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Abstract

We advocate the central importance of compliance for grasp perfor-
mance and demonstrate that grasp algorithms can achieve robust perfor-
mance by explicitly considering and exploiting mechanical compliance of
the grasping hand. Specifically, we consider the problem of robust grasp-
ing in the absence of a priori object models, focusing on object capture and
grasp stability under variations of object shape for a given robotic hand.
We present a simple characterization of the relationship between hand com-
pliance, object shape, and grasp success. Based on this hypothesis, we de-
vise a compliance-centric grasping algorithm. Real-world experiments show
that this algorithm outperforms compliance-agnostic grasping, eliminates
the need for explicit contact state planning, and simplifies the perceptual
requirements when no a priori information about the environment is avail-
able.

1 Introduction

Compliance plays a critical role in any real-world grasping experiment. Com-
pliance describes the ability of the grasper and the object to match each other’s
shape in response to contact forces without explicit sensing and control. Com-
pliance is omnipresent in robotic grasping experiments, be it intentional or not.
We believe that it is a major contributor to the experimental success of existing
grasping approaches.

We emphasize the centrality of compliance for grasping with several exam-
ples from machine and human grasping. When robotic hands are designed to be
highly compliant, they achieve good grasping performance without the need for
complex grasp planning or control. The SDM hand, for example, realizes as-
tonishing grasping performance by mechanically balancing contact forces among
its four flexible fingers [10]. A different grasping mechanism, based on highly
compliant granular material inside an elastic bag, conforms to object shapes ef-
fortlessly, thereby achieving remarkable grasping versatility and robustness [2].
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Figure 1: We visualize grasping algorithms as two consecutive funnels, transforming ini-
tial configurations into successful grasps through the use of feedback. The first funnel
leverages visual feedback to transform the starting conformation into a configuration that
lies inside the entrance of the second funnel. The second funnel relies on the force inter-
action between the hand and the object and the hand’s compliance to obtain a successful
grasp. In this paper, we introduce a visual method to realize the first funnel and show that
it leads to configurations in the entrance of the second funnel and hence to robust grasping
without prior object models.

Compliance of the object to be grasped is also advantageous to grasping. This
is obvious for flexible objects. But even rigid objects exhibit compliance when
they can adjust their position relative to the hand. In the context of bin-picking,
simple grippers can take advantage of object motion to achieve robust grasp-
ing [15]. And the push-grasping approach relies on this compliance to improve
grasping in the presence of sensing uncertainty and clutter [9].

Humans extensively rely on compliance to achieve robust grasping. Experi-
ments performed by Santello et al. [24] showed that humans use a small set of
pre-grasp hand postures when grasping objects of widely varying shapes. Robust
grasping then seems to be the result of “simply closing the hand”, leveraging the
compliance of the skeletal hand structure, muscles, tendons, and skin to achieve
complementarity of hand and object geometry.

In spite of the striking effect compliance has on grasping performance in the
real world, most existing grasp planners do not deliberately leverage compliance
to improve performance. In this paper, we will explore how this can be changed.

Our goal is to leverage hand compliance in the development of novel grasping
algorithms. The underlying hypothesis is as follows: compliance in the hand, irre-
spective of whether it is achieved passively or actively, can be viewed as a funnel
that transforms configurations in a large region of the configuration space into a
configuration in the smaller region of successful grasps (see Figure 1, the bottom
part of the funnel captures the compliance of the hand). Compliance therefore
introduces robustness to uncertainty and reduces sensing requirements.

Given this hypothesis, a compliance-centric grasping algorithm must a) char-
acterize the entrance to the bottom part of the funnel and b) transfer initial con-
figuration into those that lie at its entrance. This is illustrated by the top part
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Figure 2: Cartoons illustrating the effect of complementarity of compliance mode and
object shape on grasping success: Each of the three cartoons (a)—(c) represents a cut par-
allel to the x/y-plane through a three-dimensional shape (see text). The polar coordinates
(r,0) correspond to object size and object shape. The yellow, red, and green regions in-
dicate the parts of the plane where grasping success exceeds a given threshold. The red
annulus corresponds to a region of the space in which caging effects dominate the prob-
ability of grasp success. The radially emanating rays of the yellow sun correspond to a
particular compliance mode of the hand. If the shape of the object matches the compli-
ance mode, grasp success in increased radially. As object size increases, the entrance of
the funnel of hand poses narrows as fewer poses yield successful grasps. The inverted,
green flower around the origin characterizes a region in which precision grasps possibly
require different hand compliances than the ones considered in this paper.
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Figure 3: Example grasps for different regions of the SFA cartoon, frame colors indicate
SFA regions: Panel (d) for three objects (rows) within the annulus, each object corre-
sponding to a different angle of the polar coordinate system. For objects in the annulus,
grasp success is strongly influenced by caging effects and less by shape complementarity.
As object size increases, the influence of shape complementarity and therefore compli-
ance mode and hand pose on grasp success increases, as illustrated for two objects with
distinct shapes in panels (e) and (f). In these panels, the first row corresponds to object
sizes in the annulus. In each successive row, object size increases; fewer hand poses will
lead to successful grasps and the width of the entrance to the funnel (and the sun ray)
decreases.



of the funnel in Figure 1. We will show that compliance-centric grasping algo-
rithms exhibit robust grasping performance, significantly reduce the requirements
on perception, and eliminate the need for explicit planning of contact points.

In the remainder of this paper, we first propose a characterization of the effect
of hand compliance on grasp success in Section 2. We then validate this character-
ization by showing its predictiveness of grasp success in simulation experiments
(Section 3). In Section 4 we use insights derived from our characterization to
develop a specific compliance-centric grasp algorithm; perception will turn out
to be a central component to identify the entrance of the bottom funnel induced
by hand compliance. We evaluate our approach to perception in real-world ex-
periments in Section 5. These experiments will show that the output of our vi-
sual primitives correlates with grasp success, which implies that they are able to
identify the entrance to the funnel induced by hand compliance. We then show
in Section 6 that compliance-centric grasping outperforms compliance-agnostic
planning in real-world grasping experiments, even when we grant the latter access
to a priori world models. We defer the discussion of related work to the end of the
paper so that we can better highlight the differences between compliance-centric
and compliance-agnostic grasp algorithms.

2 Characterizing the effect of hand compliance on
grasp success

In this paper, compliance refers to the hand’s ability to use feedback to adapt its
shape to that of the grasped object. This can happen explicitly through tactile
sensors and controllers, for example, or implicitly through underactuation or me-
chanical compliance in the hand’s components. The compliance mode of a hand is
given by a specification of the intrinsic degrees of freedom of the hand and a con-
troller that closes the fingers compliantly. A compliance-centric grasp is specified
by a hand pose and a compliance mode. Successful compliance-centric grasps lie
in the entrance of the bottom funnel in Figure 1. A grasp strategy is an algorithm
for selecting compliance-centric grasps from sensor data in the absence of a priori
geometric models (the top funnel in Figure 1.

In this section, we derive a cartoon-like characterization of the effect of shape
complementarity between the hand’s compliance mode and object shape on grasp
success. This will enable us to characterize the entrance to the bottom funnel in
Figure 1. In the subsequent section, we will validate this characterization experi-
mentally.

We consider the problem of robust grasping with hands in the absence of a pri-
ori object models. We focus on aspects of object capture and grasp stability under



variations of object shape for a given robotic hand. In our discussion of grasp-
ing compliance, we will not consider clutter, placing objects, task constraints,
or in-hand manipulation [16]; this can be the subject of subsequent studies of
compliance-centric grasping algorithms.

Robotic hands may be configured to exhibit different modes of compliance.
A compliance mode specifies a pre-grasp shape (e.g. cylindrical, spherical, etc.)
of the hand and a controller to compliantly close the fingers. A compliance mode
thus captures the hand’s ability to conform to a particular object geometry in the
absence of explicit sensing and control. We must identify the compliance mode of
the hand that maximizes the likelihood of reaching shape complementarity with
the object. We assume that shape complementarity then leads to object capture
and grasp stability.!

We must find, for a given object and a given hand, the compliance funnel with
the largest opening. The shape of the funnel depends on the likelihood of reaching
shape complementarity through compliance. We therefore must understand the
different effects of achieving shape complementarity as a function of compliance
mode.

Our characterization of the effect of shape complementarity between hand and
object on grasp success is illustrated in a cartoon-like fashion in Figures 2a to 2c.
The three panels each show a cut through a three dimensional shape;? The cuts
consist of three regions, shaped like a sun, an annulus, and an inverted flower; we
therefore refer to our characterization as SFA. A description of SFA is contained
in the caption of Figure 3.

In this paper, we focus on grasping on objects in the annulus and the sun of
the SFA. We will leave for future work the presumable more complex compliance
strategies required for robust grasping in the flower, where precision grasps live.

"We deliberately disregard the notions of form and force closure in favor of the vague notion of
shape complementarity, as the former are only meaningful in the presence of adequate geometric
models of hand and object, and given an accurate characterization of contact dynamics; these
assumptions are too strict for general grasping in unstructured environments.

2This shape is not important for understanding the paper. It can be imagined as the volume
under a surface obtained by plotting for each point in the shape/size space of Figure (a) the highest
achievable success rate of an “oracle-provided” optimal grasping strategy.

3 An informal survey of the literature in robotic grasping imparts the impression that many of
the reported grasping experiments lie in the annulus of the SFA where grasping strategies are less
discriminative. This observation should impact future grasping benchmarks. One could argue that
experiments in the annulus are appropriate as most objects in the real world lie in the annulus by
design. Others may want to counter that general grasping can only be benchmarked outside the
annulus.



3 Validation of compliance characterization

In this section we describe simulation experiments to provide quantitative support
for the SFA characterization. We focus on validating our characterization of the
annulus and of the grasp success variations along the rays of the sun. Later, in
Section 5, we will provide additional real-world experimental evidence to sup-
port our view that the rays of the sun represent separate, shape-specific regions
of high grasp success and that the annulus is relatively insensitive to the hand’s
compliance mode.

3.1 Experimental setup

For all experiments in this paper—simulation and real-world—we use the Barret-
tHand, a three-fingered 4-DoF hand. We employ to different compliance modes,
spherical (adjustable spread between fingers 1 and 2 set to 120°) and cylindrical
(spread set to 0°). The corresponding grasp controller invokes the torque close
mode on the three fingers. Compliance is achieved with a breakaway mechanism,
allowing the distal link of each finger to continue to close on an object when prox-
imal link is already in contact with it. A distal contact stops the motion of both
links.*

We simulate a large number of quasi-static grasps using OpenRAVE [8]. For
each grasp we calculate the commonly used e-grasp quality metric [12], which
indicates the minimum magnitude force required to break the grasp. Grasping
experiments were conducted with spheres, cubes, and cylinders. The results for
sphere and cylinder match closely and we will discuss results for cylinder.

Object shapes are deliberately kept simple to make a near-optimal grasping
strategy obvious. Such a strategy is required to draw meaningful conclusions
about the SFA, as it captures intuition about optimal strategies. For spheres, the
robot employs the spherical compliance mode, approaches the center of the sphere
with the center of the palm until contact is made, and then closes the fingers. For
cubes (and cylinders), the robot employs the cylindrical compliance mode; during
the approach the hand is aligned to the major axes of the object.

3.2 Results and discussion

The top graph in each of the four panels in Figure 4 show grasp quality as a
function of object size and hand pose error along either the x of y direction. The
graph below the color plot shows as a function of object size the mean grasp

“There is debate in the literature on whether the breakaway mechanism can be considered
compliant. According to our definition it constitutes passive compliance, as it permits the hand to
achieve shape complementarity in response to contact forces.
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quality &pean (red solid line) and the maximum grasp quality &,,, (green dotted
line) across all pose errors. The blue dashed line shows the grasp quality gy in
the absence of a pose error. For the cylindrical grasp experiments with cubes, the
fingers close along the y-axis.
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Figure 4: Grasp quality as a function of object size and pose error; the color scale indi-
cates the grasp quality measure &; in the plots the red solid line corresponds to &yean, the
green dotted line shows &p,x, and the blue dashed line &

The close match between &, and & in all graphs provides a sanity check for
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the chosen grasp strategies. The color plots together with the curves for &, and
Eavg Provide an low-dimensional estimate of the width of the funnel.

All graphs show peak grasp qualities for medium object size, providing evi-
dence for the annulus. In the annulus, grasp quality is high and the funnel is wide.
Experiments in Section 5 will also show that grasp quality inside the annulus is
less coupled to the compliance mode of the hand.

The data also shows that grasp quality, indicative of the probability of grasp
success, decreases as object size increases beyond the annulus. The sudden drop in
grasp quality in Figure 4d is the result of only two fingers making contact with the
cube. Inside the flower, grasp quality is poor, indicating that different compliance
modes might be required for robust grasping.

4 Detecting shape resemblance for compliance-centric
grasping

To fully take advantage of hand compliance in grasping, we must find the compli-
ance mode of the hand that best matches the object shape. This will give us the
widest bottom funnel in Figure 1. Doing so does not require an exact representa-
tion of the object’s shape. Instead, we must obtain some estimate of how well the
hand can accommodate object’s shape in a particular compliance mode—we call
this shape resemblance. In addition to the shape resemblance, which indicates the
appropriate compliance mode, we must extract sufficient information to determine
a hand pose centered in the compliance funnel. We believe that the identification
of compliance mode and hand pose are much simpler perception problems than
the one required for compliance-agnostic planning, namely, the acquisition of an
accurate three-dimensional geometric models. Furthermore, the need for the plan-
ning of contact states is completely eliminated.

O’Regan and Nog [22] state in human visual experience “that the visual qual-
ity of shape is precisely the set of all potential distortions that the shape undergoes
when it is moved relative to us, or when we move relative to it.” They refer to
these sets as sensorimotor contingencies. This active vision-based characteriza-
tion of shape seems well suited for our purposes. We observe the changes of
object silhouettes under object motion and represent different object shapes by
different qualitative changes. How this can be done will be described in this sec-
tion. Our hope, confirmed in the experimental evaluation in the next section, is
that the resulting visual primitives will be robust and yield good entrances to fold-
ing funnels, as they only capture the overall shape of the object, naturally and
effortlessly ignoring unimportant details.

In the remainder of this section we will describe five visual primitives based



on active vision sensorimotor contingencies. Three of these visual primitives de-
termine shape resemblance for a specific shape: sphere, box, and cylinder. In
addition to shape resemblance, the visual primitives must acquire additional in-
formation required for the execution of a compliant grasp: position, orientation,
and size of the object. This information is sufficient to execute the appropriate
compliant grasp.

The simplicity and effectiveness of all active visual primitives is based on the
concept of active vision: the motion of the camera is controlled so as to maximize
the visual information obtained from the image stream. The advantage of active
vision over dynamic vision (just knowing how the camera moves) when estimating
the parameters of simple geometric objects was shown by Chaumette et al. [4].
Our visual primitives are similar in spirit to the ones presented there.

The basic idea underlying the visual shape primitives is as follows: When a
camera moves on an imagined sphere around the object of interest while pointing
the optical axis pointed towards the center of the object (sphere), the changes in
the silhouette of the object reveal information about the object’s shape. One might
call this the sensorimotor contingencies of the object [22]. We take advantage of
this effect to discriminate between shapes.

To control the camera motion so as to remain on this imagined sphere around
an object, we need to estimate spatial information. This is accomplished by the
depth primitive and the principal axis primitive.

Depth primitive As we are using an eye-in-hand setting with a monocular cam-
era, we're lacking instantaneous depth information. To retrieve depth, we de-
signed an active vision controller that converges to a concentric trajectory around
the object’s center (an arc on the imagined sphere). The controller moves the cam-
era so as to keep the center of the object’s projection in the center of the image. In
each time step, the controller commands the camera according to its current depth
estimate. Motion of the object’s center in the image leads to a correction of the
depth estimate. When the controller convergence, the camera moves on a sphere
around the object center. The sphere’s radius is equal to the estimated depth.

Principal axis primitive Similar to the estimation of depth we actively estimate
the main axis of an object. We derive the principal axis of the detected blob in the
image plane via its second order central moments. A visual servoing loop keeps
this axes aligned w.r.t. the image border. We are using the expected invariance
of the axis’ orientation during camera motion to update an estimate of the axis
orientation in space. The camera motion describes again an arc around the object’s
principal axis. This motion results in optimal information gain for the estimation
of lines in space [4].



The visual primitives for estimating depth and the principal axis are executed
in parallel, as their desired exploratory motions lie in the nullspace of each other.
After their convergence, we invoke the shape resemblance primitives, all of which
execute in parallel.

Shape resemblance primitives To assess the shape resemblance of the object
to the shapes of a box, a sphere, and a cylinder, we determine two simple visual
properties of the object’s silhouette: its contour area and eccentricity. The resem-
blance with a particular shape class depends only on the variance of these two
properties during the camera motion around the object. A constant projected size
and an eccentricity close to 1 indicate a sphere-like object. A constant contour
area but an eccentricity > 1 suggest an object that is rotationally symmetric along
its principal axis. We refer to this as the cylindrical shape resemblance primitive.
A box shape resemblance i1s detected when the eccentricity > 1 and the projected
size varies throughout the camera’s motion around the object.

Our experiments will show that the resulting shape information is sufficient
for robust grasping of unmodeled objects. Of course, it is not practical to move
the camera around an object prior to each grasp, as is necessary in this first version
of our grasp algorithm. However, we view this algorithm as a proof of concept. In
the future, the need for active camera motion can be significantly reduced in most
cases by first deriving a shape hypothesis from 2D vision and then confirming
this hypothesis through minimal camera motion. If the 2D hypothesis cannot be
confirmed, the robot uses the procedure above to recover.

5 Validation of relationship between shape resem-
blance and grasp success

Our compliance-centric grasping algorithm rests on the assumption that the shape
resemblance values determined by visual strategies are indicative of width of the
entrance to the bottom funnel in Figure 1. The width of the funnel should lead
to robustness in the grasping process. Hence, shape resemblance values should
correspond to grasp success for the corresponding compliance-based grasp. We
will now test this assumption in real-world experiments.

5.1 Experimental setup

For our real-world grasping experiments, we use a 7-DoF Barrett WAM in combi-
nation with a BarrettHand and a PointGrey Firefly camera mounted on the wrist.
Fig. 5 shows the objects we used: a banana, apple, pepper, sponge, spectacle
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case, toy bridge, soccer ball, game box, and a cylindrical bottle case. Given our
knowledge of the hand’s grasping volume, the first six objects were chosen to lie
in the annulus. The size of the remaining three objects (soccer ball, game box,
bottle case) places them outside of the annulus. Each represents a different class
of object shapes, thus representing a different ray of the sun. To simplify the seg-
mentation problem for the visual primitives, the game box and bottle case were
wrapped in yellow paper.

We employed three compliant grasps: spherical grasp, cylindrical grasp, and
box grasp, each corresponding to one of the visual strategies described in Sec-
tion 4. The cylindrical grasp and the box grasp both share the cylindrical compli-
ance mode of the hand but differ in the way they select the appropriate hand pose
and approach direction.

Our experimental procedure is as follows: One object at a time is placed inside
the robot’s workspace on a white table in a specified pose. In each grasping trial,
the visual primitives is used to determine the shape resemblance. Subsequently,
the corresponding compliant grasp is executed. For each of the nine objects and
three compliant grasps we conducted 10 trials, for a total of 270 grasping trials.
A grasp was deemed successful if after lifting the object 10cm off the table no
obvious slippage occurred within 10s.

Figure 5: Objects used in the experiments

5.2 Results and Discussion

The outcome of this experiment is shown as a scatter plot in Fig. 6. The color of
the circles represents the visual primitive/compliant grasp (box is red, spherical is
green, cylindrical is blue). Each circle’s size represents the grasp success rate. The
circle center’s y-coordinates indicates the shape resemblance value determined by
the corresponding visual strategy. The circle with the highest y-coordinate for
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each object represents the compliant grasp selected by our grasp algorithmy; its
diameter therefore represents the algorithm’s success rate for that object. The
averaged success rate over all objects 1s 95.6% (86 out of 90 trials, two failures
with the soccer ball, one with the spectacle case and the bell pepper).

avg(predicted shape resemblance)
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Figure 6: Shape resemblance determined by the visual primitives: box (red spheres),
spherical (green), and cylindrical (blue); the diameter of the spheres indicates the success
of the corresponding compliant grasp

The results show that inside the annulus (six objects to the left) the three grasp-
ing strategies not not differ significantly in their grasp success. The minor varia-
tions in the case of apple, banana, and bell pepper are correctly detected by the vi-
sual strategies: they select the compliant grasp with the highest success rate. This
indicates that even in the annulus there is a good match between shape resem-
blance value and predicted grasp success of the corresponding compliant grasp.
For the spectacle case, however, we select the weakest strategy, even though it
fails only once out of ten trials and we still achieve a success rate of 90%.

As expected, grasp success varies widely in the rays of the sun. The visual
resemblance detected by the visual primitives strongly correlates with grasping
success of the corresponding compliant grasp. For each of the objects, a different

12



compliant grasp is most appropriate, showing that the rays of the sun are separate,
shape- and compliant grasp-specific regions of high grasp success probability. In
the case of the soccer ball, only the spherical compliant grasp is successful at all.

These results provide further support for the SFA characterization. They show
that visual resemblance is a good measure for selecting compliant grasps and a
good predictor of grasp success. The results also show that our spherical visual
primitive is too selective, as it results in a visual resemblance value of less than
0.5 for a perfect sphere.

6 Comparison of compliance-centric and compliance-
agnostic grasping

In our final set of experiments, we compare the proposed compliance-centric grasp
algorithm to a specific compliance-agnostic grasp planner. We show that our al-
gorithm outperforms the compliance-agnostic planner, even after we provide the
latter with accurate a priori object models, something that could be considered an
important advantage over our method.

6.1 Experimental setup

For the experimental comparison we chose the Eigengrasp planner [6], imple-
mented inside the Grasplt! framework [17]. Our reason for choosing this planner
were its relative recency, its popularity in terms of citations, and the availability
of the source code.

We took great care in determining geometric models of six of the objects in
Figure 5 (all except the fruits and vegetable), performing several independent mea-
surements for each. We included object-specific, conservative estimates of surface
friction in the models.

To generate candidate grasps with the Eigengrasp planner, we used 70,000 it-
erations of simulated annealing, setting the energy formulation as “hand+object”.
We eliminated candidate grasps for which no inverse kinematic solution for the
arm existed (this only happened for two of the six objects objects and did not
affect the two highest-quality grasps). We then selected the three best grasps, per-
forming ten trials for each, for a total of 180 grasp attempts. The exact pose of the
object was an input to the grasp attempt. Grasp success was measured as before.

For comparison, we calculated two measures of success for the Eigengrasp
planner. The average success rate includes all 30 grasps per object, while the best
success rate only represents the most successful of the three planned grasps. Note
that the second metric selects the best grasp in hindsight, after all experiments are
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performed.

6.2 Results and discussion

Figure 7 compares the grasp success obtained with the Eigengrasp planner to our
compliance-centric algorithm. Among the objects inside the annulus, only the
spectacle case shows significant difference in grasp success. Our algorithm out-
performs the Eigengrasp planner in either metric. In the rays of the sun (bottle
case and soccer ball), the Eigengrasp planner fails in all grasp attempts. This
could be an indication that the advantage of compliance-centric grasping increase
as we reach the boundary of the SFA. In the case of the box, however, both grasp
methods achieve 100% success.

Overall, our compliance-centric grasp algorithm always performs better or as
good as the Eigengrasp planner, providing real-world experimental support for the
funnel-based view of compliance-centric grasping in Figure 1. The grasp results
demonstrate that the proposed visual primitives successfully identify configura-
tions in the entrance to the bottom part of the funnel. These visual primitives are
simple and effective. They eliminate the need for explicit contact planning, sup-
porting the claim that hand compliance should become a central consideration in
robot grasping.

Our approach
Eigengrasp (best)
Eigengrasp (avg) s

grasp success rate

Figure 7: Comparison of compliance-centric grasp algorithm with Eigengrasp planner
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Figure 8: Top: grasps of the compliance-centric algorithm; Bottom: — grasps of the
Eigengrasp planner

7 Related Work

In this section we will discuss related grasping approaches. We focus on work
that leverage hand compliance and work that is based on little or no a-priori object
knowledge.

7.1 Approaches that leverage knowledge about compliance

Ciocarlie and Allen [6] synthesize grasps based on the idea that the intrinsic DOF
of a hand can be mapped into a lower dimensional sub-space, without losing much
expressiveness. This way they can search the space of possible pre-grasps much
faster. In executing grasps, they implicitly rely on compliance when closing the
fingers. We compared our algorithm with this approach.

Miller et al. [18] present a planner that uses heuristics which describe how to
grasp basic shapes, such as boxes, cones, spheres and cylinders. Their pre-grasps
and approach strategies resemble our compliant grasp strategies. However, they
rely on a known decomposition of the object, ignoring this non-trivial perception
problem. The planner also does not explicitly account for compliance.

Huebner and Kragic [14] use an object representation based on box primitives
to select grasps. This implicitly relies on compliance during grasping to compen-
sate for the approximation error introduced by the primitives.
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The grasp approach presented in Dune et al. [11] also relies on active vision
to acquire information about object shape but then relies on shape approximation
with quadrics to represent this information. Again, by relying on a shape approx-
imation, the approach implicitly depends on hand compliance.

Diankov et al. [7] presents a planner that grasps handles to manipulate kine-
matic structures such as doors. This approach replaces the force closure criterion
for grasps with a caging constraint. The execution of caged grasps will also benefit
from compliance.

Diankov [8] proposes to select robust grasps by perturbing the planned ap-
proach direction and wrist angle during grasp planning. This can be interpreted
as determining the width of the entrance of the compliance funnel for a grasp
through many repeated grasp simulations based on a world model. We show that
it is easier to extract this information from sensor data and to consider compliance
explicitly.

7.2 Approaches that use a-priori knowledge and perception

Many grasping algorithms approach the problem from a purely geometric per-
spective. These approaches introduce grasp quality metrics and use them to syn-
thesize grasps in 2D or 3D [20, 21, 5, 12]. They all assume that complete object
knowledge is accessible up to an arbitrary degree. Interestingly enough, Balasub-
ramanian et al. [1] showed that a much simpler quality measure, which was used
by humans when controlling robotic hardware, produces more reliable grasps.
These findings match our conclusions regarding the relationship between compli-
ance and grasp performance closely. The presented compliant grasping strategies
also maximize orthogonality with respect to the objects principal axes.

Other approaches separate the grasping problem into two stages: building ob-
ject models and planning on top of these representations. Apart from the ones
above, which use shape approximations, a variety of vision-based approaches ex-
ist. Hauck et al. [13] use a stereo-vision system to detect and triangulate grasping
points on the silhouette of an object. Morales et al. [19] assume planar extruded
objects, for which they plan two- and three-fingered grasps based on the object’s
detected contour. In [25] a classifier for detecting grasping points in images is
learned from a set of labeled training examples. The resulting classifier usually
prefers pairs of edge-like features, ignoring any depth information.

A third group of grasping approaches updates grasp hypotheses continuously
by integrating sensor measurements. Calli et al. [3] use an eye-in-hand system
and apply a visual servoing scheme that maximizes the curvature of the object
silhouette, thus leading the hand to concave parts of the object. Platt et al. [23] use
tactile feedback to refine a grasp after initial contact by controlling two opposing
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fingers along the object surface. They show that their strategy converges to force-
closure for arbitrary convex objects.

8 Conclusion

The explicit consideration of hand compliance in robotic grasping improves per-
formance and robustness. We argued that grasp algorithms should be compliance-
centric, i.e. they should deliberately take advantage of hand compliance to im-
prove performance. In this paper, we presented a first exploration into this direc-
tion. We provided a cartoon-ish characterization of the influence of shape com-
plementarity between a hand’s compliance mode and the object’s shape. Through
experimental validation we showed that this characterization captures some inter-
esting aspects of compliant grasping. The resulting insights lead to the develop-
ment of a set of active vision-based grasp strategies for different compliant modes.
These compliance-centric strategies exhibit robust real-world performance, out-
performing a compliance-agnostic grasping strategy. At the same time, by letting
the compliance of the hardware “sort out the details” of the best hand configu-
ration for a robust grasp, our approach eliminates the need for planning specific
point contacts and thus the necessity for detailed geometric models of the hand
and object. Instead, we employ simple visual strategies based on sensorimotor
contingencies to identify appropriate compliant grasps. Giving compliance a cen-
tral role in grasping leads to simple algorithms with robust performance.
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