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ARTICLE INFO ABSTRACT

Keywords:

Thermochemical energy storage
Salt hydrates

Hydration

Mathematical model

Hydration front

Hydration of packed beds of salt hydrate particles underpins the working principle of low temperature ther-
mochemical energy storage (TCES). Typically, the salt hydrate particles are millimeter sized. An isothermal
model for packed bed hydration is formulated, and it is shown that for millimeter sized particles hydration can be
described as an advection-reaction process. Traveling wave solutions have been obtained that describe a moving
hydration front. The speed of the hydration front is about five orders of magnitude slower than the air velocity in
the particle bed. The width of the hydration front is under relevant TCES conditions between 10 and 100 cm.
Therefore, hydration fronts will only develop in meter-sized packed beds. A constant hydration rate (and power
output) is related to the existence of a traveling hydration front. Therefore, constant hydration rates and power
output can only be expected for meter sized TCES reactors. Finally, the influence of temperature gradients is
analyzed for the case that the front width is smaller than the bed size. The temperature lift and power output are
calculated. Future steps should involve a more detailed description of temperature gradients and a quantitative
analysis of finite size effects.

1. Introduction

Salt hydrates are salts with water incorporated in the crystal lattice.
The uptake of water by a salt is called hydration and the reverse process
dehydration. These reactions can be described with the following reac-
tion equilibrium.

Salt-aH,0 (s) + (B — a)H,0 (g)=Salt-pH, O (s) 1)

Here Salt refers to a unit of salt: Salt = KoCO3, MgCly, NayS, ... The
parameters o and f indicate the moles of water molecules per mole of
unit salts. Depending on the water vapor pressure p [Pa] and tempera-
ture T [K] a salt either hydrates or dehydrates.

For decades salt hydration has been studied in view of its role in salt
weathering [1-3]. The hydration reaction involves uptake of water
molecules leading to expansion of the material. When salt crystals are
trapped in the pore system of a rock and start to hydrate, the crystals
exert force on the rock matrix that can lead to crack formations [4,5]. In
the last decade salt hydrates have gained attention also from the area of
renewable energy in view thermal energy storage [6-10]. The hope is
that the principle of salt hydration can be used to store energy. For every

mole of water binding to a salt (hydration) a fixed amount of energy is
released in the form of heat. This amount of energy must be supplied to
drive the opposite reaction (dehydration). The reversibility of the re-
action makes the principle suitable for thermochemical energy storage
(TCES). In general, TCES technology uses a reversible reaction between
a solid or liquid with a gas for storing thermal energy [11,12].

The core of a salt hydrate TCES-device is a packed bed of salt par-
ticles. The salt particles are manufactured from salt powder, are typi-
cally millimeter sized and contain porosity [13-16]. As water vapor
needs to have good access to the salt hydrate particles, the permeability
of the bed is crucial to facilitate the flow of water vapor through the bed.
In general, there exists two ways to drive the water flux relating to two
types of systems, referred to as open and closed systems [17,18]. The
first class of systems, often called closed systems, operate under pure
water vapor condition [19-21]. Under these conditions water vapor
diffusion is extremely fast and sufficient to have good reaction rates, but
heat transfer is limiting the power output. A second class of systems
operates under atmospheric conditions: i.e., besides water vapor there is
air as carrier gas. These systems are often called open systems [22,23],
but there are variants under investigation that work with a closed loop
[24]. Under these conditions water vapor diffusion is slow and forced
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Nomenclature

A, particle surface area, m?

c(z,t) local water vapor concentration, mol/m>

Co water vapor concentration at the entrance of the bed, mol/
m?

Ceq equilibrium water vapor concentration, mol/m?>

Cex water vapor concentration at the exit of the bed, mol/m®

Ac water vapor concentration difference over the bed, mol/m?>

Coair molar heat capacity of air, J/mol K

Cn constant related to a particular diffusion limited reaction
model

Dyir water vapor diffusivity in air, m?/s

D, water vapor dispersion coefficient in the bed, m?/s

Dy water vapor diffusion coefficient in the bed, m?/s

D, water vapor diffusivity inside a porous particle, m?/s

Da, Damkohler number for the particle bed

Da, Damkohler number for the salt hydrate particle

f(®) position of the hydration front, m

F(X) reaction pathway

H standard enthalpy of dehydration, J/mol

k kinetic coefficient, m®/mol s

L bed length, m

n type of diffusion limited reaction

P water vapor pressure, Pa

p0 standard pressure (1 atm), Pa

p power per area, W/m?

Pe Peclet number

q volume flux of the air, m/s

r particle size, m

R gas constant, 8.314 J/mol K

S standard entropy of dehydration, J/mol K

t time, s

Atcrp duration of the constant rate period, s

Atcgp;  duration of phase I of the constant rate period, s

Atcgpyr  duration of phase II of the constant rate period, s

Atprp duration of the falling rate period, s

Atgrp duration of the rising rate period, s

T temperature, K

T* temperature at which the hydration reaction stops, K

Tin input temperature, K

Tour output temperature, K

AT temperature lift over the particle bed, K

U average air velocity in the bed, m/s

Vv velocity of the hydration front, m/s

A particle volume, m®

w front width, m

X(z,t)  local conversion

X* threshold value of the conversion

b4 position, m

a moles of water per moles of salt units of the lower hydrate

p moles of water per moles of salt units of the higher hydrate

y volumetric reaction density, mol/m?®

n moving coordinate, m

n dimensionless moving coordinate

&p characteristic dispersion length scale, m

Er characteristic reaction length scale, m

Erp characteristic reaction length scale for diffusion limited
reactions, m

Erx characteristic reaction length scale for constant rate
reactions, m

p molar density of salt in a salt hydrate particle, mol/m?>

Pair molar density of air, mol/m>

Pu crystal density of the a-phase, mol/m?3

Pp crystal density of the g-phase, mol/m>

Ap,(2,t) the local amount of absorbed water per volume, mol/m*

Apymex  the maximal amount of absorbed water per volume, mol/
m3

o global reaction rate, mol/m?s

T tortuosity

2 porosity of the particle bed

by porosity of a salt hydrate particle

w(z,t)  dimensionless vapor concentration

advection is used to drive the water vapor into the particle bed. In this
paper we model this class of systems, where water vapor is brought to
the salt by advection.

There have been many attempts to model the hydration of salt par-
ticles in TCES devices [18,25,26,27,28,29,30,31]. These studies are
numerically in nature and aim to predict the performance of a certain
device or configuration (power output and temperature lift). These
studies have put a lot of effort in solving simultaneously the partial
differential equations (PDE) for the water vapor phase, the solids, and
the energy. Due to the numerical approach and the specificity of the
adopted device configurations these studies generate limited insights in
the salt hydration process as such. On fundamental level several
fundamental questions remain unanswered. First, under what conditions
do hydration fronts develop in a packed bed? Second, how fast do such
fronts travel? Third, what is the shape of such a hydration front? Un-
derneath all these questions is the central question: how does the hy-
dration rate on the bed scale relate to the hydration kinetics of a single
salt hydrate particle? Concise analytical solutions as answers to these
questions would be of great help for designers of TCES devices.

The mathematics behind salt hydration obeys the so-called class of
advection-diffusion-reaction (ADR) equations. Analytical solutions seem
to be available for a single PDE given that it is a linear equation or has a
very specific non-linear form. To describe salt hydration, the problem of
interest, at least a set of two or three coupled PDE’s must be solved. The
reaction term that couples these PDE’s can be described with analytical

models that have been validated by experiments. Unfortunately, the
mathematical nature of the reaction term introduces non-linearity into
the problem. To the best of authors knowledge there have been no at-
tempts to come up with analytical or quasi-analytical solutions for the
problem of salt hydration.

This study aims to study hydration fronts in packed beds of salt hy-
drate particles in relation to the hydration kinetics of individual parti-
cles. Although the analysis is rather general, special attention will be
paid to millimeter sized salt hydrate particles relevant for TCES appli-
cations. To simplify the problem, we mainly focus on isothermal con-
ditions. We discuss traveling wave solutions for obtaining the velocity,
width, and shape of a hydration front. The relation between front shape
and the salt particle reaction kinetics will be investigated with a focus on
diffusion limited reaction kinetics inside the particles. Properties of
several salts (CuCly, KoCOs, LiCl, MgCly, SrBr and SrCly) will be used to
parameterize the model and assess certain model assumptions. Note that
these salts are representative for many salt hydrates and are widely
studied in view of TCES applications [6-9]. Quantitative predictions of
the speed and width of hydration fronts will be done based on existing
experimental data. Furthermore, the implications for finite sized TCES
reactors will be discussed. Finally, we assess the influence of tempera-
ture gradients on properties like the hydration front velocity and vari-
ables characterizing TCES performance (temperature lift and power
output).
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2. Basic model

We consider a homogenous packed bed of millimeter sized salt
particles with a porosity ¢ [—] at a fixed temperature T [K]. Salt par-
ticles are made from compressed salt powder and have porosity ¢, [—]
and tortuosity 7 [—]. A schematic picture of the packed bed is shown in
Fig. 1. Air flows through the bed with a volume flux g [m/s], which is
often called superficial velocity. The air carries water vapor with a
density c(z,t) [mol/m?] that varies with time ¢ [s] and position z [m]. At
the entrance and exit of the bed the water vapor has densities ¢y [mol/
m?] and Cex [mol/m3], respectively. The water vapor reacts with the salt
particles resulting in an increase of the hydration state of the salt. In this
paper we limit ourselves to single step hydration reactions. The degree
of hydration is quantified with a so-called conversion parameter X(z, t)
that can vary between 0 and 1: X(z,0) = 0 and X(z, ) = 1.

X(2,0) = 80, (2, 1) /APy @)

In this definition Ap,, (2, t) [mol/m®] is the amount of water absorbed
per volume, and Ap,, ... [mol/m?] is the maximal amount that can be
absorbed. It is assumed that the salt particles neither change size or
shape during hydration. In case X strongly varies between the entrance
and the exit, a hydration front exists that has a position f(t) [m].

As the gas behaves ideal, ¢ can be linked with the water vapor
pressure via the ideal gas law: p = cRT. Hydration or dehydration occurs
when c(z,t) > ceq OF ¢(2,t) < Ceq, respectively. Here cq [mol/m®] is the
equilibrium vapor concentration that is given by the Clausius-Clapeyron
equation:

Coqg = p—Texp(S/R)exp( —H/RT) 3

Here H [J/mol] and S [J/mol K] are the standard enthalpy and en-
tropy of dehydration per mole water (H > 0 and S > 0). Further, R =
8.314 J/mol K is the gas constant and p° [Pa] the standard pressure (1
atm). In this paper we only consider hydration: c(z,t) > ceq.

By working with a single spatial coordinate z we already reduced the
problem to 1D. This has several implications. First, the particle packing,
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and the air flow is assumed constant all over the bed. Second, each
particle at position z experiences the same water vapor concentration at
its surface and therefore has the same reaction kinetics driven by the
difference ¢ — ccq.

Salt hydration belongs to the category of solid-gas reactions and is
often described with the general kinetic equation (GKE) [32-34]. A
detailed discussion of the GKE-approach is beyond the scope of this
paper. Here we adopt a specific form that has recently been validated for
salt hydrate particles [16].

X
5=

In this equation k [m3/mol s] is a kinetic coefficient reflecting the
nature of the hydration reaction. In case of a diffusion limited reactions,
it is directly connected with the water vapor diffusion coefficient in the
salt particle D, [m2/s].

ﬂDair (5)
T

KF(X)0(1 — X) (c — ceq) 4

D, =

Here Dgir [m?/s] is the diffusivity of water vapor in air. Further, F(X)
is a function describing the reaction pathway, respectively. The term
0(1 —X)(c — cq) represents the driving force for the reaction, where
6(1 — X) is a Heaviside step function that guarantees that the reaction
stops when all mass has been converted (X = 1). In Table 1 an overview
is given of the particle reaction models studied in this paper. The ex-
pressions for F(X) and k have been obtained from the literature on gas-
solid reactions and adapted to the details of salt hydration [35-37].
Several studies on salt hydration have already used this type of modeling
[15,16,38].

Four different reaction models for the particles will be explored.
First, a constant rate model (CR) that serves as a reference model and is
easily solvable. Secondly, we will investigate three diffusion limited
reaction models (DLR, and n = 1,2,3) related to three geometries (plates,
cylinders, and spheres). The parameter n is a shape factor quantifying
the particle surface area A, [m?] per volume of the particle V), [m°] given
a particular particle size r [m].

ft)

ey ‘75;)

Fig. 1. Schematic picture of the modeling approach of hydration of a salt bed. A 1D homogenized model will be used, where flow and porosity are assumed to be
homogeneous (upper left). The time evolution of the water vapor concentration c and conversion X (the degree of salt hydration) will be calculated (lower left). The
reaction term in the equations will account for the particle shape (upper right) and its internal structure (lower right).
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Table 1

Overview of the investigated reaction models. The CR (constant rate) model
assumes that the hydration kinetics of the particle is not limited by water vapor
transport into the particle and is constant. The three DLR (diffusion limited rate)
models assume that the hydration rate is limited by water vapor diffusion into
the particle. Three particle shapes are investigated: plates (n = 1), cylinders (n =
2) and spheres (n = 3).

Model F(X) k

CR

Constant rate 1 K

DLR;

Diffusion limited reaction of infinite flat plates 1 D,
X r2(f — a)p

DLRy

Diffusion limited reaction of infinite cylinders -4 D,
In(1-X) 2(p—ap

DLR;

Diffusion limited reaction of spheres 3 D,
1-x"1"-1 r2(p—a)p

_Apr

"=y (6)

These models have been validated for millimeter sized porous KoCO3
particles [16], allowing us to do quantitative predictions for hydration
fronts under relevant TCES conditions. It must be stressed that the DLR
models overestimate the reaction kinetics at the start of the process,
)l(ii’réF (X) = o0, where the intrinsic reaction rate of the salt limits the speed

of hydration. Therefore, F(X) will be constrained to a finite value at for
small values of X.

In Table 1 r [m] is the particle radius case of cylindrical and spherical
particles, and half the particle thickness in case of plate-like particles.
Further, p [mol/m3] is the molar density of salt in the salt particle, which
is of course related to the crystal density of the starting phase p, [mol/
m?®] and the particle porosity: p = p, (1 - q‘)p).

The water vapor concentration inside the packed bed varies in time
and space due to advection, diffusion, and reaction. This can be
described with the following ADR equation.

dc & e dc
¢bE: ¢bDbTZ2_¢bUa*Z_Yk9(1 _X)F(X)(C_Ceq) )

Here U [m/s], Dy [m?%/s] and y [mol/m>] are the air velocity,
dispersion coefficient and the volumetric reaction density, respectively.
Note that there is a direct relation between the volume flux and the air
velocity: ¢ = U¢,. The parameter y describes the required amount of
water to convert all salt in a certain volume.

r=0-¢,)-a)p==1-¢)(1-,)f~a)p, ®

The dispersion coefficient Dy reduces to the water vapor diffusivity at
low air velocities.

From now on, we will work with an infinite packed bed. In such a bed
the boundary conditions for the conversion are well defined: X( — oo
,t) =1 and X( + o0,t) = 0. Furthermore, we choose c¢( — o,t) = ¢y and
c(+ o0,t) = coq. As the temperature is fixed the vapor density drop over
the bed has a fixed value: Ac = ¢y — ¢ [mol/m?’].

3. Traveling waves
3.1. Front velocity

In an infinite system a hydration front always develops as its width
cannot exceed the boundaries of the system. Since the vapor consump-
tion rate is constant, gAc, one might expect that the hydration front also
travels with a constant velocity V [m/s]. It must be remarked that ADR
equations often have traveling wave solutions [39-41]. This front ve-
locity V can be found via the following mass conservation equation.
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yV =¢,(U—-V)Ac 9)

The left-hand side of the equation describes the amount of water
reacting with the salt in the front area. The right-hand side of the
equation describes the difference between the water vapor fluxes up-
stream and downstream the front. By rewriting this equation, one finds
an equation for the front velocity.

V=u Ay
1+ ¢,Ac/y

The factor ¢,Ac/y represents the ratio between the amount of water
in the air phase that can react, ¢, Ac, and that has reacted with the salt, y.
With the help of Eq. (8) it can be shown that this ratio equals

PAc _ P, Ac an

v (=¢)(1-¢,) B-ap,

It follows from these equations that the velocity of the hydration
front is fully decoupled from the hydration kinetics of the individual
particles. Note that factor ¢, Ac/y is dominated by the ratio Ac/(8 — a)p,
as the vapor density ¢ is much lower than the density of the absorbed
water in the crystalline phase (f — a)p,. Therefore, in most cases ¢,Ac/
y<1 and

10

V = Ugp,Ac/y 12

The main conclusion here is that the velocity of the hydration front
will always be orders of magnitude slower than the air velocity. The
vapor phases contain much less water than is absorbed by the salt.

To explore the existence of traveling wave solutions, a moving spatial
coordinate  [m] is adopted in which the position of the front has a fixed
value.

n=z—-Wt 13)

Furthermore, we simplify the equations by working with a dimen-
sionless vapor concentration field y that like X varies between 0 and 1.

C—Cy

v = 14
Co — Ceq
With Eq. (13) and Eq. (14) one can rewrite the Eq. (4) and Eq. (7) to
X
V‘;—n+k9(1 —X)F(X)Acy =0 15)
and
d*y dy
¢bDbd—’72—¢h(U—V)d—”—}’k9(l - X)FX)y =0 (16)

This set of equations has the boundary conditions X( — c0,t) = 1,
X(+o00,t) =0, w(—oo,t) =1 and y(+ co,t) = 0.

Note that the set of PDE’s have been transferred into a set of ODE’s
(ordinary differential equations). Before solving this set of equations, the
role of dispersion/diffusion will be discussed in more detail.

3.2. The role of dispersion or diffusion

To judge the roles of dispersion and diffusion as modes of transport,
Eq. (16) will now be analyzed in more detail. First a length scale &g [m]
is defined that characterizes the reaction.

Uu-v
g =0U"Y a7)
vk

In case of the CR model, we will refer to this length scale with & . In
case of diffusion limited reaction kinetics (DLR models), one can obtain
the following equation by using the equations for k as listed in Table 1:

_( b \PWU-V)
Erp = (1 _¢b) ~ D, (18)
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An interesting feature of this expression for &; is that it neither de-
pends on the water vapor pressure gradient Ac driving hydration nor on
the water vapor density in the salt hydrate. The only particle properties
that matter are its size r, and the vapor diffusivity Dp. In case U>V Eq.
(18) reduces to

- b, r’u
Eep ~ (1 ? ¢b> B 19

With the help of a dimensionless coordinate i} = 1/&; Eq. (16) can be
rewritten as

&y dy
IS 91— X)F(X)y =0 20
Ee di? i (1 -X)F(X)y (20)

Here £, = D, /(U — V) is the length scale that shows to what extend
dispersion can compete with advection. When &, /&, <1, dispersion can
be neglected, and advection dominates the vapor transport. It follows
from the definition of the length scales that

Sp_ _ rkDy 1)

& p(U-V)
For further quantification of this ratio, again the equations for k of
the DLR models are used, see Table 1, in combination with Eq. (8).

& _(1-4)\ DD, 29
¢rp < by >V2(U*V)2 @2

Before being able to judge the importance of vapor dispersion and/or
diffusion, first the dispersion constant Dy needs be made more explicit.
At low air velocities this constant will converge to the water diffusivity
in the bed Dy [m?%/s]. However, at sufficiently high air velocities
random advective motion will increase the value of Dy. To estimate if
random advective motions can compete with molecular diffusion, the
following Peclet number is analyzed [42].

_ Ud _2Ur

Pe = 2
¢ Da[r Da[r ( 3)

In this equation d = 2r is the typical diameter/length scale of the salt
hydrate particle. Using typical values U = 0.1-1 m/s, Dgir = 24 mm?/s
(20 °C) [43] and r = 0.3-3 mm, the estimated Pe varies between 2.5 and
250, which makes that we are in the regime of mechanical dispersion.
For our evaluation of the importance of the dispersion for vapor trans-
port, Eq. (16), it suffices to focus on the upper bound for Dj. This upper
bound is given by [44]

1
Dy = Dy (;Jr 1‘8Pe> ~3.6Ur 24)

The last term on the right-hand side of the equation fully ignores the
role of molecular diffusion.

With the help of Eq. (24) and using U>V it can be shown that

— Db

b= =367 (25)

This surprisingly simple relation demonstrates that molecular
diffusion or random advective motions (dispersion) only compete with
advection on the scale of the particle size itself. By combining Eq. (22)
and Eq. (24), and using U>V, one finds the following equation.

RO EYAY
fR.DN3'6< n >U” 26)

For typical values (D, = 1 mm?2/s [16],¢p =0.5,U=1m/sand r =
1.5 mm) it can be estimated that &, /&g , = 2.4-107%. From this analysis it
can safely be concluded that the dispersion/diffusion term of the vapor
transport equation can be ignored.
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3.3. Purely advective systems

In case dispersion and diffusion can be neglected as transport modes,
the differential equation for the vapor phase, Eq. (16), reduces to

¢, (U—V) %’1' +7k0(1 —=X)F(X)y =0 27

This differential has the same form as the differential for the con-
version X. By combination of the differentials for X, Eq. (15), and v, Eq.
(27), one can show that

dy vy _dX

U-V)—=-"V— 28
a ) dn~ Ac dy (28)

By integrating Eq. (28) with the boundary conditions for X and y
(both running from 1 to 0) and using Eq. (9), it can be shown that there is
a simple linear relation between X and y.

=X 29

This equation enables us to reduce the set of two ODE’s to a single
ODE that only depends on either the conversion or the vapor density.
Combination of Eq. (27) and Eq. (29) gives:

ax . _ k
iy §y(U—V)

This equation demonstrates that in this case there is only one length
scale determining the size of the front: &;.

01 -X)F(X)X =0 (30)

%+§;’9(1 —-X)F(X)X=0 3D

With the obtained differential equations for X a full description of the
front shape can be obtained. While the detail of the front shape depends
on the reaction pathway of the salt hydrate particle F(X), the typical
width is more related to length scale &;.

Eq. (31) offers the opportunity to predict front shapes as well from
particle reaction models as given in Table 1, which are directly obtained
from empirical data via single particle reaction measurement: i.e. TGA
measurements on hydration reactions [32,45].

3.4. Front shapes

As we have a closed-form differential equation for the conversion X,
Eq. (31), and as we have found that the normalized concentration field y
is equal to the conversion, Eq. (29), the shape of the hydration front can
be obtained. We choose X(7) =1 for # < 0. Although other choices
would have been possible, this choice simplifies the discussion as solu-
tions must be found # > 0, where X < 1. In case of the CR (constant rate)
and DLR; model (diffusion limited reaction of plate like particles) one
can easily find analytical solutions for X as a function of #. In case of the
DLRy (diffusion limited reaction of cylindrical particles) and DLRg
(diffusion limited reaction of spherical particles) models only analytical
solutions for the inverse, 5 as a function of X, can be obtained easily. For
reasons of consistency, therefore all solutions will be given in the form
7(X). The solutions for all for particle models are shown in Fig. 2, and
will be discussed in more detail below.

First the CR model is discussed. This model has a simple solution for
n(X) of the form

N(X)/Er,e = —InX (32)

When n— o0, X|0. Note that the conversion is an exponential function of
the distance, X(i7) = exp( — 1/ég,), where & . is the decay length of the
function, see Fig. 2.

The DLR; model has the following solution 0 < n/&zp < 1.

n(X)/érp =1-X (33)
For 57/£gp > 1 it holds that X = 0. From this equation it follows that
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Fig. 2. Front shapes for the different particle reaction models. The positional coordinate 7 is scaled on the reaction length scale &g. The positional coordinates are

chosen such that the point X = 1 coincides with 5 = 0.

the front linearly decays as a function of distance, X(7) =1 — 1/&gp, for
0<n/épp<1.

For 0 < 5/&gp < n%/24 the analytical solution of the DLR, model
equals

1) /600 = 3 76~ LX) 34)

Here Li»(X) is the Polylogarithmic function: Li»(X) = >,k 2X* . As
Lin(1) = #?/6 and Li»(0) = 0, it can be deduced that the conversion
front decays from X = 1 to 0 for /& ,—7%/24 .

For 0<n/&p < (In(3) —x/3v3)/2, the DLR; model has the
following solution

n(X)/f,w :%ln((l —XPP4(1-X)"+1)

(35)
1 2(1-Xx)"P+1 T

— 7§arcmn (T ) +6_\/§

From this equation it follows that the conversion front decays from
X=1to 0 for n/ép—(In(3)—7/3v3) /2.

A peculiar feature of the DLR models is that the ultimate width of the
front zone W [m], the distance over which X decays from 1 to 0, is well
defined, see also Fig. 2. The conversion X drops to zero at a well-defined
position in space, 7, due to the infinite fast reaction rate at X = 0, see
Table 1. The high reaction rates prevent water vapor to penetrate deeper

into the particle bed. A practical implication of this is that W can easily
be quantified for the different DLR particle models.

b, \ rPU-V)
%) "

P
C, is a model dependent constant, which values are listed in Table 2.
It follows from Eq. (36) that the parameter C, can be used to compare
front widths in particle beds of differently shaped particles with the
same internal structure (having the same value of D,) and the same

W=Clrp = Cn( (36)

Table 2
Predictions for the scaled front width for the particles experiencing diffusion
limited hydration kinetics.

Particle model n Cn

DLR; (plates) 1 1

DLR; (cylinders) 2 7%/24 ~ 0.41

DLR; (spheres) 3 (In(3) —/3v3) /2~ 0.25

dimensions (having the same value of r), given that the beds have the
same porosity ¢;.

The values of C, demonstrate that a hydration front in bed of plate-
like particles can be 4 times wider than in bed of spherical particles with
comparable properties.

It follows from Eq. (36) that W increases with U and decreases with
an increasing reaction rate, reflected by the parameter D, With
increasing air velocity, water vapor molecules can travel over longer
distances before undergoing a hydration reaction with the salt. There-
fore, the zone in which the hydration reaction occurs broadens, and W
broadens.

3.5. Modifications of the front shape

An aspect not discussed in Section 3.4, deserving attention, is the
validity of the front shapes as predicted by DLR models. As mentioned
before, in DLR models the reaction rate goes to infinity at X = 0, see
Table 1. However, at low conversions no longer vapor diffusion but the
intrinsic reaction rate of the salt limits the particle’s hydration kinetics.
Therefore, DLR models will hold for, X > X, where X" is a threshold
value for the conversion. For X < X" one should switch to a CR-type of
model. A more realistic model combining DLR kinetics for X > X" and
CR kinetics for X < X", might predict front shapes like the DLR models
shown in Fig. 2, but with an exponential tail at the leading edge of the
front. In this section a composite DLR-CR model will be analyzed, front
shapes will be predicted and the value of X" will be assessed. For
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simplicity only the kinetics of plate-like particles will be discussed (the
DLR; model).

A first order correction to the DLR; model would be assuming con-
stant rate phase at low conversion: X < X*. We will refer to this model as
the DLR;-CR model. From the equations listed in Table 1 it follows that

K A 0<X<X
kF(X) = D, 37)
® ——— A X <X<I
XP(p—a)p
As the reaction rate must be continuous at X = X',
* D 1
X P (38)

T P(p—aypx Da,

Here Da, = &, /&rp is a type II Damkohler number for the salt hy-
drate particle that characterizes the tradeoff between transport (diffu-
sion) and reaction limited kinetics [46]. Note that X* cannot exceed 1
(full conversion). Therefore, diffusion limited reaction kinetics will play
a role given that Da, > 1.

With the help of Eq. (37) the differential for the front shape, Eq. (30),
can be written as

dX kX A 0<X<X
r
aw___r i 39
i pU-V)] 5 Dy A X <X<I (39
(B —a)p

Note that the continuity of kF(X) at X =X = 1/Da, automatically
assure continuity of dX/dnyat this point. This differential has the
following solution

X—{ 1*'7/512.0 A 0<p<n
= » . .
Da, exP(*Dap[ﬂ*ﬂ]/fR,D) A nzn

The length scale &, = (¢,/1 — ) (r*(U — V) /D, ) is defined by Eq.
(18) forn = 1.

The location at the front where the reaction kinetics changes from
diffusion limited to reaction limited is represented by 7"

. Da, — 1
n = ( Da, >§R,D
As an example, the front shape has been calculated for Da, = 5. The
relation between the front shape and the reaction kinetics is shown in

Fig. 3. The constant rate period introduces an exponential tail at the
leading edge of the hydration front.

(40)

(41)

4. Reaction regimes for finite sized particle beds

As particle beds in TCES applications are obviously finite sized, the
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implications of our findings for salt hydration in finite sized systems is
briefly discussed in this section. Two issues will be addressed: a) the
circumstances needed for development of a hydration front and b) the
reaction regimes in case a front develops. In our discussion we will focus
on particles with diffusion limited reaction kinetics and use the fact that
mostly U>V. The discussion will be done with the help of the global
reaction rate ¢ [mol/m?s], which is a measure for the power output per
area P [W/m?] of a TCES particle bed: P = Ho.

L

o(f) = y% / X(z, )dz

0

(42)

Here L [m] is the length of the bed. Except during a very small
starting phase of duration L/U, the global reaction rate ¢ can also be
quantified by

a(1) = ¢ U(c(0,1) = e(L,1)), 43)

given that the difference between the amount of water entering and
exiting the system is fully consumed by the hydration reaction. There-
fore, Eq. (43) can be used when the water vapor concentration field has
reached a quasi-steady state.

The first issue is about the conditions needed for developing a trav-
eling hydration front. This can be assessed on the basis of the ratio of the
front width W and the system size L, which is actually a Damkohler
number of type I [46].

L 1 /[1- L
Day— L~ Ll éy\ L/U
w c\ ¢, ) /D,

Note that L/U and r? /D, are the advective time scale for the particle
bed and the diffusion time scale for a single particle, respectively. Two
regimes can be distinguished: Da, < 1 and Da, > 1. When Da, < 1, the
particle reaction mainly determines the global response of the bed as X is
constant over the bed and

(44

o(t)=yL— =vyL

dr 4%

In case particles obey the diffusion limited reaction kinetics, it fol-
lows from Table 1 that both ¢ and P will drop over time: F(X)|0 for X11.

The second issue is about the reaction regimes in case a traveling
hydration front can develop, Da, > 1. There will be at most three pe-
riods in the reaction process: a rising rate period (RRP) with a duration
Atggrp, a constant rate period (CRP) with a length Atcgp, and a falling rate
period (FRP) with a time span Atggp. A schematic overview of the
analysis is presented in Fig. 4. Below, each reaction phase will be dis-
cussed in more detail.

During the RRP phase water vapor has spread through the particle

107 10
| Y,
‘ll %

ol 08
l‘\‘ |

06 Y 06

» x
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02 T 02

004 a) 004 b)
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Fig. 3. The front shape for the CR-DLR; model at Da, = 5: a) the reaction rate in relation to the conversion, b) the resulting front shape. At low conversion the rate is
constant and not transport limited. At higher conversion diffusion limits the reaction process. The constant rate regime introduces an exponential tail at the leading

edge of the hydration front.
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Fig. 4. A schematic overview of the different reaction rate phases in a finite
sized particle bed: rising rate (RRP), constant rate (CRP) and falling rate (FRP).

bed as a prerequisite for hydration. At the start of the process 6(0) = 0 as
c(2,0) = ceq. During the RRP phase water vapor redistributes through
the system resulting in c(2,t) > ceq and o(t) > 0. At the end of the RRP as
a quasi-steady state is reached the net influx of water vapor equals the
global reaction rate, and o(Atgrp) = ¢, UAC (see Eq. (43)). The advective
timescale can be used as an upper bound: Atgrp < L/U. Using typical
values for the air velocity (U = 0.01-1 m/s) and the bed length (L = 1
m), one finds that Atzggp <1 — 100 s.
In the CRP period itself the reaction rate is constant. As c¢(0,t) —

c(L,t) =co— ceq = Ac, one finds that Eq. (43) equals

o(t) = p,UAc = yV (46)

This period can be split into two phases: I) the front is developing
X(0,t) <1 and II) the developed front travels through the bed till its
leading edge arrives at z = L (X(0,t) = 1 and X(L,t) = 0). The duration
of the CRP phase is given by.

L-W

Atcrp = Atcrpy + Atcrpy = 1 +T (47)

Here Atcgrp; [s] and Atcrpp [s] refer to the periods that the front
develops and that the front travels, respectively. The traveling time of a
fully developed front Atcgpr is simply the ratio between the length it can
travel, L — W, and its velocity V. Further, Atcrp; ~ t;, which is the time to
reach full hydration at z = 0, which can be estimated from the particle
reaction kinetics. Note that particles just at entrance of the bed (z = 0)
are always subject to a constant water vapor concentration co.

By solving Eq. (4) for the different DLR models (see Table 1), equa-
tions for t; can be obtained. For details we refer to the literature [16].

Pp-ap L-W

48
2nD,Ac 1% (48)

Ategp =

Here n = 1,2, 3 refers to the type of DLR-model. As a salt hydrate
particle at the entrance of the bed, z = 0, is subject to a constant water
vapor concentration, c¢(0,t) — ¢, = Ac, the particle’s hydration is fully
determined by its intrinsic reaction kinetics. By using Eq. (8), Eq. (12).
Eq. (36), Eq. (44), we can rewrite Eq. (48).

L 1 1
Atcrp = v <1 ~Da, {1 — 2nCJ ) (49)

Here the term L/V is the time it takes a fully developed front to travel
adistance L. The term Da; ' (1 — 1/2nC,) corrects for the finite size of the
front. According to this equation the constant rate period vanishes at
Da, = 1—- 1/2nC,, which is inline with the notion that below
Day, ~ 1 the hydration process is reaction limited. From this we can
immediately conclude Atcgp is orders of magnitude longer than Atggp as
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¢pAc/y<1 (see Fig. 6), and that the RRP phase can be neglected. This
also means that the transition from the CRP to the FRP occurs approx-
imately at t* &~ Atcgp.

The duration of the falling rate period Atggp is the time needed for the
front to travel over distance of its own width.

Atprp = % = ‘E/ (Dia,) (50)

In the derivation we used Eq. (44). Note that the duration of the FRP
phase is determined by the reaction kinetics of the particle.

In Fig. 5 we have plotted the fraction of time that a bed hydrates with
a constant rate as function of Day for the different DLR models. From this
it can be concluded that irrespectively of the model, Da, > 4 to make
sure that the hydration rate is constant for a significant fraction of the
whole reaction time.

5. Quantification of hydration fronts and implications for finite
sized bed

5.1. Front speed

First the speed of the hydration front V, Eq. (10), will be quantified
for different beds of different salt types: CuCly, K2COs, LiCl, MgCly, SrBry
and SrCls. All salts, except CuCly, are widely investigated as potential
storage material in TCES devices. As ¢, Ac/y is the key parameter for
calculating the ratio V/U, values for y and ¢, and Ac=c —c. are
needed.

Here we set ¢, = 0.5. The selected value for ¢, is within the range for
packed beds of particles, as in practice ¢, varies at most between 0.35
and 0.55 for random packs of particles [47,48]. As ¢,Ac/y is propor-
tional to ¢, /(1 — ¢), see Eq. (8), variation of the bed porosity between
0.35 and 0.55 leads to a variation of ¢, /(1 — ¢,) between 0.5 and 1.2. To
obtain values for the parameter y data on the crystal densities of the
starting phases, p,, have been collected, see Table 3. For p, and p; are
crystallographic densities were obtained from SpringerMaterials [49].
The particle porosity has been set to its lower limit ¢, = 1— ps/p,,
which implies the assumption that upon dehydration (f—a) the particle
changes from a hardly porous to a porous particle without changing its
volume. The resulting variation of y is relatively limited, between
7.67-10° and 1.72:10* mol/m®, which is understandable as this
parameter reflects the water density in a salt hydrate. To calculate Ac =
Co — Ceq Values for g and c,q are needed. We have chosen ¢y = 0.51 mol/

1.0
o 0.8
W Spheres (n=3
< | Sp (n=3)
+ﬂ_
r 064
0
=
F:
& 044
<
. «~— Plates (n=1)
Cylinders (n = 2)
1 10 100
Da,

Fig. 5. The fraction of time that a finite bed of salt hydrate particles has con-
stant hydration rate: the CRP (constant rate period).
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Table 3

Input parameters for calculating the speed of the hydration front for hydration transitions of different salt hydrates.
Salt a p pa [mol/m3] pp [mol/m3] bp y [mol/m3] H [kJ/mol] S [J/mol K]
CuCly 0 2 2.52:10* 1.49-10* 0.41 1.49-10* 60.7 151
K»CO3 0 1.5 1.76-10* 1.32.10% 0.25 9.89-10° 63.3 153
LiCl 0 1 4.81-10* 2.91-10* 0.39 1.46-10* 60.0 142
MgCl, 2 4 1.45.10* 9.71.10° 0.33 9.71-10° 64.6 140
MgCl, 4 6 9.71-10° 7.67-10° 0.21 7.67-10° 56.7 132
SrBry 1 6 1.46-10* 6.86-10° 0.53 1.72-10* 61.0 154
SrCly 1 2 1.65-10* 1.39-10* 0.16 6.96-10° 58.0 126
SrCl, 2 6 1.39-10* 7.39-10° 0.47 1.4810* 53.4 142

m?>, which corresponds to a saturated water vapor of 12 mbar at 10 °C (a
widely used value in TCES applications). The equilibrium vapor density
Ceq is calculated with the help of Eq. (3) with values of H and S as input.
The value for H and S, as given in Table 3, have been obtained by fitting
experimental data on the pressure-temperature line of the hydration
transition for the different salt [50-53].

Predictions for the ratio of the front and air velocities V/U as a
function of temperature are shown in Fig. 6. The figure demonstrates
three important issues. First, irrespectively of the salt type, the kinetics
of the hydration front is always orders of magnitude lower than the air
velocity: V<U. This is not surprising as the hydration involves the ab-
sorption of a lot of water per volume from the air phase that contain only
small amounts, which is reflected by the parameter ¢,Ac/y. So, a lot of
water vapor must be advected to the reaction front to move this front.
Practically this means that Eq. (12) can safely be used for prediction of
the hydration front velocity. Differences between the different salts are a
direct consequence of the parameter ¢, Ac/y. Effectively the front speed
follows from mass conservation issues: the balance between the water
vapor density ¢,Ac and the absorption capacity of the salt .

The second observation is about the temperature dependency of V.
The curves in Fig. 6 show that the front velocity is very sensitive to
temperature and goes to O at a specific temperature T* [K] that is salt
dependent. Given the definition of ¢,Ac/y both the temperature de-
pendency as the point T* is solely determined by the phase diagram of
the specific salt (the pressure-temperature line of the phase transition) as
can be seen in Eq. (3). At T* the input vapor density matches the equi-
librium water density of the salt: ¢co = coq(T").

A third feature visible in Fig. 6 is related to the magnitude of the ratio

4x107
310° —MgCl, (4-6) SrCl, (1-2)
= K,CO, (0-1.5)
-5 |
§ 210 . MgCl, (2-4)
F——————LiCl (0-1) 2
1107 -
SrCl, (2-6) (:uCl2 (0-2)
\SrBr2 16)\ \
0l — .
280 300 360
T[K]

Fig. 6. The ratio between the velocity of the hydration front V and the air speed
U for different hydration transitions as a function of temperature. The numbers
behind the chemical formula’s (i.e. MgCl, (2-4)) refer the hydration states
before and after the transition. The calculations have been performed with inlet
water vapor concentration of ¢y = 0.51 mol/m>, which corresponds to a satu-
rated water vapor of 12 mbar at 10 °C.

V/U. The spread in values of V/U (5.0-107%-3.6-10~° at 290 K) greatly
exceeds the spread in values of y (7.67~103—1.72-104 mol/mg). This
further illustrates that the phase behavior of a specific salt strongly
impacts the front dynamics.

In the calculations, shown in Fig. 6, the porosities of the bed ¢,and of
the salt particle ¢, was fixed. Now it has been shown that the front ve-
locity for realistic systems can be approximated with Eq. (12), the
impact of porosity can be demonstrated by calculating the factor

¢/ (1 — ¢y) (1 - ¢p>. Note that this factor includes all porosity contri-

butions in the parameter ¢,Ac/y. The factor ¢,/(1 — zﬁb)(l —q‘)p) is

plotted in Fig. 7 for realistic values of the porosities of packed beds,
0.35 < ¢, < 0.55, and a KpCOj3 particle pressed from a powder. Note
that for KoCO3 ¢, = 0.25 is the lowest porosity a particle in the a-phase
can have, see Table 3. Clearly, the hydration front moves faster with
increasing porosities of the bed and the particles itself. High porosities
mean low solid densities, and therefore a low absorption capacity for
water (low values of ).

5.2. Front width

As shown in Section 3, & is the length scale characterizing the extent
of the hydration front. Furthermore, it has been found that the front zone
has a well-defined width W in case the particle reaction kinetics is
diffusion limited (the DLR models), see Fig. 2 and Table 2. Here W will
be quantified for parameters relevant for TCES applications. Quantifi-
cation will be done with the DLR particle models for reaction kinetics
(see Table 1).

From the equations for W and &, it follows that salt type has no
direct influence on the extend of the hydration front. The particle
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Fig. 7. The impact of the bed and particle porosity (¢, and ¢,) on the speed of
the hydration front. The color coding refers to the scaling param-

eter ¢, /(1 — ¢b)(1 - 4),,).
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properties that matter are the size r, and microstructure as reflected in
the value of D,,. In this section we will discuss the impact of air velocity,
particle size, particle shape and water vapor