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ARTICLE OPEN

Monitoring pollution pathways in river water by predictive
path modelling using untargeted GC-MS measurements
Maria Cairoli 1,5✉, André van den Doel1,5, Berber Postma1, Tim Offermans1, Henk Zemmelink2, Gerard Stroomberg1,3,
Lutgarde Buydens1, Geert van Kollenburg 1,4,6 and Jeroen Jansen1,6

To safeguard the quality of river water, a comprehensive approach is required within the European Water Framework Directive. It is
vital to conduct non-target screening of the complete chemical fingerprint of the aquatic ecosystem, as this will help to identify
chemicals of emerging concern and uncover their unusual dynamic patterns in river water. Achieving this goal calls for an advanced
combination of two measurement paradigms: tracing the potential pollution path through the river network and detecting the
numerous compounds that constitute the chemical composition, both known and unknown. To address this challenge, we propose
an integrated approach that combines the preprocessing of ongoing Gas Chromatography Mass Spectrometry (GC-MS)
measurements at nine sites along the Rhine using PARAllel FActor Analysis2 (PARAFAC2) for non-target screening, with
spatiotemporal modelling of these sites within the river network using a statistical path modelling algorithm called Process Partial
Least Squares (Process PLS). With an average explained variance of 97.0%, PARAFAC2 extracted mass spectra, elution, and
concentration profiles of known and unknown chemicals. On average, 76.8% of the chemical variability captured by the PARAFAC2
concentration profiles was extracted by Process PLS. The integrated approach enabled us to track chemicals through the Rhine
catchment, and tentatively identify known and as-yet unknown potential pollutants, including methyl tert-butyl ether and 1,3-
cyclopentadiene, based on non-target screening and spatiotemporal behaviour.

npj Clean Water            (2023) 6:48 ; https://doi.org/10.1038/s41545-023-00257-7

INTRODUCTION
The EU Water Framework Directive (WFD) is a highly comprehensive
European environmental legislation to shift the paradigm from
monitoring on the level of individual target chemicals toward a
holistic understanding of the aquatic ecosystem1,2. Current chemical
monitoring takes place on the level of individual target chemicals,
limiting a thorough understanding of the aquatic ecosystem3 and
the chemical diversity that affects it. While targeted analysis is
invaluable in environmental health and safety monitoring, untar-
geted screening is essential for a holistic WFD-proof approach, as it
detects as-yet unidentified chemicals, including chemicals of
emerging concern4, providing a complete chemical fingerprint of
the aquatic ecosystem. Modern analytical platforms allow sensitive,
untargeted detection of thousands of chemicals5,6. These untargeted
analyses are, however, mostly used to detect and quantify priority
target chemicals, and the information on molecules that are not
prioritized is often left untapped7,8.
The number of continuously released anthropogenic chemicals

far exceeds what is feasible to analyze9, therefore existing
prioritization schemes mainly focus on specific contaminants10,11,
prioritized according to exposure and risk assessment12,13. They
rarely consider spatiotemporal contamination patterns. Evaluating
temporal variations in concentration patterns of yet-unidentified
chemicals at a single measurement station may already provide
valuable insights into which chemicals are of emerging concern14.
However, even higher insights may be obtained by integrating
spatiotemporal variation15 among untargeted water monitoring
measurements across several sampling sites.

Chemicals that enter the water system at one point could
potentially be either carried through, evaporated, deposited, or
broken down16,17. Multiple factors influence chemical spatio-
temporal concentration patterns, including distance, river
topology and flow connectivity18, further than anthropogenic
and natural forces19. Water monitoring measurements in
interconnected sites along the river are necessary to character-
ize these patterns20. Harmonizing monitoring measurements
with advanced statistical modelling is essential to capture the
complexity of such patterns: by incorporating the system
knowledge into predictive modelling21, path modelling allows
unveiling causal relationships between chemicals monitored
throughout the stream, ultimately revealing their spatiotem-
poral dynamics in the riverine.
Path modelling assumes a process consists of interrelated

steps that can be modelled through a latent structure22.
Mathematical properties of untargeted water quality data,
multicollinearity and multidimensionality, make Process PLS
most suited23 to capture the water system complexity
throughout connected sampling sites. As this paper will show,
with the aid of suitable preprocessing and PARAFAC2 for
automated feature extraction, Process PLS21 allows for the
inclusion of spatiotemporal information among different
sampling sites with predictive modelling in untargeted mon-
itoring. This makes it possible to track pollution along the
watershed, monitor suspicious patterns, and even hint toward
sources of contamination.

1Radboud University, Department of Analytical Chemistry & Chemometrics, Institute for Molecules and Materials (IMM), Heyendaalseweg 135, 6525 AJ Nijmegen, The
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of Technology, Interconnected Resource-aware Intelligent Systems, Den Dolech 2, 5612AZ Eindhoven, The Netherlands. 5These authors contributed equally: Maria Cairoli, André
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RESULTS AND DISCUSSION
Data and analysis description
232-5738 samples were collected between 2012 and 2014 at
regular intervals on eight sites located on the river Rhine, and one
site on the Lippe, a tributary of the Rhine. Figure 2 specifies the
sampling sites and their distances on the Rhine (Δd); a map
showing the sampling sites location on the Rhine and the Lippe is
reported in the Supplementary Information (Supplementary Fig.
1). The samples were analysed by German and Dutch water
authorities with purge and trap gas chromatography-mass
spectrometry (GC-MS). GC-MS is a common technique for
monitoring water quality, as it detects volatiles and small organic
chemicals24–26, that may be tentatively identified by comparing
their spectra to a reference database of reference spectra27.
Calibration makes it possible to quantify target chemicals28;
however, true identification of a measured ion involves measuring
a standard for the originating chemical on the same machine,
which is unfeasible for all unknowns. Process PLS aids in
prioritizing unknown chemicals to be identified by adding
spatiotemporal behaviour to their risk assessment. To do so,
relevant chemical features need to be extracted from GC-MS
samples, after only retaining samples that are synchronized over
time. Figure 1 reports a workflow indicating the relevant steps of
the analysis, addressed in detail in the remainder of this section.

Temporal synchronization
Temporal synchronization is necessary to correlate occurrences of
chemicals at different sites within the same water volume. We
calculated flow durations between sites based on recorded water

levels and corresponding flow times. Samples rarely exactly
matched the time the volume of water reaches the next site, yet
point-source contaminations are broadened downstream through
diffusion so that we defined a flow time-match tolerance of
1–3 hours, based on site-to-site distances. Water volumes tracked
from Bad Honnef to Bimmen required matching sampling times
for all in-between sites, resulting in 71 water volumes that were
sampled at all sites.

Extracting chemical features from raw GC-MS data
We used the PARADISe software29, based on PARAllel FActor
Analysis2 (PARAFAC2), from the methods available to extract
features from raw GC-MS spectra30–32. PARADISe divides the GC-
MS spectra into retention time windows, each decomposed by
PARAFAC2 into modes of mass spectra, retention time profiles and
relative concentrations of PARAFAC2 components33. Although
PARAFAC2 may handle slight retention time shifts within each
window, our data required additional chromatographic alignment
by Correlation Optimized Warping34, after baseline correction with
Alternating Least Squares35.
For each time window, we selected the number of components

based on fit percentage and core consistency36: 156 components
were first selected for Bad Honnef, and 206 at the other sites, with
an average fit percentage of 97.0% (fit percentage= 97.0
( ± 5.07)%), and an average core consistency of 94.3% (core
consistency= 94.3 ( ± 9.16)%). A Convolutional Neural Network
built into PARADISe identifies components related to chemicals
from those related to analytical artefacts37: after visual inspection,
we discarded the components classified as baseline, finally

Fig. 1 Workflow of the analyses presented in this paper.
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retaining 85 components at Bad Honnef and 109 components at
the other sites. The selected PARAFAC2 components are the
mathematical representation of chemicals, or mixtures of chemi-
cals, in the measured GC-MS samples. Matching the mass spectra
of the PARAFAC2 components with a reference database, such as
the National Institute of Standards and Technology (NIST)
database, makes it possible to tentatively identify such chemi-
cals29. PARADISe has integrated the NIST search engine and the
NIST mass spectral library, facilitating the step of tentative
identification.
We extracted the relative concentrations of the selected

components, which we normalized to average concentrations of
internal standards to eliminate differences in overall signal
intensity between samples. Note that PARAFAC2 measures relative
concentrations among samples: although comparable, they
should be thought of as concentration levels, rather than absolute
molar chemical concentrations, and for this reason, we will refer to
them as concentration profiles. An example of the PARAFAC2
decomposition of the chemical tentatively identified as methyl
tert-butyl ether (MTBE) at Bimmen is provided in Supplementary
Fig. 2 of the Supplementary Information. While we visually
evaluated the elution profiles to assess the reliability of the
PARAFAC2 decomposition, we did not incorporate them into the
Process PLS modelling and tentative identification procedure.
Instead, we employed the concentrations profiles and mass
spectra throughout the analysis presented in this paper.

A path model of the Rhine
Process PLS extends Partial Least Squares (PLS) regression to
analyse multiple multicollinear datasets that can be described as a
pathway21, and is specified using an outer and inner model. The
outer model assigns the extracted concentration profiles (orga-
nized as matrices X) as variables to their respective sampling site
(‘blocks’) in the model. The inner model specifies relations
between sampling sites, connecting each site to those directly
downstream. Figure 2 shows a graphical representation of the
Process PLS model, with outer and inner model. Water enters our
model in Bad Honnef and Wesel Lippe and flows to Bimmen,
which is the model end-point. We treat Lobith and Bimmen as
separate proximal sites (Δd= 2 km), since on opposite sides of the
river and thus might be separated in a laminar river flow.
Furthermore, Orsoy Left connects to Bimmen as its first down-
stream site on the left side and might share the laminar flow.
A Process PLS model can be most easily interpreted using two

statistics: R2 and P2, which are obtained by two consecutive steps
in the modelling procedure21. In a Process PLS model, R2 (Fig. 2)
indicates the amount of information extracted by the model from
the measured variables at each site. This information is
represented by sets of latent variables (LVs) that describe how
much chemical variation in the water composition at a site is
related to the chemical variation at other connected sites. As a
result, high R2 indicates high similarity in the water composition of
one site with the composition of sites connected in the model
specification. In the second step, the extracted chemical variation

Fig. 2 Process PLS model for the nine sampling sites on the Rhine and on the Lippe. The matrices X in the outer model hold the
concentration profiles measured with PARAFAC2 in each sampling site. In the inner model (grey shade), each block holds the Process PLS
Latent Variables (LVs) for each sampling site. The arrows in the inner model connect the sites that are spatially related, separated by a distance
Δd (estimated on the Rhine). Right and left sides refer to the location of the sites relative to the Rhine. R2 and P2 are the explained variances in
the outer and inner model.
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at a site is then predicted by the upstream sites that are
connected to it. The power of such prediction is also quantified as
explained variance, noted P2, rho-squared (Fig. 2). High P2

indicates that the modelled chemical variation at a site is highly
predictable from the connected upstream sites. Through P2, it is
possible to reveal and differentiate potential contamination
patterns.
The amount of chemical variability shared among connected

sampling sites, as predictive power P2 and river topology, may be
investigated. Low P2 (Fig. 2) indicates that chemical patterns in the
predictor site are not observed at downstream sites: chemicals
may have been broken down, or new chemicals may have been
introduced between sites. Distances between sites are relevant in
quantifying relations in their contamination: larger distances imply
a higher possibility for chemicals to react, break down, or be
introduced in between, hence reducing the predictive power of
upstream sites. For instance, the three sampling sites in Orsoy are
located downstream to Bad Honnef with a distance of ~150 km
(Fig. 2): the low P2 confirm that the connected sites do not share
similar contamination patterns. Reasons for this dissimilarity can
be that most of the river pollution occurred in between these sites,
that chemicals have evaporated (note that we focus on (semi-)
volatile compounds in this study), or that chemicals have reacted
or broken down to form new chemicals.
The high P2 between Rees and Lobith, which are on the same

side of the river and at a relatively short distance (25.5 km),
indicates that these sites share similar contamination patterns.
Similar conclusions hold true for the three sampling sites in Orsoy
and Wesel Rhine: 77.4% of the chemical variability in Wesel Rhine
was extracted from the observed data, and 91.2% of this variability
was observed in the three sites in Orsoy, which all lay on the same
kilometer of the Rhine. The comparable P2 of the three sites in
Orsoy (P2WSR;ORL = 32.2%, P2WSR;ORM = 30.4%, P2WSR;ORR = 28.6%) sug-
gest that they share similar contamination patterns with Wesel
Rhine.
When a site is predicted by multiple sites, it is possible to

differentiate sources of contamination, indicating where the
pollution at the considered site was introduced. In our model,
we can exploit this information to evaluate differences between
the left and right sides of the river (in Bimmen), and the influence
of a Rhine tributary on the monitored chemical variability on the
main stream (in Rees) (Fig. 2). In Bimmen, 73.8% of all observed
chemical variability in the water was included in the model (R2).
More than half of this variability can be predicted from
information in Orsoy Left (i.e., P2BIM;ORL = 53.2%) and about 44%
can be predicted from Lobith (P2BIM;LOB = 43.5%), which is on the

right side. Although the distance between Lobith and Bimmen is
much shorter (2.0 km) than between Orsoy Left and Bimmen
(72.4 km), Orsoy Left predicts a higher percentage of the chemical
variability in Bimmen, suggesting that a few of the monitored
chemicals follow pattern on the same river bank. In Rees, 74.3% of
chemical variability was extracted from the observed data, and
93% of this variability was either observed in Wesel Rhine, located
on the Rhine, and in Wesel Lippe, on the tributary Lippe. Wesel
Rhine explains a higher percentage of this variability (
P2REE;WSR = 49.2%, P2REE;WSL = 43.6%), indicating that a few of the
monitored chemicals were not present in the Lippe, but only in
the Rhine.

Tracking patterns of suspicious pollutants
Coupling Process PLS with PARAFAC2 allows tracking pollution
patterns of yet-unidentified chemicals, to for instance prioritize
unidentified chemicals of concern, which might show suspicious
behaviour. Process PLS can predict concentration profiles at a site
from data collected upstream. Such predictions can be validated
by comparing the concentration profiles for PARAFAC2 compo-
nents as predicted by Process PLS from upstream sites with the
concentration profiles measured at the to-be predicted site. The
Normalized Root Mean Square Error (NRMSE), as RMSE normalized
by the standard deviation of the measured profiles, is employed as
a scale-invariant quality metric for predictions of individual profiles
at a given site. Low NRMSE values indicate a low model error,
hence an accurate model prediction of individual profiles, while
higher values indicate a higher model error between measured
and predicted profiles. Note that quantitative comparison of
Process PLS results with the measured concentration profiles
requires reversion of the preprocessing steps to scale them
proportionally. In this work, we were mainly interested in
predicting concentration profiles from site to site, therefore we
accounted for all samples in each site in our prediction.
The model predictive ability can be first evaluated by

comparing measured with predicted concentration profiles for
all PARAFAC2 components for each time point. We show such a
comparison in Lobith and Bimmen, the model end-points on the
right and left sides of the river, for a single time point (Fig. 3). The
predicted profile for Bimmen (Fig. 3b) shows some mismatching
peaks and a higher NRMSE (0.92) than Lobith (0.15, Fig. 3a),
indicating that not all chemicals in Bimmen were accurately
predicted by the model. Specifically, the PARAFAC2 components
56 and 107 presented the highest mismatch between observa-
tions and predictions (Fig. 3b); such components did not match

Fig. 3 Measured and predicted concentration profiles in one time point in Lobith and Bimmen. Process PLS predicted concentration
profiles (red) of the 109 PARAFAC2 components for one time point (nr. 15), and respective PARAFAC2 measured profiles (black) in Lobith (a)
and Bimmen (b), with the fractions of the Process PLS model involving the sites.
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with any of the chemicals in the NIST database and their identity
remains unknown.
The model connections impact the model predictive ability for

individual profiles: chemical concentration profiles in Lobith are
predicted by Rees, which has no connections to other sites,
whereas the prediction in Bimmen is based on Orsoy Left,
optimized to predict also the chemical variability in Wesel Rhine
(Fig. 2). Such connection implies that in Bimmen not all the

individual profiles were optimally predicted, and the model
prediction is less reliable in this sampling site.
Evaluating concentration profiles of target chemicals in the

river connections pinpointed by P2 makes it possible to validate
the Process PLS results as indicative of suspicious behaviour. We
show the results for cumene (benzene, (1-methylethyl)-, Fig. 4)
and MTBE (methyl tert-butyl ether, Fig. 5) as a benchmark for
already monitored chemicals. Cumene and MTBE were selected as

Fig. 4 Measured and predicted concentration profiles of cumene on the right and left sides of the river. a Cumene concentration profile
measured by PARAFAC2 in Rees (orange) and Lobith (black). c Measured cumene concentration profile in Orsoy Left (green), Lobith (yellow),
and Bimmen (black). b and d Measured (black) and predicted (red) cumene concentration profile in Lobith (b) and Bimmen (d). e Matching of
PARAFAC2 cumene mass spectrum with NIST reference (matching probability= 54.9%).

Fig. 5 Measured concentration profiles of MTBE in the Rhine and the Lippe, and profile prediction downstream. a MTBE concentration
profile measured by PARAFAC2 in Wesel Rhine (blue), Wesel Lippe (yellow) and Rees (black). b Measured (black) MTBE concentration profile in
Lobith and predicted profile by Rees (red). c Matching of PARAFAC2 MTBE mass spectrum with NIST reference (matching probability= 83.0%).
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benchmark because they were known to be present in the Rhine:
their analysis allows us to verify that PARAFAC2 can reliably detect
already monitored chemicals. Furthermore, MTBE is known to be
persistent. The concentration profiles measured with PARAFAC2
for the chemical identified as MTBE should therefore repeat
similarly at all sampling sites across the Rhine. This assumption
was validated in our findings, supporting the value of this
approach for unknown components as well.
Figure 4a, c display the measured concentration profiles of

cumene in representative sampling sites on the right and left
sides of the river. Compared to Lobith, Orsoy Left explains a
higher chemical variability in Bimmen (P2BIM;ORL = 53.2%,
P2BIM;LOB = 43.5%). In Lobith, a high percentage of chemical
variability (P2LOB;REE = 82.0%) is explained by Rees. Here, P2

suggests that a few chemicals follow pollution patterns on the
same river bank. The measured concentration profiles of cumene
in Bimmen is much more similar to that in Orsoy Left, on the
same left side, than in Lobith (Fig. 4c), and the concentration
profile in Lobith to that in Rees (Fig. 4a), on the same right side.
Hence, P2 captures such variability. Figure 4b, d show the
predicted concentration profiles of cumene in Lobith and
Bimmen respectively. Although not accurate due to some
mismatching peaks, in Lobith the predicted profile has a lower
NRMSE (NRMSE= 0.81) than Bimmen (NRMSE= 0.99), confirming
the lower model predictive ability in Bimmen discussed above
(Fig. 3). We can finally verify that the PARAFAC2 mass spectrum of
cumene corresponds to its NIST reference (Fig. 4e), although the
matching probability is not particularly high. Note that the
prediction accuracy may be improved by imposing the non-
negativity constraint on the predicted concentration profiles: the
reported NRMSE value might be inflated because we did not
impose this constraint in our work. Furthermore, the time
between measurements was not uniform: throughout the paper,
we report the concentration profiles for equally spaced time
points. We provide the exact dates for each time point in
Supplementary Table 1, and an example of cumene concentration

profiles with the actual temporal spacing in the Supplementary
Information (Supplementary Fig. 3) for completeness.
We considered MTBE as target chemical to evaluate the

influence of multiple pollution sources in Rees. Figure 5a displays
the concentration profiles measured with PARAFAC2 of MTBE in
Wesel Rhine, Wesel Lippe and Rees. The MTBE profile in Rees
overlaps with the profile measured in Wesel Rhine, with a few
higher peaks indicating the occurrence of pollution events in
between the sites. Wesel Rhine, compared to Wesel Lippe,
explains a higher chemical variability in Rees (P2REE;WSR = 49.2%,
P2REE;WSL = 43.6%). These results support the notion that the
majority of MTBE in Rees was introduced from Wesel Rhine, and
not from Wesel Lippe. To substantiate the possibility to employ
the model in Early Warning Systems for preventive protection of
river water quality, we can now predict whether such contaminant
continues travelling downstream to Lobith. The model’s predictive
ability can be assessed with the NRMSE obtained by comparing
the concentration profile of MTBE as measured by PARAFAC2 in
Lobith with its concentration profile predicted by using data
observed at Rees. Figure 5b shows that the model accurately
predicts the concentration profile of MTBE in Lobith with
NRMSE= 0.60. The matching of the PARAFAC2 mass spectrum
with the NIST database confirms that the monitored chemical is
MTBE (Fig. 5c). Such results confirm that, by differentiating
chemical sources through descriptive statistics, Process PLS
enables prioritization of sources of contamination and identifica-
tion of suspicious patterns of pollution, further allowing to predict
contamination downstream. It is worth noting, however, that the
water discharge levels for the Rhine are higher compared to the
Lippe: dilution effects should be carefully evaluated to reach
definitive conclusions on the effective concentration of MTBE in
the Rhine and in the Lippe. Future analyses may consider loads
instead of concentrations14. Loads can be calculated by multi-
plying chemical concentration by the amount of water passing by
the sampling site (i.e., water discharge), if the latter information is
available.

Fig. 6 Measured concentration profile of untargeted chemical in the Rhine and in the Lippe, Process PLS prediction downstream and
tentative identification. a Untargeted chemical concentration profile measured by PARAFAC2 in Wesel Rhine (blue), Wesel Lippe (yellow) and
Rees (black). b Measured (black) chemical concentration profile in Lobith and predicted profile by Rees (red). c Matching of PARAFAC2 mass
spectrum of untargeted chemical with NIST reference spectrum of 1,3-cyclopentadiene (matching probability= 92.9%).
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Through further analysis of the GC-MS data, we were able to
prioritize and tentatively annotate non-target chemicals.
Figure 6a illustrates a chemical with comparable concentration
profiles in Wesel Rhine and Rees, but not in Wesel Lippe. As MTBE,
this chemical was introduced upstream to Wesel Rhine and not
from the Lippe: this finding supports what was indicated by P2.
The measured values in Rees show a peak three times higher than
in Wesel Rhine, suggesting a pollution event between the three
sampling sites. By matching its PARAFAC2 mass spectrum with the
NIST database (Fig. 6c), we tentatively identified this chemical as
1,3-cyclopentadiene, a pollutant found in environmental sam-
ples26. Although the prediction in the downstream station Lobith
was not accurate (Fig. 6b, NRMSE= 0.94), our model can still be
used to tentatively identify the source of pollution and provide
evidence that this unknown chemical warrants further
investigation.
In Fig. 7a, we present the measured concentration profiles of a

chemical tentatively annotated as benzene, 1,2,4,5-tetramethyl-
(durene), with a 19.4% matching NIST probability (Fig. 7c). The low
probability value is due to the isomers benzene, 1,2,3,5-
tetramethyl- (iso-durene, 16.4% matching probability) and ben-
zene, 1,2,3,4-tetramethyl- (prehnitene, 14.5%), which have very
similar mass spectra. Durene and iso-durene are (semi-) volatile
petroleum hydrocarbons (PHs)38 and potential toxic environmen-
tal pollutants. Our model shows that the concentration pattern of
this chemical is comparable across the sampling sites on the
Rhine, with two higher peaks in Rees indicating an emission
between the sampling sites. The high peak in Wesel Lippe
suggests that this chemical was also present in the Lippe, and
travelled to Rees, where we observe a corresponding peak (time
point 65, Fig. 7a). In Fig. 7b, we successfully predicted the
concentration profile of the tentatively identified chemical in
Lobith from Rees. Supplementary Fig. 4 (Supplementary Informa-
tion) also reveals that the pattern is similar in the three sampling

sites in Orsoy, suggesting an effective presence of this chemical in
the Rhine basin. However, since we are dealing with relative
concentrations and the observed patterns may be influenced by
dilution effects in water, further analyses are needed to investigate
whether this chemical is a human-produced pollutant in river
water or simply a naturally occurring substance. If it is human-
produced, this chemical should be prioritized for further
investigations.
Table 1 reports an overview of the chemicals that we were able

to tentatively identify from Orsoy Left to Bimmen, for which we
were provided with a table of already monitored chemicals.
The PARAFAC2 analysis extracted some (9) chemicals as multiple
components, albeit with varying matching probabilities. If these
are indeed the same chemicals, this may lead to multicollinearity
in the data. While Process PLS is designed to analyze multicol-
linear data, certain model details (e.g., variable loadings) should be
interpreted carefully, but this is outside of the scope of the current
paper.
Overall, we tentatively identified 16 chemicals that were not

previously monitored in the Rhine. Several chemicals could not be
identified, and thus still remain unknown. Figure 8a–c show the
measured concentration profile, the predicted profile, and
the mass spectrum of a still-unknown chemical in the Rhine and
in the Lippe. This chemical shows a consistent pattern throughout
the sampling sites, hence might represent a suitable candidate for
prioritization.

Opportunities and challenges of predictive monitoring on
untargeted analysis
Process PLS combined with PARAFAC2, temporal and spectral
alignment, provides a breakthrough way to analyse pollution
throughout the Rhine watershed, enabling detection and predic-
tion of concentration profiles of unidentified volatile and semi-

Fig. 7 Measured concentration profile of untargeted chemical on the Rhine and on the Lippe, Process PLS prediction downstream and
tentative identification. a Chemical concentration profile measured by PARAFAC2 in Wesel Rhine (blue) Wesel Lippe (yellow), and Rees
(black). b Measured (black) chemical concentration profile in Lobith and predicted profile by Rees (red). c Matching of PARAFAC2 untargeted
chemical mass spectrum with NIST reference spectrum of benzene, 1,2,4,5-tetramethyl- (19.4% matching probability). The low probability
value is due to the isomers benzene, 1,2,3,5-tetramethyl- (16.4%) and benzene, 1,2,3,4-tetramethyl- (14.5%), which have very similar mass
spectra.
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volatile organic chemicals between monitoring sites that remain
elusive from conventional analyses on single chemicals and/or
measurement sites. While not perfect for all chemicals, the
approach enabled us to find, explain, and predict suspicious
spatiotemporal patterns of known and unknown chemicals at
different measurement sites, tentatively identifying chemicals of
emerging concern.
Several chemicals cannot be assessed within the current

prioritization schemes due to a lack of sufficient information;
gathering this information might require considerable effort12. By
inspecting suspicious spatiotemporal patterns throughout multi-
ple sites and differentiating pollution sources, our approach adds
a complementary priority attribute of great environmental
relevance to select (unidentified) chemicals to be investigated,
to finally take effective mitigation measures.
To obtain robust results, we chose to consider only repeated

measurements of the same water volume travelling downstream
in all sampling sites. This represented a limiting factor in our
analysis due to a lack of harmonization between sampling
schedules at different monitoring sites—for which there has until
now been no imminent need. Harmonizing sampling times
according to river flow will greatly increase the amount of data
available to monitoring approaches like ours. The strength of
suspicious spatiotemporal patterns may be discovered in as-yet
non-priority compounds. The possibilities to analyze disharmo-
nious measurements in many sampling sites could also be
investigated in future work.
Path modelling supports an integrated modelling approach in

which different parts of the ecosystem are combined in a single
model39–41, which further substantiates the WFD holistic
approach. The Process PLS Latent Variable representation allows
for fusing data from complementary sources, including other
chemical platforms (such as Liquid Chromatography Mass
Spectrometry (LC-MS)), meteorological conditions, and point and
diffuse discharges. This will allow a wider range of chemical,
metabolic and ecological patterns in the river water to be studied.
This study employed path modelling to explore correlations

within a defined network of observations, focusing on detecting
chemical variability in water samples. However, not all detected
chemicals are relevant to monitoring freshwater pollution, as some
may simply be extraction solvents used in the chromatographic
column, such as ethyl acetate. Inclusion of expert knowledge and
selective analysis of chemicals of interest from the tentative
identification step can improve the model’s sensitivity to actual
changes in concentration profiles, increasing the interpretability of
results and enhancing insights into river pollution dynamics.
Ensuring sustainable clean water on a global scale is the major

ambition set by the Sustainable Development Goal (SDG) 642. Early
Warning Systems are nowadays required in drinking water
management to predict the impact of contamination in real-time,
avoiding further pollution and regularly protecting river water
quality43,44. GC-MS instruments can measure water chemistry in
near real-time45, and path modelling can investigate and predict
its variations among several, interconnected, sampling sites.
Further extending this integrated approach by including online
measurements will support the model implementation as an
automated on-line sensor in river monitoring to detect sudden
changes in river water quality downstream, upholding the SDG 6.
We proposed path modelling with Process PLS as a break-

through method to combine untargeted water quality data with
spatiotemporal information for chemical prioritization in river
water quality analysis. We were able to differentiate pollution
sources and confirm the suspicious behaviour of known pollu-
tants, giving insights into other chemicals with similarly suspicious
behaviour, including those chemicals that were yet unidentified,
such as cyclopentadiene and isomers of tetramethyl benzene, and
others that remain unknown. Due to its intrinsic predictive ability,

Table 1. Tentatively identified chemicals.

PRAFAC2
COMPONENT

NIST matching Matching
probability
(%)

Already
monitored?

1 Carbon dioxide 73.5 No

6, 10 Propane, 2-fluoro 80.7, 54.2 No

11 Acetonitrile 93.5 No

12 Acetic anhydride 44.1 No

16 Cyclopropane, 1, 1-
dimethyl-

63.0 No

17 Dimetyl sulfide 93.2 No

19 1, 3- cyclopentadiene 92.9 No

20, 38, 41, 45,
48

Methylene chloride 98.9, 97.5,
97.5, 97.5,
97.2

No

21 Carbon disulfide 70.8 No

22 Isoprene 96.3 No

23 Ethanol, 2-
(trimethylsilyl)-

51.7 No

26, 32 Methyl tert-butyl ether
(MTBE)

83.0, 89.3 Yes

29 3-butyn-2-ol 65.9 No

34, 40 Ethylene, 1,2-dichloro-
(E)

66.7, 68.5 Yes

Ethylene, 1,2-dichloro-
(Z)

18.5, 11.0

Ethylene, 1,1-dichloro- 14.2, 20.1

35 Ethyl acetate 68.1 No

37, 43 Trichloro methane 98.0, 80.5 Yes

42 Cyclopentane, methyl- 25.8 Yes

44, 51 Benzene 81.8, 77.6 Yes

47 Cyclohexene 59.2 Yes

49 Trichloroethylene 98.6 Yes

57, 67 Toluene 23.5, 27.7 Yes

58 3-Furanmethanol 58.8 No

2-Furanmethanol 26.8

62 Tetrachloroethylene 98.8 Yes

72, 74 Styrene 38.7, 42.0 Yes

75 o-Xylene 42.2 Yes

Benzene, 1,3-dimethyl 23.0

p-Xylene 25.3

77 Benzene, (1-
methylethyl)-

54.9 Yes

81, 86 α-Methylstyrene 60.0, 58.6 No

89 Benzene, 1,2,3-
trimethyl-

22.7 Yes

Benzene, 1,2,4-
trimethyl-

20.9

Mesitylene 15.6

97 Benzene, 1,2,4,5-
tetramethyl-

19.4 No

Benzene, 1,2,3,5-
tetramethyl-

16.4

Benzene, 1,2,3,4-
tetramethyl-

14.5

Chemicals tentatively identified by comparison of PARAFAC2 mass
spectrum with NIST reference database. The table reports the percentage
of matching probability, as well as the information on whether the
chemical was already monitored in the river.
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path modelling offers the opportunity to develop evidence-based
early warnings for downstream pollution events in comprehensive
watershed management.

METHODS
Dataset
Water samples were collected at eight sampling sites along the river
Rhine and at one site on the river Lippe, which is a tributary of the
Rhine. Table 2 reports the number of samples collected for each site,
together with the river kilometer. Purge and trap gas
chromatography-mass spectrometry (GC-MS) measurements of such
samples were performed by German and Dutch authorities: the
water samples were spiked with a mixture of deuterated internal
standards (deuterochloroform, toluene, chlorobenzene, 1,4-dichlor-
obenzene, and naphthalene) to a final concentration of 0.1 μg/L.
Samples for Bad Honnef were measured in the monitoring station of
Bad Honnef, while samples from the remaining eight sampling sites
were measured at the international measuring station Bimmen-
Lobith (IMBL). A Bruker Varian Saturn ion trap instrument (in single
MS mode) was employed to obtain GC-MS spectra. Volatile
compounds were extracted from the sample matrix by purging with
an inert gas. Chemicals were separated based on chemical and
physical properties through polar and apolar interaction with the
stationary phase of the GC column. For further identification,

fractions of the GC column were injected into the mass spectrometer,
and separated according to the m/z ratio. The mass scans were
acquired with 0.1m/z resolution.

Preprocessing: temporal synchronization and
chromatographic alignment
Temporal synchronization. Temporal synchronization is necessary
to correctly correlate chemicals monitored at multiple sampling
sites over time, by tracking the same column of water in each site.
We estimated the time the river water flows from one site to
another according to a table of recorded water levels (cm) and
flow time values (h), provided by the German Federal Institute of
Hydrology through personal correspondence46. Flow time values
were not available for all the water samples, thus we fitted a third-
degree polynomial to the available flow times and water levels in
each corresponding river section and we used the obtained fitting
coefficients, together with the available water levels, to estimate
the flow times for all the samples. We estimated the time at which
the water travelled throughout connected sampling sites accord-
ing to Eq. (1), finally retaining only the matching samples.

tB ¼ tA þ tf (1)

where tA is the time the water sample was collected at site A, tB
the corresponding time at the connected site B and tf is the flow
time value resulting from the previous extrapolation, which

Fig. 8 Measured concentration profile of unidentified untargeted chemical on the Rhine and on the Lippe, and profile prediction
downstream. aMeasured untargeted chemical concentration profile in Wesel Rhine (blue), Wesel Lippe (yellow), and Rees (black). bMeasured
(black) chemical concentration profile in Lobith and predicted profile by Rees (red). c PARAFAC2 mass spectrum of unidentified untargeted
chemical.

Table 2. Sampling sites description.

Sampling site Sampling site name Number of samples Location on the Rhine (km) Flow tolerance time
(between sampling sites)

1 Bad Honnef
(HON)

5515 640.0
(Rhine, right side)

3 h
(1–3)

2 Orsoy Left
(ORL)

254 792.6
(Rhine, left side)

1 h
(2–3)

3 Orsoy Middle
(ORM)

260 792.6
(Rhine, middle)

1 h
(3–4)

4 Orsoy Right
(ORR)

258 792.6
(Rhine, right side)

3 h
(4–5)

5 Wesel Rhine
(WSR)

232 814.0
(Rhine, right side)

1 h
(5-6)

6 Wesel Lippe
(WSL)

307 814.45
(Lippe, right side)

3 h
(6–7)

7 Rees
(REE)

238 837.5
(Rhine, right side)

3 h
(7–8)

8 Lobith
(LOB)

3481 863.0
(Rhine, right side)

2 h
(8–9)

9 Bimmen
(BIM)

5738 865.0
(Rhine, left side)

−
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accounts for an additional tolerance time of 1–3 h, estimated
according to the distance between the sampling sites, and
reported in Table 2. We repeated this operation consecutively
from Bad Honnef (site 1) to Bimmen (site 9), retaining any time the
matching samples. In total, we selected 71 water samples
synchronized among all the sampling sites (Supplementary Table
1). We employed such samples in the next analysis step, which
consisted in extracting relevant chemical features from the GC-MS
spectra, after spectral preprocessing.

Chromatographic alignment. GC-MS data are often affected by
spectral artefacts that hinder proper feature extraction, such as
background noise, overlapping and shifting peaks, which might
derive from experimental conditions, variations in the chromato-
gram or the mass detector47. Although PARAFAC2 may handle
such artefacts to a certain extent33, our data required three
preliminary spectral preprocessing steps.
We aligned the GC-MS spectra according to the Total Ion Current

(TIC). To compensate for different time-scales of TIC in retention
times, the first step required aligning the TIC values to an equally
spaced vector vref of r retention times, defined as (Eq. (2)):

vref ¼ ½ t0 ¼ 0 ; :: ; tr ¼ maxðrtÞ� (2)

where maxðrtÞ is the maximum retention time value assessed
among the samples. For each sample, we assigned each retention
time to its closest value in the reference vector. Due to the higher
resolution of the spectra measured in Bad Honnef compared to
the other measurements, we defined a reference vector of 7000
time points for Bad Honnef, and a vector of 4300 time points for
the remaining eight sampling sites. Due to this difference, we
analyzed the chromatograms in Bad Honnef separately from the
ones collected in the remaining sampling sites. The second and
third preprocessing steps consisted of baseline correction through
Alternating Least Squares35, followed by Correlation Optimized
Warping (COW)34 to correct for peak shifting.

PARAFAC2 to extract relevant chemical features
We employed the software PARADISe29, based on PARAllel FActor
Analysis2 (PARAFAC2), to extract pure mass spectra, elution
profiles and concentration profiles from the GC-MS spectra.
PARAFAC2 allows to deconvolute pure mass spectra of peaks
and to integrate areas of deconvoluted peaks (extracting relative
concentrations) for all samples simultaneously while handling co-
eluted, retention time shifted and low signal-to-noise ratio
chromatographic peaks48,49.

For each sample k, PARAFAC2 decomposes the GC-MS matrix Tk (I
x J), with I mass spectra and J retention times in three matrices (Eq.
(3)), each corresponding to ‘modes’ of the GC-MS spectra when
several measurements from a set of samples are stacked together33.

Tk ¼ ADk Bkð ÞT þ Ek (3)

Where A (I x F) is the matrix of the mass spectra-mode of the
resolved analytes F, which are the PARAFAC2 components. Dk (F x F)
is the diagonal matrix that holds the kth row of the sample-mode
loading matrix C, which holds the chemical relative concentration
profiles. Bk (I x F) is the matrix of the elution profiles-mode for each
component F, and the matrix Ek holds the model residuals33.
PARADISe divides the chromatogram into retention time

windows, and builds a PARAFAC2 model for each investigated
region, after defining the number of PARAFAC2 components for
each model. We manually selected the retention time intervals,
and we imposed the non-negativity constraint on all the models,
which implies positive mass-loadings. We constructed the models
from 1 to 7 components as software-default, and for each model
we selected the number of optimal components according to the
criteria of core consistency and fit percentage36.
Due to the difference in resolution, we processed the spectra

measured in Bad Honnef separately from the other sampling sites in
PARADISe. This led to select a total of 185 PARAFAC2 components for
Bad Honnef and 206 for the remaining sampling sites. Once the
models are determined, a Convolutional Neural Network built into
the software classifies the components as baseline or (mixture of)
chemicals37. We excluded the components classified as baseline to
only select components corresponding to chemicals29. After such
selection, we finally obtained 85 components for Bad Honnef and
109 for the remaining sampling sites. The resolved peaks of such
components could be then tentatively identified using their
deconvoluted mass spectra and the NIST reference database.
We extracted relative concentration profiles for each compo-

nent in each sampling site, obtaining nine different concentration
matrices, of dimension (71 × 85) for Bad Honnef, and (71 ×109) for
the eight remaining sampling sites. Before Process PLS, we
standardized such profiles to average concentrations of internal
standards (deuterochloroform, toluene-d8, chlorobenzene-d5,
dichlorobenzene-d4, naphthalene-d8) to eliminate differences in
overall signal intensity between samples, a standard practice in
analyzing GC-MS data.

Process PLS to track pollution patterns
Process PLS is a path modelling tool that makes it possible to find
relationships between multivariate data matrices connected

Fig. 9 Process PLS model flow chart. The main steps involved in the Process PLS modelling are displayed, integrated with a visual example
for three blocks. X1; X2; X3; are the matrices holding the measured variables for blocks 1, 2, and 3; ξ̂1 , ξ̂2 , ξ̂3 are the matrices holding the sets
of Latent Variables estimated for each block in the first PLS regression model, R2 and P2 represent the explained variance in the outer and inner
model, respectively.
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throughout a structure. The workhorse of Process PLS is the Partial
Least Squares method (SIMPLS algorithm50), which is performed in
two rounds to find the relationships between the measured data
matrices. A Process PLS model consists of two sub-models: the
outer and inner models. In the outer model, the relationships
between the measured variables and the Latent Variables
estimated by PLS are explored, while the inner model is used to
analyze the relationships between the blocks of the estimated
Latent Variables21. A brief description of the method is here
provided, supported with a schematic flowchart (Fig. 9); we refer
to the reference article21 for further details.
The first step in Process PLS consists in specifying the model:

the outer model is specified by assigning the measured
variables to the corresponding blocks in the model. The inner
model is then specified, by connecting the blocks according to
defined relationships21. We specified the outer model by
assigning the concentration profiles extracted by PARAFAC2
to the sampling sites (our model ‘blocks’), and we specified the
inner model by connecting the sampling sites according to the
river topology. After specifying the model, the outer and inner
model are computed, and the defined relationships can be
interpreted through two statistics: the explained variances R2

and P2.

Outer model. In the outer model, the first round of PLS is
performed: the variables measured in each block predict the
variables of the blocks connected through the inner model,
obtaining a set of Latent Variables ξ̂m for each block m. The
number of estimated Latent Variables varies per block, and is
computed by double cross-validation. The amount of significant
information extracted by the Latent Variables is quantified, for
each block m, by the explained variance R2, estimated as (Eq. (4)):

R2m ¼ traceðLTmLmÞ
N � 1

(4)

for all the blocks that predict other blocks (all the sites except
Bimmen in our model), and as (Eq. (5)):

R2m ¼ traceðQT
mQmÞ

N � 1
(5)

for the block that only functions as a target (Bimmen in our
model). In Eqs. (4) and (5), Lm is the X-loadings matrix for block m,
N is the number of observations, and Qm is the Y-loadings matrix
for block m21. X is the matrix of predictor variables, while Y is the
matrix or variables that are being predicted.

Inner model. After each set of Latent Variables ξ̂m per block m is
estimated, the second round of PLS is performed, where each
block m is predicted by the n blocks that are connected to it in the
inner model. The explained variance of such prediction is
calculated by subtracting the sum of squared errors between
the estimated LVs ξ̂m and the PLS prediction χmBm from the total
sum of squares of ξ̂m

21 (Eq. (6)).

P2m ¼ 1�
XN

i¼1

ðξ̂mi � χmiBmiÞ2 ¼ 1� SSðξ̂m � χmBmÞ (6)

Where SS indicates the sum of squares, χm is the regression matrix,
which combines the Latent Variables of the n predictor blocks,
according to the connections defined in the inner model21 (Eq. (7)):

χm ¼ ½ξ̂m;1; ¼ ; ξ̂m;n� (7)

And Bm is the matrix of the PLS regression coefficients (Eq. (8)):

Bm ¼ ½Bm;1; ¼ ; Bm;n� (8)

Since the variance obtained in Eq. (6) is not specific for single
connections between blocks, the partial explained variance for

each specific predictor block z is finally computed as (Eq. (9)):

P2m;z ¼ P2m � SSðξ̂m � ξ̂m;zBm;zÞPn
q¼1SSðξ̂m � ξ̂m;qBm;qÞ

(9)

which is indicated as P2 (‘rho-squared’) in the connections in
Fig. 2.
After the outer and inner model are computed, individual

concentration profiles can be predicted from the X- and Y-
loadings and scores PLS matrices, accounting for the steps of
autoscaling, mean centering and block scaling performed by
the Process PLS algorithm.

Software
Python 3.9.7 (package: processPLS51) was employed to train
the Process PLS model and for Latent Variables estimation.
Matlab R2020b was employed for temporal and spectral
preprocessing of raw GC-MS data, and for processing the
output of Process PLS, including chemical profiles prediction.
The software PARADISe (version 3.9) was employed to perform
the PARAFAC2 analysis of GC-MS data. PARADISe integrates MS
Search (version 2.3.), the NIST Mass Spectra Search Program
which was employed for the tentative identification of
chemicals.
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