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Abstract 

This paper reports the application of a systematic research methodology for uncovering the reasons behind 

results obtained when energy is considered in machining optimisation. A direct search optimisation method 

was used as a numerical experimentation rig to investigate the reasoning behind the results obtained in 

applying Taguchi methods and Genetic algorithm (GA). Representative data was extracted from validated 

machining science equations and studied using graphical multivariate data analysis. The results showed that 

over 80% of reduction in energy consumption could be achieved over the recommendations from machining 

handbooks. It was shown that energy was non-conflicting with the cost and time, but conflicting with quality 

factors such as surface roughness and technical factors such as power requirement and cutting force. These 

characteristics of the solutions can provide an explanative motif required for practitioners to trust and use the 

optimisation results. 
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1 INTRODUCTION 

Minimising the energy consumption for the machining 

process can lead to benefits for the environment as well as 

contribute to economic and social well being of the society. 

Duflou et al. [1] concluded that optimising manufacturing 

process is one of the strategies to reduce energy demand 

and resource consumption. The specific methods for 

optimising manufacturing process include reducing auxiliary 

energy consumption, reducing idle production time, 

optimising process parameters and energy-efficient process 

planning. Previous research [2] of the authors looked at the 

improvement of energy efficiency for end milling operation. 

An energy prediction model and energy-efficient profiling 

toolpath strategy have been proposed. The aim of this paper 

is to continue investigating energy minimisation methods by 

considering optimisation of process parameters to further 

improve the energy usage for machining operation. The 

characteristics of machining operation when energy is 

considered as a significant factor will be investigated. A direct 

search optimisation method will be used to uncover the 

reasoning of the optimal results which are obtained when 

using Taguchi method and genetic algorithm. 

1.1 Problems for Machining Optimisation 

The observation from literatures and practice is that currently, 

too many optimisation methods (such as Genetic Algorithm 

(GA), Simulate Annealing (SA), Particle Swam Optimisation 

(PSO) and tribe/ant-colony) have been proposed. The 

optimisation methods are more like "black box" tools. The 

consequence of this problem is that in practice, the 

practitioners do not trust the optimal results because they 

cannot understand how the results are obtained from the 

optimisation methods. 

1.2 Research Question and Research Design 

The following research questions are going to be answered in 

this paper:  

How the nature of the energy-minimising machining 

optimisation problem be explained?  

How the reasoning process of the algorithms for solving the 

energy-minimising machining problem be explained? 

To address the challenge posed by these research questions, 

this paper presents in section 3 an exploration of techniques 

for explaining the characteristics of the optimisation problem 

and in section 4 the reasoning behind the algorithms for 

solving the optimisation problem. A review of related research 

is presented in section 1.3 to introduce the development of 

machining optimisation and identify the gaps of knowledge. 

1.3 Related Research in Machining Optimisation 

The research of improving machining performance by 

selecting optimal process parameters have been conducted 

for over 100 years since Taylor published his tool life 

equations in the early 1900s [3]. Early researchers (1950s to 

1970s) proposed optimal suggestion based on analysis of 

machining variables. The optimisation process usually 

followed procedures of (1) data collection through conducting 

physical experiments, (2) mathematically modelling (3) 

analysing the mathematical equation, and (4) proposing 

optimal solutions. Following this type of approach, Brewer 

and Rueda applied a monograph technique to optimise tool 

life with the consideration of a group of independent variables 

for turning variety of materials. The results showed that for 

non-ferrous materials, the best cutting conditions are 

regarded as the high material removal rate which the 

machine will permit. For difficult-to-machine material the 

range of feasible parameters is much narrower than non-

ferrous material [4]. Crookall proposed a concept of 

performance-envelope to represent the permissible and 

desirable operation regions of machining based on the 

characteristics of machining cost and time with the 

constraints of machining tool capability (power), cutting tool 

failure, and surface roughness [5].  
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On the basis of early research, conventional optimisation 

methods started to be applied in machining optimisation 

during 1980s to 1990s. Researchers from University of 

Manchester used a grid search method to solve machining 

optimisation [6]. Enparatza [7] developed a tool selection 

module for end milling operation and conducted an 

optimisation procedure of cutting conditions by considering 

economic criteria. The result reported that the machining cost 

can be minimised by selecting optimal cutting speed. The 

optimisation procedure also showed how constraints (tool life, 

cutting force, machining power and tool deflection) affect the 

search space. By comparing different algorithms, Tolouei-

Rad and Bidhend selected feasible direction method to 

optimise general milling operation based on economic 

criteria. They reported that the optimisation of end milling is a 

non-convex, non-linear, multi-variable and multi-constrained 

problem. A case study of machining a multiple-feature 

component showed that up to 350% improvement in profit 

rate can be achieved over the recommendation from 

machining handbook [8]. 

Taguchi method was introduced to improve product and 

process design as a fractional factor design method which 

can significantly reduce time and resource needed compared 

to conventional Design of Experiment (DOE) methods. In 

addition, because it can be easily implemented and has a 

good applicability, the Taguchi method has been widely used 

in many machining optimisation research to determine 

important process parameters based on economic criteria 

(e.g. cost, productivity) and surface roughness [9]. 

With the rapid development of computer technology in early 

21st century, new optimisation methods which are generally 

known as Evolution Computing or Meta-Heuristic search 

algorithms have become popular in machining optimisation. 

Heuristic algorithms are widely used to solve parameter 

optimisation problems, especially when the search space is 

very large and complex. Khan et al. [10] claimed non-

conventional algorithms such as Genetic Algorithm (GA) and 

Simulated Annealing (SA) are more suitable than traditional 

methods for machining optimisation due to its  non-linear and 

non-convex solution space. Baskar et al. [11] compared the 

performance of four non-conventional methods: Ant Colony 

Algorithm, GA, PSO and Tabu Search. They applied theses 

methods to determine the optimal process parameters when 

time, cost and profit rate are the objective functions. The 

results showed that PSO has better performance than the 

other algorithms. It was reported that 440% and 54% of 

improvement in profit rate was achieved compared to 

handbook recommendation and optimal result by using 

feasible direction method. However, comparison of the 

results obtained from GA and PSO showed that the optimal 

results for these algorithms do not differ by more than 4%. 

Until recently, energy was indirectly considered in machining 

optimisation through including power as a constraint in the 

optimisation problem. Energy was first considered as a 

primary objective by Fillippi and Ippolito in 1980 [12], but it 

was not until the mid of the 1990s that Sheng et al. [13] 

formulated an environmentally-conscious multi-objective 

model which considered energy consumption as an important 

component. It also provided a possible way to carry out an 

optimisation procedure from environmental perspective. 

Based on consideration of energy minimisation, Rajemi and 

Mativenga [14] conducted research on optimising cutting 

parameters for dry turning operations. A prediction model 

was developed in terms of feed rate, cutting velocity and tool 

life to calculate energy consumed. Further research by 

Mativenga and Rajemi [15] showed that by optimising tool life 

through direct search method, up to 64% energy can be 

reduced compared to that obtainable by using cutting 

parameters recommended by tool suppliers. In addition, the 

optimal value of cost can be achieved at the same time with 

optimal energy consumption. Mori et al [16] conducted a 

series of experiments based on Taguchi method. The results 

showed that cutting performance can be improved by 

adjusting cutting speed, feed rate, depth and width of cut. Up 

to 66% power consumption for milling operation can be 

reduced by selecting high level of cutting conditions within a 

value range which does not compromise tool life and surface 

finish. The machining time can also be shortened with 

significant increase in material removal rate. 

1.4 Summary of Gaps from Literature 

The environmental challenge provides a new opportunity to 

apply the results of decades of optimisation and process 

planning research. However, as identified by Roy et al [18], 

most of academic optimisation results have not been used by 

industry because practitioners mostly prefer to select optimal 

parameters based on expert experience. The reasoning 

behind practices on optimisation [11-16] is not clear and 

needs to be transparent by addressing the following 

requirements: 

 The optimisation procedure must be based on 

comprehensive understanding of the problem. 

 The primary objective (energy) must be related to the 

conventional objectives such as cost, time and quality 

which the practitioners are familiar with and interested in. 

 The optimisation method adopted must be concise and 

explicit which is relevant to practitioners’ knowledge or 

obvious general principle. 

 The optimisation results must be easily visualised. 

2 NATURE OF MACHINING OPTIMISATION 

2.1 Nature of Search Space 

Search space can be explained as a set of all the possible 

solutions. Each point in the search space represents a 

combination of process parameters. The size of the search 

space increases exponentially with the increase of number 

and levels of variables. Thus, for 3 levels of 4 variables the 

total number of size of the search space is 34. The increasing 

the number of levels by 1 will expand the size to 44 which 

increases search space by over 300%.The unconstrained 

search space of machining optimisation is a multi-

dimensional space located in the positive interval of the 

coordinate space.  

2.2 Nature of Variables 

The variables involved in end milling operation have already 

been identified and classified into independent and 

dependent variables by several researchers [2, 4, 7, 8, 11, 

16]. These variables are listed below. 

Independent variables: Depth of cut ap (mm), Width of cut 

ae (mm), Feed rate fz (mm/tooth), Spindle speed n (rev/min), 

Diameter of tool d (mm), Number of flutes z. 

Dependent variables: Energy E (kJ), Cost C, Time T (min), 

Material Removal Rate MRR, Tool Life TL (min), Cutting 

Force F (N), Power P (W), Surface Finishing Ra, Cutting 

Speed Vc, Feed Rate f (mm/min) 
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2.3 Nature of Objectives and Constraints 

Previous machining research contributions [4, 7, 8, 10, 11] 

have used as objectives cost, time, surface roughness and 

tool life, and as constraints the following variables: 

 The surface roughness should be satisfied with the 

quality requirement (rough machining or finishing) 

 The cutting force should at least make sure the 

machining operation can take place but not break the 

cutting tool. 

 The power required for machining should not be over the 

limitation of the machine tool 

 Physical constraints of independent variables determined 

by the capability of machine tools (design power) and 

cutting tools geometries (diameter of the tool). 

In this paper, energy is added to these dependent variables 

and can be considered either as the objective function or 

constraint. For the purpose of investigating the problem any 

of the other factors can also be either an objective or 

constraint or both. 

3 CHARATERISATION OF ENERGY CONSUMPTION  

3.1 Design of Numerical Experiment 

Numerical experiments carried out in this paper are mainly 

based on predictive models obtained from previous 

experiments conducted by the authors [2] when milling 

Aluminium 7050 on a HAAS TM-1CE 3-axis vertical milling 

machine. Equations for variables such as tool life and surface 

roughness are obtained from the contributions of other 

researchers [2, 8, 11]. The design of numerical experiment is 

shown in Table 1. Table 2 lists the mathematical expressions 

of the dependent variables for the numerical experiments. 

Four process parameters are considered as independent 

variables which are: depth of cut, width of cut, spindle speed 

and feed rate per tooth.  

Table 1: DOE for numerical experiment 

Process Parameter Value Range 

Depth of cut ap (mm) 1-5 mm 

Width of cut ae (mm) 1-10 mm 

Spindle Speed n (rpm) 500-4000 rpm 

Feed rate fz (mm/z) 0.01-0.1 mm/tooth 

Diameter of tool (mm) 10 mm 

Number of flutes 3 

Cutting Tool: carbide flat end mill 

Workpiece material: Aluminium 7050 

3.2 Characteristics of Machining Operation with Energy 

Consideration 

Since the studies of other factors have been considered by 

other researchers [4-7], this paper will only focus on the 

factors in relation to energy consumption. Numerical 

experiments were carried out based on the prediction models 

in Table 2 in the range of process parameters in Table 1. The 

effects of four independent variables on energy consumption 

are shown as in Figure 1. The results show that the energy 

consumption for machining specific volume material 

monotonously decreases with the increase in depth of cut, 

width of cut, feed rate and spindle speed. It means choosing 

higher machining parameters is more energy efficient than 

using lower parameters.  

Table 2: Mathematical expressions of dependent variables 

Feed Rate: zf n z f    

Mater Removal Rate: p eMRR a a f    

Cutting Speed: cv n d    

Cutting Force:  2 /t tF K MRR n z d     

Force Coefficient: 

1 2 3 4 5 6
0

k k k k k kc c c c c c
t k p e zK c a a d z f n         

Where ck0 to ck1 are coefficients for Kt 

Total Power: 

tan var
60

t c
total machining auxiliary cons t iable

F v
P P P P P


    

Where the other components are power consumptions for 
machining, auxiliary functions (constant and variable) 

Tool Life: tl
m p q

c p

c
TL

v f a


 
 

Where m, p, q are tool life coefficients 

Total Time: 

1
changem

total machining setup tc setup

tV
t t t t t

MRR TL

 
       

 

Where the other components are time consumptions for 
machining, setup, tool change(tool change/time) 

Total Energy:  

  tan

total machining auxiliary setup tc

total total setup tc cons t

E E E E E

t P t t P

   

   
 

Where the other components are energy consumptions for 
machining, auxiliary function, setup, tool change 

Total Cost: total Labour Energy toolC C C C    

Ra: 3 5 61 2 4
0

r r rr r rc c cc c c
a r p e zR c a a d z f n        

Where cr0 to cr1 are surface roughness coefficients 

 

 

Figure 1: Characteristics of Machining Operation 
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Another observation from the energy plots of figure 1 is that 

the improvement trend of energy is less pronounced with the 

increase of process parameters. One reason is that the 

increase of process parameters can only reduce the energy 

consumed by machining operation, but cannot reduce the 

constant energy consumption such as the energy consumed 

for setting up the machine tool. The comparison between 

energy consumption and other criteria shows that energy is 

non-conflicting with the cost and time for all four independent 

variables. However, energy consumption is conflicting with 

cutting force in depth of cut and width of cut, surface 

roughness in width of cut and feed rate per tooth, tool life in 

spindle speed and feed rate per tooth, and power in all four 

independent variables.  

4 INVESTIGATION OF OPTIMISATION METHODS 

4.1 Development of Experimentation Rig based on 

Direct Search Method 

The principle of direct search method is similar to full factorial 

DOE.  Grids will be created based on numbers and levels of 

independent variables which represent all the possible 

solutions which will be used to create the experimentation rig. 

Table 3 shows a 3 levels DOE plan. 81 grids points will be 

created.  

Table 3: 3 Levels Design of Experiment 

Process Parameter Level 1 Level 2 Level 3 

Depth of cut ap (mm) 1 3 5 

Width of cut ae (mm) 5 7.5 10 

Spindle Speed n (rpm) 500 2250 4000 

Feed rate fz (mm/z) 0.01 0.055 0.1 

The experimentation rig can be graphically displayed in 

Figure 2. The label of horizontal axis was removed since it 

only represents the numerical order of samples (1 to 81) 

which does not have any physical meaning. The original data 

after initial multivariate data analysis shows the energy 

consumption is changing with some pattern which can be 

displayed as dash squared areas to represent the original 

searching space of 3 level 4 variables full factor design. Each 

small dash square area contains 9 grid points which 

correspond to every 9 points on the original energy plot. The 

blue arrows shows the increasing direction of the 4 process 

parameters (e.g. No. 5 block contains the data when ap=3, 

n=2250, ae=5-10 and fz=0.01-0.1). The highlighted green 

area shows the data after being sorted with the increase of 

material removal rate per tooth (MRRz). The red curve shows 

the samples after being organised with continuing decrease 

of specific energy consumption. 

 
Figure 2: Experimentation rig of specific energy consumption. 

4.2 Explanation of Taguchi Method 

Taguchi method is an experiment-based optimisation method 

which uses a concept of “signal and noise (S/N)” ratio to 

evaluate the impact of the variables by considering the 

average value and standard deviation. For the objective of 

minimising energy consumption, the smaller the better 

equation will be chosen to calculate S/N ratio: 

2

1

1
/ 10log

n

s
i

S N Y
n



 
   

 
 
                                                 (1) 

Table 4 shows an L9 DOE plan according to Taguchi 

orthogonal experimental design. 9 out of 81 samples were 

selected to carry out the analysis.  

Table 4: Experimental results of Taguchi method 

Number ap ae n fz SEC 

1 1 5 500 0.01 323.945 

2 1 7.5 2250 0.055 11.207 

3 1 10 4000 0.1 4.274 

4 3 5 2250 0.1 4.856 

5 3 7.5 4000 0.01 11.855 

6 3 10 500 0.055 12.761 

7 5 5 4000 0.055 3.954 

8 5 7.5 500 0.1 7.165 

9 5 10 2250 0.01 10.265 

The graphical explanation is shown in Figure 3. The black 

dots on the grids represent the selected samples in Table 5. 

From the observation of these dots, it can be found that each 

dot is located on a unique position of each dash area (e.g. 

upper left, middle, lower right). It means each level of 

parameters only interacts once, hence avoids overlapping 

consideration. The basic principle of Taguchi method is to 

use S/N ratio to analyse the fractional effect of the variables 

to identify which level of which parameter has greater 

influence on the machining performance. The optimal results 

then will be determined by adjusting cutting conditions based 

on the fractional effects. Figure 3 shows the analysing 

process of depth and width of cut. It can be found that the 

analysis follows the increase of the variables. It shows that 

the nature of the Taguchi method is actually the same as 

gradient search or feasible direction method. 

 

Figure 3: Display of Taguchi samples 

In using the Taguchi method for optimisation of process 

parameters, the first observation obtained from the S/N plot 

of figure 4 is that optimal values of energy is obtained at the 

highest levels for all the 4 parameters. The second 

observation is that for improving the energy consumption it is 

more efficient to increase the process parameters in the 

order feed rate, depth of cut, spindle speed and lastly width of 

cut. While these observations can be obtained by other 

conventional data analysis methods as the characterisation of 

figure 1, the Taguchi method makes this information much 

clearer. However as pointed out in the literature, this usage of 

the Taguchi method for optimisation is only a first level 

approximation as it could miss the real optimal value. For 
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example in figure 3, if the optimum is at point X, the optimum 

indicated by applying the Taguchi method as describe above 

will not be the real optimum. For cases like this the use of 

Taguchi method will require an iterative approach, in which 

the experiment is repeated in the vicinity of optimum obtained 

in a previous step. When the results obtained in this iterative 

application the Taguchi method are considered, the method 

will be it appears similar to the feasible direction or steepest 

ascent/decent optimisation methods. 

 

Figure 4: S/N ratios for process parameters. 

4.3 Explanation of Genetic Algorithm (GA) 

Table 5: Concept comparison between GA and machining 

GA Machining 

Population Feasible machining plans 

Individual A machining plan 

Chromosome Combination of parameters 

Gene Parameter 

Fitness Optimum value 

Selection Record improved results 

Reproduction  

Change the combination of 

machining parameters 

Crossover 

Mutation 

Evolution Generate new optimal results 

Table 5 shows the explanation of GA in machining terms. 

Typical GA-based optimisation steps and the explanation in 

machining optimisation terms are presented below.  

1. Random selection of starting points (process 

parameters). It is difficult to find a completely random 

selection of starting process parameters in practical 

machining operation. Even for a novice practitioner who is 

working on new machining operations (e.g. new material, tool 

and machine tool) where the best process parameters are not 

known yet, the selection of the process parameters would be 

guided by suggestions from machining handbook, tool 

catalogue or the experience of senior practitioners. A 

possible explanation of this random selection cannot also be 

justified by a case of an intelligent machine tool designed to 

adaptively determine the cutting parameters since database 

values would usually provide initial values.  

2. Generate new individuals by conducting crossover 

and mutation. The function of crossover is to rapidly explore 

a search space within the initial data range which is the same 

as changing the combination of process parameters to 

achieve the new machining plans. The function of mutation is 

to provide a small amount of random search which can 

expand the search space by extending data range. It is the 

same as replacing a process parameter with a new value 

(e.g. increase the depth of cut from 1mm to 3mm or vice 

versa) which leads to a new set. The randomisation 

explanation of step 1 applies here too. 

3. Select and keep the best individual. The function of 

selection is to compare the machining plans and keep record 

of the optimal plans for further operation. The best machining 

plan can be determined by repeating above operations. 

Figure 5 graphically shows how the optimal result is obtained 

by using GA for an example. The optimal result can be 

determined after repeating the algorithm 4 times. The green 

dash arrow shows the overall search path of implementing 

GA which is similar to feasible direction optimisation method. 

However, the results obtained from crossover and mutation 

operations are not always positive. In this case, the actual 

optimisation path (grey arrow) is similar to hill climbing 

method which can determine the local optimal value within 

the data range. However, the repeated mutation operation 

can help jump out of previous local search space and 

eventually find the real optimal specific energy consumption.  

 

Figure 5: Determination of optimal results by using GA. 

In addition, the sample size and location of the initial 

population also affect the performance especially the speed 

of optimisation process in terms of interaction numbers, 

number of generations and computing time. However, they 

will not affect the value of optimal results. 

5 OPTIMISATION PROCEDURE 

According to characteristics of machining operation, the 

optimisation procedure was conducted by using direct search 

algorithm. The optimal result is located on the boundary of 

the search space. Figure 6 shows 1 of the 9 solution 

landscapes for the 3 level, 4 variable energy-minimisation 

machining problem. In the figure, Specific Energy 

Consumption, SEC reduces with the increase in feed rate 

and spindle speed.  

 
Figure 6: 3D Contour plot of SEC 

157



O.O.Owodunni, T. Zhang, J. Gao 

 

 

 

Figure 7 shows search space with the constraints by the 

cutting force and surface roughness factor displayed. The 

green area represents the feasible region of search space 

when cutting force is no more than 400N and surface 

roughness is smaller than 0.05mm. So the optimal cutting 

condition based on energy consideration is the optimal points 

highlighted in the figure. The optimal result in Table 6 shows 

that over 80% of improvements in energy, cost and time can 

be achieved compared to machining handbook 

recommendation [18]. 

 
Figure 7: Constrained Optimal Results. 

Table 6: Optimal Results Comparison 

Variables Handbook  Optimal  Improvement 

ap (mm) 1 5  

ae (mm) 5 10  

n (rpm) 1500 4000  

fz (mm/tooth) 0.067 0.06  

Energy (KJ/cc) 18.612 3.079 83.46% 

Cost (£/cc) 0.123 0.016 86.99% 

Time(sec/cc) 43.968 5.833 86.73% 

6 CONCLUSION 

This paper presented a systematic research methodology for 

uncovering the reasons behind results obtained when energy 

is considered in machining optimisation. It provided the 

answers to the research questions in the following aspects: 

 Energy consumption monotonously decreases with the 

increase of process parameters.  It is non-conflicting with 

the cost and time, but conflicting with surface roughness,   

power requirement, tool life and cutting force. 

 Explanation models developed show that Taguchi and 

GA are similar to feasible direction methods. The 

transparency from the explanations can help practitioners 

to trust and implement optimisation results. 

 The constrained optimisation result shows that over 80% 

of improvement of energy, cost and time can be achieved 

by using optimal process parameters compared to 

machining handbook recommendation. 
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