
 

On a canonical distributed controller in the behavioral
framework
Citation for published version (APA):
Steentjes, T. R. V., Lazar, M., & Van den Hof, P. M. J. (2023). On a canonical distributed controller in the
behavioral framework. Systems and Control Letters, 179, Article 105581.
https://doi.org/10.1016/j.sysconle.2023.105581

Document license:
CC BY-NC-ND

DOI:
10.1016/j.sysconle.2023.105581

Document status and date:
Published: 01/09/2023

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.1016/j.sysconle.2023.105581
https://doi.org/10.1016/j.sysconle.2023.105581
https://research.tue.nl/en/publications/9b2d8fa8-9c85-4a43-a78d-2856daa1cf76


Systems & Control Letters 179 (2023) 105581

T

t
i
t
t
e
o
i
p
r
t
m
a
a
t

p
a
s

(

Contents lists available at ScienceDirect

Systems & Control Letters

journal homepage: www.elsevier.com/locate/sysconle

On a canonical distributed controller in the behavioral framework✩

om R.V. Steentjes ∗, Mircea Lazar, Paul M.J. Van den Hof
Department of Electrical Engineering, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands

a r t i c l e i n f o

Article history:
Received 12 October 2022
Received in revised form 20 March 2023
Accepted 9 June 2023
Available online xxxx

Keywords:
Behavioral control
Distributed control
Canonical controller
Interconnected systems

a b s t r a c t

Control in a classical transfer function or state-space setting typically views a controller as a signal
processor: sensor outputs are mapped to actuator inputs. In behavioral system theory, control is
simply viewed as interconnection; the interconnection of a plant with a controller. In this paper we
consider the problem of control of interconnected systems in a behavioral setting. The behavioral
setting is especially fit for modeling interconnected systems, because it allows for the interconnection
of subsystems without imposing inputs and outputs. We introduce a so-called canonical distributed
controller that implements a given interconnected behavior that is desired, provided that necessary
and sufficient conditions hold true. The controller design can be performed in a decentralized
manner, in the sense that a local controller only depends on the local system behavior. Regularity of
interconnections is an important property in behavioral control that yields feedback interconnections.
We provide conditions under which the interconnection of this distributed controller with the plant
is regular. Furthermore, we show that the interconnections of subsystems of the canonical distributed
controller are regular if and only if the interconnections of the plant and desired behavior are regular.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

When physical systems are interconnected, no distinction be-
ween inputs and outputs is made. Think for example of the
nterconnection of two RLC-circuits through their terminals or
he interconnection of two mass–spring-damper systems. Typical
ransfer-function and input-state-output representations inher-
ntly impose an input–output partition of system variables. One
f the main features of the behavioral approach to system theory,
s that it does not take an input–output structure as a starting
oint to describe systems: a mathematical model is simply the
elation between system variables. In the case of dynamical sys-
ems, the set of all time trajectories that are compatible with the
odel is called the behavior. The behavioral approach has been
dvocated as a convenient starting point in several applications,
mong which in the context of interconnected systems [1] and
he context of control [2].

In the context of interconnected systems, modeling can be
erformed through tearing (viewing the interconnected system
s an interconnection of subsystems), zooming (modeling the
ubsystems), and linking (modeling the interconnections) [1].

✩ This work has received funding from the European Research Council (ERC),
Advanced Research Grant SYSDYNET, under the European Union’s Horizon 2020
research and innovation programme (Grant Agreement No. 694504).
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nc-nd/4.0/).
Interconnection of systems in a behavioral setting means vari-
able sharing. When two masses are physically interconnected,
the laws of motion for the first mass involve the position of
the second mass and vice versa; the laws of motion of both
masses together dictate the behavior of the interconnected sys-
tem. Thinking of system interconnections makes the modeling of
interconnected systems remarkably simple. Partitioning variables
into input and output variables is appropriate in signal process-
ing, feedback control based on sensor outputs and other unilateral
systems, but often unnecessary for physical system variables [1].

Feedback control based on sensor outputs to generate actuator
inputs, where the controller is viewed as a signal processor [3],
holds an important place in control theory. It has been argued
that many practical control devices cannot be interpreted as
feedback controllers, however, such as passive-vibration con-
trol systems, passive suspension systems or operational ampli-
fiers [2]. Indeed, such control systems do not inherit a signal
flow, but can be interpreted as an interconnection in a behav-
ioral setting. Control by interconnection allows the control de-
sign to take place without distinguishing between control inputs
and measured outputs, a priori [2], and can be performed for,
e.g., stabilization [4], H∞ control [5] and robust control [6].

Control by interconnection in a behavioral setting means re-
stricting the behavior of the system that is to be controlled, by
interconnecting it with a controller. By specifying a behavior
that is desired for the controlled system, an important control
problem is to determine the existence of a controller such that
the controlled system’s behavior is equal to the desired behavior.
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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his is called the implementability problem [3]. The canonical
ontroller plays a major role in the implementability problem:
he canonical controller implements the desired behavior if and
nly if the desired behavior is implementable [7,8].
In this paper, we will consider distributed control in a behav-

ioral setting. In particular, we will consider distributed control
of interconnected linear time-invariant systems. As a natural
consequence of behavioral interconnections, we consider a dis-
tributed controller to be an interconnected system itself, i.e., we
consider it to consist of subsystems that are interconnected with-
out imposing signal flows between subsystems. Several types of
interconnections become of interest in this problem: interconnec-
tions between subsystems of the to-be-controlled interconnected
system (plant), interconnections between subsystems of the plant
and subsystems of the distributed controller, and interconnec-
tions between subsystems of the distributed controller. Given a
desired behavior for the controlled interconnected system that
has the same interconnection structure as the plant, the consid-
ered distributed control problem is to determine the existence
of a distributed controller that implements the desired behavior.
We introduce a canonical distributed controller which imple-
ments the desired interconnected behavior under necessary and
sufficient implementability conditions on the manifest plant and
desired behavior. The distributed canonical controller has an at-
tractive interconnection structure, in the sense that two of its
subsystems are interconnected only if two subsystems of the
plant or desired behavior are interconnected.

Distributed control with input–output partitioning and com-
munication between subsystems of the distributed controller fol-
lows as an important special case of distributed control in a be-
havioral setting. An important question is: when can the canon-
ical distributed controller be implemented with feedback inter-
connections? Following up on this question: When can the in-
terconnections between controller subsystems be implemented
as communication channels? The main concept in the solution
to these problems is regularity of the corresponding intercon-
nections. We will analyze regularity of the canonical distributed
controller. In particular, we show that the connections between
subsystems of this distributed controller are regular if and only if
connections between subsystems of the plant and desired behav-
ior are regular.

2. Preliminaries

Behavioral notions
For the notions of systems in the behavioral setting, we will

follow the notation in [3]. A dynamical system is defined as a
triple Σ = (T ,W ,B), where T ⊆ R is the time axis, W is
the signal space and B ⊆ W T is the behavior. Consider two
dynamical systems Σ1 = (T ,W1 × W3,B1) and Σ2 = (T ,W2 ×

W3,B2) with the same time axis, and trajectories (w1, w3) ∈ B1
and (w2, w3) ∈ B2, respectively. The interconnection of Σ1 and
Σ2 through w3 yields the dynamical system

Σ1 ∧w3 Σ2 := (T ,W1 × W2 × W3,B),

with B := {(w1, w2, w3) | (w1, w3) ∈ B1 and (w2, w3) ∈ B2}.
The manifest behavior of Σ1 with respect to w1 is

(B1)w1 := {w1 : T → W1 | ∃w3 so that (w1, w3) ∈ B}.

The set Lw denotes the set of all linear differential systems Σ =

(R,Rw,B), with w ∈ N variables, where the behavior is

B := {w ∈ C∞(R,Rw) | R(
d
dt

)w = 0},

with a polynomial matrix R ∈ Rg×w
[ξ ], g ∈ N>0, and C∞(R,Rw)

denotes the set of infinitely often differentiable functions from R
to Rw.
2

Consider a behavior B ∈ Lw. The components of w ∈ B
llow for a component-wise partition1 such that w = (u, y),

with u input and y output. The partition w = (u, y) is called
n input–output partition if u is free, i.e., for all u there exists
y so that (u, y) ∈ B, and y does not contain any further

ree components, i.e., u is maximally free [9, Definition 3.3.1],
f. [10, Definition 2.9.2]. The number of components in the input
nd output, called the input and output cardinality, is invari-
nt, i.e., independent of the input–output partition. Henceforth,
(B) denotes the input cardinality and p(B) denotes the output
ardinality, which implies that p(B) + m(B) = w. For a kernel
epresentation R

( d
dt

)
w = 0 of B, the output cardinality is

p(B) = rank R.

Control by interconnection
A controlled interconnection is the interconnection of a plant

Σp = (T ,W×C,P) and a controller Σc = (T , C, C), with the same
time axis, and trajectories (w, c) ∈ P and c ∈ C, respectively.
The plant has two types of variables: w is the to-be-controlled
variable and c is the control variable. The controlled intercon-
nection is thus P ∧c C. A general control problem can now be
formulated as: Given the plant behavior P and a desired behavior
K ⊆ W T , does there exist a controller C so that K = (P ∧c C)w ,
i.e., is K implementable? The implementability problem has been
extensively studied in [3,11]. Necessary and sufficient conditions
for implementability are recalled in the following theorem.

Theorem 1 ([11]). Let P ∈ Lw+c be a plant with (P)w ∈ Lw its
manifest behavior and N := {w ∈ P | (w, 0) ∈ P} its hidden
behavior. Then K ∈ Lw is implementable by a controller C ∈ Lc if
nd only if

⊆ K ⊆ (P)w.

. Control of interconnected systems

.1. Plant interconnections

For the design of a distributed controller, we consider L sys-
ems (plants) Σpi = (T ,Wi × Si × Ci,Pi), i ∈ Z[1:L] := Z ∩ [1, L],
having trajectories (wi, si, ci) ∈ Pi, with wi the to-be-controlled
variable, si the inter-plant connection variable and ci the control
variable. Partition the inter-plant connection variable si into sij,
the variable that behavior Pi shares with Pj. The variable sharing
is symmetric in the sense that if Pi shares variable sij with Pj,
then Pj shares variable sji with Pi and hence sij = sji. The
interconnection of Pi and Pj is given by

Pi ∧sij Pj = {(wi, wj, sij, ci, cj) |(wi, sij, ci) ∈ Pi and
(wj, sij, cj) ∈ Pj}.

We denote the straightforward generalization of the interconnec-
tion of Pi, i ∈ Z[1:L] as PI := ∧si,i∈Z[1:L]Pi, such that

PI = {(w, s, c) | (wi, si, ci) ∈ Pi for all i ∈ Z[1:L]}.

Fig. 1(a) depicts an interconnection example of three behaviors
P1, P2 and P3, through s12 and s23, i.e., P1 ∧s12 P2 ∧s23 P3.
When we eliminate the interconnection variables (si)i∈Z[1:L] from
the behavior of the interconnected system, PI , we obtain the
manifest behavior of PI with respect to (w, c). This manifest
behavior of the plant interconnection with respect to (w, c) is
(PI)(w,c) = (∧si,i∈Z[1:L]Pi)(w,c), such that

(PI)(w,c) = {(w, c) | ∃si ∈ C∞(R,Rsi ), i ∈ Z[1:L],

so that (wi, si, ci) ∈ Pi for all i ∈ Z[1:L]}.

1 Up to re-ordering of the components in w.
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Fig. 1. Distributed control in the behavioral framework.

.2. Distributed control problem

In the following, we will consider an interconnection of linear
ystems Pi ∈ Lwi+si+ci , i ∈ Z[1:L]. Given Ki ∈ Lwi+ki , i ∈ Z[1:L], let
he desired behavior of the interconnected system be equal to the
anifest behavior of the interconnection of Ki with respect to w,

.e.,

KI)w = (∧ki,i∈Z[1:L]Ki)w = {w | ∃ki ∈C∞(R,Rki ), i∈Z[1:L],

so that (wi, ki) ∈ Ki, i ∈ Z[1:L]}.

Complementary to the interconnected plant, we are looking
or another interconnected behavior, the controller, such that the
nterconnection of the plant with the controller yields the desired
anifest behavior with respect to the to-be-controlled variable
, i.e., (KI)w . The controller behavior is the interconnection of
i ∈ Lci+pi , i ∈ Z[1:L], through inter-controller connection variable
i. The controller interconnection is distributed in the following
ense: if Pi and Pj do not share a variable (they cannot be
nterconnected), then Ci and Cj do not share a variable, i.e., for
ach pair (i, j) ∈ Z2

[1:L], it holds that sij = 0 ⇒ pij = 0. In this way,
he controller structure will reflect the plant structure and, hence,
he structure of the ‘‘closed-loop’’ interconnection. This idea is
xemplified in Fig. 1(b) for the plant interconnection in Fig. 1(a).
he chosen controller structure is a design choice that is natural
n the sense that the interconnection structure of the plant is
espected. Therefore, this choice is commonly considered in the
istributed control literature, cf. [12–16]. Alternative distributed
ontroller structures are, for example, hierarchical and multi-
ayer structures, which are designed according to multi-level or
ulti-resolution models [17] or through optimization [18].
Considering the ‘control by interconnection’ problem described

n Section 2, we can now analogously state the distributed control
roblem: Given the plant interconnection PI = ∧si,i∈Z[1:L]Pi

and a desired behavior defined by KI = ∧ki,i∈Z[1:L]Ki, do there
exist controllers Ci ∈ Lci+pi , i ∈ Z[1:L], so that (KI)w =

((∧si,i∈Z[1:L]Pi) ∧c (∧pi,i∈Z[1:L]Ci))w? That is, does there exist a dis-
tributed controller such that the desired behavior is equal to
the controlled interconnection? Fig. 2 illustrates this controlled
interconnection.

Definition 2. Let Ki, i ∈ Z[1:L], be given and consider the
desired interconnected system behavior (K ) . If there exists
I w

3

Fig. 2. Controlled interconnection.

a distributed controller such that the controlled interconnected
behavior equals the desired interconnected behavior, i.e., if there
exist Ci, i ∈ Z[1:L], such that

(∧ki,i∈Z[1:L]Ki)w =
(
[∧si,i∈Z[1:L]Pi] ∧c [∧pi,i∈Z[1:L]Ci]

)
w

⇕

(KI)w =
(
PI ∧c [∧pi,i∈Z[1:L]Ci]

)
w

(1)

then KI is called implementable via distributed control.
Consequently, a distributed controller with controller behav-

iors Ci, i ∈ Z[1:L], is said to implement KI if (1) holds.

Remark 3. A natural question that comes to mind is: what
prevents a desired behavior from being implementable? The nec-
essary conditions of the controller implementability theorem for
‘centralized’ control, recalled in Theorem 1, reveal that there are
two restrictions: (i) since control means that the behavior of the
plant is restricted, the desired behavior must be a subset of the
(manifest) behavior of the plant and (ii) since the hidden behavior
of the plant (for c = 0) should remain possible, the hidden
behavior of the plant must be subset of the desired behavior [11].

4. Canonical distributed controller

4.1. Synthesis of a canonical distributed controller

Let Ki ∈ Lwi+ki , i ∈ Z[1:L], and consider its interconnected
manifest behavior (KI)w ∈ Lw+k. We define the controller

Ccan
i := (Pi ∧wi Ki)(ci,si,ki) (2)
={(ci, si, ki) | ∃wi so that (wi, si, ci) ∈ Pi and (wi, ki) ∈ Ki},

i.e., the manifest behavior with respect to (ci, si, ki) of the inter-
connection of the local plant behavior Pi and desired behavior
Ki through wi. This interconnection is depicted in Fig. 3. We call
Ccan
i a local canonical controller. By the elimination theorem [9,

Theorem 6.2.6], we have that Ccan
i ∈ Lci+si+ki .

Notice that by construction of the plant interconnection and
interconnection defining the desired behavior, we can intercon-
nect two canonical controllers Ccan

i and Ccan
j through the variables

(sij, kij), i.e., Ccan
i ∧(sij,kij) C

can
j . In order to construct a distributed

controller, we interconnect the local canonical controllers Ccan
i ,

i ∈ Z[1:L], through (si, ki). The behavior of the interconnection of
the local canonical controllers is

Ccan
I = ∧(si,ki),i∈Z[1:L]C

can
i , (3)

which is called the canonical distributed controller.
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.2. Implementability via distributed control

We will now provide conditions on the interconnected system
nd desired interconnected behavior under which the canonical
istributed controller implements KI . The hidden behavior of PI

is defined as

N (PI) := {w | (w, 0) ∈ (PI)(w,c)}.

Proposition 4. The canonical distributed controller Ccan
I imple-

ments the desired behavior KI ∈ Lw+k if and only if

N (PI) ⊆ (KI)w ⊆ (PI)w.

Proof. (⇐) The sufficiency proof can be separated in two parts:
(i) show that the distributed canonical controller satisfies
(Ccan

I )c = ((PI)(w,c) ∧w (KI)w)c and (ii) application of the imple-
mentability proof for the centralized canonical controller [8,11].
We will prove both parts (i) and (ii) for completeness.

We will first show that (∧(si,ki)C
can
i )c =

(
(∧siPi)(w,c)∧w

(∧kiKi)w
)
c , i.e., that (C

can
I )c = ((PI)(w,c) ∧w (KI)w)c . The manifest

behavior of ∧kiKi with respect to wi is

(∧kiKi)w = {(w1, . . . , wL) | ∃ki, i ∈ Z[1:L],

so that (wi, ki) ∈ Ki, i ∈ Z[1:L]}

and the manifest behavior of ∧siPi with respect to (w, c) is

(∧siPi)(w,c) = {(w1, . . . , wL, c1, . . . , cL) |∃si, i ∈ Z[1:L], so that
(wi, si, ci) ∈ Pi, i ∈ Z[1:L]}.

Hence, we have(
(∧siPi)(w,c) ∧w (∧kiKi)w

)
c

= {(c1, . . . , cL) | ∃(wi, si, ki), i ∈ Z[1:L], so that
(wi, ki) ∈ Ki and (wi, si, ci) ∈ Pi}.

Furthermore, the manifest behavior of Ccan
I with respect to the

control variable c is

(Ccan
I )c = (∧(si,ki), i∈Z[1:L]C

can
i )c

= {(c1, . . . , cL) | ∃(si, ki), i ∈ Z[1:L], so that (ci, si, ki) ∈ Ccan
i },

= {(c1, . . . , cL) | ∃(wi, si, ki), i ∈ Z[1:L], so that
(wi, ki) ∈ Ki and (wi, si, ci) ∈ Pi}.

Hence, it follows that (Ccan
I )c = ((PI)(w,c) ∧w (KI)w)c .

With this expression for the behavior of the canonical dis-
tributed controller, we find that the behavior of the intercon-
nection of the manifest behavior of the canonical distributed
controller and the manifest behavior of the plant is equal to

((PI)(w,c) ∧c (Ccan
I )c)w = ((PI)(w,c) ∧c ((PI)(w,c) ∧w (KI)w)c)w.

We will now show that this behavior is in fact equal to (KI)w .
Consider minimal kernel representations for (PI)(w,c) and (KI)w ,
respectively:

R
( d

dt

)
w + M

( d
dt

)
c = 0, K

( d
dt

)
w = 0.

e therefore have that

w so that

[
R

( d
dt

)
M

( d
dt

)
K

( d
dt

)
0

][
w

c

]
= 0

is a latent variable representation for (Ccan
I )c . Since N (PI) ⊆

(KI)w and (KI)w ⊆ (PI)w , there exists a polynomial matrix F (ξ )
so that K (ξ ) = F (ξ )R(ξ ). Consider the polynomial matrix U(ξ ) :=

F (ξ ) −I
]
. Post-multiplication of U(ξ ) with col(M(ξ ), 0) yields
I 0

4

Fig. 3. Local canonical controller. The mirrored plant notation emphasizes that
the control and to-be-controlled variables of Pi are reversed inside the canonical
controller.

U(ξ )
[
M(ξ )
0

]
=

[
F (ξ )M(ξ )
M(ξ )

]
and post-multiplication of U(ξ ) with

ol(−R(ξ ), K (ξ )) yields

(ξ )
[
−R(ξ )
K (ξ )

]
=

[
−F (ξ )R(ξ ) + K (ξ )

−R(ξ )

]
=

[
0

−R(ξ )

]
.

ince U(ξ ) is a unimodular matrix, the manifest behavior of Ccan
I

ith respect to c consists of the C∞ solutions of F
( d

dt

)
M

( d
dt

)
c =

, by the elimination theorem [9, Theorem 6.2.6]. We thus have
Ccan
I )c = {c | F

( d
dt

)
M

( d
dt

)
c = 0} so that

(PI)(w,c) ∧c (Ccan
I )c = {(w, c) |

[
R

( d
dt

)
M

( d
dt

)
0 F

( d
dt

)
M

( d
dt

)] [
w

c

]
= 0}

= {(w, c) |

[
R

( d
dt

)
0

]
w

=

[
−M

( d
dt

)
−F

( d
dt

)
M

( d
dt

)] c}.

Now, since

U(ξ )
[
R(ξ )
0

]
=

[
F (ξ )R(ξ )
R(ξ )

]
and

U(ξ )
[

−M(ξ )
−F (ξ )M(ξ )

]
=

[
0

−M(ξ )

]
,

e have ((PI)(w,c) ∧c (Ccan
I )c)w = {w | FR

( d
dt

)
w = 0} = {w |

K
( d

dt

)
w = 0} = (KI)w .

(⇒) Let the canonical distributed controller Ccan
I implement

KI . Then it holds that

(KI)w =
(
(PI)(w,c) ∧c (Ccan

I )c
)
w

= {w | ∃c ∈ (Ccan
I )c so that (w, c) ∈ (PI)(w,c)}.

By definition, the manifest plant behavior with respect to the
variable w is given by

(PI)w = {w | ∃c ∈ C∞(R,Rc) so that (w, c) ∈ (PI)(w,c)}.

Hence, it follows that (KI)w ⊆ (PI)w . Further, the hidden behav-
ior of PI is N (PI) = {w | (w, 0) ∈ (PI)(w,c)}, which implies that
N (PI) ⊆ (KI)w and the proof is complete. □

Remark 5. The manifest behavior of the controller (3) with
respect to the control variable c is equal to the behavior of
the ‘‘central’’ canonical controller for the desired interconnected
behavior, cf. [8]. Intuitively, this is sensible, see e.g. the controlled
interconnection for the example with three subsystems in Fig. 4.
The controllers Ccan

i are based on ‘‘local’’ behavior Pi, while the
central canonical controller is based on (PI)(w,c). From a synthesis
point of view, the control design is decentralized in the sense that
only the subsystem P of the interconnected system is required to
i
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Fig. 4. Controlled interconnection with local canonical controllers.

etermine Ccan
i , once a desired interconnected behavior has been

pecified.

emark 6. The relevance of the developed canonical distributed
ontroller reaches beyond the behavioral framework. An instance
f the canonical distributed controller has been utilized for data-
riven distributed control in [19–21], as a generalization of the
deal controller in model-reference control [22,23]. The canon-
cal distributed controller presented here is a generalization of
he ideal distributed controller in [19] in the sense that it is
epresentation free and does not distinguish between inputs
nd outputs of the interconnected system, both for the inter-
lant connecting variables, as well as the control variables and
nter-controller connecting variables. It is of future interest to
etermine how the canonical distributed controller can be fur-
her utilized in data-driven control, especially within the data-
nformativity framework [24,25] and e.g. data-driven distributed
redictive control [26], which currently relies on artificial state-
pace representations.

Implementability of a desired interconnected system behavior
y the canonical distributed controller is clearly sufficient for im-
lementability via distributed control as defined in Definition 2.
t is also necessary, by the following corollary.

orollary 7. The desired interconnected system behavior KI is
implementable via distributed control if and only if the canonical
distributed controller Ccan

I implements KI .

roof. (⇐) If the canonical distributed controller Ccan
I imple-

ments KI , then (1) holds true for Ci = Ccan
i , i ∈ Z[1:L], and hence

KI is implementable via distributed control.
(⇒) Let KI be implementable via distributed control. Then

there exist controllers Ci, i ∈ Z[1:L], such that (KI)w = (PI
∧c[∧pi,i∈Z[1:L]Ci]

)
w
. Following an analogous reasoning as in the

necessity part of the proof for Proposition 4, we have by definition
that

(KI)w = {w | ∃c ∈ (CI)c so that (w, c) ∈ (PI)(w,c)},

which implies (KI)w ⊆ (PI)w . Indeed, by definition, the manifest
plant behavior with respect to the variable w is given by

(PI)w = {w | ∃c ∈ C∞(R,Rc) so that (w, c) ∈ (PI)(w,c)}.

Hence, it follows that (KI)w ⊆ (PI)w . Further, the hidden behav-
ior of P is N (P ) = {w | (w, 0) ∈ (P ) }, which implies that
I I I (w,c)

5

N (PI) ⊆ (KI)w . Therefore, the canonical distributed controller
Ccan
I implements KI by Proposition 4. □

Remark 8. The controller implementability conditions for a
‘‘single’’ system in Theorem 1 now follow as a special case from
Proposition 4 and Corollary 7. Indeed, for a single system without
inter-plant connection variables, i.e., L = 1, s1 = 0 and k1 =

, we have that Ccan
I = Ccan

1 implements the desired behavior
KI = K1 if and only if N (P1) ⊆ K1 ⊆ (P1)w , where we used
(K1)w = K1. Thus K1 is implementable by a controller C1 if and
nly if N (P1) ⊆ K1 ⊆ (P1)w .

.3. Example: interconnected mass–spring system

Consider an interconnected mass–spring system, with unity
asses and spring constants, described by

d2

dt2
x1 + (x1 − x2) + x1 = f1 + d1,

d2

dt2
x2 + (x2 − x1) + x2 = f2 + d2,

where xi, i = 1, 2, are the mass positions and fi, di are external
forces acting on the masses. We describe the interconnected
system by behaviors P1, P2 with variables wi := col(xi, di), ci :=

col(xi, fi) and s = col(x1, x2), admitting kernel representations
Pi( d

dt ) col(wi, s, ci) = 0, with

P1(ξ ) :=

⎡⎣ξ 2
+ 2 −1 0 −1 0 −1

−1 0 1 0 0 0
−1 0 0 0 1 0

⎤⎦ and

2(ξ ) :=

⎡⎣ξ 2
+ 2 −1 −1 0 0 −1

−1 0 0 1 0 0
−1 0 0 0 1 0

⎤⎦ .

For the desired interconnected system, we wish that the con-
rolled behavior represents a system with increased mass, as
ell as damping between masses and ground, and a higher stiff-
ess between the masses. Specifically, the desired behavior is
escribed by the differential equations

d2

dt2
x1 + 2(x1 − x2) +

d
dt

x1 + x1 = d1,

2
d2

dt2
x2 + 2(x2 − x1) +

d
dt

x2 + x2 = d2.

The desired interconnected behavior is the interconnection of K1,
2, through k := col(x1, x2), admitting kernel representations

Ki( d
dt ) col(wi, k) = 0, with

K1(ξ ) :=

[
2ξ 2

+ ξ + 3 −1 0 −2
−1 0 1 0

]
and

2(ξ ) :=

[
2ξ 2

+ ξ + 3 −1 −2 0
−1 0 0 1

]
.

he desired interconnected system satisfies the condition in
roposition 4, thus the canonical distributed controller imple-
ents the desired behavior. The local canonical controllers in (2)
dmit the kernel representations C can

i ( d
dt ) col(ci, s, k) = 0, with

C can
1 (ξ ) :=

⎡⎣ξ 2
+ ξ + 1 1 0 1 0 −2
0 0 −1 0 1 0
1 0 −1 0 0 0

⎤⎦ and

can
2 (ξ ) :=

⎡⎣ξ 2
+ ξ + 1 1 1 0 −2 0
0 0 0 −1 0 1
1 0 0 −1 0 0

⎤⎦ .
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Fig. 5. Interconnected mass–spring system example (black) and a physical inter-
pretation of the canonical distributed controller Ccan

I (orange). (For interpretation
f the references to color in this figure legend, the reader is referred to the web
ersion of this article.)

rom the interconnection Ccan
I = Ccan

1 ∧(s,k) Ccan
2 , we observe that

k = s,
[
1 0

]
c1 =

[
1 0

]
k,

[
1 0

]
c2 =

[
0 1

]
k and

d2

dt2
[c1]1 +

d
dt

[c1]1 + [c1]1 + [c1]2 +
[
0 −1

]
k = 0, (4)

d2

dt2
[c2]1 +

d
dt

[c2]1 + [c2]1 + [c2]2 +
[
−1 0

]
k = 0. (5)

The canonical distributed controller behavior thus has a clear
physical interpretation. Indeed, the distributed controller can be
represented by a mass–spring-damper system with unity masses,
unity damping coefficients and a spring between the masses with
a unity stiffness. The physical interpretation of the canonical
distributed controller and its interconnection with the plants is
visualized in Fig. 5. A remark on the necessity of the interconnec-
tion between the local canonical controllers: In the case that the
stiffness interconnecting the masses is required to be the same
for the plant and desired interconnected system, then Eqs. (4) and
(5) become decoupled in the sense that there is no dependency
on k, i.e., the last term in (4) and (5) becomes

[
0 0

]
k. There-

fore, the orange spring in the physical interpretation in Fig. 5
is not present and the local canonical controllers are thus not
necessarily coupled.

5. Regularity of the canonical distributed controller

An important type of system interconnections is a regular
interconnection, introduced by Willems in [2]. Formally, a regular
interconnection of two systems is defined as follows.

Definition 9. Consider two behaviors B1 ∈ Lw1+w2 and B2 ∈

Lw2+w3 . The interconnection of B1 and B2 is said to be regular
if p(B1 ∧w2 B2) = p(B1) + p(B2), where B1 ∧w2 B2 =

{(w1, w2, w3) | (w1, w2) ∈ B1 and (w2, w3) ∈ B2}.

Regularity of the interconnection of two systems has multi-
ple interpretations. First, regularity means in a sense that the
equations describing the dynamics of B1 and B2 are independent
of each other [27]. For the second interpretation, consider a
plant P ∈ Lw+c, a controller C ∈ Lc and their interconnection
K := {(w, c) ∈ P | c ∈ C}. According to Definition 9, the
plant-controller interconnection is regular if

p(K) = p(P) + p(C).

This interconnection is regular if and only if the controller C
can be realized as a transfer function from an output variable
to an input variable of P for an input/output partitioning of the
control variable c [27]. From a control-point-of-view, regularity
of the plant-controller interconnection therefore means that the

controller acts as a feedback controller, i.e., it can process sensor

6

outputs to actuator inputs. Notice that this typical assumption in
classical and modern control theory is not assumed a priori in
control in a behavioral setting [2,8,27]. A special type of regular
interconnections is a regular feedback interconnection for which,
in addition to being regular, the sum of the McMillan degrees of
P and C is equal to the McMillan degree of the interconnection
of P and C [28, Definition 2.5]. In practice, regular feedback
interconnections avoid ‘impulsive’ behavior when two systems
are interconnected, such as sparks in electrical switching and
jerky behavior in mechanical interconnections [28].

Let us now consider regularity of the interconnections related
to the canonical distributed controller, which was introduced in
Section 4. There are two types of interconnections that are of in-
terest: (i) the interconnection between the canonical distributed
controller Ccan

I and the interconnected system PI , i.e., the plant-
controller interconnection and (ii) the interconnection between
Ccan
i and Ccan

j , (i, j) ∈ Z2
[1:L] and i ̸= j, i.e., the interconnection

of local controllers. The interpretation of regularity of the plant-
controller interconnection has been considered in the previous
paragraph. Regularity of the interconnection of local canonical
controllers can be interpreted as follows. If the interconnection
between controllers is regular, then the interconnection variable
pij can always be partitioned to achieve a regular feedback in-
terconnection, i.e., such that the transfers from inputs in the
partitioning to outputs are proper. Regularity of the interconnec-
tion between local controllers thus means that the controllers
can communicate by processing received signals (input) into sent
signals (output).

5.1. Regularity of the plant-controller interconnection

Regularity of the interconnection of the interconnected system
behavior PI and a distributed controller CI follows from the
regularity of the behaviors with the interconnection variables
(s1, . . . , sL) and (p1, . . . , pL) eliminated, i.e., from (PI)(w,c) and
(CI)c . By definition, the interconnection of (PI)(w,c) and (CI)c is
egular if

((PI)(w,c)) + p((CI)c) = p((PI)(w,c) ∧c (CI)c). (6)

f (6) holds, then the distributed controller is called regular with
espect to the variable c . A sufficient condition for regularity
ith respect to the variable c of all distributed controllers that

mplement KI follows from [8, Theorem 12].

roposition 10. Let Pi ∈ Lwi+si+ci and Ci ∈ Lci+pi , i ∈ Z[1:L],
and consider the interconnected system PI = ∧si,i∈Z[1:L]Pi and
distributed controller CI = ∧pi,i∈Z[1:L]Ci. Let (KI)w be the desired
behavior, with KI = ∧ki,i∈Z[1:L]Ki, where Ki ∈ Lwi+ki , i ∈ Z[1:L].

Every distributed controller CI that implements KI , i.e., (1) holds,
is regular with respect to the variable c if (PI)c = C∞(R,Rc), where
(PI)c is the manifest behavior of the interconnected system with
respect to the variable c, i.e.,

(PI)c = {c | ∃(w, s) so that (w, s, c) ∈ PI}.

Proof. First, notice that PI = ∧si,i∈Z[1:L]Pi ∈ Lw+s+c and
that (PI)(w,c) ∈ Lw+c. Hence, there exists a minimal kernel
representation for (PI)(w,c):

R
(

d
dt

)
w + M

(
d
dt

)
c = 0.

Assume that (PI)c = C∞(R,Rc). Then R has full row rank. Now,
take any distributed controller CI = ∧pi,i∈Z[1:L]Ci ∈ Lc+p that
implements KI . The manifest behavior of CI with respect to the
variable c , i.e., (C ) , satisfies (C ) ∈ Lc and therefore has a
I c I c
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( d

dt

)
c = 0. Since R has full row

ank, we find that

R
( d

dt

)
M

( d
dt

)
0 C

( d
dt

)] [
w

c

]
= 0

is a minimal kernel representation of (KI)(w,c). We find that

((KI)(w,c)) = rank R + rank C = p((PI)(w,c)) + p((CI)c),

hich was to be proven. □

orollary 11. Consider an interconnected system PI = ∧si,i∈Z[1:L]Pi,
Pi ∈ Lwi+si+ci , and the desired behavior (KI)w , with KI =

ki,i∈Z[1:L]Ki, Ki ∈ Lwi+ki , i ∈ Z[1:L]. Assume that

(PI) ⊆ (KI)w ⊆ (PI)w.

f (PI)c = C∞(R,Rc), then the canonical distributed controller
mplements KI and is regular with respect to the variable c.

.2. Regularity of the interconnection of local canonical controllers

Let us now consider the regularity of the interconnection of
ocal canonical controllers, i.e., the regularity of Ccan

i ∧(sij,kij) C
can
j ,

i, j) ∈ Z2
[1:L] and i ̸= j. Without loss of generality, we will consider

hat L = 2 in this subsection. The interconnection of Ccan
1 and Ccan

2
s regular if

(Ccan
1 ∧(s,k) Ccan

2 ) = p(Ccan
1 ) + p(Ccan

2 ).

The behaviors Pi ∈ Lwi+s+ci , i = 1, 2, admit kernel represen-
tations

Ri

(
d
dt

)
wi + Si

(
d
dt

)
s + Mi

(
d
dt

)
ci = 0, i = 1, 2. (7)

Similarly, the behaviors Ki ∈ Lwi+k, i = 1, 2, admit kernel
epresentations

i

(
d
dt

)
wi + Ki

(
d
dt

)
k = 0, i = 1, 2. (8)

Define the partitioned matrix⎡⎢⎣ M1 0 S1 0 R1 0
0 0 0 K1 W1 0
0 M2 S2 0 0 R2
0 0 0 K2 0 W2

⎤⎥⎦ =:

[
L1 N1
L2 N2

]
. (9)

Proposition 12. Consider the behaviors Pi ∈ Lwi+s+ci and
Ki ∈ Lwi+k, i = 1, 2, and the kernel representations (7) and (8),
respectively. The interconnection of Ccan

1 and Ccan
2 is regular if and

only if

rank
[
L1 N1

]
+ rank

[
L2 N2

]
= rank

[
L1 N1
L2 N2

]
. (10)

Proof. By (7) and (8), the local canonical controller behavior is
represented by the latent variable representation

Ccan
i = {(ci, s, k) | ∃wi so that[
Ri

( d
dt

)
Si
( d
dt

)
Mi

( d
dt

)
0

Wi
( d
dt

)
0 0 Ki

( d
dt

)]
⎡⎢⎣wi

ci
s
k

⎤⎥⎦ = 0}.

ence, the interconnection of Ccan
1 and Ccan

2 is

Ccan
1 ∧(s,k) Ccan

2

= {(c , c , s, k) | (c , s, k) ∈ Ccan and (c , s, k) ∈ Ccan
}
1 2 1 1 2 2

7

= {(c, s, k) | ∃w so that

[
L1

( d
dt

)
N1

( d
dt

)
L2

( d
dt

)
N2

( d
dt

)]
⎡⎢⎣ c

s
k
w

⎤⎥⎦ = 0},

which is a latent variable representation for the canonical dis-
tributed controller (with latent variable (w1, w2)). By Lemma 8
in [29], the output cardinality of Ccan

1 ∧(s,k) Ccan
2 can be determined

from its latent variable representation as

p(Ccan
1 ∧(s,k) Ccan

2 ) = rank
[
L1 N1
L2 N2

]
− rank

[
N1
N2

]
.

Similarly, the output cardinality of Ccan
1 and Ccan

2 is given by

p(Ccan
i ) = rank

[
Mi Si 0 Ri
0 0 Ki Wi

]
− rank

[
Ri
Wi

]
, i = 1, 2.

It follows by (9) that p(Ccan
1 ∧(s,k) Ccan

2 ) is equal to

rank
[
L1 N1
L2 N2

]
− rank

[
R1
W1

]
− rank

[
R2
W2

]
. (11)

Hence, by (11) and (9), we find that

p(Ccan
1 ) + p(Ccan

2 ) = rank
[
L1 N1

]
+ rank

[
L2 N2

]
− rank

[
L1 N1
L2 N2

]
+ p(Ccan

1 ∧(s,k) Ccan
2 ).

Therefore, p(Ccan
1 ∧(s,k) Ccan

2 ) = p(Ccan
1 ) + p(Ccan

2 ) if and only if (10)
holds. This concludes the proof. □

Regularity of the interconnection of Ccan
1 and Ccan

2 turns out to
be easily verifiable through regularity of the interconnections of
subsystems P1 and P2 of the interconnected system that has to
be controlled and of the interconnection of K1 and K2. We have
the following result.

Proposition 13. The interconnection of Ccan
1 and Ccan

2 is regular
if and only if the interconnection of P1 and P2 is regular and the
interconnection of K1 and K2 is regular. That is, the interconnection
of Ccan

1 and Ccan
2 is regular if and only if p(P1 ∧sP2) = p(P1)+p(P2)

and p(K1 ∧k K2) = p(K1) + p(K2).

Proof. Let Ri
( d

dt

)
wi + Si

( d
dt

)
s + Mi

( d
dt

)
ci = 0 be a minimal

kernel representation for Pi and let Wi
( d

dt

)
wi +Ki

( d
dt

)
k = 0 be

minimal kernel representation for Ki, i = 1, 2.
(⇒) Assume that p(P1 ∧s P2) = p(P1) + p(P2) and that

(K1 ∧k K2) = p(K1) + p(K2). We then have that

rank
[
R1 M1 0 0 S1
0 0 R2 M2 S2

]
= p(P1) + p(P2)

= rank
[
R1 M1 S1

]
+ rank

[
R2 M2 S2

]
, (12)

rank
[
W1 0 K1
0 W2 K2

]
= p(K1 ∧s K2) = p(K1) + p(K2)

= rank
[
W1 K1

]
+ rank

[
W2 K2

]
. (13)

By Proposition 12, Ccan
1 ∧(s,k)Ccan

2 is regular if and only if (10) holds,
i.e., if and only if

rank

⎡⎢⎣A1
B1
A2
B2

⎤⎥⎦ = rank
[
A1
B1

]
+ rank

[
A2
B2

]
, (14)

with the sub-matrices A1 :=
[
M1 0 S1 0 R1 0

]
,

A2 :=
[
0 M2 S2 0 0 R2

]
, B1 :=

[
0 0 0 K1 W1 0

]
and

B2 :=
[
0 0 0 K2 0 W2

]
. Now, by (12), A1 and A2 do not have rows

that are linearly dependent. Similarly, by (13), B1 and B2 do not
have rows that are linearly dependent. Furthermore, B and A do
1 2
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n

t
P

ot have rows that are linearly dependent and A1 and B2 do not
have rows that are linearly dependent, by construction. Hence,[

A1
B1

]
and

[
A2
B2

]
do not have rows that are linearly dependent.

Therefore, (14) holds true and it follows that Ccan
1 ∧(s,k) Ccan

2 is
regular.

(⇐) Let Ccan
1 ∧(s,k) Ccan

2 be regular. Then (14) holds true. But
hen A1 and A2 cannot contain dependent rows. Hence, p(P1 ∧s

2) = p(P1)+p(P2). Moreover, by (14), B1 and B2 cannot contain
dependent rows. Hence, p(K1 ∧k K2) = p(K1) + p(K2). This
completes the proof. □

6. Conclusions

In this paper, we have considered the distributed control prob-
lem for linear interconnected systems in a behavioral setting.
This setting allows to view distributed control from a more gen-
eral perspective, where controllers are not intrinsically viewed
as signal processors. Given a desired behavior represented by a
linear interconnected system, the canonical distributed controller
implements it, provided that necessary and sufficient conditions
on the manifest behavior of the plant and desired behavior are
satisfied. We have shown that regularity of the interconnections
between subsystems in the plant and desired behavior are neces-
sary and sufficient for regularity of the interconnections between
subsystems in the canonical distributed controller.
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