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Kurzfassung

Die vorliegende Dissertation behandelt die Drehmomentregelung eines hochdrehenden Switched
Reluctance Starter-Generators (SR S/G) für die Anwendung in Flugzeugen. Das Starter-
Generatorsystem ist für ein konstantes Drehmoment von 15 Nm bis zur Drehzahl von 27.000
min−1 im Starterbetrieb und für eine konstante Leistung von 30 kW bis zur Drehzahl von
50.000 min−1 im Generatorbetrieb sowie eine Bordnetzspannung von 270 V spezi�ziert.

Im ersten Kapitel wird ein Überblick über die Literatur gegeben Darauf folgt eine Moti-
vation aufgrund o�ener Forschungsfragen, die insbesondere eine optimierte Regelung unter
Berücksichtigung der nichtlinearen magnetischen Eigenschaften von SRM betre�en.

Im zweiten Kapitel wird ein 2D-FEAModell vorgestellt, mit dem die Flussverkettung und das
innere Drehmoment der SRM berechnet werden können. Diese Simulationen werden durch
experimentelle Ergebnisse unter Berücksichtigung der Ummagnetisierungsverluste ergänzt.

In Kapitel 3 werden Methoden zur Bestimmung der Ummagnetisierungsverluste und zur
thermischen Analyse der SRM vorgestellt. Erstere ergeben sich durch Simulation auf Basis
der Flussdichten in Stator und Rotor. Im nächsten Teil wird ein thermische Analyse auf
Basis von Näherungsformeln und CFD-Simulation durchgeführt.

Kapitel 4 behandelt eine Regelungsstrategie zur Maximierung des Drehmoments. Die rech-
nerisch optimierten Schaltwinkel werden in einer Look-Up-Tabelle für im experimentellen
Aufbau gespeichert. Die Evaluation erfolgt auf Basis eines speziell für hochdrehende Antriebe
geeigneten Drehmomentmessverfahrens, welches auf Beschleunigungsmessungen basiert. Die
Leistung im Generatorbetrieb ergibt sich analog durch einen Abbremsversuch.

Kapitel 5 fasst nochmals die wesentlichen Ergebnisse der Arbeit zusammen.
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Abstract

The maximum torque control has an important role in improving the torque performances
of a high speed Switched Reluctance Starter/Generator (SR S/G) drive system. Especially
for high speed switched reluctance drives, optimal torque control is a big challenge due to
the non-linear magnetization characteristics of the �ux and electromagnetic torque with the
current and rotor position. To realize the maximum torque control strategy, some improved
measurement techniques were used to characterize performance and optimized control pa-
rameters were applied to maximize the starting torque by an experimental setup. Many
electronics and mechanical design ideas have been implemented to set up the test bench.
The SR S/G performances have been obtained in starting and generating modes within a
wide speed range of up to 47,000 rpm.
High speed machines engineering spans multiple di�erent high technologies. Some problems
have occurred due to mechanical and electromagnetic structures, rotor bearings, power elec-
tronics and control methods, which will be treated in the appropriate chapters. The main
contributions of this thesis are pointed out as follows:

1. The �ux linkage and electromagnetic torque characteristics have been calculated by a
FEA simulation method. The results have been validated by experiments with adequate
measurement techniques which can remove iron loss current to improve the accuracy of the
measurement method.

2. The iron losses calculation method for the high speed and �ux density of the SRMs
have been investigated by simulation and experiment. Based on the iron loss density of
the SRM rotor and stator parts, the iron losses of the di�erent components can be deter-
mined in both simulation and experimental models. Afterward, a thermal model of the SRM
stator directly cooled the forced water system has been developed and veri�ed experimentally.

3. The maximization of the average torque has been implemented by optimizing the turn-on
and turn-o� angles, torque and current controllers. The torque performance was validated by
an indirect torque measurement based on the acceleration method. The torque performance
was proven by the acceleration test and the results meet the requirements of the SR S/G
performance.

4. The electric power of the switched reluctance generator has been measured by the de-
celeration test. The optimal turn-on and turn-o� angles vs current and speed have been
investigated to maximize the output power experimentally.

5. Conclusion and further work

Fig 0.1 shows the test bench for the three phase SR S/G including an additional inertia
load, which was used to investigate torque and power performance in both motor and gener-
ator mode.
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Figure 0.1: The setup of the SR S/G test bench

v



Contents

1 Introduction 1
1.1 Electrical Machines and Drives in More Electric Aircrafts . . . . . . . . . . . 1

1.1.1 Integral Starter/Generator (IS/G) topologies . . . . . . . . . . . . . . 1
1.1.2 Electrical Power Distribution . . . . . . . . . . . . . . . . . . . . . . 3
1.1.3 The Switched Reluctance Starter/Generator (SR S/G) Drive System

Requirement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Brief Overview of the Switched Reluctance Starter/Generator for the More

Electric Aircraft Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 SRM Magnetic Characteristics 9
2.1 Basic Operation Principle of the SRMs . . . . . . . . . . . . . . . . . . . . . 9
2.2 Analytical Method of the Magnetization Characteristics . . . . . . . . . . . . 12

2.2.1 Mathematical Equations . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Analytical Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 2D FEA Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Measurement Method For the Flux Linkage Curves . . . . . . . . . . . . . . 20

2.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.2 Analysis of Experimental Results . . . . . . . . . . . . . . . . . . . . 21

2.5 Electromagnetic Torque Measurement . . . . . . . . . . . . . . . . . . . . . . 25
2.6 The SR S/G Drive System Model . . . . . . . . . . . . . . . . . . . . . . . . 27

2.6.1 Operation Principle of the SR S/G Drive System . . . . . . . . . . . 27
2.6.2 Modeling of the SR S/G Drive System . . . . . . . . . . . . . . . . . 27
2.6.3 Veri�cation of the SRM Simulation . . . . . . . . . . . . . . . . . . . 30

2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Calculation of Losses and Thermal Analysis of High Speed Switched Re-
luctance Machines 33
3.1 SRM Losses Calculation and Measurement Methods . . . . . . . . . . . . . . 33

3.1.1 Copper Losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.1.2 Iron Losses of the SRM . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.1.3 Iron Loss Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.1.4 Mechanical Losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 Thermal Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2.1 Determination of Heat Transfer Coe�cients . . . . . . . . . . . . . . 46
3.2.2 FEA Thermal Analysis Model . . . . . . . . . . . . . . . . . . . . . . 51

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

vi



Contents

4 Maximum Torque Control of a High Speed SRMs based on the Acceleration
Method 56
4.1 Maximum Torque Control Strategies of the Switched Reluctance Starter . . 57
4.2 A High Speed SR S/G with an Additional Inertia Load Drive System . . . . 59

4.2.1 Experimental Setup of the SR S/G Drive System . . . . . . . . . . . 59
4.2.2 Safety Protection Calculation for the Test Bench . . . . . . . . . . . 59
4.2.3 Protective Construction of Sandbags: . . . . . . . . . . . . . . . . . . 63

4.3 Indirect Torque Measurement Method for the High Speed SR S/G Acceleration
Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3.1 Torque Measurement of the SR S/G without Additional Load . . . . 64
4.3.2 Polynomial Curve Fitting Method for the Speed and Torque calculation 66
4.3.3 Rotor Speed Measurement . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4 Torque Maximization of the SR S/G with an Additional Inertia Load . . . . 67
4.4.1 PI Speed Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.4.2 Constant Acceleration and Speed Control Strategies for the Torque

Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.5 Maximum Torque Veri�cation of the SR S/G in motor operation . . . . . . . 72

4.5.1 Torque-Speed Measurement by the R/D board based on LabVIEW . 72
4.5.2 Torque-Speed Measurement by the Digital Oscilloscope . . . . . . . . 73
4.5.3 Veri�cation of the Torque Measurement Results . . . . . . . . . . . . 73
4.5.4 Accuracy Determination of the Indirect Torque Measurement . . . . . 75

4.6 Output Power Validation of the SR Generator Performance . . . . . . . . . . 78
4.6.1 Output Power based on the Deceleration Test . . . . . . . . . . . . . 78
4.6.2 Validation of the SR Generator Performances . . . . . . . . . . . . . 79

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5 Conclusion and further work 81
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.1.1 Determination of the magnetization characteristics . . . . . . . . . . 81
5.1.2 Losses and heating . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.1.3 Maximum torque control strategy validation . . . . . . . . . . . . . . 81

5.2 Potential Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

A Abbreviations 83

B Symbols 84

C List of Figures 87

D List of Tables 89

E Bibliography 90

vii





1 Introduction

1.1 Electrical Machines and Drives in More Electric

Aircrafts

The More Electric Aircraft (MEA) is well known as an innovative concept to drive aircraft
subsystems. Some mechanical, hydraulic and pneumatic drive subsystems have already been
replaced by the electrical drives for several decades. The switched reluctance machines are
considered to be a potential candidate for application as actuators, fuel pumps and other
drive subsystems. In a typical con�guration, the aircraft drive subsystems are fed from
the auxiliary power unit (APU) via a secondary power system being either mechanical, or
hydraulic, or electric [3], [12], and [13]. According to the more electric aircraft report in [1],
the MEA was anticipated to achieve numerous advantages like higher performance and lower
maintenance costs. Moreover, the emission of air pollutant gases from aircraft is reduced
signi�cantly. Recently, the aircraft industry has achieved tremendous progress in both civil
and military sectors. Currently, some commercial aircrafts operate at weights of over 300,000
kg and are able to �y up to 16,000 km in non-stop journey at a speed of 1000 km/h [1].
The conventional aircraft has some drawbacks due to the complex power architecture. The
primary power comes mainly from generators, batteries or ground sources. The secondary
power of hydraulic, pneumatic, electrical and mechanical forms is supplied to subsystems such
as landing gear, braking and �ight control system, air conditioning, pressurization, deicing
and avionics as shown in �g. 1.1 (a). Those disadvantages cause complexity, lower safety
and higher volume. Therefore, the aircraft manufacturers trend towards the More Electric
Aircraft (MEA) concept that is the wider adoption of electrical systems in preference to the
others. A typical switched reluctance starter/generator system used in aircraft is shown in
�g. 1.1 (b).
In order to reduce the complexity and improve the e�ciency and reliability, some subsystems
such as Environmental Control Systems (ECS), Ram Air Turbine (RAT) and High Pressure
Air (HP Air) have been removed. The Start Air and Wing Anti-Ice Air are replaced by the
Electric Start and the Electrical Wing Anti-Ice. The Auxiliary Power Unit (APU) is �nally
improved by a new design in �g. 1.1 (b)

1.1.1 Integral Starter/Generator (IS/G) topologies

Several electrical machine types being able to operate as high power starter/generator can
be attached directly to the engine, mounted on the engine shaft, and used for the engine
start in Integral Starter/Generator (IS/G) scheme [1]. Those machines will have to work in
harsh operating conditions, and at high ambient temperatures, which require more innovative

1



INTRODUCTION

Figure 1.1: Comparison between conventional aircraft system (a) and MEA system (b) [1]

materials, processes and thermal management designs. Consequently, Switched Reluctance,
Synchronous, Permanent Magnet, and Induction machine types have been considered for the
MEA application due to their properties.

Switched Reluctance Generator (SRG):

The Switched Reluctance Generator has a very simple robust structure and can operate over
a wide speed range. The three-phase type has a salient rotor similar to a salient pole syn-
chronous machine. The stator consists of three phases and each phase is interfaced with the
DC supply through two pairs of anti-parallel switch-diode combinations. Thus, the SR ma-
chine is inherently fault-tolerant. However, the machine has the disadvantages of producing
high acoustic noise and torque ripple. Those drawbacks are of minor importance when the
machine is mounted close to a noisy turbine. They can be improved by current and torque
control methods in [10], [11].

Synchronous Generator (SG):

This machine is reliable and inherently safe because the �eld excitation can be removed.
Synchronous generators of moderate power rating up to 150 kVA have been used for many
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INTRODUCTION

aircrafts including e. g. the A320. The synchronous machine has the ability to generate
reactive power, which enhances the stability of the aircraft power system. However, this ma-
chine requires an external DC excitation, which unfortunately decreases the reliability and
the e�ciency.

Permanent Magnet Generator (PMG):

The Permanent Magnet Generator (PMG) has some favourable characteristics such as rotor
loss reduction, high power density and self excitation. However, conventional PM machines
are claimed to have inferior fault tolerance compared with SR machines. The conventional
PMG is intolerant to elevated temperatures. Those drawbacks have to be improved upon if
they are to be used in the MEA system.

Induction Generator (IG):

Induction Generators (IGs) are characterized by their robustness, reduced cost, safety and
ability to withstand harsh environments. However, the IGs include complex power electron-
ics, because the induction machine requires more complicated control methods in comparison
with other types of machines.

After di�erent machine topologies are suggested for the IS/G, the SR and fault tolerant PM
machines are most reliable. These machines do not require external excitation or sophisti-
cated control techniques. Also, they are either inherently or arti�cially fault-tolerant.

1.1.2 Electrical Power Distribution

The power distribution system of civil aircrafts such as Boeing B747 and Airbus A320 combine
both AC and DC transmission in parallel. An AC supply of 115V/400Hz is used to power
large loads such as galleys, while the DC supply of 28V DC is used for avionics, �ight control
and battery-driven vital services [1].
In recent aircrafts, the generator power capabilities are 1.4 MW for the more electric Boeing
B787 Dreamliner and 850kW for the Airbus. In order to reduce weight, electrical power
should be transmitted around the aircraft at a higher voltage resulting in low current and low
conduction losses [3]. Therefore, the generation and distribution voltage in these advanced
aircrafts are mainly 270 V DC, 230 V AC at variable frequency, and 28 V DC for low power
loads ([6] - [9]) due to several reasons:

- New generation options as variable frequency machines become feasible.

- Recent advances in the areas of interfacing circuits, control techniques, and protection
systems.
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INTRODUCTION

- The advantages for DC distribution systems include reduction of the weight, size and
losses, while increasing the levels of the transmitted power. The values of the system
voltage under research are 270VDC. The value is determined by a number of factors
such as the capabilities of DC switchgear and the availability of the components.

Figure 1.2: Schematic power distribution systems of the conventional aircraft (a) and the
MEA (b) [2]

In comparison with the power distribution systems of the conventional aircraft in �g 1.2(a),
the MEA in �g 1.2 (b) has some advantages such as:

- Removal of a conventional air starter as the engine is started electrically.

- Elimination of gearboxes and associated drive shafts by the direct coupling of generators
to engine shafts.

- Exchange of traditional hydraulic actuators for electro-hydraulic and electro-mechanical
actuators to increase reliability, eliminating the central hydraulic system and reduce
maintenance.

Some di�erent topologies were suggested for implementing the distribution system in MEA.
In the following, four main candidates of these topologies are brie�y reviewed:

- The Centralized Electrical Power Distribution System (CEPDS) is a point-to-point
radial power distribution system as shown in �g 1.3 (a). It has only one distribution
centre. The CEPDS is cumbersome, expensive and unreliable, as each load has to be
wired from the avionics bay.

- The Semi-Distributed Electrical Power Distribution System (SDEPDS) has a large
number of Power Distribution Centres (PDCs) as shown in �g 1.3 (b). The SDEPDS
was proposed to overcome the problems of CEPDS. However, the close coupling between
the loads in SDEPDS may reduce the reliability, as faults or disturbances can propagate
to nearby loads.

- The Advanced Electrical Power Distribution System (AEPDS) is a �exible, fault-
tolerant system controlled by a redundant microprocessor system. This system is
developed to replace the conventionally centralized and semi-distributed systems.
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- The Fault-Tolerant Electrical Power Distribution System (FTEPDS) is a mixed distri-
bution system. The AC power from generators is connected to a source switch matrix,
while the 270 V DC system is interfaced with the converters. An FTEPDS achieves
some advantages such as fault tolerance, high redundancy, and ability to start the air-
craft engine by a generator/starter scheme. However, the FTEPDS has one serious
drawback because a fault in source/load switch matrices may interrupt the operation
of the entire system.

Figure 1.3: Centralized Electrical Power Distribution System CEPDS (a) and Semi-
Distributed Electrical Power Distribution System (b) SDEPDS for the MEA [1]

1.1.3 The Switched Reluctance Starter/Generator (SR S/G) Drive
System Requirement

The Switched Reluctance Starter/Generator (SR S/G) provides two primary functions. In
starter operation, the 270 V DC bus supplies the electric power to the reluctance machine
through the converter, thus accelerating the aircraft engine until it has achieved idle speed.
In generator operation, the gas turbine acts as prime mover. The output electric power sup-
plies to the DC bus in the aircraft. The technical parameters required were listed in [43] as
below:

- Engine start:

1. Constant torque 15 Nm up to 27,000 rpm

2. Up to 40 s start duration (from zero to 27,000 rpm).

5
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3. 270 V DC, 30 kW.

- Power generation:

1. 270 V DC, 30 kW .

2. Continuous operation from 27,000 rpm to 50,000 rpm.

3. 45 kW (1.5 pu) operation for 5 s.

- Power quality: MIL-STD-704E.

- Load types:

1. 75% constant power loads.

2. 25% resistive loads.

- Load pro�le: 30% (9 kW) load steps.

- Environment: operation temperature -51oC to 121oC.

According to the analysis of the engine starting process and the important performance
parameters above, �g 1.4 shows the approximate requirements on torque-speed characteristics
of the SR S/G for the electric aircraft.
During the engine start, the reluctance machine operates as a starter to supply a constant
torque 15 Nm with the speed from standstill to 27,000 rpm. Once the engine has reached
its idle speed of 27,000 rpm, the SR S/G becomes a generator and supplies the DC voltage
power to run other subsystems.

Figure 1.4: Performance requirements of SR S/G system [71]
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INTRODUCTION

1.2 Brief Overview of the Switched Reluctance

Starter/Generator for the More Electric Aircraft

Applications

Switched Reluctance Machines (SRMs) have been designed and built for an aircraft appli-
cations as reported in ([17]-[24]) due to many outstanding characteristics such as very high
speed, acceleration, torque and electric power density. With its very simple structure, the
SRM is ideal to operate as starter to spin the main turbine and as a generator to supply
electric power for the airplanes.
The �rst SRM for an integral starter/generator (IS/G) on aircraft engines was designed by
MacMinn in 1989 [17]. The performance of the 30kW-SR S/G system was investigated by
Ferreira, Jones, and Heglund in [20].
In order to increase power, a �rst detailed design of a 250 kW SR S/G system with 12/8
pole topology was presented by Ferreira and Richter in [22]. A two channel power inverter
was discussed in [21], [23], and [24]. Two independent channels of the power inverter for one
SRM can supply a total rating power of 250 kW continuous and 330 kW for 5s. Each channel
of this system has its own power electronics which operates independently. Thus, the rated
current of the power converters is reduced.
However, the torque performance criteria are still big challenges for high-speed reluctance
machines. The Ph.D. thesis [71] introduced the optimal torque control strategy which was
investigated in an analytical model. It had not yet been validated experimentally.

1.3 Motivation

Many research topics on the switched reluctance starter/generator systems for electric air-
craft applications have been reported for several decades in [15]-[19]. But, the optimal con-
trol strategies of the SR S/G drive have not been implemented perfectly. Due to the non
linearity in the magnetic characteristic of the SRM, it is very complicated to analyze the
relationship between the torque, current and excitation angles. Nowadays, advanced tech-
nologies like magnetic material of high saturation �ux density and power semiconductors
with high switching frequency can be applied. The optimal control strategies are easier to
be integrated by electronic circuits. Especially for this high speed and power density reluc-
tance machine, the current and angle controllers are implemented in FPGA ICs by a CPLD
program to improve real time control abilities. With the advanced measurement techniques,
a data acquisition device has also been developed to verify and record the analog and digital
signals.
The performance of the SR S/G system designed in [71] had been veri�ed by the simulation
results with PC-SRD software and those results indicate that the designed system is capable
of meeting the requirements basically. The dynamic performance of system is investigated
by an experimental setup. To deal with the maximum torque control proposal, some tasks
have been identi�ed as follows:

7
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- An accurate simulation and measurement of the SRM magnetic characteristics can be
obtained by a FEA model and experimental test.

- Precise iron loss calculation and measurement methods for the high speed and �ux
density of the SR S/G will be determined by an improved measurement technique.
Afterwards, a thermal model is simulated to investigate the temperature distribution.

- Finally, the maximization of the average torque control method with an o�-line opti-
mization of the turn-on and turn-o� angle and current controllers can be investigated
by an indirect torque measurement method based on an additional moment of inertia
serves as dynamic load. In motor mode, the load torque is created by the acceleration
and the additional moment of inertia. In generator operation, the power is measured
based on the deceleration of the speed. The SR S/G torque and power performance
should be veri�ed the performance requirement of the SR S/G drive system.

1.4 Outline of the Thesis

Chapter 1 presents an overview of the switched reluctance machines for more electrical air-
craft applications.
Chapter 2 describes the magnetization curves calculated in a FEA model and validated by
measurement. A dynamic SRM model has been simulated to investigate the performance of
the SRM.
In chapter 3, estimation and measurement methods for losses and temperature distribution
in the machine are described.
Chapter 4 deals with optimal turn-on and turn-o� angles to maximize the average torque.
The maximum torque control is validated by an indirect torque measurement method. A
high speed SR S/G with an inertia load drive system has been built to measure the torque
and power in motor and generator modes.
Chapter 5 presents the magnitude and spectrum of the SRM acoustic noise measurement at
speeds up to 47,000 rpm and the noise frequency spectrum up to 20 kHz.
Chapter 6 gives a summary of the work and introduces a proposal of a back to back experi-
mental set-up of SR S/G.

8



2 SRM Magnetic Characteristics

The electromagnetic torque and �ux linkage curves play an important role on investigating
the SRM performance. Those characteristics depend on some factors such as magnetic cir-
cuit, material properties and lamination shapes. Some publications about the measurement
methods of the SRM magnetic curves have been presented in [29], [31], [34], [36] and [37].
However, they su�er from drawbacks concerning computation time, inductance saturation
curves, and the in�uence of iron losses. With those methods, the e�ect of iron losses on
dynamic �ux estimation was only minimized by decreasing the frequency or applying a DC
voltage. To overcome this limitation, an innovative measurement proposed addresses a way
to remove overall iron losses.
In order to prove this measurement method, the experimental results are compared with
Finite Element Analysis (FEA) simulation results and validated by a dynamic test as well.
The resulting static torque and �ux linkage curves will be used to simulate a SRM model at
the end of this chapter.

2.1 Basic Operation Principle of the SRMs

A reluctance machine is an electric machine in which the rotor tends to move to a position
where the windings are excited and the reluctance (magnetic resistance) is minimized [25].
The reluctance varies as the rotor teeth rotate in and out of alignment. The switched reluc-
tance motor has saliencies on both rotor and stator, and the phase windings are wound on the
stator teeth as depicted in �g 2.1. As long as a current I is �owing through the concentrated
winding, tangential forces FT a�ect the rotor teeth as depicted for rotor angles 0o < θ < 90o.
There are two important positions of SRM, the position with maximum inductance La is

called aligned position, the minimum inductance Lu consequently occurs at the unaligned
position. The angle τ between both positions will later be referred to as dwell angle. Since
the inductance is inversely proportional to reluctance, the inductance of a phase winding
achieves a maximum when the rotor is in aligned position and a minimum when the rotor is
in unaligned position. The inductance varies with rotor position as shown in �g 2.3.

The switched reluctance machines are often analyzed assuming linear operation without
magnetic saturation in the iron lamination. This greatly simpli�es the mathematical ma-
chine model, then the magnetic characteristic can be considered as an only function of rotor
position.
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2 SRM Magnetic Characteristics

Figure 2.1: Simple principle of reluctance machine operation [46]

Figure 2.2: Aligned and unaligned positions of an SRM [25]
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2 SRM Magnetic Characteristics

Figure 2.3: Variation of inductance and torque with rotor position

SRM Topologies

There are many possible combinations of numbers of stator and rotor teeth each having its
advantages and disadvantages. Possible numbers may be �xed e. g. according to the theory
of fractional slot windings or to [26]. Popular types are e.g. 6/4, 8/6 and 12/8 as shown in
�g 2.4. E. g. a 6/4 SRM has 6 stator teeth and 4 rotor teeth with the number of phases Nph

= 3. SRMs with higher numbers of phases are able to generate almost constant torque and
reduce the torque ripple, but the IGBT switching frequency is higher, because the electric
frequency equals the number of rotor teeth multiplied by the mechanical frequency. For this
application, a three phase 6/4 SRM was selected in [71].

Figure 2.4: Popular topologies of SRM applications: 6/4 (a), 8/6 (b) and 12/8 (c) [25]
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2 SRM Magnetic Characteristics

Power Inverter Topology of the SR S/G

There are various inverter topologies for the phase coils. However, the most common one is
the asymmetric half bridge because it o�ers a great deal of �exibility, e.g. the possibility to
apply positive and negative DC link voltage to the phase as well as zero voltage (freewheeling).
The three phase-asymmetric half-bridge inverter is shown in �g 2.5.

Figure 2.5: Three phase asymmetric half bridge inverter [46]

2.2 Analytical Method of the Magnetization

Characteristics

2.2.1 Mathematical Equations

The mathematical model of the SRM operation principle obeys the laws of physics. The
electromagnetic torque is produced by the change of the magnetic co-energy WCo due to
changes in current i(t), rotor position θ(t), and inductance L(θ) with Wco=f(i(t),θ(t),L(θ))
according to (2.1).

T =
∂

∂θ
·Wco (2.1)

This torque draws the rotor to the aligned position. Based on this principle, a reluctance
motor may be modeled di�erently from other types of electric machines.
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2 SRM Magnetic Characteristics

Flux Linkage and Inductance

Mathematical equations of voltage, �ux linkage and inductance have been introduced in [25].
When a single phase is exited, the voltage equation for one phase is as follow (2.2)

u = R · i+
dΨ

dt
= R · i+

dL(θ(t)) · i(t)
dt

(2.2)

= R · i+ L · di
dt

+ i(t) · ∂L
∂θ
· ∂θ
dt

= R · i+ L · di
dt

+ ω · i · ∂L
∂θ

where u is the terminal voltage, i is the current, Ψ is the �ux linkage, R is the phase resistance,
L is the phase inductance, θ is the rotor position, and ω is the angular velocity. The last
term is sometimes interpreted as a back emf.

Torque Production

From the voltage equation (2.2), the instantaneous electrical power p results in (2.3):

pelectrical = R · i2 + L · i · di
dt

+ ω · i2 · dL
dθ

(2.3)

Respecting the power loss in the ohmic stator resistance

ploss = R · i2 (2.4)

and the rate of change of the magnetically stored energy

dWmag

dt
=

d

dt

(
1

2
· L · i2

)
=

1

2
· i2 · dL

dt
+ L · i · di

dt
(2.5)

=
1

2
· ω · i2 · ∂L

∂θ
+ L · i · di

dt

according to the law of conservation of energy, the instantaneous mechanical power is:

pmechanical = pelectrical − ploss −
dWmag

dt
=

1

2
· ω · i2 · ∂L

∂θ
(2.6)

The time integral of (2.6) delivers the magnetic co-energy Wco during a change of angle from
θ(t1) to θ(t2):

Wco =

t2∫
t1

1

2
· ω · i2 · ∂L

dt
=

L(θ(t2))∫
L(θ(t1))

1

2
· i2 · dL =

Ψ(θ(t2))∫
Ψ(θ(t1))

1

2
· i · dΨ (2.7)

The torque in case of a constant current now follows as angular derivation of (2.7):

T =
W. co
dθ

=
1

2
· i2 · ∂L

∂θ
|i=const (2.8)

In nonlinear model, the average torque is based on the enclosed area Wco in the energy
conversion diagram in �g 2.6.
Fig 2.6 shows the measurable or calculable �ux linkage vs. current curves. The �ux linkage
is plotted in unaligned (0-U) and aligned (0-A) position. The co-energy and thus the torque
is proportional to the area between both curves.
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2 SRM Magnetic Characteristics

Figure 2.6: Flux linkage Ψ vs. current I curves [25]

2.2.2 Analytical Calculation

Fig 2.7 shows the cross section of both rotor and stator lamination shapes. Based on this
CAD drawing, the non magnetic properties can be determined in the air gap, copper wind-
ings. The silicon steel parameters were accessed to the rotor and stator areas. The B/H
magnetic curves and the SRM dimensions are basic inputs for an analytical calculation.
The material properties, i. e. the magnetization and iron loss density curves of the used

silicon steel M270-35A, are given in �gs 2.8 and 2.9. Those parameters will be used to cal-
culate magnetic curves and simulate the SRM model.
However, the data sheets from manufacturers are not su�cient for the calculation of the

magnetic circuit due to a high saturation level of �ux densities both in stator and rotor teeth
exceeding the maximum values of the manufacturers' datasheets [32], [33]. The core loss
densities are only valid for sinusoidal voltage and current waveforms.

Flux Linkage and Inductance Calculation

For analytical calculation, homogeneous �eld lines are assumed in all di�erent parts of the
magnetic circuit. With respect to the length and the �eld strengths in the rotor, the stator
and the air gap, Ampere's circuital law is written as:

Nt · i = ΣN
i=1Hi · li = 2(HST · lST +HRT · lRT +Hg · g) +HSY · lSY +HRY · lRY (2.9)

Where,

HST ,HRT ,HSY ,HRY ,Hg magnetic �eld of stator, rotor teeth, stator, rotor yoke, air gap
lST ,lRT ,lSY ,lSY , g lengths of stator, rotor teeth, stator, rotor yoke, air gap
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2 SRM Magnetic Characteristics

Figure 2.7: Cross section of machine electromagnetic topology [71]

The �ux densities are determined by the cross sectional area of every part according to
(2.10).

Φ = BST · AST = BRT · ART = BSY · ASY = BRY · ARY = Bg · Ag (2.10)

The magnetic �ux can be determined from (2.9) and (2.10) by iteration or a graphical solution
based on the magnetization curves of �g 2.8. In case of unaligned position, the leakage must
be estimated by �ux line approximation. With respect to the number of turns Nt, the
inductance of the coil results as:

L =
Nt · Φ
i

(2.11)

Electromagnetic Torque Prediction

The electromagnetic torque depends on the phase current and rotor position. It can be
calculated from the co-energyWco according to (2.8): From the energy loop in �g 2.10, the co-
energy while passing from unaligned to aligned position at constant current I is proportional
to the area enclosed by the arrow lines (0UA).
Since the curve in the aligned position is highly saturated, the integration needs a stepwise
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2 SRM Magnetic Characteristics

Figure 2.8: Magnetization curve of M270-35A material at 50 Hz[46]

numerical calculation. The unaligned curve being almost a straight line may be approximated
by using only start and end values.
For the unsaturated case, the edge e�ects and for a rotor position between unaligned and
aligned positions are neglected. This leads to:

T =
1

2
· I2 · dL(θ)

d(θ)
=

1

2
· I2 · La − Lu

τ
(2.12)

with τ being the dwell angle between aligned and unaligned position as depicted in �g 2.3.
The electromagnetic torque strongly depends on the di�erence between the phase inductances
La and Lu. The ratio La/Lu has to be maximized to achieve as much torque per ampere as
possible. Therefore, switched reluctance machines are built with a doubly salient structure
and the air gap must be kept rather small.

2.3 2D FEA Model

Many approaches have been described in order to investigate the magnetic curves of the SRM
by �nite element analysis (FEA) [31], [36], and [54]. This method calculates the magnetic �eld
in small special units called meshes. This it is based on the shapes and material properties
of stator and rotor laminations. E. g. �ux linkage, inductance, and electromagnetic torque
values are output results of the FEA model.
Here, these values were calculated for di�erent phase currents and positions. The results
were used to build up lookup tables which will be used for torque control afterwards. An
example for the �ux density distribution is shown in �g 2.11.
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Figure 2.9: Iron loss density of M270-35A material at 1.5 T [46]

Figure 2.10: The co-energy loop Wco (OABCO) with OC is linear �ux-linkage area and CB
is non-linear �ux-linkage area
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2 SRM Magnetic Characteristics

Figure 2.11: Flux density at 15o rotor position

Basically, it is possible to use 2D or 3D simulation methods. Because of the cylindrical
symmetry of both stator and rotor, a 2D FEA model was selected to analyze the magnetic
�eld.
The magnetic �eld can be calculated by solving the following di�erential equation (2.13)

numerically:

∇ · ( 1

µ(B)
∇ · A) = −σ · Ȧ+ j (2.13)

where j represents the current density sources. A is the magnetic vector potential.
The �ux linkage and electromagnetic torque curves are shown in �gs. 2.12 and 2.13 re-
spectively. The magnetic force density follows from the local �eld magnitude as gradient of
Maxwell's stress tensor and the gradient of the permeability:

~f = ∇ · Tm −
~H2

2
· ∇ · µ (2.14)

In order to set the second term zero and nevertheless calculate the total force, a volume
integral of the stress tensor covering the complete rotor is used to determine the torque. The
mesh element size can be speci�ed by the air gap and mechanical dimensions. Since the air
gap is only 0.4 m, the mesh size has been selected 0.1 mm. The load is given by the phase
currents. The phase currents were varied from 20 to 300 A with steps of 20 A.
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2 SRM Magnetic Characteristics

Figure 2.12: Flux linkage curves (1o angular steps)

Figure 2.13: Static torque curves (aligned: 0o, unaligned 45o, 30 A current steps from 30 to
300 A), determined by FEA
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Figure 2.14: Experimental setup for �ux curve determination

In large areas like yoke or teeth, the length of a mesh may achieve about a tenth of the
total dimension. This calculation was done for rotor angles from 0o to 90o with steps of 1o

resulting in totally 15x90 = 1350 �eld distributions. At the end of each calculation, torque
and �ux linkage values were stored for the lookup tables. The execution of the calculation
series was controlled by a program in Lua language.

2.4 Measurement Method For the Flux Linkage Curves

An accurate measurement method of the magnetic characteristics was carried out to inves-
tigate the SRM magnetic characteristics in [29]. Some authors described indirect and direct
measurement methods with switched DC or AC voltage supplies [28], [34] and [37].
Based on voltage and current measurement, the magnetization characteristics can only be
exactly determined when the iron losses are removed. The method proposed below has many
advantages such as: no external resistor, no searching coil, and no o�sets. The �ux-linkage
and inductance are directly calculated from measured magnitudes by a LabVIEW program1.
Test objective of this measurement is a SRM from �g 2.7 which was designed for a maximum
phase current 300 A. The copper resistance and the winding temperature were measured
before testing. Voltage and current waveforms were recorded by a data acquisition system
(DAQ) NI-USB6212 [97] using a LabVIEW program. The NI-USB 6212 is a bus-powered
multifunction acquisition device for USB 16 bits, 400 kS/s, 16 analog inputs and 2 analog
outputs. Two analog inputs were used for measuring the voltage and current waveforms of
one phase. The voltage transducer LV 25-400 [99] (400 ± 3.2 V) and current transducer LA
305-S [98] (300 ± 2.4 A) were applied for this experimental setup as �g 2.14.
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2.4.1 Experimental Setup

Since �ux linkage and torque curves depend on the rotor position, this position was locked by
using an indexing head allowing to de�ne the angle within 1o intervals. From the measured
current and voltage values, the �ux linkage follows as:

Ψ(t) =

t∫
0

(u−R · i)dt+ Ψ(0) (2.15)

with

u terminal voltage across phase winding
R resistance of the phase winding
i phase current
Ψ(0) remanent �ux linkage at zero current
t time to achieve steady state, i. e. i = u/R keeps constant

2.4.2 Analysis of Experimental Results

In order to eliminate the iron loss in this measurement method, the voltage and current wave-
forms have been recorded during rising, falling and saturation current periods. An induced
voltage is positive when the IGBT is switched on, negative while the IGBT is switched o�
and zero in saturation state. The voltage, current and �ux linkage curves were measured and
calculated directly by LabVIEW software.

Before applying a DC voltage to one phase winding, the voltage, current and �ux link-
age values are zero. This ensures that the o�sets were removed. From those waveforms in
�g 2.15, it is very easy to notice three di�erent regions. Energizing is the region in which
the �ux increases from zero to saturation and the induced voltage falls from terminal voltage
to zero. During the saturation period, the current curve is almost �at, the induced voltage
approaches zero. In the de-energizing region, the current and inductive voltage decrease si-
multaneously and then approach zero.
For the following experiments, a voltage source with a weak behavior was chosen in order
to limit the current by hardware, which results in a source voltage dropping down at high
current values. The voltage source was switched on for a su�cient period in order to achieve
steady state and then switched o� again (�g 2.15). 2,000 values were sampled with 50 kS/s
for each measurement.
Fast changes in the voltage will cause eddy currents in the core, which will dominate the

hysteresis losses for high frequencies. In order to eliminate these losses, the voltage and cur-
rent waveforms have been divided up into energizing, saturation, and de-energizing periods
(�g 2.15). The respective periods are characterized by:
di/dt > 0 resp. ui > 0: energizing (index e)
di/dt = 0 resp. ui = 0: saturation (index s)
di/dt < 0 resp. ui < 0: de-energizing (index d)

1is a program used to control and measure electrical parameters of the drive system
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Figure 2.15: phase current i; terminal voltage u; induced voltage ui

Figure 2.16: Model for eliminating the iron losses
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The iron losses are modeled as an ohmic resistance parallel to the inductance (�g 2.16) ac-
cording to the assumption that eddy current losses dominate.
The �ux linkage achieved until settling may be calculated as:

Ψe = Ψ(ton) +

ton+Te∫
ton

(u−R · (iµ + iFe))dt = Ψ(iµ)−Ψloss (2.16)

with Ψloss =
ton+Te∫
ton

(R · iFe)dt and Ψ(ton) = 0.

After switching o� (u < 0), the voltage across the inductance will change its sign causing a
change of the sign of iFe, too:

Ψd =

toff+Td∫
toff

(u−R · (iµ − iFe)) dt = Ψ(iµ) + Ψloss (2.17)

with Te and Td are the time for energizing and de-energizing.
From the equations above follows the �ux linkage for a given magnetizing current Ψ(iµ) as
average of Ψe and Ψd (2.18):

Ψ(iµ) =
Ψe + Ψd

2
(2.18)

Fig 2.17 depicts the total �ux linkage values vs. energizing and de-energizing currents. Half
of the current di�erence of both curves at constant �ux linkage delivers the iron current iFe.
Fig 2.18 summarizes the corrected �ux linkage characteristics determined by measurement.

Figure 2.17: Flux linkage curves in rising and falling currents
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Figure 2.18: Experimental �ux linkage results

Comparison of Simulation and Experiment Results

Fig 2.19 shows some examples for both FEA and experimentally determined �ux linkage
curves. In unaligned position, the experimental �ux values are slightly higher than the
simulated ones (up to +9 %), whereas in aligned position the opposite behavior is observed
(up to 6 %). Reasons may be found in non-modeled mechanical tolerances as well as in
inaccuracies in the magnetization curve. The main reasons for those di�erences are the
manufacturing and mechanical tolerances mainly in the air gap. The air gap required is only
0.4 mm. The mechanical tolerances come from constructing the rotor and the bearing into
the SRM housing.

Figure 2.19: The experiment and FEA result comparison
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Table 2.1: Comparison between measurement and FEA results

Position I FEA Measurement Di�erence
[A] [mVs] [mVs] [%]
100 64.3 60.5 5.9

Aligned 200 75.7 73.5 2.9
300 77.4 75.9 1.9
100 9.8 10.7 8.3

Unaligned 200 19.6 21.4 8.78
300 29.4 32 8.46

2.5 Electromagnetic Torque Measurement

For this experiment, a torque transducer was mounted between rotor shaft and indexing head
as shown in �g 2.20. The torque transducer is a torque sensor (DL2000-VA-TE-T, 100Nm
[100]) which is reliable to measure static torque. The torque transducer was coupled to a
torque analyser (MD 6000 [100]). The accuracy (0.2 % of full scale) is ± 0.2 Nm.

Figure 2.20: The mechanical locking system of the rotor

When a DC current was applied to the phase windings, a torque value was obtained from
the torque sensor. The phase current was kept constant by chopping current control with a
small hysteresis current. The static torque curves were determined from 0o to 90o of rotor
angle with a step of 3o. To reset the rotor at full aligned position, a DC current of 20A is
excited to one phase and then the rotor is coupled with the indexing head. The step angle
can be changed by the indexing head easily in �g 2.20.
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Figure 2.21: Static torque measurement

The measured result is compared to PC-SRD and FEA results in table 2.2. The FEA,
PC-SRD, and measurement results agree well. Those results were investigated in three basic
rotor positions of switch on (15o), conduction (22.5o) and switch o� (30o) angles for static
operation. The di�erences between simulated and measured results may be explained by
some small o�sets of torque sensor signals and rotor position angles.

Table 2.2: Torque comparison between FEA, PC-SRD and Measurement results

Current θ FEA Mea PC-SRD
[o] [Nm] [Nm] [Nm]
15 29.5 28.5 28.9

300 22.5 31.2 29.5 31.2
30 28.2 27.3 28.1
15 10.2 10.5 10.4

150 22.5 12.8 13.5 13.2
30 11.3 11.8 11.5
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2.6 The SR S/G Drive System Model

2.6.1 Operation Principle of the SR S/G Drive System

To operate this drive system, the SR S/G is connected to some functional boards to control
and feedback the parameters. A physical model of the SR S/G drive system is depicted in
�g 2.22. The operation principle is described below:
Firstly, a R/D board converts the rotor position from a resolver to 12 digital bits. Based
on those bits, the rotor position angle and speed are digitalized. Secondly, the actual rotor
angle is compared with the turn-on and turn-o� angles in the current controller. The phase
currents are compared with low and high current levels (Ilow,Ihigh). Both rotor angle and
phase current comparisons will decide switching signals for IGBTs in the power inverter. The
reference current, turn-on and turn-o� angles can be transmitted by the NI-USB-6212 from
a labVIEW program.

2.6.2 Modeling of the SR S/G Drive System

In order to investigate the prospective dynamic performance, the physical model of SR S/G
drive system was simulated in MATLAB/Simulink and the functional boards are character-
ized exactly. The main blocks are LabVIEW, NI-USB-6212, Current controller, Inverter and
SRM shown in �g 2.23. The block functions are described as follow:

R/D Board

A resolver was used to feed back speed and rotor position. In stator, there are two windings
(sin/cos windings). From the amplitude and phase of the sin/cos voltages can be concluded
to the position of the rotor of the resolver. In the R/D board, analog signals of the sin/cos
voltages are converted to 8 digital bits (DB9-DB2) of the rotor position. The frequency of
the DB9 was used to measure the speed.

LabVIEW

Based on the requirement of the torque and speed, the reference values of the current, turn-on
and turn-o� angle can be determined by algorithm program in LabVIEW software. Those
values will be transmitted to the hardware.
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Figure 2.22: Operation diagram of the SR S/G drive system
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Figure 2.23: The SR S/G drive system model in Matlab/Simulink

29



2 SRM Magnetic Characteristics

NI-USB-6212

The data acquisition device (NI-USB-6212) and PC converter the reference current Iref and
hysteresis current Ihys values into two analog signals (Ilow and Ihigh) and the turn-on and
turn-o� angles into 8 digital bits (SW1 and SW2).

Current controller

The phase currents are regulated in chopping mode by this current controller. The feedbacks
of phase currents are compared to the (Ilow and Ihigh) and the digitalized rotor angle W in
8 digital bits (DB2-DB9) is compared to (SW1 and SW2). Based on this comparison, six
output signals (A1, A2, B1, B2, C1, C2) switch the IGBTs on or o�

Inverter

There are six IGBT modules (SEMiX603GB066HDs) including the drivers for a three phase
power inverter. The inverter supplies the switched voltage for the phase windings with a
high frequency.

SRM

The non-linear SRM simulation was built based on the look-up tables of the current i(Ψ,θ)
and the torque T (θ,i) by Simulink/Matlab. The current i(Ψ,θ) was inverted from the �ux
linkage curves Ψ(i,θ) which have been determined above. Fig 2.24 shows three phase of the
SRM model. The outputs are the waveforms of phase current, voltage and torque. The rotor
position from the resolver was simulated in this block.

2.6.3 Veri�cation of the SRM Simulation

The SRM parameters for the dynamic time domain simulation, which have not yet been
mentioned, are listed in table 2.3. Other parameters of the phase current, turn-on and
turn-o� angles depend on the torque and speed references.

The simulated waveforms of the SRM model have been evaluated by experimental tests at
low speeds. Conversion energy loops with soft chopping current control were recorded at
speeds of 2,000 and 2,300 rpm as �g 2.25.
In each cycle of operation, the energy conversion loops are the areas enclosed to the mag-
netization curves from unaligned to aligned positions with the vertical lines at the currents
of 250 and 300 A in �g 2.25. It is clear that the �ux linkage results in dynamic and static
measurement agree well.
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Figure 2.24: SRM simulation

Table 2.3: The SRM model parameters

Name Parameters Unit
Rotor inertia JR= 1.5·10−3 kgm2

Number tooth of Stator/Rotor NS/NR =6/4 teeth
Stator tooth angle βS = 30 o

Rotor tooth angle βR = 32 o

Phase resistance R =9.7·10−3 Ω
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Figure 2.25: Energy conversion loops in chopping current control

2.7 Summary

After a brief introduction to operation of switched reluctance machines, several methods of
determination of the static �ux linkage curves Ψ(θ,I) have been explained and implemented
in this chapter. Analytical reluctance and numerical FEA methods have been introduced.
An accurate method was proposed the measurement of �ux linkage characteristics of SRMs
including the saturation properties. The method uses a measurement in three regions (en-
ergizing, de-energizing, and saturation) in order to remove the in�uence of iron loss e�ects
during fast magnetization. The experimental results con�rm the FEA static simulation.
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3 Calculation of Losses and Thermal

Analysis of High Speed Switched

Reluctance Machines

The calculation of SRM losses is necessary in order to maximize e�ciency. However, it is a
big challenge due to the nonlinear magnetic characteristics, non-sinusoidal waveforms of the
�uxes at high frequency. This chapter describes a di�erent method for the iron loss calcula-
tion from the conventional methods. It �gured out several sections of the SRM laminations
with complex shapes which have the same iron loss density and �ux waveforms. Rates of the
iron loss densities were calculated at di�erent frequencies and �ux densities.
1. An iron loss model based on �nite element analysis was used to determine the iron loss
densities at high saturation and frequency. Secondly, the iron loss densities have been vali-
dated in static one-phase SR machine test with a frequency up to 3.5 kHz. For the dynamic
experiment, a set of equipment setups has been built to be able to measure voltage, current
and electric power over a wide frequency range.
The measurement results have been compared with iron loss data from steel manufactur-
ers and the simulation results were compared with experimentally obtained measurements.
Standard data sheets on material properties provided by steel manufacturers only contain
magnetic test results with sinusoidal �ux waveforms and homogeneous magnetic �elds. How-
ever the �ux waveforms in SRM are non-sinusoidal and include highly saturated �ux density
regions. Several static and dynamic tests have been carried out to determine the SRM iron
losses and �ux values for all operating points of the application. As far as comparable, the
results agree with the data from steel manufacturers.
2. A temperature calculation due to iron and copper losses was investigated by a 3D �nite
element analysis. The temperature rises at stator yokes and windings were measured and
validated. Some temperature sensors were located in the copper windings to measure the
temperature. An infrared thermometer was installed in this motor to measure the rotor
temperature as well.

3.1 SRM Losses Calculation and Measurement Methods

The losses can be separated into electrical PCu, magnetical PFe, and mechanical losses Pmech.
The mechanical losses latter may be divided up further into bearing and air friction or
windage losses, which are the most signi�cant at high speed. In total, the loss components
of the machine can be summarized as:

Ploss = PCu + PFe + Pmech, (3.1)
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3.1.1 Copper Losses

As for any other electric motor, the copper losses per phase are calculated based on the
current square product with the winding resistance (3.2):

PCu = I2
RMS ·R (3.2)

where R is the resistance of one phase winding. Normally, R is higher than the DC resistance
of the conductors due to skin e�ects. IRMS is the root mean square value of the phase current.
According to [101], the penetration depth of eddy current varies with frequency:

λ =

√
ρ

π · f · µ
=

√
1.678 · 10−8

π · 1100 · 4 · π · 10−7
= 2 (3.3)

Where,

ρ = 1.678 · 10−8 Ω ·m conductor resistivity
µ = 4 · π · 10−7 H ·m−1 absolute magnetic permeability
f = 1100 Hz the frequency

The wire radius of 2 mm equals the penetration depth λ of the �eld at 1,100 Hz. Since the
operating frequency of the machines exceeds this value(3,300 Hz at 50,000 rpm), the skin
e�ect must be respected.

R =
ρ · l
Aeff

=
ρ · l

π · r2 − π · (r − λ)2
(3.4)

Where,

Aeff actual cross sectional area used due to skin e�ect
r radius of the conductor

The actual resistance results was calculated as �g 3.1.

3.1.2 Iron Losses of the SRM

Many methods used to predict the SRM loss densities have been well known for some decades.
Several methods for calculating iron losses with non-sinusoidal excitations have been pub-
lished. They focus on estimating iron loss with the analysis of complex �ux waveforms in
[51], [55]. Fourier component and �nite element methods have been applied in [49], [53] and
[60].
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Figure 3.1: The phase resistance vs frequency due to skin e�ect

A 2D FEA Model

The �ux densities B(θ,i) have been determined by a 2D FEA model. Fig 3.2 shows an exam-
ple for aligned position at a constant current of 200 A. The �ux waveforms of those sections
are similar and the absolute values only depend on the cross section square. Flux densities
of di�erent lumped sections (yokes and teeth) have been investigated in a FEA model as
depicted �g 3.2. The model has been simulated from the SRM lamination shapes, magnetic
material properties and dimensional parameters.
Four lumped sections of the soft iron circuit with almost constant �ux densities could be

identi�ed from �g 3.2: stator tooth (ST), stator yoke (SY), rotor tooth (RT), and rotor yoke
(RY).

Iron Loss Densities

Iron loss density of each lumped sections can be obtained when a current is applied to one
phase at each of rotor position and the SRM model was simulated at di�erent frequencies by
FEMM software [57]. The total iron losses are summarized from the iron loss densities and
masses of the SRM components in (3.5):

pSRM =

∑
pi ·mi

mSRM

(3.5)

where pSRM is total iron density, mSRM is the mass of the machine, pi are iron loss densities
of di�erent parts, mi are the masses of di�erent parts (the teeth, yokes of SRM). The iron
loss densities of the stator tooth pST (BST ), stator yoke pSY (BSY ), rotor tooth pRT (BRT )
and rotor yoke pRY (BRY ) are shown in �g 3.4. Based on the densities determined as above
and the masses of the di�erent parts, the relative iron loss density rates ki are calculated as
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Figure 3.2: Flux densities of the SRM at aligned position

follows in (3.6).

ki =
mi · pi∑
mi · pi

=
mi · pi

mSRM · pSRM
(3.6)

with Σki=1.
The iron loss density rates of the di�erent parts are functions of the �ux densities and
frequencies. Fig 3.5 depicts an example calculated for equation 3.6. In one operating point,
�ux densities however are not equal in all parts.
It becomes clear that the iron loss factors ki of stator and rotor teeth in �g 3.5 decrease with
increasing �ux densities because the �ux densities in di�erent parts are not proportional in
magnetic saturation or the di�erences between �uxes in stator pole and other parts are not
signi�cant.

Analytical Model

An analytical model uses a formulation to calculate iron losses for lumped sections based on
an analysis of the �ux waveforms. The �ux waveforms can be obtained when three windings
are excited simultaneously by the currents with a shift angle between two phases of 60o. Fig
3.6 shows the averaged �ux densities in the four sections for constant current at variable
rotor position.
Depending on the rotor angle θ, three phase currents will cause �uxes through any stator
tooth. The �ux densities in the stator teeth are unipolar. They have the same shape in the
tooth carrying the exciting stator phases BST1(θ) and the teeth shifted by 60 o to either side
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Figure 3.3: Magnetic circuit of four lumped sections

Figure 3.4: Iron loss densities of di�erent parts
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Figure 3.5: Core loss density rates of di�erent parts at 2,500Hz

BST3, and BST5, while the others BST4, BST6, and BST2 have the respective negative �ux
densities.

Iron loss calculation

The total iron losses can be separated into two major parts: hysteresis and eddy-current
losses. A general formulation for the prediction of iron losses under non-sinusoidal �uxes
uses the Miller equation according to [51].

pFe = Ce ·B2
m · f 2 + Ch · f ·Ba+b·Bm

m (3.7)

where Ce and Ch are the coe�cients of eddy current and eddy current losses, and a and b
are constants, and Bm is absolute value of �ux density. The iron loss density is calculated in
(W/kg).
Considering that the average of (dB/dt)2 is equal to B2

m·f 2 for the sinusoidal �ux variation,
the eddy-current loss term can be rewritten.

PFe = Ce1 ·
(
dB

dt

)2

+ Ch · f ·Ba+b·Bm
m (3.8)

where Ce1 = Ce/(2·π)2.
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Figure 3.6: Flux densities of stator and rotor teeth and stator and rotor yokes over a single
revolution of the rotor
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Eddy-Current Losses

The eddy-current losses for the stator and rotor teeth PSTe, PRTe are given by:

PSTe =
ω

2 · π
·NS ·NR ·mST · Ce1 ·B2

STm ·
(

1

Tp
+

1

Tn

)
(3.9)

PRTe =
ω

2 · π
·NS ·NR ·mRT · Ce1 ·B2

RTm ·
(

1

Tp
+

1

Tn

)
(3.10)

Where,

mST the mass of one stator tooth
mRT the mass of one rotor tooth
BSTm the maximum of �ux density in the stator tooth
BRTm the maximum of �ux density in the rotor tooth
Tp the rise time of the �ux
Tn the fall time of the �ux

The eddy-current losses for the stator and rotor yokes PSY e, PRY e are given by:

PSY e =
ω

2 · π
·NR ·NS ·mSY · Ce1 ·

(
2 ·B2

SY m

Tn
− hSY e ·

BSY m ·BSY 0

Tn

)
(3.11)

PRY e =
ω

2 · π
·N2

R ·mRY · Ce1 ·
(

2 ·B2
RYm

Tn
− hRY e ·

BRYm ·BRY 0

Tn

)
(3.12)

Where, the hSY e and hRY e are the coe�cient factors normalized count of the �ux polarity
changes.

Hysteresis Losses

The hysteresis losses can be calculated by a process described in [51]. The classical equation
describing the hysteresis losses was given by as,

Ph = Ch · f ·Ba+b·Bm
m (3.13)

The hysteresis loss for stator teeth are:

PSTh =
ω

2 · π
·NS ·NR ·mST · eh(0,BSTm) =

ω

2 · π
·NS ·NR ·mST · Ch · 0.4 ·

(
Ba+b·BSTm
STm

)
(3.14)

where eh(0,BSTm) is the hysteresis loss energy per unit weight for a minor loop where �ux
density changes between 0 and BSPm and eh(-BSTm,BSTm) is the hysteresis loss energy per
unit weight for a full loop where �ux density changes between -BSPm and BSPm. Because
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the hysteresis loss of a minor loop is about 40% of the full loop it was calculated as in (3.15):

eh(0,BSTm) = 0.4 · eh(−BSTm,BSTm) = 0.4 · Ch ·
(
Ba+b·BSTm
STm

)
(3.15)

The hysteresis losses for rotor teeth are:

PRTh =
ω

2 · π
·NS ·NR ·mRT ·

(
hRTh

2
· eh(−BRTm,BRTm) + (1− hRTh) · eh(0,BRTm)

)

=
ω

2 · π
·NS ·NR ·mRT · Ch ·

(
hRTh

2
·Ba+b·BRTm

RTm + (1− hRTh) · 0.4 ·Ba+b·BRTm
RTm

)
(3.16)

where eh(0,BRTm) and eh(-BRTm,BRTm) are the hysteresis loss energy for minor and full hys-
teresis loops.
The hysteresis losses for stator yoke is:

PSY h =
ω

2 · π
·NS ·NR ·mSY ·

(
hSY h

2
· eh(−BSY m,BSY m) + (1− hSY h) · eh(BSY 0,BSY m)

)

=
ω

2 · π
·NS ·NR ·mSY · Ch ·

(
hSY h

2
·Ba+b·BSY m

SY m + (1− hSY h) ·
BSY m −BSY 0

BSY m

·Ba+b·BSY m
SY m

)
(3.17)

where eh(BSY 0,BSY m) is the hysteresis loss energy for a minor hysteresis loop where �ux
density changes between BSY 0 and BSY m.
The hysteresis losses for rotor yoke is:

PRY h =
ω

2 · π
·N2

R ·mRY · Ch ·
(
hRY h

2
· eh(−BRYm,BRYm) + (1− hRY h) · eh(BRY 0,BRYm)

)

=
ω

2 · π
·N2

R ·mRY · Ch
(
hRY h

2
·Ba+b·BRY m

RYm + (1− hRY h)
BRYm −BRY 0

BRYm

·Ba+b·BRY m
RYm

)
(3.18)

where eh(BRY 0,BRYm) is the hysteresis loss for a minor hysteresis loop where �ux density
changes between BRY 0 and BRYm.

a = 1.615; b = 0.158T−1 the constant factors of eddy current losses
Ce = 1.8 · 10−6W · s2 · T−2 · kg−1 the coe�cient factor of eddy current losses
Ch = 8.2 · 10−3W · s · T−(a+b·Bm) · kg−1 the coe�cient factor of hysteresis losses
hSY e = 1/3;hRY e = 1/2 the e�ect of the winding polarities on eddy current losses
hSY h = 1/3;hRY h = 1/2;hRTh = 1/2 the e�ect of the winding polarities on hysteresis losses

Those factors have been obtained from the iron loss data sheet of the manufacturer [32].

41



3 Calculation of Losses and Thermal Analysis of High Speed Switched Reluctance Machines

3.1.3 Iron Loss Validation

The test bench for the iron loss measurement is the experiment setup of the �ux linkage
measurement in chapter two as �g 2.14. However, the phase windings were excited by a high
frequency. In order to obtain a full of voltage and current waveform, the DAQ (NI-USB-6212)
was initialized with 100kS/s and 2000 samples. Both �ux densities and the iron losses in
di�erent parts of the iron will be calculated from recorded data.

Experiment Method for Measuring Iron Losses

A non-sinusoidal �ux density waveform is obtained by applying an almost square-wave voltage
with high switching frequency as shown in �g 3.7 upper left side. However, the measured
voltage has a roughly triangular shape due to a low feedback frequency of the voltage sensor.
Especially, the voltage changed from -UDC to +UDC .
In this experiment, the �ux linkage Ψ(t) has been calculated from the voltage and current
waveforms �rstly. The �ux density of the stator tooth is inferred based on the �ux linkage,
number of turns and cross sectional area in (3.19).

BST (t) =
Ψ(t)

Nt · AST
=

1

Nt · AST
·

t∫
0

(u(τ)− i(τ) ·R)dτ (3.19)

where u(τ) is the terminal voltage across phase winding, R is the resistance of the phase
winding, i(τ) is the phase current, Nt is the number of turns per phase, and AST is the cross
sectional area of the stator tooth.
From the average input power during both magnetizing and demagnetizing phases, the total
input losses Pin can be determined. The iron losses PFE are computed as the di�erence
between total input power Pin and copper losses PCu according to (3.20):

PFE = Pin − PCu (3.20)

The power values were averaged during one period of �g 3.7. The loss densities pi are
calculated according to (3.21):

pi =
ki ·
∑
mi · pi
mi

=
ki · PFe
mi

(3.21)

Comparison Between Simulated and Experimental Iron Losses

The results on iron loss densities in both FEA model and measurement are shown in �g 3.8.
In comparison with the simulation method, the experimental results of the iron loss densities
are slightly higher. The mismatch can be explained by the residual magnetic �ux.
The simulated and measured iron losses at di�erent frequencies are compared in �g 3.9. The
di�erences are supposed to be due to the 2D FEA model, which does not take into account
the �eld of the end windings, the lacking accuracy of the non-linear B-H curves, and the
remnant �uxes. Moreover, the measured waveforms were not as perfect as in the simulation,
as they depend on the recording of the frequency of the voltage and current sensors and the
delay time of the electronic devices.

42



3 Calculation of Losses and Thermal Analysis of High Speed Switched Reluctance Machines

Figure 3.7: Voltage, current and �ux density waveforms at 2500 Hz

Figure 3.8: Core loss densities comparison at 2,500 Hz (color lines: simulation, black line:
manufacturer, dot: measurement)
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Figure 3.9: Core loss density comparison between simulation (lines) and measurement
(dashed)

3.1.4 Mechanical Losses

The mechanical losses in the SRM consist mainly of air friction losses and bearing losses.
They are assumed not to depend on load. Rotor speed, air gap and the stack length in�uence
the air friction losses Pfr. An analytical calculation is quite di�cult due to the complex air
�ow conditions including laminar and turbulent regions. According to [58], an empirical
formula is given in (3.22)

Pfr = 2 · kfric · rr(Lstk + 0.6 · τr) · v3
r (3.22)

where vr is the circumferential speed of the rotor, rr is the outer rotor radius, Lstk is the rotor
length, τr is the stator tooth pitch and kfric is friction coe�cient for electrical machines. The
bearing loss Pbr depends on a frictional torque factor Tft and can be calculated as follows
(3.23).

Pbr = Tft · ω (3.23)

In order to validate those mechanical losses, the machine has been accelerated up to several
speeds without load. After switching o� the current, the run out speed is recorded vs.
time. The deceleration speed is continuously measured until the rotor comes to standstill.
The mechanical power loss Pmech at the measured speed nm is determined based on the
deceleration speed curve in �g 3.10 (3.24):
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Figure 3.10: The deceleration curve

−Pmech = −Tmech · ω = JR · 4 · π2 · n · (dn
dt

)n=nm = JR · 4 · π2 · n · (nm
∆t

) (3.24)

where Tmech is the torque corresponding to the mechanical power loss Pmech, JR is moment
of rotor inertia and ω is the angular velocity.
The determination of the speed derivative by graphical construction of the tangent to the
speed curve implies some inaccuracies. However, in case of numerical acquisition of data,
the calculation can be done numerically with more precise results [61]. The calculated (blue
line) and measured (black line) mechanical losses in �g 3.11 are quite good agreement.

Figure 3.11: The calculated (blue line) and measured (black line) mechanical losses
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Loss Separation in High Speed Steady State Operation Without Load

The copper, iron and mechanical losses were determined experimentally at high speed op-
eration, where air friction already applies su�cient torque to render accurate results. The
total losses Pt are computed from the measured input currents and voltages. The copper
losses PCu can be calculated from the currents and the stator resistance. Fig 3.11 already
depicted the mechanical loss Pmech. The di�erence is regarded as iron losses PFe according
to (3.25):

PFe = Pt − PCu − Pmech (3.25)

Table 3.1 shows some results with di�erent turn-on and turn-o� angles at various speeds. All
results show a good agreement between the model and measurement.

Table 3.1: Losses measured in no-load test

speed [rpm] 40,000 43,000 45,000
Pt [W] 2,230 2,526 3,200
PCu [W] 24 25 27
Pmech [W] 888 980 1,150

PFe(mea) [W] 1,380 1,521 2,023
PFe(cal) [W] 1,290 1,440 1,930
Di�erence[%] 6.5 5.9 4.6

3.2 Thermal Analysis

After loss determination, a thermal analysis shall investigate the power capability of the
machine. The water cooling jacket is included in the stack: using sheets covered with thermal
varnish, the mounted stack was baked in an oven at 200 oC thus providing watertight pockets.
The �anges of the housing were machined in order to lead the water to external tubes for
connecting the pockets which can later be easily replaced by a machined �ange for production
facilitation.
The 2D and 3D �nite element analyses were used to calculate the temperature distribution
considering also the water cooling system. From this model, an optimal water �ow rate can be
determined. The convection coe�cients between di�erent parts were estimated analytically
and applied to the FEA thermal model. In oder to validate the in�uence of the water �ow
rate, the temperature distribution was studied and the results have �nally been compared in
a no load test. Computational �uid dynamics (CFD) was used to simulate the �uid velocity
distribution in the cooling pockets.

3.2.1 Determination of Heat Transfer Coe�cients

An accurate estimation of surface convective heat transfer coe�cients is necessary for the
FEA thermal analysis model. There are many applications and papers on the subject of
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air�ow or water cooling convection in rotating electrical machines through housings e. g. in
[65], [77] and [78]. However, the stator lamination in �g 3.12 cooled directly by �uid has not
yet been mentioned.

Figure 3.12: Stator and rotor of the investigated SRM

CFD Model

Fig 3.12 depicts the geometry of the 6 water pocket tubes in the stator yoke. The cold �uid
enters the pipe through the right side connection and the hot �uid leaves the pipe through
the left side. The heat transfer takes place in the surfaces between stator yoke and �uid.
The purpose of CFD is to investigate the �uid velocities and pressure drop as depicted in
�g 3.13. Those results were used to calculate the average �uid velocity as well as for dimen-
sioning the pump of the cooling system. The simulation was carried out with the student
version of ANSYS 11 turbulent �ow of �uid dynamics (CFD) software.

Forced Convection of Water Jacket

In a forced convection system, the value of the Reynolds number Re in equation (3.26) judges
if the �ow is laminar or turbulent. In this case, (3000 < Re <106) resulting in turbulent
modeling as [66]. The heat transfer coe�cient of the turbulent �ow in the water jacket can be
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Figure 3.13: Fluid velocity distribution in water jacket vav (m/s)

analytically calculated according to [63]. The heat transfer coe�cients depend on the �uid
velocity, dynamic viscosity and hydraulic diameter. An accurate prediction of the forced
water coe�cient is a big challenge. In this dynamic simulation, the �uid velocity distribution
was determined by a CFD model for di�erent �ow rates. The average velocity was then used
to calculate the Reynolds number as in equation 3.26. Based on the channel shapes and
geometry parameters, the hydraulic diameter results from (3.27). Those equations render
the heat transfer coe�cient as depicted in �g 3.14.

Re =
vav ·Dh

µfluid
(3.26)

where Re is the Reynolds number, which decides the �ow status, vav is the average �uid
velocity, µfluid is the �uid dynamic viscosity, and Dh is the hydraulic diameter as in (3.27):

Dh =
4 · Ac
Pc

(3.27)

where Ac and Pc are the cross section area and the contour length of the water channel,
respectively.
For this application the Nusselt number can be calculated according to V.Gnielinski [66] as
follows:

Nu =
(fNu/8) · (Re− 1000) · Pr

1 + 12.7(fNu/8)1/2 · (Pr2/3 − 1)
(3.28)

with fNu is the friction factor in (3.29) and Pr is the Prandtl number in (3.30) according to
[66] :

fNu = [0.79 · ln(Re)− 1]−2 (3.29)
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Pr =
µfluid
αf

(3.30)

where αf is the �uid thermal di�usivity. Finally, the heat transfer coe�cient hfluid−core
according to [63] follows as (3.31):

hfluid−core =
kfluid ·Nu

Dh

(3.31)

with kfluid is the thermal conductivity of �uid.
Fig 3.14 depicts the results of these equations (refers to 3.26 -3.31) for di�erent �ow rates.
Boundary conditions were then applied to the water jacket, and the temperature �eld distri-
bution was obtained as shown in �g 3.16.

Figure 3.14: The heat transfer coe�cient core between �uid and surface

Heat Transfer Coe�cient of the Air Gap

The convective heat transfer coe�cient of the surfaces in the air gap is very di�cult to
compute due to the in�uence of the complicated shape of the air gap. Based on the empirical
formulas in [70], the heat transfer coe�cient for the air gap was calculated as follows (3.32-
3.34):

Regap =
vgap · g
µair

(3.32)

49



3 Calculation of Losses and Thermal Analysis of High Speed Switched Reluctance Machines

with vgap = rr·ω equivalently to (3.26)

Nugap = 0.03 ·Re0.8
gap (3.33)

hgap =
kair ·Nugap

g
(3.34)

Where ω is the angular velocity of the rotor, rr is the radius of the rotor, g is the length of
air gap, µair is the dynamic viscosity of the air, kair (m2/s) is the thermal conductivity of
air. Fig 3.15 shows convective heat transfer coe�cient of the surfaces in the air gap between
rotor and stator. It is clear that this factor increases with speed.

Figure 3.15: The heat transfer coe�cient surface between air and laminations

Flow Rate Calculation

In the application of an aircraft, the active part of the SRM is closed. Therefore, an e�cient
cooling system is necessary in order to reduce mechanical stress and wear. In electric vehicle
applications, forced liquid cooling is frequently used as analyzed e. g. in [73]. The required
minimum �ow rate to remove the heat produced by the losses can be obtained by (3.35):

Qmin =

∑
Ploss

ρfluid · cp,fluid · (Tout − Tin)
(3.35)

where
∑
Ploss is the total loss heated by iron and mechanical losses, Qmin is the mass �ow in

kg/s, cp,fluid is the speci�c heat of the cooling water J/(kg·K), ρfluid is �uid mass density in
kg/m3, and (Tout-Tin) is the di�erence between inlet and outlet temperature.
In order to remove internal heat losses generated in the SRM, the cooling �uid has to circulate
through the jacket at turbulent �ow.
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3.2.2 FEA Thermal Analysis Model

3D FEA models have been used to investigate the temperature distribution for many types
of electrical machines e.g. in [25] and [26]. However, the thermal analysis of SRM with
signi�cant friction and electrical loss contributions are still a big challenge, because the iron
loss densities of rotor and stator parts are totally di�erent. Moreover, with the complex rotor
tooth shapes, the heat transfer coe�cients of the air gap as well as the core ends of stator
and rotor tooth surfaces have to be estimated in di�erent conditions. In order to observe
an actual temperature distribution in the parts of the machine, a three dimensional steady
state thermal analysis of stator core, air gap and windings was done.

Numerical Formulation

The formulation of temperature rise analysis is based on the heat conduction equation shown
in 3.36.

∂

∂x
(kx ·

∂Trise
∂x

) +
∂

∂y
(ky ·

∂Trise
∂y

) +
∂

∂z
(kz ·

∂Trise
∂z

) + Q̇ = ρ · c · ∂Trise
∂t

(3.36)

Boundary conditions at the surfaces S1 (symmetry of teeth) and S2 (axial surface of core) in
�g 3.16 are as follows (3.37) and (3.38):

−k · ∂TS
∂n
|S1 = 0 (3.37)

−k · ∂TS
∂n
|S2 = hi · (T∝ − TS) (3.38)

where kx, ky, kz are the thermal conductivities in the spatial directions x,y,z of an anisotropic
material, ρ is the density, c is heat capacity, and Q̇ is internal heat generation rate. Taking
into consideration the convective heat exchange on the surface of the SRM, the convection
boundary conditions are applied to S1 and S2 surface conditions. T∝ and TS are the surface
and air temperature, respectively, and hi denote the heat transfer coe�cients.

Stator Temperature

With the geometrical parameters and the material properties of each part, a three dimensional
steady-state temperature �eld simulation model for the liquid cooled SRM was established.
The boundary conditions of the surface in the stator yokes and teeth were determined by
(3.37) and (3.38). For the water pockets, the heat transfer coe�cients have been calculated
in the analytical model and can now be applied for the FEA model. The temperature
distribution was calculated based on copper and iron losses at di�erent speeds and reference
currents. Fig 3.16 shows an example operation point at speed of 15,000 rpm and current of
40A.
The temperature �eld of the stator is generated by iron and copper losses. The temperature
of the stator tooth achieves the highest value due to the distance to the liquid cooling pocket.
Moreover, the heating by friction loss in the air gap increases the temperature in the tooth
heads. The outer stator yoke contacts directly the �uid leading to a low temperature there.
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Figure 3.16: Stator temperature distribution

Temperature of Windings

The winding of the machine consists of insulation, air and copper wires. These materials
have totally di�erent thermal behaviors. It is common practice to consider an equivalent
thermal conductivity coe�cient for the winding. The equivalent conductivity of the winding
depends on the �lling factor [81]. In this SRM, the winding consists of 220 conductors in
serial connection and each conductor consists of 20 copper strands connected in parallel.
With the �lling factor of 0.6, the equivalent conductivity of the winding is 0.7 W/(m.K) in
[80].
Therefore the coils were modeled as massive conductors placed between the stator teeth. The
temperature of these copper bars has its maximum in the axial center of the stator slots,
while they are lowest close to the surface between winding bars and stator yokes, which is
nearest to the cooling system.

Temperature Distribution in Air Gaps

In a high speed motor, the temperature in the air gap is signi�cant due to the friction
losses and the friction loss causes additional heating. Moreover, the internal heat sources
of SRM cores, yokes and windings have a strong in�uence on the whole motor temperature
distribution. In order to investigate the mutual e�ects, a 2D FEA thermal analysis model
was simulated with the air gap heat transfer coe�cient which has been calculated in �g 3.15.
Fig 3.18 depicts the temperature distribution of the air gap. The hot spot temperature inside
of the SRM is 90 oK in the head points of the stator windings shown in �g 3.18.
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Figure 3.17: Copper winding temperature

Temperature Rise Curves in Transient Thermal Analysis

In this transient thermal analysis, the time needed to reach end temperatures is 150 seconds
starting from ambient temperature. Fig 3.19 shows the simulation results of the SRM tem-
perature. The end temperature of end windings, cores and yokes is reached shortly after 60
seconds. The temperature rise according to the simulation is 90 oK at the end windings, 68
oK at the stator tooth, 63 oK at the yoke, and 58 oK at the air gap.

Measurement of Temperature Rise Curves

In the experimental setup several PT100 temperature sensors and a data acquisition device
NI-USB 6212 monitored by LabVIEW were used. The sensors were placed in the end wind-
ings, close to the resolver and close to the bearing. As expected, the end windings achieve
the highest temperature.
Fig 3.20 shows the temperature rise at 15,000 rpm and an excitation current of 40A. The
temperature increased from a room temperature of 28oK. Because the temperature measure-
ment was carried out without load, the end temperature is not so high.
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Figure 3.18: 2D FEA temperature distribution

3.3 Summary

The iron losses and temperature distribution for a high speed SRM have been investigated
both by simulation and experimental methods. An improved measurement technique was
used to predict the iron losses at high frequency and �ux density. This method allows a
detailed analysis of the iron loss rates in prede�ned rotor and stator parts characterized by
constant �ux density. It was applied in di�erent rotor positions at standstill. Due to a lack
of load, measurements were carried out both in dynamic operation during acceleration and
no load steady state at various speeds. The mechanical losses have been separated by run
down tests. Since the copper loss can be predetermined, the total iron losses result from total
losses by loss separation. The temperature distribution of di�erent parts in SRM has been
investigated by 3D and 2D FEA modeling and the �uid velocity distribution in the stator
jackets was simulated by a CFD model. The in�uence of the �ow rate of the liquid stator
cooling on the temperature distribution was calculated and discussed.
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Figure 3.19: Transient temperature time curve

Figure 3.20: Measured temperature rise curve
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4 Maximum Torque Control of a High

Speed SRMs based on the

Acceleration Method

In this chapter, a maximum torque control strategy is implemented by optimizing the turn-
on and turn-o� angle vs. speed and reference currents. An acceleration test bench of the
SR S/G and an additional inertia will be built to investigate the SR S/R torque and speed
performance.
Based on this test bench, an indirect torque measurement method is applied to validate the
maximized torque values in starting mode and output power in generator mode. In compar-
ison with other articles about indirect torque measurement methods in [82], [83] and [84],
there are some advantages in this approach. Firstly, the control strategy could be inves-
tigated in wide ranges of speed up to 35,000 rpm and torque to 25 Nm. Secondly, a full
range of the average torque and speed can obtained based on extending the whole moment
of inertia. Thirdly, a constant acceleration and control speed strategy is applied to constant
the SRM torque in starting mode and constant speed at steady state operation.
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4.1 Maximum Torque Control Strategies of the Switched

Reluctance Starter

In most of the switched reluctance motor applications, maximization of average torque,
e�ciency, and minimization of torque ripple1 are three criteria which every optimal control
strategy tends to achieve. However, the most important demand on the SR S/G drive system
is a maximum average torque in starting mode and a maximum output power in generator
mode. Thus, an optimal controller of turn-on and turn-o� angles must be applied to achieve
the performance.
The average torque depends on the phase torque waveforms which are controlled by the phase
currents, turn-on, and turn-o� angles as in �g 4.1. The average torque of SRM drives is given
by (4.1):

Tavg =
1

τph
·
τph∫
0

Nph∑
k=1

Tphk · dt (4.1)

where τph denotes the period of the phase current, Nph denotes the number of phases, and
Tphk denotes the phase torque.
There are some publications about optimal control torque strategies as e. g. [85], [86] and
[87].
In those methods, the turn-on angles were �xed independent of speed and the turn-o� angles
were calculated by an explicit equation with some assumptions such as neglection of phase
resistance, iron loss, and linear �ux linkage with rotor position. In this thesis, both the turn-
on and turn-o� angles are variable and pre-determine o�-line by numerical means because
these angles depend on the speed and current control method2. Especially, the torque tends to
decrease at high speeds due to non linear magnetic characteristics. Fig 4.2 shows a procedure
to get the maximum torque curves and the optimal turn-on and turn-o� angles by using the
simulation from chapter 2.
Many operation points have been predetermined for a speed range from 0 to 50,000 rpm with
steps of 2,500 rpm and for a reference current range from 0 to 300 A with steps of 15 A. With
each pair of the speed and current, many combinations of the turn-on angle range θon3 and
turn-o� angle range θoff 4 have been investigated by the SRM simulation5. However, only
one combination of the turn-on and turn-o� angles for which the average torque achieves its
maximum can be obtained as shown in �g 4.3.
After investigating the full range of the speeds and currents, the 3D plot of optimal turn-on
and turn-o� angles vs. reference currents and speeds were determined (�g 4.4). The optimal
�ring angles 6 have been selected and stored in lookup tables. Those tables will be used in
a LabVIEW controller program to maximize the SRM torque later.

1is de�ned as the di�erence between the maximum torque Tmax and the minimum torque Tmin
2chopping current control or voltage control
3[θonmin -> θonmax ], θonmin=-18o and θonmax=-2o
4[θoffmin

-> θoffmax
], θoffmin

=25o and θoffmax
=45o

5has been simulated in chapter 2
6are turn-on and turn-o� angles
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Figure 4.1: Torque waveforms at 15,000 rpm and 200A

Figure 4.2: Optimal excitation angle control strategy to maximize torque
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Figure 4.3: Maximum average torque vs. turn-on and turn-o� angles

4.2 A High Speed SR S/G with an Additional Inertia

Load Drive System

4.2.1 Experimental Setup of the SR S/G Drive System

To realize the maximum torque control strategy, an experimental setup of the SR S/G drive
system was established. In order to extend torque and speed measurement ranges during
dynamic operation, the SRM shaft has been coupled directly with an additional rotating
mass which increases the total inertia of the whole system. The test bench furthermore
consists of SR machine, power electronic inverter, NI-USB-6212 ADC card, R/D board, and
current controller (�g 4.5) as described in chapter 2.

4.2.2 Safety Protection Calculation for the Test Bench

In a high speed drive system, the large kinetic energy of the rotating parts may cause damage
to the test bench in error conditions. Therefore, a mechanical frame was designed to protect
people and material in case of mechanical failures leading to explosion by the centrifugal
force.
The dynamic balancing of the whole test bench must be respected because the bearings can
only operate with very high balancing level.
The whole experimental setup was covered with a hollow steel frame �lled with sand bags.
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Figure 4.4: Optimal turn-on and turn-o� angles vs. speed and current

To guarantee the safety protection, the thickness of the sand bags has been designed so that
no rotating parts can get out of the protection cover as shown in �g 4.6.
The mechanical stress of the cylinder caused by the centrifugal force was calculated and

compared with the data of the steel S275JR. Fig 4.7 shows a photo of the cylinder as the
additional inertia load of the SRM. The dimensions are shown in Table 4.1.

Kinetic Energy Calculation:

An exact knowledge on the kinetic energy of the moving parts is important to design the
protection enclosure. The amount of kinetic energy E stored in the cylinder varies linearly
with moment of inertia J and with the square of the angular velocity ω. It is calculated as
follows:

E = JL ·
ω2

2
(4.2)

The maximum kinetic energy expected at 50,000 rpm is Em = 105 kJ.
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Figure 4.5: Experimental setup of the SR S/G drive system

Table 4.1: Geometry parameters of the steel cylinder (S275JR)

Name Dimensions Unit
Length of cylinder 150 mm
Diameter of cylinder 85 mm

Length of shaft 140 mm
Diameter of shaft 24 mm

Mass 7.27 kg
Additional inertia load 7.7·10−3 kgm2

61



4 Maximum Torque Control of a High Speed SRMs based on the Acceleration Method

Figure 4.6: Moving protective covers

Figure 4.7: Photo of the cylinder
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Maximum Velocities of the Rotating Parts:

The dynamic velocity is de�ned as potential speed of a mechanical part when it separates
from the test bench. For the worst case, we assume that the kinetic energy is equal to the
dynamic energy of mechanical parts when they are would move away from the test bench.
The potential velocity is calculated assuming equality of rotational and translational energy.

JL ·
ω2

2
= m · v

2
m

2
(4.3)

vm = ω ·
√
JL
m

(4.4)

The maximum speed expected is vm= 170 m/s.

Figure 4.8: Velocity and penetration depth of the inertial load

4.2.3 Protective Construction of Sandbags:

An empirical dependence equation (4.5) to predict the steel penetration depth in to dry sand
was introduced in [96] as:

ps = 0.1 · ρs · (26.2 · d− 1

λs
+ 1.75 · l − 5.3) · (vm/vmax)0.4 (4.5)

Where ρs is mass density, d is diameter, λs=l/d is shape factor, vm is velocity of the cylinder
and vmax=1.7 km/s is a maximum velocity.
(4.5) leads to a penetration depth of 37 cm in sand at vm. The whole test bench therefore
was completely covered with a 50 cm sandbag layer.
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4.3 Indirect Torque Measurement Method for the High

Speed SR S/G Acceleration Test

The most common method for measuring torque-speed characteristics is a direct torque
transducer. The direct torque sensor is simple to use and measures the actual torque with
time delay of some 10 until 200 ms. For the high speed and acceleration of the SR S/G drive
system, the torque and speed di�erences have to be measured in a short time interval. For
example, the time delay of the torque sensor (DL2000-VA-TE-T) in �g 4.9 is 0.18s. With
this time delay, it is impossible to get the initial points of torque and speed with the time
from zero to 0.18 s. Therefore, the direct method can not be used to measure a dynamic
torque at high acceleration rates.
Indirect torque measurement methods have been reported in [82], [83] and [84]. However,
there are some drawbacks or limitation in computation precision of torque. A high speed
permanent magnet motor has been used for the acceleration method to measure torque with
speeds up to 200,000 rpm was reported in [82]. Nevertheless the desired torque values could
not be adjusted duly without an additional load.

4.3.1 Torque Measurement of the SR S/G without Additional
Load

In a �rst experiment, the SRM shaft was not connected to any load. Therefore, the to-
tal moment of inertia is equal to the one of rotor. The acceleration results from the time
derivative of angular speed dω/dt. With this constant moment of the rotor inertia JR, a
change in average torque will also change the acceleration time. For the high speed drive,
the friction and mechanical loss torques are signi�cant and can not be neglected. The total
electromagnetic torque Tsum can be obtained according to as (4.6):

T∑ = JR ·
dω

dt
+ Tmech = TR + Tmech (4.6)

Where JR=1.5·10−3 kgm2 is the moment of inertia of the rotor, TR is the accelerating torque
by the rotor inertia, and Tmech is the torque by friction and mechanical losses. Fig 4.10 shows
the calculated torque based on the measured speed curve. The measured and simulated
torque curves agree quite well. With a constant value of the rotor inertia, torque and speed
ranges can be extended by increasing the reference current. Table 4.2 summarizes some results
of the �nal speeds achieved and the shaft torque values vs. current references. At constant
durations of the experiments, the end speed increases with higher current references leading
to larger torque values. By supplying higher current values, the noise of speed measurement
becomes unbearable for precise measurements. Therefore, the torque and speed extension by
applying an additional inertia load is important to improve the precision of the measurement
method.
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Figure 4.9: The time delay of the torque sensor (DL2000-VA-TE-T, 100 Nm)

Figure 4.10: Torque measured (line) and simulated (dashed) vs. speeds curves based on the
SRM rotor inertia

Table 4.2: The calculated torque of the moment of rotor inertia in acceleration tests

∆ t[s] n [rpm] Iref [A] U[V] P [W] TR [Nm]
0.5 8,500 70 180 3,955 2.8
0.5 10,500 80 180 5,579 3.3
0.5 13,500 90 179 8,354 4.2
0.5 15,000 100 178 8,916 4.6
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4.3.2 Polynomial Curve Fitting Method for the Speed and Torque
calculation

Due to the speed measured in a short time interval, some noise of the speed derivative of
time dω/dt calculation can not be neglected. Therefore, the recorded data are not suitable to
calculate and analyze immediately. Hence, they must be converted or smoothed by a poly-
nomial curve �tting method. A polynomial curve �tting method has been used to obtain
the speed and torque curves. Curve �tting method is the process of constructing a curve, or
mathematical function �t to a series of data points. The MatLab function poly�t was used
to construct the speed and torque curves as follows:

p = polyfit(t,n,h) (4.7)

with p being a row vector of the length n+1 containing the polynomial coe�cients of degree
h, t being the measured time, and n being the measured speed...

nfit = p1 · nh + p2 · nh−1 + ..+ ph · n+ ph+1; (4.8)

Fig 4.11 shows the smoothed torque vs. speed curves. The polynomial order was determined
after comparing the error with di�erent orders.

Figure 4.11: Speed and torque calculation by a polynomial curve �tting

4.3.3 Rotor Speed Measurement

In steady state operation, the rotor speed can be measured by counting the number of a
digital pulse in a period of time. For the acceleration test, the speed increases rapidly.
Therefore, the rotor speed is calculated based on the frequency of the least signi�cant bit of
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the R/D converter (DB9) in �g 4.12. The number of the DB9 pulse for one rotor cycle is
equal the rotor teeth (NR). The SRM speed is calculated as:

n(rpm) =
60

NR

· 1

TDB9(s)
=

60

NR

· fBD9 =
60

4
· 1

0.017(s)
= 882(rpm) (4.9)

with fDB9= 1
TDB9

being the frequency of the digital bit to measure the speed.

Figure 4.12: Output waveform of the the digital bit from the R/D board

4.4 Torque Maximization of the SR S/G with an

Additional Inertia Load

To investigate the full range of torque and speed, an additional moment of inertia load is
required to extend duration time of acceleration. An inertia load with a cylinder shape has
been coupled to the rotor shaft. The whole moment of inertia of all rotating parts equals the
sum of moment of inertia of the rotor and identical �ywheel according to (4.10).

J∑ = JR + JL + JC (4.10)

Where JL is the moment of the additional inertia load and JC is the moment of the coupling
inertia. The shaft torque is calculated according to (4.11):

T = J∑ · dω
dt

(4.11)

To get the full range of torque and speed, the DC link voltage was set to the rated voltage of
270V. The current and �ring angle parameters were initialized to achieve the desired torque
and speed values.
The speeds vs. time were recorded during the acceleration test. The average torque values
were calculated from the measured or �tted speed curves. Fig 4.13 shows the torque results
from the �tted speed curve and from measured speed. The �tted torque curve is close to the
torque curve calculated from measured speed data.
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Figure 4.13: Torque calculation based on �tted curve and measured data with an additional
moment of inertia load

4.4.1 PI Speed Controller

To maximize the average torque at starting state and keep the speed constant value at steady
state, PI speed control loop has been implemented to meet the desired torque and speed
performance. The speed control system can be characterized by the following mathematical
equations (4.12-4.13)

dω

dt
=

1

J∑ ·
(
T∑ −∆T − kfr · ω2 − Tloss(ω)

)
(4.12)

dθ

dt
= ω (4.13)

where T∑ is the electromagnetic torque, ∆T is the reference torque output from PI speed
controller, kfr·ω2 is the air friction loss torque of both rotor and additional load inertia which
has been determined by the rundown test, and Tloss(ω) is the torque by additional losses such
as the bearing loss and unpredictable losses. This loss is a function of rotor speed.
The mechanical torque equation of a SRM drive is considered as follows:

T∑ = J∑ · dω
dt

+ ∆T + kfr · ω2 + Tloss(ω) (4.14)

When the SRM operates in steady state mode at constant speed ω without load, ∆ω is zero
and the acceleration torque J∑·dω

dt
and the error torque ∆T can be removed from (4.14)

T∑ = kfr · ω2 + Tloss(ω) (4.15)

The PI controller is a good choice for the speed performance being suitable for the accelera-
tion test. The torque reference value is calculated by (4.16)
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∆T = (Kp +
Ki

s
) ·∆ω (4.16)

where Kp and Ki are the proportional and integral parameters. Those parameters have been
calculated based on the rising time and settling time of the speed curves. Practically, the
SRM has been tested with di�erent currents to achieve the torque and speed curves. The
speed error ∆ω and torque reference ∆T inferred from those curves were used to calculate
the Kp and Ki factors.
Finally, the desired electromagnetic torque output from the speed controller T∑ including
pilot control values for friction, loss, and additional inertia torque calculates as follows T∑
(4.17):

T∑ =

Kp ·∆ω +Ki

t∫
0

∆ω · dt

+ kfr · ω2 + Tloss(ω) + J∑ · dω
dt

(4.17)

Fig 4.14 shows the PI speed controller for the SR S/G drive system. Firstly, the speed
error ∆ω is produced from the comparison between the reference and the actual speeds.
The reference current is interpolated from the desired electromagnetic torque based on a 2D
lookup table depending on the actual speed and the torque limitation Tmax.
The Tmax limit ensures that the reference currents do not exceed the maximum IGBT current.
The current values are controlled by the hysteresis current controllers. The switching on and
o� signals of the IGBTs are determined by comparing the actual rotor position with the
turn-on and turn-o� angles.

Figure 4.14: Torque and speed control block diagram

4.4.2 Constant Acceleration and Speed Control Strategies for the
Torque Measurement

To get high torque values in the full speed range, the acceleration is kept constant. This may
lead to an overspeed error. Thus, an optimal strategy for constant acceleration and speed
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control is necessary for the acceleration test. Three possible strategies are also discussed and
analyzed below:

Speed Control Method

When the SRM is regulated by a speed controller, the speed curve is a roughly parabolic
function. The speed rises to the desired value until the changing rate of the speed is reduced
to zero at top speed. Fig 4.15 (a) illustrates the calculated torque results. The torque tends
to reduce with increasing speed. A big drawback is that the SRM can not keep a high torque
in a full range of speed.

Constant Acceleration Method

The purpose of the this method is to increase the speed with a constant acceleration until
the rotor speed exceeds a limited value by separating the SRM from the power inverter, see
�g 4.15(b). The torque is kept a high and constant value in a wide speed range. Due to the
delay time in switching o� the inverter, the speed may however exceed its limit thus bearing
the danger of damage by centrifugal forces.

Combined Constant Acceleration and Control Speed Method

To solve the drawbacks mentioned above, the test consists of both constant acceleration and
speed control stages. For speeds below the reference value, the acceleration reference is used:
the speed derivative is fed back to the controller input. The speed controller will be applied
when the rotor speed exceeds the reference value.
Fig 4.15(c) shows the torque-speed curve measured by the combined constant acceleration
and control speed method. The torque curve is �at or quite constant within a speed range
from zero to the reference speed. From the reference speed to the speed limit, the torque is
reduced in order to control the speed. Based on this novel method for constant acceleration
and speed control strategy, the desired torque value can be kept constant in a wide speed
range.

Determination of the Torque and Losses in Rundown Testes

From the run down speed curve, the torque caused by friction losses was calculated based on
the total moment of inertia of the moving parts and deceleration. They include the friction
and additional losses of the SRM rotor and the additional inertia load in �g 4.16.

Tfr = kfr · ω2 (4.18)

where kfr =2.17·10−8 Nm·s2·rad−2 is the friction loss torque, which can be determined from
the torque speed curve in �g 4.16.
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Figure 4.15: Torque and speed curves with the methods of speed control (a), constant accel-
eration (b), and combined acceleration and speed control (c)
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Figure 4.16: Torque of the friction and mechanical losses with additional moment of inertia

4.5 Maximum Torque Veri�cation of the SR S/G in

motor operation

The maximum torque and PI speed controllers were implemented in the LabVIEW software.
The torque curves were measured in a wide range of speed up to 35,000 rpm. The speed can
be also determined by the phase current frequency by an digital oscilloscope.

4.5.1 Torque-Speed Measurement by the R/D board based on
LabVIEW

A LabVIEW software was used to measure the rotor speed via the LSB (DB9) of the R/D
board. The DB9 output is connected to an analog input channel of the NI-USB-6212. The
frequency of the analog channel is calculated in time intervals of 20 ms. The currents and
voltages of the phases are also updated by the LabVIEW interface in order to protect the
SRM and power inverter from over current or voltage.

Speed range of 27,000 rpm

The speed in starting mode of the SR S/G ranges from 0 to 27,000 rpm. The torques have
measured with di�erent reference currents, turn-on, and turn-o� angles in this speed range.
Fig 4.17 depicts the torque curves with di�erent turn-on and turn-o� angles. Each torque-
speed curve has a maximum torque point corresponding to a speed. From those points, the
maximum torque can be de�ned. The current is limited to 200A ensuring that the phase
currents are still regulated by the chopping mode.
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Figure 4.17: Torque speed curves with di�erent turn-on and turn-o� angles and I= 200A

Speed range of 35,000 rpm

In order to investigate the current control method in higher speed, the speed during acceler-
ation was also recorded up to 35,000 rpm at a reduced current of 150A.
An increase in current reference will not lead to higher torque at elevated speed, since the
current limit will not be reached then. Therefore, in this region the turn-on and turn-o�
angles become more important.

4.5.2 Torque-Speed Measurement by the Digital Oscilloscope

A digital Oscilloscope DL716 (Module 701855, DC accuracy of 3%) was used to record the
phase current waveforms. Since the memory size is limited, the duration time of recorded
data depend on the sampling frequency. The torque curves based on the oscilloscope and
LabVIEW are in good agreement.

4.5.3 Veri�cation of the Torque Measurement Results

The optimal turn-on and-o� angles with the objective of maximum average torque according
to chapter 2 were applied. Fig 4.19 depicts the resulting torque speed curve for several
reference currents of 150A, 200A, and 250A.
The same optimal turn-on and turn o� angles were applied to the both simulation model
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Figure 4.18: Torque vs. speed with 150A

Figure 4.19: Maximum torque values with I=150, 200 and 250A
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and experimental test. The results obtained are compared to the dynamic SRM model in
table 4.3. The measured and simulated results are in quite good agreement thus validating
the simulation. Some minor di�erences partly come from the curve �tting described before.
Other di�erences are due to the mutual inductance of the connection cables between motor

Table 4.3: Torque results comparison with I=200A

n [rpm] Tmea[Nm] Tsim[Nm] Di�erence[%]
5,000 18.62 19.32 3.76
10,000 17.54 18.42 5.10
15,000 16.12 17.18 6.62
20,000 14.80 15.62 5.52
25,000 14.20 15.10 5.96
27,000 10.82 11.61 6.88
35,000 7.72 8.40 7.85

and inverter. The total inductance and the magnetic characteristics change signi�cantly
because of the cables of about 15 m length. To solve this problem, a compensation factor
can be used to correct the magnetic characteristics. This compensation factor is calculated
based on the mutual inductance of the extended cable as given in table 4.4. The additional
�ux linkage is determined by the product of mutual inductance and phase current.

Table 4.4: Mutual Inductance of Extended Cables NSHXAFÖ (1x50 mm2)

position LSRM [mH] LCable [mH] LΣ [mH] Di�erence [%]
unaligned 0.085 0.002 0.089 2.54
aligned 0.52 0.002 0.524 0.35

4.5.4 Accuracy Determination of the Indirect Torque
Measurement

The accuracy of the torque measured is calculated from the measurement of speed and mo-
ment of inertia. The speed measurement accuracy depends on the time delay in the R/D
board, NI-USB-6212. The whole moment of inertia is based on the moment of the rotor,
coupling and additional inertia load. The accuracy can be determined by the precision of
speed measurement devices and inertia value calculation:

R/D board

A high speed resolver was used as position sensor. The R/D board converts the secondary
voltage of the sin/cos coils to 12 digital bits. One digital bit (DB9) was used to measure
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the speed. Thus, the time delay of the DB9 has an in�uence on the precision of speed
measurement. According to [46], the delay time was determined 1.33 µs for one rotor tooth
revolution. At the maximum speed of 50,000 rpm, the rotor tooth frequency is 3,33 kHz, the
rotor speed error can be calculated as:

∆n =
1.33µs

0.3ms
· 50,000rpm = 222rpm (4.19)

∆n(%) = 100 · 222

50,000
= 0.44(%) (4.20)

NI-USB-6212

According to NI-data-sheet [97], the timing accuracy is ± 50 ppm of the sampling rate of
400kS/s, so the frequency accuracy for this sampling rate is:

∆f = ± 50

106
· 400,000 = ±20Hz (4.21)

At the maximum speed 50,000 rpm (f=3.333kHz), the accuracy is:

∆n(rpm) = ± 20Hz

3,333Hz
· 50,000 = ±300(rpm) (4.22)

∆n(%) = 100 · 300

50,000
= ±0.6(%) (4.23)

The SR S/G Test Bench Moment of Inertia

The SR S/G test bench moment of inertia is determined by the moment of inertia of the
rotor, coupling and additional load. Practically, the moment of inertia value can be validated
by the weight measurement method. The mass and moment of inertia of the rotor, coupling
and additional load have been calculated by FEMM software. The measured and simulated
weight results were compared to de�ne the accuracy of the inertia value. For example, �g
4.20 shows. The di�erence was determined as 1.34 %. Since the mass is proportional to r2,
the inertia precision may be assumed better than 2·1.34 %= 2.68 %.
Since the coincidence was satisfactory, an additional pendulum test was not carried out.

Precision of the Torque Measurement

The accuracy of the torque measurement results from the precision of the measurement
devices and the inertia value. The precisions of the di�erent items are listed in table 4.5.
There are some minor additional factors which are not predict such as moment of inertia of
the bearings and unbalanced mechanical parts.
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Figure 4.20: Lamination weight measurement

Table 4.5: Accuracy of the SR S/G torque measurement system

Accuracy in [%]
R/D board 0.44
NI-USB-6212 1.2

Rotor 2.68
Coupling 2·0.2
Cylinder 2·0.8
Total 6.32
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4.6 Output Power Validation of the SR Generator

Performance

The SR S/G drive system can operate as motor or generator. In order to investigate the SR
Generator performance, the output power has been measured in a deceleration test, in which
the kinetic energy of the inertia load is converted to electric power. The SR S/G power has
been measured by the DC link voltage and current sensors.

4.6.1 Output Power based on the Deceleration Test

The SRM speed was accelerated to 35,000 rpm. Torque and speed were measured and stored.
Then, the SRM speed was reduced from 35,000 rpm to 25,000 rpm still recording to the data
�les. Afterwards, torque and power vs. speed curves were plotted as shown e.g. in �g 4.21.

Figure 4.21: Motor and generator performance of the SR S/G
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4.6.2 Validation of the SR Generator Performances

The torque and power results measured by the acceleration and deceleration tests have been
compared with the performance requirements on the SR S/G drive system as depicted in
�g 4.22. The torque curves were considered in starting mode while the power curves were
investigated in generator mode.
The measured torque and power results are lower than required. The main reason given
by manufacturing problems concerning the air gap length has been published before. The
reduction of generating torque obviously exceeds the one of motoring torque.

Figure 4.22: The SR S/G torque and power curves (dashed: requirement and line: measure-
ment)
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4 Maximum Torque Control of a High Speed SRMs based on the Acceleration Method

4.7 Summary

This chapter includes some important results about the maximum torque control of the SR
S/G drive system as follows:

- The maximum torque control strategy for the high speed SR S/G drive system has
been implemented and validated by acceleration tests.

- A novel acceleration and speed control strategy has been investigated for the indirect
torque measurement method.

- The torque and output power of the SR S/G have been validated experimentally and
the accuracy of the measurement method was discussed.
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5 Conclusion and further work

5.1 Conclusion

This thesis gave a detailed overview of a maximum torque control strategy for the high speed
SR S/G drive system used in a More Electric Aircraft. The SR S/G and additional inertia
load test bench has been implemented to investigate the wide range of torque and speed by
an indirect torque measurement method. The algorithm of the maximum average torque
strategy has been validated in starting mode with speeds up to 35,000 rpm. The main work
and results of this thesis are summarized as follows:

5.1.1 Determination of the magnetization characteristics

An accurate measurement method has been used to obtain the �ux linkage curves. In com-
parison with conventional methods, the experimental results are not a�ected by iron losses
and saturation. The experimental results con�rm a FEA static simulation. The static torque
and �ux linkage were used to simulate a dynamic SRM model.

5.1.2 Losses and heating

The iron losses at high frequency and �ux density has been investigated both by simulation
and experiment. A new measurement technique was applied to measure the SRM core losses.
This method allows a detailed analysis of the core loss rates in prede�ned rotor and stator
parts characterized by constant �ux density.
The temperature distribution has been investigated by 3D and 2D FEA models and the �uid
velocity distribution in the stator jackets was simulated by a CFD model. The in�uence of
the �ow rate of the liquid stator cooling on the temperature distribution was calculated and
discussed.

5.1.3 Maximum torque control strategy validation

Based on a novel method for constant acceleration and speed control strategy, the mechanical
torque value can be kept constant in a wide speed range. This method was used to validate
the torque and power performance in both starting and generator modes. The torque was
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5 Conclusion and further work

measured speed up 35,000 rpm and the output power was investigated in between 25,000 and
35,000 rpm.

5.2 Potential Further Work

To investigate the torque control of the switched reluctance motor and the output power of
the switched reluctance generator at a full load also for higher speeds from 27,000 to 50,000
rpm, a back to back experimental setup of SR Starter and Generator is suggested including a
torque transducer. Such a test system will also allow the veri�cation of the thermal behavior
of the machines.
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A Abbreviations

CFD Computational Fluid Dynamics
CCM Continuous Conduction Mode
CAD Computer-aided design
CPLD Complex Programmable Logic Device
DOF Degrees of Freedom
DCM Discontinuous Conduction Mode
DAQ Data Acquisition Device
DB9 Digital Bit 9
FEA Finite Element Analysis
FEM Finite Element Method
FEMM Finite Element Method Magnetics
FFT Fast Fourier Transform
FTBL Radial Force Lookup Table
ITBL Current Lookup Table Blocks
IGBT Insulated-gate bipolar transistor
kS/s kilo Samples per second
LUT Lookup Table
MEA More Electric Aircraft
M/AEA More/All Electric Aircraft
NI-USB National Instrument-USB
PC-SRD Personal Computer-Switched Reluctance Machine
R/D Resolver/Digital
SR S/G Switched Reluctance Starter/Generator
SRM Switched Reluctance Machine
SDOF Single Degree of Freedom
TTBL Torque Lookup Table Blocks
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B Symbols

Latin Symbols

AST m2 cross-sectional area of stator tooth
ART m2 cross-sectional area of rotor tooth
ASY m2 cross-sectional area of stator yoke
ARY m2 cross-sectional area of rotor yoke
Ag m2 cross-sectional area of air gap
BST T �ux density of stator teeth
BRT T �ux density of rotor teeth
BSY T �ux density of stator yoke
BRY T �ux density of rotor yoke
Br T �ux density of air gap
c m

s
traveling speed of sound

ds m length of stator teeth
ds m length of rotor teeth
E J kinetic energy
e V back-emf
F force vector
Ft

N
m2 tangential force density

Fr
N

m2 radial force density
g m air gap length
H A

m
magnetic �eld

Hs
A
m

magnetic �eld of stator
Hr

A
m

magnetic �eld of rotor
Hsy

A
m

magnetic �eld of stator yoke
Hry

A
m

magnetic �eld of rotor yoke
Hs

A
m

magnetic �eld of air gap
I A phase current
Ir A rising phase current
If A falling phase current
Iµ A magnetizing current
IDC A DC current
J A

m2
current density

JR kg m2 moment of the rotor inertia
JL kg m2 moment of the inertia load
JC kg m2 moment of the coupling inertia
J∑ kg m2 total moment of the rotor inertia
kfr friction loss factor
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B Symbols

kSP iron loss ratio of stator pole and SRM
kRP iron loss ratio of rotor pole and SRM
kRY iron loss ratio of rotor yoke and SRM
kSY iron loss ratio of stator yoke and SRM
lstk m stator stack length
L H phase inductance
Lu H unaligned inductance
La H aligned inductance
lST m length of stator
lRT m length of rotor
lSY m length of stator yoke
lRY m length of rotor yoke
Mfm

N m s
rad

frictional torque factor
mST kg mass of stator tooth
mRT kg mass of rotor tooth
mSY kg mass of stator yoke
mST kg mass of rotor yoke
mSRM kg mass of SRM
NS stator pole number
NR rotor pole number
Nph phase number
Nt number of turn
p W electric power
Pin W input power
Pout W output power
Pmech W mechanical power
pmechanical W instantaneous mechanical power
pelectrical W instantaneous electrical power
ploss W ohmic stator resistance
Pfr W friction loss
PFe W iron loss
Pcu W copper loss
Q l

s
�ow rate

Rac Ω actual resistance
Rph Ω phase resistance
Re Reynolds number
rs m radius of stator
rr m radius of rotor
rsh m radius of shaft
Pr the Prandtl number
Te s the time for energizing
Td s the time for de-energizing
Tco N m conversion torque
Tavg N m average torque
Tm N m maximum torque
T N m electromagnetic torque
Tin K inlet temperature
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B Symbols

Tout K outlet temperature
Tmea K torque measurement
Tsim K torque simulation
tl m lamination thickness
u V phase voltage
UDC V DC link voltage
vav

m
s

�uid velocity
vgap

m
s

air velocity
vm

m
s

maximum cylinder velocity
Vmax

m
s

maximum velocity
W J magnetic energy
Wco J conversion energy
Wunaligned J unaligned energy
Waligned J aligned energy
Wt kg the total mass of poles, windings and yoke
ws m stator pole width
wr m rotor pole width
ys m stator yoke thickness
yr m rotor yoke thickness

Greek and Other Symbols

βs
◦ stator tooth angle

βr
◦ rotor tooth angle

λ m penetration depth of eddy current
λs shape factor
ρs

kg
m3 sand mass density

Φ V s �ux
η % e�cency
Ψ V s �ux linkage
Ψr V s rising �ux linkage
Ψf V s fallin �ux linkage
ρs

kg
m3 density of stator material

µ0
V s
A m

magnetic permeability of free space
µr relative magnetic permeability
σrel relative sound intensity
γ ◦ angle rotor position
δ m air gap
ω rad

s
angular volocity

θr
◦ rotor pole overlap angle

θdwell
◦ conduction angle

θon
◦ turn-on angle

θoff
◦ turn-o� angle
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