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Multi-mode analysis of scattering by bodies of
revolutions via the combined-field integral equation

Fahimeh Sepehripour, Bastiaan P. de Hon, Martijn C. van Beurden, Senior Member, IEEE

Abstract—The numerical simulation of electromagnetic scat-
tering by PEC bodies of revolution (BORs) involves computing
the modal Green functions (MGFs) arising in the electric field
integral equation (EFIE) and magnetic field integral equation
(EFIE) for a large number of modes. We achieve this by
employing five-term recurrence relations that enable the accurate
and efficient computation of the MGFs for a large sequence of
modes. The computation time of the five-term recurrence rela-
tions is decreased by proper truncation of the associated infinite-
dimensional matrix representations. The EFIE and MFIE are
then employed together in the combined-field integral equation
(CFIE), which overcomes the interior resonance problem that
occurs in the electromagnetic scattering by PEC BORs with
closed geometries. The performance of the proposed technique
is validated by analyzing the scattering of modest to large-size
PEC bodies of revolution.

Index Terms—Body of revolution, Combined field integral
equations, Modal Green function, Recurrence relation.

I. INTRODUCTION

The scattering problem concerning perfectly electric con-
ducting (PEC) objects with axially symmetric geometries has
long been of considerable interest in the area of computational
electromagnetics [1]–[7]. The scattering by such kinds of
symmetric objects, also called bodies of revolution (BORs),
are often characterized using integral equations, which are
derived based on the boundary conditions applied to the
electromagnetic fields at the surface of the BOR. Depending
on whether electric or magnetic fields are employed in the
formulation, these integral equations can be categorized into
two classes: based on the electric field integral equation (EFIE)
[8]–[13] and based on the magnetic field integral equation
(MFIE) [14]–[19].

Over the past decades, both EFIE and MFIE formulations
have been widely used to address electromagnetic scattering
by various kinds of PEC BORs with different shapes. Despite
the widespread use of these integral equations, application to
exterior scattering problems of the EFIE or MFIE on their own
is only valid at frequencies for which the respective integral
equation has no interior resonance. In fact, at the resonance
frequencies, the respective EFIE or MFIE break down due to
the presence of non-unique (source-free) solutions, rendering
them inaccurate.

One approach to overcome the internal resonance problem
of the MFIE and EFIE for external scattering problems is
to combine them such that the boundary conditions at the

The authors are with the Department of Electrical Engineering, Eindhoven
University of Technology, Eindhoven 5600 MB, The Netherlands (e-mail:
f.sepehripour@tue.nl;b.p.d.hon@tue.nl; m.c.v.beurden@tue.nl.

surface of the BOR are imposed for both electric and magnetic
fields simultaneously. This hybrid formulation, known as the
combined field integral equation (CFIE), has been proven
effective [20]–[23], and is known to resolve the resonance
problem of the EFIE and MFIE. Yet, the computation of the
corresponding integral equation kernels, known as the modal
Green functions (MGFs), can be a challenge. Of course, the
MGFs corresponding to both EFIE and MFIE become singular
when the source and observation points get close to each other
[24]–[26]. This singular behavior severely affects the speed
and accuracy of the computation, especially when computing
the MGFs for many modes. The computation of such integrals
can be accomplished by singularity extraction methods. In this
approach, the MGF is solved by separating it from the entire
MGF and handling it individually. Despite its applicability, the
decomposition of the MGF into separate components handled
by separate algorithms is less elegant in problems in which
many modes contribute, such as the scattering by large PEC
BORs impinged by an obliquely incident plane wave.

Recently, we proposed an efficient approach for computing
the full EFIE MGF including its singular part, in which the
MGF is computed based on a five-term recurrence relation
in a direct manner without separating the MGF into singular
and regular parts [27]. The computation via the five-term
recurrence relation was accomplished in a stable manner by
performing the LU decomposition of the associated penta-
diagonal matrix. This reduces the computational complexity.
While the direct nature of such an approach is favourable for
scattering problems that involve many modes, its applicability
is still restricted by the interior resonance problem mentioned
before, unless it is used in a combined manner together with
its MFIE counterpart.

Below, we provide the MFIE counterpart of the EFIE five-
term recurrence relation, and cast both in a single unified
form. We shall also demonstrate that the computation times
of the corresponding matrix form representations for both
the EFIE and MFIE five-term recurrence relations can be
reduced significantly through proper truncation of the infinite-
dimensional matrix systems. Then, we combine the EFIE
and MFIE formulations to construct the CFIE to overcome
the interior resonance problem of PEC BORs for closed
geometries. We demonstrate the accuracy and efficiency of the
CFIE method through scattering examples for modest to large-
size PEC BORs of various shapes. For the modest cases, we
compare the results with those available in the literature. Not
only does this paper offer a direct solution for the computation
of the modal Green functions (distinct from the singularity
extraction methods [7], [19], [26]), but also it extends the EFIE
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Fig. 1. (a) An axially symmetric PEC object (BOR) with an arbitrary shape,
(b) Corresponding generating curve of the BOR. By rotating the generating
curve along the axis of symmetry, the full geometry of the BOR is obtained.

recurrence relation in [27] to the MFIE case with an enhanced
computational speed.

The paper is organized as follows. In Section II, the five-
term recurrence relations for computing the MGFs arising in
the EFIE and MFIE are discussed. Section III discusses the
reduction of computation times as a consequence of proper
truncation of the corresponding infinite-dimensional penta-
diagonal matrices. The EFIE and MFIE formulations are then
employed in Section IV in the combined-field formulation
(CFIE) to evaluate the scattering by PEC BORs with closed
geometries for an incident plane wave. The accuracy of the
proposed method is validated by analyzing the scattering of
modest to large-size PEC BORs.

II. CFIE FOR BODIES OF REVOLUTION

Consider the arbitrarily-shaped PEC BOR shown in
Fig. 1(a), illuminated by an incident plane wave with the
parameters θi and ϕi to describe the angle of incidence. The
BOR is placed in free space. Owing to the axial symmetry
of the BOR, the electromagnetic scattering from the BOR can
be characterized using its generating curve. Its rotation along
the radial axis produces the three-dimensional geometry of
the BOR, see Fig. 1(b). After discretization of the pertaining
integral equations, the associated discretized version of the
combined field integral equation is expressed as[

(1− β)ZMFIE+
β

η0
ZEFIE

]
Js =

(1− β)VMFIE +
β

η0
VEFIE

(1)

in which ZMFIE and ZEFIE are the MFIE and EFIE
impedance matrices, and VMFIE and VEFIE are the cor-
responding excitation vectors. Further, η0 is the free-space
intrinsic impedance and 0 < β < 1 is the combination factor
of the CFIE. The kernels of ZMFIE and ZEFIE are known
as the modal Green functions, corresponding to the MFIE and
the EFIE, respectively. For the MFIE and EFIE, the MGFs are
given by [1], [19], [26]

gHm =

∫ π

0

cos(mα)(1 + jk0R(α))
e−jk0R(α)

R3(α)
dα,

gEm =

∫ π

0

cos(mα)
e−jk0R(α)

R(α)
dα,

(2)

Fig. 2. Error of the computation of gHm(w) as a function of the mode index
m. The error is computed for various values of w, for k0 = 2π, ρ = ρ′ =
0.25, using the penta-diagonal matrix approach described in Appendix A.

where R(α) =
√

ρ2 + ρ′2 − 2ρρ′ cosα+ (z − z′)2 is the
distance between the source point (ρ′,z′,ϕ′) and observation
point (ρ,z,ϕ), and α = ϕ − ϕ′. Additionally, k0 denotes the
free-space wavenumber and m is the Fourier mode index in
the azimuthal direction. The numerical computation of these
MGFs requires special attention. For the EFIE case, a direct
method based on a five-term recurrence relation, by which the
corresponding MGF can be accurately computed in a stable
manner was proposed in [27]. In the following, we introduce
a five-term recurrence relation that also accounts for the direct
computation of the MGF arising in the MFIE.

A. Five-term recurrence relation for computing the MGF
arising in the EFIE and MFIE

By following a procedure similar to the one proposed in
[27], one can obtain a five-term recurrence relation for the
direct computation of the MGF of the MFIE method. This
relation is derived in Appendix A. The following formula
summarizes the associated recurrence relations for the MGFs
of both MFIE and EFIE:(

wk′
2

16(m− 1)(m+ 1)
+

w − 2

w

)
gm =

wk′
2

32m(m− 1)
gm−2

−(
1

2
− s

4m
)gm−1 − (

1

2
+

s

4m
)gm+1 +

wk′
2

32m(m+ 1)
gm+2,

(3)

where s = 1 corresponds to the EFIE (gEm) and s = −1
corresponds to the MFIE (gHm). The parameter w = 4ρρ′/((ρ+
ρ′)2 + (z − z′)2) is the transformation variable and k′ =
2k0
√

ρρ′/w. The benefits of the proposed recurrence relation
have been demonstrated in [27] for the EFIE. The MFIE is
analyzed below in the context of the recurrence relation cast
as a penta-diagonal matrix system centered around the main
diagonal. To this end, the infinite penta-diagonal matrix is
truncated to a finite M ×M matrix, in which the truncation
number M depends on the maximum mode number taken into
account to solve the sequence of integral equations as well
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as the values of w. The resulting finite-dimensional matrix
system can then be solved in a fast and stable manner, based
on the same arguments as provided in [27]. Fig. 2 represents
the associated computational error for gHm as a function of m
for various values of w ≤ 0.99. The reference was computed
using Mathematica’s NIntegrate method with the accuracy
goal of 16 digits. Furthermore, in the computation, the penta-
diagonal matrix was truncated at M = 100 and the initial
values gH0 and gH1 were computed with an accuracy of 10−15

with Matlab’s integration routine integral. The integration
for the computation of initial values required for the recurrence
relation is performed using floating point with double preci-
sion. The absolute error tolerance of the integration was set to
1E-15 to achieve 15 decimal places of accuracy. As observed,
the error level is comparable to machine precision (10−15)
for the first 30 modes, verifying the accuracy and stability
of the proposed recurrence relation. Together with the EFIE
recurrence relation proposed in [27], the MFIE recurrence
relation derived here enables the direct computation of the
MGFs arising in the CFIE.

III. ACCELERATION OF THE MGF SCHEME FOR w → 1

The computation of the modal Green functions only be-
comes tractable upon truncating the recurrence relation after
a finite number of steps, i.e., the truncation number M for
the penta-diagonal matrix. This is due to the fact that the
system is solved as a penta-diagonal matrix and not as a
forward recurrence, since the latter is unstable. The five-
term recurrence relation is fourth-order and hence admits
four sequences, distinguished through initial (or boundary)
conditions. In the forward direction, the right solution that
satisfies the right initial conditions is dominated by one or
more wrong sequences that show exponential growth relative
to the right one and are excited due to round-off error. In a
practical situation, the number of modes that need to be taken
into account in solving the sequence of integral equations is
truncated to mode N , implying that gN is still needed to
sufficient accuracy and any subsequent values gN+n, n ≤ 1,
are of no interest. The relation kρmaxsin(θ) + 6 provides a
rough estimation for the minimum number of modes to ensure
sufficient accuracy for a plane-wave excitation, which is the
assumption used in the entire paper [1], [26]. To obtain the
sequence g2 to gN with sufficient accuracy, the truncation
number M of the penta-diagonal matrix must exceed the value
N , i.e. M > N . However, an additional constraint applies
to the truncation number M that involves the accuracy with
which the sequence g2 to gN is obtained. To demonstrate
how the truncation number M is influenced by the parameter
w, we perform a numerical experiment by computing the
absolute error in the MGFs gH3 and gE3 , i.e. for the fixed
mode m = 3, for various values of w and for an increasing
truncation number M . The computation was performed in the
same way as for Fig. 2 and the result is shown in Fig. 3. It is
readily observed that the behavior of the error for the MFIE
and EFIE is quite similar. More importantly, we observe that
the error converges exponentially, but the rate of convergence
becomes slower when w approaches 1. To maintain a fixed

(a)

(b)

Fig. 3. Absolute error in g3 for various values of w, with k0 = 2π, ρ = 0.25
and ρ′ = 0.25, as a function of the truncation number M . (a) MFIE and
(b) EFIE.

level of accuracy in the MGFs up to a certain mode number,
the truncation number M needs to be much larger for w → 1
as compared to cases where w is significantly smaller than 1.

This observation can also be explained by the concept of
degrees of freedom and rank deficiency, as discussed in [28]–
[32]. More specifically, small values of w correspond to a
highly rank-deficient interaction between source and observer,
allowing one to use fewer modes for the computation. On the
other hand, for w close to 1, the source and observer almost
overlap, leading to no rank deficiency and implying that many
modes are required for the analysis.

For further evaluation, we performed an analysis to examine
the change in the truncation number (M ) as a function of w. To
this end, for each value of w, the truncation number was swept
to find the minimum value required to achieve the prescribed
error. The results of this investigation are presented in Fig. 4.
As observed in this figure, for the case under investigation, the
truncation number M scales almost reciprocally with (1−w),
i.e. M ∝ (1− w)−0.5 indicated by the solid red curve in the
figure.
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Fig. 4. Variation of the truncation number (M ) as a function of 1 − w.
The truncation number M scales almost reciprocally with 1 − w, i.e. M ∝
(1− w)−0.5 (the solid red curve in the figure plots this relation).

Increasing the truncation number increases the computation
time. To overcome the increase in the truncation number M
and the associated increase in computation time for w close to
1, the sequence of MGFs can alternatively be computed from
the recurrence relation by also providing the end values of the
recurrence relation, leaving the MGFs to be computed for the
intermediate modes. Hence, if we need g0 to gN , then we can
compute g0, g1, gN−1, and gN , e.g. via numerical quadrature,
and compute the intermediate MGFs g2, . . . , gN−2 via the five-
term recurrence relation in the form of the associated penta-
diagonal matrix. In this way, we only make an approximation
in computing the initial and end values of the sequence of
MGFs and no truncation error is introduced. This is of course
at the expense of computing the extra values gN−1, and gN .
The resulting linear system is given by

C



g2

g3

g4

g5
...

gN−3

gN−2


=



−a2g0 − b2g1

−a3g1

0

0

...
−eN−3gN−1

−dN−2gN−1 − eN−2gN


, (4)

The matrix C is written in the following form

C =



c2 d2 e2 0 0 · · ·

b3 c3 d3 e3 0
. . .

a4 b4 c4 d4 e4
. . .

...
. . . . . . . . . . . . . . .

0 · · · aN−3 bN−3 cN−3 dN−3

0 · · · · · · aN−2 bN−2 cN−2


, (5)

TABLE I
COMPUTATION TIMES FOR THE MGFS ARISING IN THE EFIE AND MFIE
FOR MODES 0 TO 20, FOR DIFFERENT VALUES OF w AND FOR THE TWO
METHODS DISCUSSED IN THE MAIN TEXT. ADDITIONAL PARAMETERS:

k0 = 2π, ρ = 0.25, ρ′ = 0.25.

w M
method

I

EFIE
method
I (sec)

EFIE
method
II (sec)

MFIE
method
I (sec)

MFIE
method
II (sec)

0.5 13 0.05 0.07 0.06 0.08

0.9 27 0.05 0.07 0.06 0.077

0.99 100 0.06 0.06 0.063 0.064

0.999 250 0.075 0.06 0.1 0.08

0.9999 800 0.3 0.09 0.36 0.09

0.99999 2400 3.6 0.2 3.7 0.21

0.999999 5800 28 0.8 31 0.9

in which

an = − wk′
2

32n(n− 1)
, bn = (

1

2
− s

4n
),

cn =
w − 2

w
+

wk′
2

16(n− 1)(n+ 1)
,

dn = (
1

2
+

s

4n
), en = − wk′

2

32n(n+ 1)
.

(6)

To see when this approach is computationally expedient, we
compare the performance in terms of computation time for
the two methods, i.e. truncating the infinite matrix at matrix
dimension M and computing g0 and g1 only (method I)
and truncating the recurrence relation after mode N and
compute g0, g1, gN−1 and gN (method II). Table I presents the
computation time of the MGFs arising in the EFIE and MFIE
for N = 20 modes. For method I, the truncation number M
corresponding to each value of w is mentioned in the second
column of the table, which is chosen in a way to guarantee
that the absolute error is below 10−15. The computation of the
initial values g0, g1, gN−1, and gN is performed by Matlab’s
integral routine. As observed from the table, for w > 0.99
the computation times of method II are equal or smaller than
those of method I. For w ≤ 0.99, on the other hand, method I
is more efficient in terms of computation time. As a result,
in the remaining of this paper, method I is employed for
w ≤ 0.99. For w > 0.99, method II is employed to reduce the
computation time when w approaches 1.

IV. NUMERICAL RESULTS

Resonances are ubiquitous in many electromagnetic prob-
lems. The interior resonances occurring in the scattering
problems that involve PEC objects with closed geometries
may render the solution of the EFIE or MFIE inaccurate
and unstable. When the EFIE and MFIE are combined with
each other properly (i.e. CFIE), the resonance problem can
be resolved. Below, the accuracy and computation time of the
proposed method are investigated for BORs of different sizes.

In all of the numerical results discussed below, the combi-
nation factor of the CFIE is chosen as β = 0.5. Furthermore,
for solving the associated integral equations, the method of
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Fig. 5. Investigation of the interior resonance behavior through the θθ
component of the bistatic radar cross-section at the plane ϕobs = 0 at
the frequnecy of 237.3 MHz. The results are obtained using the proposed
CFIE (dashed blue), EFIE (dashed black), and MFIE (solid red) methods,
and compared with Mie series [33] (dashed Green). The maximum deviation
between CFIE technique and the Mie series is 0.7 dB.

moments with Galerkin discretization has been employed.
To this end, the surface currents over the generating curves
are discretized with piece-wise constant and piece-wise linear
functions in the ϕ direction and the direction tangential to
the generating curve, respectively. Other technical details
regarding the implementation of the EFIE and MFIE, and the
handling of singularities in the corresponding MGFs can be
found in [12], [19].

A. Evaluating interior resonance behavior

To illustrate the interior resonance problem, let us consider
a PEC sphere with radius r, placed in free space. The
internal resonance frequencies of such a scatterer can be found
analytically from the zeros of the following expressions [34]–
[36]

An = − (k0rjn(k0r))
′

(k0rhn(k0r))′
,

Bn = − jn(k0r)

hn(k0r)
,

(7)

where An and Bn correspond to TM (electric) and TE
(magnetic) resonance functionals, respectively, and the prime
denotes the derivative with respect k0r. Further, jn and hn

are the spherical Bessel and Hankel functions of the first kind,
and k0 is the wavenumber of the background medium. For a
sphere with radius r = 1m, we employ both the EFIE and
MFIE to evaluate the corresponding bistatic radar cross-section
(RCS) near one of the interior resonance frequencies, namely
f = 237.3 MHz, obtained by setting A3 = 0, corresponding
to TM int

31 . The incident polar angle is set to θi = π/4. The
generating curve of the spherical BOR is discretized into 40
segments and Fourier modes m = −15, . . . , 15 are taken into
account for the computation. Fig. 5 represents the bistatic
radar cross-section σθθ, which is the co-polarized component

(a)

(b)

Fig. 6. Evaluating interior resonance behavior. (a) Condition numbers of
different formulations around the resonance frequency for mode m = 1.
(b) Condition numbers of different formulations as a function of Fourier mode
at 237.6 MHz.

of the 2 × 2 RCS matrix for a θ-polarized incident plane
wave. The analytical solution obtained from the Mie series is
also plotted for comparison. As observed, the MFIE solution
(red line) is inaccurate around the resonance frequency under
investigation. By employing the CFIE formulation (dashed
blue line), however, the inaccuracy is avoided. In particular,
the maximum deviation between the CFIE technique and the
Mie series is 0.7 dB in this figure.

For further assessment, we also provide the condition num-
ber of the impedance matrices associated with the EFIE,
MFIE, and CFIE. Fig. 6(a) shows the corresponding condition
numbers around the resonance frequency for mode m = 1. As
can be observed from this figure, both the EFIE and the MFIE
lead to a high condition number near the resonance. However,
the CFIE represents a flat behavior, indicating its stability. It
should be mentioned that the peak value of the condition num-
ber for both EFIE and MFIE occurs at f = 237.6 MHz, which
is a bit larger than the resonance frequency (f = 237.3 MHz).
This is due to the inscribed discretization of the sphere under
investigation. Fig. 6(b), plots the condition numbers of the
various integral operators as a function of the mode index at
f = 237.6 MHz. A similar behavior as Fig. 6(a) is observed.
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Fig. 7. Scattering analysis of a spherical PEC body of revolution having
the radius of r/λ = 5 (λ = 1 is the normalized wavelength). The BOR is
impinged by a plane wave incident field with the incident angle θi = π/2
and ϕi = 0. (b) σθθ in the plane ϕobs = 0. The results are obtained from
the proposed CFIE method (solid blue line) and compared with Mie series
(dashed red line) [33]. The maximum deviation between the CFIE technique
and the Mie series is 0.004 dB, (c) and (d) Three-dimensional distribution of
the surface current densities (in absolute values) in the direction tangential to
the generating curve (panel c) and in the ϕ direction.

B. Analysis of scattering by BORs using the CFIE

To illustrate the ability to compute the MGFs and the
impedance matrices for a relatively large number of modes,
while still having an analytical reference, we consider a
spherical PEC scatterer with radius r = 5λ in free space,
illuminated by a θ-polarized plane wave with unit amplitude
and incident angle θi = π/2. Owing to the symmetry of
the sphere, we can compare this case to the scattering by a
normally incident plane wave with the Mie series for which
only the modes m = ±1 are excited upon application of
a transformation of coordinates. For the case θi = π/2,
the modes m = −65, . . . , 65 are taken into account. The
generating curve of the spherical BOR is discretized into 200
segments. The corresponding σθθ in the plane ϕobs = 0 is
shown in Fig. 7(b), computed using the proposed approach
(blue line) for θi = π/2. The obtained result agrees well with
the solution from the Mie series [33], indicated by the dotted
red line in Fig. 7(b). The maximum deviation between the
CFIE technique and the Mie series is 0.004 dB in this case.
Figs. 7(c) and (d) depict the absolute values of the surface
current densities corresponding to tangential (panel c) and ϕ-
direction (panel d).

Next, we consider the electromagnetic scattering by a PEC
cone. The incident wave parameter is θi = π/4. The radius r
of the ground plane and the height h of the cone are specified
by r/λ = 0.8 and h/λ = 2, respectively. The corresponding

generating curve is discretized into 40 segments and Fourier
modes m = −20, . . . , 20 are taken into account to compute
the RCS and the surface current densities on the cone surface.
Fig. 8(a) shows the co-polarized components σθθ and σϕϕ of
the RCS matrix for this scattering problem, obtained using
the proposed CFIE approach. Fig. 8(c) and (d) show the
absolute values of the surface current densities corresponding
to the direction tangential to the generating curve and in the
ϕ direction.

We also analysed the PEC cone scattering for normal
incidence, θi = 0, which was already investigated in [37].
Fig. 8(b) compares the corresponding σθθ, obtained using
the CFIE (blue curve) with the result from [37] (red dotted
curve). The results are in good agreement, even though the
method proposed in [37] is not based on BOR symmetry.
The maximum deviation between the CFIE technique and
the curve from the literature is 0.97 dB (maximum absolute
difference between the two curves in Fig. 8(b)). As for the
computational speed, the computation time of the proposed
method was 213 s. On the other hand, based on the data
provided in Table I of [37] and assuming that computation
times scale linearly with the number of Rao–Wilton–Glisson
(RWG) basis functions, extrapolation for the cone would take
538 s or 195 s when employing their MB-RWG or MB-RWG-
BP approaches, respectively. Here, it should be noted that,
while we used Matlab 2019b on a laptop with 16 GB of RAM
and an Intel core i7-8850H processor for obtaining the results
presented in Fig. 8(b), a different programming language and
computer platform may have been employed in [37], which
has a bearing on the comparison between the methods.

To demonstrate the benefit of the proposed acceleration
method, we repeated the same computation without using the
proposed acceleration scheme. The corresponding computation
time was 412 s in the latter case. These results clearly indicate
the benefits of the proposed acceleration method.

C. Computation of the MGFs for a large BOR

We conclude by considering the scattering analysis for a
big axially symmetric parabolic reflector shown in Fig. 9(a),
which requires the computation of many modes due to its large
size. The corresponding generating curve (green curve in the
figure) is plotted in Fig. 9(b). The frequency of operation is
considered as f = 30 GHz. The geometrical parameters are
Fref = 240λ (Fref is the focal point of the parabolic reflector),
Aref = 400λ. The remaining parameter Zref can be computed
as [38]

Zref =
(Aref)

2

4Fref
. (8)

To be able to employ the CFIE, the generating curve cor-
responding to the BOR must be closed or end on the axis
of symmetry. To satisfy this criterion, the dashed green line
shown in Fig. 9(b) is added to the parabolic section of the gen-
erating curve. For an obliquely incident plane wave with angle
of incidence θi = π/4, at least 3821 (m = −1910, . . . , 1910)
modes are required to represent the plane wave in terms of
Bessel functions on the domain of the reflector with accuracy
up to machine precision. The generating curve is discretized
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(a)

(c) (d)

(b)

Fig. 8. Scattering analysis of a cone-like PEC body of revolution having
with the radius of r/λ = 0.8 and the height of h/λ = 2. (a) σθθ and
σϕϕ of component of the bistatic radar cross-section in the plane ϕobs = 0,
corresponding to the θi = π/4 (b) θθ component of the bistatic radar cross-
section at the plane ϕobs = 0, computed from the proposed CFIE method
(solid blue curve) and from [37] (dashed red curve). The results are computed
for a normally incident plane wave. The maximum deviation between the
CFIE technique and the curve from the literature is 0.97 dB, (c) and (d)
Three-dimensional distribution of the surface current densities in the direction
tangential to the generating curve (panel c) and in the ϕ direction (panel d).

z

x

Fref

Zref

Aref

(a)

(b)

0

Fig. 9. (a) Parabolic reflector antenna. (b) The corresponding generating
curve.

with 80 segments. The computation of the starting and end
values g0, g1, g1909, and g1910 is performed by Matlab’s
integral routine with an absolute error below 10−15. The
two end values are only computed for w > 0.99, which
amounts to 17% of all possible values for w. All other MGFs
from m = 2 to m = 1908 are computed using the penta-
diagonal matrix system.

While the parabolic reflector antenna under investigation
does not have an interior resonance for the selected frequency,
our main goal here is to demonstrate the applicability of
the proposed method when a large number of modes is
required. In Table II, the computational characteristics of the
problem under investigation are summarized. From the table
we observe that the initialization time is significant but not
dominant when so many modes are taken into account. In
addition, the computation of the MFIE starting and end values
takes more time than the EFIE case. The table also includes
information regarding the accuracy of the computation of the
corresponding MGFs. As a representative example mentioned
in the last row, the maximum absolute error of MGF for
m = 1000 was 4.21 × 10−9 and 7.36 × 10−9 for the EFIE
and MFIE, respectively. Another conclusion from Table II is
that, for the intermediate modes (m = 2 to m = 1908), the
computation time of the MGFs using penta-diagonal matrix, is
two order of magnitudes shorter than the Matlab’s integral
routine for the EFIE and MFIE cases, respectively.

Next, by employing the CFIE technique, the scattered elec-
tric field from the induced current over the BOR is computed
in the focal plane of the parabolic reflector, i.e. z = Fref .
To this end, we gradually change the incident angle from
θi = 0◦ to θi = 45◦, and evaluate the corresponding scattered
electric field at the focal plane. We assume that the reflector is
illuminated with a θ-polarized plane wave with unit amplitude.
Fig. 10 represents the absolute value of the scattered electric
field (|Es|) at the so-called focal plane of the reflector for
different values of the incident angle, namely θi = 0◦, 2◦, 20◦,
and 45◦. As observed for θi = 0◦, the maximum of |Es|
occurs at the focal point of the parabolic reflector (panel a).
For normal incidence, the two excitation vectors VEFIE and
VMFIE are only non-zero for modes m = ± 1. However, for
obliquely incident plane waves, the excitation vectors are non-
zero and become significant for more modes. For instance,
at θi = 2◦, the excitation vector elements are greater than
machine precision for m = −140, . . . , 140. For larger θi
more modes contribute, e.g., for θi = 20◦ and θi = 45◦,
m = −960, . . . , 960, and m = −1910, . . . , 1910 must be
considered, respectively. As expected, the maximum of |Es|
shifts away from the focal point as the incident angle θi
increases.

V. CONCLUSION

We investigated the computation of the MGFs arising in the
EFIE and MFIE in a direct manner using five-term recurrence
relations. The maximum absolute error in computing the
MGFs through the recurrence relations was 10−13. The direct
nature of the proposed formulation is advantageous in scatter-
ing problems by large BORs, involving many Fourier modes.
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TABLE II
COMPUTATIONAL CHARACTERISTICS OF SCATTERING OF PEC PARABOLIC
REFLECTOR FOR THE MAXIMUM NUMBER OF MODES PERTAINING TO THE

CASE WITH THE INCIDENT ANGLE PARAMETERS OF θi = π/4, ϕi = 0.

Definition EFIE MFIE

Number of modes 1910 1910

Number of segments 80 80

The number of MGF evaluations per
mode

158200 158200

Computation time of the starting and
end values required for penta-diagonal
matrix (the first and last two MGFs)

11m : 02s 16m : 21s

Initialization time and computation
time of inverse of penta-diagonal matrix
system

04h : 32m 04h : 47m

Maximum error of computing MGF for
mode m = 1000

4.21× 10−9 7.36× 10−9

(a)

(c)

(b)

θi=0o 

(d)

θi=2o 

θi=20o θi=45o 

Fig. 10. Absolute value of the scattered electric field in the focal plane
of parabolic reflector for (a) θi = 0◦, (b) θi = 2◦, (c) θi = 20◦, and
(d) θi = 45◦. The results are obtained from the proposed CFIE technique.
The horizontal axes are the distance in centimeters from the focal point.

For relatively large parabolic reflector, we have shown that the
computation time of the MGFs using the proposed method
is shorter than Matlab’s integral routine by two orders
of magnitudes. To overcome interior resonance problems, the
EFIE and MFIE were combined in a CFIE formulation for
BORs.
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APPENDIX A
In this section, we discuss the derivation of the five-term

recurrence relation of the MFIE MGF. We start by reiterating
the MFIE MGF,

gHm =

∫ π

0

cos(mα)(1 + jk0R(α))
e−jk0R(α)

R3(α)
dα. (9)

By using the parameter w defined in the text and defining a
new parameter α′ = α−π

2 , gHm can be re-expressed as

gHm = 2(−1)m(
w

4ρρ′
)3/2

∫ π/2

0

cos(2mα)GH
w,k′(α)dα, (10)

in which

GH
w,k′(α) = (1+ jk′

√
1− w sin2 α)

e−jk′
√

1−w sin2 α

(1− w sin2 α)3/2
. (11)

Considering the following well-known relation

cos(2mϕ) =2(1− 2 sin2 ϕ) cos(2(m− 1)ϕ)

− cos(2(m− 2)ϕ),
(12)

the following relation can be obtained for gHm

gHm(w, k′) =− 2gHm−1(w, k
′)− gHm−2(w, k

′)

− 4

w
IHm−1 +

4

w
gHm−1,

(13)

for which we have

IHm (w, k′) = 2(−1)m(
w

4ρρ′
)3/2∫ π/2

0

cos(2mα)(1− w sin2 α)GH
w,k′(α)dα.

(14)

For m ̸= 0, by using the integration by parts method, Im can
be written as

IHm (w, k′) =
w

8m

[
gHm−1(w, k

′)− gHm+1(w, k
′)
]

+ k′2
w

8m

[
JH
m−1(w, k

′)− JH
m+1(w, k

′)
]
,

(15)

where,

JH
m (w, k′) =2(−1)m(

w

4ρρ′
)3/2∫ π/2

0

cos(2mα)
e−jk′

√
1−w sin2 α√

1− w sin2 α
dα.

(16)

Likewise, applying integration by parts to JH
m (w) yields

JH
m (w, k′) =

w

8m

[
gHm−1(w, k

′)− gHm+1(w, k
′)
]
. (17)

Substituting (17) and (15) in (13) leads to the five-term
recurrence relation in (3).
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