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Equations for Reactive Flows∗

Robert Altmann† Philipp Schulze‡

January 8, 2016

Abstract

We consider the problem of finding an energy-based formulation of the Navier-Stokes
equations for reactive flows. These equations occur in various applications, e. g., in com-
bustion engines or chemical reactors. After modeling, discretization, and model reduction,
important system properties as the energy conservation are usually lost which may lead to
unphysical simulation results. In this paper we introduce a port-Hamiltonian formulation
of the one-dimensional Navier-Stokes equations for reactive flows. The port-Hamiltonian
structure is directly associated with an energy balance, which ensures that a temporal
change of the total energy is only due to energy flows through the boundary.

Keywords: Reactive Flow, Port-Hamiltonian Formulation, Navier-Stokes Equations, Hamil-
tonian Formulation, Energy-Based Modeling

AMS(MOS) subject classification: 37K05, 76V05, 80A32

1 Introduction

Model-based optimization and control methods are important tools in many application areas.
These come with a common need for low-dimensional models which can be evaluated in a
short time, but still capture the main features of the dynamical behavior of the considered
system. In this context, model reduction techniques have become very popular and have been
applied to various fields of application including fluid dynamics, electromagnetic dynamics,
structural mechanics, and chemical reactions, see for example [1, 3, 4, 12]. All these systems
have in common that they are based on physical laws, as for instance conservation of energy.
However, when applying standard model reduction methods, this conservation property is lost
in general, leading to reduced-order models which do not reflect this physically meaningful
property. One way of preserving energy conversation in all stages from the governing partial
differential equations (PDEs) to the reduced order model is the port-Hamiltonian formulation
of the system equations. The corresponding structure guarantees important properties such
as passivity and stability. Consequently, preservation of this structure automatically leads to
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preservation of these properties. Thus, by making use of the port-Hamiltonian structure, we
may obtain a reduced-order model which is stable and passive.

The contribution of this paper is the port-Hamiltonian formulation of the one-dimensional,
compressible Navier-Stokes equations for reactive flows. First, we present the Hamiltonian
structure of the governing equations with vanishing boundary energy flows. Subsequently,
by allowing energy flow through the boundary, we obtain a port-Hamiltonian system, which
extends the Hamiltonian formulation by boundary ports.

Port-Hamiltonian systems provide an extension of classical Hamiltonian systems by intro-
ducing ports which account for energy exchange with the environment and for energy loss due
to dissipation [27]. The port-Hamiltonian structure guarantees stability and passivity and,
furthermore, it is invariant under interconnection. This means that the interconnection of two
or more port-Hamiltonian systems (by their ports) leads to an overall system which is again
port-Hamiltonian and, thus, exhibits the related properties. More details about the analysis
and properties of port-Hamiltonian systems may be found in [10, 27]. The port-Hamiltonian
formulation provides a generic modeling approach, which has already been applied to various
fields of application such as acoustics [26], electrical circuits [5], electro-mechanical systems
[6], hydraulic systems [13], robotic systems [29], or plasma dynamics [30]. Also, the thermo-
dynamical behavior of chemical reactions has been formulated as port-Hamiltonian system,
see for instance [8, 22, 32]. However, these efforts have in common that they do not account
for the fluid dynamics.

A Hamiltonian formulation for an ideal, compressible fluid has been presented in [15, 16].
This has also been extended to the dissipative case in [14] by using the notion of a metriplectic
structure, which corresponds to a Hamiltonian system with an additional negative semi-
definite part accounting for the dissipation. In this context, the metriplectic structure may be
seen as a first step towards port-Hamiltonian systems. However, neither the Hamiltonian nor
the metriplectic structure accounts for a non-zero energy flow through the boundary. For the
ideal fluid, boundary flows have been integrated in [28] leading to an implicit port-Hamiltonian
representation by means of a Dirac structure. In [23] the dynamics of viscous, isentropic flow
with magnetohydrodynamic coupling has been formulated as a port-Hamiltonian system with
boundary control. Recently, a Hamiltonian formulation of the full Navier-Stokes equations
has been presented in [11]. Nevertheless, an energy-based formulation of the full compressible
Navier-Stokes equations with non-vanishing boundary conditions is still missing.

In this paper, we present a port-Hamiltonian formulation for the full Navier Stokes equa-
tions for reactive flows accounting for non-zero boundary energy flows by corresponding
boundary ports. This formulation is on the level of the PDEs and, thus, infinite-dimensional.
To obtain a corresponding finite-dimensional approximation, structure-preserving discretiza-
tion methods have to be considered. However, this is not within the scope of this paper.
Preceding efforts in this topic may be found in [7, 17, 21]. Furthermore, there have been
some efforts for structure-preserving model reduction techniques of linear and nonlinear port-
Hamiltonian systems, see for instance [2, 9, 18, 19, 20].

This paper is structured as follows. We begin with the derivation of the mathematical
model (Section 2), before we present a Hamiltonian formulation of the governing equations
where vanishing boundary energy flows are assumed (Section 3). The main contribution is
presented in Section 4 where we extend the Hamiltonian formulation to the case of non-zero
boundary flows resulting in a port-Hamiltonian formulation of the governing equations. The
energy balance induced by the port-Hamiltonian formulation reveals that the energy of the
system only changes due to energy flows through the boundary ports. Finally, we summarize
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Table 2.1: Special quantities for conservation of mass, momentum, energy, and species [31].

conservation of F f Φf qf

mass m ρ ρv 0

momentum mv ρv ρv2 + p+ τ 0

energy me ρe ρev + (p+ τ) v + ϕ 0

species myi ρyi ρyiv + ji M̃iωi

the results and give an outlook to future challenges and possible research directions.

2 Mathematical Model

We consider the compressible Navier-Stokes equations for reactive flows in a one-dimensional
spatial domain Ω = (a, b) and time domain (0, tend) with a, b, tend ∈ R, b > a, and tend > 0.
These may be derived from a generic conservation law, cf. [31], which is reflected by the PDE

∂tf (x, t) + ∂xΦf (x, t) = qf (x, t) + rf (x, t) . (2.1)

This equation describes the change of the conserved generic quantity

F (t) =

b∫
a

f (x, t) dx

by generic fluxes Φf , production qf , and long-range processes rf . In the following, we neglect
the influence of the long-range processes, since their effect is marginal in many applications.
From the generic equation (2.1), one can derive governing equations for the conservation of
mass, momentum, energy, and species by replacing the generic quantities by the specific ones
stated in Table 2.1. The resulting governing equations are summarized as

∂tρ+ ∂x (ρv) = 0, (2.2a)

∂t (ρv) + ∂x
(
ρv2 + p+ τ

)
= 0, (2.2b)

∂t (ρe) + ∂x (ρev + (p+ τ) v + ϕ) = 0, (2.2c)

∂t (ρyi) + ∂x (ρyiv + ji) = M̃iωi (2.2d)

with density ρ, velocity v, pressure p, shear stress τ , specific total energy e, heat flux density
ϕ, mass fraction yi of the ith species, diffusion flux density j, molar masses M̃i, and molar
rates of formation ωi. Here, we consider N ∈ N different species and, thus, (2.2d) with
i = 1, . . . , N represents N equations.

Since we neglect the influence of long-range processes, we also assume the change of
potential energy to be zero. Thus, we may express the total energy ρe as the sum of internal
energy ρu and kinetic energy ρv2/2. Using this relation and equation (2.2b), we can derive
the following conservation law for the internal energy from the conservation law of the total
energy (2.2c) as

∂t (ρu) + ∂x (ρuv + ϕ) + (p+ τ) ∂xv = 0
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with specific internal energy u [31]. By applying the product rule, we may write the governing
equations as

∂tρ+ ∂x (ρv) = 0, (2.3a)

∂tv + v∂xv +
1

ρ
∂x (p+ τ) = 0, (2.3b)

∂tu+ v∂xu+
1

ρ
(p+ τ) ∂xv +

1

ρ
∂xϕ = 0, (2.3c)

∂tyi + v∂xyi +
1

ρ
∂xji =

1

ρ
M̃iωi. (2.3d)

Further, u may be expressed as a function of ρ, the specific entropy s, and y1, . . . , yN . The
Gibbs equation

du = Tds− pd

(
1

ρ

)
+

N∑
i=1

µidyi (2.4)

describes the change of u with respect to changes of ρ, s, and y1, . . . , yN . Here, T denotes the
temperature and µi the chemical potential of the i-th species [32]. With (2.4) we can express
equation (2.3c) in terms of the entropy, namely

∂ts+ v∂xs+
τ

ρT
∂xv +

1

ρT
∂xϕ+

N∑
i=1

µi

ρT

(
M̃iωi − ∂xji

)
= 0,

where we already have used the relations

T = ∂su, p = ρ2∂ρu, and µi = ∂yiu, (2.5)

which follow from (2.4). Finally, the governing equations are closed based on the closure
equations of

Fourier’s law: ϕ = −κ∂xT, (2.6)

Newtonian fluid: τ = −µ̂∂xv, (2.7)

Fick’s law: ji = −ρDi∂xyi, (2.8)

where κ denotes the thermal conductivity, µ̂ the dynamic viscosity (scaled by the factor 4/3
to account for compressible flow, cf. [31]), and Di the mass diffusivity of the ith species.
Fourier’s law as stated in (2.6) is based on the assumptions of a vanishing Dufour effect and
negligible heat flux due to diffusion, cf. [31, 32]. Furthermore, we assume that the effects
of thermal diffusion and pressure diffusion may be neglected which leads to Fick’s law as in
(2.8) [31].

Using (2.5) we can summarize the governing equations as

∂tρ+ ∂x (ρv) = 0, (2.9a)

∂tv + ∂x

(
v2

2
+ ρ∂ρu+ u

)
+

1

ρ
∂xτ − T∂xs−

N∑
i=1

µi∂xyi = 0, (2.9b)
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∂ts+ v∂xs+
τ

ρT
∂xv −

1

ρT
∂x (κ∂xT ) +

N∑
i=1

µi

ρT

(
M̃iωi + ∂x (ρDi∂xyi)

)
= 0, (2.9c)

∂tyi + v∂xyi −
1

ρ
∂x (ρDi∂xyi) =

1

ρ
M̃iωi (2.9d)

with known constants M̃i and known functions Di, ωi, u, µ̂, T , κ, µi which are dependent on
ρ, s, and y1, . . . , yN .

For the formulation of the governing equations as Hamiltonian or rather port-Hamiltonian
system, we also need the weak formulation (in terms of the space derivatives). For this, we
multiply the equations in (2.9) by a sufficiently smooth test function φ and integrate by parts
in order to remove the second derivatives of T , v, and y1, . . . , yN . However, this introduces
additional boundary terms and leads to

⟨∂tρ, φ⟩ = ⟨−∂x (ρv) , φ⟩, (2.10a)

⟨∂tv, φ⟩ =
⟨
− ∂x

(
v2/2 + ρ∂ρu+ u

)
+ T∂xs, φ

⟩
+
⟨
τ, ∂x(φ/ρ)

⟩
(2.10b)

− τφ

ρ

⏐⏐⏐b
a
+

N∑
i=1

⟨
µi∂xyi, φ

⟩
,

⟨∂ts, φ⟩ =
⟨
− v∂xs−

τ

ρT
∂xv, φ

⟩
−
⟨
κ∂xT, ∂x(

1

ρT
φ)

⟩
+

κ

ρT
∂xTφ

⏐⏐⏐b
a

(2.10c)

−
N∑
i=1

⟨µiM̃iωi

ρT
, φ

⟩
+

N∑
i=1

⟨
ρDi∂xyi, ∂x(

µiφ

ρT
)
⟩
−

N∑
i=1

Di∂xyi
µiφ

T

⏐⏐⏐b
a
,

⟨∂tyi, φ⟩ = ⟨−v∂xyi, φ⟩ − ⟨ρDi∂xyi, ∂x(φ/ρ)⟩+Di∂xyiφ
⏐⏐⏐b
a
+ ⟨M̃iωi/ρ, φ⟩. (2.10d)

In the following two sections, we show that this weak formulation can be written as Hamil-
tonian (assuming vanishing boundary terms) or port-Hamiltonian system.

3 Hamiltonian Dynamics of Reactive Flows

The total energy or Hamiltonian H of the reactive flow system described by (2.9) consists of
the kinetic energy and the internal energy, i. e.,

H (ρ, v, s, y1, . . . , yN ) =

b∫
a

(
ρv2

2
+ ρu (ρ, s, y1, . . . , yN )

)
dx.

The aim of this section is to reformulate the weak formulation of the system equations (2.10)
as a Hamiltonian system. For this, we restrict ourselves to the case where the boundary
conditions lead to vanishing energy flows through the boundary. Especially, we consider the
case where the mass flow ρv, the heat flux κ∂xT , and the shear stress τ are zero at the
boundary. This restriction is then dropped in Section 4.

We combine all unknowns within the vector z, i. e., z := [ρ, v, s, y1, . . . , yN ]T . In the
sequel, H1(Ω) denotes the Sobolev space of square integrable functions that also possess a
square integrable weak derivative, cf. [25] for an introduction. Its subspace H1

0 (Ω) contains
the functions which vanish at the boundary of Ω. The dual space of H1(Ω), i. e., the space
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of linear functionals for Sobolev functions, is denoted by H1(Ω)∗. With this, we define the
solution-dependent operator J : [H1(Ω)]N+3 → [H1(Ω)∗]N+3 by

J (z) :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −∂x 0 0 . . . 0

−∂x 0 1
ρ∂xs− J23

1
ρ∂xy1 . . . 1

ρ∂xyN

0 −1
ρ∂xs− J32 J33 − Ĵ33 −M1 . . . −MN

0 −1
ρ∂xy1 M1 0 . . . 0

...
...

...
...

. . .
...

0 −1
ρ∂xyN MN 0 . . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.1)

Therein, the operator J23 equals 1
ρ∂x

(
τ
ρT ·

)
in the weak form, i. e., for k, ℓ ∈ H1(Ω) we have

⟨J23k, ℓ⟩ := −
∫ b

a

τ

ρT
k∂x

(
1

ρ
ℓ

)
dx.

Note that since we assume vanishing boundary energy flows, which implies τ(a) = τ(b) = 0,
we do not include the boundary term τkℓ/(ρ2T )|ba here which appears due to the integration

by parts formula. Furthermore, we define J32 :=
τ
ρT ∂x

(
1
ρ ·

)
. The operator Mi is again given

in the weak form,

⟨Mik, ℓ⟩ :=
∫ b

a

M̃iωi

ρ2T
kℓ dx−

∫ b

a
ρDi∂xyi∂x

(
1

ρ2T
kℓ

)
dx+

1

ρT
Di∂xyikℓ

⏐⏐⏐b
a
.

Also the operators J33 and Ĵ33 are defined by their actions on certain test functions, namely

⟨
J33k, ℓ

⟩
:= −

∫ b

a
κ∂x

(1
ρ
k
)
∂x

( 1

ρT
ℓ
)
dx,

⟨
Ĵ33k, ℓ

⟩
:= −

∫ b

a
κ∂x

( 1

ρT
k
)
∂x

(
1

ρ
ℓ

)
dx.

Note that the operator Ĵ33 was included artificially in order to obtain the skew-adjointness
of the operator J as we show in the following lemma. The influence of this operator on the
solution is discussed afterwards.

Lemma 3.1 The operator J : D(J ) → D(J )∗ from (3.1) with domain

D(J ) := H1 (Ω)×H1
0 (Ω)×

[
H1(Ω)

]N+1

is skew-adjoint, i. e., ⟨k,J ℓ⟩H1(Ω), H1(Ω)∗ = −⟨J k, ℓ⟩H1(Ω)∗, H1(Ω) for all k, ℓ ∈ D(J ).

Proof. Let k = [k1, k2, . . . , kN+3]
T and ℓ = [ℓ1, ℓ2, . . . , ℓN+3]

T be in the domain of J , i. e.,
k, ℓ ∈ D (J ). Simple rearrangements then yield

⟨
k,J ℓ

⟩
=

b∫
a

[
−k1∂xℓ2 − k2∂xℓ1 +

∂xsk2ℓ3
ρ

+
τℓ3
ρT

∂x

(
k2
ρ

)
+

k2
ρ

N∑
i=1

∂xyiℓi+3 −
∂xsk3ℓ2

ρ

− τk3
ρT

∂x

(
ℓ2
ρ

)
− κ∂x

(
ℓ3
ρ

)
∂x

(
k3
ρT

)
+ κ∂x

(
k3
ρ

)
∂x

(
ℓ3
ρT

)
−ℓ2

ρ

N∑
i=1

∂xyiki+3

]
dx+

N∑
i=1

⟨
Miℓ3, ki+3

⟩
−

N∑
i=1

⟨
Miℓi+3, k3

⟩
6



=

b∫
a

[
ℓ2∂xk1 − k2∂xℓ1 +

∂xsk2ℓ3
ρ

− ∂xsk3ℓ2
ρ

+
τℓ3
ρT

∂x

(
k2
ρ

)
− τk3

ρT
∂x

(
ℓ2
ρ

)

+
k2
ρ

N∑
i=1

∂xyiℓi+3 −
ℓ2
ρ

N∑
i=1

∂xyiki+3 − κ∂x

(
ℓ3
ρ

)
∂x

(
k3
ρT

)

+κ∂x

(
k3
ρ

)
∂x

(
ℓ3
ρT

)]
dx+

N∑
i=1

⟨
Miℓ3, ki+3

⟩
−

N∑
i=1

⟨
Miℓi+3, k3

⟩
= −

⟨
J k, ℓ

⟩
.

Note that the boundary term −k1ℓ2|ba, which appears as a result of the integration by parts,
vanishes due to the assumed zero Dirichlet boundary condition of ℓ2.

For the Hamiltonian formulation of the system equations, we have to apply the operator J
to the variational derivative of the Hamiltonian H. For this, we have to discuss the influence
of the operator Ĵ33 which was included in order to gain the skew-adjointness of the operator
J . Here we benefit from the property Ĵ33(ρT ) = 0.

Theorem 3.2 (Hamiltonian structure) Under the assumption that the heat flux κ∂xT
and the shear stress τ vanish at the boundary, the weak formulation of the governing equations
(2.10) may be expressed as

∂tz = J (z) δzH (z) , (3.2)

where δzH(z) denotes the variational derivative

δzH (z) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

v2

2 + u+ ρ∂ρu
ρv
ρT
ρµ1
...

ρµN

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Proof. The variational derivatives of H are given by

δρH =
v2

2
+ u (ρ, s, y1, . . . , yN ) + ρ∂ρu (ρ, s, y1, . . . , yN ) , δvH = ρv,

δsH = ρ∂su (ρ, s, y1, . . . , yN ) , δyiH = ρ∂yiu (ρ, s, y1, . . . , yN )

Using the relations (2.5), we can write the variational derivatives δsH and δyiH as

δsH = ρT (ρ, s, y1, . . . , yN ) and δyiH = ρµi (ρ, s, y1, . . . , yN ) .

Thus, (3.2) is equivalent to the system

∂tρ = −∂x (ρv) , (3.3a)

∂tv = −∂x

(
v2

2
+ u+ ρ∂ρu

)
+ T∂xs− J23(ρT ) +

N∑
i=1

µi∂xyi, (3.3b)
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∂ts = −v∂xs−
τ∂xv

ρT
+ J33(ρT )− Ĵ33(ρT )−

N∑
i=1

Mi(ρµi), (3.3c)

∂tyi = −v∂xyi +Mi(ρT ). (3.3d)

Since we assume that κ∂xT (a) = κ∂xT (b) = 0 and τ(a) = τ(b) = 0, (3.3) is nothing else than
the weak form of the governing equations as given in (2.10).

Remark 3.3 Note that Theorem 3.2 also implies that the Hamiltonian system ∂tz =
J (z)δzH(z) is equivalent to the classical formulation of the governing equations (2.9) if we
assume sufficient regularity in order to integrate by parts.

Corollary 3.4 Assume δzH ∈ D (J ) with D (J ) as in Lemma 3.1 which implies that ρv(a) =
ρv(b) = 0. Then, under the assumptions of Theorem 3.2, the Hamiltonian H satisfies the
energy balance

d

dt
H = 0.

Proof. Since the operator J is skew-adjoint, cf. Lemma 3.1, we obtain

d

dt
H =

⟨
δzH, ∂tz

⟩
=

⟨
δzH,J (z)δzH

⟩
= 0.

In this section we have shown that the weak formulation of the governing equations (2.10)
may be written as a Hamiltonian system if the mass flow ρv, the heat flux κ∂xT , and the shear
stress τ vanish at the boundaries. In the next section, we drop this restrictive assumption and
generalize the Hamiltonian formulation of the system equations (2.10) to a port-Hamiltonian
formulation.

4 Port-Hamiltonian Dynamics of Reactive Flows

In the previous section, we have shown that we can express the Navier-Stokes equations for
reactive flows in form of a Hamiltonian system, if we assume vanishing boundary energy
flows. In order to include more realistic boundary conditions, we need to extend the system
structure with so-called ports. Thus, we aim to formulate the system equations with boundary
conditions as a port-Hamiltonian system of the form

∂tz = J̃ (z)δzH+ Bu, y = B∗δzH

with boundary ports u and y. For this, we need to modify the operator J , which we denote
by J̃ , in order to maintain the skew-adjointness. We define the solution-dependent operator
J̃ : D(J̃ ) → D(J̃ )∗ with domain

D(J̃ ) =
[
H1 (Ω)

]N+3
, D(J̃ )∗ =

[
H1 (Ω)∗

]N+3

by

J̃ (z) :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −∂̃x 0 0 . . . 0
−∂x 0 1

ρ∂xs− J23
1
ρ∂xy1 . . . 1

ρ∂xyN

0 −1
ρ∂xs− J32 J33 − Ĵ33 −M1 . . . −MN

0 −1
ρ∂xy1 M1 0 . . . 0

...
...

...
...

. . .
...

0 −1
ρ∂xyN MN 0 . . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.1)
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Therein, J23, J32, J33, Ĵ33, and Mi are defined as in Section 3 and the operator ∂̃x is defined
as the partial derivative w. r. t. x with an additional boundary term, i. e.,

⟨∂̃xv, w⟩ :=
∫ b

a
w∂xv dx− wv|ba .

With this, we can show that the operator J̃ is again skew-adjoint.

Lemma 4.1 The operator J̃ : D(J̃ ) → D(J̃ )∗ defined in (4.1) is skew-adjoint, i. e.,
⟨k, J̃ ℓ⟩H1(Ω), H1(Ω)∗ = −⟨J̃ k, ℓ⟩H1(Ω)∗, H1(Ω) for all k, ℓ ∈ D(J̃ ).

Proof. Consider k, ℓ ∈ D(J̃ ). Since the components corresponding to the chemical species
require no integration by parts, it is sufficient to consider the left-upper 3 × 3 block of the
operator J̃ which we denote by J̃ 3×3. The remaining terms act as in Lemma 3.1. With
k3 = [k1, k2, k3]

T and ℓ3 = [ℓ1, ℓ2, ℓ3]
T denoting the first three components of k and ℓ,

respectively, we obtain due to the integration by parts formula⟨
k3, J̃ 3×3ℓ3

⟩
=

⟨
k1,−∂̃xℓ2

⟩
+
⟨
k2,−∂xℓ1 +

∂xs

ρ
ℓ3 − J23ℓ3

⟩
+
⟨
k3,−

∂xs

ρ
ℓ2 − J32ℓ2 + J33ℓ3 − Ĵ33ℓ3

⟩
=

∫ b

a

[
−k1∂xℓ2 + k2

(
−∂xℓ1 +

∂xs

ρ
ℓ3

)
+

τ

ρT
ℓ3∂x

(
k2
ρ

)
− k3

(
∂xs

ρ
ℓ2 +

τ

ρT
∂x

(ℓ2
ρ

))]
dx

−
∫ b

a

[
κ∂x

(1
ρ
ℓ3

)
∂x

( 1

ρT
k3

)
− κ∂x

( 1

ρT
ℓ3

)
∂x

(1
ρ
k3

)]
dx+ k1ℓ2

⏐⏐⏐b
a

=

∫ b

a

[
ℓ2∂xk1 + ℓ1∂xk2 +

∂xs

ρ
k2ℓ3 +

τ

ρT
ℓ3∂x

(
k2
ρ

)
− ∂xs

ρ
k3ℓ2 −

τ

ρT
k3∂x

(
ℓ2
ρ

)]
dx

+

∫ b

a

[
κ∂x

(1
ρ
k3

)
∂x

( 1

ρT
ℓ3

)
− κ∂x

( 1

ρT
k3

)
∂x

(1
ρ
ℓ3

)]
dx− ℓ1k2

⏐⏐⏐b
a

=
⟨
ℓ1, ∂̃xk2

⟩
+
⟨
ℓ2, ∂xk1 −

∂xs

ρ
k3 + J23k3

⟩
+
⟨
ℓ3,

∂xs

ρ
k2 + J32k2 − J33k3 + Ĵ33k3

⟩
=

⟨
ℓ3,−J̃ 3×3k3

⟩
.

Thus, we have in total
⟨
k, J̃ ℓ

⟩
= −

⟨
J̃ k, ℓ

⟩
which completes the proof.

In the case of non-vanishing boundary terms, the weak formulation of the system equations
(2.10) is not equivalent to ∂tz = J̃ (z)δzH. However, in the sequel we show that (2.10) may
be written as a Hamiltonian system with additional boundary ports, i. e., a port-Hamiltonian
system. The following theorem provides the main result of this paper.

Theorem 4.2 (Port-Hamiltonian structure) The weak form of the governing equations
(2.10) may be expressed as port-Hamiltonian system

∂tz = J̃ (z)δzH+ Bu,
y = B∗δzH,

where J̃ is given in (4.1) and B : [H1(Ω)]3 → [H1(Ω)∗]N+3 is defined by the trace operator,
i. e., for u ∈ [H1(Ω)]3 we have

Bu =
[
u1|ba, u2|ba, u3|ba, 0, . . . , 0

]T
.

9



Proof. We compare the system equations (2.10) with the equations given by J̃ (z)δzH. For
the first component, we obtain

∂tρ−
(
J̃ (z)δzH

)
1
= −∂x (ρv) + ∂̃x (ρv) = −ρv|ba.

Recall that the boundary term is well-defined for functions in H1(Ω). Moreover, it may
be seen as a functional for functions in H1(Ω) by ⟨(ρv)|ba, w⟩H1(Ω)∗, H1(Ω) := (ρvw)|ba. This
requires w ∈ H1(Ω), since we need well-defined boundary values. Similarly, we obtain with
the second equation of system (2.10) that

∂tv −
(
J̃ (z)δzH

)
2
= −

(
τ

ρ

) ⏐⏐⏐b
a
.

For the third component of ∂tz − J̃ (z)δzH, we consider equation (2.10c) and obtain

∂ts−
(
J̃ (z)δzH

)
3
=

( κ

ρT
∂xT

)⏐⏐⏐b
a
.

Finally, the last N rows of the difference are given by

∂tyj −
(
J̃ (z)δzH

)
3+i

= 0, i = 1, . . . N.

In summary, the difference of ∂tz and J̃ (z)δzH vanishes in the last N components and defines
Bu by

(Bu)1 = −ρv|ba, (Bu)2 = −
(τ
ρ

)⏐⏐⏐b
a
, (Bu)3 =

( κ

ρT
∂xT

)⏐⏐⏐b
a
, (Bu)i = 0

for i = 4, . . . , N + 3. Hence, with u = [−ρv, −τ/ρ, κ∂xT/(ρT )]
T and the operator

B : [H1(Ω)]3 → [H1(Ω)∗]N+3 defined by

Bu =
[
u1|ba, u2|ba, u3|ba, 0, . . . , 0

]T
we get ∂tz = J̃ (z)δzH+Bu. Note that we interpret the evaluation at the boundary again as
operator from H1(Ω) to its dual as above. For the second equation we define y by

y := B∗δzH =

⎡⎢⎣
(
v2

2 + u+ ρ∂ρu
)
|ba(

ρv
)
|ba(

ρT
)
|ba

⎤⎥⎦ .

One advantage of the port-Hamiltonian formulation of the system equations is the energy
balance which follows from the skew-adjointness of the operator J̃ . Without boundary terms
we obtain d

dtH = 0, i. e., the conservation of energy. In the port-Hamiltonian framework, the
change of energy only depends on u and y as shown in the following corollary.

Corollary 4.3 The Hamiltonian H satisfies the energy balance

d

dt
H = ⟨y, u⟩H1(Ω)∗, H1(Ω) (4.2)

with boundary ports u and y from Theorem 4.2.

10



Proof. Since the operator J̃ is skew-adjoint, we obtain

d

dt
H =

⟨
δzH, ∂tz

⟩
=

⟨
δzH, J̃ δzH+ Bu

⟩
=

⟨
δzH,Bu

⟩
=

⟨
B∗δzH, u

⟩
= ⟨y, u⟩.

It is noteworthy that the energy balance (4.2) allows for a physical interpretation. The
temporal change of the total energy H is equal to the power product ⟨y, u⟩, which is given by

⟨y, u⟩ =
(
−ρv

(
v2

2
+ u+ ρ∂ρu

)
− τv + κ∂xT

)⏐⏐⏐⏐b
a

=

(
−ρv

(
v2

2
+ u+

p

ρ

)
− τv + κ∂xT

)⏐⏐⏐⏐b
a

=

(
−ρv

(
v2

2
+ h

)
− τv + κ∂xT

)⏐⏐⏐⏐b
a

,

where we have introduced the specific enthalpy h := u+ p/ρ. Thus, the energy balance (4.2)

can be interpreted as: The total energy H only changes due to flows of kinetic energy (ρv v2

2 ),
enthalpy flows (ρvh), friction (τv), and heat flows (κ∂xT ) through the boundaries.

Remark 4.4 A realistic set of boundary conditions [24] is given by the inflows

ρv(a) = g1, τ(a) = 0, κ∂xT (a) = g3

and outflows
τ(b) = g2, κ∂xT (b) = 0.

Therein, g1, g2, and g3 denote given functions. In this case, the term Bu from Theorem 4.2
reads Bu = [g1 − ρv(b), −g2/ρ, −g3/(ρT ), 0, . . . , 0]T and thus, may be seen as an input of
the system.

5 Conclusions

We have presented a port-Hamiltonian formulation of the Navier-Stokes equations for reactive
flows in a one-dimensional spatial domain. The model assumptions include a negligence of
long-range processes, as gravity or radiation, which is why the change in potential energy
is also neglected. We started with introducing a Hamiltonian formulation of the governing
equations for the case of vanishing boundary energy flows. However, this setting imposes
strong restrictions on the boundary conditions. To avoid these constraints, we generalized
the Hamiltonian formulation to the case of arbitrary boundary conditions and derived a
port-Hamiltonian formulation with boundary ports accounting for the energy flow through
the system boundaries. The corresponding energy balance (4.2), which follows directly from
the port-Hamiltonian structure, allows for a physically meaningful interpretation. The total
energy of the system only changes due to energy flows through the boundary.

An extension of the port-Hamiltonian formulation to three-dimensional spatial domains is
one of the next steps to apply to more practical settings. Furthermore, the port-Hamiltonian
formulation includes one evolution equation for the specific entropy. However, in practical
applications, initial and boundary conditions are usually expressed in terms of the temperature
or the pressure. Thus, a port-Hamiltonian formulation based on the temperature or the
pressure formulation of the energy equation is desirable.

The port-Hamiltonian formulation on PDE level is the first step to derive finite-
dimensional and reduced-order models which exhibit the port-Hamiltonian structure along

11



with the connected energy balance and other properties. For this purpose, structure-
preserving discretization and model reduction methods need to be investigated further in
order to apply them to the reactive flow setting.
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