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Abstract

Computational models of human glucose homeostasis can provide insight into the physio-

logical processes underlying the observed inter-individual variability in glucose regulation.

Modelling approaches ranging from “bottom-up” mechanistic models to “top-down” data-

driven techniques have been applied to untangle the complex interactions underlying pro-

gressive disturbances in glucose homeostasis. While both approaches offer distinct bene-

fits, a combined approach taking the best of both worlds has yet to be explored. Here, we

propose a sequential combination of a mechanistic and a data-driven modeling approach to

quantify individuals’ glucose and insulin responses to an oral glucose tolerance test, using

cross sectional data from 2968 individuals from a large observational prospective popula-

tion-based cohort, the Maastricht Study. The best predictive performance, measured by R2

and mean squared error of prediction, was achieved with personalized mechanistic models

alone. The addition of a data-driven model did not improve predictive performance. The per-

sonalized mechanistic models consistently outperformed the data-driven and the combined

model approaches, demonstrating the strength and suitability of bottom-up mechanistic

models in describing the dynamic glucose and insulin response to oral glucose tolerance

tests.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0285820 July 27, 2023 1 / 16

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Erdős B, van Sloun B, Goossens GH,

O’Donovan SD, de Galan BE, van Greevenbroek

MMJ, et al. (2023) Quantifying postprandial

glucose responses using a hybrid modeling

approach: Combining mechanistic and data-driven

models in The Maastricht Study. PLoS ONE 18(7):

e0285820. https://doi.org/10.1371/journal.

pone.0285820

Editor: Gorica Maric, Faculty of Medicine,

University of Belgrade, SERBIA

Received: November 4, 2022

Accepted: May 3, 2023

Published: July 27, 2023

Copyright: © 2023 Erdős et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The data of this study

derive from The Maastricht Study, but restrictions

apply to the availability of these data, which were

used under license for the current study. Data are,

however, available upon reasonable request and

with permission of The Maastricht Study

Management Team (research.dms@mumc.nl).

Python code for estimating the predictive models

can be found at https://github.com/blzserdos/

glucose_hybrid_modeling.

https://orcid.org/0000-0001-8643-4915
https://orcid.org/0000-0002-2827-9889
https://orcid.org/0000-0002-2496-3464
https://orcid.org/0000-0001-9375-4730
https://doi.org/10.1371/journal.pone.0285820
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0285820&domain=pdf&date_stamp=2023-07-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0285820&domain=pdf&date_stamp=2023-07-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0285820&domain=pdf&date_stamp=2023-07-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0285820&domain=pdf&date_stamp=2023-07-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0285820&domain=pdf&date_stamp=2023-07-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0285820&domain=pdf&date_stamp=2023-07-27
https://doi.org/10.1371/journal.pone.0285820
https://doi.org/10.1371/journal.pone.0285820
http://creativecommons.org/licenses/by/4.0/
mailto:research.dms@mumc.nl
https://github.com/blzserdos/glucose_hybrid_modeling
https://github.com/blzserdos/glucose_hybrid_modeling


Introduction

Maintaining glucose homeostasis within a narrow physiological range is essential for normal

body functioning. When glucose levels are elevated (i.e. following meal intake), the hormone

insulin is secreted from pancreatic β-cells to promote glucose uptake in peripheral organs and

suppress hepatic glucose production [1]. In individuals with insulin resistance there is an

impairment in the uptake of glucose by the insulin-dependent tissues (i.e. muscle, and adi-

pose), and in the suppression of hepatic glucose production. The increased demand on pancre-

atic β-cell to produce and secrete more insulin may eventually lead to β-cell dysfunction,

which is the key factor in the development of type 2 diabetes mellitus (T2DM), and is charac-

terised by persistent hyperglycemia [2, 3]. The pathophysiology of T2DM is known to be het-

erogeneous; with inter-individual differences in the severity of insulin resistance and

progression of β-cell dysfunction [4]. Physiology-based mathematical models of the glucose-

insulin regulatory system have long been used to provide qualitative and quantitative informa-

tion on relevant physiological processes governing postprandial glucose and insulin dynamics

[5–7]. The Eindhoven-Diabetes-Education simulator (eDES) is a comparatively simple model

of human insulin-regulated glucose metabolism describing only the crucial reactions involved

in postprandial glucose regulation through a system of coupled differential equations [7, 8].

The reactions described by this model are regulated by rate parameters, which can be esti-

mated from postprandial glucose and insulin time-series data. In our previous work, we suc-

cessfully applied a parsimonious eDES model, estimating only 4 parameters governing gastric

emptying, endogenous insulin secretion and insulin-dependent glucose disposal into tissues,

to quantify the postprandial glucose and insulin responses following the intake of an oral glu-

cose load in a large population of overweight or obese but otherwise healthy individuals [9].

Our results showed that the majority of the individuals’ responses were accurately estimated

with the eDES model, nevertheless we have identified some cases where the mechanistic

model struggled to capture the response. While, the intra-individual variability in the post-

prandial responses can be largely explained by the mechanisms of glucose regulation encoded

in the eDES model, it is known that other factors such as diet, physical activity, sleep and stress

may affect glucose regulation [10, 11]. However, such factors are not directly included in the

eDES model and their implementation within the mechanistic model may be inconvenient;

requiring excessive experimentation.

In addition to physiology-based mathematical models, the application of data-driven pre-

diction models have gained substantial interest in diabetes research, providing insight into fac-

tors contributing to, as well as predicting glucose responses to nutrient intake [12–15]. Such

approaches aim to exploit the large amounts of heterogeneous data available, to find informa-

tive patterns in a data-driven way. Notably, Zeevi and colleagues [15] have shown that a

machine-learning model trained on a wide variety of phenotypic information was able to accu-

rately predict the magnitude of postprandial glucose excursions. While mechanistic models of

the glucose regulatory system describe the change in glucose (and insulin) levels according to

known physiological phenomena, they are limited in their scope and accuracy by the under-

standing of the underlying physiology as well as the availability of invasive measurements dur-

ing model building. In comparison, data-driven models allow a convenient framework to

integrate diverse data that may have relevance in glucose regulation without the need for a

causal understanding. Recently, the bottom up and top down modeling strategies outlined

above have been successfully combined to improve simulation accuracy in the field of systems

biology [16–18]. Here, we combine a mechanistic model with a data-driven model to identify

factors predictive of inter-individual differences in glucose and insulin dynamics following an

oral glucose tolerance test (OGTT) in a large group (n = 2968) of individuals with various
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glucometabolic status (including normal glucose metabolism (NGM), prediabetes, as well as

T2DM) participating in a population-based cohort study (The Maastricht Study) [19].

The aim of the present study is to investigate the predictive performance (explained vari-

ance, error of prediction) in simulating the postprandial glucose and insulin levels following

an OGTT in individuals using the mechanistic eDES model, a data-driven model, and a hybrid

combination of the two. In addition, we will compare the predictive performance between the

various models and evaluated the factors underlying the inter-individual differences in the

responses as derived from the models.

Materials and methods

Data

Data from The Maastricht Study, an observational prospective population-based cohort study

[19] was used in this work. Briefly, The Maastricht Study focuses on the etiology, pathophysiol-

ogy, complications, and comorbidities of T2DM, and is characterised by an extensive pheno-

typing approach. Individuals aged between 40 and 75 years and living in the southern part of

the Netherlands were eligible for participation. Participants were recruited through mass

media campaigns and from mailings through the municipal registries and the regional Diabe-

tes Patient Registry. Known T2DM status was used in stratifying the recruitment process for

efficiency. The present report includes data from the first 3451 participants who completed the

baseline survey between November 2010 and September 2013. All examinations were per-

formed within a three-month time window; the OGTT and vascular measurements were per-

formed during different research visits. The study has been approved by the institutional

medical ethical committee (NL31329.068.10) and the Minister of Health, Welfare and Sports

of the Netherlands (Permit 131088–105234-PG). All participants gave written informed

consent.

Oral glucose tolerance test. Following an overnight fast, participants underwent a stan-

dardized two-hour 75 g oral glucose tolerance test (OGTT) in order to determine glucose

metabolism status [19]. Blood samples were taken under fasting conditions (t = 0) and 15, 30,

45, 60, 90 and 120 minutes after ingestion of the glucose drink in which plasma glucose and

insulin concentrations were determined. Individuals relying on external insulin did not

undergo the OGTT. Furthermore, individuals with more than two missing samples or missing

samples at baseline (t = 0) or 2 hour post-load were excluded from the analysis.

Deep phenotyping features. A selection of health-related features from The Maastricht

Study were used in order to provide a holistic picture of the individuals’ health state. These fea-

tures pertain to health behavior (e.g. diet, physical activity, smoking), cardiovascular health,

musculoskeletal health, metabolic and demographic characteristics, body composition, and

biomarkers. In total 49 features were selected by a set of co-authors who are experts in the field

of metabolism/diabetes. The continuous variables were transformed to zero mean and unit

variance, while the categorical variables were dummy coded prior to modeling. Details about

the measurements can be found in [19]. A complete list of the features used in this work is pro-

vided in the S1 Appendix of the Supplementary Material.

Computational modeling of glucose regulation

In the present study, a variety of modeling scenarios were explored, including mechanistic

models, data-driven models, and a hybrid combination of both models in order to predict the

postprandial concentrations of glucose and insulin after an OGTT.

Eindhoven Diabetes Education Simulator. The Eindhoven Diabetes Education Simula-

tor (eDES, version 2.0) published by Maas and colleagues [7, 8] was employed in this study.
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The eDES model is a physiology-based mathematical model describing the glucose regulatory

system in healthy people and people with type 1 and type 2 diabetes. The eDES model consists

of a gut and plasma compartments, in which the change in mass or concentration of glucose

and insulin over time is described using coupled differential equation (full details provided in

[9]). The reactions included in the model are controlled by rate parameters, which have been

estimated and validated using OGTTs from multiple healthy populations [8].

In order to provide personalized simulation of glucose and insulin concentrations using the

eDES model, we implemented the model selection approach that we have developed previously

[9]. Briefly, the workflow reduces the number of model parameters to be estimated to provide

an accurate and reliable description of individual postprandial glucose and insulin responses.

To obtain the most sensitive, parsimonious and identifiable model parameter set, the following

steps were undertaken. Firstly, a local parameter sensitivity analysis (LPSA) was performed to

identify the most sensitive candidate parameters for estimation. Secondly, a set of all the possi-

ble combinations of 3 or more sensitive parameter candidates were generated. These were

then fit on representative responses to oral glucose intake of individuals with different gluco-

metabolic status (i.e. normal glucose metabolism (NGM), impaired fasting glucose (IFG),

impaired glucose tolerant (IGT), both IFG and IGT (IFG&IGT), and T2DM); based on the

American Diabetes Association (ADA) diagnosis criteria values [20], the most extreme

responses of the Maastricht Study dataset, and on the largest and smallest response in the data-

set by area under the glucose curve (Min, Max). The initial values for glucose and insulin in

the eDES model were set to be equal to the t = 0 measurement of the response, and the set-

point parameters Gpl
b (basal plasma glucose) and Iplb (basal plasma insulin) were also set to these

initial values (t = 0). The candidate model with the lowest Akaike Information Criterion (AIC)

score across the set of representative curves was selected as most parsimonious model, which

was further evaluated for identifiability using Profile Likelihood Analysis (PLA) [21]. In this

way, the model parameters to be estimated resulting from the model selection pertained to gut

emptying (k1), insulin sensitivity (k5) or insulin secretion (k6 & k8) described in S1 Table.

These results are in agreement with our previously reported findings in [9].

The parameter space of the Personalized eDES model is visualized by reducing the number

of dimensions from the number of estimated parameters to two dimensions using principal

component analysis (PCA). Prior to PCA, the parameter values were log-transformed and nor-

malized to zero mean and unit standard deviation.

Model fitting procedure. The eDES model is fitted to time-series of glucose and insulin from

the OGTT by providing as input to the model the corresponding t = 0 glucose and insulin

measurements and then estimating the selected model parameters by minimizing the sum of

squared residuals (SSR) between the model simulation and the measured time-series using a

non-linear least squares solver (lsqnonlin). The output of the model is then the estimated glu-

cose and insulin concentrations (as well as the estimated parameter values; not considered in

this paper). The eDES model was implemented and analysed in MATLAB 2018b (The Math-

works, Inc., Natick, Massachusetts, United states).

Gradient boosting regression. As a data-driven model, we employed gradient boosting

regression (GBR) models in order to allow non-linear relationships between the targets and

the predictors [22, 23]. GBR works by combining the prediction of many different decision

trees that were inferred sequentially by training the tree on the residual of the previous trees.

Relative feature importances are reported as the variance (MSE) reduction weighted by the

proportion of samples reaching the node across all trees [24].

Model fitting procedure. A GBR model is fitted to each measurement of glucose and insulin

concentration from the OGTT, independently. A wide range of phenotypic, demographic and
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lifestyle characteristics of the individuals (full details in supplementary material) were used as

predictors in the gradient boosting regression models. The predictors were kept the same

across all GBR models and no interactions between the predictors were considered. The objec-

tive function to be minimized in training was the mean squared error. The GBR models were

trained in a nested cross-validation framework in order to provide an unbiased estimation of

model performance as described by Cawley and Talbot [25]. Standardization of the numeric

features was carried out within each fold to avoid introducing positive bias to the the estimates.

Hyperparameter tuning was executed with the options described in S3 Table of the supple-

mentary material. The performance estimates (see Performance estimates section below) were

calculated in the outer 5-fold cross validation (CV), with the inner loop (also 5-fold CV) carry-

ing out a limited hyperparameter search independently of the model training procedure. GBR

models were implemented in python 3.5 using the XGBoost package [22].

Hybrid approach. In addition to applying the eDES and GBR models separately, we also

employed a hybrid approach combing these two models. This hybrid model consists of

sequentially joining the prediction of the eDES model and a GBR model. A schematic depict-

ing the workflow and data usage of the hybrid approach is shown in S1 Fig.

Model fitting procedure. First, the eDES model is fitted to time-series of glucose and insulin

from the OGTT. Then, the residuals in the eDES model predictions (i.e. difference between

predicted and measured data-points) are calculated. Subsequently, GBR models are trained to

predict the residuals from the phenotypic features independently per glucose and insulin mea-

surement, thereby linking the two models together. Finally, the output of the hybrid approach

is calculated by subtracting the GBR predicted residuals from the eDES model predictions. In

this way, the GBR models are used to incorporate additional data (phenotypic features) to

improve the eDES model estimated glucose-insulin trajectories.

Performance estimates. Model performances are evaluated by calculating the mean

squared error of prediction (MSE) and the coefficient of determination (R2) for each model.

The R2 and MSE in the model predictions are reported at each measurement time point of the

OGTT and are compared for the different modeling scenarios.

Overview of modeling scenarios. A variety of modeling scenarios based on the eDES,

GBR, and Hybrid approaches are evaluated and compared in terms of coefficient of determi-

nation (R2) and mean squared error of prediction (MSE). The modeling scenarios are selected

in order to allow the comparison of mechanistic with data-driven as well as their sequential

combinations. The final output in all scenarios are the predicted postprandial glucose and

insulin concentrations of the OGTT. The modeling scenarios are detailed below.

• Reference eDES

• Reference GBR

• Hybrid I. (reference eDES + GBR)

• Personalized eDES model

• Hybrid II. (Personalized eDES + GBR)

In the Reference eDES scenario, the median glucose and insulin responses to the OGTT in

the Maastricht Study are calculated by taking the median of the measurements per time-point

of the OGTT across NGM individuals. Then, the eDES model is fitted on the median glucose

and insulin responses. In contrast to the Reference eDES scenario, in the Personalized eDES

scenario we fitted the eDES model on each individuals’ response. In this way, we can compare

a population-level and personalized mechanistic models. The Reference GBR scenario consists

of GBR models estimated for each time-point of the OGTT response to predict the
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corresponding glucose and insulin concentrations. In the Hybrid I scenario, a combined

approach is used in which the residuals in the Reference eDES model predictions are used as

targets for the GBR models, thereby sequentially joining the two approaches. For the Hybrid II

scenario, the residuals in the Personalized eDES model predictions are used as targets for the

GBR models.

Results

A total of 2968 participants were included in the analysis after excluding individuals with miss-

ing measurements on 2 or more time points of the 7-point OGTT or missing baseline the

(t = 0) or 2 the hours post-load (n = 483) measurement. Out of the 2968 included individuals

1436 (48%) were normoglycaemic, 906 (31%) demonstrated impaired glucose metabolism

(IFG and/or IGT) and 625 (21%) had type 2 diabetes based on the OGTT. The characteristics

of the study population are depicted in Table 1.

Prediction task properties

To demonstrate the prediction task, an example of an individual’s OGTT response with corre-

sponding simulation using the different modeling scenarios is provided in Fig 1.

The various modeling scenarios aimed to capture the measured data, denoted with black

crosses. The discrepancy between the simulated glucose and insulin responses (in blue and

orange, respectively) and the measured data-points, termed residuals, were summarized across

individuals by calculating the error of prediction (MSE) and the explained variance (R2), and

were used as comparison between the different modeling approaches in the following para-

graph. As observed from this example, the Personalized eDES and Hybrid II approaches pro-

duced perfect predictions of the first (t = 0) glucose and insulin time-points. However, this

resulted from the first measurement being supplied to the eDES model as initial values. There-

fore, in these scenarios the performance measures (MSE, R2) were not reported.

Modeling scenarios: Explained variance and error of prediction

An overall comparison of how well the different modeling scenarios (Reference eDES model,

Reference GBR, Hybrid I, Personalized eDES model, and Hybrid II) perform in predicting the

postprandial glucose and insulin levels is shown in Fig 2 and in S2 Fig and S2 Table. of the sup-

plementary material. The R2 (Fig 2, panel A) and MSE (Fig 2, panel B) are provided for all the

glucose and insulin time-points following the OGTT. The first glucose and insulin time-point

Table 1. Descriptive characteristics of the study population.

Characteristic Total NGM IFG IGT IFG&IGT T2DM

n = 2968 n = 1436 n = 529 n = 134 n = 243 n = 625

Sex (%male) 51 39 65 37 55 68

Age (years) 59.8 (8.2) 57.6 (8.3) 59.7 (7.6) 60.9 (8.1) 63.3 (7.1) 63.1 (7.4)

BMI (kg/m2) 26.8 (4.3) 25.2 (3.5) 27.1 (3.9) 27.1 (4.1) 28.7 (4.5) 29.4 (4.7)

HbA1c (mmol/mol) 39.3 (6.9) 35.7 (3.7) 38.1 (4.1) 37.0 (4.0) 40.3 (4.7) 48.7 (7.0)

Matsuda index 4.0 (2.7) 5.2 (2.8) 3.4 (2.0) 3.4 (1.9) 2.5 (2.0) 2.3 (1.7)

NGM: normal glucose metabolism, IFG: impaired fasting glucose, IGT: impaired glucose tolerance, T2DM: type 2 diabetes mellitus

Matsuda index is calculated as 10000=ðGt0∗It0∗�G∗�IÞ1=2
, where Gt0, �G and It0, �I are the t = 0 and average glucose and insulin measurements of the 7-point OGTT in mg/dl

and μU/L, respectively. Calculated when t = 0 and t = 120 measurements were available.

Values are means (standard deviations)

https://doi.org/10.1371/journal.pone.0285820.t001
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for the Personalized eDES model and Hybrid II approach are not provided as these are used as

initial values for glucose and insulin simulation via the eDES model.

For the Reference eDES scenario, the eDES model parameters k1, k5, k6, k8 were estimated

on the NGM median OGTT response. The MSE ranged between 1.79 and 29.35 for glucose,

Fig 1. Examples of simulated OGTT responses of study participant using the modeling scenarios. Simulated glucose and insulin are depicted by

blue and orange lines, respectively. The crosses denote the measured glucose and insulin concentrations.

https://doi.org/10.1371/journal.pone.0285820.g001

Fig 2. Explained variance (R2; panel A) and mean squared error (MSE; panel B) per glucose and insulin time-points following OGTT for the

modeling scenarios.

https://doi.org/10.1371/journal.pone.0285820.g002
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73.95 and 7205.55 for insulin, across all time-points (MSE and R2 values are provided in S2

Table). The MSE appeared to increase with respect to time, up until the 6th time-point. The R2

ranges between -0.62 and -0.30 for glucose, -0.03 and -0.25 for insulin, across all time-points.

The negative explained variance indicates that the model is likely mis-specified for the majority

of the OGTT responses. For the Reference GBR scenario, the GBR models were estimated for

each time-point of the OGTT responses to predict the corresponding glucose and insulin con-

centrations using the features outlined in the methods section. The MSE ranges between 0.37

and 4.88 for glucose, 32.59 and 3857.80 for insulin, across all time-points. The MSE appears to

increase with time, up until the 6th time-point. The R2 ranges between 0.58 and 0.77 for glu-

cose, 0.21 and 0.46 for insulin, across all time-points. For the Hybrid I scenario, a hybrid

approach was used in which the residuals in the individuals’ OGTT responses as predicted by

the Reference eDES are used as targets for the GBR models. The MSE ranges between 0.38 and

4.87 for glucose, 32.73 and 3877.16 for insulin, across all time-points. The MSE appears to

increase with time, up until the 6th time-points. The R2 ranges between 0.58 and 0.77 and 0.21

and 0.45 for glucose and insulin respectively, across all time-points. For the Personalized eDES

model scenario, the eDES model is personalized through estimating eDES model parameters

1,5,6,8 for individual OGTT responses in the Maastricht Study. The MSE ranges between 0.49

and 0.77 for glucose, 161.03 and 1177.05 for insulin, across all time-points. The MSE appears

to increase with time, up until the last (7th) time-point. The R2 ranges between 0.75 and 0.97

for glucose, 0.78 and 0.91 for insulin, across all time-points. For the Hybrid II scenario, the

residuals in the individual OGTT responses obtained by the Personalized eDES models are

used as targets for the GBR models. The MSE ranges between 0.47 and 0.77 for glucose, 148.30

and 1220.46 for insulin, across all time-points. The MSE appears to increase with time, up

until the 7th time-points. The R2 ranges between 0.77 and 0.97 for glucose, 0.79 and 0.91 for

insulin, across all time-points.

When comparing the different modeling scenarios, the Reference eDES model appeared

to perform the worst across all glucose and insulin time-points, showing the largest MSE and

the lowest R2. The data-driven XGBoost performed better than the Reference eDES model

(81% and 42% decrease in MSE and 248% and 325% increase in R2 for glucose and insulin

across all time-points). Combining the Reference eDES model with XGBoost (Hybrid I)

resulted in an almost identical performance (81% and 42% decrease in MSE and 248% and

323% increase in R2 for glucose and insulin across all time-points). The Personalized eDES

model performed much better than the Reference eDES model or the XGBoost model (96%

and 85% decrease in MSE and 296% and 690% increase in R2 for glucose and insulin across

all time-points when compared to the Reference eDES model). Combining the Personalized

eDES model with XGBoost (Hybrid II) resulted in an almost identical performance (96%

and 85% decrease in MSE and 298% and 693% increase R2 for glucose and insulin across all

time-points).

Modeling scenarios: Derivable information

Both the mechanistic models and the data-driven models allow insight into factors underlying

the OGTT responses. In the case of the mechanistic eDES model the tuned model parameters

represent physiological properties such as gut emptying or insulin secretion. Whereas the

data-driven XGBoost models are able to derive the features that were used to predict the

responses. Since the Reference eDES model represents the population median response, the

model parameters provide no distinction between individuals. The Personalized eDES models

allow a comparison between individuals based on the estimated parameter values. In Fig 3, the

individuals in the parameter space of the Personalized eDES models are shown after
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dimensionality reduction via PCA. The estimated parameter set of individuals can be used to

quantify inter-individual variability. However, a detailed exploration of the eDES parameter

space is outside of the scope of this work, as the aim here was to investigate novel features

using an hybrid modeling approach. We previously examined these parameters in [9].

In the case of the XGBoost model, we can calculate the relative feature importances to

derive the contribution of each feature to the model prediction. Fig 4 shows the relative feature

importances of the 20 most important features (ordered by relative feature importance in the

t = 0 model; the complete list is shown in S3 Fig) in the Reference XGBoost model predicting

the postprandial glucose levels at all time-points. The relative feature importances per insulin

time-point are shown in S4 Fig.

Across all time-points the most important features to the model predictions of glucose lev-

els were whether the individual was taking glucose lowering medication (MED_glu), followed

by HbA1c, presence of metabolic syndrome (MetSyn), and diabetes duration (DM_dur). In

case of predicting the insulin levels, the most informative features were the presence of meta-

bolic syndrome for all the time-points, BMI and the MISI score for time-points 2–6 and

whether the individual was taking glucose lowering medication for time-points 2–4. Addi-

tional features appear to contribute to the model prediction in certain time-points, such as

total cholesterol-to-HDL cholesterol ratio (Chol_r) at the 2nd time-point or the inflammation

marker IL-8 at the 4th time-point.

Fig 3. Individual parameter sets (n = 2968) in the parameter space of the Personalized eDES model. The parameter space spanning the direction of

the estimated model parameters k1, k5, k6 and k8 is shown after dimensionality reduction via principal component analysis. Dots represent the

estimated parameter sets of individuals from the Maastricht Study and arrows represent the loadings.

https://doi.org/10.1371/journal.pone.0285820.g003
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The feature importances in the data-driven part of the Hybrid I scenario largely agree with

those in case of the Reference XGBoost model. In the Hybrid II scenario, the Personalized

eDES models showed good prediction performance, however the data-driven models had low

predictive performance (S2 Table). Therefore, in contrast to the Hybrid I scenario, the inter-

pretation of the feature importances in the Hybrid II scenario is hindered by a low explained

variances observed in the data-driven models (S7 and S8 Figs).

Discussion

In the present study, we investigated various modeling scenarios to predict glucose and insulin

concentrations following an OGTT. We compared mechanistic modeling with data-driven

models as well as the combination of the two approaches in order to evaluate predictive perfor-

mance (measured as coefficient of determination, R2 and mean squared error of prediction,

MSE) and to identify factors underlying inter-individual differences in the responses. In addi-

tion, we assessed whether the variance explained by a mechanistic model could be improved

by explicitly accounting for additional factors such as body composition, lifestyle-related fac-

tors, and cardiometabolic health-related parameters, using a data-driven model. We showed

that a mechanistic model, tuned on a large number of individual’s data from The Maastricht

Study, was best suited to accurately capture individual OGTT responses, whereas, the combi-

nation with the data-driven model did not improve the prediction further.

The mechanistic glucose-insulin model used in this study employs time series data to esti-

mate rate parameters related to glucose metabolism. The reference eDES model performed the

worst of all the modeling scenarios for both R2 and MSE. In this approach, the estimated

parameters represented a median OGTT response. Therefore, the large MSE and low R2 were

not surprising, given the heterogeneity in individual OGTT responses. Nevertheless, the refer-

ence eDES model highlights the flaw in one-size fits all approaches, as well as providing us

Fig 4. Relative feature importances in predicting the glucose concentration at the seven time points of the OGTT via the reference XGBoost

models. The 20 most important features are in decreasing order by relative feature importance at t = 0. The relative feature importances (x-axes) are

calculated as the variance (MSE) reduction weighted by the proportion of samples reaching the node across all trees. Error bars represent the standard

deviation across cross-validation folds.

https://doi.org/10.1371/journal.pone.0285820.g004
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with a reference model that is not personalized. Using the individualization approach briefly

described in the methods, we were able to accurately capture glucose and insulin concentra-

tions using only 4 estimated model parameters. As expected, the model performance in terms

of MSE and R2 was much better than the reference eDES model. In addition to being able to

capture dynamic glucose and insulin responses, the mechanistic nature of this model provides

quantitative information on the encoded processes linked to glucose metabolism. The individ-

ualization approach employed on the current data set resulted in the same sensitive, parsimo-

nious, and identifiable parameter set as employed in our previous work, describing the rate

constant of glucose appearance in the gut (k1), the rate constant of insulin-dependent glucose

uptake (k5), the proportional rate constant of insulin secretion due to the difference in the

actual plasma glucose level compared to baseline (k6), and the insulin secretion dependent on

the rate of change in plasma glucose (k8). In part due to the eDES model structure, the esti-

mated parameters are correlated to varying degree based on what processes they pertain to.

For example, the association implied by the biplot of PC1 vs PC2 in Fig 3 is indicative of both

k6 and k8 representing the rate of insulin secretion. A more detailed assessment of the eDES

model structure is given in [9].

As opposed to mechanistic models of glucose homeostasis, data-driven models make no

assumption about the underlying physiological properties of glucose homeostasis. Instead, the

large amounts of heterogenous data are explored to find patterns associated with glucose and

insulin levels in a hypothesis generating way. Glucose predictor models have been gaining

ground in diabetes prevention and management with increasing success [15, 26]. Here, we

trained gradient boosting regression models to predict glucose and insulin concentrations

after an OGTT using the deep phenotyping features from the Maastricht Study. A nested

cross-validation training scheme was used in order to provide unbiased performance esti-

mates. The XGBoost models were able to explain a large part of the variance (S2 Table), how-

ever their predictive performance was considerably lower than the performance of the

personalized eDES models. The explained variances for insulin concentrations were much

lower, indicating that the features used in the models are more predictive of glucose, rather

than insulin concentrations. In addition, the prediction error of the XGBoost model was much

higher than the personalized eDES models. An advantage of the data-driven modeling used in

this work is that a large number of features representing a wide range of characteristics can be

used as predictors in the models, however in contrast to the mechanistic model, no time-

dependency structures are taken into account. This independent time-point-wise modeling of

the glucose and insulin concentrations disregard the correlation between glucose and insulin

measurements at consecutive time-points of the OGTT in the same individual likely leading to

less accurate predictions. Furthermore, as opposed to the eDES model, the XGBoost models

did not account for the correlation between glucose and insulin measurements made in the

same individual either. The feature importances of the XGBoost models indicate that the most

predictive features of glucose concentrations (Fig 4) were well known measures of glucose

homeostasis such as HbA1c or a prescription of diabetes medication leading to no novel

insights. While the feature importances in the case of insulin predictions (S4 Fig) may show

some interesting features to contribute to the predictions, however, the low coefficient of

determination and high prediction error undermine their relevance.

In an attempt to evaluate whether the glucose and insulin predictions of the eDES model

can be further improved by accounting for characteristics of individuals that are not explicitly

modeled in the eDES model we combined the prediction of the eDES models with those of

XGBoost models. The results of this proof-of-concept study showed that these hybrid models

(models Hybrid I and Hybrid II) present little benefit in combining the two models indicated

by the lack of improvement in either R2 or MSE. In the case of Hybrid I the data-driven part of
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the model is almost equivalent to the standalone XGBoost models (S2 Table, S5 and S6 Figs)

implying there is no benefit to combining the predictions with the reference eDES model.

While, in the case of Hybrid II the personalized eDES models performed very well and there

seems to be no additional insight gained by adding the data-driven models to the prediction

task (S2 Table, S7 and S8 Figs). Nevertheless, the performance of the hybrid models outlined

in this paper should be considered in context of the limited scope of our paper. The lack of

improvement in prediction performance may originate from the lack of time-dependency

structure in the data-driven models, the choice of feature set but also from the features used in

the data-driven model falling into the same causal pathway as the parameters of the eDES

model. While the eDES model does not explicitly account for many of the features used in the

data-driven modeling, it does account for high-level physiological processes that may encom-

pass the information in those features, therefore leading to an issue of representations of the

same causal pathways. For example, the estimated parameters of the eDES model in this work

attribute the variance in the OGTT responses between individuals to differences in gut empty-

ing (k1), insulin sensitivity (k5) or insulin secretion (k6 & k8). It is biologically plausible that

the effect of certain features (e.g. physical activity) on the glucose and insulin predictions are

already realized through one or a combination of parameter estimates of the eDES model (e.g.

the value for k5; insulin sensitivity). Therefore, combining a mechanistic and a data-driven

model in a sequential manner may not be appropriate, instead a parallel approach should be

explored. In addition, the mechanistic model, that was employed in this study, was able to

accurately describe the responses to standardized OGTTs. However, for complex meals con-

taining varying amounts of macronutrients as well as meals in free-living conditions, the

resulting glucose and insulin excursions may not be accurately captured. In such conditions,

an approach combining a mechanistic model with a data-driven model may yield more infor-

mative results. A strength of this proof-of-concept study was the large and heterogeneous

study population from The Maastricht Study. Individuals (n = 2968) with varying glycemic

regulation including normoglycemia, prediabetes (impaired fasting glucose, impaired glucose

tolerance or both conditions) as well as type 2 diabetes were present in the study population.

Furthermore, the 7 time-point OGTT facilitates the observation of nuanced dynamics in the

glucose and insulin profiles compared to the more prevalent 5 time-point test. In addition, the

comprehensive profiling of the study participants included health behavior, cardiovascular

health, musculoskeletal health, metabolic and demographic characteristics as well as body fat

composition and biomarkers. The comprehensive phenotypic information of such a large

number of individuals allowed the use of data-driven models to find patterns that may provide

additional insight about the glucose regulation on top of the OGTT response.

Conclusions

In the present study, we compared the predictive performance of mechanistic models with

well-defined temporal dependencies (eDES), data-driven models with no temporal dependen-

cies (XGBoost) and the sequential combination of the two (Hybrid I and Hybrid II). Our results

suggest, that a 4 parameter model with appropriate temporal structure can vastly outperform a

naive model built on a cross sectional phenotypic profile of an individual in predicting post-

prandial glucose and insulin concentrations. In addition, a sequential combination of a mecha-

nistic and a data-driven approach may not be suitable when studying the underlying factors of

inter-individual variance. Nevertheless, we show that the eDES model is especially convenient

when temporal dynamics in the glucose and insulin responses are to be quantified. Further-

more, the findings presented in this work corroborate our previous results indicating that that

the personalized eDES models are suitable to capture nuanced dynamics in the responses.
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Supporting information

S1 Fig. Schematic of the hybrid approach. The eDES model is fitted to the glucose and insu-

lin time series of the OGTT response. Then, the residuals in the predictions (i.e. difference

between predicted and measured data-points) are calculated. Subsequently, an XGBoost

model is trained per glucose and insulin time-point to predict the residuals of the eDES models

by incorporating the phenotypic features. The output of the hybrid approach is generated by

subtracting the XGBoost predicted residuals from the eDES model predictions.

(TIFF)

S2 Fig. Measured versus predicted glucose and insulin concentrations at the time points

(columns) of the OGTT in the case of the modelling scenarios (rows).

(TIFF)

S3 Fig. Relative feature importances in the Ref. GBR scenario predicting the postprandial

glucose levels. Feature importances are in decreasing order by relative feature importance at

t = 0. The relative feature importances (x-axes) are calculated as the variance (MSE) reduction

weighted by the proportion of samples reaching the node across all trees. Error bars represent

the standard deviation across CV folds.

(TIFF)

S4 Fig. Relative feature importances in the Ref. GBR scenario predicting the postprandial

insulin levels. Feature importances are in decreasing order by relative feature importance at

t = 0. The relative feature importances (x-axes) are calculated as the variance (MSE) reduction

weighted by the proportion of samples reaching the node across all trees. Error bars represent

the standard deviation across CV folds.

(TIFF)

S5 Fig. Relative feature importances in the GBR models of the Hybrid I scenario predicting

the postprandial glucose levels. Feature importances are in decreasing order by relative fea-

ture importance at t = 0. The relative feature importances (x-axes) are calculated as the vari-

ance (MSE) reduction weighted by the proportion of samples reaching the node across all

trees. Error bars represent the standard deviation across CV folds.

(TIFF)

S6 Fig. Relative feature importances in the GBR models of the Hybrid I scenario predicting

the postprandial insulin levels. Feature importances are in decreasing order by relative fea-

ture importance at t = 0. The relative feature importances (x-axes) are calculated as the vari-

ance (MSE) reduction weighted by the proportion of samples reaching the node across all

trees. Error bars represent the standard deviation across CV folds.

(TIFF)

S7 Fig. Relative feature importances in the GBR models of the Hybrid II scenario predict-

ing the postprandial glucose levels. Feature importances are in decreasing order by relative

feature importance at t = 0. The relative feature importances (x-axes) are calculated as the vari-

ance (MSE) reduction weighted by the proportion of samples reaching the node across all

trees. Error bars represent the standard deviation across CV folds.

(TIFF)

S8 Fig. Relative feature importances in the GBR models of the Hybrid II scenario predict-

ing the postprandial insulin levels. Feature importances are in decreasing order by relative

feature importance at t = 0. The relative feature importances (x-axes) are calculated as the vari-

ance (MSE) reduction weighted by the proportion of samples reaching the node across all
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