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Abstract – A longstanding open question in the field of dense disordered matter is how precisely
structure and dynamics are related to each other. With the advent of machine learning, it has
become possible to agnostically predict the dynamic propensity of a particle in a dense liquid based
on its local structural environment. Thus far, however, these machine-learning studies have focused
almost exclusively on simple liquids composed of passive particles. Here we consider a mixture
of both passive and active (i.e., self-propelled) Brownian particles, with the aim to identify the
active particles from minimal local structural information. We compare a state-of-the-art machine
learning approach for passive systems with a new method we develop based on Voronoi tessellation.
Both methods accurately identify the active particles based on their structural properties at high
activity and low concentrations of active particles. Our Voronoi method is, however, substantially
faster to train and deploy because it requires fewer, and easy to compute, input features. Notably,
both become ineffective when the activity is low, suggesting a fundamentally different structural
signature for dynamic propensity and non-equilibrium activity. Ultimately, these efforts might
also find relevance in the context of biological active glasses such as confluent cell layers, where
subtle changes in the microstructure can hint at pathological changes in cell dynamics.

open  access focus  article Copyright c© 2023 The author(s)

Published by the EPLA under the terms of the Creative Commons Attribution 4.0 International License
(CC BY). Further distribution of this work must maintain attribution to the author(s) and the published
article’s title, journal citation, and DOI.

Introduction. – A central notion in the study of
active particulate matter —systems of discrete enti-
ties which consume energy to perform work and move
autonomously— is that the presence of activity can dra-
matically alter both spatial organization and (collective)
dynamics [1]. The fact that active matter is intrinsically
out of equilibrium renders the standard tools of statisti-
cal physics of limited use and leaves open the question of

(a)Contribution to the Focus Issue Statistical Physics of Self-
Propelled Colloids edited by Hartmut Löwen, Sabine Klapp and
Holger Stark.
(b)These authors contributed equally to this work.
(c)E-mail: l.m.c.janssen@tue.nl (corresponding author)
(d)E-mail: simoneciarella@gmail.com (corresponding author)

which quantifiers most accurately characterize and predict
the dynamics of active matter [2]. This is a profound is-
sue, especially in densely disordered phases such as liquids
and glasses, where the relation between spatial structure
and emergent dynamics is notoriously obscure [1,3]. A bet-
ter understanding of structure-dynamics relations in active
matter would be highly desirable both from a fundamen-
tal and more applied perspective. Notably, in the context
of biological tissues and confluent cell layers, subtle struc-
tural changes can correlate with the motile properties of
the individual cells, with relevance in processes such as
cancer metastasis and embryonic development [4,5].

Recent efforts have demonstrated that machine learning
(ML) approaches are extremely effective in finding simple
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Fig. 1: Sketch of our Voronoi-based machine learning approach for the identification of active particles in an active/passive
mixture. The snapshot is processed by constructing its Voronoi tessellation, then extracting particle-specific features. A gradient
boosting model is trained to evaluate the probability that each particle is dead (passive) or alive (active), only using the static
features extracted from the single snapshot.

structural indicators that predict dynamical properties
in densely disordered (near-)equilbrium systems [6–25].
These findings firmly establish a correlation between local
structure and the propensity of passive particles to move in
a crowded environment. While ML has also been applied
with considerable success in purely active systems [25–33],
in practice and particularly in biological settings the sys-
tem of interest will generally contain actors whose activ-
ity parameters are different, and distributed. In tumor
tissue, for instance, there may be a distribution of ep-
ithelial (more stationary, passive) phenotypes and mes-
enchymal (more motile, active) ones, with the presence of
mesenchymal cells being generally associated with greater
metastatic potential [5,34]. Thus, developing the ability to
reliably distinguish active from passive elements in dense
collectives holds diagnostic and prognostic potential.

Inspired by this challenge, our work addresses a seem-
ingly simple issue: Can we identify the active species in a
binary model system of active and passive particles? Here
we refer to passive entities as “dead” particles that do not
possess any self-propulsion, while the active, self-propelled
particles are “alive”. Naturally, the distinction would be
most conveniently done based on dynamical (i.e., time-
resolved) information, but in biological settings such dy-
namical data may be difficult to obtain. This is why we
complicate the challenge considerably, and demand that
the identification is performed based solely on static im-
ages (“snapshots”) of the system.

Recent studies [35–39] have shown that the presence of
a small number of active particles within a dense passive
bath can induce specific structural inhomogeneities. Ex-
plicitly, bath particles tend to accumulate at the front of
an active particle while leaving a depletion zone behind it.
This spatial anisotropy is usually irrelevant in the absence
of activity, and is therefore also frequently ignored in ML
methods designed for purely passive systems [17,20,22,40].
However, it could be essential to distinguish dead particles
from those that are alive.

In this work, we quantify the spatial anisotropy of each
particle’s local environment through a simple Voronoi tes-
selation [40,41]; from this instantaneous structural infor-
mation, we seek to predict the particle identity (dead or
alive) using ML. We show that when the active particle

fraction is low and the activity level is high, the shape
of the Voronoi polygons around active particles exhibits
distinct characteristics compared to those around passive
particles, thus providing sufficient static information to
reliably distinguish the two species. This observation
highlights the effectiveness of Voronoi tessellation as a
suitable tool for quantifying unique structural signatures
associated with active particles, at least within a suitably
chosen parameter range.

We also compare our method with an existing state-
of-the-art ML approach based on particle configurations,
originally developed for purely passive simulated super-
cooled liquids [16,17,22]. We demonstrate that both ap-
proaches are only successful when the fraction of active
particles is low and the activity is high. Furthermore,
we show that the Voronoi method is substantially faster
and easier to compute because it requires fewer and
cheaper input features. This emphasizes the significance
of anisotropy in telling apart dead from alive. However,
when the active particle concentration is not dilute or the
active force is too small, all these static approaches fail to
provide accurate predictions, suggesting that the instanta-
neous local structure no longer fully encodes the particle
identity. For this more challenging regime, we develop
a pseudo-static approach, detailed in the Supplementary
Material Supplementarymaterial.pdf (SM), which also
incorporates information on the averaged statistical fluc-
tuations of the local structure.

Briefly, our Voronoi approach to distinguish between ac-
tive and passive particles from a single snapshot is outlined
in fig. 1. First, the snapshots are processed by performing
a Voronoi tessellation [41], from which we compute 11 rel-
evant features that effectively capture local anisotropies.
At the core of our Voronoi approach is a gradient boosting
model, discussed in the “Methods” section, that takes into
account the local environment of each particle to predict
if it is dead or alive. Furthermore, the predictions gen-
erated by our ML model are explainable, enhancing the
interpretability of the results.

Ultimately, our findings lead us to conclude that there
are two distinct regions within the parameter space defined
by the fraction of active particles and the active force. In
the first region, characterized by high activity and a low
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fraction of active particles, active and passive particles
can be distinguished effectively using a static approach.
However, in the second region, active and passive particles
become indistinguishable from a static point of view.

Methods. –

Simulation model. Our model system is a two-
dimensional (2D) Kob-Andersen mixture [42–44]
composed of 650 and 350 particles of type A and B,
respectively. We extend the model by turning a fraction
φa into active Brownian particles [45–48] (same propor-
tion for each particle type). We have also conducted
similar investigations in a three-dimensional (3D) mix-
ture, comprising 800 particles of type A and 200 particles
of type B, and obtained similar results.
The self-propelled motion is characterized by a constant

active force of magnitude Fa. To develop a model that
can be applied to study highly crowded biological systems,
such as dense cellular collectives, we have chosen to focus
on steady-state configurations with a density of ρ = 1.2
and temperature of T = 0.5 (in simulation units) and re-
trieve 2000 different independent configurations for each
studied setting. Moreover, to effectively characterize the
large activity regime, we consider activities ranging from
0.5 to 100, as cells primarily move due to active motion.
Furthermore, we have verified that similar results are ob-
tained at a temperature of T = 0.6. Finally, to confirm
that the dynamics at high activities are not influenced by
finite-size effects, we performed the same analysis on a
larger system with 10000 particles, and we obtained sim-
ilar results. All the details of the simulation model and
the data collection are reported in the SM.

Gradient boosting model. We treat the identification
of the active particles as a binary classification problem.
For this we use LightGBM, which is a gradient-boosting
machine-learning method based on decision trees [49].
This algorithm is widely used due to its efficiency, accu-
racy, and interpretability, and has been successfully em-
ployed, e.g., in the context of low-temperature glassy ma-
terials [23]. We show in the SM that it outperforms neural
networks for our task of distinguishing active from passive
particles.
In general, gradient boosting decision trees [50] com-

prise an ensemble learning method that combines the
power of decision trees [51] and gradient boosting. It in-
volves building a sequence of decision trees, where each
subsequent tree corrects the errors made by the previous
ones, by performing a residual update step. By iteratively
adding decision trees and adjusting their weights based on
the residuals, the model gradually improves its ability to
make accurate predictions.
LightGBM introduces gradient-based one-side sampling

and exclusive feature bundling [49] in order to avoid the
need to scan all the data to update the residuals at each
step. As a result, gradient boosting can be used for large
datasets, such as the collection of simulation snapshots
used in this work. In the end, after calculating all the

relevant structural input features (discussed in the next
section), the training of our model takes only several min-
utes on a standard laptop.

To quantify our ML performance we use the accuracy,
defined as the number of correct predictions divided by
the total number of predictions. When the fraction of ac-
tive particles φa �= 0.5 we simply discard a subset of the
particles from the data such that the number of active
and passive species is equal. This allows us to work with
a balanced dataset, which enhances the classifier’s gener-
alizability. Since our input features are particle-resolved
and additional data collection is quite inexpensive, this
presents no practical challenges.

Structural input features. Our main goal is to distin-
guish the active particles from the passive ones using only
instantaneous static information, i.e., a single snapshot.
For this, we employ two alternative sets of local, particle-
resolved structural properties as input for our machine-
learning model. We refer to these as i) the shell-based
approach, developed earlier for purely passive systems [16],
and ii) the Voronoi approach, which we introduce here to
capitalize on the information contained in local anisotropy.

The features of the shell-based approach have been in-
troduced to effectively predict the dynamic propensity of
purely passive particles [16,17]. Since the dynamic propen-
sity quantifies the average squared displacement of a par-
ticle from its initial condition [52,53], and active parti-
cles have an additional self-propelling force, it is natu-
ral to expect that active particles have a larger dynamic
propensity. We also confirm this observation by measur-
ing the mean-squared displacement [54,55], reported in the
SM. Notice that similar indicators also predict localized
plastic events [56,57]. This means that if the dynami-
cal information remains encoded in the structure even for
active systems, then this approach should be able to pick
it up and identify the active particles from their enhanced
propensity.

To implement the shell-based approach we follow the
definitions of ref. [16]. Briefly, these features consist of n-

th–order radial and angular descriptors, denoted as G
(n)
i

and q
(n)
i , respectively. The former measures for each par-

ticle i the local particle density within a radial shell, while
the latter expands the local density within a shell in terms
of spherical harmonics; the order n indicates the degree of
averaging over the structural features of nearby particles.
Here we consider n = 0, 1, 2. For n = 0, we compute 50
radial descriptors per species with radial distance r ∈ [0, 5]
and shell width δ = 0.1, and 192 angular descriptors with
r ∈ [1, 2.5], δ = 0.1, and spherical harmonics of order
l ∈ [1, 12]. In sum, we use a total of 876 static quantities
as input in the shell-based approach.

As an alternative to the shell-based features of ref. [16],
we introduce the Voronoi approach, which naturally quan-
tifies the local anisotropy created by the active particles.
Briefly, we perform a Voronoi tessellation of all particle
positions and compute the features based on the shape of
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Fig. 2: Accuracy of the Voronoi ML approach as a function of
the active force Fa = F test

a , with φa = 0.008. The orange circles
represent scores obtained from separate models, where each one
was trained using F train

a = F test
a . The blue squares and pink

triangles represent scores obtained from a single global model
trained with data only for Fa = 50 or Fa = 100, respectively.
The inset shows the comparison between the Voronoi and the
shell-based approaches for three different active forces F test

a =
F train
a = 5, 50, 100. The purple circles, blue stars, and red

diamonds represent the ratio between accuracy, computational
times, and number of features, respectively.

the Voronoi polygon around each particle. Explicitly, we
consider the number of neighbors, the polygon area and
perimeter, the distance between the center of the polygon
and the actual particle position, the maximum and mini-
mum distances between nearest neighbors, the maximum
and minimum distances between the vertices of a polygon,
the maximum and minimum distances between the parti-
cle position and its polygon vertices, and finally we add
the particle type (A or B). Overall this amounts to only 11
relatively simple input features. Compared to the shell-
based approach, the Voronoi approach is thus significantly
cheaper.

Results and discussion. –

Distinguishing dead from alive. We report in fig. 2 the
accuracy achieved by our Voronoi ML model in the clas-
sification of an active/passive mixture with φa = 0.008,
for different values of the active force Fa. We compare the
accuracy that we get when the model is trained and tested
at a single specific value of Fa (orange circles), with the
accuracy of a model trained when fixing Fa = 50 (blue
squares) or Fa = 100 (pink triangles). All three curves
produce rather similar accuracies, implying that a single
ML model trained at a fixed Fa can also produce good pre-
dictions for unseen parameter regimes. This shows reason-
able generalizability of the model. However, the accuracy
in all three cases drops significantly for lower activity. We
attribute this to the fact that small values of Fa render it
extremely challenging to differentiate between structural
signatures induced by either active forces or passive Brow-
nian motion. Hence, any static approach based purely on
instantaneous structural properties fails.

Fig. 3: Accuracy of the Voronoi ML approach as a function of
the fraction of active particles φa = φtest

a , with Fa = 100. The
orange circles represent scores obtained from separate models,
where each one was trained using φtrain

a = φtest
a . The blue

squares and pink triangles represent scores obtained from a
single global model trained with data only for φa = 0.008 or
φa = 0.05, respectively.

The inset of fig. 2 demonstrates that very similar ac-
curacies can be achieved when training the ML algorithm

with the more intricate structural properties G
(n)
i and q

(n)
i

as input (shell-based approach). However, the shell-based
approach is considerably more computationally expensive
compared to the Voronoi method. The reason is that the
shell-based approach employs almost two orders of magni-
tude more features. Consequently, we can conclude that,
for this specific classification task, the Voronoi approach is
more efficient. Moreover, we find similar results for both
the Voronoi and the shell-based approach in 3D (see the
SM).
Figure 3 reports the performance of the Voronoi ac-

tive/passive classifiers as a function of the percentage of
active particles φa, while keeping Fa fixed at 100. For
φa ≤ 0.1, our approach demonstrates excellent predictive
capability when the ML model is trained and tested at a
specific φa value (represented by orange circles). Addi-
tionally, we compare the accuracy obtained when training
the model with φa fixed at 0.008 (blue squares) or 0.05
(pink triangles). The latter case yields better transfer-
ability than when training only on φa = 0.008, especially
in the region φa ≤ 0.1, where it rivals the performance
of the model trained at each φa value separately. No-
ticeably, however, when the fraction of active particles φa

becomes large, the accuracy drops to below 70%, even
for our best ML model. This indicates that the instan-
taneous structural input becomes less informative to dif-
ferentiate between active and passive particles, which we
attribute to the fact that the presence of more active par-
ticles increasingly affects the entire structure of the ma-
terial and diminishes the front-wake asymmetry. Finally,
we have also repeated the Voronoi tessellation analysis at
a lower density of ρ = 1.0 with a fraction of active par-
ticles φa = 0.008. Interestingly, the results are qualita-
tively similar to those obtained at ρ = 1.2, but with a
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Fig. 4: Accuracy map of the Voronoi ML approach in the
(Fa, φa)-plane for a 2D system at temperature T = 0.5 and
density ρ = 1.2.

more pronounced anisotropy observed at a lower activity
(Fa = 50) compared to the higher-density system (see the
SM for more details).

A full overview of the Voronoi ML model accuracy in
the (Fa, φa)-plane is reported in fig. 4. This figure reveals
two distinct regions: a red region representing a “distin-
guishable” area and a blue region representing an “indis-
tinguishable” area. In the red region, characterized by
low φa and high Fa values, the algorithm achieves an ac-
curacy greater than 0.75, enabling it to differentiate ad-
equately between active and passive particles based on a
single snapshot. In this region, the structure surround-
ing the active particle significantly differs from that of the
passive particle. As a result, even a shell-based approach,
which does not consider the directional dependence of pas-
sive particle density around the active particle, still yields
accurate results (inset of fig. 2).

In the blue region, characterized by either high φa or low
Fa, any static approach (either shell-based or Voronoi) is
insufficient to effectively differentiate between active and
passive particles. When Fa < 40, the activity is not
high enough to induce noticeable spatial inhomogeneities.
On the other hand, when φa is too high, the interaction
among active particles complicates the classification task.
Particularly, in cases where both Fa and φa are high,
the system can undergo motility-induced phase separation
(MIPS) [37]. In view of the poor overall performance of
our ML method for both high φa and low Fa, we conclude
that if a local structure-dynamics relationship exists in ac-
tive systems, it must be significantly different from that
observed in passive systems, as indicated by the failure of
the shell-based approach. Additionally, this relationship
is not hidden in the anisotropy, as indicated by the failure
of the Voronoi approach.

In order to still achieve good predictability in the regime
where a purely static ML approach fails (blue region
in fig. 4), we have developed a so-called pseudo-static
method. This approach, detailed in the SM, is able to
identify active particles at the cost of more input infor-
mation. Briefly, while not requiring a fully time-resolved

Fig. 5: The six most important features for the Voronoi model,
represented as a SHAP beeswarm plot at Fa = 100 and
φa = 0.008. The position of the dots is determined by the
SHAP values of the features, and the color is used to display
the value of the features. The top two polygons in the figure
are a detail of a snapshot that represents the typical shapes
observed in the passive (left) and active (right) cases. In the
passive scenario, the center of the polygon aligns with the par-
ticle position, whereas in the active case they do not coincide.

dynamical trajectory, it requires some knowledge of the
averaged statistical fluctuations of the local structure. It
is possible to obtain these statistics from a collection of
snapshots that do not have to be time-ordered, but in
which each particle has to be tracked. This tracking infor-
mation makes the method naturally more computationally
expensive. Overall, in the pseudo-static approach, the in-
formation about the local structure is complemented by
statistical measurements of the same features at different
times. We have verified that using this information on the
structural fluctuations, an accuracy of 95%–100% can be
achieved (see the SM).

Model explanation. Let us return to the parameter
regime where our Voronoi ML model is most successful in
distinguishing active from passive particles, i.e., small φa

and large Fa. In this regime we can interpret the decisions
made by the ML model. To do so, we calculate the model
explanations using SHapley Additive exPlanation (SHAP)
analysis [58]. Briefly, this method, based on cooperative
game theory, calculates Shapley values that distribute the
model’s prediction among the features while considering
their individual contributions to the output. We apply
this analysis to the Voronoi model trained on Fa = 100
and φa = 0.008.
Figure 5 shows the SHAP beeswarm plot, which in-

dicates the six most important features and how the
values of these features influence the model’s predic-
tions. The first six features are, in order of importance:
the distance between the center of the polygon and the
particle (d(c, p)), the perimeter of the polygon, the max-
imum distance between the particle and its neighbors
(max(d(n, p))), the maximum distance between the ver-
tices of the polygon (max(d(v, v))), the area of the poly-
gon, and the maximum distance between the particle and
the vertices of the polygon (max(d(v, p))). The colors
show that the model interprets low values of d(c, p) as
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a passive particle and high values of d(c, p) as an active
particle. Considering that passive particles tend to accu-
mulate in front of active particles while creating a void
behind them, we anticipate the polygons around active
particles to exhibit elongation. Consequently, due to this
anisotropy, we expect the active particle to be situated at
a different position compared to the center of the polygon,
as we confirm in representative polygons shown at the top
of fig. 5. The SHAP analysis clearly validates this expec-
tation. Hence, rather than using the ML model solely as
a black box, we infer that the model captures the correct
physical picture and confirms the importance of spatial
anisotropy induced by activity. Lastly, the SHAP analy-
sis has also been performed in 3D, and the corresponding
results can be found in the SM.

Conclusions. – The focus of this work is to identify
active (alive) entities in a densely disordered mixture of
active and passive (dead) particles, using only a single
picture of the system as input. We compare two static
ML approaches: one based on the Voronoi tessellation
and another employing a shell-based approach that uti-
lizes descriptors previously employed in passive systems
to predict dynamic particle propensities [9–11,13,14,16].

We find that a static approach based on a single snap-
shot is able to predict whether a particle is dead or alive
when the activity is high and the fraction of active parti-
cles is low, in both 2D and 3D. However, this approach fails
when the activity is low or the fraction of active particles is
high, implying a different structural signature for activity
and dynamic propensity in passive systems. Moreover, we
observe that while the Voronoi and shell-based approaches
yield similar accuracies, the shell-based approach is com-
putationally more expensive.

Within the region of the (Fa, φa)-plane where the static
approach is effective for particle classification, our model
exhibits reasonably good performance when extrapolat-
ing to active forces and compositions outside its training
range, demonstrating its robustness. This transferability
can be particularly useful in experiments, where the ac-
tive force or the precise number of active species may be
difficult to quantify.

Additionally, we explain the decisions of our ML model
in order to understand how it is able to identify the ac-
tive entities from the Voronoi input. We find that the
distance between a particle and the center of its corre-
sponding polygon is the most significant feature for this
classification task, serving as a simple and reliable mea-
sure of the distinct spatial anisotropy surrounding an ac-
tive particle.

We hypothesize that the region of the (Fa, φa)-plane
where a purely static approach fails depends on system
parameters such as density and temperature. Indeed,
when considering a lower density, we have found that our
classifier can perform better for certain levels of activity
(see the SM). However, while the boundary of the distin-
guishable region may thus be varied with external control

parameters, we still expect a region where active and pas-
sive particles remain indistinguishable from a single snap-
shot. In this regime more information is inevitably needed,
as confirmed by our pseudo-static approach that incorpo-
rates additional knowledge of structural fluctuations.

In summary, this work demonstrates that the shape of
the polygon is sufficient to differentiate between active
and passive particles in a specific region of the (Fa, φa)-
plane. This work serves as a step to better understand the
elusive structure-dynamics relation in densely disordered
non-equilibrium systems. We believe that our approach
can also be a valuable tool for investigating experimental
systems such as biological cells, where identifying the most
active entities visually can be challenging. It is thus our
hope that the here presented approach can help to process
large experimental datasets and contribute to the discov-
ery of new connections between structural and dynamical
properties in complex non-equilibrium materials.
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