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Abstract

This paper reports the application of a systematic research methodology for uncovering the reasons behind
results obtained when energy is considered in machining optimisation. A direct search optimisation method
was used as a numerical experimentation rig to investigate the reasoning behind the results obtained in
applying Taguchi methods and Genetic algorithm (GA). Representative data was extracted from validated
machining science equations and studied using graphical multivariate data analysis. The results showed that
over 80% of reduction in energy consumption could be achieved over the recommendations from machining
handbooks. It was shown that energy was non-conflicting with the cost and time, but conflicting with quality
factors such as surface roughness and technical factors such as power requirement and cutting force. These
characteristics of the solutions can provide an explanative motif required for practitioners to trust and use the

optimisation results.
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1 INTRODUCTION

Minimising the energy consumption for the machining
process can lead to benefits for the environment as well as
contribute to economic and social well being of the society.
Duflou et al. [1] concluded that optimising manufacturing
process is one of the strategies to reduce energy demand
and resource consumption. The specific methods for
optimising manufacturing process include reducing auxiliary
energy consumption, reducing idle production time,
optimising process parameters and energy-efficient process
planning. Previous research [2] of the authors looked at the
improvement of energy efficiency for end milling operation.
An energy prediction model and energy-efficient profiling
toolpath strategy have been proposed. The aim of this paper
is to continue investigating energy minimisation methods by
considering optimisation of process parameters to further
improve the energy usage for machining operation. The
characteristics of machining operation when energy is
considered as a significant factor will be investigated. A direct
search optimisation method will be used to uncover the
reasoning of the optimal results which are obtained when
using Taguchi method and genetic algorithm.

1.1 Problems for Machining Optimisation

The observation from literatures and practice is that currently,
too many optimisation methods (such as Genetic Algorithm
(GA), Simulate Annealing (SA), Particle Swam Optimisation
(PSO) and tribe/ant-colony) have been proposed. The
optimisation methods are more like "black box" tools. The
consequence of this problem is that in practice, the
practitioners do not trust the optimal results because they
cannot understand how the results are obtained from the
optimisation methods.

1.2 Research Question and Research Design

The following research questions are going to be answered in
this paper:

How the nature of the energy-minimising machining
optimisation problem be explained?

How the reasoning process of the algorithms for solving the
energy-minimising machining problem be explained?

To address the challenge posed by these research questions,
this paper presents in section 3 an exploration of techniques
for explaining the characteristics of the optimisation problem
and in section 4 the reasoning behind the algorithms for
solving the optimisation problem. A review of related research
is presented in section 1.3 to introduce the development of
machining optimisation and identify the gaps of knowledge.

1.3 Related Research in Machining Optimisation

The research of improving machining performance by
selecting optimal process parameters have been conducted
for over 100 years since Taylor published his tool life
equations in the early 1900s [3]. Early researchers (1950s to
1970s) proposed optimal suggestion based on analysis of
machining variables. The optimisation process usually
followed procedures of (1) data collection through conducting
physical experiments, (2) mathematically modelling (3)
analysing the mathematical equation, and (4) proposing
optimal solutions. Following this type of approach, Brewer
and Rueda applied a monograph technique to optimise tool
life with the consideration of a group of independent variables
for turning variety of materials. The results showed that for
non-ferrous materials, the best cutting conditions are
regarded as the high material removal rate which the
machine will permit. For difficult-to-machine material the
range of feasible parameters is much narrower than non-
ferrous material [4]. Crookall proposed a concept of
performance-envelope to represent the permissible and
desirable operation regions of machining based on the
characteristics of machining cost and time with the
constraints of machining tool capability (power), cutting tool
failure, and surface roughness [5].
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On the basis of early research, conventional optimisation
methods started to be applied in machining optimisation
during 1980s to 1990s. Researchers from University of
Manchester used a grid search method to solve machining
optimisation [6]. Enparatza [7] developed a tool selection
module for end milling operation and conducted an
optimisation procedure of cutting conditions by considering
economic criteria. The result reported that the machining cost
can be minimised by selecting optimal cutting speed. The
optimisation procedure also showed how constraints (tool life,
cutting force, machining power and tool deflection) affect the
search space. By comparing different algorithms, Tolouei-
Rad and Bidhend selected feasible direction method to
optimise general milling operation based on economic
criteria. They reported that the optimisation of end milling is a
non-convex, non-linear, multi-variable and multi-constrained
problem. A case study of machining a multiple-feature
component showed that up to 350% improvement in profit
rate can be achieved over the recommendation from
machining handbook [8].

Taguchi method was introduced to improve product and
process design as a fractional factor design method which
can significantly reduce time and resource needed compared
to conventional Design of Experiment (DOE) methods. In
addition, because it can be easily implemented and has a
good applicability, the Taguchi method has been widely used
in many machining optimisation research to determine
important process parameters based on economic criteria
(e.g. cost, productivity) and surface roughness [9].

With the rapid development of computer technology in early
21st century, new optimisation methods which are generally
known as Evolution Computing or Meta-Heuristic search
algorithms have become popular in machining optimisation.
Heuristic algorithms are widely used to solve parameter
optimisation problems, especially when the search space is
very large and complex. Khan et al. [10] claimed non-
conventional algorithms such as Genetic Algorithm (GA) and
Simulated Annealing (SA) are more suitable than traditional
methods for machining optimisation due to its non-linear and
non-convex solution space. Baskar et al. [11] compared the
performance of four non-conventional methods: Ant Colony
Algorithm, GA, PSO and Tabu Search. They applied theses
methods to determine the optimal process parameters when
time, cost and profit rate are the objective functions. The
results showed that PSO has better performance than the
other algorithms. It was reported that 440% and 54% of
improvement in profit rate was achieved compared to
handbook recommendation and optimal result by using
feasible direction method. However, comparison of the
results obtained from GA and PSO showed that the optimal
results for these algorithms do not differ by more than 4%.

Until recently, energy was indirectly considered in machining
optimisation through including power as a constraint in the
optimisation problem. Energy was first considered as a
primary objective by Fillippi and Ippolito in 1980 [12], but it
was not until the mid of the 1990s that Sheng et al. [13]
formulated an environmentally-conscious multi-objective
model which considered energy consumption as an important
component. It also provided a possible way to carry out an
optimisation procedure from environmental perspective.
Based on consideration of energy minimisation, Rajemi and
Mativenga [14] conducted research on optimising cutting
parameters for dry turning operations. A prediction model

was developed in terms of feed rate, cutting velocity and tool
life to calculate energy consumed. Further research by
Mativenga and Rajemi [15] showed that by optimising tool life
through direct search method, up to 64% energy can be
reduced compared to that obtainable by using cutting
parameters recommended by tool suppliers. In addition, the
optimal value of cost can be achieved at the same time with
optimal energy consumption. Mori et al [16] conducted a
series of experiments based on Taguchi method. The results
showed that cutting performance can be improved by
adjusting cutting speed, feed rate, depth and width of cut. Up
to 66% power consumption for milling operation can be
reduced by selecting high level of cutting conditions within a
value range which does not compromise tool life and surface
finish. The machining time can also be shortened with
significant increase in material removal rate.

1.4 Summary of Gaps from Literature

The environmental challenge provides a new opportunity to
apply the results of decades of optimisation and process
planning research. However, as identified by Roy et al [18],
most of academic optimisation results have not been used by
industry because practitioners mostly prefer to select optimal
parameters based on expert experience. The reasoning
behind practices on optimisation [11-16] is not clear and
needs to be transparent by addressing the following
requirements:

e The optimisation procedure must be based on
comprehensive understanding of the problem.

e The primary objective (energy) must be related to the
conventional objectives such as cost, time and quality
which the practitioners are familiar with and interested in.

e The optimisation method adopted must be concise and
explicit which is relevant to practitioners’ knowledge or
obvious general principle.

e The optimisation results must be easily visualised.
2 NATURE OF MACHINING OPTIMISATION
2.1 Nature of Search Space

Search space can be explained as a set of all the possible
solutions. Each point in the search space represents a
combination of process parameters. The size of the search
space increases exponentially with the increase of number
and levels of variables. Thus, for 3 levels of 4 variables the
total number of size of the search space is 34. The increasing
the number of levels by 1 will expand the size to 44 which
increases search space by over 300%.The unconstrained
search space of machining optimisation is a multi-
dimensional space located in the positive interval of the
coordinate space.

2.2 Nature of Variables

The variables involved in end milling operation have already
been identified and classified into independent and
dependent variables by several researchers [2, 4, 7, 8, 11,
16]. These variables are listed below.

Independent variables: Depth of cut ap (mm), Width of cut
ae (mm), Feed rate fz (mm/tooth), Spindle speed n (rev/min),
Diameter of tool d (mm), Number of flutes z.

Dependent variables: Energy E (kJ), Cost C, Time T (min),
Material Removal Rate MRR, Tool Life TL (min), Cutting
Force F (N), Power P (W), Surface Finishing Ra, Cutting
Speed Vc, Feed Rate f (mm/min)
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2.3 Nature of Objectives and Constraints

Previous machining research contributions [4, 7, 8, 10, 11]
have used as objectives cost, time, surface roughness and
tool life, and as constraints the following variables:

e The surface roughness should be satisfied with the
quality requirement (rough machining or finishing)

e The cutting force should at least make sure the
machining operation can take place but not break the
cutting tool.

e The power required for machining should not be over the
limitation of the machine tool

e Physical constraints of independent variables determined
by the capability of machine tools (design power) and
cutting tools geometries (diameter of the tool).

In this paper, energy is added to these dependent variables
and can be considered either as the objective function or
constraint. For the purpose of investigating the problem any
of the other factors can also be either an objective or
constraint or both.

3 CHARATERISATION OF ENERGY CONSUMPTION
3.1 Design of Numerical Experiment

Numerical experiments carried out in this paper are mainly
based on predictive models obtained from previous
experiments conducted by the authors [2] when milling
Aluminium 7050 on a HAAS TM-1CE 3-axis vertical milling
machine. Equations for variables such as tool life and surface
roughness are obtained from the contributions of other
researchers [2, 8, 11]. The design of numerical experiment is
shown in Table 1. Table 2 lists the mathematical expressions
of the dependent variables for the numerical experiments.
Four process parameters are considered as independent
variables which are: depth of cut, width of cut, spindle speed
and feed rate per tooth.
Table 1: DOE for numerical experiment

Table 2: Mathematical expressions of dependent variables

Feed Rate: f =n-z-f,

Mater Removal Rate: MRR=a,, -3, -

Cutting Speed: v, =n-7z-d

Cutting Force: R =2K;-MRR/(n-z-d)

Force Coefficient:
K =Cyo- apckl ,aeckz . %s . 2%a . fzcks .n%s
Where cyo to ckq are coefficients for Kt

Total Power:

Ft Ve
Ptotal = Pmachining + Pauxiliary = 60 + Pconstant + F>variable

Where the other components are power consumptions for
machining, auxiliary functions (constant and variable)

B
ALES ST

Where m, p, q are tool life coefficients

Tool Life: TL =

Total Time:

V change
total :tmachining +tsetup e = Mln;R [ + T thsetup

Where the other components are time consumptions for
machining, setup, tool change(tool change/time)

Total Energy:
Etotal = Emau:hining + Eauxiliary + Esetup + Etc

=Yotal - Potal + (tsetup + ttc) Peonstant

Where the other components are energy consumptions for
machining, auxiliary function, setup, tool change

Total Cost: Cygtal =Cabour + CEnergy + Ciool

Ra: Ra = CI’O . apcrl . aecrz . dcr3 . Zcr4 . fZCrS . ncr6
Where ¢y to ¢ are surface roughness coefficients

Process Parameter Value Range

Depth of cut ap (mm) 1-5 mm
Width of cut ae (mm)
Spindle Speed n (rpm)

Feed rate fz (mm/z)

1-10 mm
500-4000 rpm
0.01-0.1 mm/tooth
Diameter of tool (mm) 10 mm
Number of flutes 3
Cutting Tool: carbide flat end mill

Workpiece material: Aluminium 7050

3.2 Characteristics of Machining Operation with Energy
Consideration

Since the studies of other factors have been considered by
other researchers [4-7], this paper will only focus on the
factors in relation to energy consumption. Numerical
experiments were carried out based on the prediction models
in Table 2 in the range of process parameters in Table 1. The
effects of four independent variables on energy consumption
are shown as in Figure 1. The results show that the energy
consumption for machining specific volume material
monotonously decreases with the increase in depth of cut,
width of cut, feed rate and spindle speed. It means choosing
higher machining parameters is more energy efficient than
using lower parameters.

Depth of Cut

Width of Cut

Spindle Speed Feed Rate per Tooth

—4—Specific Energy Consumption —M—Spedific Cost Consumpiton —a— Specific Time Consumption = Specific Tool Life

——CuttingForce —o—Power Surface Roughness

Figure 1: Characteristics of Machining Operation
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Another observation from the energy plots of figure 1 is that
the improvement trend of energy is less pronounced with the
increase of process parameters. One reason is that the
increase of process parameters can only reduce the energy
consumed by machining operation, but cannot reduce the
constant energy consumption such as the energy consumed
for setting up the machine tool. The comparison between
energy consumption and other criteria shows that energy is
non-conflicting with the cost and time for all four independent
variables. However, energy consumption is conflicting with
cutting force in depth of cut and width of cut, surface
roughness in width of cut and feed rate per tooth, tool life in
spindle speed and feed rate per tooth, and power in all four
independent variables.

4 INVESTIGATION OF OPTIMISATION METHODS

4.1 Development of Experimentation Rig based on
Direct Search Method

The principle of direct search method is similar to full factorial
DOE. Grids will be created based on numbers and levels of
independent variables which represent all the possible
solutions which will be used to create the experimentation rig.
Table 3 shows a 3 levels DOE plan. 81 grids points will be
created.

Table 3: 3 Levels Design of Experiment

Process Parameter Level 1 Level 2 Level 3
Depth of cut ap (mm) 1 3 5
Width of cut a¢ (mm) 5 7.5 10
Spindle Speed n (rpm) 500 2250 4000
Feed rate f, (mm/z) 0.01 0.055 0.1

The experimentation rig can be graphically displayed in
Figure 2. The label of horizontal axis was removed since it
only represents the numerical order of samples (1 to 81)
which does not have any physical meaning. The original data
after initial multivariate data analysis shows the energy
consumption is changing with some pattern which can be
displayed as dash squared areas to represent the original
searching space of 3 level 4 variables full factor design. Each
small dash square area contains 9 grid points which
correspond to every 9 points on the original energy plot. The
blue arrows shows the increasing direction of the 4 process
parameters (e.g. No. 5 block contains the data when ap=3,
n=2250, ae=5-10 and fz=0.01-0.1). The highlighted green
area shows the data after being sorted with the increase of
material removal rate per tooth (MRRz). The red curve shows
the samples after being organised with continuing decrease
of specific energy consumption.

Figure 2: Experimentation rig of specific energy consumption.
4.2 Explanation of Taguchi Method

Taguchi method is an experiment-based optimisation method
which uses a concept of “signal and noise (S/N)” ratio to
evaluate the impact of the variables by considering the

average value and standard deviation. For the objective of
minimising energy consumption, the smaller the better
equation will be chosen to calculate S/N ratio:

n
S/ N __10|Og[izY2J ™)
i=1

Table 4 shows an L9 DOE plan according to Taguchi
orthogonal experimental design. 9 out of 81 samples were
selected to carry out the analysis.

Table 4: Experimental results of Taguchi method

Number ap ae n fz SEC
1 1 5 500 0.01 323.945
2 1 7.5 2250 0.055 11.207
3 1 10 4000 0.1 4.274
4 3 5 2250 0.1 4.856
5 3 7.5 4000 0.01 11.855
6 3 10 500 0.055 12.761
7 5 5 4000 0.055 3.954
8 5 7.5 500 0.1 7.165
9 5 10 2250 0.01 10.265

The graphical explanation is shown in Figure 3. The black
dots on the grids represent the selected samples in Table 5.
From the observation of these dots, it can be found that each
dot is located on a unique position of each dash area (e.g.
upper left, middle, lower right). It means each level of
parameters only interacts once, hence avoids overlapping
consideration. The basic principle of Taguchi method is to
use S/N ratio to analyse the fractional effect of the variables
to identify which level of which parameter has greater
influence on the machining performance. The optimal results
then will be determined by adjusting cutting conditions based
on the fractional effects. Figure 3 shows the analysing
process of depth and width of cut. It can be found that the
analysis follows the increase of the variables. It shows that
the nature of the Taguchi method is actually the same as
gradient search or feasible direction method.

1 i

Feasible direction ¢

Figure 3: Display of Taguchi samples

In using the Taguchi method for optimisation of process
parameters, the first observation obtained from the S/N plot
of figure 4 is that optimal values of energy is obtained at the
highest levels for all the 4 parameters. The second
observation is that for improving the energy consumption it is
more efficient to increase the process parameters in the
order feed rate, depth of cut, spindle speed and lastly width of
cut. While these observations can be obtained by other
conventional data analysis methods as the characterisation of
figure 1, the Taguchi method makes this information much
clearer. However as pointed out in the literature, this usage of
the Taguchi method for optimisation is only a first level
approximation as it could miss the real optimal value. For
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example in figure 3, if the optimum is at point X, the optimum
indicated by applying the Taguchi method as describe above
will not be the real optimum. For cases like this the use of
Taguchi method will require an iterative approach, in which
the experiment is repeated in the vicinity of optimum obtained
in a previous step. When the results obtained in this iterative
application the Taguchi method are considered, the method
will be it appears similar to the feasible direction or steepest
ascent/decent optimisation methods.

Depth of Cut Width of Cut

Figure 4: S/N ratios for process parameters.
4.3 Explanation of Genetic Algorithm (GA)
Table 5: Concept comparison between GA and machining

GA Machining
Population Feasible machining plans
Individual A machining plan

Chromosome Combination of parameters
Gene Parameter
Fitness Optimum value
Selection Record improved results
Reproduction
Crossover Change the combination of
Mutation machining parameters
Evolution Generate new optimal results

Table 5 shows the explanation of GA in machining terms.
Typical GA-based optimisation steps and the explanation in
machining optimisation terms are presented below.

1. Random selection of starting points (process
parameters). It is difficult to find a completely random
selection of starting process parameters in practical
machining operation. Even for a novice practitioner who is
working on new machining operations (e.g. new material, tool
and machine tool) where the best process parameters are not
known yet, the selection of the process parameters would be
guided by suggestions from machining handbook, tool
catalogue or the experience of senior practitioners. A
possible explanation of this random selection cannot also be
justified by a case of an intelligent machine tool designed to
adaptively determine the cutting parameters since database
values would usually provide initial values.

2. Generate new individuals by conducting crossover
and mutation. The function of crossover is to rapidly explore
a search space within the initial data range which is the same
as changing the combination of process parameters to
achieve the new machining plans. The function of mutation is
to provide a small amount of random search which can
expand the search space by extending data range. It is the
same as replacing a process parameter with a new value

(e.g. increase the depth of cut from 1mm to 3mm or vice
versa) which leads to a new set. The randomisation
explanation of step 1 applies here too.

3. Select and keep the best individual. The function of
selection is to compare the machining plans and keep record
of the optimal plans for further operation. The best machining
plan can be determined by repeating above operations.
Figure 5 graphically shows how the optimal result is obtained
by using GA for an example. The optimal result can be
determined after repeating the algorithm 4 times. The green
dash arrow shows the overall search path of implementing
GA which is similar to feasible direction optimisation method.
However, the results obtained from crossover and mutation
operations are not always positive. In this case, the actual
optimisation path (grey arrow) is similar to hill climbing
method which can determine the local optimal value within
the data range. However, the repeated mutation operation
can help jump out of previous local search space and
eventually find the real optimal specific energy consumption.

o 1* Generation (Crossover)

b ¥ ,(.»

Initial Populatiod

Worse new generation results

4" Generati

Figure 5: Determination of optimal results by using GA.

In addition, the sample size and location of the initial
population also affect the performance especially the speed
of optimisation process in terms of interaction numbers,
number of generations and computing time. However, they
will not affect the value of optimal results.

5 OPTIMISATION PROCEDURE

According to characteristics of machining operation, the
optimisation procedure was conducted by using direct search
algorithm. The optimal result is located on the boundary of
the search space. Figure 6 shows 1 of the 9 solution
landscapes for the 3 level, 4 variable energy-minimisation
machining problem. In the figure, Specific Energy
Consumption, SEC reduces with the increase in feed rate
and spindle speed.

Specific Energy Consumption

A #3540 = 3035
SEC KJ/ce -i i
40 = 1520 «10-15
35
30 510 -0
25
20
15
10 200
2 1000
3 01 2 ml{;(m
& 2000
0% 0.03 0.04 2500
0.05 3000 s .
. 0.0 - £ spindle speed
feed rate per tooth 0.0 0.08 3500

9 4000 pm
mmnv/tooth 0.09% g1

Figure 6: 3D Contour plot of SEC
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Figure 7 shows search space with the constraints by the
cutting force and surface roughness factor displayed. The
green area represents the feasible region of search space
when cutting force is no more than 400N and surface
roughness is smaller than 0.05mm. So the optimal cutting
condition based on energy consideration is the optimal points
highlighted in the figure. The optimal result in Table 6 shows
that over 80% of improvements in energy, cost and time can

be

achieved compared to machining handbook

recommendation [18].

0.01  0.02

] < — n=500
‘ oy S DN il e
} TRa=00s | Ft=800,
: | \ ;i\ 1000
\ \\
\ =
\ \ 0

\ \

Ft=2 “)0 Ft=400

Feasible Region \ \
\

\ -\\ \ 2500

\ \ . 1
|  Optimal Points

! . 4000
0.03 004 005 006 007 008 009 01

Figure 7: Constrained Optimal Results.
Table 6: Optimal Results Comparison

Variables Handbook Optimal | Improvement
ap (mm) 1 5
ae (mm) 5 10
n (rpm) 1500 4000
fz (mm/tooth) 0.067 0.06
Energy (KJ/cc) 18.612 3.079 83.46%
Cost (£/cc) 0.123 0.016 86.99%
Time(sec/cc) 43.968 5.833 86.73%
6 CONCLUSION

This paper presented a systematic research methodology for
uncovering the reasons behind results obtained when energy
is considered in machining optimisation. It provided the
answers to the research questions in the following aspects:

Energy consumption monotonously decreases with the
increase of process parameters. It is non-conflicting with
the cost and time, but conflicting with surface roughness,
power requirement, tool life and cutting force.

Explanation models developed show that Taguchi and
GA are similar to feasible direction methods. The
transparency from the explanations can help practitioners
to trust and implement optimisation results.

The constrained optimisation result shows that over 80%
of improvement of energy, cost and time can be achieved
by using optimal process parameters compared to
machining handbook recommendation.

7 REFERENCES

[1]  Duflou J.R., Sutherland, J.W., Dornfeld, D., Herrmann,
C., Jeswiet, J., Kara, S., Hauschild, M., Kellens, K.,
2012, Towards Energy and Resource Efficient
Manufacturing: A Process and Systems Approach,
CIPR Annals- Manufacturing Technology, 61:587-609

[2] Zhang, T., Owodunni, O.0., Gao, J., Habtay, Y., 2011,

Energy-efficient Toolpath Strategy for End Milling

(3]

(4]

(5]

[6]

(7]

(8]

9]

[10]

(1]

[12]

[13]

[14]

(18]

[16]

[17]

(18]

Operation, in: Proceedings of 9t International
Conference on Manufacturing Research, Glasgow, UK

Taylor, F.W., 1907, On the Art of Cutting Metals, ASME
Journal of Engineering for Industry, 28: 310-350

Brewer, R. C., Rueda, R., 1963, A Simplified Approach
to the Optimum Selection of Machining Parameters,
Engineers Digest, 24(9): 133—-150

Crookall, J.R., 1969, The performance-envelope
concept in the economics of machining, International
Journal of Machine Tool Design and Research, 9(3):
261-278

Hinduja, S., Petty, D.J., Tester, M., Barrow, G., 1985,
Calculation of optimum cutting conditions for turning
operations, Proceedings of the Institution of Mechanical
Engineers, 199(B2): 81-92

Enparantza, R., 1991, Tool Selection and Cutting

Conditions Optimization in Milling, PhD Thesis,
University of Manchester
Tolouei-Rad, M. and Bidhendi, M., 1996, On the

Optimization of Machining Parameters For Milling
Operations, International Journal of Machine Tools and
Manufacture, 48: 609-628

Mukherijee, I., Ray, P.K., 2006, A review of optimisation
techniques in metal cutting processes, Computers &
Industrial Engineering, 50: 15-34

Khan, Z., Prasad, B., and Singh, T., 1997, Machining
condition optimisation by genetic algorithms and
simulated annealing, Computers  Optimisation
Research, 24(7): 647-657

Baskar, N., Asokan, P., Saravanan, R., Prabhaharan,
G., 2005, Optimisation of Machining Parameters for
Milling Operations Using Non-conventional Methods,
International Journal of Advanced Manufacturing
Technology, 25: 1078-1088

De Fillippi, A., Ippolito, R.,1981, NC machine tools as
Electric Energy Users, CIRP Annals, 30: 323-326

Munoz, A.A., Sheng, P., 1995, An analytical approach
for determining the environmental impact of machining
process, Journal of Materials Processing Technology,
53(3): 736-758

Rajemi, M.F., Mativenga, P.T., and Aramcharoen, A,
2010, Sustainable machining: selection of optimum
turning conditions based on minimum energy
considerations, Journal of Cleaner Production, 18:
1059-1065

Mativenga, P.T. and Rajemi, M.F., 2011, Calculation of
optimum cutting parameters based on minimum energy
footprint, CIRP Annals-Manufacturing Technology, 60:
149-152

Mori, M., Fujishima, M., Inamasu, Y., and Oda, Y.,
2011, A Study on energy efficiency improvement for

machine  tools, CIRP  Annals- Manufacturing
Technology, 60 (1), 145-148

Roy, R., Hinduja, S., Teti, R., 2008, Recent advances
in engineering design optimisation: Challenges and
future trends, CIRP Annals-Manufacturing Technology,
57:697-715

WNT2012 Catalogue, 13 Solid Carbide Milling Cutter

158



	1 INTRODUCTION
	1.1 Problems for Machining Optimisation
	1.2 Research Question and Research Design
	1.3 Related Research in Machining Optimisation
	1.4 Summary of Gaps from Literature

	2 NATURE OF MACHINING OPTIMISATION
	2.1 Nature of Search Space
	2.2 Nature of Variables
	2.3 Nature of Objectives and Constraints

	3 CHARATERISATION OF ENERGY CONSUMPTION
	3.1 Design of Numerical Experiment
	3.2 Characteristics of Machining Operation with EnergyConsideration

	4 INVESTIGATION OF OPTIMISATION METHODS
	4.1 Development of Experimentation Rig based onDirect Search Method
	4.2 Explanation of Taguchi Method
	4.3 Explanation of Genetic Algorithm (GA)

	5 OPTIMISATION PROCEDURE
	6 CONCLUSION
	7 REFERENCES



