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ABSTRACT: Single-molecule sensors collect statistics of single-
molecule interactions, and the resulting data can be used to determine
concentrations of analyte molecules. The assays are generally end-point
assays and are not designed for continuous biosensing. For continuous
biosensing, a single-molecule sensor needs to be reversible, and the
signals should be analyzed in real time in order to continuously report
output signals, with a well-controlled time delay and measurement
precision. Here, we describe a signal processing architecture for real-time
continuous biosensing based on high-throughput single-molecule
sensors. The key aspect of the architecture is the parallel computation
of multiple measurement blocks that enables continuous measurements
over an endless time span. Continuous biosensing is demonstrated for a
single-molecule sensor with 10,000 individual particles that are tracked
as a function of time. The continuous analysis includes particle identification, particle tracking, drift correction, and detection of the
discrete timepoints where individual particles switch between bound and unbound states, yielding state transition statistics that relate
to the analyte concentration in solution. The continuous real-time sensing and computation were studied for a reversible cortisol
competitive immunosensor, showing how the precision and time delay of cortisol monitoring are controlled by the number of
analyzed particles and the size of the measurement blocks. Finally, we discuss how the presented signal processing architecture can
be applied to various single-molecule measurement methods, allowing these to be developed into continuous biosensors.
KEYWORDS: real-time, continuous biosensing, single-molecule sensors, high-throughput, signal processing, data analysis

■ INTRODUCTION
Biosensing technologies for the continuous monitoring of
biomolecules are set to become of great value in areas such as
wearable sensors,1,2 healthcare,3−5 and industrial processing.6,7

The most well-known sensor for biomolecular monitoring is
the subcutaneous continuous glucose sensor. The sensor
monitors the concentration of glucose in the skin and helps
diabetic patients to continuously optimize their insulin
treatment. Unfortunately, the basic principles underlying
present-day glucose sensors cannot be ported to measuring
other molecules such as hormones, drugs, proteins, and nucleic
acids because these analytes are present at much lower
concentrations, ranging from micromolar to nanomolar and
picomolar. Thus, more sensitive technologies are needed for
realizing continuous real-time biomolecular sensing for a
variety of applications.
A strategy to increase sensitivity is by harnessing single-

molecule measurement principles.8−12 Examples are the single-
molecule enzyme-linked immunosorbent assay (digital
ELISA),13,14 single-molecule fluorescence,15,16 single-molecule
plasmonics,17,18 and single-molecule nanopores.19,20 However,
it is difficult to enable continuous real-time biosensing because

(1) the underlying sensing principle needs to be reversible,
such that increases as well as decreases of analyte
concentration can be continuously followed as a function of
time; (2) time-dependent signals need to be available in high
throughput, such that sufficient single-molecule statistics can
be collected in a limited amount of time; and (3) a signal
processing methodology should be developed that can
continuously analyze the data in real time and that is able to
control the trade-off between analysis time and the required
analytical precision.
A single-molecule measurement methodology that has been

designed for continuous monitoring is biosensing by particle
motion (BPM).21−26 The method relies on tracking the
motion of individual biofunctionalized particles that interact
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with a biofunctionalized substrate. The particles switch
between bound and unbound states due to reversible single-
molecule interactions influenced by the presence of analyte
molecules, so that the switching rate depends on the analyte
concentration in solution. However, in previous works, the
BPM sensing data was analyzed only after the completion of
the assay experiment rather than in real time during the assay
experiment. Therefore, a signal processing architecture needs
to be developed that enables the continuous analysis of sensing
data in real time, including the possibility to optimize the
trade-off between analytical precision and time delay of the
biosensor.
In this paper, we present a high-throughput signal processing

architecture for real-time continuous biosensing based on
single-molecule interactions, demonstrated on a BPM
biosensor with more than 10,000 particles. The real-time
biosensing is validated using simulated data and tested in an
experiment with real-time cortisol sensing. The sensor used in
this research is a reversible competitive BPM sensor that can
continuously monitor increases as well as decreases in cortisol
concentrations,26 which has been a limitation in earlier
work.27−30 The results show how the trade-off between
analytical precision and time delay of continuous biosensing
can be controlled. Finally, we discuss how the developed signal
processing architecture can be applied to other single-molecule
measurement principles.

■ METHODS
Definitions. The following definitions will be used:
Continuous monitoring: refers to a process and technology to

continuously collect measurement data from a system of interest with
a well-defined frequency and time delay. The frequency is the rate at
which measurement data are reported. The time delay is the
difference between the time at which a measurement result is

reported and the time at which the system of interest was really in that
condition.

Continuous biosensing: refers to continuous monitoring using a
biosensor. The time delay is the difference between the time at which
a concentration measurement is reported and the time at which the
system of interest was really in that concentration condition.
Continuous biosensing requires a sensing principle that responds in
a reversible manner to interactions with analyte molecules in order to
allow monitoring of increases as well as decreases of the analyte
concentration.

Real-time continuous biosensing, or real-time biosensing in short:
refers to continuous biosensing with a time delay that is short with
respect to the timescales of typical concentration fluctuations in the
system of interest.

Real-time signal processing: refers to signal processing with time
characteristics that enable real-time continuous biosensing.

Basic Considerations. Figure 1 illustrates the real-time signal
processing challenge for high-throughput single-molecule sensors,
exemplified with BPM. Concentrations of analyte molecules are
measured in a BPM biosensor by analyzing the motion of particles
with a typical diameter of 1 μm. In a BPM sensing experiment, an
output parameter that relates to the analyte concentration is the
switching activity, which is the average number of state transitions per
particle per unit of time. The activity is determined in defined time
intervals or measurement time blocks with a block size tblock and is
given by

=
· =N t

NActivity
1

i

N

i
part block 1

ST,

part

(1)

Here, Npart is the number of tracked particles, and NST,i is the
number of state transitions of particle i within the measurement block.
The motion of particles is tracked by video microscopy. For each
particle, x and y time traces are constructed from the localizations in
consecutive video frames. The number of state transitions in each
measurement block can be determined by applying a change point
detection algorithm to the time traces. Figure 1b explains the need for

Figure 1. A signal processing architecture is needed to enable real-time continuous biosensing based on high-throughput single-molecule sensors,
here exemplified with BPM. (a) BPM sensing with 10,000 particles. (I) Sketch of a BPM biosensor with competition assay. Biofunctionalized
particles interact reversibly with a biofunctionalized substrate. The rate of switching between bound and unbound states depends on the analyte
concentration in solution. (II) Particles are imaged with video microscopy. The image shows more than 10,000 particles. In this study, particles are
used with a diameter of 1 μm. (III) Particle tracking is performed by computing the positions of individual particles in consecutive video frames.
(IV) Position time traces of individual particles show transitions between states with different mobilities. A change point detection (CPD)
algorithm detects state transitions in the obtained x and y time traces. The state transitions are detected within consecutive measurement blocks
with a predefined block size tblock. (b) The signal processing architecture enables continuous real-time measurements with control of the trade-off
between measurement precision and time delay. Input parameters are the number of particles Npart and the block size tblock. Output parameters are
the precision and the signal processing time delay ΔtSP.
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a signal processing architecture for analyzing the BPM data. For
continuous biosensing applications, generating a real-time response
with short time delays is essential. The total time delay of the real-
time biosensor has contributions from physical and biochemical
processes in the biosensor, such as transport of molecules in the fluid
and the binding and unbinding of molecules,31 as well as from the
signal processing that is required to translate recorded particle motion
traces into a concentration−time profile.

In this paper, we focus on the topic of signal processing, i.e., the
signal processing time delay. In order to achieve a short signal
processing time delay, a small block size is needed. However, a small
block size decreases the measurement statistics and the precision
because the number of observed state transitions per particle is
reduced. The statistics can be increased by increasing the number of
analyzed particles, which can also be beneficial for purposes such as
multiplexing22 and measurements over long time spans.24,32 However,
increasing the number of analyzed particles leads to an increased
computational cost. This requires a computational system with a
larger size and power consumption, which complicate the
miniaturization and wireless applications of a biosensor. Thus, it is
important to design a real-time signal processing architecture that is
suited for small block sizes and large numbers of particles, that
operates with high computational efficiency, and that gives control of
the trade-off between time delay and measurement precision.

Recording particle motion in a large field of view (FOV) at a
typical frame rate of 30 Hz involves image data streams of several
gigabytes per minute. Using a previous data analysis approach,21 the
total computation time required for particle tracking and change point
detection was typically several hours for a few minutes of video data.
Such an approach is suited for post-processing after the completion of
an assay experiment, but not for continuous monitoring applications
where a short signal processing time delay and significant data
reduction are desired. Thus, a real-time signal processing architecture
is needed that includes image acquisition and computationally
efficient methods for particle tracking and detection of state
transitions.

One of the computationally demanding parts of BPM signal
processing is the tracking of many particles, where each particle
represents a single-molecule probe. Particle tracking methods have
been described in the literature,33,34 but these were not designed for
efficient computation. For example, Cnossen et al. demonstrated a
method for real-time tracking of hundreds of particles with nanometer
accuracy at a frame rate of 60 Hz.33 Quadrant interpolation was
applied for 3D localization, which relies on large magnifications and
large regions of interest (ROI) around each particle of typically 100 ×
100 pixels. These large ROI sizes limit the analysis to only several
hundreds of particles in a FOV. In addition, the method requires the

use of a high-performance graphics processing unit (GPU), which
limits the flexibility and is demanding on processor size and power
consumption.

In contrast, we aim to develop a signal processing architecture that
can run on a central processing unit (CPU) of a standard laptop
computer rather than on a high-performance GPU, because this will
provide high flexibility and will make the signal processing
architecture compatible with future sensor implementations in
wireless and wearable devices. In the next sections, we will discuss
the developed signal processing architecture, the validations, and the
real-time continuous biosensing experiments.

Signal Processing Architecture. Figure 2a shows the basic
structure of the signal processing architecture for high-throughput
analysis of single-molecule BPM sensors. The application of the signal
processing architecture to other single-molecule sensing techniques
will be elaborated in the Results section. Computation processes are
performed in parallel to enable long continuous measurements in real
time and to be able to exploit the full capacity of the CPU.
Computation tasks are divided into threads that can be executed at
the same time, which is referred to as multithreading. Figure 2a shows
that one computation process, or thread, is created for real-time image
acquisition, i.e., capturing frames from the camera in real time. At the
same time, frames that have been captured can be processed by other
threads. We developed a programming structure with multiple
measurement blocks that enables continuous measurements, in
principle, over an endless time span. In each measurement block, a
sequence of data analysis steps is performed, which will be described
in this section. Measurement blocks have a predefined block size tblock,
and each block has overlapping segments tOS on both sides. The
overlapping segments are required to provide reliable detection of
state transitions near the boundaries of a block, which will be
elaborated further in the Results section. Figure 2b shows the
generated output data, showing overlap between the generated time
traces of consecutive blocks. The block structure has several
advantages. It reduces memory usage since the memory occupied
by a block is cleared after the block is finished. It also provides a
structured way for generating real-time output data at defined time
intervals. Furthermore, the block structure allows the acceptance of
new particles that might move into the FOV due to drift or diffusion
during the measurement. The new particles can be tracked in the next
measurement block since particles are identified at the start of each
measurement block.

Real-Time Software Framework. The signal processing
architecture is implemented in a CPU-based software framework.
The software framework has been developed in Microsoft Visual
Studio 2015 in the C++ programming language and has an object-
oriented programming structure to achieve high computational

Figure 2. Signal processing architecture for real-time continuous biosensing: time structure of parallel computation processes and generation of
output data. (a) Real-time execution of parallel computation threads. One thread is created for real-time image acquisition. For each measurement
block, a new thread is started as soon as the first image of the measurement block is available. In each block, a series of data analysis steps is
performed, as indicated by the colors. (b) Generated output data consist of x and y time traces and change points. Time traces of consecutive
blocks with block size tblock have overlapping segments with size tOS.
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efficiency and allow detailed control of multithreading and memory
management.

Real-Time Image Acquisition. Real-time image acquisition is
performed by capturing individual frames from a video of moving
particles. The software framework also allows reading in frames from a
storage device, making it also suited for post-processing or for
performing validations.

Particle Identification. In the first frame of a measurement block,
particles are identified by defining a region of interest (ROI) around
each individual particle, which acts as a single sensor probe. The
particle identification is required to exclude particles that cannot be
localized accurately, e.g., particles that are too close to neighboring
particles. The particle identification is designed to be robust for
images with a wide range of areal particle densities and involves a
sequence of steps that include Gaussian smoothing, local thresh-
olding, filtering to exclude particles with close neighbors, and filtering
to exclude ROIs with deviating intensities. Supporting Information 1
describes the details of the particle identification methods.

Particle Tracking. Particle tracking includes localizing the x and y
positions of the particles as a function of time. In each frame, particle
positions are determined with sub-pixel resolution by applying a
localization algorithm to the ROI around each particle. A 2D
localization method is used with a small ROI around each particle to
enable the tracking of a large number of particles. Localizing particles
with small ROI sizes is similar to localizing fluorophores in single-
molecule localization microscopy, where several algorithms are
applied, such as Gaussian fitting,35,36 centroid fitting,37 and radial
symmetry.38 Here we use phasor-based localization, as this is
computationally extremely efficient and provides accurate localization
for ROI sizes that are as small as 5 × 5 pixels.39 An important
assumption in the particle tracking is that particle movement is
limited between two consecutive frames, as this allows to use the
ROIs in frame i as input for frame i + 1. In the particle localization of
each single frame, it is crucial that the position of the ROI is updated
if the localized particle position is far from the center of the ROI. This
prevents particles to move outside the ROI in a series of consecutive
frames. An advantage of this implementation is that particle
identification only needs to be performed at the start of a
measurement block, which is beneficial for computational efficiency.
Additionally, there is no need for linking algorithms that are typically
used to construct individual particle time traces by correlating
localizations from multiple frames.40−42 There are two scenarios in
which the tracking of identified particles is discarded. This occurs if
the corresponding ROI requires more than five updates in a single
frame, preventing a deadlock by infinitely updating ROIs in a single
frame. The tracking is also discarded if a part of the ROI moves
outside the FOV, which might happen due to sample drift or particle
movement.

Drift Correction. Particle x and y time traces are corrected for
drift by subtracting the change in average position of a selection of
particles. The selected particles are preferably immobilized particles or
particles with small movements, since their motion is a more precise
indication for the drift in the sample. Supporting Information 2
explains how the drift correction method selects a subset of particles
to calculate the drift in the sample.

Change Point Detection. State transitions are detected in the
drift-corrected time traces by applying the maximum-likelihood
multiple-windows change point detection (MM-CPD) algorithm.43

The algorithm calculates the probability of a change in distribution by
comparing the distributions of neighboring windows of data points in
a time trace. The approach combines multiple window sizes to
achieve reliable detection of state transitions in time traces with
multiple heterogeneities, such as distributions, lifetimes, and time-
correlation properties. The MM-CPD algorithm has three algorithm
parameters that control the CPD performance: the minimum window
size wmin, the number of windows N, and the threshold. The data in
this research are analyzed with wmin = 20, N = 5, and a threshold of 25,
unless stated otherwise. One key advantage of the MM-CPD
algorithm is that it is computationally very efficient and is therefore
suitable for real-time high-throughput measurements.

Writing Time Traces. The final step in a measurement block is to
store the relevant output data. The output that is stored after each
measurement block consists of text files with the x and y time traces,
the calculated drift, and the detected state transitions of each particle.
Storing the CPD data is done prior to storing the time traces, since
this data is directly needed as a real-time output of the biosensor.

Simulations and Quantitative Evaluation. The implemented
data analysis methods were validated by analyzing simulated data.
This approach allows quantitative evaluations since the output of the
signal processing can be compared with the ground truth simulated
data. The simulation includes typical physical parameters correspond-
ing to the BPM system, including the diffusion coefficient, unbound
and bound state position distributions and lifetimes, and radial
intensity profiles. Sequences of images are constructed with in each
frame individual particles on the positions corresponding to the
simulated particle x and y time traces. Each particle is represented by a
radial intensity profile extracted from experimental images obtained
with video microscopy, which results in a close match between
simulated and experimental images. Supporting Information 3
explains these simulations in more detail.

The evaluation parameter for particle identification and localization
is the root-mean-square error (RMSE) or the localization error of
particles

= +x x y yRMSE ( ) ( )loc sim
2

loc sim
2

(2)

where xloc and yloc represent the position coordinates localized by the
software framework of a single particle, and xsim and ysim are the
simulated positions. In addition to the localization error, the number
of identified particles is an evaluation parameter for the particle
identification since it is desired to identify a large number of particles
that can be localized with high accuracy.

Experiments for Real-Time Continuous Biosensing of
Cortisol Using BPM. Materials. The oligonucleotides employed in
this research were obtained from Integrated DNA Technologies
(IDT). Reagents were acquired from Sigma, and cartridges were
purchased from Ibidi. Cortisol-DNA conjugates and antibody
biotinylation were prepared as described by van Smeden et al.26

Sensing Surface Functionalization. Ibidi cartridges (μ-Slide III 3-
in-1, Ibidi) were cleaned by 10 min sonication in Milli-Q water.
Subsequently, the cartridges were dried with a nitrogen stream and
exposed for 30 min to UV ozone treatment (Digital UV Ozone
System, Novascan), followed by cartridge sealing (Sealing tape,
Thermo Scientific). Afterward, the fluidic channel was functionalized
with PLL-g-PEG polymers as described by Lin et al.24 and van
Smeden et al.26 Then, 50 μL 0.5 nM of 221 bp dsDNA tether, and 50
μL 2 μM ssDNA-DBCO were added to the fluidic channel to finish
the surface functionalization (molecular details described by van
Smeden et al.26).

Particle Functionalization. Streptavidin-coated magnetic particles
with 1 μm diameter (Dynabeads MyOne Streptavidin C1, Thermo
Scientific) were functionalized as described by van Smeden et al.26 but
with some changes to the protocol. Particles were incubated with 250
nM of biotinylated anti-cortisol antibody and 1.5 μL of 10 μM polyT.
The functionalized particles were washed twice with 500 μL of 0.05%
Tween-20 in PBS buffer and followed by a sonication step in a
sonication bath for 30 s.

Sensor Assembly. 200 μL of functionalized particles were flushed
(Harvard pump 11 Elite, 100 μL/min withdrawal speed) through the
Ibidi flow cell (Ibidi). The particles were incubated for 15 min by
flipping the flow cell to allow the particle binding via dsDNA tethers.
200 μL of 100 μM of 1 kDa mPEG-biotin (PG1-BN-1k, Nanocs) was
added to the system and incubated for 10 min in order to block the
remaining free streptavidin molecules. The motion of the tethered
particles was recorded during the blocking step to establish the signal
background of the system. Unless stated otherwise, 200 μL of 700 pM
cortisol-DNA (analogue) was added to the flow cell and incubated for
10 min to allow the system activation. The excess of analogue was
removed by flushing with 0.5 M NaCl in PBS buffer and followed by
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the addition of different cortisol solutions prepared in 0.5 M NaCl in
PBS buffer.
Measurement Setup and Flow Protocol. Particles were imaged

with brightfield microcopy on a Leica DM6000 B microscope with a
total magnification of 5.5 (Objective: Leica N plan EPI 10x/0.25 BD,
C-mount: 0.55x). A high-speed CMOS camera was used (FLIR GS3-
U3-32S4M-C) with a FOV of 2048 × 1536 pixels (1.28 × 0.96 mm2).
Solutions were flown into the cartridge at a flow rate of 100 or 10 μL/
min for BPM measurements using a syringe pump (Harvard
Apparatus Pump 11 Elite) connected to the outlet of the flow cell.

■ RESULTS AND DISCUSSION
Quantitative Evaluation of the Signal Processing.

Figure 3a shows a cropped image of a simulated FOV with a
high areal density of particles. The complete FOV is 256 times
larger and corresponds to a typical experimental image in
BPM, as is shown in Figure 1a−II. The green squares indicate
the identified particles for localization with an ROI size of 5 ×
5 pixels. The data show that particles with close neighbors are
not identified. Figure 3b shows the average localization error
(eq 2) and the number of identified particles as a function of
the number of simulated particles for different ROI sizes. A
significantly larger localization error is observed with an ROI
size of 3 × 3 pixels compared to the larger ROI sizes. This
increased localization error is most likely due to a loss of
information since a part of the intensity profile corresponding
to the particle is outside the ROI. Furthermore, it is observed
that the average localization error only slightly increases as a

function of the number of simulated particles, which indicates
that the particle identification methods are robust for high
areal particle densities. The number of identified particles in a
FOV is clearly dependent on the ROI size. Smaller ROI sizes
result in the identification of more particles since the
probability that the intensity profile of a neighboring particle
is inside the ROI of a particle decreases. For all ROI sizes, the
number of identified particles increases as a function of the
number of simulated particles until a maximum number of
identified particles is reached. For simulated areal particle
densities above this maximum, the number of identified
particles decreases due to a larger fraction of particles with a
close neighbor. For the used conditions, an ROI size of 5 × 5 is
considered as the best choice to achieve both a large number of
identified particles and a small localization error. For example,
a simulated FOV with 20,000 particles results in ∼12,000
identified particles with an average localization error of ∼25
nm (∼0.04 pixels).
Generation of x and y time traces includes particle tracking,

i.e., localization of particles as a function of time, and drift
correction. Particle tracking can be evaluated by analyzing
sequences of simulated images and comparing the simulated
time traces to the detected time traces, which is shown in
Figure 3c. In this example, no drift is present in the simulated
time trace. Supporting Information 4 includes further
validations of the particle tracking and drift correction,
showing, for example, that the drift correction error with
∼10,000 tethered particles was approximately one order of

Figure 3. Evaluation and validation of the signal processing with simulated data. (a) Cropped image of a simulated field of view (FOV) with a high
areal density of particles. The green squares indicate the identified particles. (b) The number of identified particles (blue, left axis) and the average
localization error (red, right axis) as a function of the number of simulated particles in a FOV of 2048 × 1536 pixels. The three line styles
correspond to the different ROI sizes as shown in the legend. (c) The top panel shows a simulated time trace of the x position of a BPM particle.
The red vertical lines indicate the simulated state transitions. The middle and bottom panels show the generated output data by the software
framework for block 1 and block 2, respectively. The output data consist of time traces with detected state transitions (green vertical lines). The
gray parts in the time trace indicate the overlapping segments between consecutive blocks. See Supporting Information 4 and 5 for details and
quantitative evaluations of particle tracking, drift correction, and change point detection.
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magnitude smaller compared to the particle tracking error.
This indicates that an accurate drift correction can be achieved
with only tethered particles and that additional fiducial markers
are not needed.
Figure 3c also shows the simulated and detected state

transitions in the time traces. The blue-colored parts of the
time trace indicate the segments where state transitions are
detected, the green vertical lines represent the detected state
transitions, and the gray parts of the time trace indicate the
overlapping segments between consecutive blocks (see also
Figure 2). The overlap is required because state transitions
near the boundary of a time trace are less likely to be detected.
Supporting Information 5 shows that the required overlapping
segments should be two times larger than the largest window
size that is applied in the MM-CPD algorithm. The largest
window size is defined by the MM-CPD settings, e.g., wmin =
20 and N = 5 gives a largest window size of 80 data points,43 so
overlapping segments of 160 data points are required. By
implementing these overlapping segments in the signal
processing architecture, the detected change points are
independent of the block size that is chosen.

Real-Time Computational Performance. The real-time
computational performance was assessed by running the
software framework and measuring the CPU utilization with
the Intel VTune Profiler. The computational performance
measurements were performed on a laptop with Microsoft
Windows 10 Enterprise and an Intel Core i7-8750H processor
(6 cores, 12 logical processors, 2.20 GHz, 16 GB RAM). The
profiling measurements were performed in real time during a
BPM experiment where ∼10,800 particles were analyzed. The
particles were tracked and analyzed for 3 min at 30 Hz with a
block size of 1 min.
Figure 4 shows the CPU utilization for the different parallel

computation processes that were discussed in the Methods
section. Real-time image acquisition was performed at a rate of
30 Hz and required only ∼0.8% CPU utilization. The different
serial processes in a measurement block are indicated by color
and can also be recognized by their computational perform-

ance. During particle identification, drift correction and writing
the x and y time traces the CPU utilizations are close to 8.3%,
which is the maximum capacity of a single logical processor
(100% is the total capacity of the laptop, having 12 logical
processors). During particle tracking, the CPU utilization of
the measurement block is less than the maximum capacity of a
single logical processor, which indicates that a significant
fraction of the time the thread is waiting for new images to
arrive. Thus, the localization of all particles in a single image is
already completed before the next image is available. During
change point detection (CPD), the CPU utilization of the
measurement block is approximately two times the maximum
capacity of a single logical processor. This is because a
multithreading approach is applied with one extra worker
thread. Applying a multithreading approach leads to a faster
generation of the CPD results and thus the output signal. The
pie chart in Figure 4 shows that most CPU time is spent on
writing the x and y time traces. The text files containing the
time traces for these 3 measurement blocks are ∼1.0 GB in
size. Storing this data is useful for post-processing in research
applications, e.g., for determining state lifetimes. In real-time
biosensing applications, this step could be avoided, leading to a
significant decrease in CPU utilization. The bottom panel
shows the total CPU utilization, which is obtained by taking
the sum of the CPU utilizations of all parallel computation
processes. The total CPU utilization is on average only ∼6.5%
in this measurement during ∼230 s. To get a representative
value for long continuous measurements, we need to correct
for the fact that the total running time is longer than 3 min,
applying this correction gives an average effective CPU
utilization of ∼8.3%. This value is approximately equal to the
capacity of a single logical processor, indicating that real-time
measurements with more than 10,000 particles at 30 Hz can
easily be performed on a laptop with several logical processors.
We can express the total signal processing time delay ΔtSP as

a sum of different contributions

Figure 4. Real-time computation characteristics recorded during a BPM experiment with ∼10,800 analyzed particles that were imaged at a 30 Hz
frame rate. The top four panels indicate the CPU utilization as a function of time for different parallel computation processes. The dotted lines
indicate the maximum capacity of one and two logical processors. Data analysis steps in each measurement block are indicated by color. The
bottom panel shows the sum of the CPU utilization of all processes. The pie chart shows the percentage of CPU utilization that is spent on each
data analysis step.
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Here, ΔtSP is equal to the time difference between the time
at the middle of a measurement block and the time at which
the CPD results of the block are available. ΔtSP depends on the
block size tblock, the overlapping segments tOS, and on the
computational time of the drift correction tDC and change
point detection tCPD. The computational time of particle
tracking does not contribute to the signal processing time delay
since the particle tracking is executed in real time. The activity
(eq 1) is available directly after the CPD is performed; storing
the CPD results takes a negligible amount of time and is done
prior to storing the x and y time traces. Choosing a smaller
block size generally leads to a shorter ΔtSP. However, choosing
a block size smaller than tOS leads to a strong increase in CPU
utilization due to the overlapping segments between
consecutive blocks (see Supporting Information 5). tDC and
tCPD could be decreased by improving the computational
efficiency of the drift correction and CPD methods.
Alternatively, multithreading approaches can be implemented,
as was already done for CPD (see Figure 4).

Real-Time Cortisol Biosensing. In order to demonstrate
the real-time data analysis experimentally, we performed real-
time cortisol measurements in a BPM sensor with a
competition assay format (see Figure 5a). A permanent
dsDNA tether confines the motion of a particle to the vicinity
of the substrate. Cortisol analogues are coupled to the
substrate, and anti-cortisol antibodies are coupled to the
particles. During sensor operation, in the absence of cortisol in
solution, reversible bonds are formed between analogue
molecules on the substrate and antibodies on the particles.
In the presence of cortisol in solution, cortisol binds to the
antibodies on the particle and thereby blocks the interaction
between the analogue molecules on the substrate and the
antibodies on the particle. Thus, a higher concentration of
cortisol results in a decreased probability of bond formation
between the particle and the substrate, and therefore the
activity decreases, i.e., the number of state transitions per unit
of time decreases.
Figure 5b shows an experiment where the response of a

cortisol sensor was followed in real time. The sensor was first
provided with analogue molecules (green) in order to activate

the sensor; thereafter, buffer solutions (yellow) and solutions
with 10 μM cortisol (blue) were flown into the sensor
cartridge. The bottom panel shows the applied flow profile. In
each step, measurements were performed consisting of 15
blocks of 1 min. The activity values plotted in Figure 5b were
filtered to suppress measurement artifacts due to flow
instabilities, see Supporting Information 6.
Before the addition of analogue, the measured activity is

approximately 10 mHz. This background activity is caused by
non-specific interactions and false positive events in the change
point detection.43 During the addition of analogue solution at a
flow rate of 10 μL/min, the switching activity increases,
indicating that analogue molecules bind to the substrate,
causing reversible bonds to be formed between analogue
molecules on the substrate and antibodies on the particles. In
the next two phases (absence of flow between 40 and 80 min;
flow of buffer between 80 and 95 min), the activity is largely
constant, with a small and slow downward relaxation. The
origin of the small relaxation is not yet clear; this will be
addressed in future work. When 10 μM cortisol is supplied, the
activity drops rapidly and reaches an equilibrium level,
indicating that cortisol binds to the antibodies on the particle.
The addition of buffer solution causes the activity to rapidly
increase, caused by the dissociation of cortisol from the
antibodies.
The real-time continuous biosensor allows studies of sensor

response to fluid pulses. From ∼160 min, a series of pulses was
applied with 2 min duration each and a flow speed of 100 μL/
min, containing either buffer or 10 μM cortisol. After stopping
the flow, we noticed in the fluidic system a residual flow with a
duration of typically 1−10 s, caused by relaxations of the pump
and tubing. For that reason, we inserted a waiting time of 1
min between the termination of sample injection and the start
of the activity measurements. In the measured activity, we
observe different relaxation behaviors after injections with
buffer and 10 μM cortisol. The sensor signal is rapidly in
equilibrium after exposure to 10 μM cortisol. After exposure to
buffer, the measured activity signal first increases and then
shows a relaxation toward lower activities. We call this a
reversed relaxation. The reversed relaxation indicates fast
dissociation of cortisol during the 2 min fluid pulses, followed
by slow association of cortisol during the 15 min measure-

Figure 5. Real-time measurements with a cortisol BPM sensor. (a) Design of the cortisol competition-assay biosensor that was used to test the real-
time data analysis. Cortisol-analogue molecules are coupled to the substrate and anti-cortisol antibodies to the particle. Reprinted with permission
from van Smeden et al.26 Copyright 2022 ACS Sensors. (b) Real-time measurements. The bottom panel indicates the flow protocol, showing how
the sensor was exposed to different solutions as a function of time: analogue (green), buffer (yellow), and 10 μM cortisol (blue). The top panel
shows the measured activity (blue, left axis) and the number of particles (red, right axis) as a function of time. Each dot represents the activity value
within a measurement block of 1 min (see Supporting Information 6 for details).
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ments without flow. The data show that the degree of reversed
relaxation becomes less and less after multiple injections with
buffer. We attribute the post-buffer signal relaxations to the
lateral diffusion of cortisol into the FOV from edges and
corners of the flow cell. Repeated inflow of buffer is required to
remove cortisol from the complete sensor cartridge and
achieve a stable BPM signal. This indicates that a larger volume
of fluid is needed to achieve a sensor with a uniform zero
analyte concentration compared to a high analyte concen-
tration.
The trade-off between precision and time delay is studied in

Figure 6. Figure 6a shows the real-time activity measured for a
series of different cortisol concentrations alternating with a
blank buffer solution. The flow was 100 μL/min for a duration
of 2 and 5 min for cortisol solution and buffer solution,
respectively, because a zero analyte concentration requires a
larger volume of fluid to achieve a uniform analyte
concentration in the sensor (cf. Figure 5). Thereafter,
measurements with 10 blocks of 1 min were performed
without flow. From 180 min onward, a long measurement was
performed consisting of 40 blocks of 1 min. As in Figure 5, a
relaxation behavior is seen in the signal, most notably after the
supply of fluid with low cortisol concentrations and less after
high cortisol concentrations, caused mainly by diffusive

transport effects;31,32 these effects will be further studied in
future research. Figure 6b shows the dose−response curve,
which was determined by averaging the activity values in the
last 5 min at each concentration. The datapoints follow a
sigmoidal curve for a competitive assay (more details are given
in Supporting Information 7).
A real-time continuous biosensor has a trade-off between

measurement precision and time delay because a sensor with
shorter time delay can be achieved by choosing a smaller block
size, resulting in a lower precision due to lower measurement
statistics. The blue lines in Figure 6c show the coefficient of
variation of concentration determination (CVC) as a function
of the block size used in the computation, plotted for different
numbers of particles. The CVC was determined from the
fluctuations of the activity signal measured in panel a and the
slope of the dose response curve in panel b at a cortisol
concentration of 7.5 μM; see Supporting Information 7 for
more details.
The graph shows essentially straight lines with slopes close

to −0.5, indicating an inverse square-root behavior; this is in
agreement with a system in equilibrium that obeys Poisson
statistics. Furthermore, the CVC scales with Npart

−1/2, which is also
in agreement with Poisson statistics. The blue curves show
deviations from straight lines at large values of tblock; the

Figure 6. Analytical performance of a real-time cortisol BPM biosensor: concentration measurement precision and signal processing time delay. (a)
The bottom panel shows the series of different cortisol concentrations (blue, left axis) alternated with a blank buffer solution that were supplied to a
BPM biosensor. The flow rate (black, right axis) was 100 μL/min for a duration of 2 and 5 min for cortisol solution and buffer solution,
respectively. Prior to the measurements, the sensor was activated by flowing analogue molecules for 2 min at 100 μL/min, causing a higher
switching activity compared to the experiment of Fig. 5. The top panel shows the measured activity (blue, left axis) and the number of particles
(red, right axis) as a function of time. Each dot represents the obtained value in a measurement block of 1 min. (b) Dose−response curve
established using the data of panel a. The average was determined from the last five data points at each concentration. The error bars indicate the
standard deviation of the data points. The zero concentration datapoint and its error were determined from multiple zero-analyte measurements in
panel a. Datapoints were fitted with a sigmoidal curve (see Supporting Information 7), resulting in an EC50 value of 7 μM. (c) Trade-offs between
precision and time delay of the real-time biosensor. Left axis: coefficient-of-variation of concentration determination CVC (see Supporting
Information 7 for details), plotted as a function of the block size for different numbers of particles. CVC was determined from the signal variation of
the 40 min measurement at 7.5 μM shown in panel a and the slope of the dose−response curve shown in panel b. Right axis: signal processing time
delay ΔtSP as a function of the block size. Here, tOS was included and times required for drift correction and change point detection were neglected,
see eq 3.
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variability can be attributed to the small number of datapoints
that are available for estimating CVC at large block sizes. The
red curve shows that the signal processing time delay is
independent of tblock for small block sizes and approaches tblock/
2 for large block sizes.
A continuous biosensor is a real-time biosensor when it

reports sensing signals with a time delay that is short with
respect to the typical dynamics of the biomarker concentration
in the system that is being monitored. The acceptable time
delay depends on the application. In the case of cortisol, the
biomarker is a steroid hormone that is produced by adrenal
glands and affects tissues and organs all over the body. Cortisol
levels can increase on timescales of minutes to tens of minutes,
and decrease on longer timescales. The data in Figure 6c show
that suitable time delays are achievable. With the help of data
as in Figure 6c, sensor users can choose signal processing
settings (block size, number of particles) in order to achieve
desired functional performance parameters of the single-
molecule biosensor (time delay, precision). For example, a
sensor with a CVC of 10% and a signal processing time delay of
about 10 s can be achieved with a sensor consisting of 10,000
particles and a block size of 10 s.

Application to Other Single-Molecule Sensors. Single-
molecule biosensors give signals with characteristic states and
transitions which originate from single-molecule interactions,
e.g., on/off states, discrete signal levels, number of transitions,
etc. Single-molecule sensors combine signals from multiple
single-molecule probes in order to collect sufficient statistics in
a limited amount of time. Table 1 lists a few single-molecule
sensing principles that could become suited for real-time
continuous biosensing: based on detecting fluorescently
labeled molecules, on measuring spectral shifts of plasmonic
particles, and on measuring electrical conductivity fluctuations
of nanopores. The methods yield parallel signals originating
from individual single-molecule probes, where the signals are
time traces with discrete states and the concentration of
analyte molecules in solution changes the time characteristics
of the signals, e.g., distributions of state lifetimes. The last
column indicates how the sensor signals have been analyzed in
the literature. To turn these methods into real-time continuous
sensors, the time-dependent signals need to be available in
high throughput, so that sufficient single-molecule statistics can
be collected in a limited amount of time. The principle is
similar to traditional biosensors with a single readout
parameter, such as a current or a light intensity, where the
signal is averaged over a certain time window in order to
achieve a sufficiently large signal to noise ratio. In single-
molecule sensors, signals are collected from a large number of
fluorophores, plasmonic particles, nanopores, or BPM particles,
and these signals need to be efficiently processed in a limited
amount of time. Furthermore, the signal processing method-

ology must be suited for measurements over an endless
timespan, with control of the trade-off between signal
processing time delay and analytical precision.
In this paper, we have described a signal processing

architecture and applied it to BPM, turning the single-molecule
method into a real-time continuous biosensor. The developed
signal processing architecture provides a structured way to
perform parallel computations of data acquisition, data
analysis, and the generation of a response signal that relates
to the analyte concentration. The block size is a key parameter
that allows one to control the trade-off between analytical
precision and time delay. High-throughput signal analysis was
demonstrated for a BPM sensor with 10,000 individual
particles. We foresee that the signal processing architecture is
also applicable to the other single-molecule sensing methods
listed in Table 1, because all methods produce signal time
series with discrete states, and in all methods, the
concentration of analyte molecules affects the time character-
istics of the signals. Therefore, the described signal processing
architecture may also enable the development of other single-
molecule methods into real-time continuous biosensors.

■ CONCLUSIONS
We have developed a signal processing architecture for real-
time continuous biosensing based on high-throughput single-
molecule sensors. The signal processing architecture provides a
structured way to perform parallel computation of data
acquisition, data analysis, and generation of the response
signal that relates to the analyte concentration, where the block
size is a key parameter that controls the trade-off between
analytical precision and time delay.
The signal processing architecture was tested on the BPM

single-molecule sensing method and included all data analysis
steps, including particle identification, particle tracking, drift
correction, and the detection of state transitions in particle
position time traces. The real-time analysis was validated on
simulated data as well as experimental data of a competitive
cortisol biosensor with more than 10,000 particles. The results
show how the real-time signal analysis allows one to control
the trade-off between measurement precision and signal
processing time delay, indicating that an analytical precision
of 10% and a signal processing time delay of 10 s can be
achieved with a cortisol BPM sensor consisting of 10,000
particles. The implementation of the signal processing is
computationally efficient and runs on a standard laptop,
making it compatible with future wireless and wearable
applications.
The assay that was used in this paper to study the real-time

signal processing architecture is a competition assay with
sensitivity in the low micromolar range. Without modification,
the real-time signal processing architecture can be applied to

Table 1. Examples of Single-Molecule Sensing Methods to Which the Developed Signal Processing Architecture Could be
Applied for Achieving Real-Time Continuous Biosensing

single-molecule sensor single-molecule probe physical signal analysis of signal time traces

fluorescence sensor15 fluorescently labeled detection
molecule

light intensity
(fluorescence)

hidden Markov modeling to extract the number of binding events
and dwell times

plasmonic sensor44 gold nanoparticle light intensity
(scattering)

step finding to extract waiting times between binding events

nanopore sensor45 nanopore electrical conductivity extract event frequency and analyze dwell times to identify current
signatures

BPM sensor (demonstrated in
this paper)

tethered particle position change point detection to extract rate of state transitions
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sandwich assays in order to measure lower biomarker
concentrations, such as BPM sandwich assays for protein and
DNA detection that operate in nanomolar and picomolar
concentration ranges.21

Furthermore, the signal processing architecture is also
applicable to single-molecule sensing methods beyond BPM,
e.g., based on fluorescence, plasmonics, or nanopores. Similar
to BPM, these methods produce signal time traces with
discrete states, and the time characteristics of the signals relate
to the concentration of analyte molecules in solution.
Therefore, the signal processing architecture developed in
this paper can be broadly applied to single-molecule sensing
methods, and we foresee that it can enable the development of
a novel family of real-time continuous biosensors.
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