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A B S T R A C T

The constitutive relation of Skorohod and Olevsky for viscous sintering is utilized to model the shrinkage
and relative density evolution during the sintering process of ceramics. A new implicit integration scheme
is presented and implemented. The computational cost is drastically reduced by combining this integration
scheme with a solid-like shell element formulation, which also enables a faster and more accurate description
of shape distortions, especially for thin geometries. The characterization and identification of the material
viscosity is also improved via the Aquilanti–Mundim deformed Arrhenius description. The model robustness is
examined with a spectrum of benchmark tests: ZnO sintering experiments from previous studies, as well as new
lanthanum tungstate sintering tests. The model predictions for both dimensional shrinkage and relative density
evolution are very accurate using the newly proposed material viscosity functions. The model improvements
offer the possibility to simulate long-time sintering processes with higher accuracy and significantly reduced
computational efforts.
1. Introduction

Ceramics are ubiquitous in our lives, from tableware to advanced
and functional ceramics deployed in batteries, electronics, catalytic
components, and thermal engines. A key step in the manufacturing of
ceramics is solid-state sintering, upon which mass transfer mechanisms
lead to reducing porosity in a compacted powder, resulting in the
densification and shrinkage of the part [1]. Many issues can occur
during this process: non-uniform densification and micro-cracking [2–
4]; lack of control of the final microstructure and associated me-
chanical properties [5–7]; shrinkage anisotropy and inhomogeneous
microstructures (particularly relevant with the advent of powder-based
additive manufacturing (AM) processes [8–11]); distortions and crack-
ing in composites [12–14]. The latter becomes particularly relevant
in thin geometries, such as bi- and tri-layer membranes, which are
receiving increasing attention for catalytic applications, where the vari-
ations of properties can be fine-tuned through their thickness [5,7,15].
Understanding and controlling each material’s shrinkage behaviour
and stress state during sintering is essential to tackle these problems.
However, most sintering processes are designed based on costly and
inefficient trial-and-error approaches. There is thus substantial interest
in the development of robust, reliable and efficient predictive modelling
frameworks for sintering processes [16].
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Sintering can be modelled at different length scales with sev-
eral methods: the Finite Element Method (FEM) at the continuum
(macro)-scale [14,17–24], the Discrete Element Method (DEM) [25–
31], the Phase-Field Method (PFM) [32–38] and the kinetic Monte
Carlo (kMC) [39–42] at the meso/particle scale, or the combination of
kMC/DEM and FEM in multiscale approaches [43]. DEM has the advan-
tage of being mesh-free and of simulating the motion and morphology
changes of each particle. However, this method typically assumes
spherical particles and relies on a semi-empirical micro-mechanical
model that needs micro-scale experiments for accurate parameter deter-
mination. It is also computationally demanding, due to the small time
steps needed to resolve the contacts/collisions among particles, making
the modelling of realistic, long-duration sintering processes almost
unfeasible. The phase-field method relies on free energy minimization
principles, and kinetic evolution equations. It is a good platform to
model material flow and grain morphology evolution, capturing phe-
nomena at the particle length scale, such as neck and grain growth. It
is, nevertheless, equally or sometimes even more computationally de-
manding than DEM, since it requires adaptive meshing at inter-particle
contacts to fully resolve the concentration gradients during material
diffusion. The kinetic Monte Carlo simulations are computationally less
expensive and also capture microstructural features, but their reliability
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strongly depends on the reconstruction of the initial 3D material
microstructure, which is in most cases cumbersome to obtain. The finite
element method is, instead, particularly advantageous: it has a lower
computational cost and relies on well-established continuum theories
of sintering. It enables reliable simulations of arbitrarily complex-
shaped macro-scale components. This becomes particularly valuable
for additively manufactured and composite parts, and for multilayered
membranes, which typically do not shrink isotropically.

Most continuum-based theories are phenomenological, and they
model the shrinkage of a green body during sintering via inelastic
strains. A well-established theory is the Skorohod–Olevsky Viscous
Sintering (SOVS) model [19]. It is based on the concepts of generalized
viscous flow of porous bodies, and it is derived from a thermodynam-
ical consistent continuum mechanics framework. A broad spectrum of
applications, extensions, and refinements of the SOVS model is avail-
able in the literature [10,23,24,44,45], also proposing refined material
viscosity functions [46], and incorporating micro-scale information
via kMC parameters or grain growth functions [47]. Most of these
works implement the SOVS equations into commercial FEM software,
as nonlinear constitutive models and ODE subroutines [2,14,21,48,49].
The software is however not publicly accessible, and the numerical
methods used to solve the governing equations are not always fully
disclosed. Open access and flexible model implementations are thus
called for. To the best of the authors’ knowledge, there are only few
attempts [47,50] to implement the SOVS theory in open and/or in-
house developed FEM codes, and to subsequently evaluate the influence
of solution algorithms on the models’ accuracy and performance.

This work aims at developing a computationally efficient and ver-
satile, (able to handle arbitrary geometries and materials) modelling
platform that accurately predicts the evolution of powder compacts
during sintering towards their final geometries. The article is thus struc-
tured as follows: Section 2 gives a brief introduction to the SOVS model,
including a new method for the characterization of the viscosity of the
powder material during sintering; the improved numerical integration
scheme and its implementation are discussed in Section 3, followed
by an introduction to solid-like shell elements (Section 4); results are
discussed in Section 5, followed by conclusions and outlook (Section 6).

2. SOVS model formulation

The Skorohod–Olevsky viscous sintering (SOVS) model is a con-
tinuum mechanics-based modelling framework capturing the stress,
strain and density evolution of a powder based material undergoing
sintering, given that the constitutive behaviour of the powder material
is specified. It is a phenomenological model whereby a porous medium
is considered as a two-phase material that includes a porous body
skeleton phase and a void phase. The skeleton is assumed to consist of
individual particles having a general nonlinear viscous incompressible
behaviour, and the voids are homogeneously distributed within the
medium. As a consequence, the overall response is isotropic. We focus
on the free (pressureless) sintering of μm-sized powders of functional
oxides that are relevant for membrane and multilayered components
(0.2 μm ZnO and 1.1 μm LaWO54). For this case, a linear viscous
description for the constitutive behaviour of the powder is appropriate,
since the non-linear viscous behaviour only becomes dominant for
pressure-assisted sintering and/or when the particle size is in the nm
range [19,23,24].

Strain decomposition

The material behaviour is described by a standard decomposition of
the total strain field 𝜺 into its elastic component 𝜺𝑒 and inelastic/viscous
component 𝜺𝑖:

𝜺 = 𝜺𝑒 + 𝜺𝑖 (1)

with its equivalent rate form:

𝜺̇ = 𝜺̇ + 𝜺̇ (2)
4940

𝑒 𝑖 d
inear elasticity

The stress state 𝝈 is connected to the elastic strain 𝜺𝑒 via Hooke’s
aw:

= 4𝑪 ∶ 𝜺𝑒 = 𝜆tr(𝜺𝑒)𝑰 + 2𝜇𝜺𝑒 (3)

with 4𝑪 - the fourth order stiffness tensor, and 𝜆, 𝜇 - the Lamé coeffi-
cients.

Linear viscous formulation of the SOVS model

The original SOVS constitutive equation in its linear form
reads [19]:

𝝈 = 2𝜂
[

𝜙𝜺̇′𝑖 + 𝜓𝑒̇𝑰
]

+ 𝑃𝐿𝑰 (4)

r in the inelastic (sintering) strain rate form:

̇ 𝑖 =
𝝈′

2𝜂𝜙
+

tr(𝝈) − 3𝑃𝐿
18𝜂𝜓

𝑰 (5)

where 𝝈 is the Cauchy stress tensor, 𝝈′ the deviatoric stress tensor, 𝜺̇′𝑖
he deviatoric inelastic strain rate tensor, 𝑒̇ = tr(𝜺̇𝑖) trace of inelastic
train rate tensor or volume shrinkage rate, 𝜂 the viscosity of the
ully dense skeleton (powder) phase, 𝜙 the normalized shear viscosity,

the normalized bulk viscosity, 𝑃𝐿 the (effective) volume sintering
tress1 [24,51].

The main terms of Eqs. (4) and (5) depend on temperature and
elative density as follows [39,42,52]:

(𝜌) = 𝜌2 (6)

(𝜌) = 2
3

𝜌3

1 − 𝜌
(7)

𝑃𝐿(𝜌) =
3𝛼
𝑟𝑝
𝜌2 (8)

where 𝜌 is the relative density (equivalent to solid volume fraction), the
ratio between bulk and skeleton densities 𝜌𝑏∕𝜌𝑠𝑘𝑒𝑙𝑒𝑡𝑜𝑛, reaches 1 for the
fully sintered body; 𝜌𝑏 is the bulk density, the ratio between the solid
mass and the total volume of geometry including the internal voids
𝑀𝑠∕𝑉𝑡. The normalized bulk and shear viscosities are functions of the
porosity and are derived using the hydrodynamic analogy to the theory
of elasticity. The sintering stress 𝑃𝐿 is defined as directly proportional
to the material’s surface tension, 𝛼, and inversely proportional to the
powder particle radius, 𝑟𝑝, and it is thus a local function or surface
tension acting at the single pore’s interface, while it also has a relative
density dependency to account for the macroscopic averaged effects of
all the pores in the considered domain [19,24].

Evolution of the relative density

The volume shrinkage rate is connected to the relative density
employing the following continuity equation:

̇ = −𝜌𝑒̇ (9)

Material viscosity dependency on temperature — quadratic function

Olevsky et al. [42] proposed to describe the material viscosity
dependency on temperature with a quadratic equation as given in

1 Note that the sintering stress is defined as the hydrostatic (compressive)
tress which can stop the shrinkage when it is imposed in the opposite
irection, and thus represents the internal driving force magnitude (𝑃 ≥ 0).
𝐿
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Eq. (10).

𝜂(𝑇 ) = 𝑎( 𝑇
𝑇0

)2 + 𝑏 𝑇
𝑇0

+ 𝑐 (10)

with 𝑇0 - the initial/starting ambient temperature of the sintering
process; 𝑎, 𝑏 and 𝑐 are coefficients of the temperature function. To
determine the coefficients of a specific material, i.e. ZnO powder, the
procedure involves multiple cyclic loading sintering experiments.

Material viscosity dependency on temperature - Arrhenius functions

Although the material viscosity function expressed as in Eq. (10)
can capture well the viscosity evolution in certain temperature ranges
during sintering, it is in general not fully representative of the physics
underlying the sintering process, i.e. its thermal activation. This poly-
nomial approximation is empirically based on the measured viscosity
during solid state sintering of ZnO powder, but it is not immediately
generalizable to the more complex material behaviour occurring during
sintering, e.g., liquid phase formation, phase transformations, etc. The
adopted Arrhenius-type description is, instead, capturing the thermal
activation aspects, and it is of more general applicability, also in terms
of sintering temperature ranges.

Reiterer et al. [46] proposed to describe the material viscosity’s
dependency on temperature through a classical Arrhenius-type func-
tion, and it has been used for modelling the bilayer sintering of cerium
gadolinium oxide (CGO) powder [21]. Torresani et al. [11] recently
proposed a simpler method for determining the material viscosity,
using the shrinkage data from mechanical dilatometry combined with
a quadratic Arrhenius function. Here, we propose to use the Aquilanti–
Mundim deformed Arrhenius function [52], which is flexible and ver-
satile in describing the temperature dependency over a wide range.

Assuming the material’s shrinkage is isotropic during free sintering,
the trace of inelastic strain rate tensor 𝑒̇ can be directly calculated from
the displacement field and time span measured via dilatometry. The
material viscosity can then be estimated by combining Eqs. (5), (7) and
(8):

𝜂 = 1
4
1 − 𝜌
𝜌

𝛼
𝑟𝑝𝑒̇

(11)

Once the material viscosity is calculated from the dilatometry
shrinkage data using Eq. (11), the temperature data from the same
experiment can also be exploited to reveal the relationship of 𝜂(𝑇 ),

hich is still in the form of discrete data points. For the sake of
onvenience, we use the reciprocal of the normalized temperature
∗, which is defined as 1∕𝑇 ∗ = 1∕𝑇 − 1∕𝑇𝑇 , with 𝑇𝑇 defined as

ransition/characteristic temperature at which the sintering starts and
he material viscosity drops drastically. Then, the deformed Arrhenius
unction is finally used to describe the material viscosity dependency
n temperature [52] using these discrete experimental data points
replacing the relationship shown in Eq. (10)):

(𝑇 ∗) = 𝜂0 exp𝑑
( −𝛾
𝑅𝑇 ∗

)

= 𝜂0
[

1 − 𝑑
𝛾

𝑅𝑇 ∗

]
1
𝑑 (12)

ere, the coefficient 𝑅 is the universal gas constant, 𝜂0 and 𝛾 (same
nits as 𝑅𝑇 ∗) are material-dependent constants, and 𝑑 is the deformed
arameter. Note that in the limit of 𝑑 → 0, 𝛾 → 𝐸𝑎 (activation energy),
he standard Arrhenius function is recovered.

. Numerical integration scheme and implementation

In current study, an in-house FEM code/software, namely ‘‘DAWN’’
s used. This is a C++ finite element code that comprises a variety of
lement formulations, materials and solver techniques, most of which
re not available in commercial or open-source codes. The methods
roposed here are nevertheless general and can be applied to any FEM
oftware, both commercial and open source.
4941
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As with any 3D constitutive model intended for use with finite
lement codes, an accurate, robust, and efficient numerical routine is
eeded. For the current SOVS sintering model, Eq. (5) reveals that the
irection and magnitude of inelastic strain depend directly on the stress
tate. Thus, conventional routines as used in visco-plasticity models
annot be directly utilized. Here, we implement the SOVS model using
fully implicit Euler time integration scheme with variable reductions

o explore predictability and computational efficiency.

mplicit scheme for time integration

From Eqs. (2), (5), (9) we have three unknown state variables, 𝜺𝑒,
𝜺𝑖 and 𝜌, which needed to be solved for in both space and time.2 The
evolution of these state variables is governed by a system of ODEs. It
can be expressed in a general form:

̃
𝑋̇ =  (

̃
𝑋, 𝜉) (13)

where
̃
𝑋 is the column of unknown variables, decomposed as following:

̃
𝑋 =

⎡

⎢

⎢

⎣

𝜺𝑒
𝜺𝑖
𝜌

⎤

⎥

⎥

⎦

(14)

𝜉 in Eq. (13) is a placeholder for the external state variables that vary
independently of the SOVS model, e.g., the temperature 𝑇 . 𝜺𝑒 and 𝜺𝑖
are elastic and inelastic strain tensors, but for the implementation we
use Voigt notation and result in two sub-columns with length 6.

Backward Euler integration scheme

In one timestep, 𝛥𝑡 = 𝑡𝑛+1 − 𝑡𝑛:

̃
𝑋𝑛+1 =

̃
𝑋𝑛 + 𝛥𝑡 (

̃
𝑋𝑛+1, 𝜉𝑛+1) (15)

Then the corresponding residual is:

(𝛥
̃
𝑋) = 𝛥

̃
𝑋 − 𝛥𝑡 (

̃
𝑋 + 𝛥

̃
𝑋, 𝜉 + 𝛥𝜉) (16)

ith

̃
𝑋 =

⎡

⎢

⎢

⎣

𝛥𝜺𝑒
𝛥𝜺𝑖
𝛥𝜌

⎤

⎥

⎥

⎦

nd

(𝛥
̃
𝑋) =

⎡

⎢

⎢

⎣

𝒇 𝜺𝑒
𝒇 𝜺𝑖
𝑓𝜌

⎤

⎥

⎥

⎦

This set of residual equations, Eq. (16), is solved using the Newton–
Raphson procedure. To apply the Newton–Raphson procedure on this
set of equations, the 13 unknowns in

̃
𝑋 have to be solved in an iterative

manner, which requires a computationally costly inversion of a 13 × 13
Jacobian matrix in each iterative solve step (the Newton–Raphson
iteration steps within one single timestep). In addition, this iterative
solution routine has to be performed on each material/integration point
within every element of the mesh to obtain a correct stress response.
Accordingly, the computational cost grows rapidly when one has to
deploy a finer mesh to resolve the geometry in more detail. Therefore,
we propose to first eliminate the relative density (1 unknown 𝛥𝜌) from
the solution routine via explicit calculations. Next, the inelastic strain is
reduced from 6 unknowns to 1 unknown by assuming isotropic shrink-
age behaviour. This assumption is also valid for complex geometry or
loading conditions made of the same isotropic material. Finally, the
remaining 7 unknowns (6 components from the elastic strain 𝛥𝜺𝒆 and

2 The elastic and inelastic strain are tensors, each has 6 independent scalar
alues, thus 13 scalar unknown values in total.
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Fig. 1. Geometry of the eight nodes solid-like shell element [56,57]. Each geometrical
node 𝑖 contains three degrees of freedom: [𝑢𝑥 , 𝑢𝑦 , 𝑢𝑧]𝑖 and each internal node 𝑗 has one
degree of freedom 𝑤𝑗 .

1 inelastic strain 𝛥𝑒) is further reduced to a single unknown 𝛥𝑒, using
the linearity between stress 𝝈′ and strain deviators 𝜺′𝑖 . The derivations
are explained in detail in Appendix. After the determination of the
change of inelastic strain, the change of elastic strain can be calculated
from the change of total strain, and the material’s stress state can be
determined.

4. Solid-like shell element

Advanced ceramic manufacturing processes nowadays incorporate
complex structures and geometries, such as composite materials, mul-
tilayered materials, 3D-printed complex shapes, thin layered catalytic
ceramic membranes, etc., requiring a suitable element for the finite
element modelling of their sintering behaviour. Conventional linear
solid (Small Strain Continuum — SSC) elements, e.g., eight nodes
hexahedral element, show an overly stiff behaviour when used in thin
domains applications (Poisson thickness locking [53]) due to a constant
strain distribution in the thickness direction. An alternative is the
Solid-Like Shell (SLS) element [54,55], for which an additional set of
internal degrees of freedom is used to add a quadratic term to the
displacement field in the thickness direction, the internal ‘stretch’ of
the element, as shown in Fig. 1. Three translational degrees of freedom
are defined at each node as for typical solid elements, and four internal
degrees of freedom are established at the through-thickness edges of
the element to account for the internal stretching, which yields a fully
three-dimensional bending strain field.

The corresponding strain field varies linearly over the thickness
instead of being constant, and Poisson thickness locking is avoided.
Additionally, the SLS element is a true 3D solid element that allows for
a 3D constitutive relation, which is typically not possible for the other
2D or pseudo-3D shell element formulations. It has been shown that the
solid-like shell element can be used for modelling laminate structures
by either stacking multiple elements or by modelling multiple layers
within one element [56–58]. In the latter situation, the element is
divided into several sub-domains, each of which has different material
parameters. Both conventional volume elements and solid-like shell
elements are here used with the SOVS material model, to explore
the feasibility, performance and efficiency of the sintering modelling
framework.

5. Results and discussion

The SOVS sintering model described in the previous Sections Sec-
tion 2 & 3 with both original and reduced integration schemes is
implemented into our in-house FEM software ‘‘DAWN’’. In Section 5.1,
the accuracy of the model implementation is verified with a test case on
two elements, by comparing the numerical results with a closed-form
4942

analytical solution as well as a semi-analytical solution obtained via
alternative numerical integration methods. In Section 5.2, the perfor-
mance and accuracy of the numerical model is assessed by comparing
the numerical results obtained with the two element types with exper-
imental data on a bilayer bar. In Section 5.3, the model’s accuracy in
predicting the differential shrinkage-induced bending behaviour of lay-
ered materials is validated by comparing the numerical outcomes with
experimental data from the literature on the sintering of bilayer discs,
with quadratic viscosity function given by Eq. (10). Finally, in Sec-
tion 5.4, the broad applicability of the model is assessed by extending
it to another functional ceramic material (lanthanum tungstate) with
the Aquilanti–Mundim deformed Arrhenius viscosity function given by
Eq. (12) in Section 2. The model predictions are quantitatively verified
with a simple sintering experiment that covers the entire heating,
holding and cooling stages.

5.1. Verification of model implementation with analytical solutions

Inspired by the SOVS model verification published in [47], a simple
test case with two identical solid elements (8-nodes Hexahedron) is
used for the first verification step, as given in Fig. 2. The material here
is a powder compact of 0.2 μm ZnO particles, in line with Olevsky
et al. [39,42] and Argüello et al. [47]. The material and sintering
bilayer disc parameters are 𝐸 = 123.7 GPa, 𝜈 = 0.356, 𝛼 = 1.27 J/m2,
𝑟𝑝 = 0.2 μm. The starting and ending temperatures of the sintering
process are 𝑇0 = 750 ◦C and 𝑇𝑒𝑛𝑑 = 1000 ◦C. The heating ramp is
5 ◦C/min. For this case study, the viscosity is expressed according to
the quadratic form proposed by Olevsky et al. as given in Eq. (10), with
𝑎 = 51.7×1010 Pa⋅s, 𝑏 = −106.6×1010 Pa⋅s, and 𝑐 = 56.4×1010 Pa⋅s [42].
The initial relative density is 𝜌0 = 47%. The left bottom node is fully
constrained and the two elements are subjected to symmetry boundary
conditions along their x-z and y-z planes. Two loading cases are studied
here: free sintering with no externally applied stress and sintering with
5 MPa tensile stress applied on the top surface (𝑧-direction).

For the free sintering case, the externally applied stress field is zero,
thus Eq. (4) is simply expanded and results in the following governing
equation of relative density evolution:

̇ =
3𝑃𝐿0(1 − 𝜌)

4𝜂(𝑇 )
(17)

with 𝑃𝐿0 = 3𝛼𝜌20∕𝑟𝑝 and 𝜂(𝑇 ) given by Eq. (10).
The closed form solution of Eq. (17), i.e. relative density evolution,

is then given as reported in [47],

𝜌(𝑡) = 1 −
(1 − 𝜌0)
𝐹

exp

{

−3
4
𝑃𝐿0

[

2
√

𝑄0
tan−1

(

2𝐶0𝑡 + 𝐵0
√

𝑄0

)]}

𝐹 = exp

{

−3
4
𝑃𝐿0

[

2
√

𝑄0
tan−1

(

𝐵0
√

𝑄0

)]}

𝑄0 = 4𝐴0𝐶0 − 𝐵2
0

𝐴0 = 𝑎 + 𝑏 + 𝑐

𝐵0 = 𝑎 10
60𝑇0

+ 𝑏 5
60𝑇0

𝐶0 = 𝑎 25
3600𝑇 2

0

(18)

with the values of 𝑎, 𝑏, 𝑐 and 𝑇0 as specified above.
For the sintering case with applied stress, a tensile stress is applied

along the 𝑧-direction (𝜎𝑧𝑧 = 5 MPa, 𝜎𝑥𝑥 = 𝜎𝑦𝑦 = 0), and the continuity
equation of the relative density evolution is given by

̇ =
𝜎𝑧𝑧

4𝜂(𝑇 )
1 − 𝜌
𝜌2

−
3𝑃𝐿0(1 − 𝜌)

4𝜂(𝑇 )
(19)

The solution for Eq. (19) is found with an explicit Runge–Kutta (RK45)
method, with error control of the fourth-order method, and steps using
the fifth-order accurate formula (local extrapolation is done). The time
step 𝛥𝑡 is chosen as 6 s, which is sufficiently small to give accurate
integration results. The relative density evolution of the ZnO powder
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Fig. 2. Model verification by comparison of a two-element domain sintering shrinkage prediction with the analytical solution. Left: Geometry of the two-element domain. Right:
Relative density evolution during sintering of ZnO with different loading conditions (free sintering and sintering with 5 MPa tensile stress). Lines are analytical solutions and points
are simulation outputs. A time step 𝛥𝑡 = 30 s corresponds to a temperature step 𝛥𝑇 = 2.5 ◦C (with heating rate 5 ◦C/min).
compact during sintering is shown in Fig. 2. An excellent agreement
between analytical, semi-analytical and the numerical solution is found,
confirming the accuracy of the simplified implicit integration scheme.
If the time step is reduced from 𝛥𝑡 = 30 s to 6 s, the difference between
simulation and analytical solution is negligible. Unless otherwise spec-
ified, the time step 𝛥𝑡 = 30 s will be used for the following analyses,
as the error is small and the computational cost reduces by a factor of
5. For the case of sintering with an applied tensile stress, as expected,
the shrinkage is slower than in the free sintering case, due to the tensile
stress acting in the opposite direction of the (effective) volume sintering
stress.

5.2. Benchmark test: model performance using solid and shell elements

The previous section proves the fidelity of the model implemen-
tation at the element (integration points) level. To test the model
validity in real-scale sintering processes and the performance of the
implementation with shell elements, a larger scale and more complex
study domain is used. A relevant test case that was also studied in
previous works [42,47,59], is the sintering of a bilayer bar [59]. The
same material as in Section 5.1 is considered (ZnO), but this time
in two layers with different initial relative densities, which leads to
differential shrinkage rates. The bilayer bar consists of two rectangular
blocks with initial length 𝐿 = 8.049 mm; width 𝑊 = 3.89 mm and
equal thickness of upper and lower layer 𝐻𝑢 = 𝐻𝑙 = 1.316 mm (taken
from [59]), as given in Fig. 3. The upper and lower layer have initial
relative densities of 47% and 57%, respectively. The sintering process
parameters (heating rate, temperature range, etc.) are identical to those
in the case of the two-element model of Section 5.1. Note that the
geometry in Fig. 3 only represents a quarter of the original geometry
and symmetry boundary conditions are applied at the x-z and y-z
planes.

To compare the computational cost for the different element types
(solid element versus solid-like shell element), the bilayer bar test-case
shown here is simulated using both element types. The SLS element
has 8 nodes on the element boundaries and 4 additional internal nodes
along the thickness direction to model the stretching (Fig. 1), and it
is thus much more suitable to simulate bending problems, as required
here.

The results of numerical simulations with SLS and SSC elements
are compared with experimental data from the literature [42,59], as
shown in Fig. 3. Both simulations using SLS elements (bottom left) and
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Table 1
Sintering of ZnO bilayer bar: Garino’s experimental data [59] vs.
simulation outcomes obtained using solid-like shell (SLS) elements.

Dimensions Exp. Sim. Error
[mm] @ 1000 ◦C @ 1000 ◦C [%]

L 6.70 6.67 0.4
W 3.89 3.73 3.3
H 2.15 2.06 3.6

SSC elements (bottom right) have same meshes with 928 8-node hex-
ahedrons. The final bilayer bar curvature obtained with SLS elements
agrees well with the experimental outcome: the upper layer has a lower
initial relative density, which leads to faster shrinkage compared to
the bottom layer, resulting in the final upward bending. The results
obtained with SSC elements, instead, show almost no bending, due to
the locking of the linear elements, even with a relatively fine mesh.
The simulated final relative density is also different in the two cases.
A clear relative density gradient is observed in the SLS case, along
the thickness (z) direction, with increasing relative density towards
the concave (upper) surface. This gradient is not observed in the SSC
case, and the final relative densities remain uniformly distributed in
each layer. Even though the reference literature study does not report
the final relative densities of each layer, the experimentally measured
dimensions after sintering can be used for further validation [47,50,59].
The results are summarized in Table 1. A very good agreement between
experiments and simulations is obtained, with an error range between
0.4 and 3.4%, which is comparable with the error range (0.1 to 4.0%)
obtained in previous studies [47,59].

To obtain such accurate results, however, a fine mesh with 46080
solid elements was previously needed for the same bilayer bar sim-
ulation, with a resulting computational cost (CPU time) in the order
of 105 seconds [47]. This is more than a day of simulation time, thus
much longer than the 50-min sintering process time. In this work, the
simulations are performed with 928 SLS elements and the improved
time integration scheme. The computational cost is reduced by 3 orders
of magnitude, resulting in a CPU time of 43.49 s, without sacrificing
accuracy. Moreover, the memory needed for the sintering simulations
is also drastically reduced, since the number of elements is decreased
by a factor of approx. 50. This opens the pathway towards simulating
long holding-time sintering processes without the demand of large
computational infrastructures.
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Fig. 3. Sintering of a ZnO bilayer. Top left: sintering experiment of bilayer bar ZnO at 1000 ◦C [42]. Top right: initial geometry and relative density of the bilayer bar: 𝜌𝑢 = 47%
and 𝜌𝑙 = 57%. Bottom: deformed configurations using Solid-Like Shell/SLS (left) and solid/SSC (right) elements.
Source: Reproduced with permission from John Wiley and Sons.
5.3. Prediction of differential shrinkage: Sintering of bilayered ZnO discs

The bilayer bar investigated in the previous section has an aspect
ratio (length/thickness) of around 3 and the differential shrinkage-
induced bending behaviour is not fully representative of many appli-
cations. In line with [47], to better evaluate the bending behaviour of
such bilayered components, thin geometries with higher aspect ratios
are more appropriate, such as the ZnO bilayer disc sintering experiment
by Garino [47,59]. Fig. 4 shows this case study, with a bilayered disc
with an aspect ratio of around 9. The disc consists of two layers with
an initial radius 𝑅 = 9.525 mm and equal thickness of the upper and
lower layer, 𝐻𝑢 = 𝐻𝑙 = 1 mm. The upper and lower layers have initial
relative densities of 47% and 57%, respectively. The sintering process
parameters (heating rate, temperature range, etc.) are identical to those
of the bilayer bar case in the previous subsection. Similarly, symmetry
boundary conditions are applied, using 1536 SLS elements to reduce
the computational cost. The simulation results relative to 925 ◦C are
shown in Fig. 4, revealing the displacement in the z direction (dZ) and
the relative density. The displacement dZ increases along the radial
direction, with a minimum of −0.38 mm at the centre of the disc,
and reaching a maximum of 1 mm at the bottom edge. As expected,
a more prominent bending is observed here compared to the bilayer
bar case. As for the relative density field, a similar increasing gradient
along the z direction is also observed, with density values lower in
each layer compared to the bilayer bar. However, a relative density
gradient is now also observed along the radial direction. The relative
density increases slightly from the centre to the edge of the quarter disc.
This small gradient along the radial direction is expected to be caused
by the stress state: higher tensile stress at the bottom centre surface
due to upward bending, thus hindering the shrinkage and leading to
a lower final relative density. This agrees well with the lower final
relative density obtained from the previous element test under 5 MPa
tensile load. To quantify the overall sintering shrinkage, we monitor
four characteristic geometrical parameters, defined in the bottom right
of Fig. 4: centre thickness 𝐻𝐶 (bending), bottom radius 𝑅𝐵 (radial
shrinkage of lower layer), top radius 𝑅𝑇 (radial shrinkage of the upper
layer) and edge thickness 𝐻𝐸 (shrinkage in the thickness direction).

These dimensions are extracted from the simulation outcomes at
925 ◦C and compared with the experimental values, as summarized
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Table 2
Sintering of ZnO bilayer disc: Garino’s experimental data [59] vs.
simulation outcomes obtained using solid-like shell (SLS) elements.

Dimensions Exp. Sim. Error
[mm] @ 925 ◦C @ 925 ◦C [%]

RT 7.62 7.33 3.0
RB 7.83 7.75 0.9
HE 1.63 1.59 2.1
HC 2.72 2.57 7.6

in Table 2. The bilayer disc simulations capture the shrinkage very
accurately in both radial and thickness directions, with an error ranging
from 0.9 to 3%. The prediction of disc bending is less accurate (7.6%
error) but still much smaller than the 13.7% error obtained in previous
studies that using solid elements [47,59]. The final dimensions of radii
(𝑅𝑇 and 𝑅𝐵) and edge thickness 𝐻𝐸 are somewhat smaller than those
obtained experimentally in Garino’s experiments, indicating a small
over-prediction of the overall shrinkage. Although the error for the
centre thickness (𝐻𝐶 ) is smaller than in previous studies, the overall
bending behaviour is still underestimated. A potential reason for this
underestimation is the viscosity function for ZnO (and in [47,50]),
which is taken from [42] directly, and which might underestimate the
experimental viscosity of ZnO. Another possible cause could be the
inaccurate initial relative density of each layer before sintering, which
could easily lead to the mismatches observed here.

5.4. Predicting the shrinkage of LWO powder compacts with a new viscosity
characterization method

For a thorough verification of the new viscosity characterization
approach proposed in Section 2 and its versatility, we have conducted
a new set of sintering experiments, focused on accurate measurements
of both shrinkage and relative density changes during the process.
The material is another functional oxide powder: lanthanum tungstate
(LaWO54), which is currently particularly relevant for catalytic mem-
branes.

Lanthanum tungstate powder (LaWO54) is first uni-axially com-
pressed (40 kPa) into cylindrical pellets and then hydro-statically com-
pressed (400 MPa) to induce isotropic compaction. The resulting pellet
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Fig. 4. Modelled shrinkage and bending of bilayered ZnO disc during sintering. Top left: initial (quarter) geometry bilayer of the simulation domain, with relative densities in the
two layers 𝜌𝑢 = 47% and 𝜌𝑙 = 57%. Top right: Displacement field in the 𝑧-direction at 925 ◦C. Bottom left: Relative density distribution at 925 ◦C. Bottom right: Final geometry
after bending, with centre thickness 𝐻𝐶 , bottom radius 𝑅𝐵 , top Radius 𝑅𝑇 and edge thickness 𝐻𝐸 [59].
Fig. 5. Left: LaWO54 pellet before and after sintering. Right: Densification/shrinkage of LaWO54 pellet vs. sintering temperature, as measured by dilatometry.
has an initial relative density of 59.7%, as shown in Fig. 5. The LaWO54
powder has median particle size 𝑟𝑝 = 1 μm, theoretical density 𝜌𝑠 =
6.64 g/cm3, surface tension 𝛼 = 1 J/m2, Young’s modulus 𝐸 = 130
GPa and Poisson’s ratio 𝜈 = 0.24. The sintering process is conducted
with a mechanical dilatometer (Netzsch - DIL402C) and consists of the
following stages: (i) heating stage, 𝑇0 = 25 ◦C to 𝑇 = 1500 ◦C at
2 ◦C/min; (ii) holding stage, 𝑇 = 1500 ◦C for 720 mins; (iii) cooling
stage, 𝑇𝑒𝑛𝑑 = 𝑇0 = 25 ◦C at −2 ◦C/min. The final sintered part is also
shown in Fig. 5. The long holding stage allows to reach the final stage of
sintering, i.e. approaching full density. This experimental setting offers
the possibility to validate the model predictions not only in terms of
dimensional changes (as most previous studies did) but also in terms
of the evolution of relative density throughout the whole sintering
process. The shrinkage, dL/L0, with respect to sintering temperature
that is given in Fig. 5.

The viscosity evolution of LaWO54 and the corresponding viscosity
functions, based on Eq. (12), are given in Fig. 6. To construct the Ar-
rhenius model, we use the normalized temperature 1∕𝑇 ∗ = 1∕𝑇 − 1∕𝑇𝑇
(defined in Section 2), with 𝑇𝑇 defined as the transition temperature at
which the sintering starts and the material viscosity drops drastically.
For the LaWO54 used here, 𝑇𝑇 is 1005 ◦C, resulting in 1∕𝑇 ∗ < 0 when
the sintering temperature is higher than the transition temperature,
i.e. when 𝑇 > 1005 ◦C.

For temperatures below 𝑇𝑇 (1∕𝑇 ∗ > 0), the viscosity of LaWO54
stays almost constant around 3 × 1013 Pa⋅s, but increases to around
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Fig. 6. Viscosity (𝜂) of LaWO54 as a function of temperature, plotted with respect to
the reciprocal of normalized temperature (1∕𝑇 ∗), as determined from dilatometry. The
lines correspond to the deformed Arrhenius functions, Eq. (12), with 𝜂0 = 2.975 × 1013

Pa⋅s; 𝑑 = −2.791, 𝛾 = 7965 kJ/mol for temperature below 𝑇𝑇 and 𝑑 = −0.226, 𝛾 = 665
kJ/mol for temperature above 𝑇𝑇 . 𝑇𝑇 = 1005 ◦C is determined from the maximum
value of viscosity during sintering.
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Fig. 7. Left: Initial and final simulated geometry of the pellet, before and after the 2196-min sintering process. The colour bar indicates the displacement [mm] in the thickness
(z) direction. 3888 solid elements are used, with symmetry boundary conditions along the x-z and y-z planes. Right: Relative density evolution during sintering of LaWO54 pellet
- experiments vs. simulation. Inset: SEM image of the final sintered LaWO54 pellet microstructure.
1 × 1014 Pa⋅s when 1∕𝑇 ∗ is getting close to zero. For temperatures above
𝑇𝑇 (1∕𝑇 ∗ > 0), the viscosity decreases from a maximum value to around
1 × 1010 Pa⋅s with increasing sintering temperature 𝑇 . The deformed Ar-
rhenius function 𝜂(𝑇 ) adequately captures the viscosity dependency on
temperature. The initial increase followed by a decrease of the viscosity
could be caused by different material phases at different temperatures.
As studied in [60], at temperature below 𝑇𝑇 , the powder pellet may
have the La2O3 phase embedded with LaWO54 phase, and this La2O3
phase transforms into LaWO54 phase with increasing temperature, in
line with the initial increase of the viscosity. While for temperatures
above 𝑇𝑇 , the solid state sintering process is activated and the material
starts to flow, i.e. a decrease in viscosity is observed. Note that in the
low temperature branch (1∕𝑇 ∗ > 0), the activation energy 𝛾 strongly
depends on the amount of data included in this range since at lower
temperatures sintering has not started yet. Here, the upper limit is set
as 1∕𝑇 ∗ ≤ 0.0003. The low-temperature branch is included in Fig. 7 for
completeness, but at 𝑇 < 800 ◦C (1∕𝑇 ∗ > 0.0003 or 𝑡 > 400 mins) almost
no sintering shrinkage happens.

In addition to the heating stage, holding and cooling stages are
also involved in the viscosity analysis. During the holding stage, the
temperature is held constant at 1500 ◦C, and thus Eq. (12) cannot
capture the viscosity changes that are associated with microstructural
(and potentially phase) changes under isothermal conditions, as it only
gives a single viscosity value at a given temperature. The viscosity
increases as the sintering proceeds during the isothermal holding, while
pores keep shrinking. In the final stage of sintering, grain growth
occurs, and viscosity can strongly depend on grain size and other
microstructural features. To accurately determine the grain growth and
additional microstructural changes during material sintering, thorough
experimental campaigns would be required. Therefore, we instead pro-
pose to add this additional dependency on the microstructure evolution
indirectly, by adding a dependency of viscosity on the relative density
during holding: 𝜂(𝜌) = 𝜂(𝑇 ∗) ⋅ 10(𝜌−𝜌0)∕𝛥𝜌∗𝛽 with 𝜌0 = 92%, 𝛥𝜌 = 0.02,
𝛽 = 1.33, whereby the coefficients are obtained from dilatometry data.
During the cooling stage, the viscosity increases again with decreasing
temperature, and thus the deformed Arrhenius function can be applied
again.

Given this viscosity formulation, LaWO54 properties and sintering
process parameters, the simulation is implemented with a quarter pellet
and the appropriate symmetry conditions, as shown in Fig. 7. The
geometry after sintering is also given, with the displacement field in
the 𝑧-direction (dZ), in the same figure. The displacement dZ decreases
smoothly with the height and reaches a minimum of −1.1 mm (max-
imum shrinkage) at the top of the pellet. The other two displacement
fields, dX and dZ, show a similar trend. Since in this case, the pellet
is homogeneous, no differential shrinkage is expected, and thus 8-node
SSC elements are used instead of SLS elements. This further reduces
the computational cost, thanks to the lower number of integration
4946
Table 3
Sintering of LaWO54 pellet: experiment vs. simulation.

Dimensions Exp. Sim. Error
[mm] [%]

R 8.10 7.98 1.5
H 5.68 5.84 3.0

points per element. The final pellet dimensions after sintering for both
experiments and simulations are summarized in Table 3. The model
slightly overestimates the shrinkage in the radial direction (1.5% error)
and underestimates the shrinkage in the thickness direction instead
(2.9% error). These small discrepancies can arise from the small stress
applied by the dilatometer’s push-rod in the experiments. Even though
free sintering is conducted, in the dilatometer the push-rod needs to be
in contact with the surface of the pellet throughout the whole sintering
process, and thus a small force (25 cN) is applied along the thickness
direction.

The relative density changes in experiments and simulations are also
compared in Fig. 7. According to dilatometry data (blue circles), the
relative density, 𝜌, increases from 59.7% to 95.2% after the cooling
stage, at 𝑡 = 2196 mins. The simulation (dashed line) adequately
captures the evolution of the relative density throughout the whole
sintering process, giving a final relative density prediction of 95.7%,
and thus resulting in a 0.4% error compared to the experiments. Even
with a relatively long holding time (12 h), the shrinkage process
appears to stop before the pellet reaches its full density. To investigate
the dominating mechanism behind this, the final sintered pellet is
polished and scanned using SEM with a 1 kV accelerating voltage. The
inset of Fig. 7, a representative micrograph, reveals a large-sized pore,
surrounded by fully densified LaWO54. Such large-sized, spherical pores
are well-known to be a cause of incomplete densification due to ex-
tremely slow shrinkage kinetics [61,62]. Furthermore, the final density
of the sintered pellets has been measured via two different methods:
geometry-based, i.e. as weight/volume ratio (black filled circle) and
via the Archimedes method (brown filled circle). Although the final
relative density from the Archimedes method is slightly higher than
that from the geometry-based method, the outcomes of both methods
are consistent with the model predictions, further proving the validity
of the proposed modelling method. Note that measuring the initial/final
relative density accurately is not always as easy as in the case presented
here, since many sintering applications involve binders, additives other
than ceramics or require a porous final microstructure, such as for cat-
alytic membranes and substrates, fuel cells, battery electrodes, etc. [5].
In these cases, the characterization of initial/final relative densities,
both with and without differential shrinkage, becomes non-trivial.
Therefore, a robust, reliable and computationally tractable modelling
framework that can predict the density evolution during the sintering
of any powder material becomes particularly valuable for successful
process implementation, optimization and design of experiments.
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6. Conclusions and outlook

The linear-viscous case of the SOVS model, based on the theories
of irreversible deformation (flow) of porous bodies, was implemented
in FEM code. A novel improved and simplified implicit integration
scheme for the state variables was proposed to avoid the inverse
of the Jacobian at each integration point using a staggered implicit
solution scheme, resulting in a reduction factor of 50 (using the same
solid element) to 1000 (using the solid-like shell element) in terms of
computational cost. The modelling strategy was verified by comparing
the simulated relative density evolutions to analytical solutions, as well
as to sintering experiments. The utilization of solid-like shell elements
with the SOVS constitutive model of sintering opened the possibility
of predicting bending and distortion problems in bilayers induced by
differential shrinkage, which are common in the manufacturing of
components for energy and electronics applications, with a relatively
small computational cost. As an example, the computation cost (CPU
time) of the benchmark simulation of Garino’s bilayer bar experi-
ment [47] was reduced by approximately three orders of magnitude,
enabling the simulation of hours-long sintering processes with a normal
laptop/computer in short time frames.

Apart from Garino’s bilayer bar experiment, Garino’s bilayer disc
experiment, which is close to real applications, was also simulated for
a quantitative comparison. The agreement between simulated results
and experiments is good, with the differences/errors up to 4% and
8% for the bilayer bar and disc experiments, respectively. To further
improve the accuracy, a new sintering experiment was carried out
using a ceramic material that is particularly relevant in bilayer and
membrane processing for energy applications (catalysis for hydrogen
generation): LaWO54. A new method to determine the temperature and
micro-structure influence on the material viscosity was proposed and
validated with this independent sintering experiment. Unlike previous
studies that focused mainly on the heating stage of sintering, our
sintering experiment and simulation covered the full cycle: heating,
holding and cooling stages. The simulation accurately predicted the
final dimensions of sintered pellet with errors up to around 3%. Fur-
thermore, the relative density evolution predicted by the simulations
was also compared to experimental values that originate from different
measurement methods, confirming the agreement and accuracy of the
proposed model.

These SOVS model developments open pathways towards fast, ac-
curate and versatile continuum scale simulations of a multitude of
sintering processes. The differential shrinkage during co-sintering of
bilayer or even trilayer parts with different materials or porosity levels
in each layer can now be smoothly simulated in virtual frameworks.
Further improvements in the model details, e.g. to incorporate micro-
features such as grain growth, will be studied in more detail in future
works.
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Appendix. Reduction and implementation of implicit
solution scheme

From Eq. (16) we need to minimize the residual and iteratively solve
13 unknown state variables every timestep for the set of implicit equa-
tions proposed. This means at each timestep and at each integration
point, Eq. (16) needs to be solved to reach local convergence. This it
will quickly lead to high computational costs once 3D solid elements
and/or longer total simulation times are employed, which is typically
the case for a traditional free sintering process. Therefore, a reduction
of the implicit equations is applied such that only 1 unknown state
variable needs to be solved at every timestep at the integration points.

A.1. Implicit equation associated with elastic strain

The residual of the elastic strain results from the strain decomposi-
tion Eq. (1),

𝒇 𝜺𝑒 = 𝛥𝜺𝑒 + 𝛥𝜺𝑖 − 𝛥𝜺 (1A)

A.2. Implicit equation associated with inelastic strain

The residual of the inelastic strain is then formed from the general
implicit solution routine Eq. (15)

𝒇 𝜺𝑖 = 𝛥𝜺𝑖 − 𝛥𝑡𝜺̇𝑖𝑡+𝛥𝑡 = 𝛥𝜺𝑖 − 𝛥𝑡
𝝈′

2𝜂𝜙
− 𝛥𝑡

tr(𝝈) − 3𝑃𝐿
18𝜂𝜓

𝑰 (2A)

Note that all the time dependent variables (𝝈, 𝑃𝐿, 𝜂, 𝜓) refer to the
nknown values at the next time step, i.e. 𝑡 + 𝛥𝑡.

.3. Evolution of relative density

From Eq. (9), the change of density can be derived within one
imestep, leading to its residual form:

𝜌 = 𝛥𝜌 + 𝜌𝑡+𝛥𝑡𝛥𝑒 (3A)

here 𝛥𝑒 is the trace of the change of inelastic strain tensor tr(𝛥𝜺𝑖).
As 𝛥𝜌 can be expressed as a function of 𝛥𝜺𝑖, we could explicitly

alculate the density evolution and eliminate this unknown from the
olution routine. Integrating Eq. (9) over 𝛥𝑡:
𝑡+𝛥𝑡 = 𝜌𝑡 exp (𝛥𝑒) (4A)

.4. Elimination of the inelastic strain

Combining Eqs. (1A), (2A) and (3A), it is more efficient to remove
art of the unknowns and keep only two variables for solving: 𝛥𝜺𝑒
nd tr(𝛥𝜺𝑖). Then from Eqs. (1A) and (2A), we obtain a new system

of equations:

⎧

⎪

⎨

⎪

⎩

𝒇 𝜺𝑒 = 𝛥𝜺𝑒 + 𝛥𝑡
𝝈′
2𝜂𝜙 + 1

3𝛥𝑒𝑰 − 𝛥𝜺

𝑓𝑒 = 𝛥𝑒 − 3𝛥𝑡 tr(𝝈)−3𝑃𝐿18𝜂𝜓

(5A)

For brevity, we hide the parameter dependencies in the above set
f equations. All the parameters are evaluated based on the dependent
tate variable’s values at the next timestep, e.g., 𝝈(𝜌𝑡+𝛥𝑡), 𝑃𝐿(𝜌𝑡+𝛥𝑡),
(𝑇 𝑡+𝛥𝑡, 𝜌𝑡+𝛥𝑡), 𝜓(𝜌𝑡+𝛥𝑡), while the relative density 𝜌(𝛥𝑒) is given by
q. (4A).

In order to obtain simple and clear derivatives, Eq. (5A) can be
ewritten as,
{

𝒇 𝜺𝑒 = 𝛥𝜺𝑒 + 𝛥𝑡𝐴𝝈′ + 1
3𝛥𝑒𝑰 − 𝛥𝜺

𝑓𝑒 = 𝛥𝑒 − 3𝛥𝑡[𝐵tr(𝝈) − 𝐶]
(6A)

where

⎧

⎪

⎨

⎪

𝐴(𝜌𝑡+𝛥𝑡(𝛥𝑒)) = 1
2𝜂𝜙

𝐵(𝜌𝑡+𝛥𝑡(𝛥𝑒)) = 1
18𝜂𝜓

𝑡+𝛥𝑡 𝑡+𝛥𝑡

⎩𝐶(𝜌 (𝛥𝑒)) = 3𝐵(𝜌 (𝛥𝑒)) ⋅ 𝑃𝐿
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A.5. Solving scheme of reduced system of implicit equations

In Eq. (6A), we have 7 unknowns with 𝛥𝑒 and 𝛥𝜺𝑒 that con-
sists of 6 independent strain components. To solve them using the
Newton–Raphson method, one needs to construct a 7 × 7 Jacobian:

𝑱 =
⎡

⎢

⎢

⎣

𝜕𝑓𝜺𝑒
𝜕𝛥𝜺𝑒

𝜕𝑓𝜺𝑒
𝜕𝛥𝑒

𝜕𝑓𝑒
𝜕𝛥𝜺𝑒

𝜕𝑓𝑒
𝜕𝛥𝑒

⎤

⎥

⎥

⎦

here
𝜕𝒇 𝜺𝑒
𝜕𝛥𝜺𝑒

= 4𝑰 + 2𝛥𝑡𝜇𝐴(4𝑰 − 1
3
𝑰 ⊗ 𝑰)

𝜕𝒇 𝜺𝑒
𝜕𝛥𝑒

= 1
3
𝑰 + 𝛥𝑡 𝜕𝐴

𝜕𝜌
𝜕𝜌
𝜕𝛥𝑒

𝝈′

𝜕𝑓𝑒
𝜕𝛥𝜺𝑒

= −3𝛥𝑡𝐵(2𝜇 + 3𝜆)𝑰

𝜕𝑓𝑒
𝜕𝛥𝑒

= 1 − 3𝛥𝑡
[

𝜕𝐵
𝜕𝜌

𝜕𝜌
𝜕𝛥𝑒

tr(𝝈) − 𝜕𝐶
𝜕𝜌

𝜕𝜌
𝜕𝛥𝑒

]

or all the terms inside Jacobian:
𝜕𝜌𝑡+𝛥𝑡

𝜕𝛥𝑒
= −𝜌𝑡 exp(−𝛥𝑒) = −𝜌𝑡+𝛥𝑡

𝜕𝜙
𝜕𝜌𝑡+𝛥𝑡

= 2𝜌𝑡+𝛥𝑡

𝜕𝜓
𝜕𝜌𝑡+𝛥𝑡

= −2
3
𝜌2(2𝜌 − 3)
(𝜌 − 1)2

𝜕𝐴
𝜕𝜙

= − 1
2𝜂𝜓2

𝜕𝐵
𝜕𝜓

= − 1
18𝜂𝜙2

𝜕𝐴
𝜕𝛥𝑒

= 𝜕𝐴
𝜕𝜙

𝜕𝜙
𝜕𝜌

𝜕𝜌
𝜕𝛥𝑒

𝜕𝐵
𝜕𝛥𝑒

= 𝜕𝐵
𝜕𝜓

𝜕𝜓
𝜕𝜌

𝜕𝜌
𝜕𝛥𝑒

𝜕𝑃𝐿
𝜕𝜌

= 6𝛼
𝑟𝑝
𝜌

𝜕𝑃𝐿
𝜕𝛥𝑒

=
𝜕𝑃𝐿
𝜕𝜌

𝜕𝜌
𝜕𝛥𝑒

𝜕𝐶
𝜕𝛥𝑒

= 3𝑃𝐿
𝜕𝐵
𝜕𝛥𝑒

+ 3𝐵
𝜕𝑃𝐿
𝜕𝛥𝑒

.6. Elimination of the elastic strain

As the deviatoric part of 𝜺𝑖 is linear with the stress deviator, Eq. (6A)
can be further reduced to only a single scalar unknown 𝛥𝑒.

Using Eq. (2):

tr(𝛥𝝈) = (3𝜆 + 2𝜇)tr(𝛥𝜺 − 𝛥𝜺𝑖) (7A)

Putting into Eq. (6A), we obtain:

𝑓𝑒 = 𝛥𝑒 − 3𝛥𝑡
[

𝐵tr(𝝈𝑡+𝛥𝑡) − 𝐶
]

= 𝛥𝑒 − 3𝛥𝑡
[

𝐵tr(𝝈𝑡) + 𝐵tr(𝛥𝝈) − 𝐶
]

= 𝛥𝑒 − 3𝛥𝑡
[

𝐵tr(𝝈𝑡) + 𝐵(3𝜆 + 2𝜇)tr(𝛥𝜺 − 𝛥𝜺𝑖) − 𝐶
]

(8A)

Then the tangent can be derived as:
𝜕𝑓𝑒
𝜕𝛥𝑒

= 1 − 3𝛥𝑡
[ 𝜕𝐵
𝜕𝛥𝑒

tr(𝝈𝑡) + (3𝜆 + 2𝜇)tr(𝛥𝜺) 𝜕𝐵
𝜕𝛥𝑒

−(3𝜆 + 2𝜇)(𝐵 + 𝜕𝐵
𝜕𝛥𝑒

𝛥𝑒) − 𝜕𝐶
𝜕𝛥𝑒

]
(9A)
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