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A Matlab Toolbox for the Regularization of Descriptor Systems

Arising from Generalized Realization Procedures

A. Binder∗ V. Mehrmann∗ A. Miedlar† P. Schulze∗

January 7, 2016

In this report we introduce a Matlab toolbox for the regularization of descriptor systems.
We apply it, in particular, for systems resulting from the generalized realization procedure of
[16], which generates, via rational interpolation techniques, a linear descriptor system from
interpolation data. The resulting system needs to be regularized to make it feasible for the
use in simulation, optimization, and control. This process is called regularization.

1 Descriptor Systems

We follow the notation and the basic concepts of [5]. A linear descriptor system is of the form

Eẋ = Ax+Bu, (1a)

y = Cx+Du, (1b)

where E, A ∈ Rn,n, B ∈ Rn,m, C ∈ Rp,n, D ∈ Rp,m, and ẋ = dx/dt. The response of a
descriptor system can be described in terms of the eigenvalues of the matrix pencil αE−βA,
which is said to be regular if det(αE − βA) ̸= 0 for some (α, β) ∈ C2. For regular pencils,
generalized eigenvalues are the pairs (α, β) ∈ C2 \ {(0, 0)}, for which det(αE − βA) = 0. If
β ̸= 0, then the pair represents the finite eigenvalue λ = α/β. If β = 0, then (α, β) represents
an infinite eigenvalue.

In frequency domain, for zero initial conditions x(t0) = 0 and a regular pencil αE − βA,
there exists the rational transfer function

H(s) = C(sE −A)−1B +D, (2)

which maps Laplace transforms of the input functions u to the Laplace transforms of the
corresponding output functions y. A finite eigenvalue λ = α/β is a pole of the transfer
function of the descriptor system (1).

In the following we denote a matrix with orthonormal columns spanning the right nullspace
of the matrix M by S∞(M) and a matrix with orthonormal columns spanning the left
nullspace of M by T∞(M). These matrices are not uniquely determined although the spaces
are, but for ease of notation, we speak of these matrices as the corresponding spaces.

For regular pencils the solution of the system equations can be characterized in terms of
the Weierstraß Canonical Form (WCF), [10].
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Theorem 1.1. Weierstraß Canonical Form If αE − βA is a regular pencil, then there
exist nonsingular matrices X = [Xr, X∞] ∈ Rn,n and Y = [Yr, Y∞] ∈ Rn,n for which

Y TEX =

[
Y T
r

Y T
∞

]
E
[
Xr X∞

]
=

[
I 0
0 N

]
, (3)

and

Y TAX =

[
Y T
r

Y T
∞

]
A
[
Xr X∞

]
=

[
J 0
0 I

]
, (4)

where J is a matrix in Jordan canonical form whose diagonal elements are the finite eigen-
values of the pencil and N is a nilpotent matrix, also in Jordan form. J and N are unique
up to permutation of Jordan blocks.

The index ν of the pencil αE − βA is the index of nilpotency of the nilpotent matrix N in
(3). By convention, if E is nonsingular, the pencil is said to be of index zero. A descriptor
system is regular and of index at most one if and only if it has exactly q = rank(E) finite
eigenvalues. The following lemma of [12] gives a useful characterization of regular, index one
pencils.

Lemma 1.2. The following statements are equivalent:

1. The pencil αE − βA is regular and has index less than or equal to one.

2. rank

([
E

T T
∞(E)A

])
= rank

(
E + T∞(E)T T

∞(E)A
)
= n.

3. rank ([E, AS∞(E)]) = rank
(
E +AS∞(E)ST

∞(E)
)
= n.

4. T∞(E)TAS∞(E) is nonsingular.

5. If

UTEV =

[
Σr 0
0 0

]
is the singular value decomposition (SVD) of E (with orthogonal matrices U, V and a
nonsingular, diagonal matrix Σr ∈ Rr×r), then the (n− r)× (n− r) bottom right matrix
A22 of UTAV is nonsingular.

In the notation of (3)–(4), classical solutions of (1a) take the form

x(t) = Xrz1(t) +X∞z2(t),

where

ż1 = Jz1 + Y T
r Bu

Nż2 = z2 + Y T
∞Bu

and one has the explicit solution

z1(t) = etJz1(0) +

∫ t

0
e(t−s)JY T

r Bu(s) ds,

z2(t) = −
ν−1∑
i=0

di

dti
(
N iY T

∞Bu(t)
)
. (5)
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Equation (5) shows that the input functions must belong to some suitable function space
Uad and, to ensure a smooth response for every continuous input u(t), it is necessary for the
system to be regular and have index less than or equal to one. Moreover, the possible values
of the initial condition x(0) are restricted. The initial state must be a member of the set of
consistent initial conditions, i. e.,

S ≡

{
Xrz1 +X∞z2

⏐⏐⏐⏐⏐ z1 ∈ Rr, z2 = −
ν−1∑
i=0

(
di

dti
(N iY T

∞Bu)(0)

)
, u(t) ∈ Uad

}
.

The set of reachable states of (1a) from the solution space set S of consistent initial conditions
is S itself.

2 Realization

In [16] a method for the generalized realization problem was presented. From given inter-
polation data, obtained by measurements from a real system or numerical simulation via a
mathematical model, it generates a descriptor system of the form (1), i. e.,

Eẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t).
(6)

The generalized realization problem of [16] deals mainly with two cases.

1. In the scalar interpolation case, the given data consist of a vector of interpolation points
s = [si] ∈ CN and a vector of interpolation values f = [fi] ∈ CN , and the realization
problem constructs a transfer function of the form (2) satisfying the interpolation con-
ditions

H(si) = C(siE −A)−1B +D = fi i = 1, . . . , N.

2. In the matrix interpolation case, the interpolation points are again contained in a vector
s = [si] ∈ CN . However, the interpolation values are summarized in form of a block
matrix F = [Fi] of N matrices Fi ∈ Cp×m and the interpolation problem takes the
following form: First, right and left tangential data are sampled by multiplying the
matrix data Fi from the right (left) with arbitrary right (left) tangential directions such
that as right tangential interpolation conditions we get

H(λi)ri = (C(λiE −A)−1B +D)ri = wi, i = 1, . . . , ρ, (7)

and as left tangential interpolation conditions we get

ljH(µj) = lj(C(µjE −A)−1B +D) = vj , j = 1, . . . , ν, (8)

where ri (lj) are the right (left) tangential directions, wi (vj) are the right (left) tan-
gential values, and λi (µj) are the right (left) interpolation points which are a subset of
{s1, . . . , sN}.

The interpolation technique is realized in the Matlab codes realization and loewner mod

where the latter one is (a slightly modified version of) an m-File provided by the authors of
[16]. Analytically, it can be shown that the obtained realization (6) is regular and minimal
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(and thus controllable and observable), see [16]. However, there are no results regarding the
index of the obtained descriptor system. Moreover, when the realization is computed numer-
ically, the analytically guaranteed properties of regularity and minimality may be lost due
to finite precision arithmetic. Thus, in general the realization obtained by computation may
be non-regular, have index larger than one and miss certain controllability and observability
properties, and therefore requires a regularization procedure which is described in the next
section.

3 Controllability and Observability Conditions

Given the descriptor system (6), one or more of the following conditions are essential for most
classical design aims, see e.g. [3, 5, 9].

C0: rank[αE − βA, B] = n for all (α, β) ∈ C2\{(0, 0)}.
C1: rank[λE −A, B] = n for all λ ∈ C.
C2: rank[E, AS∞(E), B] = n.

(9)

A regular system is completely controllable or C-controllable if C0 holds and is strongly con-
trollable or S-controllable if C1 and C2 hold [5]. Complete controllability ensures that for
any given initial and final states x0, xf there exists an admissible control that transfers the
system from x0 to xf in finite time, while strong controllability ensures the same for any given
initial and final states x0, xf ∈ S (the solution space).

Regular systems that satisfy condition C2 are called controllable at infinity or impulse
controllable [9]. For these systems, impulsive modes can be excluded by a suitable linear
feedback.

Observability for descriptor systems is the dual of controllability. We define the following
conditions:

O0: rank

[
αE − βA

C

]
= n for all (α, β) ∈ C2\{(0, 0)}.

O1: rank

[
λE −A

C

]
= n for all λ ∈ C.

O2: rank

⎡⎣ E
T T
∞(E)A
C

⎤⎦ = n.

(10)

It is immediate that condition O0 implies O1 and O2. Moreover, O1 and

rank

[
E
C

]
= n, (11)

together hold if and only if O0 holds. A regular descriptor system is called completely observ-
able or C-observable if condition O0 holds and is called strongly observable or S-observable if
conditions O1 and O2 hold. A regular system that satisfies condition O2 is called observable
at infinity or impulse-observable.

Conditions (9)–(11) are preserved under non-singular equivalence transformations as well
as under state and output feedback, i. e., if the system satisfies C0, C1, or C2, then for any
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non-singular U ∈ Rn,n, V ∈ Rn,n, W ∈ Rm,m and for any F1 ∈ Rm,n and F2 ∈ Rm,p, the
system (Ẽ, Ã, B̃, C̃), where

Ẽ = UEV, Ã = UAV, B̃ = UBW (12)

or
Ẽ = E, Ã = A+BF1, B̃ = B

or
Ẽ = E, Ã = A+BF2C, B̃ = B

also satisfies these conditions. Analogous properties hold for O0, O1 and O2.

4 Regularization

In general, due to the finite precision arithmetic, it cannot be guaranteed that the system
computed by the realization procedure presented in [16] satisfies the described regularity,
controllability and observability conditions of Section 3. Therefore, it needs to be treated by
a regularization procedure. The most general form of such a regularization procedure has
been presented in [8]. It allows general non-square matrices E and A and it can be extended
to general nonlinear systems. We briefly review this regularization procedure for the linear
constant coefficient case. First, we write the state equation of system (6) in behavior form
combining input and state to a joint vector z = [xT , uT ]T , i. e.,

E ż = Az (13)

with E = [E, 0], A = [A, B] partitioned accordingly. Then following [7] we form a derivative
array

Mℓżℓ = Nℓzℓ, (14)

where
(Mℓ)i,j =

(
i
j

)
E(i−j) −

(
i

j+1

)
A(i−j−1), i, j = 0, . . . , ℓ,

(Nℓ)i,j =

{
A(i) for i = 0, . . . , ℓ, j = 0,
0 otherwise,

(zℓ)j = z(j), j = 0, . . . , ℓ.

The subsequent Theorem follows from the more general results for variable coefficient systems,
see [13]. It connects the derivative array with the strangeness index µ and is used for index
reduction.

Theorem 4.1. Consider system (13). There exists an integer µ such that the coefficients
of the derivative array (14), (Mµ, Nµ), associated with (E ,A) have the following properties,
where we set

â = aµ, d̂ = dµ, v̂ = v0 + . . .+ vµ. (15)

1. rankMµ = (µ+1)n− â− v̂, i. e., there exists a matrix Z of size (µ+1)n× (â+ v̂) and
maximal rank satisfying ZTMµ = 0.

2. rankZTNµ[In+m 0 · · · 0]T = â, i. e., Z can be partitioned as Z = [ Z2 Z3 ], with Z2 of
size (µ+ 1)n× â and Z3 of size (µ+ 1)n× v̂, such that Â2 = ZT

2 Nµ[In+m 0 · · · 0]T has
full row rank â and ZT

3 Nµ[In+m 0 · · · 0]T = 0. Furthermore, there exists a matrix T2 of
size (n+m)× (n+m− â) and maximal rank satisfying Â2T2 = 0.
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3. rank E(t)T2 = d̂ = n− â− vµ, i. e., there exists a matrix Z1 of size n× d̂ and maximal

rank satisfying rank
(
Ê1T2

)
= d̂ with Ê1 = ZT

1 E.

Furthermore, system (13) has the same solution set as the system⎡⎣ Ê1

0
0

⎤⎦ ż =

⎡⎣ Â1

Â2

0

⎤⎦ z, (16)

where Ê1 = ZT
1 E, Â1 = ZT

1 A and Â2 = ZT
2 Nµ[In+m 0 · · · 0]T .

The smallest number µ for which Theorem 4.1 holds is called the strangeness index. The
differential-algebraic system (16) is strangeness-free, i. e., its strangeness index is zero. Its
coefficients can be computed by using three nullspace computations, which are carried out
via SVDs or QR decompositions with column pivoting (cf. [11]) as long as this is feasible in
the available computing environment. The system (16) is a reformulation of (13) (using the
original model and its derivatives) without changing the solution set, since no transformation
of the vector z has been made. The constructed submatrices Â1 and Â2 have been obtained
from the block matrix ⎡⎢⎢⎢⎣

A B

Ȧ Ḃ
...

...

A(µ) B(µ)

⎤⎥⎥⎥⎦
by transformations from the left. This has two immediate consequences [14]. First, derivatives
of the input function u are nowhere needed, i. e., although formally the derivatives of u occur
in the derivative array, they do not occur in the form (16), and hence, we do not have any
additional smoothness requirements for the input function u.

Second, it follows from the construction of Â1 and Â2 that the partitioning into the part
stemming from the original states x and the original controls u is not mixed up. Including
the output equation, we obtain a reformulated system of the form

E1ẋ = A1x+B1u, (17a)

0 = A2x+B2u, (17b)

0 = 0, (17c)

y = Cx+Du, (17d)

where

E1 = Ê1

[
In
0

]
, Ai = Âi

[
In
0

]
, Bi = Âi

[
0
Im

]
, i = 1, 2.

Here E1, A1 have size d × n, while E2, A2 are of size a × n. The equations in (17c) can just
be removed from the system and we continue with the modified model of d+ a equations[

Ê1

0

]
ż =

[
Â1

Â2

]
z

together with given initial conditions. Consistency of initial values can easily be checked, they
have to satisfy the equation

A2x(t0) +B2u(t0) = 0,
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which (if B2 does not vanish) represents a restriction on the initial value of the control u.
In (17a) and (17b), we have d+ a equations and n variables in x and m variables in u. In

order for this system to be regular, i. e., uniquely solvable for all sufficiently smooth inputs u,
and all consistent initial conditions, we would need that d+ a = n.

If d+ a < n, then for given u we cannot expect a unique solution, i. e., the system is not
regular and we can just attach n− (d+ a) variables from x to u and if d+a > n, then we just
attach d+ a− n of the input variables in u to the vector x. There is freedom in the choice of
the variables that are chosen for reinterpretation, and ideally the selection should be done in
such a way that the resulting descriptor system is regular if the input u = 0 is used, but this
is not necessary. Note that we must also change the output equation by moving appropriate
columns from D to C or vice versa. As a result of the reinterpretation, we obtain a new
system

Ẽ1
˙̃x = Ã1x̃+ B̃1ũ,

0 = Ã2x̃+ B̃2ũ,

y = C̃x̃+ D̃ũ,

where now the matrices

[
Ẽ1

0

]
and

[
Ã1

Ã2

]
are square of size ñ = d + a, and

[
B̃1

B̃2

]
is of

size ñ× m̃ with m̃ = n+m− ñ.
It is often also useful to remove the feed-through term D̃ũ in the output equation. This

can be done by expanding the state dimension by introducing x̃aux := D̃ũ and rewriting the
system as

Ē1 ˙̄x = Ā1x̄+ B̄1ũ,

0 = Ā2x̄+ B̄2ũ,

y = C̄x̄,

with

x̄ =

[
x̃

x̃aux

]
, Ē1 =

[
Ẽ1 0

]
, Ā1 =

[
Ã1 0

]
, Ā2 =

[
Ã2 0
0 Ip

]
, B̄1 = B̃1,

B̄2 =

[
B̃2

−D̃

]
, C̄ =

[
C̃ Ip

]
.

This method of removing the feed-through term leads to an increase of the state dimension
by p, i. e., from ñ to n̄ = ñ + p. The resulting system may again be of index higher than
one as a free system with ũ = 0. But in this case, see [14], there exists a linear feedback
ũ = Kx̄+ w, with K ∈ Rm̃,n̄ such that in the closed loop system

Ē ˙̄x = (Ā+ B̄K)x̄+ B̄w, x̄(t0) = x̄0, (18a)

y = C̄x̄, (18b)

the matrix function (Ā2 + B̄2K)T̄ ′
2 is nonsingular, and T̄ ′

2 is a matrix valued function that
spans the kernel of Ē1. This implies that the differential-algebraic equation system in (18a) is
regular and of index at most one as a free system with w = 0, see Lemma 1.2. We summarize
the whole regularization procedure in the following diagram, see [8].
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Eẋ = Ax+Bu, x(t0) = x0,
y = Cx+Du

?
µ ̸= 0 index reduction in behavior

E1ẋ = A1x+B1u,
0 = A2x+B2u,
0 = 0,
y = Cx+Du

?
remove 0 = 0 eq.

?
0 ̸= A2x0 +B2u(t0) cond. for consistency

?
a+ d ̸= n reinterpret variables

Ẽ1
˙̃x = Ã1x̃+ B̃1ũ,

0 = Ã2x̃+ B̃2ũ,

ỹ = C̃x̃+ D̃ũ

?D̃ ̸= 0 remove feed-through

Ē1 ˙̄x = Ā1x̄+ B̄1ū,
0 = Ā2x̄+ B̄2ū,
y = C̄x̄

?
not strangen.-free for u = 0 perform feedback ū = Kx̄+ w

Ē1 ˙̄x = (Ā1 + B̄1K)x̄+ B̄1w,
0 = (Ā2 + B̄2K)x̄+ B̄2w,
ȳ = C̄x̄.

In the following we assume that the system has been regularized to the form (18) and fur-
thermore that B̄ and C̄T have full column rank. Otherwise, we can just reduce the input
vector or the output vector. In abuse of notation, we denote the resulting system again in
the original notation

Eẋ = Ax+Bu, x(t0) = x0,

y = Cx,
(19)

Note that the resulting system may not satisfy the desired controllability and observability
conditions associated with the finite spectrum, and even if, then it may be close to a system
that does not satisfy these conditions. To remove uncontrollable and unobservable finite
parts, i. e., to make the system minimal, some further transformations may be necessary. In
the following section we discuss condensed forms under orthogonal transformations which can
be used to check all the controllability conditions from Section 3.

5 Condensed Forms

To verify the controllability and observability conditions, using equivalence transformations
such as (12), the regularized system (19) is transformed to a condensed form that reveals
these properties. The following condensed form has been presented in full generality in [5].
It uses only real orthogonal transformations and can be computed using algorithms that are
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numerically stable in the sense that in finite precision arithmetic, the computed condensed
form is what would have been obtained using exact arithmetic from a rounding-error-small
perturbation of the original descriptor system. In the following we adopt the notation that a
matrix Σj is a non-singular j-by-j diagonal matrix, and 0 denotes the null-matrix of any size.

Unfortunately, all condensed forms rely on numerical rank decisions of transformed sub-
matrices of E, A, B and C. This is a serious problem, since arbitrarily small perturbations
of a rank deficient matrix may change its rank.

Theorem 5.1. [6] Let E, A ∈ Rn,n, B ∈ Rn,m, and C ∈ Rp,n, where B and C are of
full column and row rank, respectively. Then, there exist orthogonal matrices U, V ∈ Rn,n,
W ∈ Rm,m, and Y ∈ Rp,p such that

UTEV =

[ t1 n− t1

t1 Σt1 0
n− t1 0 0

]
, (20a)

UTBW =

⎡⎢⎢⎣
k1 k2

t1 B11 B12

t2 B21 0
t3 B31 0
n− t1 − t2 − t3 0 0

⎤⎥⎥⎦, (20b)

Y TCV =

[ t1 s2 t5 n− t1 − s2 − t5

ℓ1 C11 C12 C13 0
ℓ2 C21 0 0 0

]
, (20c)

UTAV =

⎡⎢⎢⎢⎢⎢⎢⎣

t1 s2 t5 t4 t3 s6

t1 A11 A12 A13 A14 A15 A16

t2 A21 A22 A23 A24 0 0
t3 A31 A32 A33 A34 Σt3 0
t4 A41 A42 A43 Σt4 0 0
t5 A51 0 Σt5 0 0 0
t6 A61 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦. (20d)

The matrix B12 has full column rank, C21 has full row rank, and the matrices[
B21

B31

]
∈ Ck1×k1 ,

[
C12 C13

]
∈ Cℓ1×ℓ1

are square and non-singular and are of dimension k1 = t2 + t3 and ℓ1 = s2 + t5, respectively.
Here tj, sj, kj and ℓj are non-negative integers displaying the number of rows or columns in
the corresponding block row or column of the matrices. A zero value of one of these integers
indicates that the corresponding block row or column does not appear.

As a corollary we can characterize controllability and observability conditions of Section 3.

Corollary 5.2. Consider a system of the form (19) and let the system be transformed to the
condensed form (20a)–(20d) of Theorem 5.1.

1. The pair (E,A) is regular and of index at most one if and only if s6 = t6 = 0 and A22

is nonsingular.
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2. Condition C2 holds if and only if t6 = 0.

3. Condition O2 holds if and only if s6 = 0.

4. rank[E,B] = t1 + t2 + t3, and thus rank[E,B] = n if and only if t4 = t5 = t6 = 0.

5. rank

[
E
C

]
= t1 + s2 + t5, and thus rank

[
E
C

]
= n if and only if t4 = t3 = s6 = 0.

6. rank

[
E B
C 0

]
= t1 + t2 + s2 + t3 + t5 +min(ℓ2, k2).

If we have computed the condensed form from the regularized system (19) then we should
have t6 = s6 = 0 and the system is of index at most one as a free system. The staircase form
allows to check whether the regularization procedure has been successful.

6 Matlab Functions in detail

In the following several Matlab functions are presented, which create a regularized Loewner
realization based on tangential interpolation data of the transfer function. It strongly builds
on the procedure of [16], see Section 2, followed by a regularization based on the methods and
results outlined in the previous sections. As a result, we obtain a realization which is regular
and strangeness-free as well as completely controllable and observable.

6.1 Realization

Syntax

[E,A,B,C,D,mu,la,V,W,L,R] = realization(S,F)

[E,A,B,C,D,mu,la,V,W,L,R,U_trans,V_trans,W_trans,Y_trans,...

L_trans,R_trans,Feedb] = realization(S,F)

[E,A,B,C,D,mu,la,V,W,L,R,U_trans,V_trans,W_trans,Y_trans,...

L_trans,R_trans,Feedb] = realization(S,F,tol)

[E,A,B,C,D,mu,la,V,W,L,R,U_trans,V_trans,W_trans,Y_trans,...

L_trans,R_trans,Feedb] = realization(S,F,tol,sindexflag)

Arguments

The following table lists the input arguments of the function realization.

S Vector of length N of interpolation points (is split into two disjoint
interpolation point sets mu and lambda)

F Array which contains the transfer function values at points S; this is either
a vector of length N (scalar interpolation case) or a p×m×N array
consisting of N p×m matrices (matrix interpolation case)

tol scalar specifying the tolerance value for rank decisions in function hypo

(default: 10*eps, where eps is the floating-point relative accuracy 2−52)
sindexflag boolean (default: true); if true, index reduction and regularization are

performed; if false, Loewner realization is provided without
post-processing steps

11



The following table lists the output arguments of the function realization.

[E,A,B,C,D] matrices corresponding to a system which is regularized and
strangeness-free (if sindexflag is set to true) and whose transfer
function H(z) = C(zE −A)−1B +D interpolates the data (S,F)

mu vector of size ν containing the left interpolation points µj (cf. (8))
la vector of size ρ containing the right interpolation points λi (cf. (7))
V scalar interpolation case: vector of size ν containing the left

interpolation values vj belonging to µj (cf. (8) with lj = 1)
matrix interpolation case: matrix of dimension ν ×m containing
the left interpolation values vj ∈ C1,m (as rows) generated by
random left tangential directions lj ∈ C1,p, j = 1, . . . , ν (cf. (8))

W scalar interpolation case: vector of size ρ containing the right
interpolation values wi belonging to λi (cf. (7) with ri = 1)
matrix interpolation case: matrix of dimension p× ρ containing the
right interpolation values wi ∈ Cp (as columns) generated by
random right tangential directions ri ∈ Cm, i = 1, . . . , ρ (cf. (7))

L matrix of dimension ν × p containing (random) left tangential
directions lj ∈ C1,p as rows (set to one in scalar interpolation case)

R matrix of dimension m× ρ containing (random) right tangential
directions ri ∈ Cm as columns (set to one in scalar interpolation
case)

U_trans, V_trans,
W_trans, Y_trans matrices corresponding to the transformation matrices U , V , W ,

and Y of Theorem 5.1 (see also description of function staircase)
L_trans, R_trans transformation matrices from block Gaussian elimination in

function regularization

Feedb feedback matrix from function regularization to make
(E,A) regular

Remark 6.1. The vectors la and mu together form S such that ν + ρ = N and the sizes of
la and mu differ by one when N is odd and are the same when N is even. Furthermore, if
S contains values with non-zero imaginary part the complex conjugate values are added to S
to ensure that the output realization [E,A,B,C,D] consists of real-valued matrices.

Description

[E,A,B,C,D,mu,la,V,W,L,R] = realization(S,F) constructs matrices E, A, B, C, and D
such that the transfer function H(s) = C(sE − A)−1B + D interpolates the given data as
described in Section 2. First, the Loewner matrix L and the shifted Loewner matrix Lσ as
well as the corresponding matrices V,W,L,R and vectors µ, λ are constructed by use of the
Matlab function [LL,sLL,mu,la,V,W,L,R] = loewner_mod(S,F). Then two cases have to
be considered. If ρ = ν and det(s̃L − Lσ) ̸= 0 for all s̃ ∈ {λi} ∪ {µj}, which implies that
s̃L − Lσ is quadratic and nonsingular (regular case), the Loewner realization (E,A,B,C) is
given by E = −L, A = −Lσ, B = V , and C = W resulting in a system with the desired
interpolation properties. The second case is the nonregular case. To make sure that we still
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get a regular system, we need to ensure that

rank(s̃L− Lσ) = rank
[
L Lσ

]
= rank

[
L
Lσ

]
, for all s̃ ∈ {λi} ∪ {µj}. (21)

If this condition is satisfied, we choose an arbitrary s̃ ∈ {λi} ∪ {µj} and compute the skinny
SVD (s̃L− Lσ) = Y ΣXT , see [11] with a nonsingular diagonal matrix Σ and transformation
matrices Y and X with pairwise orthonormal columns. In this case the Loewner realization,
see [16], is given by

E = −Y TLX, A = −Y TLσX, B = Y TV, C = WX, D = 0.

Even if the regularity of the matrix pencil (E,A) is guaranteed analytically, in the finite
precision case, we cannot be sure about this. Further important properties as the index,
controllability, and observability are also unknown, in general. Thus, to obtain a regular,
strangeness-free, completely observable, and completely controllable system, some further
steps have to be performed (only executed if sindexflag is true).

First, the index is reduced by applying Theorem 4.1 using the function hypo. The resulting
system is strangeness-free and is of the form (17). The vanishing equations can be neglected
such that the number of equations decreases to a+ d. If this number differs from the number
of variables, either some of the components of x have to be attached to the vector u or vice
versa. This changes the input dimension m such that the size of the transfer function does
not fit to the tangential interpolation data anymore. However, if the problem is well-posed,
this case should not occur.

To obtain more insight into the controllability and observability properties of the realiza-
tion, the function staircase is called, which computes the condensed form of the realization
(E,A,B,C) according to Theorem 5.1. The system matrices corresponding to the condensed
form are denoted with EC, AC, BC, and CC, respectively. If B does not have full column
rank or if C does not have full row rank, the resulting zero columns in BC or zero rows in
CC are canceled which decreases the dimensions of L, R, V , and W accordingly.

The subsequent regularization procedure, performed by the function regularization,
eliminates the non-controllable and non-observable parts leading to system matrices Ereg,
Areg, Breg, and Creg as

Ereg =

[
E11

0

]
, Areg =

[
A11

A22

]
,

Breg =

[
B11 B12

B21 0

]
, Creg =

[
C11 C12

C21 0

]
,

where the blocks E11 and A22 are nonsingular. Consequently, the pencil (s̃Ereg − Areg) is
regular. Finally, expanding the product of the matrices, one gets[

C11

C21

]
(sE11 −A11)

−1 [B11 B12

]
− C12A

−1
22 B21,

such that we can decrease the state-space dimension of the realization by setting

E = E11, A = A11, B =
[
B11 B12

]
, C =

[
C11

C21

]
, D = −C12A

−1
22 B21.
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6.2 Hypo

Syntax

[E1_hat,A1_hat,A2_hat,d,a,v,mu_max,sig] = hypo(E,A,mu,tol,varargin)

Arguments

The following table lists the input arguments of the function hypo.

E matrix E of the system’s behavior form as in (13), i. e., E = [E, 0]
A matrix A of the system’s behavior form as in (13), i. e., A = [A, B]
mu corresponds to the index ℓ of the inflated system (14) (default: 0)
tol scalar specifying the tolerance value for rank decisions (default: 10*eps)
varargin contains v0, . . . , vℓ−1 (default: empty)

The following table lists the output arguments of the function hypo.

E1_hat, A1_hat,
A2_hat blocks of the reformulated system (16)

d number of differential equations (d̂)
a number of algebraic equations (â)
v number of vanishing equations (vµ)
mu_max strangeness index of the original system (E ,A)
sig error resulting from rank decision

Description

The function hypo successively inflates the system E ż = Az by differentiation which leads
to inflated systems Mℓżℓ = Nℓzℓ with ℓ starting at 0 and being incremented by one in each
step. This procedure is continued until the rank conditions of Theorem 4.1 are fulfilled yielding
µ, d̂, â, and v̂. The matrix Z is computed by means of an SVD of Mℓ using those left singular
vectors that lie in the left null space of Mℓ. The first singular value that is considered to be
negligibly small (during rank decision based on tol) is used as an error measurement of the
procedure.

The matrices Z2 and T2 are determined based on the SVD

ZTNℓ

[
I 0 · · · 0

]T
= USV T .

Z2 consists of the first â columns of ZU , i. e., such that ZT
2 Nℓ

[
I 0 · · · 0

]T
has full

row rank and T2 consists of those columns of V lying in the right null space of the matrix

ZT
2 Nℓ

[
I 0 · · · 0

]T
. The difference between the number of columns of Z and the number

of algebraic constraints â is equal to v̂, cf. Theorem 4.1.
Finally, Z1 is determined by calculating a QR-decomposition of ET2 and by choosing d̂

columns of Q such that ZT
1 ET2 has full rank d̂. If the sum d̂+â+vℓ (using vℓ = v̂−

∑ℓ−1
i=0 vi, cf.

(15)) differs from the number of equations of the system E ż = Az, the index ℓ is increased by
one and hypo is called with varargin containing v0, . . . , vℓ−1. Otherwise the index reduction

is complete and we set Ê1 = ZT
1 E , Â1 = ZT

1 A and Â2 = ZT
2 Nℓ

[
I 0 · · · 0

]T
. The number

µmax corresponds to the smallest index ℓ needed to satisfy Theorem 4.1. This number is equal
to the strangeness index of the original system (E ,A).
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6.3 Staircase

Syntax

[EC,AC,BC,CC,U,V,W,Y,t,s,k,l] = staircase(E,A,B,C)

Arguments

The following table lists the input arguments of the function staircase.

E n1× n2 matrix
A n1× n2 matrix
B n1×m matrix
C p× n2 matrix

The following table lists the output arguments of the function staircase.

EC, AC, BC, CC condensed form of the input system matrices (E,A,B,C) according to
Theorem 5.1

U, V, W, Y orthogonal matrices that transform E, A, B, and C to condensed form,
i. e., EC = UTEV , AC = UTAV , BC = UTBW , and CC = Y TCV

t, s, k, l vectors containing the block dimensions of the condensed form, see
Theorem 5.1

Description

The algorithm follows the constructive proof of Theorem 5.1, which is presented in [6]. For
that, numerous SVDs are used to transform the input matrices E, A, B, and C into the form

EC =

⎡⎢⎢⎢⎢⎢⎢⎣

ΣE 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ , AC =

⎡⎢⎢⎢⎢⎢⎢⎣

A11 A12 A13 A14 A15 A16

A21 A22 A23 A24 0 0
A31 A32 A33 A34 Σt3 0
A41 A42 A43 Σt4 0 0
A51 0 Σt5 0 0 0
A61 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

BC =

⎡⎢⎢⎢⎢⎢⎢⎣

B11 B12 0
B21 0 0
B31 0 0
0 0 0
0 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ , CC =

⎡⎣C11 C12 C13 0 0 0
C21 0 0 0 0 0
0 0 0 0 0 0

⎤⎦ ,

(22)

where EC and AC are of size (t1 + t2 + t3 + t4 + t5 + t6) × (t1 + s2 + t5 + t4 + t3 + s6),
BC is of size (t1 + t2 + t3 + t4 + t5 + t6) × (k1 + k2 + (m − k1 − k2)) and CC is of size
(l1+l2+(p−l1−l2))×(t1+s2+t5+t4+t3+s6). Accordingly, we have n1 = t1+t2+t3+t4+t5+t6
and n2 = t1 + s2 + t5 + t4 + t3 + s6. Note that the difference between (22) and the condensed
form presented in Theorem 5.1 is that (22) allows for general input matrices B and C without
assuming full row or column rank. During the algorithm also the transformation matrices are
built such that
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EC = UTEV, AC = UTAV, BC = UTBW, CC = Y TCV,

with U ∈ Cn1×n1, V ∈ Cn2×n2, W ∈ Cm×m, and Y ∈ Cp×p.

6.4 Regularization

Syntax

[E,A,B,C,L_trans,R_trans,Feedb]= regularization(EC,AC,BC,CC,t,s,k,l)

Arguments

The following table lists the input arguments of the function regularization.

EC, AC, BC, CC matrices in condensed form generated by the function staircase

t, s, k, l vectors containing the block dimensions of the condensed form generated
by the function staircase

The following table lists the output arguments of the function regularization.

E, A, B, C controllable and observable system where (E,A) is regular
L_trans, R_trans left and right transformation matrices such that

E = LtransECRtrans, A = LtransACRtrans + LtransBCFeedb,
B = LtransBC and C = CCRtrans

Feedb feedback matrix, which ensures that the block A22 of A is
nonsingular

Description

In the function regularization, first it is checked whether the input system can be made
regular and of index one. This means that we have to ensure, that the matrices EC and AC

are quadratic and that t6 = s6 = 0. If this is true, the matrices have the following form:

EC =

⎡⎢⎢⎢⎢⎣
ΣE 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎦ , AC =

⎡⎢⎢⎢⎢⎣
A11 A12 A13 A14 A15

A21 A22 A23 A24 0
A31 A32 A33 A34 Σt3

A41 A42 A43 Σt4 0
A51 0 Σt5 0 0

⎤⎥⎥⎥⎥⎦ ,

BC

⎡⎢⎢⎢⎢⎣
B11 B12

B21 0
B31 0
0 0
0 0

⎤⎥⎥⎥⎥⎦ , CC =

[
C11 C12 C13 0 0
C21 0 0 0 0

]
,

where the block A22 is quadratic (s2
!
= t2) and the zero columns and rows of BC and CC are

canceled out in the function realization.
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The blocks Σti in AC are invertible diagonal matrices such that a block Gaussian elimi-
nation can be performed to eliminate the corresponding rows and columns inside AC leading
to

A1 =

⎡⎢⎢⎢⎢⎣
A11 A12 0 0 0
A21 A22 0 0 0
0 0 0 0 Σt3

0 0 0 Σt4 0
0 0 Σt5 0 0

⎤⎥⎥⎥⎥⎦ .

BC and CC are transformed accordingly to B1 and C1 without changing the block structure
while EC stays completely unchanged due to its zero-block structure. In the end we are only
interested in the system’s transfer function H(s) = C(sE−A)−1B+D. Thus, we can restrict
ourselves to the upper left 2× 2 block of EC and A1, since by multiplying the lower right part
of (sE −A)−1, namely the block ⎡⎣ 0 0 −Σ−1

t5
0 −Σ−1

t4
0

−Σ−1
t3

0 0

⎤⎦ ,

by the corresponding blocks of B1 and C1, it cancels out and, hence, it does not contribute to
the transfer function. The system can be reduced to

Enew =

[
E11 0
0 0

]
, Anew =

[
A11 A12

A21 A22

]
,

Bnew =

[
B11 B12

B21 0

]
, Cnew =

[
C11 C12

C21 0

]
,

(23)

where, by abuse of notation, we have redefined the naming of the matrix blocks, i. e., A11 in
(23) is not necessarily the same as A11 in (22) and so on.

If the block A22 is singular, then the pencil (sEnew−Anew) will not be strangeness-free. In
this case a feedback is added using the fact that the block B21 is invertible by its construction
in staircase. We construct a matrix Feedb such that

Anew +BnewFeedb =

[
Ã11 Ã12

0 σI

]
= Anew2,

where I is the identity matrix and σ denotes the smallest singular value of the first block row
of Anew. Using block Gaussian elimination we can then transform Anew2 into block diagonal
form and obtain the desired regularized system together with the transformation matrices
Ltrans and Rtrans.

7 Numerical Example

In this section the Loewner framework, endowed with the index reduction and regularization
procedure outlined in Section 6, is illustrated by means of an example from the Oberwolfach
Model Reduction Benchmark Collection [2]. We consider the nonlinear heat transfer in a
one-dimensional beam discussed in [15]. A schematic illustration of the system is depicted
in Figure 1. For the sake of simplicity we restrict ourselves to the single-input single-output
(SISO) case in contrast to the multiple-input multiple-output (MIMO) system considered in
[15].
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heat source (input u)

adiabatic temperature (output y) T = 0K

Figure 1: 1D-Beam with heat source (input) and measured temperature (output)

The governing equation of the physical system is a parabolic partial differential equation
describing the temporal progress of the spatial temperature distribution along the beam.
However, instead of the absolute temperature Tabs, a relative temperature T is considered,
i. e., T = Tabs − Tref with respect to a reference temperature Tref . The initial condition is
chosen homogeneously as T = 0 over the whole beam at time t0 = 0. Furthermore, at the
left boundary an adiabatic end is assumed, i. e., zero temperature gradient, and at the right
boundary the relative temperature is equal to zero for all times t > 0 [15].

In this example we are rather interested in the input-output (I/O) behavior than in the
time progress of the entire temperature distribution. As an input a heat source is applied
affecting the whole beam homogeneously and the temperature at the middle of the beam
represents the system output.

Moreover, a nonlinearity comes into play by considering a thermal conductivity which
depends on the temperature polynomially, i. e.,

k (T ) =
N∑
i=0

aiT
i

with given coefficients ai. After modeling, discretization and renaming of variables (T → x)
one obtains a dynamical system of the form

Eẋ = Ax+ bu+ f (x) ,

y = cTx,
(24)

where x ∈ Rn denotes the state vector (discrete approximation of temperature), u the in-
put (heat source) and y the output (temperature at the middle of the beam). Furthermore,
E,A ∈ Rn,n and b, c ∈ Rn represent the linear part and the function f : Rn → Rn consti-
tutes the nonlinear part of the dynamical system. More details regarding the modeling and
discretization may be found in [15].

Depending on the mesh size, there are two systems of different dimensions available within
the Oberwolfach Model Reduction Benchmark Collection: n = 15 and n = 410. Since the
main intention is to illustrate the need for the regularized Loewner approach, we choose the
system of dimension n = 15 due to the significantly smaller simulation times.

In order to use the Loewner method we need sampled data of the transfer function of the
system. Since a nonlinear dynamical system is considered, there is only little hope to find
an analytic expression for the transfer function of the system. The idea is instead to utilize
the system’s impulse response and determine a linear transfer function describing the input-
output behavior of the system for the chosen input. Due to the nonlinearity of the system

18



the obtained transfer function has only a limited validity range with its size depending on the
impact of the nonlinearity on the I/O map.

Since an actual impulse response is numerically unfeasible, instead we create the step
response and differentiate it numerically, in order to obtain an approximation of the impulse
response, as in [4]. The discrete values of the impulse response are equal to the Markov
parameters hk (k = 0, 1, . . .) of the corresponding discrete-time system leading to the discrete-
time transfer function

H̃ (z) =
∞∑
k=0

hkz
−k. (25)

Since the impulse response of the considered system approaches zero for large time values,
the same holds for the Markov parameters with high index. Consequently, the infinite sum of
equation (25) may be truncated while retaining a reasonable level of accuracy. For applying
the Loewner approach, the transfer function is expected to map from the Laplace transforms
of the inputs to the Laplace transforms of the outputs, cf. Section 1. However, the obtained
transfer function H̃ refers to the Z-domain. In order to obtain an expression for the transfer
function of the continuous-time system the bilinear transformation is used to transform from
the Z-domain to the Laplace domain [17], i. e.,

z =
1 + ∆t

2 s

1− ∆t
2 s

leading to

H (s) = H̃

(
1 + ∆t

2 s

1− ∆t
2 s

)
,

where ∆t denotes the sampling time interval, which is equal to the time step size used for the
simulation of the step response. After these preliminary steps one obtains an approximate
transfer function H (s) which may be sampled in order to apply the Loewner framework as
described in Section 2.

The aforementioned procedure to determine a linear approximation of the transfer function
is based on simulating the step response, i. e., using the Heaviside step function Θ (t) as input.
However, we prefer to consider multiples of the Heaviside function as in [15]. For this purpose,
we split the input u (t) = aΘ(t) by putting the constant factor a into the b-vector, leading to a
system equivalent to (24), but replacing b by b̃ = ab and u (t) by ũ (t) = Θ (t). Consequently,
we may consider the step response without being restricted to an input magnitude of 1W .

We determine the step response using an input step of 105W which is within the range of
heat source magnitudes considered in [15]. The corresponding output step response is given in
Figure 2. Applying the procedure outlined above, we obtain an approximation of the transfer
function based on this step response. The Bode plot of this transfer function is depicted in
Figure 3.

Based on the linear approximation of the transfer function, we apply the Loewner frame-
work to obtain a low-dimensional realization which interpolates the transfer function. For
this, we only need to choose interpolation points but no tangential interpolation directions,
since we only have one input and one output (SISO case). As we would like to approxi-
mate the transfer function over a wide range of frequencies, logarithmically equidistant sets
of interpolation points are chosen. Moreover, in order to be able to check the interpolation
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Figure 2: Step response of the full model (u = 105W )

Figure 3: Bode plot of approximate transfer function
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easily by means of the Bode plot, purely imaginary numbers are chosen for the interpolation
points. Furthermore, the complex-conjugate interpolation points are added automatically
and a coordinate transformation is performed (in function loewner_mod) to obtain a real-
valued realization. Numerous constellations of interpolation point sets have been tested in an
automatic fashion to get a better insight into proper selections of interpolation point ranges.

Comprehensive tests have shown that the range of interpolation points should not be
chosen wider than 20 orders of magnitude. Ranges that are too wide lead numerically to
a violation of the rank conditions which are necessary for the Loewner approach to be ap-
plicable, cf. (21). In accordance with this observation, the following rule of thumb may be
formulated: The smaller the range of interpolation points, the higher the admissible number
of interpolation points.

In addition to this, it should be noted that the number of interpolation points is propor-
tional to the dimension of the Loewner realization, at least in the regular case (cf. Section
6.1). Therefore, we are mainly interested in interpolation point sets containing only a small
number of points. In order to obtain real-valued realization matrices, four is the minimal
number of interpolation points needed. Several constellations have been tested. The smallest
step response error (measured in the maximum norm) is provided by the interpolation point
set

S =
{
−103.6i;−101.8i;−10−1.8i;−10−3.6i; 10−3.6i; 10−1.8i; 101.8i; 103.6i

}
. (26)

The dimension of the Loewner realization is half the number of interpolation points which
leads to a state space dimension of four in this case. The comparison of the step response of
the reduced system to that of the original system is presented in Figure 4. It should be noted
that the step height for the original model is again u = 105W , whereas the step height for the
reduced model is u = 1, cf. discussion above about multiples of the Heaviside function. The
excellent agreement of the step responses is obvious. We emphasize that a nonlinear system
of dimension 15 has been reduced to a linear system of dimension four.

It is noteworthy that the reduced system only provides a good approximation for the I/O
behavior of the full system, whereas the internal state variables of the original model are not
captured in the reduced order model. However, in many applications, approximating the I/O
behavior is sufficient, e. g., in control applications.

For the case of the interpolation point set (26), the Loewner realization is strangeness-free
as well as completely controllable and observable. Thus, the index reduction and regulariza-
tion procedure is not necessary in this case. In contrast, some interpolation point sets lead
to realizations with strangeness-index greater than or equal to one. One example set is given
by the set

Σ =
{
−107i;−10−7i; 10−7i; 107i

}
.

Without the index reduction procedure, the numerical integration of the resulting Loewner
realization by means of the Matlab solver ode15s fails due to the higher index. However,
the regularization procedure transforms the reduced system to an equivalent strangeness-
free system and the numerical integration succeeds. This example emphasizes the need of a
regularization procedure.

On top of potential higher-index, often unstable realizations are obtained, which are not
avoided by the regularization procedure presented in this work. These systems lead to trouble
when simulating the step response due to the unstable behavior. This directly leads to the
topic of stability-preserving model reduction. This is not within the scope of this report but
for completeness we mention the passivity-preserving interpolation approach in [1]. It also
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Figure 4: Comparison of step responses (u = 105W )

preserves stability and is based on choosing the spectral zeros of the original transfer function
as interpolation points. The spectral zeros are defined as the solutions of the equation

H (s) +H (−s) = 0.

As a final remark of this section, it should be emphasized that the determined transfer function
and the resulting reduced order model are only valid for inputs being close to the test input
u = 105W . When considering much bigger or smaller input steps, the difference between the
step responses of the reduced and the full system are significantly larger. The reason for this
is the nonlinearity of the original model, which can be approximated by a linear model only
locally. To illustrate this discrepancy, Figure 5 shows the comparison of the step responses
for an input step of u = 106W where the reduced model is the same as in Figure 4 (based
on step response with u = 105W ). The qualitative behavior is indeed well approximated by
the reduced model but the quantitative agreement is bad when the height of the input step is
much larger (u = 106W ) than that used for determining the reduced model (u = 105W ). In
order to approximate the original system for a wide range of inputs, several linear surrogate
models are needed or an approach different from the basic Loewner framework has to be
applied.

8 Conclusion

In order to make the realization obtained from the Loewner framework suitable for simu-
lation and control applications, we have presented a regularization procedure resulting in a
strangeness-free as well as completely controllable and observable system. This procedure
has been implemented in Matlab and is illustrated by means of a nonlinear heat transfer
problem. The numerical results reveal that applying the pure Loewner realization may lead
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Figure 5: Comparison of step responses (u = 106W )

to higher-index or not completely controllable or observable systems. When using the regu-
larization procedure presented in this work, the realization is transformed to an equivalent
system being strangeness-free and completely controllable and observable. These properties
are important when performing simulations or when applying control methods based on the
Loewner realization.
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