalues 𝜆
𝑖
in (17) for damage detection:

[K
𝑇 (V, d) −ΩM] ⋅Φ

𝜔
= 0. (22)

HereinΩ forms a (𝑚∗𝑚) diagonal matrix with the (squared)
frequency spectrum 𝜔

2

𝑖
on its main diagonal. The (𝑚 ∗ 𝑚)

square matrix Φ
𝜔
collects the rows of all 𝑚 vibration mode

shapes. From (21) we derive by left-hand multiplication with
Φ
𝑇

𝜔

Φ
𝑇

𝜔
MΦ
𝜔
= I ⇒ Ω = diag {𝜔2

𝑖
} = Φ

𝑇

𝜔
K
𝑇 (V, d)Φ𝜔, (23)

interpreting 𝜔2
𝑖
as virtually dissipating energies of the modal

forces (K
𝑇
Φ
𝜔
) along the virtual vibration mode shapes Φ𝑇

𝜔
.

An analogous energy interpretation has just been drawn
from (20). The use of eigenfrequencies 𝜔

𝑖
for evaluation of

damage indicators compared to eigenvalues 𝜆
𝑖
is advanta-

geous, because of generally less problems in setting up (22)
compared to (19). This substitution holds true, because both
matrices Λ andΩ can be related to each other by:

Λ = Φ
𝑇

𝜔
MΦ
𝜆
ΩΦ
−1

𝜆
Φ
𝜔
. (24)

In the literature, alsomore complex functions of the eigenval-
ues 𝜆
𝑖
are recommended for formation of damage indicators

[6] due to the definition on top of Figure 7.
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Figure 9: Load-deflection diagram for horizontal loading𝐻.

7. Example 1: Damage Formation in
RC Test Frame

We now demonstrate the application of the derived damage
concept by hand of a RC test frame, the testing of which had
been published in detail 40 years ago [22]. The test frame
as well as all necessary geometrical and material data of this
experiment is reprinted in Figure 8.

The 2-hinge test frame carries three equal loads 𝑃/3 in
the quarter-points of the girder, and one horizontal load 𝐻

on the girder due to Figure 9. For an anti-seismic design,
the evaluation of 𝐻 from a seismic design spectrum due
to the steps in Chapter 4 is straight forward. In one of the
experiments [22], the test frame first was predamaged by a
total vertical loading up to 𝑃

∗

0
= 26.5 kN. Maintaining this

load then the horizontal (pushover) load 𝐻 as sketched in
Figure 9 has been applied and increased until failure of the
structure at𝐻 = 14.2 kN.
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The load-deformation diagram P(V, d) of the second
loading phase, the application of the horizontal force, in
Figure 9 plots 𝐻 against the horizontal girder displacement
𝑢. Therein both the experimentally monitored and the com-
puted deformations are plotted, the latter evaluated by the
described multilevel-simulation concept in a complicated
nonlinear analysis. Both curves show sufficient correspon-
dence for encouragement of the damage simulation.

Those results are depicted in Figure 10 for both damage
variables 𝐷

1
, 𝐷
2
, based on the eigenvalues 𝜆

1
, 𝜆
2
. The

computed damage variables𝐷
1
,𝐷
2
are plotted there in the left

part of the Figure as functions of the vertical loading, then in
the right part as functions of the horizontal (pushover) load
𝐻. Details of the complicated nonlinear load-deformation
process can be observed much clearer by hand of the damage
evolution on this latter Figure. Obviously, 𝐷

1
describes the

structure’s path to final failure, although its effect under
vertical loading is less than 𝐷

2
. At the point of the extreme

load 𝐻, structural equilibrium could be iterated for the last
time, terminating the final damage evolution in Figure 10(b)
somewhere between 0.90 and 1.00, close to the theoretical
unit value.

8. Example 2: Damage Formation of
a 2-Story RC Frame

A 2-story RC frame will serve as second example, the testing
of which had been described in [23]. Figure 11 depicts all

necessary dimensions, with equal cross-sections of both
beams and columns. In this example, the frame model
applied in the nonlinear simulation is a simple beam/column
structure. The concrete strength corresponds to C25/30, and
the reinforcement, 4 bars of 20mmdiameter on each side, has
the European steel quality BSt 500.

To demonstrate the general applicability of the derived
damage concept, this example will use an extremely simple,
straightforward design analysis, without any sophisticated
nonlinear simulation techniques. It will again show only the
nonlinear pushover analysis and omit any seismic evaluation
of the applied horizontal load 𝐻. The analysis is carried out
as in simple design practice by the use of a linear elastic frame
program and successive load application on the structure. At
each structural position reaching the yield moment of the
beam model, a plastic hinge is introduced, and the further
analysis is carried out with this reduced redundant structure.
The stiffness reductions of the progressively cracking RC
members, on their way to reinforcement yielding, are consid-
ered by iterations. As a foundation of thismodeling, Figure 12
shows the 𝑀-𝜅 diagrams, purely based on the (monotonic)
prescriptions in [3].

The gained load-displacement curve is compared in
Figure 13 with the global backbone curve of the cyclic swell
test [23] demonstrating excellent agreement. The damage
evolution on Figure 14 uses eigenfrequencies, evaluated for
each different structural systems of each load step. Because
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of the applied plastic hinge model, the analysis is straight-
forward by standard software. Looking at Figure 14, we can
clearly distinguish the brief uncracked phase with 𝐷 ≡ 0

from the further primary cracking and crack-widening
phases. Close to failure at 𝐷 = 1, we observe the expected

rapidly successive formation of plastic hinges, transforming
the originally resistant structure into a kinematic chain.

9. Summary

In the center of present seismic design codes stands the
safe protection of human lives, but with growing building
investments, installation, and equipment also viewpoints of
property protection increase. As proposed by Fema Stan-
dards [2], such extension requires the prosecution of a
structure’s damage path by damage indicators, which are able
to scale the arising structural damage.

The present manuscript derives such a damage indicator,
based on dissipated energies of virtual mode shapes/modal
forces, and is connected to the structural response by the
tangential stiffness matrix K

𝑇
during the nonlinear solution

process. Thereby it adopts the quasistatic seismic safety
concepts of most design codes and proposes for damage
evaluation the seismic load-path evolution of the tangential
stiffnessK

𝑇
as well known from pushover analyses. Using the

evolution of its eigenvalues or natural frequencies, the paper
derives damage indicators, which fulfill all requirements from
[2] and are—as accompanying data fields of design analyses—
relatively easy to determine. The present examples should be
further extended, for instance, to new structural types, in
order to get more general experience with the applicability
of the proposed damage measures.

Seismic damage is known as a low-cycle fatigue process,
which is approximated in this manuscript in a quasistatic
manner. Similar damage indicators have been successfully
applied to the analysis of longtime structural deterioration
[9, 19] and also to high-cycle fatigue structural phenomena
[24].
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[18] A. Ötes, “Zur werkstoffgerechten Berechnung der Erdbeben-
beanspruchung in Stahlbetontragwerken,” Tech. Rep. 25, Insti-
tute f. Reinforced Concrete, TH Darmstadt, 1985.

[19] W. B. Krätzig and Y. S. Petryna, “Fundamental tools for
structural damage indication and lifetime management,” in
Proceedings of the 2nd International Conference on Lifetime-
Oriented Design Concepts (ICLODC ’04), F. Stangenberg et al.,
Ed., SFB 398, Ruhr-University, Bochum, Germany, 2004.

[20] Y. S. Petryna, “Structural degradation, reliability and lifetime
simulations of civil engineering structures,” in Proceedings of the
9th International Conference on Structural Safety and Reliability
(ICOSSAR’05), Rome, Italy, G. Augusti, G. I. Schueller, and M.
Ciampoli, Eds., Millpress, Rotterdam, The Netherlands, 2005.

[21] Y. S. Petryna and W. B. Krätzig, “Compliance-based structural
damagemeasure and its sensitivity to uncertainties,”Computers
and Structures, vol. 83, no. 14, pp. 1113–1133, 2005.

[22] G. C. Ernst, G. M. Smith, A. R. Riveland, and D. N. Pierce,
“Basic reinforced concrete frame performance under vertical
and horizontal loads,” American Concrete Institute Journal, vol.
70, no. 4, pp. 261–269, 1973.

[23] F. J. Vecchio and M. B. Emara, “Shear deformations in rein-
forced concrete frames,” ACI Structural Journal, vol. 89, no. 1,
pp. 46–56, 1992.

[24] Y. S. Petryna, D. Pfanner, F. Stangenberg, and W. B. Krätzig,
“Reliability of reinforced concrete structures under fatigue,”
Reliability Engineering and System Safety, vol. 77, no. 3, pp. 253–
261, 2002.




