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Abstract: Motivated by the need for efficient purification methods for the recovery of valuable re-
sources, we developed a wire-electrospun membrane adsorber without the need for post-modification.
The relationship between the fiber structure, functional-group density, and performance of electro-
spun sulfonated poly(ether ether ketone) (sPEEK) membrane adsorbers was explored. The sulfonate
groups enable selective binding of lysozyme at neutral pH through electrostatic interactions. Our
results show a dynamic lysozyme adsorption capacity of 59.3 mg/g at 10% breakthrough, which is in-
dependent of the flow velocity confirming dominant convective mass transport. Membrane adsorbers
with three different fiber diameters (measured by SEM) were fabricated by altering the concentration
of the polymer solution. The specific surface area as measured with BET and the dynamic adsorption
capacity were minimally affected by variations in fiber diameter, offering membrane adsorbers
with consistent performance. To study the effect of functional-group density, membrane adsorbers
from sPEEK with different sulfonation degrees (52%, 62%, and 72%) were fabricated. Despite the
increased functional-group density, the dynamic adsorption capacity did not increase accordingly.
However, in all presented cases, at least a monolayer coverage was obtained, demonstrating ample
functional groups available within the area occupied by a lysozyme molecule. Our study showcases
a ready-to-use membrane adsorber for the recovery of positively charged molecules, using lysozyme
as a model protein, with potential applications in removing heavy metals, dyes, and pharmaceutical
components from process streams. Furthermore, this study highlights factors, such as fiber diameter
and functional-group density, for optimizing the membrane adsorber’s performance.

Keywords: membrane adsorber; sulfonated poly(ether ether ketone) (sPEEK); electrospinning;
lysozyme; dynamic adsorption capacity; fiber diameter; functional-group density; sulfonation degree;
electrostatic interactions; specific surface area

1. Introduction

Our resource consumption surpasses the earth’s replenishment rate. To prevent
depletion and ensure long-term sustainability, a transition from a linear to a circular
economy is necessary [1]. Looking especially at the key element of water, a circular
economy requires the purification of water to safeguard clean drinking water and the
recovery of the valuable resources it contains [2]. Currently, many valuable resources are
lost in discarded rest streams due to a lack of cost-effective recovery technologies [3]. In
many cases, the concentration of the valuable resource is too low, resulting in high energy
costs, or the rest streams are contaminated, increasing the purification process costs [3].
Additionally, every industry has unique resources in its rest stream, such as proteins in the
dairy industry, ionic species (e.g., nitrogen, phosphorous, and potassium) in the agricultural
industry, and dyes in the textile industry [4,5]. These factors make it challenging to find
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a single, efficient technology to recover and valorize these resources [6,7]. Therefore, an
efficient, and especially versatile, purification technology is needed that can be tailored to
the needs of various industries.

Traditionally, adsorption processes using packed-bed column technology are fre-
quently applied to remove target components or impurities from aqueous streams [8].
However, significant limitations involving high pressure drop and low throughput separa-
tion (the amount of material processed per unit time), seriously impede the development
and scale-up of this technology [8,9]. In addition, coarse impurities can easily clog the col-
umn, making this technology unsuitable for streams with high-mass components [10]. To
overcome these limitations, several developments in column technology have been made.

One such development is reducing the particle size in the packed bed, which increases
the adsorption capacity. By reducing the size of the porous particle, the diffusion length is
shortened, making the adsorption sites more accessible and increasing the throughput [11].
However, this also intensifies the limitations of clogging and high pressure drop, leading to
column deformation and channeling. This results in an early breakthrough, which implies
noncomplete utilization of the adsorption capacity [12].

Nonporous and/or core-shell rigid particles, on the other hand, offer the advantage of
greater robustness and lower pressure drop [13]. Solute diffusion is no longer a limiting
factor due to the absence of pores [8]. Unfortunately, these particles have a lower surface
area, which results in a lower capacity [13].

Perfusive or super-porous particles have been developed to increase convective mass
transport and reduce the diffusive dependency of the purification step to obtain higher
throughput. These particles allow solute molecules to pass through faster and at lower
pressures compared to packed beds and the capacity is higher compared to nonporous
particles [8,14].

Expanded beds were developed to prevent clogging of the column [10]. An upward
flow is applied to increase the space between the particles and allows coarser impurities
to flow through. However, the size and density of the particles and the flow rate must be
carefully balanced; if the particles are small, the flow must be limited to avoid overexpan-
sion of the bed, while if the particles are large, the flow must be high enough to prevent
sedimentation of the particles [15]. In both situations, the throughput of the bed is limited,
either due to low flow rates or due to restricted diffusion reducing the adsorption capacity.

Membrane adsorbers have been developed to overcome these limitations. In these
adsorbers, the adsorbent particles are fixed in a porous matrix or the matrix itself acts as
the adsorbent [16]. The target substances are adsorbed on the adsorptive moieties in the
membrane adsorber while the solvent with nonbinding and coarse impurities permeates
through the pores [17]. Within this porous structure, convective mass transport takes place,
which allows operation at higher flow rates compared to diffusion-controlled packed-bed
chromatography [8,18]. This leads to a reduced pressure drop and facilitates the scale-up
of the membrane adsorber technology [9]. However, most membrane adsorbers made
by modifying micro/macroporous membranes have a low adsorption capacity due to a
low surface area and a large pore size distribution [12]. A variance in porosity causes a
preferential flow of the solute molecules through the larger pores resulting in an early
breakthrough [8,12].

Electrospinning was introduced to enhance the surface area and versatility of mem-
brane adsorbers, allowing the creation of nanofibrous porous mats with tailor-made func-
tionalities to selectively recover valuable components [19]. This technique uses an electro-
static force to overcome the surface tension of a polymer solution, converting it into a fiber
structure that is deposited on a collector paper forming a porous mat (Figure 1) [20,21].
These mats can be stacked with a random overlay orientation of the fibers to decrease
the effective pore size distribution and achieve an even flow dispersion [22]. Electrospun
membrane adsorbers offer a promising cost-effective platform technology for resource
recovery. This is because electrospinning gives opportunities to (1) tailor the selectivity
by functionalization of the electrospun membranes through polymer blending, functional
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particle embedding during electrospinning or chemical post-functionalization; (2) control
permeability by adjusting the bed height, porosity, and fiber diameter such that nonbind-
ing and coarser impurities easily elute through the bed while the desired components
can bind to the (functionalized) electrospun fibers; and (3) facilitate easy production and
linear scale-up [19,23–25]. Recent progress made in the use of electrospun nanofibers
for membrane adsorbers is discussed in several review papers [9,19,23,24]. So far, the
versatility of electrospun membrane adsorbers has been studied primarily in terms of
design, fabrication, and type of functionalization [19]. However, many of these adsorbers
require multistep synthesis for functionalization [26–32], which limits their entrance into
industry and the market. To overcome this, alternative fabrication routes, such as the use
of pre-functionalized polymers should be explored [33]. Systematic studies to tailor the
performance by controlling electrospinning conditions are limited [19].
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Figure 1. Schematic representation of the fabrication process for sPEEK membrane adsorbers using
a wire-electrospinning device, along with a visualization of the factors studied for their impact
on performance.

This study develops electrospun sulfonated poly(ether ether ketone) (sPEEK) mem-
brane adsorbers that eliminate the need for any post-functionalization steps due to the
inherent presence of the functional sulfonate groups in the polymer (Figure 1). The sul-
fonate groups allow selective binding of the model protein lysozyme under neutral pH
through electrostatic interactions. The negatively charged strong acidic sulfonic acid groups
and the positively charged lysozyme (with an isoelectric point of 11.35) are attracted to
each other by Coulombic interactions [34,35]. Other interactions, such as hydrogen bond-
ing, hydrophobic interactions, and van der Waals forces, also contribute to the binding
affinity between the protein and the membrane adsorber [35–37]. The choice of lysozyme
as the model protein in this study is due to its stability, antimicrobial properties, and is a
natural preservative, which makes lysozyme an ideal test molecule and is therefore widely
studied [38]. Most important, the versatility of electrospinning is explored with a focus
on the effect of fiber thickness or functional-group density on the adsorber performance
(Figure 1). The sPEEK fiber thickness was tailored by varying the concentration of the
polymer solution and fine-tuning the process parameters of the electrospinner [20,39,40].
sPEEK membrane adsorbers with thicknesses of 90 ± 18 nm, 132 ± 27 nm, and 166 ± 18 nm
were investigated. Additionally, the effect of the functional-group density on the binding
capacity was studied by creating sPEEK-based membrane adsorbers from sPEEK with
different sulfonation degrees (52%, 62%, and 72%).

2. Materials and Methods
2.1. Materials

Sulfonated poly(ether ether ketone) (sPEEK) was purchased from FumaTech-BWT
GmbH, Bietigheim-Bissingen, Germany, Fumion® with sulfonation degrees of 52% (sPEEK-52,
x = 0.52 in Figure 1), 62% (sPEEK-62), and 72% (sPEEK-72). Dimethylacetamide (DMAc)
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was supplied by Sigma–Aldrich, Darmstadt, Germany and N-methylpyrrolidone (NMP)
by Biosolve B.V., Valkenswaard, The Netherlands. To dry the solvents molecular sieves
were used (4 Å, Sigma–Aldrich, Darmstadt, Germany). Hydrochloric acid (HCl, Supelco®

from Sigma–Aldrich, Darmstadt, Germany), sodium hydroxide (NaOH, VWR Chemicals,
Boxmeer, The Netherlands), and sodium chloride (NaCl, Sanal® P, AkzoNobel, Deven-
ter, The Netherlands) were used for membrane pretreatment and/or characterization.
Demineralized water was obtained from an Elga water purification system from Veolia,
Weert, The Netherlands. Lysozyme (LZ) from hen egg white (Mw ~ 14,600, Fluka ana-
lytical), phosphate buffers saline (PBS) tablets (pH 7.4, 0.01 M PBS, total ionic strength
0.15 M, Sigma–Aldrich, Darmstadt, Germany), and syringe filter holders (25 mm, Sartorius,
Goettingen, Germany) were used to measure the membrane performance.

2.2. Preparation of Electrospun Membranes

For electrospinning, the polymer is dissolved in a solvent. During the spinning process,
the polymer solidifies, thereby forming a fiber. Both the polymer, solution, and process
conditions define, e.g., the dimensions of the fiber. The driving force in electrospinning
is the electrical field built between the polymer supply and the collector. This electric
charge causes instability in the polymer solution because of the induction of charges on
the polymer and the charge builds up mainly at the surface of the liquid, destabilizing
the meniscus of the droplet on the wire. When the electric charge overcomes the surface
tension, a jet is formed.

Before solution preparation, the sPEEK polymers were dried in the vacuum oven
at 80 ◦C for six hours. The dried sPEEK-52 was used to prepare a 22 weight-% (wt %)
solution using NMP as a solvent, which had been dried using molecular sieves. The
solution was placed on the roller bench for at least 24 h. Additionally, the polymer solution
was placed in an ultrasonic bath at 25 ◦C for at least 4 h to break up any gel particles
that may be present in the solution. Polymer solutions of 17–25 wt % sPEEK-62 and
sPEEK-72, with solubility properties distinct from sPEEK-52, were prepared using dried
DMAc as a solvent and placed on the roller bench for at least 15 h. While the polymer
solution was still hazy, the solution was sonicated to obtain a homogeneous transparent
solution. Electrospinning was performed using a wire-electrospinning device (Nanospider
NS LAB, Elmarco, Liberec, Czech Republic). The relative humidity and temperature of the
electrospinning chamber were controlled (desiccant dehumidifier system, ML270PLUS,
Munters, Den Haag, The Netherlands).

The polymer solutions were electrospun from a carrier with an orifice of 0.8 mm
moving along the working wire electrode at a speed of 150 mm/s. The applied voltage
between the working and collecting electrode (working distance was set to 150 mm) was
set at 80 kV. The substrate was not moving and its distance to the collecting electrode was
set at 25 mm. Nanofibers were produced at 22 ± 0.5 ◦C under 25 ± 1% relative humidity,
except for 23.4 wt % sPEEK-72, which was produced under 20 ± 1% relative humidity. The
obtained spunbound membranes were placed for conditioning in 1 M HCl on a shaking
plate for one hour to ensure that all sulfonate groups have an H+ as their counterion. Then,
the membranes were rinsed in demineralized water by refreshing the water multiple times
until a neutral pH was obtained. Next, the membranes were dried in a vacuum oven at
80 ◦C for at least 6 h.

2.3. Membrane Characterization
2.3.1. Scanning Electron Microscopy (SEM)

The morphology of the fabricated membranes was evaluated using SEM (JEOL IT-100,
Nieuw-Vennep, The Netherlands) with 10 kV accelerating voltage and probe current set-
ting 32. All measured samples were platinum coated for 60 s at 40 mA using a sputtercoater
(JFC-2300HR, JEOL, Nieuw-Vennep, The Netherlands). Fiber dimensions were measured
on at least 100 spots at 10.000× magnification using ImageJ software.
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2.3.2. BET Surface Area

The Brunauer–Emmett–Teller (BET) specific surface area of the electrospun mem-
branes was determined by N2 physisorption at liquid N2 temperature (−196 ◦C) with a
Micromeretics TriStar II (Eindhoven, The Netherlands) using the Plus 3.03 software with
optimized BET calculation. Prior to the measurement, samples of ~0.1 g were outgassed for
20 h at 80 ◦C under vacuum.

2.3.3. Capillary Liquid Porometry

The pore size distribution was studied by porometry (Porolux 500, Porometer, Nazareth,
Belgium) on a sample with a diameter of 25 mm. Nitrogen gas was used as the pressurizing
agent, wetting was done with Porofil® (15.9 dyn/cm, supplied by Porometer, Nazareth,
Belgium). From each membrane, two samples were measured with the following settings:
shape factor 0.715, pressure increasing slope 120 s/bar, final pressure 6 bar, number of
measurements steps wet curve 50, and number of measurements steps dry curve 25.

2.3.4. Water Uptake and Swelling

The sPEEK water uptake and swelling (%) were measured on cast sPEEK films in
duplicates. Hereto the SPEEK solutions that were prepared for the electrospinning were
cast on a glass plate using a 500 µm casting knife for sPEEK-52 and sPEEK-62, and a 300 µm
casting knife for sPEEK-72. Then the films were dried for two days in a nitrogen box and
six days in a nitrogen oven at 120 ◦C. Then the films were immersed in water for three days
to ensure a fully saturated water uptake. Subsequently, the films were carefully wiped with
paper to remove excess solution and weighed. The films were put in a vacuum oven at
60 ◦C for 20 h. Once again, the films were weighed, and the water uptake was calculated
using Equation (1) and the thickness using Equation (2).

Water uptake =
mwet − mdry

mdry
·100% (1)

where mwet is the weight of the wet membrane (g) and mdry is the weight of the dried
membrane (g).

Swelling thickness =
twet − tdry

tdry
·100% (2)

where twet is the thickness of the wet membrane (µm) and tdry is the thickness of the dried
membrane (µm).

2.3.5. Ion-Exchange Capacity

The ion-exchange capacity reflects the number of functional cationic groups that are
available for ion exchange. The ion-exchange capacity of the electrospun membranes
was determined through acid–base titration as reported by Park et al. [41]. First, the
membranes were immersed overnight in 1 M HCl to convert them into the H+ form. After,
the membranes were thoroughly rinsed with demineralized water to remove the unbound
H+ ions from the spunbound membranes. Subsequently, the membranes were soaked three
times for one hour in 15 mL 2 M NaCl to exchange Na+ for H+. For each membrane sample,
the combined salt solutions were titrated with 0.01 M NaOH using a titrator from Metler
Toledo with sensor DGi115-SC. The ion-exchange capacity (meq/g dry membrane) was
calculated using the following Equation (3):

Ion-exchange capacity =
MNaOH·VNaOH

mdry
(3)

where MNaOH is the molar concentration of the sodium hydroxide solution (M), VNaOH the
volume of sodium hydroxide needed to titrate the acid (mL) and mdry the dry mass of the
membrane (g). All ion-exchange capacity measurements were executed in triplicate.
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2.4. Membrane Performance
2.4.1. Static Lysozyme Adsorption

The maximum adsorption capacity of lysozyme on the membrane adsorbers was
evaluated through static adsorption experiments. First, lysozyme solutions with concen-
trations ranging from 0–2.5 mg/mL in PBS buffer were made and measured by UV-vis
spectroscopy at 280 nm (Shimadzu UV-1280, ‘s-Hertogenbosch, The Netherlands). The
sPEEK membranes (~0.02 g) were immersed in 2 mL lysozyme solution with the prede-
termined concentrations (in duplicates). The adsorption experiments were carried out at
room temperature for 20 h on a shaking plate to ensure equilibrium and the concentrations
were measured again. The amount of adsorbed lysozyme (mg/g) was calculated using the
following Equation (4):

Adsorbed lysozyme =
(C0 − Ct)·V

m
(4)

where C0 is the initial concentration and Ct the equilibrium concentration of lysozyme in
solution (mg/mL), V is the volume of the solution (mL), and m the mass of the membrane
(g). The adsorption isotherm follows the Langmuir isotherm, which is described by the
following Equation (5):

qe=
Qm·Kd·Ce

(1 + Kd·Ce)
(5)

where qe is the equilibrium adsorption capacity (mg/g), Ce is the equilibrium concentration
(mg/mL), and Kd is the equilibrium constant (mL/mg). Qm is the maximum adsorption
capacity using a curve fitting (mg/g).

2.4.2. Dynamic Lysozyme Adsorption

For the determination of the dynamic adsorption capacity, 5–20 membrane discs with
a diameter of 25 mm each were cut and stacked in a filter holder (total mass membrane
0.05–0.15 g). The membrane mass available for adsorption was determined as the mass
enclosed within the o-ring. The filter holder was connected to a syringe filled with PBS
solution to flush the system and eliminate any potential contaminants. The flow velocity
was controlled with a syringe pump (Chemyx Inc. Fusion 200, Stafford, TX, USA) and set
at 1.0 mL/min for the adsorption step. The syringe was filled with 0.5 mg/mL lysozyme in
PBS solution and the permeate was collected in fractions of ~0.7 mL. The concentration
of lysozyme was determined by UV-vis spectroscopy at 280 nm. When the concentration
in the permeate exceeded 10% of the feed concentration (breakthrough point) the pump
was stopped. The adsorption capacity was determined by interpolation of the adsorption
curve at 10% breakthrough. The dynamic adsorption was executed for most samples
in duplicates, and the adsorption capacity showed an error margin of ≤11%. For the
washing step, the lysozyme in the syringe was replaced by PBS buffer solution to remove
the unbound lysozyme. The flow velocity in this washing step was set at 0.5 mL/min for
practical reasons. For desorption, the syringe was filled with 0.5 M NaCl in PBS solution
and the flow velocity was set at 1 mL/min. The amount of desorbed lysozyme in the
desorption buffer was determined by UV-vis spectroscopy at 280 nm and the recovery is
calculated using the following Equation (6):

Recovery =
PD

PL − PAW
·100% (6)

where PD is the amount of protein removed from the membrane stack in the desorption
step (mg), PL is the amount of protein loaded on the membrane stack (mg), and PAW is the
amount of unbound protein eluted in the adsorption and washing step (mg).
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3. Results and Discussion
3.1. Electrospun sPEEK Membrane Adsorbers

Membrane adsorbers with sulfonic acid functional groups were fabricated by wire-
electrospinning a 19 wt % sPEEK-62 in DMAc solution. SEM images of the nanofibrous
mats after the conditioning step show a uniform fiber morphology with an average fiber
diameter of 132 ± 27 nm (Figure 2) with an associated BET surface area of 12.3 ± 2.1 m2/g.
The obtained fiber diameter is relatively small compared to the data provided in the review
paper by Yang et al. (ranging from 150–15,000 nm) [9]. As a result, the surface area is
relatively high compared to values reported in literature (4–7 m2/g) [9].
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Figure 2. SEM images of sPEEK-62 membrane adsorbers in the H+ form made by wire-electrospinning
using a 19 wt % polymer solution; (a) 2500× magnification and (b) 10,000× magnification.

Achieving a uniform plug-flow velocity through the membrane adsorber and utilizing
its complete adsorption capacity relies on a narrow pore size distribution. The pore size
distribution of this sPEEK-62 membrane is shown in Figure 3. The pores of the membrane
are almost 50 times larger than the size of a lysozyme molecule (4.5 × 3 × 3 nm), allowing
convective transport of the lysozyme without clogging the pores [42].
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Figure 3. Pore size distribution measured with capillary liquid porometry of sPEEK-62 membrane
adsorbers in the H+ form made by wire-electrospinning using a 19 wt % polymer solution.

The membrane adsorber performance is studied by measuring the static adsorption
capacity using lysozyme as a model protein (Equation (4), Figure 4). Lysozyme is positively
charged at neutral pH enabling electrostatic binding with the negatively charged sulfonic
acid groups of sPEEK [34]. The experimental results in Figure 4 have been fitted using
the Langmuir adsorption isotherm expression from Equation (5), which gives a maximum
equilibrium adsorption capacity Qm of 72 mg/g.
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Figure 4. Static adsorption isotherm (at equilibrium concentration, Ce) of lysozyme (LZ) in PBS buffer
(pH = 7.4) on an electrospun sPEEK-62 membrane adsorber with a maximum adsorption capacity
(Qm) of 72 mg LZ/g membrane.

The dynamic adsorption capacity of the membrane adsorber is studied by measuring
the breakthrough curve, showing the lysozyme load (permeate volume in the adsorption
step) versus the eluent concentration (Figure 5). Initially, no lysozyme is detected in the
eluent, indicating full adsorption on the membrane adsorber. When the adsorber becomes
saturated, with the majority of the adsorption sites occupied, the first lysozyme molecules
start to break through, causing a lysozyme increase in the eluent. By convention, the dy-
namic adsorption capacity is determined at 10% breakthrough (q10%) to minimize product
loss. Dynamic adsorption experiments of a stack of 20 membranes loaded with 0.5 mg/mL
lysozyme at a flow of 0.1 mL/min show an adsorption capacity at 10% breakthrough of
59.3 mg/g (Figure 5a). This corresponds to a lysozyme adsorption capacity that is com-
parable to the static adsorption capacity at Ce of 0.05 mg/mL, being the concentration at
10% breakthrough. This means full utilization of the lysozyme adsorption capacity and
indicates an almost ideal plug flow in the membrane stack. Furthermore, the dynamic
adsorption capacity at varying flow velocity (from 0.1 mL/min to 1 mL/min) showed only
small deviations (within the expected-error margin, as reported in the experimental section)
and was independent of the set flow velocities, confirming that convective mass transport
is dominant in the membrane adsorber stack (Figure 5a–c).
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Figure 5. Dynamic lysozyme adsorption and desorption curves of electrospun sPEEK-62 membrane
adsorbers with flow velocities of (a) 0.1 mL/min, (b) 0.5 mL/min, and (c) 1 mL/min (0.5 mg LZ/mL,
pH 7.4); q10% is the adsorption capacity at 10% breakthrough.

The peak in the desorption step shows the amount of lysozyme removed from the
membrane adsorber using 0.5 M NaCl in PBS buffer, which is 31 ± 2% of the total adsorbed
lysozyme, regardless of the flow velocity. This suggests that lysozyme adsorbs on the
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membrane by two modes of adsorption, namely reversible electrostatic interactions, and
irreversible hydrophobic interactions. Adsorption with these two modes is supported
by the study of Dismer et al. who showed that in the case of a resin with a hydrophobic
backbone (polystyrene) functionalized with sulfonic acid groups (such as our sulfonated
PEEK), lysozyme binding occurs through electrostatic and hydrophobic interactions [43,44].
Furthermore, computer simulations by Yu et al. indicate that when the lysozyme binds
with its hydrophobic region with only four positive residues in its surroundings (in con-
trast to the other hydrophobic region surrounded by 13 positive residues), desorption is
inhibited [45]. Once the hydrophobic binding sites are covered with lysozyme only the
reversible electrostatic binding sites remain available, which leads to an overall decrease in
lysozyme adsorption capacity in the second and subsequent cycles (Figure 6). The recovery,
normalized with the recovery of the first cycle, shows a small increase in the second cycle.
This could be attributed to a binding rearrangement from hydrophobic to electrostatic
binding, likely due to the change in ionic strength between the desorption step of cycle
1 (0.65 M) and the adsorption step of cycle 2 (0.15 M). At low ionic strength, electrostatic
interactions are dominant in protein adsorption, while at higher ionic strength, the charges
are screened by the ions in solution, and hydrophobic interactions become dominant in
protein adsorption [46,47]. From the third cycle onward, the adsorption capacity and recov-
ery remained fairly constant, indicating that the hydrophobic binding sites are occupied
and interactions in these cycles primarily occur at the reversible electrostatic binding sites,
i.e., sulfonic acid groups. These findings demonstrate that sPEEK-62 membrane adsorbers
are reusable and capable of operating at a constant efficiency after the third cycle.
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Figure 6. Dynamic lysozyme adsorption capacity and recovery of sPEEK-62 membrane adsorber for
5 cycles (flow velocity 1.0 mL/min, 0.5 mg LZ/mL, pH 7.4). The recovery is normalized with the
recovery of the first cycle.

3.2. The Effect of Fiber Diameter

The versatility of electrospinning is explored with a focus on the relationship between
fiber diameter and performance. The sPEEK-62 membrane adsorbers with different fiber
diameters were fabricated by varying the concentration of the polymer solution in the
wire-electrospinning process. The SEM images of the fabricated sPEEK membranes after
proton exchange show a variation in fiber diameter from 90 ± 18 nm to 166 ± 18 nm with
increasing polymer concentration (Figure 7). Based on our experience, this is the widest
range of fiber diameters achievable through wire-electrospinning with this material because
lower concentrations of polymer solution yield fibers with beads (as already observed
in SEM with 17 wt % sPEEK-62), and higher concentrations are too viscous and prone
to gelation, making them unsuitable for electrospinning [25,40]. Small optimizations in
the electrospinning process parameters could be made to enlarge the variations in fiber
diameter, although it is known that the polymer concentration has the largest effect on
fiber diameter [39]. Despite the considerable variations in fiber diameter observed with
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SEM, only minor variations in the surface area were measured with BET. Specifically, the
measured surface areas were 11.2 ± 0.7 m2/g, 12.3 ± 2.1 m2/g, and 16.5 ± 1.3 m2/g for
the sPEEK-62 membrane adsorbers created with 17 wt %, 19 wt %, and 25 wt % polymer
solution, respectively. Surprisingly, the membrane adsorber with the largest fiber diameter
has the highest surface area, which could be due to the submicron-scale surface roughness
of the fibers. This surface roughness is likely a result of buckling instability during the
electrospinning process, where the skin layer formed on the polymer fibers collapses as the
solvent evaporates, leading to a wrinkled surface. This phenomenon occurs more frequently
with thicker fibers, which have a reduced surface-to-volume ratio and therefore longer
drying times, increasing the likelihood of skin-layer formation [48–50]. Consequently, it
is more probable that the thickest fiber has the greatest surface roughness, even though it
cannot be observed with SEM. In contrast, the membrane adsorber with the smallest fiber
diameter could have a reduced surface area due to the formation of beads.
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Figure 7. SEM images of sPEEK-62 membrane adsorbers in the H+ form made by wire-electrospinning
using polymer concentrations of (a) 17 wt %, (b) 19 wt %, and (c) 25 wt %. Average fiber diameters
are given in the bottom left corner of each image.

For a fair comparison of the dynamic adsorption capacity, it is important to take
the pore size distribution into account as it influences the flow distribution through the
membrane adsorbers. The porometry results show that the pore size distribution is in the
same range for all three samples (Figure 8) and will probably be narrowed down when
using a stack of membranes [26,28]. It is worth noting that larger fiber diameters correspond
to larger pore sizes. This is because thicker fibers are created by pulling more material from
the wire, which makes the space between the fibers wider resulting in larger pores [51–54].
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Figure 8. Pore size distribution of sPEEK-62 membrane adsorbers with different fiber diameters
(made with polymer concentrations of 17 wt %, 19 wt %, and 25 wt %) as measured with porometry.

Dynamic adsorption measurements with lysozyme are performed to evaluate the
performance of all three sPEEK-62 membrane adsorbers. The adsorption capacity results
(in mg/g) show that there is no correlation between adsorption capacity and fiber diameter
since the total surface area of the membrane did not change with a change in the fiber
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diameter (Table 1). When the adsorption capacity is normalized for the surface area, a
slight decrease is observed for the sPEEK-62 membranes produced with higher polymer
concentrations. As the material properties remain constant for these membranes and the
average pore size is larger for those produced with higher polymer concentrations, this
suggests that the amount of lysozyme adsorbed per surface area is slightly decreased due
to the larger pores. This could be attributed to the longer time required for the lysozyme to
reach the surface of the adsorber. Despite this, the recovery values for all three membrane
adsorbers were similar, as the material properties, i.e., ratio electrostatic and hydrophobic
interactions, are identical for all three sPEEK-62 membranes.

Table 1. Dynamic lysozyme adsorption capacity at 10% breakthrough and recovery of sPEEK-62
membrane adsorbers with different fiber diameters (made with different polymer concentrations of
17 wt %, 19 wt %, and 25 wt %).

17 wt %
sPEEK-62

19 wt %
sPEEK-62

25 wt %
sPEEK-62

BET surface area (m2) 11.2 ± 0.7 12.3 ± 2.1 16.5 ± 1.3
Adsorption capacity (mg/g) 66.0 ± 6.4 60.1 ± 6.6 76.0 ± 3.0
Adsorption capacity (mg/m2) 5.9 ± 0.7 4.9 ± 1.0 4.6 ± 0.4
Recovery (%) 37 ± 11% 35 ± 6% 36 ± 3%

3.3. The Effect of Sulfonation Degree

The versatility of sPEEK membrane adsorbers is explored by using the sPEEK of
variable sulfonation degrees (52%, 62%, and 72%), as validated by H-NMR using the
method of Zaidi et al. [55]. The sulfonation degree determines the number of functional
groups present for adsorption. First, the properties of the different sPEEK polymers are
studied by measuring the water uptake and swelling behavior of cast sPEEK films (Table 2).
The water uptake and swelling thickness properties of sPEEK-52 and sPEEK-62 are rather
similar, whereas sPEEK-72 shows a substantial increase in both the water uptake and the
swelling thickness. This is supported by Zaidi et al. where they show that the water uptake
increases linearly with a sulfonation degree up to 65% (with a reported water uptake of
33%), followed by a rapid increase above a sulfonation degree of 70% (with a water uptake
of 47% at a sulfonation degree of 72%) [55]. The high density of SO3H groups in the
highly sulfonated sPEEK can form clusters that absorb more water, explaining the rapid
increase in water uptake [55,56]. The high water uptake results in severe swelling and
gelation affecting the dimensional stability; at higher sulfonation degree values (100%) the
polymer becomes even water soluble. Therefore sPEEK-72 was selected as the upper limit
in sulfonation degree.

Table 2. Water uptake and swelling thickness of cast sPEEK films and the ion-exchange capacity of
electrospun sPEEK membranes.

sPEEK-52 sPEEK-62 sPEEK-72

Water uptake (%) 34 ± 5% 39 ± 2% 51 ± 7%
Swelling thickness (%) 11 ± 1% 12 ± 9% 18 ± 8%
Ion-exchange capacity (meq/g) 1.30 ± 0.02 1.56 ± 0.05 1.89 ± 0.09

The experimentally determined ion-exchange capacity of the electrospun membranes
is reported in Table 2. The quantity of accessible functional groups increases using sPEEK
with a higher sulfonation degree. It should be noted that the ion-exchange capacity rep-
resents the overall number of functional cationic groups available for small ions that can
penetrate inside the fiber. However, it is unlikely that lysozyme, with a dimension of
approximately 4.5 × 3 × 3 nm [42], has access to the subsurface sulfonic acid groups,
resulting in a lower quantity of functional groups available for lysozyme binding compared
to the measured ion-exchange capacity.
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The properties of the sPEEK polymer change with the sulfonation degree. In the
electrospinning process, the charge mainly accumulates at the surface of the liquid, which
destabilizes the meniscus of the droplet and changes the jet formation. For this reason,
the electrospinning parameters had to be adjusted for every polymer solution (22 wt %
sPEEK-52, 19 wt % sPEEK-62, and 23 wt % sPEEK-72), as described in the experimental
section. Despite efforts to achieve uniform thickness in the sPEEK fibers of varying sul-
fonation degrees, variations in fiber diameter were observed in the SEM images (Figure 9).
Additionally, the fusion of some fibers was observed in the sPEEK-72 membrane, which
may be attributed to the high degree of swelling of this polymer. As a result, an increased
average diameter is measured compared to the pristine membrane, which had an average
diameter of 158 ± 35 nm (SEM image not shown).
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Figure 9. SEM images of membrane adsorbers in the H+ form made by wire-electrospinning using
sPEEK with different sulfonation degrees of (a) 52%, (b) 62%, and (c) 72%. Average fiber diameters
are given in the bottom left corner of each image.

The surface areas of the membranes, as measured with BET, were 14.9 ± 2.9 m2/g,
12.3 ± 2.1 m2/g, and 9.5 ± 2.4 m2/g for sPEEK-52, sPEEK-62, and sPEEK-72, respectively.
The BET measurements show a reduction in surface area for the sPEEK-72 membrane
compared to the sPEEK-62 membrane, likely due to the fusion of fibers, as observed in
SEM. Additionally, the sPEEK-52 membrane shows an even higher surface area than the
sPEEK-62 membrane with the smallest fiber diameter (11.2 ± 0.7 m2/g, 17 wt % sPEEK-62,
discussed in the previous section), despite having a slightly higher fiber diameter. This can
be attributed to a more homogenous fiber formation with sPEEK-52 resulting in a higher
surface area.

Additionally, porometry showed that the sPEEK-52 membranes had a narrower pore
size distribution, indicating more homogeneity of the fibrous structure (Figure 10). The
average pore size of sPEEK-72 is slightly smaller than that of sPEEK-62, although sPEEK-72
has a higher fiber diameter. This reduction in pore size is likely due to the higher swelling
of sPEEK-72.
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Figure 10. Pore size distribution of the sPEEK membrane adsorbers in the H+ form with different
sulfonation degrees (52%, 62%, and 72%) as measured with porometry.
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The effect of sulfonation degree on the membrane performance is studied by mea-
suring the dynamic lysozyme adsorption and desorption curves. The results show that
the sulfonation degree, i.e., the number of functional groups per unit mass, did not di-
rectly influence the lysozyme adsorption capacity in mg/g, as sPEEK-52 with the lowest
functional-group density exhibits the highest adsorption capacity (Table 3). However, when
considering the adsorption capacity in mg/m2, which normalizes for surface area, the
adsorption capacity increased with increasing sulfonation degree.

Table 3. Dynamic lysozyme adsorption capacity at 10% breakthrough and recovery of sPEEK
membrane adsorbers with different sulfonation degrees (52%, 62%, and 72%).

sPEEK-52 sPEEK-62 sPEEK-72

BET surface area (m2) 14.9 ± 2.9 12.3 ± 2.1 9.5 ± 2.4
Adsorption capacity (mg/g) 65.7 ± 5.4 60.1 ± 6.6 63.9 ± 3.4
Adsorption capacity (mg/m2) 4.4 ± 0.9 4.9 ± 1.0 6.7 ± 1.7
Recovery (%) 35 ± 5% 35 ± 6% 43 ± 7%

The literature has shown that lysozyme with a net charge of +8 at neutral pH
(17 positively charged residues and 9 negatively charged residues) binds with four positive
key residues on the negatively charged surface of the membrane adsorber [44,46]. The ori-
entation of lysozyme on the membrane surface depends on the ligand type, ionic strength,
and surface interactions, and can be side-on (with its long axis parallel to the surface) or,
more efficiently, end-on [44,46]. Depending on the orientation, the lysozyme monolayer
surface coverage varies from 2–3 mg/m2 [57]. The adsorption capacity in mg/m2 shows
that all our membranes are completely covered by lysozyme, without being limited in the
number of functional groups. In fact, the coverage seems to exceed that of a monolayer.
This is due to the discrepancy in measurement conditions. The BET is measured in the
dry state, while the adsorption is measured in the wet state. The swelling of the fibers
creates more spaces for lysozyme adsorption and increases the surface area beyond what
is measured in the dry state using BET. This also explains the high adsorption capacity in
mg/m2 of the sPEEK-72 membrane adsorber, as severe swelling of this sample is observed
increasing the surface area in the wet state. It is worth noting that the standard deviation
for this sample is high, which may be attributed to the swelling resulting in fiber fusion
which can vary between samples. Overall, the adsorption data, combined with the surface
area, suggest that the swelling, which is linked to the sulfonation degree, is the main factor
that increases the adsorption capacity.

However, this positive effect of swelling is not unlimited; with an increase in sulfona-
tion degree, fiber swelling can increase the flow resistance. Pump stalling has been observed
when the flow rates exceeded 1 mL/min, which limits the throughput and reduces the
efficiency of the adsorption process. Moreover, excessive fiber swelling can create dead
zones and promote channeling that induces a decrease in the dynamic adsorption capacity.

The lysozyme recovery is comparable for the sPEEK-52 and sPEEK-62 membranes,
but it increases for the sPEEK-72 membrane. This can be attributed to the higher number of
charged groups in the sPEEK-72 membrane, which also makes the surface more hydrophilic.
As a result, the reversible electrostatic interactions are favored over the irreversible hy-
drophobic interactions, leading to easier desorption and a higher lysozyme recovery.

To put this work into perspective, the adsorption capacity of our membrane is similar
to the adsorption capacity of Sartobind® S (52 mg/g), a commercial membrane adsorber
with grafted polymers containing sulfonic acid groups [58]. However, in the literature,
membrane adsorbers that surpass the adsorption capacity of our sPEEK are reported [59,60].
The drawback of these membrane adsorbers is that they require functionalization through
multistep synthesis, whereas our sPEEK membranes can be directly used after electrospin-
ning, making them easy to scale-up. Electrospinning offers the opportunity to tailor the
fiber diameter; however, only small changes in surface area and, therefore, adsorption
capacity are observed. To enhance the adsorption capacity, co-electrospinning of func-
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tionalized adsorptive/affinity particles can be explored, which offer additional selective
binding sites [17,23,24,61]. Another approach is grafting polymer brushes, which enable
multilayer stacking of proteins, leading to high effective surface areas [62–65]. Increasing
the number of functional groups is also a strategy for enhancing adsorption capacity, as
done in this study by increasing the number of functional groups. However, an increased
degree of sulfonation did not result in an increased lysozyme adsorption capacity. This
is because lysozyme covers many more charged groups than itself needs to bind on the
membrane adsorber; therefore, in this specific case of lysozyme binding, there is no ad-
vantage in increasing the charge density of the membrane adsorber. Conversely, smaller
target molecules that do not cover the excess charge and that do not experience steric
hindrance can benefit from a higher sulfonation degree. From this point of view, testing
sPEEK membrane adsorbers has provided valuable insights into the relationship between
surface area, swelling, and adsorption capacity.

4. Conclusions

In this work, a wire-electrospun sPEEK membrane adsorber was developed without
the need for any additional functionalization step. This sPEEK-based membrane adsorber
has a dynamic lysozyme adsorption capacity (at 10% breakthrough) of 59.3 mg/g. This
is comparable to the static adsorption capacity at the same concentration, demonstrating
full utilization of the lysozyme adsorption capacity and indicating an almost ideal plug
flow in the membrane stack. The dynamic adsorption capacity is independent of the
flow rate (varying from 0.1 to 1 mL/min), indicating that convective mass transport is
dominant, and adsorption is not limited by diffusion. Cycling the dynamic adsorption
capacity experiment suggests that lysozyme binds by two modes of adsorption, namely
reversible electrostatic interactions and irreversible hydrophobic interactions. Further-
more, this experiment demonstrates that the sPEEK membrane adsorbers are reusable and
capable of operating at a constant efficiency after the third cycle. The versatility of elec-
trospinning was explored by creating nanofibrous mats with variable diameters, ranging
from 90 ± 18 to 166 ± 18 nm. The dynamic adsorption capacity and surface area in this
range of fiber diameters were minimally affected by variations in fiber diameter. Therefore,
electrospinning offers membrane adsorbers with consistent performance, even when the
process yields variations in fiber diameter. Additionally, the effect of the functional-group
density on the binding capacity was studied by creating membrane adsorbers from sPEEK
with different sulfonation degrees (52%, 62%, and 72%). In all presented cases, at least a
monolayer coverage was obtained. This suggests that there is already an abundant number
of functional groups available within the area occupied by a lysozyme molecule, and,
therefore, increasing the functional-group density does not enhance the adsorption capacity.
In brief, our study has demonstrated the successful development of a membrane absorber
that can be immediately used for binding positively charged molecules. However, the
potential for performance tuning through adjustments to fiber diameter or functional-group
density is limited.
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